WO2010029631A1 - 無線中継システム、無線フレームの利用方法および設定方法 - Google Patents

無線中継システム、無線フレームの利用方法および設定方法 Download PDF

Info

Publication number
WO2010029631A1
WO2010029631A1 PCT/JP2008/066465 JP2008066465W WO2010029631A1 WO 2010029631 A1 WO2010029631 A1 WO 2010029631A1 JP 2008066465 W JP2008066465 W JP 2008066465W WO 2010029631 A1 WO2010029631 A1 WO 2010029631A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay station
frame
relay
time interval
radio frame
Prior art date
Application number
PCT/JP2008/066465
Other languages
English (en)
French (fr)
Inventor
中村 道春
奥田 將人
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2008/066465 priority Critical patent/WO2010029631A1/ja
Priority to JP2010528568A priority patent/JP5246263B2/ja
Priority to EP08810517.6A priority patent/EP2326028B1/en
Priority to EP11175166A priority patent/EP2437412A3/en
Publication of WO2010029631A1 publication Critical patent/WO2010029631A1/ja
Priority to US13/044,767 priority patent/US20110164552A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources

Definitions

  • the present invention relates to a radio relay system, a radio frame utilization method, and a setting method.
  • FIG. 13 shows a typical radio frame configuration when communication between a base station and a terminal is performed in a time division (Time Division Duplex, TDD) manner via a relay station.
  • TDD Time Division Duplex
  • the radio frame includes a time interval (Down Link, DL) for transmitting a signal from the base station (Base Station, BS) to the terminal (Mobile Station, MS), and a signal from the terminal to the base station.
  • Time interval (Up Link, UL) to transmit
  • radio frames allow signal transmission between the relay station and the terminal, and a time interval (Relay Zone, RZ) that allows signal transmission between the base station and the relay station (Relay Station, RS). Time zone (Access Zone, AZ).
  • a relay station transmits a synchronous signal and a common control signal to a terminal at the head of DL instead of a base station.
  • the above-described conventional technique has a problem that the transmission efficiency is lowered. That is, as illustrated in FIG. 13, the relay station switches between a signal transmission operation (transmission mode) and a reception operation (reception mode) at the boundary between RZ and AZ. Since this switching causes a time blank period (gap), the transmission efficiency decreases.
  • the present invention has been made to solve the above-described problems of the prior art, and provides a wireless relay system, a method for using a wireless frame, and a setting method that can improve transmission efficiency. Objective.
  • a wireless relay system that performs data transmission between a base station and a terminal using a relay process by a relay station has a time interval length corresponding to a radio frame.
  • a control unit is provided that changes in a predetermined pattern.
  • the control unit includes a length of a time interval that allows data transmission between the base station and the relay station, or a length of time interval that allows data transmission between the relay station and a plurality of terminals including the terminal. Change the size.
  • FIG. 1 is a diagram for explaining a radio frame configuration of the radio relay system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the wireless relay system.
  • FIG. 3 is a sequence diagram showing a processing procedure of the base station.
  • FIG. 4 is a sequence diagram illustrating a processing procedure of the relay station.
  • FIG. 5 is a diagram for explaining improvement in transmission efficiency.
  • FIG. 6 is a diagram for explaining a radio frame configuration of the radio relay system according to the second embodiment.
  • FIG. 7 is a diagram for explaining a radio frame configuration of the radio relay system according to the third embodiment.
  • FIG. 8 is a diagram for explaining a radio frame configuration of the radio relay system according to the fourth embodiment.
  • FIG. 1 is a diagram for explaining a radio frame configuration of the radio relay system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the wireless relay system.
  • FIG. 3 is a sequence diagram showing a processing procedure of the base station.
  • FIG. 9 is a diagram for explaining a radio frame configuration of the radio relay system according to the fourth embodiment.
  • FIG. 10 is a diagram for explaining a radio frame configuration of the radio relay system according to the fifth embodiment.
  • FIG. 11 is a diagram for explaining a radio frame configuration of the radio relay system according to the fifth embodiment.
  • FIG. 12 is a diagram for explaining a radio frame configuration of the radio relay system according to the sixth embodiment.
  • FIG. 13 is a diagram for explaining the prior art.
  • FIG. 1 is a diagram for explaining a radio frame configuration of the radio relay system according to the first embodiment.
  • open squares indicate transmission data
  • hatched squares indicate reception data
  • arrows indicate data transmission directions.
  • the radio relay system changes the length of RZ or the length of AZ in a predetermined pattern according to the radio frame.
  • RZ is a time interval in which signal transmission is allowed between the base station (BS) and the relay station (RS)
  • AZ is a relay station (RS) and a plurality of terminals (MS). Is the length of the time interval (AZ) that allows signal transmission between the two.
  • the RZ in Frame-1 is relatively longer than the RZ in Frame-2 for the DL of the radio frame. (Refer to (b)).
  • the AZ in Frame-1 is changed to be relatively shorter than the AZ in Frame-2 (see (c)).
  • the radio relay system changes the UL of the radio frame so that the AZ in Frame-1 is relatively longer than the AZ in Frame-2 as shown in FIG. (See (d)).
  • the RZ in Frame-1 is changed to be relatively shorter than the RZ in Frame-2 (see (e)).
  • the relay station in the first embodiment receives data to be transmitted to the terminal from the base station in a predetermined frame, the relay station does not transmit all the data to the terminal in the frame but transmits the data. Only data with severe delay requirements are transmitted in the frame. Then, the relay station transmits data in which the transmission delay request is not strict in the next frame.
  • the relay station when the relay station receives data to be transmitted to the terminal from the base station by Frame-1 (see (b)), the relay station requests a transmission delay request such as voice call data. Only severe data is transmitted in the time interval (c) of Frame-1. In addition, the relay station transmits data whose transmission delay request is not strict, such as mail data, in the time interval (c) of Frame-2.
  • the wireless relay system it is possible to improve the transmission efficiency. That is, the relay station transmits a part of the data received from the base station as data to be transmitted to the terminal, which does not have a severe transmission delay request, in the next frame. For this reason, according to the wireless relay system according to the first embodiment, the temporal blank period that occurs between the switching between the transmission mode and the reception mode is a time for encoding a part of data with severe transmission delay requirements. As a result, transmission efficiency can be improved.
  • FIG. 2 is a block diagram illustrating a configuration of the wireless relay system.
  • the radio relay system according to the first embodiment includes a base station 100, a relay station 200, and a terminal 300.
  • FIG. 2 shows one base station 100, one relay station 200, and one terminal 300.
  • the base station 100 includes a transmission unit 110, a digital / analog conversion unit 111, a modulation unit 112, an encoding unit 113, a reception unit 120, an analog / digital conversion unit 121, a demodulation unit 122, and a decoding unit. 123, a control unit 130, and a control data creation unit 131.
  • the control unit 130 controls data transmission between the base station 100 and the relay station 200. Specifically, when control unit 130 receives data addressed to terminal 300 from a device upstream of base station 100 or relay station 200, control unit 130 requests control data creation unit 131 to create control data. In addition, when receiving control data from the control data creation unit 131, the control unit 130 combines the received control data and the data addressed to the terminal 300 and transmits the combined data to the encoding unit 113.
  • the relay station 200 can in principle perform processing without the control data unless the frame configuration is changed thereafter. .
  • the control unit 130 may also create control data as appropriate at the timing when the frame configuration is changed. If the control data is not created, the data addressed to the terminal 300 may be transmitted to the encoding unit 113 as it is. Good.
  • the control data creation unit 131 creates control data. Specifically, when receiving the control data creation request from the control unit 130, the control data creation unit 131 creates control data and transmits the created control data to the control unit 130.
  • the control data is data including a synchronization signal and a common control signal.
  • the common control signal includes designation of a radio frame configuration. That is, a predetermined pattern for changing the length of RZ or the length of AZ is specified by the control data.
  • an RCD (R-link channel descriptor) message is defined as control data transmitted from a base station to a relay station.
  • the control data creation unit 131 specifies the configuration of the radio frame with an RCD message. For example, as shown in Table 1 below, in the RCD message, it is specified whether or not the repetition of the frame configuration is used. When the repetition of the frame configuration is used, the number of frames to be repeated together with the number of repeated frames. Specify the configuration. As for the frame configuration, the number of zones constituting the frame and information for identifying RZ or AZ are designated.
  • control data creation unit 131 in the first embodiment designates “1” as the flag for using the repetition of the frame configuration, and designates “2” as the number of frames for repeating the frame configuration. Further, the control data creation unit 131 designates the number of zones in the DL subframe or UL subframe as “2” for Frame-1, and designates the zone mode as “RZ” or “AZ” for the DL subframe. Then, “AZ” and “RZ” are designated for the UL subframe. The control data creation unit 131 also designates the number of zones in the DL subframe or UL subframe as “2” for Frame-2, and designates the zone mode as “RZ” or “AZ” for the DL subframe. , “AZ” and “RZ” are designated for the UL subframe.
  • the encoding unit 113 encodes data to be transmitted to the relay station 200. Specifically, when receiving data addressed to terminal 300 from control unit 130, encoding unit 113 encodes the received data and passes it to modulation unit 112.
  • Modulation section 112 modulates data to be transmitted to relay station 200. Specifically, when receiving the data addressed to the terminal 300 from the encoding unit 113, the modulation unit 112 modulates the received data and passes it to the digital / analog conversion unit 111.
  • the digital / analog conversion unit 111 converts data to be transmitted to the relay station 200 from digital to analog. Specifically, when the digital / analog conversion unit 111 receives data addressed to the terminal 300 from the modulation unit 112, the digital / analog conversion unit 111 converts the received data from digital to analog and passes the data to the transmission unit 110.
  • the transmission unit 110 transmits data to the relay station 200. Specifically, when receiving data from digital / analog converting section 111, transmitting section 110 transmits the received data to relay station 200.
  • the receiving unit 120 receives data from the relay station 200. Specifically, when receiving unit 120 receives data from relay station 200, it passes the received data to analog / digital conversion unit 121.
  • the analog / digital conversion unit 121 converts the data received from the relay station 200 from analog to digital. Specifically, when the analog / digital conversion unit 121 receives data from the reception unit 120, the analog / digital conversion unit 121 converts the received data from analog to digital and transmits the data to the demodulation unit 122.
  • the demodulator 122 demodulates the data received from the relay station 200. Specifically, upon receiving data from the analog / digital conversion unit 121, the demodulation unit 122 demodulates the received data and passes it to the decoding unit 123.
  • the decoding unit 123 decodes the data received from the relay station 200. Specifically, when receiving the data from the demodulation unit 122, the decoding unit 123 decodes the received data and passes it to the control unit 130.
