WO2010029957A1 - Ejection method and color filter manufacturing method - Google Patents

Ejection method and color filter manufacturing method Download PDF

Info

Publication number
WO2010029957A1
WO2010029957A1 PCT/JP2009/065788 JP2009065788W WO2010029957A1 WO 2010029957 A1 WO2010029957 A1 WO 2010029957A1 JP 2009065788 W JP2009065788 W JP 2009065788W WO 2010029957 A1 WO2010029957 A1 WO 2010029957A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
color
recess
random number
volume
Prior art date
Application number
PCT/JP2009/065788
Other languages
French (fr)
Japanese (ja)
Inventor
巧 滑川
勇士 矢野目
真介 井口
厳 藤井
久三 中村
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Publication of WO2010029957A1 publication Critical patent/WO2010029957A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments

Definitions

  • the present invention relates to a technique for discharging a discharge liquid by an ink jet method.
  • nozzle holes are arranged in a row, and discharge elements such as piezoelectric elements and heating elements are provided for each nozzle hole inside a discharge chamber communicating with each nozzle hole.
  • the ejection element ejects droplets of the volume of the ejection liquid corresponding to the signal intensity input from the control device from the nozzle hole, but there are manufacturing errors in the nozzle hole and ejection element, so the same signal strength Even if this signal is input, the volume of the ejected droplets may not be the same value.
  • the present invention has been created to solve the above-described disadvantages of the prior art, and an object of the present invention is to provide a discharge method and a color filter manufacturing method that do not generate streaks.
  • the inventors of the present invention even if there is a recess having a different volume of discharge liquid from the surrounding, if the position is scattered, the streaks are not visible, and the volume of the surrounding recess is not constant, The inventors discovered that the presence of a concave portion having a volume of the ejected liquid different from that of the surroundings cannot be visually recognized, and created the present invention.
  • the streaks can be seen because the recesses with a uniform volume of discharge liquid are arranged in a plane, and the recesses with a different volume of discharge liquid are arranged on the line.
  • the concave portion in which the discharge liquid having a uniform volume is disposed may not be disposed on the surface.
  • the present invention moves a discharge head formed with a plurality of nozzle holes relative to an application target, discharges a discharge liquid from the nozzle hole, A discharge method in which liquid droplets of the discharge liquid are landed in a recess disposed in the surface, and a discharge liquid film is formed in the recess, wherein random numbers are generated and the discharge liquid disposed in one recess is This is a discharge method for determining the volume according to the random number. Further, the present invention is a discharge method in which a plurality of droplets are landed in the recess, and the number of droplets discharged into the recess is determined for each recess according to the random number.
  • the present invention is a discharge method in which a plurality of droplets are landed in the recess, and the discharge method determines the volume of the droplets according to the random number. Further, the present invention is a discharge method for determining a volume of two or more droplets for each droplet according to the random number among the plurality of droplets discharged into one concave portion. The present invention is also an ejection method in which the volume of the plurality of droplets ejected into one of the recesses is made the same size according to the random number. Further, in the present invention, the plurality of recesses of the application object include a first recess in which the discharge liquid of the first color is landed and the discharge liquid of the second color different from the first color.
  • a second recess to be landed is set, and the discharge liquids of the first and second colors are landed on the first and second recesses, respectively, by any one of the discharge methods, thereby producing a color filter. It is a color filter manufacturing method.
  • the plurality of recesses of the application object include a first recess in which the discharge liquid of the first color is landed and the discharge liquid of the second color different from the first color.
  • a second concave portion to be landed and a third concave portion to which the third color discharge liquid is landed are set, and each of the first, second and third color discharge liquids is discharged from any one of the above.
  • This is a color filter manufacturing method for manufacturing a color filter by landing on the first, second, and third recesses by a method.
  • the present invention is a color filter manufacturing method for manufacturing a color filter in which the first color is red, the second color is green, and the third color is blue.
  • the present invention is configured as described above.
  • the concave portions are surrounded by a light shielding band called a black matrix, and the concave portions are regularly arranged on a plane, so that the discharge liquid of the same volume can be obtained.
  • the volume of the discharge liquid placed in the recess is determined according to a random number so that the recesses in which the discharge liquid of a volume different from the surroundings is not arranged in a straight line while the arranged recesses are regularly arranged. Can do.
  • the number of droplets landed on one recess may be determined according to the random number, or the magnitude of the signal strength that determines the volume of the droplet may be determined according to the random number. Also good.
  • the present invention includes a case where they are combined.
  • the present invention includes a case where a droplet having a volume with a signal intensity according to a random number and a droplet having a preset volume land on the same recess.
  • the present invention includes a case where the concave portions where the predetermined volume of the discharge liquid is arranged are scattered while the concave portions where the volume of the discharge liquid according to the random number is arranged on the surface.
  • the application target is a color filter
  • the discharge device includes a discharge head that discharges a first color discharge liquid, a discharge head that discharges a second color discharge liquid, and a discharge that discharges a third color discharge liquid.
  • a discharge liquid of one of the first color, the second color, and the third color lands on one of the plurality of recesses on the color filter.
  • the volume and number of the first, second, and third color discharge liquids that land in the recesses are changed according to the random number value, and the volume of the discharge liquid in each recess is changed so that the line cannot be seen. it can.
  • the upper limit value and lower limit value of the volume and number of discharge liquids of the first color, second color, and third color are set for each color discharge liquid, and between each upper limit value and lower limit value for each color (above the upper limit value,
  • the number or volume of random number values (below the lower limit value) or the discharge liquid of each color may be output in the volume or number according to the random number between the same upper limit value and the same lower limit value .
  • the angle between the direction of the inkjet head and the direction of the glass substrate is adjusted so that the interval between the nozzle holes and the interval between the recesses is the same, and the interval between the holes in the direction in which the recesses are aligned matches the interval between the recesses.
  • the nozzle hole can pass through the recess.
  • the number of discharge liquids discharged to each recess is changed by a random number, and one or more liquid droplets among one or more liquid discharge liquid droplets discharged to the same recess.
  • the volume of can be changed by random numbers.
  • the discharge liquid is landed, and no streaks are seen on the coating object on which the discharge liquid film is formed.
  • the side view for demonstrating the discharge apparatus used for this invention The top view for demonstrating the discharge apparatus used for this invention Plan view for explaining nozzle holes provided in the discharge head Plan view for explaining the surface of the object to be coated Cross section of the object to be applied Cross section of color filter
  • FIG. 1 is a side view of a discharge device 1 that can be used in the method of the present invention
  • FIG. 2 is a plan view.
  • the discharge device 1 has a table 2, and a shaft 3 is disposed above the table 2.
  • discharge heads 4R, 4G, and 4B for red, green, and blue are arranged on the shaft 3.
  • a discharge liquid supply device 5 and a control device 7 are disposed around the discharge device 1.
  • the discharge liquid supply device 5 includes a discharge liquid for forming a red filter film, a discharge liquid for forming a green filter film, and a discharge liquid for forming a blue filter film, and the discharge heads 4R and 4G. 4B is connected to the discharge liquid supply device 5, and the discharge heads 4R, 4G, and 4B that form filter films of different colors are configured to be supplied with discharge liquids of corresponding colors, respectively.
  • Each color ejection head 4R, 4G, 4B has a plurality of nozzle holes P 1 to P n as shown in FIG.
  • ejection elements such as piezoelectric elements and heating elements are provided inside the ejection heads 4R, 4G, and 4B.
  • the ejection elements in the ejection heads 4R, 4G, and 4B are connected to the control device 7.
  • the control device 7 When the ejection device is selected by the control device 7 and a signal is input, the inputted ejection element operates and the corresponding nozzle hole The liquid droplets of the discharge liquid can be discharged.
  • An application object 10 is arranged on the table 2.
  • the application target 10 on the table 2 and the ejection heads 4R, 4G, and 4B are configured to be relatively movable.
  • the shaft 3 is configured to be linearly reciprocable in a horizontal plane with respect to the table 2, and the ejection heads 4 ⁇ / b> R, 4 ⁇ / b> G, 4 ⁇ / b> B are in a state where the application target 10 is stationary with respect to the table 2.
  • the application target 10 and the ejection heads 4R, 4G, 4B are moved relative to each other.
  • the substrate 2 is provided with a substrate moving device so that the application object 10 on the table 2 can move linearly in the horizontal plane, the ejection heads 4R, 4G, 4B are moved with respect to the table 2.
  • the application target 10 may be moved relative to the ejection heads 4R, 4G, and 4B to move relative to each other.
  • the application object 10 and the ejection heads 4R, 4G, and 4B may both move relatively.
  • FIG. 4A is a plan view of the application object 10.
  • the coating object 10 has a glass substrate 13, and light shielding bands 11 called a black matrix are arranged on the glass substrate 13 in a lattice pattern. A portion surrounded by the light shielding band 11 is recessed from the surface of the light shielding body 11, and a recess 12 surrounded by the light shielding body 11 is formed.
  • the recesses 12 have the same size and are arranged in a matrix.
  • One of the rows and columns is arranged on the table 2 so that one of the rows and columns is parallel to the direction of relative movement between the application target 10 and the ejection heads 4R, 4G, and 4B, and the other is oriented in a vertical direction. ing.
  • the columns and columns of the recesses 12 are equally spaced t. (The distance between the centers of the recesses 12).
  • the nozzle holes P 1 to P n are arranged in a straight line and are arranged at equal intervals w (distance between the centers of the nozzle holes).
  • the interval w between the nozzle holes P 1 to P n is not less than the interval t between the rows of the recesses 12 (w ⁇ t), and the angle formed by the arrangement of the nozzle holes P 1 to P n and the row of the recesses 12.
  • Is equal to the interval t between the rows of the concave portions 12, so that when the application target 10 and the ejection heads 4R, 4G, 4B are relatively moved, the upper position of the concave portion 12 is set to at least one nozzle hole P 1 to P. n can be passed.
  • a recess 12 in which a red filter film is formed, a recess 12 in which a green filter film is formed, and a recess 12 in which a blue filter film is formed are set in advance.
  • the discharge liquid of the same color is landed on the concave portion 12 in the inside, and the rows of the concave portions 12 on which the discharge liquid of the same color is landed every two rows are repeated, the discharge heads 4R, 4G, and 4B of one color are the concave portions in every two rows. 12 is caused to land the discharge liquid.
  • the ejection heads 4R, 4G, and 4B are configured to reciprocate in a horizontal plane along the axis 3, and can be moved in a direction perpendicular to the row direction of the recesses 12.
  • the discharge liquid is discharged from the discharge heads 4R, 4G, and 4B while relatively moving, the liquid droplets can be landed within the range of the width in which the nozzle holes P 1 to P n are arranged.
  • the ejection heads 4R, 4G, and 4B are moved to positions where the ejection liquid of the application object 10 can pass over the non-landed rows, and the application object 10 and the ejection heads 4R, 4G, and 4B are relatively moved.
  • the discharge liquid can be landed on a region on the surface of the application object 10 that is wider than the nozzle holes P 1 to P n of the discharge heads 4R, 4G, and 4B on the surface of the application object 10.
  • the application target object 10 is moved on the discharge apparatus 1 or from the discharge apparatus 1 to the heating and drying apparatus.
  • the discharge liquid in the recess 12 is dried, and as shown in FIG. 5, a color filter 15 in which red, green, or blue filter films 14R, 14G, and 14B are disposed in the recess 12 is obtained.
  • the portion where the red, green, or blue filter film is disposed transmits light, and the transmitted light is colored in the color of the filter film. Therefore, the color filter 15 is placed on a shutter such as a liquid crystal and each color is changed by the shutter. Color display is possible by adjusting the transmitted light ratio of the filter film.
  • the light shield 11 is made of a material that does not transmit light, and prevents light from passing through an unintended filter film.
  • Each recess 12 has a shape that is long in the direction of relative movement.
  • the control device 7 has the nozzle holes P 1 to P n on one recess 12.
  • the discharge liquid is discharged a plurality of times, and the liquid droplets are landed one by one at different positions in the longitudinal direction in the single recess 12, and as a result, the discharge liquid spreads uniformly on the bottom surface of the recess 12. I am doing so.
  • a computer 8 is connected to the control device 7, and the storage device 9 of the computer 8 stores in advance the positions of the recesses 12 on the application object 10 in association with the nozzle holes P 1 to P n of the respective colors. Yes.
  • the computer 8 generates a random number and can change the volume of the discharge liquid of each color with respect to one recess 12.
  • an FPGA Field Programmable Gate Array
  • LFSR linear feedback register
  • the pseudo random number generator outputs a random number for each ejection of the nozzle holes P 1 to P n of each color or for each concave portion 12 using parameters set for each nozzle.
  • the storage device 9 stores a standard waveform of the voltage output toward the piezoelectric element, and is output from the pseudo random number generator to the standard waveform voltage output from the storage device 9 by the arithmetic unit of the computer 8. A voltage based on the random number is superimposed and applied to the piezoelectric elements of the nozzle holes P 1 to P n of the respective colors.
  • the amount of the discharge liquid for each recess 12 is changed for each piezoelectric element of the nozzle holes P 1 to P n for each color, regardless of the change in the magnitude of the applied voltage value or the period of the applied voltage. It only has to be made.
  • the number of discharges can also be changed.
  • positioned in each recessed part 12 can be varied by changing the frequency
  • the lower limit value and the upper limit value of the number of droplets of red, green, and blue discharge liquids are previously set for each color.
  • the lower limit value of the number of droplets of red, green, and blue discharge liquid is expressed as N min (R), N min (G), N min (B)
  • the upper limit value is expressed as N max (R ), N max (G), and N max (B)
  • the random numbers N ran (R), N ran (G), and N ran (B) corresponding to the number of red, green, and blue droplets are random numbers.
  • the control device 7 sets the signal intensity for one ejection, that is, the signal intensity for ejecting one droplet, for each color so that the volume of one droplet becomes the same value for each color.
  • a signal having the same signal intensity is input to each recess 12 for each color, droplets having substantially the same volume for each color are ejected from the nozzle holes P 1 to P n. Yes.
  • a droplet having a signal intensity set for each color is stored in accordance with a random number, and droplets of the number of droplets N ran (R), N ran (G), and N ran (B) are stored in one nozzle hole.
  • the ink is discharged to one concave portion 12 corresponding to the number of droplets stored from P 1 to P n .
  • a discharge liquid having a volume corresponding to the random number is disposed in each recess 12.
  • the magnitudes of N max (B) may be the same value or different values.
  • the signal intensity for discharging one droplet of different colored discharge liquid may be set to the same magnitude, and the volume per droplet may be set to the same value between different colors.
  • the volume per droplet may vary depending on the color.
  • the volume of one or more of the plurality of droplets ejected to one recess 12 may be changed by a random number.
  • the volume of one droplet is determined according to the random number by determining the magnitude of the signal intensity using a random number. Can be sized.
  • the number of droplets to be ejected is set for each color of the ejected liquid, the signal intensity is determined for each recess 12 according to a random number, and a signal having a signal intensity according to the random number value is applied to the ejection element a set number of times.
  • the set number of droplets can be ejected with a volume corresponding to the signal intensity.
  • the signal intensity is determined by a random number for each recess 12
  • the volume of droplets that land on one recess 12 is the same, but the present invention is not limited thereto, and the ejection element
  • the signal intensity of the signal input to may be determined for each droplet according to a random number, and the volume of the droplet landing on one recess 12 may be changed according to the random number.
  • the number of droplets landed on the recess 12 may be a fixed number for each color, or may be a number according to a random number.
  • a lower limit value and an upper limit value of the signal intensity are set, and a signal intensity having a magnitude that is greater than or equal to the lower limit value and less than or equal to the upper limit value can be determined for each droplet with a random number.
  • the volume of the discharge liquid arranged in the recess 12 takes a different value according to the random number, and thus the stripe is not visible.
  • the signal strength can be set according to either the magnitude of the voltage or the magnitude of the current.
  • the voltage application time to the ejection element is set to a fixed time, and the magnitude of the voltage is set.
  • the signal is obtained by changing the voltage applied time and the current flowing time with a random number
  • the intensity can be changed with a random number.
  • the random number value may be generated at the time of ejection, or may be generated and stored in advance before the ejection is started. When a random number is generated for each recess 12, it can be stored for each recess 12, and when it is generated for each droplet, it may be stored for each droplet to be ejected.
  • the color filters are created by landing the discharge liquids of three colors of red, green, and blue on the different concave portions 12 of the same application target 10, but the discharge of two colors or four or more colors is performed.
  • the color filter may be created by landing the liquid on different concave portions of the same application object.
  • the present invention is not limited to the case of forming a filter film.
  • the organic EL thin film raw material liquid is discharged as a discharge liquid, and the liquid droplets are landed on the recesses to form the organic EL thin film.
  • the case where an EL display device is produced is also included in the present invention.
  • the present invention includes a case in which a discharge liquid of one color (including a transparent color) is discharged to form a coating film of the discharge liquid in the recess, instead of the discharge liquids of different colors.
  • the discharge liquid is discharged while the application target 10 and the discharge heads 4R, 4G, and 4B are moved relative to each other.
  • the discharge liquid is discharged while the discharge liquid is discharged, and then landed. You may be stationary while you do.

Abstract

Provided is an ejection method wherein visible stripes are not produced. The cause of visible stripes on an object being coated is that concave parts (12), where the amount of ejected liquid is different from the amount in surrounding areas, are arranged in a straight line. Therefore, by determining the number of liquid drops which strike one concave part (12) in accordance with a random number, or by determining the signal strength which is input to an ejection element in accordance with a random number, the volume of one liquid drop is endowed with a size corresponding to the random number. Stripes are no longer visible because liquid drops having volumes corresponding to the random number are arranged in each concave part (12), and concave parts (12) in which the same volume of ejected liquid is arranged are not aligned on the same plane.

Description

吐出方法、カラーフィルタ製造方法Discharge method, color filter manufacturing method
 本発明は、インクジェット法によって吐出液を吐出する技術に関する。 The present invention relates to a technique for discharging a discharge liquid by an ink jet method.
 液晶表示装置のカラーフィルタやPDPパネルのカラーフィルタを製造するために、近年では、インクジェットプリンタの技術を応用した吐出装置により、着色された吐出液を吐出して基板表面に着弾させてフィルタ膜を形成する技術が注目されている。 In recent years, in order to manufacture color filters for liquid crystal display devices and color filters for PDP panels, a colored discharge liquid is discharged and landed on the substrate surface by a discharge device to which an inkjet printer technology is applied. The technology to form is drawing attention.
 インクジェット方式の吐出装置では、多数のノズル孔が列設されており、各ノズル孔と連通する吐出室の内部には、圧電素子や発熱素子等の吐出素子がノズル孔毎に設けられている。 In an ink jet type discharge device, a large number of nozzle holes are arranged in a row, and discharge elements such as piezoelectric elements and heating elements are provided for each nozzle hole inside a discharge chamber communicating with each nozzle hole.
 吐出素子は、制御装置から入力される信号強度に応じた体積量(体積)の吐出液の液滴をノズル孔から吐出するが、ノズル孔や吐出素子には製造誤差があるため、同じ信号強度の信号を入力しても吐出される液滴の体積は同じ値にならない場合がある。 The ejection element ejects droplets of the volume of the ejection liquid corresponding to the signal intensity input from the control device from the nozzle hole, but there are manufacturing errors in the nozzle hole and ejection element, so the same signal strength Even if this signal is input, the volume of the ejected droplets may not be the same value.
 一個のノズル孔が吐出する液滴は、一列に配置された凹部に対して着弾されるため、他のノズル孔が吐出する液滴と大きく体積が異なる液滴を吐出するノズル孔が存在すると、そのノズル孔から吐出された液滴が着弾した凹部により、塗布対象物表面に筋が見えてしまい、不良品となってしまう。 Since the droplets ejected by one nozzle hole are landed on the recesses arranged in a row, if there is a nozzle hole that ejects a droplet whose volume is significantly different from the droplet ejected by the other nozzle hole, Due to the recesses where the liquid droplets ejected from the nozzle holes have landed, streaks are visible on the surface of the object to be coated, resulting in a defective product.
 そこで従来技術でも対策が取られており、各ノズル孔から吐出される液滴の体積を一定にするために、予め液滴体積を測定し、各吐出素子に入力する信号強度の大きさを調整している。
特開2004-37855号公報 特開2004-109856号公報
Therefore, countermeasures are also taken in the prior art, and in order to make the volume of droplets ejected from each nozzle hole constant, the droplet volume is measured in advance and the magnitude of the signal intensity input to each ejection element is adjusted. is doing.
Japanese Patent Laid-Open No. 2004-37855 JP 2004-109856 A
 しかしながら各吐出素子の信号強度と液滴体積は一定の関係が維持されるわけではなく、吐出工程開始前に信号強度を調整して液滴体積を同じ大きさにしても、塗布対象物の処理枚数や温度変化等によって信号強度と液滴体積の関係が変化し、周囲と液滴体積が異なるノズル孔が出現すると、そのノズル孔が吐出液を吐出する部分に筋が形成され、不良品が発生するという問題がある。
 本発明は、上記従来技術の不都合を解決するために創作されたものであり、その課題は、筋が発生しない吐出方法、カラーフィルタ製造方法を提供することにある。
However, the signal intensity of each ejection element and the droplet volume are not maintained in a fixed relationship. Even if the droplet volume is made the same by adjusting the signal intensity before the ejection process starts, When the relationship between the signal intensity and the droplet volume changes depending on the number of sheets, temperature change, etc., and a nozzle hole with a different droplet volume from the surrounding appears, streaks are formed in the portion where the nozzle hole discharges the discharge liquid, and defective products There is a problem that occurs.
The present invention has been created to solve the above-described disadvantages of the prior art, and an object of the present invention is to provide a discharge method and a color filter manufacturing method that do not generate streaks.
 本発明の発明者等は、配置された吐出液の体積が周囲と異なる凹部が存在したとしても、その位置が散在していれば筋は見えないし、周囲の凹部の体積も一定でなければ、配置された吐出液の体積が周囲と異なる凹部の存在も視認することができないことを見出し、本発明を創作するに到った。 The inventors of the present invention, even if there is a recess having a different volume of discharge liquid from the surrounding, if the position is scattered, the streaks are not visible, and the volume of the surrounding recess is not constant, The inventors discovered that the presence of a concave portion having a volume of the ejected liquid different from that of the surroundings cannot be visually recognized, and created the present invention.
 即ち、筋が見えるのは、均一な体積の吐出液が配置された凹部が面状に配置された中に、周囲と異なる体積の吐出液が配置された凹部が線上に並ぶことが原因であれば、均一な体積の吐出液が配置された凹部が面上に配置されなければよい。 In other words, the streaks can be seen because the recesses with a uniform volume of discharge liquid are arranged in a plane, and the recesses with a different volume of discharge liquid are arranged on the line. For example, the concave portion in which the discharge liquid having a uniform volume is disposed may not be disposed on the surface.
 上記課題を解決するために、本発明は、複数のノズル孔が形成された吐出ヘッドを塗布対象物に対して相対的に移動させ、前記ノズル孔から吐出液を吐出し、前記塗布対象物上に配置された凹部内に前記吐出液の液滴を着弾させ、前記凹部内に吐出液膜を形成する吐出方法であって、乱数を発生させ、一個の前記凹部内に配置する前記吐出液の体積を前記乱数に従って決定する吐出方法である。
 また、本発明は、前記凹部内には前記液滴を複数個着弾させる吐出方法であって、前記凹部内に吐出する前記液滴の個数を前記乱数に従って凹部毎に決定する吐出方法である。
 また、本発明は、前記凹部内には前記液滴を複数個着弾させる吐出方法であって、前記液滴の体積を、前記乱数に従って決定する吐出方法である。
 また、本発明は、一個の前記凹部内に吐出する複数の前記液滴のうち、二個以上の液滴の体積を前記乱数に従って液滴毎に決定する吐出方法である。
 また、本発明は、一個の前記凹部内に吐出する複数の前記液滴の体積を、前記乱数に従った同じ大きさにする吐出方法である。
 また、本発明は、前記塗布対象物の複数の前記凹部には、第一色の前記吐出液が着弾される第一の凹部と、前記第一色とは異なる第二色の前記吐出液が着弾される第二の凹部とが設定され、前記第一、第二色の前記吐出液をそれぞれ上記いずれかの吐出方法によって、前記第一、第二の凹部に着弾させ、カラーフィルタを製造するカラーフィルタ製造方法である。
 また、本発明は、前記塗布対象物の複数の前記凹部には、第一色の前記吐出液が着弾される第一の凹部と、前記第一色とは異なる第二色の前記吐出液が着弾される第二の凹部と、第三色の前記吐出液が着弾される第三の凹部とが設定され、前記第一、第二、第三色の前記吐出液をそれぞれ上記いずれかの吐出方法によって前記第一、第二、第三の凹部に着弾させ、カラーフィルタを製造するカラーフィルタ製造方法である。
 また、本発明は、前記第一色は赤色であり、前記第二色は緑色であり、前記第三色は青色であるカラーフィルタを製造するカラーフィルタ製造方法である。
In order to solve the above problem, the present invention moves a discharge head formed with a plurality of nozzle holes relative to an application target, discharges a discharge liquid from the nozzle hole, A discharge method in which liquid droplets of the discharge liquid are landed in a recess disposed in the surface, and a discharge liquid film is formed in the recess, wherein random numbers are generated and the discharge liquid disposed in one recess is This is a discharge method for determining the volume according to the random number.
Further, the present invention is a discharge method in which a plurality of droplets are landed in the recess, and the number of droplets discharged into the recess is determined for each recess according to the random number.
In addition, the present invention is a discharge method in which a plurality of droplets are landed in the recess, and the discharge method determines the volume of the droplets according to the random number.
Further, the present invention is a discharge method for determining a volume of two or more droplets for each droplet according to the random number among the plurality of droplets discharged into one concave portion.
The present invention is also an ejection method in which the volume of the plurality of droplets ejected into one of the recesses is made the same size according to the random number.
Further, in the present invention, the plurality of recesses of the application object include a first recess in which the discharge liquid of the first color is landed and the discharge liquid of the second color different from the first color. A second recess to be landed is set, and the discharge liquids of the first and second colors are landed on the first and second recesses, respectively, by any one of the discharge methods, thereby producing a color filter. It is a color filter manufacturing method.
Further, in the present invention, the plurality of recesses of the application object include a first recess in which the discharge liquid of the first color is landed and the discharge liquid of the second color different from the first color. A second concave portion to be landed and a third concave portion to which the third color discharge liquid is landed are set, and each of the first, second and third color discharge liquids is discharged from any one of the above. This is a color filter manufacturing method for manufacturing a color filter by landing on the first, second, and third recesses by a method.