  • the relay station 200 includes a transmission unit 210, a digital / analog conversion unit 211, a modulation unit 212, an encoding unit 213, a reception unit 220, an analog / digital conversion unit 221, a demodulation unit 222, and a decoding unit. 223 and a control data analysis unit 230.
  • the receiving unit 220 When receiving the data addressed to the terminal 300 from the base station 100, the receiving unit 220 passes the received data to the analog / digital conversion unit 221.
  • the analog / digital conversion unit 221 receives data from the reception unit 220, the analog / digital conversion unit 221 converts the received data from analog to digital and passes the data to the demodulation unit 222.
  • the demodulator 222 receives data from the analog / digital converter 221, it demodulates the received data and passes it to the decoder 223.
  • the decoding unit 223 decodes the data received from the demodulation unit 222. Specifically, the decoding unit 223 decodes the data received from the demodulation unit 222 and acquires data addressed to the terminal 300 and control data. The decoding unit 223 requests the control data analysis unit 230 to analyze control data and the like.
  • the control data analysis unit 230 analyzes the control data received from the base station 100. Specifically, when the control data analysis unit 230 receives the control data analysis request from the decoding unit 223, if the control data is combined with the data addressed to the terminal 300, the control data and address addressed to the terminal 300 are transmitted. The data is analyzed, and the analysis result and the data addressed to the terminal 300 are passed to the encoding unit 213. For example, the control data analysis unit 230 analyzes the identification information such as the configuration of the radio frame and whether the data has a severe transmission delay requirement or not. If the control data is not combined with the data addressed to terminal 300, control data analysis section 230 analyzes only the data addressed to terminal 300, and sends the analysis result and the data addressed to terminal 300 to encoding section 213. hand over.
  • the control data analysis unit 230 acquires the current frame number by analyzing the DL-MAP and R-FCH included in the data addressed to the relay station 200.
  • the control data analysis unit 230 performs a modulo (remainder) operation between the acquired frame number and the number of frames specified by the RCD message.
  • the control data analysis unit 230 identifies the frame configuration in the order indicated by the number of results of the modulo calculation from the frame configurations for the number of repeated frames.
  • the control data analysis unit 230 uniquely identifies the parameter of the frame configuration to be used from the frame number, and passes it to the decoding unit 223 and the encoding unit 213 as an analysis result.
  • the control data analysis unit 230 in the first embodiment determines whether the frame number is an even number or an odd number, specifies a frame configuration corresponding to the determination result, and specifies a parameter.
  • the control data designates a frame configuration that repeats in units of m frames.
  • the control data analysis unit 230 performs a modulo operation on the acquired frame number and the number of frames m, and identifies frames in the order indicated by the number of results of the modulo operation. For example, when using a frame configuration that repeats in units of three frames, the control data specifies three types of frame configurations that are distinguished by “0”, “1”, and “2”. The control data analysis unit 230 performs a modulo operation on the acquired frame number and the number of frames 3, and if the remainder is “0”, specifies the frame configuration indicated by “0”. The control data analysis unit 230 specifies the frame configuration indicated by “2” if the remainder is “1”, and specifies the frame configuration indicated by “2” if the remainder is “2”.
  • encoding section 213 When receiving the analysis result and the data addressed to terminal 300 from control data analysis section 230, encoding section 213 encodes the data addressed to terminal 300 according to the control data analysis result, and passes the encoded data to modulation section 212. .
  • the analysis result includes identification information such as the frame configuration parameter specified by the control data analysis unit 230 and whether the data is strict or not strict.
  • the encoding unit 213 first encodes data with severe transmission delay requirements as Frame-1 data in accordance with the parameters received from the control data analysis unit 230, and the encoded data is modulated by the modulation unit 212. To pass. After that, the encoding unit 213 encodes data with less stringent transmission delay request as Frame-2 data according to the parameters received from the control data analysis unit 230, and passes the encoded data to the modulation unit 212.
  • the data transmitted to the terminal 300 by Frame-2 may be demodulated, decoded, encoded, and modulated before Frame-2 is transmitted by the transmission unit 210. That is, demodulation section 222, decoding section 223, encoding section 213, and modulation section 212 are given a time margin for data transmitted to terminal 300 using Frame-2. Therefore, in particular, the decoding unit 223 and the encoding unit 213 may execute advanced decoding and encoding processing that takes a relatively long time for data transmitted to the terminal 300 using Frame-2.
  • the modulation unit 212 When receiving the data addressed to the terminal 300 from the encoding unit 213, the modulation unit 212 modulates the received data and passes the modulated data to the digital / analog conversion unit 211.
  • the modulation unit 212 first modulates the Frame-1 data, and passes the modulated data to the digital / analog conversion unit 211. After that, the modulation unit 212 modulates the Frame-2 data.
  • the digital / analog conversion unit 211 When the digital / analog conversion unit 211 receives the data addressed to the terminal 300 from the modulation unit 212, the digital / analog conversion unit 211 converts the received data from digital to analog, and passes the converted data to the transmission unit 210.
  • the digital / analog conversion unit 211 first converts the data of Frame-1 and passes the converted data to the transmission unit 210. Thereafter, the digital / analog conversion unit 211 converts the Frame-2 data.
  • the transmission unit 210 When the transmission unit 210 receives the data addressed to the terminal 300 from the digital / analog conversion unit 211, the transmission unit 210 transmits the received data to the terminal 300.
  • the transmission unit 210 first transmits the data of Frame-1 to the terminal 300 immediately. On the other hand, the transmission unit 210 waits for the timing for transmitting data addressed to the terminal 300 in Frame-2, and transmits the data for Frame-2 after the timing arrives.
  • the relay station 200 transmits frame control data to the terminal 300 every frame.
  • the relay station 200 transmits control data before processing for transmitting data addressed to the terminal 300.
  • the control data transmitted from the relay station 200 to the terminal 300 may be one or more previous frames, and the base station 100 may be transmitted in advance as part of data addressed to the relay station 200.
  • the relay station 200 can transmit control data before processing for transmitting data addressed to the terminal 300.
  • control data that the relay station 200 itself transmits to the terminal 300 can be created, and the control data can be transmitted before the process of transmitting data addressed to the terminal 300.
  • the terminal 300 includes an input unit 301, an output unit 302, a transmission unit 310, a digital / analog conversion unit 311, a modulation unit 312, an encoding unit 313, a reception unit 320, an analog / digital conversion unit 321, A demodulation unit 322 and a decoding unit 323 are provided.
  • the receiving unit 320 When receiving the data addressed to the terminal 300 from the relay station 200, the receiving unit 320 passes the received data to the analog / digital conversion unit 321.
  • the analog / digital conversion unit 321 receives data from the reception unit 320
  • the analog / digital conversion unit 321 converts the received data from analog to digital, and passes the converted data to the demodulation unit 322.
  • the demodulation unit 322 demodulates the received data and passes the demodulated data to the decoding unit 323.
  • the decoding unit 323 decodes the received data and passes the decoded data to the output unit 302.
  • the output unit 302 outputs the data received from the decryption unit 323.
  • a series of processes for receiving data from relay station 200 is performed according to control data received from relay station 200.
  • the input unit 310 passes data input by the user of the terminal 300 to the encoding unit 313.
  • the encoding unit 313 encodes the received data and passes the encoded data to the modulation unit 312.
  • the modulation unit 312 modulates the received data and passes the modulated data to the digital / analog conversion unit 311.
  • the digital / analog conversion unit 311 converts the received data from digital to analog, and passes the converted data to the transmission unit 310.
  • the transmission unit 310 transmits the received data to the relay station 200. A series of processing for transmitting data to relay station 200 is performed according to control data received from relay station 200.
  • FIG. 3 is a sequence diagram showing the processing procedure of the base station
  • FIG. 4 is a sequence diagram showing the processing procedure of the relay station.
  • the DL processing procedure is exemplified, the UL processing procedure is similarly performed except that control data is not transmitted.
  • control unit 130 of the base station 100 receives data addressed to the terminal 300 from a device upstream of the base station 100, the relay station 200, or the like (step S101).
  • control unit 130 requests the control data creation unit 131 to create control data (step S102).
  • control data creation unit 131 creates control data (step S103) and sends the created control data to the control unit 130 (step S104).
  • control unit 130 combines the received control data and the data addressed to the terminal 300 (step S105), and sends the combined data to the encoding unit 113 (step S106).
  • step S107 data is transmitted from the encoding unit 113 to the modulation unit 112 (step S107), data is transmitted from the modulation unit 112 to the digital / analog conversion unit 111 (step S108), and the transmission unit 110 is transmitted from the digital / analog conversion unit 111. Data is sent to (step S109). Then, the transmission unit 110 transmits data to the relay station 200 (step S110).
  • the receiving unit 220 of the relay station 200 receives data addressed to the terminal 300 (step S201), and sends the received data to the analog / digital conversion unit 221 (step S202).
  • step S203 data is sent from the analog / digital converter 221 to the demodulator 222 (step S203), and data is sent from the demodulator 222 to the decoder 223 (step S204).
  • the decoding unit 223 When the decoding unit 223 decodes the data received from the demodulation unit 222 and obtains the data addressed to the terminal 300, the decoding unit 223 requests the control data analysis unit 230 to analyze the control data (step S205).
  • control data analysis unit 230 analyzes the control data and the like (step S206), and sends the analysis result and the data addressed to the terminal 300 to the encoding unit 213. (Step S207).
  • Encoding section 213 encodes data destined for terminal 300 according to the analysis result. First, data with a severe transmission delay requirement is encoded as Frame-1 data, and the encoded data is sent to modulation section 212. (Step S208).
  • the modulation unit 212 modulates the Frame-1 data, and sends the modulated data to the digital / analog conversion unit 211 (step S209).
  • the digital / analog conversion unit 211 converts the data of Frame-1 from digital to analog, and sends the converted data to the transmission unit 210 (step S210).
  • the transmission unit 210 immediately transmits Frame-1 (step S211).
  • the encoding unit 213 transmits the data encoded in step S208 to the modulation unit 212, then encodes the data that is not strictly required for transmission delay as Frame-2 data, and transmits the encoded data to the modulation unit 212. Send (step S212).
  • the modulation unit 212 modulates the Frame-2 data, and sends the modulated data to the digital / analog conversion unit 211 (step S213).
  • the digital / analog conversion unit 211 converts the data of Frame-2 from digital to analog, and sends the converted data to the transmission unit 210 (step S214).
  • the transmission unit 210 waits for the timing of transmitting data addressed to the terminal 300 in Frame-2 and transmits the data of Frame-2 after the timing arrives (step S215). .
  • the temporal blank period that occurs between the switching between the transmission mode and the reception mode is such that the data addressed to the terminal 300 is received in step S201 and then the frame- This is a period until transmission of 1 starts.
  • FIG. 5 is a diagram for explaining an improvement in transmission efficiency.
  • the base station transmits data of work amount “10” for transmission / reception processing to the relay station.
  • the relay station executes decoding and encoding processing of the received data.
  • the time between switching between the reception mode and the transmission mode is only the time for performing the work “5”. If not, in order to perform the work of “10” during this time, it is necessary to multiplex the process such as starting the decoding process before all the reception is completed or starting the transmission before all the encoding is completed.
  • the method of controlling a series of transmission / reception processes has been complicated. Otherwise, a sufficient blank period had to be provided between the reception mode and the transmission mode to perform the work “10”, and the transmission efficiency was lowered.
  • the wireless relay system transmits only data with a strict transmission delay request using Frame-1 first, and transmits data with a non-strict transmission delay request to Frame-2. That is, as shown in FIG. 5B, if, for example, 20% of the data transmitted from the base station has a severe transmission delay requirement, the relay station transmits and receives the work “2”. When processing is executed, data is immediately transmitted. Then, the relay station performs decoding and encoding processing on the data whose transmission delay request is not strict with a time margin.
  • the transmission / reception processing for the work “8” it is possible to increase the reception sensitivity or process a larger amount of data by adding more processing instead of processing with the work “8”. As a result, transmission efficiency is improved.
  • the radio relay system is configured such that the time interval (RZ) that allows data transmission between the base station 100 and the relay station 200, the relay station 200, and a plurality of terminals
  • the length (AZ) of the time interval that allows data transmission with 300 is changed in a predetermined pattern according to the radio frame.
  • RZ is a time interval in which data transmission from the base station 100 to the relay station 200 is allowed or a time interval in which data transmission from the relay station 200 to the base station 100 is allowed.
  • AZ is a time interval in which data transmission from the relay station 200 to the terminal 300 is allowed or a time interval in which data transmission from the terminal 300 to the relay station 200 is allowed.
  • the radio frame in the first embodiment includes RZ that allows data transmission between the base station 100 and the relay station 200 and data between the relay station 200 and the terminal 300 in one radio frame.
  • AZ that allows transmission.
  • RZ in Frame-1 is relatively long relative to RZ in Frame-2
  • AZ in Frame-1 is relatively short relative to AZ in Frame-2.
  • the radio relay system changes the length of RZ or the length of AZ for each radio frame.
  • the radio relay system time-divides the radio frame into a section (RZ) used for communication between the base station 100 and the relay station 200 and a section (AZ) used for communication between the relay station 200 and the terminal 300. ).
  • the radio relay system for each radio frame, a radio frame that allocates a large area to a section (RZ) used for communication between the base station 100 and the relay station 200, and communication between the relay station 200 and the terminal 300. Frames for allocating many areas in the section (AZ) to be used for are repeatedly used.
  • the radio relay system time-divides the radio frame into a section (RZ) used for communication between the base station 100 and the relay station 200 and a section (AZ) used for communication between the relay station 200 and the terminal 300. ). Also, the wireless relay system notifies the setting information of each section of a plurality of settings from the base station 100 to the relay station 200, and repeatedly uses the plurality of settings in order.
  • the plurality of frame configurations are uniquely derived from the radio frame number and use two types of section setting information. As a result, it is possible to reduce the overhead related to the notification of the frame configuration and contribute to efficient data transmission.
  • the wireless relay system it is possible to improve the transmission efficiency. That is, the relay station 200 transmits a part of the data received from the base station 100 as the data to be transmitted to the terminal 300 in the next frame, for which the transmission delay request is not strict. For this reason, according to the wireless relay system according to the first embodiment, the temporal blank period that occurs between the switching between the transmission mode and the reception mode is a time for encoding a part of data with severe transmission delay requirements. As a result, transmission efficiency can be improved.
  • the relay station 200 it becomes possible for the relay station 200 to obtain a larger error correction code effect by relaying data as a large block every two (or m) frames.
  • the second embodiment exemplifies a radio frame configuration when there is no data with severe transmission delay requirements.
  • FIG. 6 is a diagram for explaining a radio frame configuration of the radio relay system according to the second embodiment.
  • the wireless relay system according to the second embodiment changes the length of RZ or the length of AZ in a predetermined pattern according to the wireless frame, as in the first embodiment. Specifically, the radio relay system according to the second embodiment changes the DL of the radio frame so that only one RZ is allocated without AZ being provided in one radio frame as illustrated in FIG. 6 ( (See (b)). Further, the radio relay system according to the second embodiment changes the UL of the radio frame so that only AZ is allocated without RZ being provided in one radio frame as shown in FIG. 6 ((d) See).
  • the relay station in the second embodiment receives data to be transmitted to the terminal from the base station in a predetermined frame, the relay station does not transmit to the terminal in the frame, but transmits it in the next frame. To do.
  • the relay station when the relay station receives data to be transmitted to the terminal from the base station with Frame-1 (see (b)), the relay station transmits these data with Frame-2. (See (c)).
  • the change by the predetermined pattern is a time interval (RZ) in which data transmission is allowed between the base station 100 and the relay station 200 or between the relay station 200 and the terminal 300.
  • a radio frame is formed in which no time interval (AZ) allowing data transmission is provided.
  • the radio relay system assigns only a section (RZ) to be used for communication between the base station 100 and the relay station 200 for each radio frame in the data transmission area, the relay station 200 and the terminal 300. Frames that allocate only the section (AZ) used for communication between them are alternately used repeatedly.
  • the wireless relay system it is possible to further improve the transmission efficiency. That is, after receiving data to be transmitted to the terminal 300 from the base station using Frame-1, the relay station 200 according to the first embodiment transmits data from a mode in which data is received in order to transmit data with severe transmission delay requirements. The mode has been switched to the mode, and there was a blank period. On the other hand, the relay station 200 according to the second embodiment has a frame configuration of only RZ or AZ for each radio frame, so that no blank period occurs, overhead can be reduced, and transmission efficiency can be further improved. become.
  • the synchronization signal and the common control information are transmitted in all frames from the relay station to the terminal. This is because, for example, the operation of a terminal made on the assumption that the synchronization signal and the common control information are transmitted every frame is ensured.
  • the relay station is not necessarily synchronized in all frames. The signal and common control information need not be transmitted.
  • the third embodiment exemplifies a radio frame configuration when the synchronization signal and the common control information are not necessarily transmitted in all frames.
  • FIG. 7 is a diagram for explaining a radio frame configuration of the radio relay system according to the third embodiment.
  • the wireless relay system according to the third embodiment changes the length of RZ or the length of AZ in a predetermined pattern according to the wireless frame, as in the second embodiment.
  • the AZ is not provided in one wireless frame and only the RZ is assigned to the DL of the wireless frame. (See (b)).
  • RZ is not provided in one wireless frame, and only AZ is assigned to the UL of the wireless frame. Change (see (d)).
  • the relay station 200 does not transmit the synchronization signal and the common control information in every frame, but transmits the synchronization signal and the common control information in a radio frame to which only AZ is assigned in DL.
  • the wireless relay system is changed so that the synchronization signal and the common control information are not transmitted in Frame-1, but are transmitted in Frame-2 (see (a)).
  • the terminal 300 in Example 3 is provided with the same part as the relay station 200. Specifically, the same unit as the control data analysis unit 230 of the relay station 200 is provided, and each unit of the terminal 300 performs various processes according to the analysis result analyzed by the control data analysis unit.
  • the radio relay system is a radio frame in which a large number of data areas (AZ) from the relay station 200 to the terminal 300 are allocated in DL or from the relay station 200 to the terminal. A synchronization signal and a common control signal for 300 are transmitted.
  • AZ data areas
  • the wireless relay system according to the third embodiment can further improve the transmission efficiency. That is, the relay station 200 according to the second embodiment switches from the data transmission mode to the reception mode after transmitting the synchronization signal and the common control signal to the terminal 300 and before receiving the data from the base station 100. There was a blank period.
  • the relay station 200 according to the third embodiment has a frame configuration in which the synchronization signal and the common control information are transmitted in a radio frame to which only AZ is assigned in the DL, and therefore transmits the synchronization signal and the common control signal to the terminal 300. After that, the process of receiving data from the base station 100 is lost. As a result, no blank period occurs, and transmission efficiency can be further improved.
  • the control structure of the device can be simplified.
  • the frame configuration of 2 (or m) patterns is alternately used repeatedly, thereby reducing the overhead related to the notification of the frame configuration and contributing to efficient data transmission. It becomes possible.
  • data to be transmitted is larger than data to be transmitted or data to be transmitted in one radio frame.
  • the fourth embodiment exemplifies a radio frame configuration that reduces transmission / reception bias in a radio frame.
  • FIGS. 8 and 9 are diagrams for explaining a radio frame configuration of the radio relay system according to the fourth embodiment.
  • the wireless relay system according to the fourth embodiment changes the length of RZ or the length of AZ in a predetermined pattern according to the wireless frame, as in the second and third embodiments.
  • the AZ is provided in one wireless frame, as shown in FIGS. 8 and 9, for the DL of the wireless frame, as in the second and third embodiments. And change so that only RZ is assigned (see (b)).
  • the radio relay system according to the fourth embodiment differs from the second and third embodiments in the radio frame UL, as shown in FIGS. 8 and 9, in the radio frame in which only RZ is assigned in the DL. Change so that AZ is not provided and only RZ is assigned (see (e)).
  • the RZ is provided in one radio frame for the DL of the next radio frame, as in the second and third embodiments.
  • the radio relay system according to the fourth embodiment differs from the second and third embodiments in the UL of the radio frame to which only AZ is assigned in the DL, as shown in FIG. 8 and FIG. Change so that only AZ is assigned (see (d)).
  • the time interval (DL RZ) that allows data transmission from the base station 100 to the relay station 200 and the relay station 200 to the base station 100 are included in one radio frame.
  • the time interval (DL RZ) allowing data transmission from the base station 100 to the relay station 200 in Frame-1 is the data from the base station 100 to the relay station 200 in Frame-2. It becomes relatively long with respect to the time interval (DL RZ) allowing transmission.
  • the time interval (UL RZ) that allows data transmission from the relay station 200 to the base station 100 in Frame-1 is the time that allows data transmission from the relay station 200 to the base station 100 in Frame-2. It becomes relatively long with respect to the section (UL RZ).