The present invention is a color filter manufacturing method for manufacturing a color filter in which the first color is red, the second color is green, and the third color is blue.
 本発明は上記のように構成されており、カラーフィルタでは、凹部はブラックマトリクスと呼ばれる遮光帯で取り囲まれており、凹部は平面上に規則的に配置されているため、同じ体積の吐出液が配置された凹部が規則正しく配置された中に、周囲とは異なる体積の吐出液が配置された凹部が直線状に並ばないように、凹部内に配置される吐出液の体積を乱数に従って決定することができる。 The present invention is configured as described above. In the color filter, the concave portions are surrounded by a light shielding band called a black matrix, and the concave portions are regularly arranged on a plane, so that the discharge liquid of the same volume can be obtained. The volume of the discharge liquid placed in the recess is determined according to a random number so that the recesses in which the discharge liquid of a volume different from the surroundings is not arranged in a straight line while the arranged recesses are regularly arranged. Can do.
 吐出液の体積を乱数に従って決定する場合、一個の凹部に着弾される液滴の個数を乱数に従って決定してもよいし、液滴の体積を決定する信号強度の大きさを乱数に従って決定してもよい。また、それらを組み合わせる場合も本発明に含まれる。 When determining the volume of the discharge liquid according to a random number, the number of droplets landed on one recess may be determined according to the random number, or the magnitude of the signal strength that determines the volume of the droplet may be determined according to the random number. Also good. In addition, the present invention includes a case where they are combined.
 また、本発明は、乱数に従った信号強度による体積の液滴と、予め設定された体積の液滴とを同じ凹部に着弾させる場合も含まれる。
 また、乱数に従った体積の吐出液が配置された凹部が面上に並ぶ中に、予め設定された体積の吐出液が配置された凹部が散在する場合も本発明に含まれる。
In addition, the present invention includes a case where a droplet having a volume with a signal intensity according to a random number and a droplet having a preset volume land on the same recess.
In addition, the present invention includes a case where the concave portions where the predetermined volume of the discharge liquid is arranged are scattered while the concave portions where the volume of the discharge liquid according to the random number is arranged on the surface.
 塗布対象物がカラーフィルタであり、吐出装置には、第一色の吐出液を吐出する吐出ヘッドと、第二色の吐出液を吐出する吐出ヘッドと、第三色の吐出液を吐出する吐出ヘッドとが設けられており、カラーフィルタ上の複数の凹部のうちの一個の凹部には、第一色、第二色、第三色のいずれか一個の色の吐出液が着弾する場合には、凹部に着弾する第一色、第二色、第三色の吐出液の体積や個数を乱数の値に従って変え、各凹部内の吐出液の体積を変えて線が見えないようにすることができる。 The application target is a color filter, and the discharge device includes a discharge head that discharges a first color discharge liquid, a discharge head that discharges a second color discharge liquid, and a discharge that discharges a third color discharge liquid. When a discharge liquid of one of the first color, the second color, and the third color lands on one of the plurality of recesses on the color filter. The volume and number of the first, second, and third color discharge liquids that land in the recesses are changed according to the random number value, and the volume of the discharge liquid in each recess is changed so that the line cannot be seen. it can.
 第一色、第二色、第三色の吐出液の体積や個数の上限値と下限値は、各色の吐出液毎に設定し、各色毎に上限値と下限値の間(上限値以上、下限値以下)の乱数の値の個数又は体積で出力するか、又は、各色の吐出液は、同じ上限値と同じ下限値の間の乱数に値に従った体積や個数で出力してもよい。 The upper limit value and lower limit value of the volume and number of discharge liquids of the first color, second color, and third color are set for each color discharge liquid, and between each upper limit value and lower limit value for each color (above the upper limit value, The number or volume of random number values (below the lower limit value) or the discharge liquid of each color may be output in the volume or number according to the random number between the same upper limit value and the same lower limit value .
 なお、ノズル孔の間隔と凹部の間隔とが一致するように、インクジェットヘッドの向きとガラス基板の向きとの角度が調整されており、凹部が並ぶ方向の孔の間隔は、凹部の間隔と一致され、凹部上をノズル孔が通過できるようにされている。 In addition, the angle between the direction of the inkjet head and the direction of the glass substrate is adjusted so that the interval between the nozzle holes and the interval between the recesses is the same, and the interval between the holes in the direction in which the recesses are aligned matches the interval between the recesses. The nozzle hole can pass through the recess.
 以上説明したように、凹部に配置する吐出液の体積を乱数によって変化させるためには、下記手段がある。 As described above, there are the following means for changing the volume of the liquid to be disposed in the recess by a random number.
(1)凹部に吐出する吐出液の液滴が1個の場合、乱数によってその液滴の体積を変化させる。
(2)凹部に吐出する吐出液の液滴が1個以上の場合、乱数によってその個数を変化させる。
(3)凹部に吐出する吐出液の液滴が2個以上であり、同一色の液滴が着弾される凹部には同一個数の液滴を吐出する場合、その同一個数内の液滴の一個以上の体積を乱数によって変化させる。
(1) When the number of droplets of the discharge liquid discharged to the recess is one, the volume of the droplet is changed by a random number.
(2) When there are one or more droplets of the discharge liquid discharged to the recess, the number is changed by a random number.
(3) When there are two or more droplets of the discharge liquid discharged to the concave portion and the same number of droplets are discharged to the concave portion on which the same color droplet is landed, one droplet within the same number The above volume is changed by a random number.
 なお、以上の(1)~(3)の他、各凹部に吐出する吐出液の個数が乱数により変化され、同一凹部に吐出される一個以上の吐出液の液滴のうち一個以上の液滴の体積が乱数によって変化させることも可能である。 In addition to the above (1) to (3), the number of discharge liquids discharged to each recess is changed by a random number, and one or more liquid droplets among one or more liquid discharge liquid droplets discharged to the same recess. The volume of can be changed by random numbers.
  本発明によれば、吐出液が着弾し、吐出液膜が形成された塗布対象物に筋が見えることはない。 に よ According to the present invention, the discharge liquid is landed, and no streaks are seen on the coating object on which the discharge liquid film is formed.
本発明に用いる吐出装置を説明するための側面図The side view for demonstrating the discharge apparatus used for this invention 本発明に用いる吐出装置を説明するための平面図The top view for demonstrating the discharge apparatus used for this invention 吐出ヘッドに設けられたノズル孔を説明するための平面図Plan view for explaining nozzle holes provided in the discharge head 塗布対象物の表面を説明するための平面図Plan view for explaining the surface of the object to be coated 塗布対象物の断面図Cross section of the object to be applied カラーフィルタの断面図Cross section of color filter
 4R、4G、4B…吐出ヘッド 10…塗布対象物 11……遮光帯 12……凹部 P1~Pn…ノズル孔 15……カラーフィルタ 4R, 4G, 4B: Discharge head 10: Application target 11: Shading band 12: Concave portion P 1 to P n ... Nozzle hole 15: Color filter
 図1は、本発明方法に用いることができる吐出装置1の側面図であり、図2は平面図である。
 この吐出装置1は台2を有しており、台2の上方には軸3が配置されている。軸3には、赤色、緑色、青色用の吐出ヘッド4R、4G、4Bが配置されている。
 吐出装置1の周囲には、吐出液供給装置5と制御装置7が配置されている。
FIG. 1 is a side view of a discharge device 1 that can be used in the method of the present invention, and FIG. 2 is a plan view.
The discharge device 1 has a table 2, and a shaft 3 is disposed above the table 2. On the shaft 3, discharge heads 4R, 4G, and 4B for red, green, and blue are arranged.
A discharge liquid supply device 5 and a control device 7 are disposed around the discharge device 1.
 吐出液供給装置5には、赤色のフィルタ膜を形成する吐出液と、緑色のフィルタ膜を形成する吐出液と、青色のフィルタ膜を形成する吐出液が配置されており、吐出ヘッド4R、4G、4Bは、吐出液供給装置5に接続され、異なる色のフィルタ膜を形成する吐出ヘッド4R、4G、4Bは対応する色の吐出液がそれぞれ供給されるように構成されている。 The discharge liquid supply device 5 includes a discharge liquid for forming a red filter film, a discharge liquid for forming a green filter film, and a discharge liquid for forming a blue filter film, and the discharge heads 4R and 4G. 4B is connected to the discharge liquid supply device 5, and the discharge heads 4R, 4G, and 4B that form filter films of different colors are configured to be supplied with discharge liquids of corresponding colors, respectively.
 各色の吐出ヘッド4R、4G、4Bは、図3に示すように、複数のノズル孔P1~Pnをそれぞれ有している。