  • the radio frame includes a time interval (DL AZ) in which data transmission from the relay station 200 to the terminal 300 is permitted and a time interval in which data transmission from the terminal 300 to the relay station 200 is permitted within one radio frame. (UL AZ).
  • a time interval (DL of AZ) that allows data transmission from relay station 200 to terminal 300 in Frame-1 is a time interval (DL of AZ) that permits data transmission from relay station 200 to terminal 300 in Frame-2. Relatively short relative to AZ).
  • a time interval (UL of AZ) that allows data transmission from the terminal 300 to the relay station 200 in Frame-1 is a time interval that allows data transmission from the terminal 300 to the relay station 200 in Frame-2 ( It is relatively short with respect to UL (AZ).
  • the radio relay system has a data area (RZ) from the relay station 200 to the base station 100 in the UL of a frame in which a large number of data areas (RZ) from the base station 100 to the relay station 200 are allocated in DL, or only that is allocated. Allocate more or less.
  • RZ data area
  • AZ data areas
  • the radio relay system according to the fourth embodiment not only improves transmission efficiency, but also prevents processing congestion at the relay station 200. That is, the relay station 200 according to the second and third embodiments has a larger amount of data to be received than data to be transmitted in one radio frame, or data to be transmitted is larger than data to be received. There was a bias. For this reason, for example, the decoding process of received data is congested.
  • the relay station 200 according to the fourth embodiment performs reception processing in DL and transmission processing in UL in Frame-1.
  • Frame-2 transmission processing is performed in DL, and reception processing is performed in UL.
  • the radio frame configuration shown in FIG. 9 shows a case where the synchronization signal and the common control information described in the third embodiment are used together with the case where the frame is not transmitted every frame. Then, regarding the switching between the transmission mode and the reception mode in the relay station 200, the boundary between Frame-1 and Frame-2, or Frame-2 and the next frame (assuming that a frame configuration similar to Frame-1 is used) Switching at the boundary is no longer necessary. Also in this case, it is possible to remove the blank period associated with the switching, and it is possible to improve the transmission efficiency.
  • FIGS. 10 and 11 are diagrams for explaining a radio frame configuration of the radio relay system according to the fifth embodiment.
  • DL is transmitted from the base station to the relay station 1 by Frame-1 and simultaneously from the relay station 2 Transmission to the terminal is being performed. Also, data is transmitted from relay station 1 to relay station 2 using Frame-2, and the data is transmitted from relay station 2 to the terminal using Frame-3 (assuming that a frame configuration similar to Frame-1 is used). The The same operation is performed for the UL.
  • the radio relay system according to the fifth embodiment changes the RZ length or the AZ length in a predetermined pattern according to the radio frame, as in the first to fourth embodiments.
  • the AZ is provided in one radio frame as illustrated in FIGS. 10 and 11 for the DL of the radio frame, as in the second to fourth embodiments.
  • change so that only RZ is assigned (see (b)).
  • the UL of the wireless frame is not provided in one wireless frame as in the fourth embodiment, and only the RZ is provided. Change to be assigned (see (e)). Note that the difference in the radio frame configuration between FIG. 10 and FIG. 11 is that the relay direction is different between DL and UL. As in the third embodiment, the present invention can also be applied to a case where the synchronization signal and the common control signal transmitted from the relay station 2 to the terminal are not transmitted every frame.
  • the relay station 2 transmits a signal to the terminal. Also in the UL, the relay station 1 transmits a signal to the base station at the same time that the relay station 2 receives the signal from the terminal.
  • the relay station 1 transmits a signal to the base station at the same time that the relay station 2 receives the signal from the terminal.
  • interference is avoided by using a wireless frame configuration repeated in three frames as shown in FIG.
  • FIG. 12 is a diagram for explaining a radio frame configuration of the radio relay system according to the sixth embodiment.
  • data is transmitted from the base station to relay station 1 using Frame-1, from relay station 1 to relay station 2 using Frame-2, and from relay station 2 to the terminal using Frame-3.
  • the frame-2 is transmitted from the terminal to the relay station 2 and relayed in the following order.
  • the pattern in which the data transmitted from the terminal to the relay station 2 in Frame-2 is relayed in order and the pattern in which the data transmitted from the terminal to the relay station 2 in Frame-3 is relayed in order are considered in the same way. be able to.
  • the present invention can also be applied to a case where the synchronization signal and the common control signal transmitted from the relay station 2 to the terminal are not transmitted every frame.
  • Multiple relay stations When a plurality of relay stations are installed under the base station, if a different frame configuration is used for each relay station, when one relay station transmits as AZ in DL, another nearby relay station becomes RZ There is a case where reception is performed. However, in such a case, the radio wave of the relay station that has transmitted may interfere with the relay station that performs reception, and the relay station that performs reception may not be able to receive normally. Similarly, in UL, when a certain relay station transmits as RZ, if there is another relay station receiving as AZ in the vicinity, the signal of the relay station transmitting as RZ must be received. It becomes a hindrance to relay stations that must not