 吐出ヘッド4R、4G、4Bの内部には、圧電素子や発熱素子等の吐出素子が設けられている。吐出ヘッド4R、4G、4B内の吐出素子は制御装置7に接続されており、制御装置7によって吐出素子を選択して信号を入力すると、入力された吐出素子が動作し、対応するノズル孔から吐出液の液滴を吐出させることができるように構成されている。
Each color ejection head 4R, 4G, 4B has a plurality of nozzle holes P 1 to P n as shown in FIG.
Inside the ejection heads 4R, 4G, and 4B, ejection elements such as piezoelectric elements and heating elements are provided. The ejection elements in the ejection heads 4R, 4G, and 4B are connected to the control device 7. When the ejection device is selected by the control device 7 and a signal is input, the inputted ejection element operates and the corresponding nozzle hole The liquid droplets of the discharge liquid can be discharged.
 制御装置7から吐出素子に印加する信号の大きさ(信号強度)を変更することで、ノズル孔から吐出される液滴の体積を変更できる。
 台2上には塗布対象物10が配置されている。
 台2上の塗布対象物10と、吐出ヘッド4R、4G、4Bは相対移動可能に構成されている。
By changing the magnitude (signal intensity) of the signal applied from the control device 7 to the ejection element, the volume of the droplet ejected from the nozzle hole can be changed.
An application object 10 is arranged on the table 2.
The application target 10 on the table 2 and the ejection heads 4R, 4G, and 4B are configured to be relatively movable.
 ここでは、軸3は、台2に対して水平面内で直線的に往復移動可能に構成されており、塗布対象物10が台2に対して静止した状態で、吐出ヘッド4R、4G、4Bが塗布対象物10に対して移動することで、塗布対象物10と吐出ヘッド4R、4G、4Bとが相対移動するようにされている。 Here, the shaft 3 is configured to be linearly reciprocable in a horizontal plane with respect to the table 2, and the ejection heads 4 </ b> R, 4 </ b> G, 4 </ b> B are in a state where the application target 10 is stationary with respect to the table 2. By moving relative to the application target 10, the application target 10 and the ejection heads 4R, 4G, 4B are moved relative to each other.
 それとは逆に、台2に基板移動装置を設け、台2上の塗布対象物10が水平面内で直線的に移動できるようにしておくと、吐出ヘッド4R、4G、4Bを台2に対して静止させた状態で、塗布対象物10を吐出ヘッド4R、4G、4Bに対して移動させることで、相対移動するようにしてもよい。
 また、塗布対象物10と吐出ヘッド4R、4G、4Bの両方が移動することで相対的に移動するようにしてもよい。
On the contrary, if the substrate 2 is provided with a substrate moving device so that the application object 10 on the table 2 can move linearly in the horizontal plane, the ejection heads 4R, 4G, 4B are moved with respect to the table 2. In a stationary state, the application target 10 may be moved relative to the ejection heads 4R, 4G, and 4B to move relative to each other.
Alternatively, the application object 10 and the ejection heads 4R, 4G, and 4B may both move relatively.
 図4(a)は、塗布対象物10の平面図である。
 この塗布対象物10はガラス基板13を有しており、ガラス基板13上にはブラックマトリクスと呼ばれる遮光帯11が格子状に配置されている。遮光帯11で囲まれた部分は遮光体11の表面よりも窪んでおり、遮光体11で囲まれた凹部12が形成されている。
FIG. 4A is a plan view of the application object 10.
The coating object 10 has a glass substrate 13, and light shielding bands 11 called a black matrix are arranged on the glass substrate 13 in a lattice pattern. A portion surrounded by the light shielding band 11 is recessed from the surface of the light shielding body 11, and a recess 12 surrounded by the light shielding body 11 is formed.
 ここでは凹部12は同じ大きさであり、行列状に配置されている。行と列の一方は、塗布対象物10と吐出ヘッド4R、4G、4Bとの相対移動の方向と平行になり、他方が垂直な方向に向くように台2上に塗布対象物10が配置されている。 Here, the recesses 12 have the same size and are arranged in a matrix. One of the rows and columns is arranged on the table 2 so that one of the rows and columns is parallel to the direction of relative movement between the application target 10 and the ejection heads 4R, 4G, and 4B, and the other is oriented in a vertical direction. ing.
 凹部12の行と列のうち、相対移動の方向に対して平行な方向に伸びる方を列、それとは垂直な方向に伸びる方を行とすると、少なくとも凹部12の列と列は、等間隔t(凹部12の中心間距離)で配置されている。
 他方、ノズル孔P1~Pnは直線上に並んでおり、等間隔w(ノズル孔の中心間距離)で配置されている。
Of the rows and columns of the recesses 12, assuming that the column extending in the direction parallel to the direction of relative movement is the column and the row extending in the direction perpendicular thereto is the row, at least the columns and columns of the recess 12 are equally spaced t. (The distance between the centers of the recesses 12).
On the other hand, the nozzle holes P 1 to P n are arranged in a straight line and are arranged at equal intervals w (distance between the centers of the nozzle holes).
 ノズル孔P1~Pnの間隔wは、凹部12の列間の間隔t以上の大きさであり(w≧t)、ノズル孔P1~Pnの並びと凹部12の列との成す角度θが、t=w・cosθ となるように、吐出ヘッド4R、4G、4Bを塗布対象物10に対して水平面内で回転させると、ノズル孔P1~Pnの行方向の間隔w・cosθが凹部12の列間の間隔tと等しくなるから、塗布対象物10と吐出ヘッド4R、4G、4Bとが相対移動させる際に、凹部12の上方位置を、少なくとも一個のノズル孔P1~Pnが通過するようにできる。 The interval w between the nozzle holes P 1 to P n is not less than the interval t between the rows of the recesses 12 (w ≧ t), and the angle formed by the arrangement of the nozzle holes P 1 to P n and the row of the recesses 12. When the ejection heads 4R, 4G, and 4B are rotated in the horizontal plane with respect to the application target 10 so that θ becomes t = w · cos θ, the interval w · cos θ in the row direction of the nozzle holes P 1 to P n. Is equal to the interval t between the rows of the concave portions 12, so that when the application target 10 and the ejection heads 4R, 4G, 4B are relatively moved, the upper position of the concave portion 12 is set to at least one nozzle hole P 1 to P. n can be passed.
 凹部12のうちには、赤色のフィルタ膜が形成される凹部12と、緑色のフィルタ膜が形成される凹部12と、青色のフィルタ膜が形成される凹部12とが予め設定されており、一列中の凹部12には同色の吐出液が着弾され、二列置きに同色の吐出液が着弾された凹部12の列が繰り返される場合、一色の吐出ヘッド4R、4G、4Bは二列置きの凹部12に吐出液を着弾させる。 Among the recesses 12, a recess 12 in which a red filter film is formed, a recess 12 in which a green filter film is formed, and a recess 12 in which a blue filter film is formed are set in advance. When the discharge liquid of the same color is landed on the concave portion 12 in the inside, and the rows of the concave portions 12 on which the discharge liquid of the same color is landed every two rows are repeated, the discharge heads 4R, 4G, and 4B of one color are the concave portions in every two rows. 12 is caused to land the discharge liquid.
 その結果、各凹部12には、対応する色の吐出液の液滴が着弾し、異なる色のフィルタ膜が、異なる凹部12に形成される。
 塗布対象物10と吐出ヘッド4R、4G、4Bとが、凹部12の列と同方向に相対移動すると、塗布対象物10上には、各吐出ヘッド4R、4G、4Bのノズル孔P1~Pnが配置された幅の範囲内に液滴を着弾させることができる。
As a result, droplets of the discharge liquid of the corresponding color land on each recess 12, and different color filter films are formed in the different recesses 12.
When the application object 10 and the ejection heads 4R, 4G, 4B move relative to each other in the same direction as the rows of the recesses 12, the nozzle holes P 1 to P of the ejection heads 4R, 4G, 4B are formed on the application object 10. A droplet can be landed within the range of the width where n is arranged.
 吐出ヘッド4R、4G、4Bは、軸3に沿って水平面内で往復移動可能に構成されており、凹部12の列方向とは垂直方向に移動させることができる。
 相対移動させながら吐出ヘッド4R、4G、4Bから吐出液を吐出すると、ノズル孔P1~Pnが配置された幅の範囲内に液滴を着弾させることができる。
The ejection heads 4R, 4G, and 4B are configured to reciprocate in a horizontal plane along the axis 3, and can be moved in a direction perpendicular to the row direction of the recesses 12.
When the discharge liquid is discharged from the discharge heads 4R, 4G, and 4B while relatively moving, the liquid droplets can be landed within the range of the width in which the nozzle holes P 1 to P n are arranged.
 次に、塗布対象物10の吐出液が着弾していない列上を通過できる位置に吐出ヘッド4R、4G、4Bを移動させ、塗布対象物10と吐出ヘッド4R、4G、4Bを相対移動させる。これを繰り返すと、塗布対象物10表面の吐出ヘッド4R、4G、4Bのノズル孔P1~Pnよりも幅の広い塗布対象物10表面の領域に吐出液を着弾させることができる。 Next, the ejection heads 4R, 4G, and 4B are moved to positions where the ejection liquid of the application object 10 can pass over the non-landed rows, and the application object 10 and the ejection heads 4R, 4G, and 4B are relatively moved. By repeating this, the discharge liquid can be landed on a region on the surface of the application object 10 that is wider than the nozzle holes P 1 to P n of the discharge heads 4R, 4G, and 4B on the surface of the application object 10.