  • a frame configuration is not used for each relay station, but is common to all relay stations under the base station (or all relay stations installed under the base station).
  • a frame configuration may be used. This not only reduces the overhead due to the common control signal specifying the frame configuration, but also solves the interference problem caused by the difference between RZ and AZ for each relay station.
  • each or all of the processing functions performed in the base station 100, the relay station 200, and the terminal 300 are realized by a CPU (Central Processing Unit) and a program that is analyzed and executed by the CPU. Alternatively, it can be realized as hardware by wired logic.
  • a CPU Central Processing Unit
  • the wireless frame utilization method and setting method described in the above embodiment can be realized by executing a program prepared in advance on a computer.
  • This program can be distributed via a network such as the Internet.
  • the program can also be executed by being recorded on a computer-readable recording medium such as a hard disk, a flexible disk (FD), a CD-ROM, an MO, and a DVD and being read from the recording medium by the computer.
  • a computer-readable recording medium such as a hard disk, a flexible disk (FD), a CD-ROM, an MO, and a DVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

 無線中継システムは、基地局と中継局との間でデータ伝送を許容する時間区間の長さ、又は、中継局と複数の端末との間でデータ伝送を許容する時間区間の長さを無線フレームに応じて所定のパターンで変更する制御部を備える。例えば、第1の無線フレーム内の第1の時間区間は、第2の無線フレーム内の第1の時間区間に対して相対的に長く、第1の無線フレーム内の第2の時間区間は、第2の無線フレーム内の第2の時間区間に対して相対的に短い。

Description

無線中継システム、無線フレームの利用方法および設定方法
 本発明は、無線中継システム、無線フレームの利用方法および設定方法に関する。
 無線通信では、基地局と端末との間の距離が大きい、あるいは中間に障害物があるなどの要因で、基地局と端末との間で十分な無線信号の品質を得られない場合がある。例えばこのような場合に、基地局あるいは端末から送信された信号をいったん受信し、再び他方に向けて送信する中継局が利用される。基地局と端末との通信が中継局を介して時分割(Time Division Duplex、TDD)で行われる場合の代表的な無線フレーム構成を図13に示す。図13は、従来技術を説明するための図である。
 図13に示すように、無線フレームは、基地局(Base Station、BS)から端末(Mobile Station、MS)へ向かう信号を伝送する時間区間(Down Link、DL)と、端末から基地局へ向かう信号を伝送する時間区間(Up Link、UL)とを含む。また、無線フレームは、基地局と中継局(Relay Station、RS)との間で信号の伝送を許容する時間区間(Relay Zone、RZ)と、中継局と端末との間で信号の伝送を許容する時間区間(Access Zone、AZ)とを含む。なお、図13に示すように、DLの先頭で、基地局に代わり中継局が、同期信号や共通制御信号を端末に伝送する。
庄納 崇編著、「WiMAX教科書」、株式会社インプレスR&D、2008年8月5日、p.262-283 the Relay Task Group of IEEE802.16、「IEEE P802.16j/D5 Part16:Air Interface for Fixed and Mobile Broadband Wireless Access Systems Multihop Relay Specification」、2008年5月30日、p.201
 ところで、上記した従来の技術では、伝送効率が低下するという課題があった。すなわち、図13に示すように、中継局は、RZとAZとの境界で、信号を送信する動作(送信モード)と受信する動作(受信モード)とを切り替える。この切り替えは、時間的な空白期間(ギャップ)を生じるので、伝送効率が低下するのである。
 そこで、本発明は、上記した従来の技術の課題を解決するためになされたものであり、伝送効率を向上することが可能な無線中継システム、無線フレームの利用方法および設定方法を提供することを目的とする。
 上記した課題を解決し、目的を達成するため、基地局と端末との間のデータ伝送を中継局による中継処理を用いて実行する無線中継システムは、時間区間の長さを無線フレームに応じて所定のパターンで変更する制御部を備える。制御部は、該基地局と該中継局との間でデータ伝送を許容する時間区間の長さ又は該中継局と前記端末を含む複数の端末との間でデータ伝送を許容する時間区間の長さを変更する。
 伝送効率を向上することが可能になる。
図1は、実施例1に係る無線中継システムの無線フレーム構成を説明するための図である。 図2は、無線中継システムの構成を示すブロック図である。 図3は、基地局の処理手順を示すシーケンス図である。 図4は、中継局の処理手順を示すシーケンス図である。 図5は、伝送効率の向上を説明するための図である。 図6は、実施例2に係る無線中継システムの無線フレーム構成を説明するための図である。 図7は、実施例3に係る無線中継システムの無線フレーム構成を説明するための図である。 図8は、実施例4に係る無線中継システムの無線フレーム構成を説明するための図である。 図9は、実施例4に係る無線中継システムの無線フレーム構成を説明するための図である。 図10は、実施例5に係る無線中継システムの無線フレーム構成を説明するための図である。 図11は、実施例5に係る無線中継システムの無線フレーム構成を説明するための図である。 図12は、実施例6に係る無線中継システムの無線フレーム構成を説明するための図である。 図13は、従来技術を説明するための図である。
符号の説明
 100 基地局
 110 送信部
 111 デジタル/アナログ変換部
 112 変調部
 113 符号化部
 120 受信部
 121 アナログ/デジタル変換部
 122 復調部
 123 復号化部
 130 制御部
 131 制御データ作成部
 200 中継局
 210 送信部
 211 デジタル/アナログ変換部
 212 変調部
 213 符号化部
 220 受信部
 221 アナログ/デジタル変換部
 222 復調部
 223 復号化部
 230 制御データ解析部
 300 端末
 301 入力部
 302 出力部
 310 送信部
 311 デジタル/アナログ変換部
 312 変調部
 313 符号化部
 320 受信部
 321 アナログ/デジタル変換部
 322 復調部
 323 復号化部
 以下に添付図面を参照して、無線中継システム、無線フレームの利用方法および設定方法の実施例を詳細に説明する。
[無線フレーム構成]
 まず、図1を用いて、実施例1に係る無線中継システムの無線フレーム構成を説明する。図1は、実施例1に係る無線中継システムの無線フレーム構成を説明するための図である。なお、図1において、白抜きの四角は送信データを示し、斜線の四角は受信データを示し、矢印はデータの送信方向を示す。
 図1に示すように、実施例1に係る無線中継システムは、RZの長さ又はAZの長さを無線フレームに応じて所定のパターンで変更する。ここで、RZとは、基地局(BS)と中継局(RS)との間で信号の伝送を許容する時間区間であり、AZとは、中継局(RS)と複数の端末(MS)との間で信号の伝送を許容する時間区間(AZ)の長さである。
 具体的には、実施例1に係る無線中継システムは、無線フレームのDLについて、図1に示すように、Frame-1内のRZが、Frame-2内のRZに対して相対的に長くなるように変更する((b)を参照)。また、反対に、Frame-1内のAZが、Frame-2内のAZに対して相対的に短くなるように変更する((c)を参照)。
 また、実施例1に係る無線中継システムは、無線フレームのULについて、図1に示すように、Frame-1内のAZが、Frame-2内のAZに対して相対的に長くなるように変更する((d)を参照)。また、反対に、Frame-1内のRZが、Frame-2内のRZに対して相対的に短くなるように変更する((e)を参照)。
 ここで、実施例1における中継局は、端末に向けて送信するデータを所定のフレームで基地局から受信した場合に、当該フレーム中で全てのデータを端末に向けて送信するのではなく、伝送遅延要求の厳しいデータのみを当該フレーム中で送信する。そして、中継局は、伝送遅延要求の厳しくないデータについては、次のフレームで送信する。
 例えば、中継局は、図1に示すように、端末に向けて送信するデータをFrame-1で基地局から受信した場合に((b)を参照)、音声通話のデータなど、伝送遅延要求の厳しいデータのみをFrame-1の(c)の時間区間で送信する。また、中継局は、メールのデータなど、伝送遅延要求の厳しくないデータについては、Frame-2の(c)の時間区間で送信する。
 このようなことから、実施例1に係る無線中継システムによれば、伝送効率を向上することが可能になる。すなわち、中継局は、端末に向けて送信するデータとして基地局から受信したデータの内、伝送遅延要求の厳しくない一部のデータについては次のフレームで送信する。このため、実施例1に係る無線中継システムによれば、送信モードと受信モードとの切り替えの間に生じる時間的な空白期間は、伝送遅延要求の厳しい一部のデータの符号化処理などの時間にとどまることになり、伝送効率を向上することが可能になる。
 また、伝送遅延要求の厳しくない一部のデータについては時間的余裕が与えられることになり、比較的時間のかかる高度な符号化処理を実行することもできるので、通信品質を向上することも可能になる。
[無線中継システムの構成]
 次に、図2を用いて、無線中継システムの構成を説明する。図2は、無線中継システムの構成を示すブロック図である。図2に示すように、実施例1に係る無線中継システムは、基地局100と中継局200と端末300とを備える。なお、説明の便宜上、図2においては、基地局100、中継局200、および端末300を1台ずつ示す。
 基地局100は、図2に示すように、送信部110、デジタル/アナログ変換部111、変調部112、符号化部113、受信部120、アナログ/デジタル変換部121、復調部122、復号化部123、制御部130、および制御データ作成部131を備える。
 制御部130は、基地局100と中継局200との間のデータ伝送を制御する。具体的には、制御部130は、基地局100の上流にあたる装置や中継局200などから端末300宛のデータを受信すると、制御データ作成部131に制御データの作成を要求する。また、制御部130は、制御データ作成部131から制御データを受信すると、受信した制御データと端末300宛のデータとを結合し、符号化部113に送信する。
 なお、後述するように、中継局200は、いったん制御データを受信して解析し、フレーム構成を特定すれば、その後フレーム構成に変更がない限り、原則として制御データなしで処理を行うことができる。このため、制御部130も、フレーム構成を変更したタイミングなどに、適宜制御データを作成すればよく、制御データを作成しない場合には、端末300宛のデータをそのまま符号化部113に送信すればよい。
 制御データ作成部131は、制御データを作成する。具体的には、制御データ作成部131は、制御部130から制御データ作成要求を受信すると、制御データを作成し、作成した制御データを制御部130に送信する。ここで、制御データは、同期信号や共通制御信号を含むデータである。また、共通制御信号は、無線フレーム構成の指定を含む。すなわち、制御データによって、RZの長さ又はAZの長さを変更する所定のパターンが指定される。
 IEEE P802.16jでは、基地局から中継局へ送信される制御データとして、RCD(R-link channel descriptor)メッセージが規定されている。実施例1における制御データ作成部131は、無線フレームの構成をRCDメッセージで指定する。例えば、以下の表1に示すように、RCDメッセージでは、フレーム構成の繰り返しを使用するか否かを指定し、フレーム構成の繰り返しを使用する場合には、繰り返すフレーム数とともに繰り返すフレーム数分のフレーム構成を指定する。また、フレーム構成については、フレームを構成するゾーン数やRZかAZかを識別する情報を指定する。
Figure JPOXMLDOC01-appb-T000001
 例えば、実施例1における制御データ作成部131は、フレーム構成の繰り返しを使用するフラグを「1」と指定し、フレーム構成を繰り返すフレーム数を「2」と指定する。また、制御データ作成部131は、Frame-1について、DLサブフレームやULサブフレーム内のゾーン数を「2」と指定し、ゾーンモードは、DLサブフレームについて「RZ」、「AZ」と指定し、ULサブフレームについて「AZ」、「RZ」と指定する。制御データ作成部131は、Frame-2についても、DLサブフレームやULサブフレーム内のゾーン数を「2」と指定し、ゾーンモードは、DLサブフレームについて「RZ」、「AZ」と指定し、ULサブフレームについて「AZ」、「RZ」と指定する。
 符号化部113は、中継局200に送信するデータを符号化する。具体的には、符号化部113は、制御部130から端末300宛のデータを受信すると、受信したデータを符号化し、変調部112に渡す。
 変調部112は、中継局200に送信するデータを変調する。具体的には、変調部112は、符号化部113から端末300宛のデータを受けとると、受けとったデータを変調し、デジタル/アナログ変換部111に渡す。
 デジタル/アナログ変換部111は、中継局200に送信するデータをデジタルからアナログに変換する。具体的には、デジタル/アナログ変換部111は、変調部112から端末300宛のデータを受けとると、受けとったデータをデジタルからアナログに変換し、送信部110に渡す。
 送信部110は、中継局200にデータを送信する。具体的には、送信部110は、デジタル/アナログ変換部111からデータを受けとると、受けとったデータを中継局200に送信する。
 受信部120は、中継局200からデータを受信する。具体的には、受信部120は、中継局200からデータを受信すると、受信したデータをアナログ/デジタル変換部121に渡す。
 アナログ/デジタル変換部121は、中継局200から受信したデータをアナログからデジタルに変換する。具体的には、アナログ/デジタル変換部121は、受信部120からデータを受けとると、受けとったデータをアナログからデジタルに変換し、復調部122に送信する。
 復調部122は、中継局200から受信したデータを復調する。具体的には、復調部122は、アナログ/デジタル変換部121からデータを受けとると、受けとったデータを復調し、復号化部123に渡す。
 復号化部123は、中継局200から受信したデータを復号する。具体的には、復号化部123は、復調部122からデータを受けとると、受けとったデータを復号し、制御部130に渡す。
 中継局200は、図2に示すように、送信部210、デジタル/アナログ変換部211、変調部212、符号化部213、受信部220、アナログ/デジタル変換部221、復調部222、復号化部223、および制御データ解析部230を備える。
 受信部220は、基地局100から端末300宛のデータを受信すると、受信したデータをアナログ/デジタル変換部221に渡す。アナログ/デジタル変換部221は、受信部220からデータを受けとると、受信したデータをアナログからデジタルに変換し、復調部222に渡す。復調部222は、アナログ/デジタル変換部221からデータを受けとると、受けとったデータを復調し、復号化部223に渡す。
 復号化部223は、復調部222から受けとったデータを復号する。具体的には、復号化部223は、復調部222から受けとったデータを復号し、端末300宛のデータや制御データを取得する。また、復号化部223は、制御データ解析部230に制御データなどの解析を要求する。
 制御データ解析部230は、基地局100から受信した制御データなどを解析する。具体的には、制御データ解析部230は、復号化部223から制御データの解析要求を受信すると、端末300宛のデータに制御データが結合されている場合には、制御データおよび端末300宛のデータを解析し、符号化部213に解析結果および端末300宛のデータを渡す。例えば、制御データ解析部230は、無線フレームの構成や、伝送遅延要求の厳しいデータであるか厳しくないデータであるかといった識別情報を解析する。なお、端末300宛のデータに制御データが結合されていない場合には、制御データ解析部230は、端末300宛のデータのみを解析し、符号化部213に解析結果および端末300宛のデータを渡す。
 ここで、制御データ解析部230は、中継局200宛のデータに含まれるDL-MAPやR-FCHを解析することで、現在のフレーム番号を取得する。制御データ解析部230は、取得したフレーム番号と、RCDメッセージで指定されたフレーム数とのモジュロ(剰余)演算を行う。そして、制御データ解析部230は、繰り返しフレーム数分のフレーム構成の中から、モジュロ演算の結果の数で示された順番のフレーム構成を特定する。こうして、制御データ解析部230は、フレーム番号から一意に、使用すべきフレーム構成のパラメータを特定し、解析結果として復号化部223や符号化部213に渡す。例えば、実施例1における制御データ解析部230は、フレーム番号が偶数であるか奇数であるかを判定し、判定結果に対応するフレーム構成を特定し、パラメータを特定する。
 なお、mフレーム単位で繰り返すフレーム構成を使用することもできる。この場合、制御データは、mフレーム単位で繰り返すフレーム構成を指定する。制御データ解析部230は、取得したフレーム番号と、フレーム数mとのモジュロ演算を行い、モジュロ演算の結果の数で示された順番のフレームを特定する。例えば、3フレーム単位で繰り返すフレーム構成を使用する場合、制御データは、「0」、「1」、「2」で区別される3通りのフレーム構成を指定する。制御データ解析部230は、取得したフレーム番号と、フレーム数3とのモジュロ演算を行い、余りが「0」ならば「0」で示されるフレーム構成を特定する。また、制御データ解析部230は、余りが「1」ならば「2」で示されるフレーム構成を特定し、余りが「2」ならば「2」で示されるフレーム構成を特定する。
 符号化部213は、制御データ解析部230から解析結果と端末300宛のデータとを受けとると、制御データの解析結果に従って端末300宛のデータを符号化し、符号化したデータを変調部212に渡す。この解析結果には、制御データ解析部230によって特定されたフレーム構成のパラメータや、伝送遅延要求の厳しいデータであるか厳しくないデータであるかといった識別情報が含まれる。
 ここで、実施例1においては、端末300宛のデータに、伝送遅延要求の厳しいデータと厳しくないデータとが混在する場合があることを想定している。このため、実施例1における符号化部213は、制御データ解析部230から受けとったパラメータに従って、まず、伝送遅延要求の厳しいデータをFrame-1のデータとして符号化し、符号化したデータを変調部212に渡す。その後、符号化部213は、制御データ解析部230から受けとったパラメータに従って、伝送遅延要求の厳しくないデータをFrame-2のデータとして符号化し、符号化したデータを変調部212に渡す。
 もっとも、Frame-2で端末300に送信されるデータは、Frame-2が送信部210によって送信されるまでに復調、復号化、符号化および変調されればよい。すなわち、復調部222、復号化部223、符号化部213および変調部212は、Frame-2で端末300に送信されるデータについては、時間的余裕が与えられることとなる。このため、特に復号化部223および符号化部213は、Frame-2で端末300に送信されるデータについては、比較的時間のかかる高度な復号化および符号化処理を実行してもよい。
 変調部212は、符号化部213から端末300宛のデータを受けとると、受けとったデータを変調し、変調したデータをデジタル/アナログ変換部211に渡す。
 ここで、実施例1において、変調部212は、まず、Frame-1のデータを変調し、変調したデータをデジタル/アナログ変換部211に渡す。その後、変調部212は、Frame-2のデータを変調する。
 デジタル/アナログ変換部211は、変調部212から端末300宛のデータを受けとると、受けとったデータをデジタルからアナログに変換し、変換したデータを送信部210に渡す。
 ここで、実施例1において、デジタル/アナログ変換部211は、まず、Frame-1のデータを変換し、変換したデータを送信部210に渡す。その後、デジタル/アナログ変換部211は、Frame-2のデータを変換する。
 送信部210は、デジタル/アナログ変換部211から端末300宛のデータを受信すると、受信したデータを端末300に送信する。
 ここで、実施例1において送信部210は、まず、Frame-1のデータを直ちに端末300に送信する。一方、送信部210は、Frame-2のデータについては、Frame-2において端末300宛のデータを送信するタイミングを待機し、タイミングが到来してから送信する。
 なお、実施例1においては、中継局200は、端末300に対して毎フレーム制御データを送信する。中継局200は、端末300宛のデータを送信する処理の前に、制御データを送信する。例えば、中継局200が端末300に対して送信する制御データは、一つ以上前のフレームで、予め基地局100が中継局200に宛てたデータの一部として送信されていればよい。この時、中継局200は、端末300宛のデータを送信する処理の前に、制御データを送信することができる。あるいは、例えば、中継局200自らが端末300に対して送信する制御データを作成し、端末300宛のデータを送信する処理の前に、制御データを送信することもできる。
 端末300は、図2に示すように、入力部301、出力部302、送信部310、デジタル/アナログ変換部311、変調部312、符号化部313、受信部320、アナログ/デジタル変換部321、復調部322、および復号化部323を備える。
 受信部320は、中継局200から端末300宛のデータを受信すると、受信したデータをアナログ/デジタル変換部321に渡す。アナログ/デジタル変換部321は、受信部320からデータを受けとると、受けとったデータをアナログからデジタルに変換し、変換したデータを復調部322に渡す。復調部322は、アナログ/デジタル変換部321からデータを受けとると、受けとったデータを復調し、復調したデータを復号化部323に渡す。復号化部323は、復調部322からデータを受けとると、受けとったデータを復号し、復号したデータを出力部302に渡す。出力部302は、復号化部323から受けとったデータを出力する。なお、中継局200からデータを受信する一連の処理は、中継局200から受信した制御データに従って行われる。
 一方、入力部310は、端末300の利用者によって入力されたデータを符号化部313に渡す。符号化部313は、入力部310からデータを受けとると、受けとったデータを符号化し、符号化したデータを変調部312に渡す。変調部312は、符号化部313からデータを受けとると、受けとったデータを変調し、変調したデータをデジタル/アナログ変換部311に渡す。デジタル/アナログ変換部311は、変調部312からデータを受けとると、受けとったデータをデジタルからアナログに変換し、変換したデータを送信部310に渡す。送信部310は、デジタル/アナログ変換部311からデータを受けとると、受けとったデータを中継局200に送信する。なお、中継局200にデータを送信する一連の処理は、中継局200から受信した制御データに従って行われる。
[無線中継システムの処理手順]
 続いて、図3および図4を用いて、無線中継システムの処理手順を説明する。図3は、基地局の処理手順を示すシーケンス図であり、図4は、中継局の処理手順を示すシーケンス図である。なお、以下では、DLの処理手順を例示するが、制御データが送信されない点以外は、ULの処理手順も同様に行われる。
 まず、図3に示すように、基地局100の制御部130は、基地局100の上流にあたる装置や中継局200などから端末300宛のデータを受けとる(ステップS101)。
 続いて、制御部130は、制御データ作成部131に制御データの作成を要求する(ステップS102)。
 すると、制御データ作成部131は、制御データを作成し(ステップS103)、作成した制御データを制御部130に送る(ステップS104)。
 続いて、制御部130は、受け取った制御データと端末300宛のデータとを結合し(ステップS105)、符号化部113に送る(ステップS106)。
 その後、符号化部113から変調部112にデータが送られ(ステップS107)、変調部112からデジタル/アナログ変換部111にデータが送られ(ステップS108)、デジタル/アナログ変換部111から送信部110にデータが送られる(ステップS109)。そして、送信部110が、中継局200にデータを送信する(ステップS110)。
 次に、図4に示すように、中継局200の受信部220は、端末300宛のデータを受信し(ステップS201)、受信したデータをアナログ/デジタル変換部221に送る(ステップS202)。
 続いて、アナログ/デジタル変換部221から復調部222にデータが送られ(ステップS203)、復調部222から復号化部223にデータが送られる(ステップS204)。