 このように、塗布対象物10上の各凹部12に、対応する色の吐出液を配置した後、吐出装置1上で、又は吐出装置1から加熱乾燥装置に移動させて、塗布対象物10を加熱すると凹部12内の吐出液が乾燥し、図5に示すように、凹部12内に赤色、緑色、又は青色のフィルタ膜14R、14G、14Bが配置されたカラーフィルタ15が得られる。 As described above, after the discharge liquid of the corresponding color is disposed in each concave portion 12 on the application target object 10, the application target object 10 is moved on the discharge apparatus 1 or from the discharge apparatus 1 to the heating and drying apparatus. When heated, the discharge liquid in the recess 12 is dried, and as shown in FIG. 5, a color filter 15 in which red, green, or blue filter films 14R, 14G, and 14B are disposed in the recess 12 is obtained.
 赤色、緑色、又は青色のフィルタ膜が配置された部分は光が透過し、透過光はフィルタ膜の色に着色されるので、カラーフィルタ15を液晶などのシャッタ上に配置してシャッタによって、各色のフィルタ膜の透過光割合を調節することでカラー表示が可能になる。
 他方、遮光体11は光を透過しない材料で構成されており、光が意図しないフィルタ膜を透過しないようにされている。
The portion where the red, green, or blue filter film is disposed transmits light, and the transmitted light is colored in the color of the filter film. Therefore, the color filter 15 is placed on a shutter such as a liquid crystal and each color is changed by the shutter. Color display is possible by adjusting the transmitted light ratio of the filter film.
On the other hand, the light shield 11 is made of a material that does not transmit light, and prevents light from passing through an unintended filter film.
 各凹部12は相対移動の方向に長い形状であり、凹部12内に均一な膜厚のフィルタ膜を形成するために、制御装置7は、各ノズル孔P1~Pnが一個の凹部12上を通過する間に、吐出液を複数回吐出させ、一個の凹部12内の長手方向に異なる位置に液滴を一個ずつ着弾させており、その結果、凹部12の底面に吐出液が均一に拡がるようにしている。 Each recess 12 has a shape that is long in the direction of relative movement. In order to form a filter film having a uniform film thickness in the recess 12, the control device 7 has the nozzle holes P 1 to P n on one recess 12. During the passage, the discharge liquid is discharged a plurality of times, and the liquid droplets are landed one by one at different positions in the longitudinal direction in the single recess 12, and as a result, the discharge liquid spreads uniformly on the bottom surface of the recess 12. I am doing so.
 制御装置7にはコンピュータ8が接続されており、コンピュータ8の記憶装置9には、凹部12の塗布対象物10上の位置が、各色のノズル孔P1~Pnと関連付けて予め記憶されている。
 このコンピュータ8は、乱数を発生させ、一個の凹部12に対する各色の吐出液の体積を変更できるようにされている。
A computer 8 is connected to the control device 7, and the storage device 9 of the computer 8 stores in advance the positions of the recesses 12 on the application object 10 in association with the nozzle holes P 1 to P n of the respective colors. Yes.
The computer 8 generates a random number and can change the volume of the discharge liquid of each color with respect to one recess 12.
 乱数発生の方法としては、例えばコンピュータ8内にFPGA(Field Programmable Gate Array)を設けておき、FPGA内に擬似乱数発生器(LFSR:liner feedback register)を設けておく。
 擬似乱数発生器は、ノズル毎に設定されたパラメータを使用して、各色のノズル孔P1~Pnの吐出毎若しくは各凹部12毎に乱数を出力するようにしておく。
As a random number generation method, for example, an FPGA (Field Programmable Gate Array) is provided in the computer 8, and a pseudo random number generator (LFSR: linear feedback register) is provided in the FPGA.
The pseudo random number generator outputs a random number for each ejection of the nozzle holes P 1 to P n of each color or for each concave portion 12 using parameters set for each nozzle.
 記憶装置9は、圧電素子に向けて出力される電圧の標準波形を記憶しており、コンピュータ8の演算部により、この記憶装置9から出力される標準波形電圧に、擬似乱数発生器から出力された乱数に基づく電圧が重畳され、各色のノズル孔P1~Pnの圧電素子に印加される。 The storage device 9 stores a standard waveform of the voltage output toward the piezoelectric element, and is output from the pseudo random number generator to the standard waveform voltage output from the storage device 9 by the arithmetic unit of the computer 8. A voltage based on the random number is superimposed and applied to the piezoelectric elements of the nozzle holes P 1 to P n of the respective colors.
 標準波形電圧に乱数に基づく電圧が重畳されると、標準波形電圧よりも波形の振幅(高さ)が大きくなるか、又は小さくなり、もしくは、標準波形電圧よりも、電圧印加時間が長くなるか又は短くなる。 If a voltage based on a random number is superimposed on the standard waveform voltage, does the amplitude (height) of the waveform become larger or smaller than the standard waveform voltage, or is the voltage application time longer than the standard waveform voltage? Or it becomes shorter.
 このように、各色のノズル孔P1~Pnの圧電素子毎に、印加される電圧値の大きさや、印加される電圧の期間の変更に限らず、凹部12毎の吐出液の量を変化させることができればよい。 As described above, the amount of the discharge liquid for each recess 12 is changed for each piezoelectric element of the nozzle holes P 1 to P n for each color, regardless of the change in the magnitude of the applied voltage value or the period of the applied voltage. It only has to be made.
 なお、標準波形電圧に対する乱数の電圧の重畳は吐出液の吐出前に予め行い、各凹部12に対する結果を記憶しておくこともできる。 Note that the superposition of the random number voltage with respect to the standard waveform voltage can be performed in advance before the discharge liquid is discharged, and the result for each recess 12 can be stored.
 また、上述のように乱数により電圧値を変化させる他に吐出回数を変化させることもできる。カラーフィルタの形成時には、一個の凹部12に複数回の吐出を行う場合がある。このため、一個の凹部12に吐出する回数を変化させることにより各凹部12内に配置される吐出液の体積をバラつかせることができる。 In addition to changing the voltage value with a random number as described above, the number of discharges can also be changed. When forming the color filter, there are cases where a single recess 12 is ejected a plurality of times. For this reason, the volume of the discharge liquid arrange | positioned in each recessed part 12 can be varied by changing the frequency | count of discharging to the one recessed part 12. FIG.
 その場合、一個の凹部12に吐出する液滴個数の下限値Nminと上限値Nmaxについては、赤色、緑色、青色の吐出液の液滴個数の下限値と上限値がそれぞれ色毎に予め記憶・設定されており、赤色、緑色、青色の吐出液の液滴個数の下限値をNmin(R)、Nmin(G)、Nmin(B)で表し、上限値をNmax(R)、Nmax(G)、Nmax(B)で表すと、赤色、緑色、青色の液滴数に対応する乱数Nran(R)、Nran(G)、Nran(B)が、乱数発生関数のプログラムに従って、1 ≦ Nmin(R)≦ Nran(R) ≦ Nmax(R)、1 ≦ Nmin(G)≦ Nran(G) ≦ Nmax(G)、1 ≦ Nmin(B)≦ Nran(B) ≦ Nmax(B)の範囲で生成され(Nmin(R)、Nmin(G)、Nmin(B)、Nmax(R)、Nmax(G)、Nmax(B)、Nran(R)、Nran(G)、Nran(B)は整数)、液滴個数として、記憶装置9に凹部12と関連付けて凹部12毎に記憶される。 In this case, for the lower limit value N min and the upper limit value N max of the number of droplets discharged to one recess 12, the lower limit value and the upper limit value of the number of droplets of red, green, and blue discharge liquids are previously set for each color. Stored and set, the lower limit value of the number of droplets of red, green, and blue discharge liquid is expressed as N min (R), N min (G), N min (B), and the upper limit value is expressed as N max (R ), N max (G), and N max (B), the random numbers N ran (R), N ran (G), and N ran (B) corresponding to the number of red, green, and blue droplets are random numbers. 1 ≤ N min (R) ≤ N ran (R) ≤ N max (R), 1 ≤ N min (G) ≤ N ran (G) ≤ N max (G), 1 ≤ N min (B) ≦ N ran (B) ≦ N max (B) (N min (R), N min (G), N min (B), N max (R), N max (G) , N max (B), N ran (R), N ran (G), and N ran (B) are integers), the number of droplets, 9 is associated with the recess 12 and stored for each recess 12.
 制御装置7は、一個の液滴の体積が色毎に同じ値になるように、一回の吐出に対する信号強度、即ち、一個の液滴を吐出するための信号強度が色毎に設定されており、各凹部12に対し、色毎に同一の信号強度の信号を入力させると、各ノズル孔P1~Pnからは、色毎に略同じ体積の液滴が吐出されるようになっている。 The control device 7 sets the signal intensity for one ejection, that is, the signal intensity for ejecting one droplet, for each color so that the volume of one droplet becomes the same value for each color. When a signal having the same signal intensity is input to each recess 12 for each color, droplets having substantially the same volume for each color are ejected from the nozzle holes P 1 to P n. Yes.
 ここでは、色毎に設定された信号強度の液滴が、乱数に従って記憶された液滴個数Nran(R)、Nran(G)、Nran(B)の液滴が、一個のノズル孔P1~Pnから記憶された液滴個数に対応する一個の凹部12に対して吐出される。
 その結果、凹部12には、設定された体積の液滴が乱数に応じた液滴個数だけ着弾するため、各凹部12には、乱数に対応する体積の吐出液が配置される。
Here, a droplet having a signal intensity set for each color is stored in accordance with a random number, and droplets of the number of droplets N ran (R), N ran (G), and N ran (B) are stored in one nozzle hole. The ink is discharged to one concave portion 12 corresponding to the number of droplets stored from P 1 to P n .
As a result, since a set volume of droplets reaches the recess 12 by the number of droplets corresponding to the random number, a discharge liquid having a volume corresponding to the random number is disposed in each recess 12.