 復号化部223は、復調部222から受けとったデータを復号し、端末300宛のデータを取得すると、制御データ解析部230に制御データなどの解析を要求する(ステップS205)。
 一方、制御データ解析部230は、復号化部223から制御データの解析要求を受信すると、制御データなどを解析し(ステップS206)、符号化部213に解析結果と端末300宛のデータとを送る(ステップS207)。
 そして、符号化部213は、解析結果に従って端末300宛のデータを符号化するが、まず、伝送遅延要求の厳しいデータをFrame-1のデータとして符号化し、符号化したデータを変調部212に送る(ステップS208)。
 すると、変調部212は、Frame-1のデータを変調し、変調したデータをデジタル/アナログ変換部211に送る(ステップS209)。続いて、デジタル/アナログ変換部211は、Frame-1のデータをデジタルからアナログに変換し、変換したデータを送信部210に送る(ステップS210)。そして、送信部210が、Frame-1を直ちに送信する(ステップS211)。
 一方、符号化部213は、ステップS208において符号化したデータを変調部212に送った後に、伝送遅延要求の厳しくないデータをFrame-2のデータとして符号化し、符号化したデータを変調部212に送る(ステップS212)。
 すると、変調部212は、Frame-2のデータを変調し、変調したデータをデジタル/アナログ変換部211に送る(ステップS213)。続いて、デジタル/アナログ変換部211は、Frame-2のデータをデジタルからアナログに変換し、変換したデータを送信部210に送る(ステップS214)。なお、送信部210は、Frame-1と異なり、Frame-2のデータについては、Frame-2において端末300宛のデータを送信するタイミングを待機し、タイミングが到来してから送信する(ステップS215)。
 ここで、実施例1に係る無線中継システムにおいて、送信モードと受信モードとの切り替えの間に生じる時間的な空白期間は、ステップS201で端末300宛のデータを受信してからステップS211でFrame-1の送信を開始するまでの期間である。
 図5は、伝送効率の向上を説明するための図である。例えば、図5に示すように、基地局が、送受信処理の仕事量『10』のデータを中継局に送信したとする。中継局は、データを受信した後に、受信したデータの復号化や符号化処理などを実行するが、例えば、受信モードと送信モードの切り換えの間の時間が、『5』の仕事を行う時間しかない場合、この間に『10』の仕事量を行うためには、全ての受信を終える前に復号化処理を始めたり、全ての符号化が完了する前に送信を始めるなど処理の多重化が必要となり、一連の送受信処理を制御する方法が複雑になるという欠点を持っていた。さもなくば、受信モードと送信モードの間に仕事量『10』を行うために十分な空白期間を設けなければならず、伝送効率が低下していた。
 これに対し、実施例1における無線中継システムは、伝送遅延要求の厳しいデータのみをFrame-1で先に送信し、伝送遅延要求の厳しくないデータについてはFrame-2に先送りして送信する。すなわち、図5の(B)に示すように、例えば、基地局から送信されたデータの内、伝送遅延要求の厳しいデータが2割であるとすると、中継局は、仕事量『2』の送受信処理を実行すると、直ちにデータを送信する。そして、中継局は、伝送遅延要求の厳しくないデータについては、時間的余裕が与えられた中で復号化や符号化処理を実行する。ここで、仕事量『8』分の送受信処理について、仕事量『8』で処理する代わりにより多くの処理を加えることによって受信感度を高めたりより多くのデータ量を処理することが可能となり、この結果、伝送効率が向上するのである。
[実施例1の効果]
 上記してきたように、実施例1によれば、無線中継システムは、基地局100と中継局200との間でデータ伝送を許容する時間区間の長さ(RZ)や中継局200と複数の端末300との間でデータ伝送を許容する時間区間の長さ(AZ)を無線フレームに応じて所定のパターンで変更する。RZは、基地局100から中継局200へのデータ伝送が許容される時間区間又は中継局200から基地局100へのデータ伝送が許容される時間区間である。また、AZは、中継局200から端末300へのデータ伝送が許容される時間区間又は端末300から中継局200へのデータ伝送が許容される時間区間である。
 具体的には、実施例1における無線フレームは、1つの無線フレーム内に、基地局100と中継局200との間でデータ伝送を許容するRZと、中継局200と端末300との間でデータ伝送を許容するAZとを含む。また、Frame-1内のRZは、Frame-2内のRZに対して相対的に長く、Frame-1内のAZは、Frame-2内のAZに対して相対的に短い。また、無線中継システムは、RZの長さ又はAZの長さを毎無線フレーム変更する。
 また、無線中継システムは、無線フレームを時分割で、基地局100と中継局200の間の通信に使用する区間(RZ)と、中継局200と端末300の間の通信に使用する区間(AZ)を設ける。また、無線中継システムは、無線フレームごとに、基地局100と中継局200の間の通信に使用する区間(RZ)に多くの領域を割り当てる無線フレームと、中継局200と端末300の間の通信に使用する区間(AZ)に多くの領域を割り当てるフレームを交互に繰り返して使用する。
 また、無線中継システムは、無線フレームを時分割で、基地局100と中継局200の間の通信に使用する区間(RZ)と、中継局200と端末300の間の通信に使用する区間(AZ)を設ける。また、無線中継システムは、それぞれの区間の設定情報について、複数の設定を基地局100から中継局200に通知し、複数の設定を順番に繰り返して使用する。また、複数のフレーム構成は、無線フレーム番号から一意に導かれ、2通りの区間設定情報を使用する。これによって、フレーム構成の通知に関するオーバーヘッドを減らし、効率的なデータ伝送に寄与することも可能になる。
 このようなことから、実施例1に係る無線中継システムによれば、伝送効率を向上することが可能になる。すなわち、中継局200は、端末300に向けて送信するデータとして基地局100から受信したデータの内、伝送遅延要求の厳しくない一部のデータについては次のフレームで送信する。このため、実施例1に係る無線中継システムによれば、送信モードと受信モードとの切り替えの間に生じる時間的な空白期間は、伝送遅延要求の厳しい一部のデータの符号化処理などの時間にとどまることになり、伝送効率を向上することが可能になる。
 また、伝送遅延要求の厳しくない一部のデータについては時間的余裕が与えられることになり、比較的時間のかかる高度な符号化処理を実行することもできるので、通信品質を向上することも可能になる。
 また、中継局200が、2(ないしm)フレームごとに大きなブロックとしてデータを中継することにより、より大きな誤り訂正符号の効果を得ることも可能になる。
 ところで、実施例1に例示した無線フレーム構成では、伝送遅延要求の厳しいデータと厳しくないデータとが混在する場合があることを想定していた。実施例2では、伝送遅延要求の厳しいデータが存在しない場合の無線フレーム構成を例示する。
 図6を用いて、実施例2に係る無線中継システムの無線フレーム構成を説明する。図6は、実施例2に係る無線中継システムの無線フレーム構成を説明するための図である。
 図6に示すように、実施例2に係る無線中継システムは、実施例1と同様、RZの長さ又はAZの長さを無線フレームに応じて所定のパターンで変更する。具体的には、実施例2に係る無線中継システムは、無線フレームのDLについて、図6に示すように、1つの無線フレーム内にAZが設けられず、RZだけが割り当てられるように変更する((b)を参照)。また、実施例2に係る無線中継システムは、無線フレームのULについて、図6に示すように、1つの無線フレーム内にRZが設けられず、AZだけが割り当てられるように変更する((d)を参照)。
 ここで、実施例2における中継局は、端末に向けて送信するデータを所定のフレームで基地局から受信した場合に、当該フレーム中で端末に向けて送信するのではなく、次のフレームで送信する。
 例えば、中継局は、図6に示すように、端末に向けて送信するデータをFrame-1で基地局から受信した場合に((b)を参照)、これらのデータをFrame-2で送信する((c)を参照)。
[実施例2の効果]
 上記してきたように、実施例2によれば、所定パターンによる変更は、基地局100と中継局200との間でデータ伝送を許容する時間区間(RZ)又は中継局200と端末300との間でデータ伝送を許容する時間区間(AZ)が設けられない無線フレームを形成する。また、無線中継システムは、データを送信する領域について、無線フレームごとに、基地局100と中継局200の間の通信に使用する区間(RZ)だけを割り当てるフレームと、中継局200と端末300の間の通信に使用する区間(AZ)だけを割り当てるフレームを交互に繰り返して使用する。
 このようなことから、実施例2に係る無線中継システムによれば、伝送効率をより向上することが可能になる。すなわち、実施例1における中継局200は、端末300に向けて送信するデータをFrame-1で基地局から受信した後、伝送遅延要求の厳しいデータを送信するために、データを受信するモードから送信するモードへと切り替えており、空白期間が生じていた。これに対し、実施例2における中継局200は、無線フレームごとに、RZのみ、あるいはAZのみのフレーム構成であるので、空白期間が生じなくなり、オーバーヘッドを減らし、伝送効率をより向上することが可能になる。
 ところで、実施例1や実施例2に例示した無線フレーム構成では、中継局から端末に向けて全てのフレームで同期信号および共通制御情報を送信していた。これは、例えば、同期信号および共通制御情報が毎フレーム送信されていることを前提として作られている端末の動作を確保するためである。この点、同期信号および共通制御情報が毎フレーム送信されない場合もありうるように新しい規格を定め、新しい規格に則った端末を通信の対象とできるならば、中継局は、必ずしも全てのフレームで同期信号および共通制御情報を送信しなくてもよい。実施例3では、必ずしも全てのフレームで同期信号および共通制御情報を送信しない場合の無線フレーム構成を例示する。
 図7を用いて、実施例3に係る無線中継システムの無線フレーム構成を説明する。図7は、実施例3に係る無線中継システムの無線フレーム構成を説明するための図である。
 図7に示すように、実施例3に係る無線中継システムは、実施例2と同様、RZの長さ又はAZの長さを無線フレームに応じて所定のパターンで変更する。具体的には、実施例3に係る無線中継システムは、無線フレームのDLについて、実施例2と同様、図7に示すように、1つの無線フレーム内にAZが設けられず、RZだけが割り当てられるように変更する((b)を参照)。また、実施例3に係る無線中継システムは、無線フレームのULについて、実施例2と同様、図7に示すように、1つの無線フレーム内にRZが設けられず、AZだけが割り当てられるように変更する((d)を参照)。
 ここで、実施例3における中継局200は、毎フレームで同期信号および共通制御情報を送信するのではなく、DLでAZだけが割り当てられた無線フレームで、同期信号および共通制御情報を送信する。例えば、無線中継システムは、図7に示すように、Frame-1では同期信号および共通制御情報を送信せず、Frame-2で送信するように変更する((a)を参照)。
 なお、実施例3における端末300は、中継局200と同様の部を備える。具体的には、中継局200の制御データ解析部230と同様の部を備え、端末300の各部は、制御データ解析部によって解析された解析結果に従って各種処理を行う。
[実施例3の効果]
 上記してきたように、実施例3によれば、無線中継システムは、DLで中継局200から端末300に向かったデータ領域(AZ)を多くあるいはそれだけを割り当てた無線フレームで、中継局200から端末300に向けた同期信号および共通制御信号を送信する。
 このようなことから、実施例3に係る無線中継システムによれば、伝送効率をさらに向上することが可能になる。すなわち、実施例2における中継局200は、同期信号や共通制御信号を端末300へ送信した後、基地局100からデータを受信するまでの間に、データを送信するモードから受信するモードへと切り替えており、空白期間が生じていた。これに対し、実施例3における中継局200は、DLでAZだけが割り当てられた無線フレームで同期信号および共通制御情報を送信するフレーム構成であるので、同期信号や共通制御信号を端末300へ送信した後、基地局100からデータを受信する処理は無くなる。この結果、空白期間が生じなくなり、伝送効率をさらに向上することが可能になる。
 また、基地局100、中継局200、あるいは端末300において、送信モードと受信モードとを切り替える状態遷移を減らすことができるので、機器の制御構造を簡略化することも可能になる。
 また、フレーム構成を毎回送信するのではなく、2(ないしm)パターンのフレーム構成を交互に繰り返して使用することによって、フレーム構成の通知に関するオーバーヘッドを減らし、効率的なデータ伝送に寄与することも可能になる。
 ところで、実施例2や実施例3で例示した無線フレーム構成では、中継局について、1つの無線フレーム中で、送信するデータよりも受信するデータの方が大きいか、受信するデータよりも送信するデータの方が大きいなど、偏りがあった。実施例4では、無線フレーム内の送受信の偏りを低減する無線フレーム構成を例示する。
 図8および図9を用いて、実施例4に係る無線中継システムの無線フレーム構成を説明する。図8および図9は、実施例4に係る無線中継システムの無線フレーム構成を説明するための図である。
 図8および図9に示すように、実施例4に係る無線中継システムは、実施例2や実施例3と同様、RZの長さ又はAZの長さを無線フレームに応じて所定のパターンで変更する。具体的には、実施例4に係る無線中継システムは、無線フレームのDLについて、実施例2や実施例3と同様、図8および図9に示すように、1つの無線フレーム内にAZが設けられず、RZだけが割り当てられるように変更する((b)を参照)。
 ここで、実施例4に係る無線中継システムは、無線フレームのULについて、実施例2や実施例3と異なり、図8および図9に示すように、DLにおいてRZだけが割り当てられた無線フレームにおいてAZが設けられず、RZだけが割り当てられるように変更する((e)を参照)。
 一方、実施例4に係る無線中継システムは、次の無線フレームのDLについて、実施例2や実施例3と同様、図8および図9に示すように、1つの無線フレーム内にRZが設けられず、AZだけが割り当てられるように変更する((c)を参照)。しかしながら、実施例4に係る無線中継システムは、そのDLにおいてAZだけが割り当てられた無線フレームのULについて、実施例2や実施例3と異なり、図8および図9に示すように、RZが設けられず、AZだけが割り当てられるように変更する((d)を参照)。
[実施例4の効果]
 上記してきたように、実施例4によれば、1つの無線フレーム内に、基地局100から中継局200へのデータ送信を許容する時間区間(DLのRZ)と、中継局200から基地局100へのデータ送信を許容する時間区間(ULのRZ)とを含む。所定のパターンによる変更では、Frame-1内における基地局100から中継局200へのデータ送信を許容する時間区間(DLのRZ)が、Frame-2内における基地局100から中継局200へのデータ送信を許容する時間区間(DLのRZ)に対して相対的に長くなる。また、Frame-1内における中継局200から基地局100へのデータ送信を許容する時間区間(ULのRZ)が、Frame-2内における中継局200から基地局100へのデータ送信を許容する時間区間(ULのRZ)に対して相対的に長くなる。
 また、無線フレームは、1つの無線フレーム内に、中継局200から端末300へのデータ送信を許容する時間区間(DLのAZ)と、端末300から中継局200へのデータ送信を許容する時間区間(ULのAZ)とを含む。Frame-1内における中継局200から端末300へのデータ送信を許容する時間区間(DLのAZ)が、Frame-2内における中継局200から端末300へのデータ送信を許容する時間区間(DLのAZ)に対して相対的に短い。また、Frame-1内における端末300から中継局200へのデータ送信を許容する時間区間(ULのAZ)が、Frame-2内における端末300から中継局200へのデータ送信を許容する時間区間(ULのAZ)に対して相対的に短い。
 また、無線中継システムは、DLで基地局100から中継局200に向かったデータ領域(RZ)を多くあるいはそれだけを割り当てたフレームのULでは中継局200から基地局100へ向かうデータ領域(RZ)を多くあるいはそれだけを割り当てる。また、DLで中継局200から端末300に向かったデータ領域(AZ)を多くあるいはそれだけを割り当てたフレームのULでは端末300から中継局200へ向かうデータ領域(AZ)を多くあるいはそれだけを割り当てる。
 このようなことから、実施例4に係る無線中継システムによれば、伝送効率を向上するのみならず、中継局200における処理の輻輳を防止する。すなわち、実施例2や実施例3における中継局200は、1つの無線フレーム中で、送信するデータよりも受信するデータの方が大きいか、受信するデータよりも送信するデータの方が大きいなど、偏りがあった。このため、例えば、受信するデータの復号処理などが輻輳していた。これに対し、実施例4における中継局200は、Frame-1においてはDLでは受信の処理を行い、ULでは送信の処理を行う。一方、Frame-2においてはDLでは送信の処理を行い、ULでは受信の処理を行う。この結果、基地局100からのデータの受信と、端末300からのデータの受信とが同時に起こることによる処理の輻輳を避けることが可能になる。また、回路ハードウェアのリソースを効率的に分配することが可能になる。
 更に、このフレーム構成では、基地局100あるいは端末300にまとまった処理の空白期間ができるため、回路の動作状態を適切に制御することにより、消費電力を減らすことが容易に可能になる。特に、図9による無線フレーム構成は、実施例3で述べた同期信号および共通制御情報を毎フレームで送信しない場合と併用した場合を示している。すると、中継局200における送信モードと受信モードとの切り替えについて、Frame-1とFrame-2の境界、あるいは、Frame-2とその次のフレーム(Frame-1と同様なフレーム構成を使用すると仮定)の境界での切り替えが不要になる。ここでも、切り替えに伴う空白期間を取り除くことができ、伝送効率を向上することが可能になる。
 ところで、実施例1~実施例4では、基地局と端末とが1段の中継局を介して通信する事例を説明してきた。実施例5では、多段の中継局を介して通信する事例を説明する。
 図10および図11を用いて、実施例5に係る無線中継システムの無線フレーム構成を説明する。図10および図11は、実施例5に係る無線中継システムの無線フレーム構成を説明するための図である。
 図10および図11に示すように、実施例5に係る無線中継システムにおいては、DLについては、Frame-1で基地局から中継局1に対して送信が行われるのと同時に、中継局2から端末に対する送信が行われている。また、Frame-2で中継局1から中継局2に対してデータが送信され、そのデータはFrame-3(Frame-1と同様なフレーム構成を使用すると仮定)で中継局2から端末に送信される。ULについても同様の動作を行っている。
 すなわち、実施例5に係る無線中継システムは、実施例1~4と同様、RZの長さ又はAZの長さを無線フレームに応じて所定のパターンで変更する。具体的には、実施例5に係る無線中継システムは、無線フレームのDLについては、実施例2~4と同様、図10および図11に示すように、1つの無線フレーム内にAZが設けられず、RZだけが割り当てられるように変更する((b)を参照)。
 また、実施例5に係る無線中継システムは、無線フレームのULについては、実施例4と同様、図10および図11に示すように、1つの無線フレーム内にAZが設けられず、RZだけが割り当てられるように変更する((e)を参照)。なお、図10と図11との無線フレーム構成の違いは、DLとULとの間で中継の方向が異なるだけである。また、実施例3と同様、中継局2から端末に送信する同期信号および共通制御信号が毎フレーム送信されない場合にも適用できる。
[実施例5の効果]
 このようなことから、実施例5に係る無線中継システムによれば、基地局と中継局とが多段の中継局を介して通信する無線中継システムにおいて、伝送効率を向上するのみならず、中継局における処理の輻輳を防止する。
 ところで、実施例5に係る無線中継システムでは、DLにおいて中継局1が基地局からの信号を受信しているのと同時に中継局2が端末に向けて信号を送信していた。また、ULにおいても、中継局2が端末からの信号を受信しているのと同時に中継局1が基地局に向けて信号を送信していた。もっとも、これらが干渉となってうまく受信できない場合がある。このため、実施例6では、図12に示すような3フレームで繰り返す無線フレーム構成を用いることによって、干渉を回避する。
 図12を用いて、実施例6に係る無線中継システムの無線フレーム構成を説明する。図12は、実施例6に係る無線中継システムの無線フレーム構成を説明するための図である。
 図12では、DLについては、Frame-1で基地局から中継局1へ、Frame-2で中継局1から中継局2へ、Frame-3で中継局2から端末へデータを送信し、ULについては、Frame-2で端末から中継局2へ送信されて、以下順番に中継される例が示されている。なお、Frame-2で端末から中継局2へ送信されたデータが順番に中継されるパターン、およびFrame-3で端末から中継局2へ送信されたデータが順番に中継されるパターンも同様に考えることができる。また、実施例3と同様、中継局2から端末に送信する同期信号および共通制御信号が毎フレーム送信されない場合にも適用できる。
[複数の中継局]
 基地局の配下に複数の中継局が設置されている場合、中継局ごとに異なるフレーム構成を使用すると、DLにおいて、ある中継局がAZとして送信を行う時に、近接の別の中継局がRZとして受信を行う場合が生じる。しかし、このような場合、送信を行った中継局の電波が、受信を行う中継局に対して妨害となり、受信を行う中継局が、正常に受信できなくなるおそれがある。ULにおいても同様に、ある中継局がRZとして送信を行う時に、近傍にAZとして受信を行う別の中継局が存在すれば、RZとして送信を行った中継局の信号が、受信を行わなければならない中継局に対して妨害となる。
 このようなことから、中継局ごとに異なるフレーム構成を使用するのではなく、基地局配下の全ての中継局(あるいは、全ての基地局の配下に設置された全ての中継局など)で共通のフレーム構成を使用してもよい。こうすることで、フレーム構成を指定する共通制御信号によるオーバーヘッドが軽減されるだけでなく、中継局ごとにRZとAZとが異なることに起因する干渉問題を解決することも可能になる。
[システム構成等]
 また、明細書中や図面中で示した処理手順(図3~4など)、具体的名称(図2など)、各種データやパラメータを含む情報(図5など)については、特記する場合を除いて任意に変更することができる。
 また、図2に例示した基地局100、中継局200、および端末300の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、具体的形態は図示のものに限られず、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。さらに、基地局100、中継局200、および端末300にて行なわれる各処理機能は、その全部または任意の一部が、CPU(Central Processing Unit)および当該CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。
 なお、上記の実施例で説明した無線フレームの利用方法や設定方法は、あらかじめ用意されたプログラムをコンピュータで実行することによって実現することができる。このプログラムは、インターネットなどのネットワークを介して配布することができる。また、このプログラムは、ハードディスク、フレキシブルディスク(FD)、CD-ROM、MO、DVDなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行することもできる。

Claims (14)

  1.  基地局と端末との間のデータ伝送を中継局による中継処理を用いて実行する無線中継システムにおいて、
     該基地局と該中継局との間でデータ伝送を許容する時間区間の長さ又は該中継局と前記端末を含む複数の端末との間でデータ伝送を許容する時間区間の長さを無線フレームに応じて所定のパターンで変更する制御部、
     を備えたことを特徴とする無線中継システム。
  2.  前記無線フレームは、1つの無線フレーム内に、前記基地局と前記中継局との間でデータ伝送を許容する第1の時間区間と、前記中継局と前記端末を含む複数の端末との間でデータ伝送を許容する第2の時間区間とを含み、第1の無線フレーム内の前記第1の時間区間は、第2の無線フレーム内の前記第1の時間区間に対して相対的に長く、該第1の無線フレーム内の前記第2の時間区間は、該第2の無線フレーム内の前記第2の時間区間に対して相対的に短い、
     ことを特徴とする請求項1記載の無線中継システム。
  3.  前記第1の時間区間は、前記基地局から前記中継局へのデータ伝送が許容される時間区間又は前記中継局から前記基地局へのデータ伝送が許容される時間区間であり、
     前記第2の時間区間は、前記中継局から前記複数の端末へのデータ伝送が許容される時間区間又は前記複数の端末から前記中継局へのデータ伝送が許容される時間区間である、
     ことを特徴とする請求項2記載の無線中継システム。
  4.  前記所定パターンによる変更は、該基地局と該中継局との間でデータ伝送を許容する時間区間又は該中継局と前記端末を含む複数の端末との間でデータ伝送を許容する時間区間が設けられない無線フレームを形成することを含む、
     ことを特徴とする請求項1記載の無線中継システム。
  5.  前記制御部は、該基地局と該中継局との間でデータ伝送を許容する時間区間の長さ又は該中継局と前記端末を含む複数の端末との間でデータ伝送を許容する時間区間の長さを毎無線フレーム変更する、
     ことを特徴とする請求項1記載の無線中継システム。
  6.  前記無線フレームは、1つの無線フレーム内に、前記基地局から前記中継局へのデータ送信を許容する時間区間と、該中継局から該基地局へのデータ送信を許容する時間区間とを含み、前記所定のパターンによる変更では、第1の無線フレーム内における前記基地局から前記中継局へのデータ送信を許容する時間区間が、第2の無線フレーム内における前記基地局から前記中継局へのデータ送信を許容する時間区間に対して相対的に長くなり、該第1の無線フレーム内における前記中継局から前記基地局へのデータ送信を許容する時間区間が、該第2の無線フレーム内における前記中継局から前記基地局へのデータ送信を許容する時間区間に対して相対的に長くなる、
     ことを特徴とする請求項1記載の無線中継システム。
  7.  前記無線フレームは、1つの無線フレーム内に、前記中継局から前記複数の端末へのデータ送信を許容する時間区間と、該複数の端末から該中継局へのデータ送信を許容する時間区間とを含み、前記第1の無線フレーム内における前記中継局から前記複数の端末へのデータ送信を許容する時間区間が、第2の無線フレーム内における前記中継局から前記複