 従って、凹部12には、乱数結果に応じた異なる体積の吐出液が配置され、それが平面上に並ぶので、同じ信号強度の信号がノズル孔N1~Nnに印加された場合に、一滴の吐出量が他と異なるノズル孔N1~Nnがあったとしても筋が見えることはない。 Accordingly, different volumes of the discharge liquid corresponding to the random number result are arranged in the recess 12 and are arranged on a plane. Therefore, when a signal with the same signal intensity is applied to the nozzle holes N 1 to N n , one drop Even if there are nozzle holes N 1 to N n with different discharge amounts, no streak is visible.
 一個の凹部12に着弾する液滴数の異なる色の下限値Nmin(R)、Nmin(G)、Nmin(B)同士や、上限値Nmax(R)、Nmax(G)、Nmax(B)同士の大きさは同じ値であってもよいし、異なる値であってもよい。 Lower limit values N min (R), N min (G), and N min (B) of different colors with different numbers of droplets landing on one concave portion 12, or upper limit values N max (R), N max (G), The magnitudes of N max (B) may be the same value or different values.
 また、異なる色の吐出液の液滴一個を吐出させるための信号強度を同じ大きさに設定し、液滴一個当たりの体積を異なる色間で同じ値にしてもよいし、色によって信号強度を変え、液滴一個当たりの体積を色によって異ならせてもよい。 In addition, the signal intensity for discharging one droplet of different colored discharge liquid may be set to the same magnitude, and the volume per droplet may be set to the same value between different colors. Alternatively, the volume per droplet may vary depending on the color.
 また、液滴の個数を乱数によって決定するのではなく、同一色の吐出液が配置される凹部12のうち、一個の凹部12に対して二個以上の同じ個数の液滴を吐出する場合、一個の凹部12に対して吐出される複数の液滴のうちの一個以上の液滴の体積を乱数によって変更してもよい。 Further, instead of determining the number of droplets by random numbers, out of the recesses 12 in which the discharge liquid of the same color is disposed, when ejecting the same number of two or more droplets to one recess 12, The volume of one or more of the plurality of droplets ejected to one recess 12 may be changed by a random number.
 吐出ヘッド4R、4G、4B内の吐出素子は、信号強度に比例した体積の液滴を吐出するので、信号強度の大きさを乱数によって決定することで、液滴一個の体積を乱数に従った大きさにすることができる。 Since the ejection elements in the ejection heads 4R, 4G, and 4B eject a droplet having a volume proportional to the signal intensity, the volume of one droplet is determined according to the random number by determining the magnitude of the signal intensity using a random number. Can be sized.
 この場合、信号強度の下限値、及び上限値を設定しておき、信号強度の下限値以上上限値以下の乱数値を発生させると、下限体積以上上限体積以下の体積の液滴を吐出することができる。 In this case, when a lower limit value and an upper limit value of the signal intensity are set and a random number value that is greater than or equal to the lower limit value and less than or equal to the upper limit value is generated, a droplet having a volume that is greater than or equal to the lower limit volume and less than or equal to the upper limit volume is ejected. Can do.
 また、吐出する液滴個数を吐出液の色毎に設定しておき、信号強度を乱数に従って凹部12毎に決定し、乱数値に従った信号強度の信号を設定された回数吐出素子に印加すると、信号強度に応じた体積の液滴を、設定された液滴個数吐出することができる。 Further, the number of droplets to be ejected is set for each color of the ejected liquid, the signal intensity is determined for each recess 12 according to a random number, and a signal having a signal intensity according to the random number value is applied to the ejection element a set number of times. The set number of droplets can be ejected with a volume corresponding to the signal intensity.
 この例では、信号強度は凹部12毎に乱数で決定されるため、一個の凹部12に着弾する液滴の体積は同じ大きさになるが、本発明はそれに限定されるものではなく、吐出素子に入力する信号の信号強度を一個の液滴毎に乱数に従って決定し、一個の凹部12に着弾する液滴の体積を乱数に従って変更してもよい。 In this example, since the signal intensity is determined by a random number for each recess 12, the volume of droplets that land on one recess 12 is the same, but the present invention is not limited thereto, and the ejection element Alternatively, the signal intensity of the signal input to may be determined for each droplet according to a random number, and the volume of the droplet landing on one recess 12 may be changed according to the random number.
 この場合、凹部12に着弾させる液滴の個数を色毎に一定数にしてもよいし、乱数に従った個数にしてもよい。
 また、前例と同様に、信号強度の下限値と上限値とを設定しておき、下限値以上上限値以下の大きさの信号強度を液滴毎に乱数で決定することができる。
In this case, the number of droplets landed on the recess 12 may be a fixed number for each color, or may be a number according to a random number.
Similarly to the previous example, a lower limit value and an upper limit value of the signal intensity are set, and a signal intensity having a magnitude that is greater than or equal to the lower limit value and less than or equal to the upper limit value can be determined for each droplet with a random number.
 液滴体積を乱数で決定する場合も、凹部12に配置される吐出液の体積が乱数に従って異なる値をとるため、筋が見えなくなる。 Also when the droplet volume is determined by a random number, the volume of the discharge liquid arranged in the recess 12 takes a different value according to the random number, and thus the stripe is not visible.
 なお、信号強度は電圧の大きさと電流の大きさのいずれかによって設定することができ、信号強度を乱数に従って決定する場合、吐出素子に対する電圧の印加時間を一定時間にしておき、電圧の大きさを乱数に従って決定したり、電流を流す時間を一定時間に設定しておき、吐出素子に流れる電流の大きさを乱数に従って決定することもできる。 The signal strength can be set according to either the magnitude of the voltage or the magnitude of the current. When the signal strength is determined according to a random number, the voltage application time to the ejection element is set to a fixed time, and the magnitude of the voltage is set. Can be determined according to a random number, or the current flowing time can be set to a fixed time, and the magnitude of the current flowing through the ejection element can be determined according to the random number.
 印加電圧と印加時間の積や、電流と電流が流れる時間の積で吐出される液滴の体積が決定される吐出素子の場合、電圧印加時間や電流が流れる時間を乱数で変更することで信号強度を乱数で変更することもできる。 In the case of an ejection element whose volume is determined by the product of the applied voltage and the applied time or the product of the time that the current and the current flow, the signal is obtained by changing the voltage applied time and the current flowing time with a random number The intensity can be changed with a random number.
 乱数値は、吐出の際に生成してもよいし、吐出を開始する前に予め生成し記憶させておいてもよい。
 乱数を凹部12毎に生成する場合は凹部12毎に記憶させることができるし、液滴毎に生成する場合は、吐出する液滴毎に記憶して置いてもよい。
The random number value may be generated at the time of ejection, or may be generated and stored in advance before the ejection is started.
When a random number is generated for each recess 12, it can be stored for each recess 12, and when it is generated for each droplet, it may be stored for each droplet to be ejected.
 上記実施例では、赤色、緑色、及び青色の三色の吐出液を同一の塗布対象物10の異なる凹部12上に着弾させ、カラーフィルタを作成したが、二色又は四色以上の色彩の吐出液を同一の塗布対象物の異なる凹部上に着弾させてカラーフィルタを作成してもよい。 In the above embodiment, the color filters are created by landing the discharge liquids of three colors of red, green, and blue on the different concave portions 12 of the same application target 10, but the discharge of two colors or four or more colors is performed. The color filter may be created by landing the liquid on different concave portions of the same application object.
 また、本発明はフィルタ膜を形成する場合に限定されるものではなく、例えば有機EL薄膜の原料液を吐出液として吐出してその液滴を凹部に着弾させ、有機EL薄膜を形成して有機EL表示装置を作成する場合も本発明に含まれる。要するに、異なる色の吐出液ではなく、一色(色には透明も含む)の吐出液を吐出して吐出液の被膜を凹部に形成する場合も本発明に含まれる。 In addition, the present invention is not limited to the case of forming a filter film. For example, the organic EL thin film raw material liquid is discharged as a discharge liquid, and the liquid droplets are landed on the recesses to form the organic EL thin film. The case where an EL display device is produced is also included in the present invention. In short, the present invention includes a case in which a discharge liquid of one color (including a transparent color) is discharged to form a coating film of the discharge liquid in the recess, instead of the discharge liquids of different colors.
 また、上記実施例では、塗布対象物10と吐出ヘッド4R、4G、4Bを相対移動させながら吐出液を吐出させたが、吐出液を吐出する間に相対移動させ、吐出液を吐出後、着弾する間は静止させていてもよい。 In the above embodiment, the discharge liquid is discharged while the application target 10 and the discharge heads 4R, 4G, and 4B are moved relative to each other. However, the discharge liquid is discharged while the discharge liquid is discharged, and then landed. You may be stationary while you do.

Claims (8)

  1.  複数のノズル孔が形成された吐出ヘッドを塗布対象物に対して相対的に移動させ、前記ノズル孔から吐出液を吐出し、前記塗布対象物上に配置された凹部内に前記吐出液の液滴を着弾させ、前記凹部内に吐出液膜を形成する吐出方法であって、
     乱数を発生させ、一個の前記凹部内に配置する前記吐出液の体積を前記乱数に従って決定する吐出方法。
    A discharge head in which a plurality of nozzle holes are formed is moved relative to the object to be applied, discharge liquid is discharged from the nozzle holes, and the liquid of the discharge liquid is placed in a recess disposed on the object to be applied. A discharge method for landing droplets and forming a discharge liquid film in the recess,
    A discharge method for generating a random number and determining a volume of the discharge liquid disposed in one of the recesses according to the random number.
  2.  前記凹部内には前記液滴を複数個着弾させる請求項1記載の吐出方法であって、
     前記凹部内に吐出する前記液滴の個数を前記乱数に従って凹部毎に決定する吐出方法。
    The discharge method according to claim 1, wherein a plurality of droplets are landed in the recess.
    An ejection method for determining the number of droplets ejected into the recess for each recess according to the random number.
  3.  前記凹部内には前記液滴を複数個着弾させる請求項1記載の吐出方法であって、
     前記液滴の体積を、前記乱数に従って決定する吐出方法。
    The discharge method according to claim 1, wherein a plurality of droplets are landed in the recess.
    A discharge method for determining a volume of the droplet according to the random number.
  4.  一個の前記凹部内に吐出する複数の前記液滴のうち、二個以上の液滴の体積を前記乱数に従って液滴毎に決定する請求項3記載の吐出方法。 The ejection method according to claim 3, wherein the volume of two or more droplets among the plurality of droplets ejected into one concave portion is determined for each droplet according to the random number.
  5.  一個の前記凹部内に吐出する複数の前記液滴の体積を、前記乱数に従った同じ大きさにする請求項3記載の吐出方法。 4. The ejection method according to claim 3, wherein the volume of the plurality of droplets ejected into one recess is made the same size according to the random number.
  6.  前記塗布対象物の複数の前記凹部には、第一色の前記吐出液が着弾される第一の凹部と、前記第一色とは異なる第二色の前記吐出液が着弾される第二の凹部とが設定され、前記第一、第二色の前記吐出液をそれぞれ請求項1乃至請求項5のいずれか1項記載の吐出方法によって、前記第一、第二の凹部に着弾させ、カラーフィルタを製造するカラーフィルタ製造方法。 In the plurality of recesses of the application object, a first recess in which the discharge liquid of the first color is landed and a second in which the discharge liquid of a second color different from the first color is landed A recess is set, and the discharge liquids of the first and second colors are landed on the first and second recesses by the discharge method according to any one of claims 1 to 5, and a color is formed. A color filter manufacturing method for manufacturing a filter.
  7.  前記塗布対象物の複数の前記凹部には、第一色の前記吐出液が着弾される第一の凹部と、前記第一色とは異なる第二色の前記吐出液が着弾される第二の凹部と、第三色の前記吐出液が着弾される第三の凹部とが設定され、前記第一、第二、第三色の前記吐出液をそれぞれ請求項1乃至請求項5のいずれか1項記載の吐出方法によって、前記第一、第二、第三の凹部に着弾させ、カラーフィルタを製造するカラーフィルタ製造方法。 In the plurality of recesses of the application object, a first recess in which the discharge liquid of the first color is landed and a second in which the discharge liquid of a second color different from the first color is landed A concave portion and a third concave portion on which the discharge liquid of the third color is landed are set, and the discharge liquid of the first, second, and third colors is set to any one of claims 1 to 5. A color filter manufacturing method in which a color filter is manufactured by landing on the first, second, and third recesses by the discharge method according to the item.
  8.  前記第一色は赤色であり、前記第二色は緑色であり、前記第三色は青色である請求項7記載のカラーフィルタを製造するカラーフィルタ製造方法。 The color filter manufacturing method for manufacturing a color filter according to claim 7, wherein the first color is red, the second color is green, and the third color is blue.
PCT/JP2009/065788 2008-09-12 2009-09-10 Ejection method and color filter manufacturing method WO2010029957A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-234659 2008-09-12
JP2008234659 2008-09-12

Publications (1)

Publication Number Publication Date
WO2010029957A1 true WO2010029957A1 (en) 2010-03-18

Family

ID=42005209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065788 WO2010029957A1 (en) 2008-09-12 2009-09-10 Ejection method and color filter manufacturing method

Country Status (2)

Country Link
TW (1) TW201016333A (en)
WO (1) WO2010029957A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178956A (en) * 2005-12-28 2007-07-12 Dainippon Printing Co Ltd Manufacturing method of color filter
JP2007298950A (en) * 2006-02-07 2007-11-15 Applied Materials Inc Method and apparatus for reducing irregularity in color filter
JP2008066217A (en) * 2006-09-11 2008-03-21 Seiko Epson Corp Liquid body arrangement method, manufacturing method of color filter, and manufacturing method of organic el display device
JP2008080207A (en) * 2006-09-26 2008-04-10 Seiko Epson Corp Liquid body layout method, manufacturing method of color filter, and manufacturing method of organic electroluminescence display device
JP2008191373A (en) * 2007-02-05 2008-08-21 Toppan Printing Co Ltd Discharge pattern generating apparatus and method, color filter, and method of manufacturing organic functional element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178956A (en) * 2005-12-28 2007-07-12 Dainippon Printing Co Ltd Manufacturing method of color filter
JP2007298950A (en) * 2006-02-07 2007-11-15 Applied Materials Inc Method and apparatus for reducing irregularity in color filter
JP2008066217A (en) * 2006-09-11 2008-03-21 Seiko Epson Corp Liquid body arrangement method, manufacturing method of color filter, and manufacturing method of organic el display device
JP2008080207A (en) * 2006-09-26 2008-04-10 Seiko Epson Corp Liquid body layout method, manufacturing method of color filter, and manufacturing method of organic electroluminescence display device
JP2008191373A (en) * 2007-02-05 2008-08-21 Toppan Printing Co Ltd Discharge pattern generating apparatus and method, color filter, and method of manufacturing organic functional element

Also Published As

Publication number Publication date
TW201016333A (en) 2010-05-01

Similar Documents

Publication Publication Date Title
JP2012006405A (en) Printhead
WO2015182096A1 (en) Display panel
JP5190581B2 (en) Manufacturing method of color filter substrate
JP2009086155A (en) Image forming apparatus
JP2016147457A (en) Three-dimensional molding apparatus and three-dimensional molding method
JP2005238728A (en) Ink-droplet discharge method and device for the same
JP2007229958A (en) Droplet ejector and its control method
JP2005114986A (en) Plotting method, plotting device, and display device
CN110385926B (en) Printing method, printing apparatus, EL, and method for manufacturing solar cell
WO2010029957A1 (en) Ejection method and color filter manufacturing method
WO2010005011A1 (en) Inkjet printing device and jet quantity inspecting method
JP2009157035A (en) Inkjet discharge device
KR20130120775A (en) Printing apparatus and method for manufacturing organic light emitting diode display
JP2017042708A (en) Droplet discharge method, program, manufacturing method for organic el device and forming method for color filter
KR101205751B1 (en) Printing device and film forming method
EP3333601B1 (en) Color filter and method for manufacturing color filter
KR101231418B1 (en) Ink discharge control system, and color filter manufacturing method
TWI705591B (en) Printing method, printing device and manufacturing method of EL and solar cell
JP4710258B2 (en) Color filter forming method and forming apparatus
EP4010196B1 (en) Nozzle arrangements for droplet ejection devices
JP2015149210A (en) display substrate and method of manufacturing the same
JP5150625B2 (en) Manufacturing method of liquid crystal display device
JP2012081381A (en) Liquid drawing method, liquid drawing device, and functional mask for solar cell
JP2010266636A (en) Method for producing color filter substrate, method for producing color filter, and color filter substrate
KR20190030203A (en) Printing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09813103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09813103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP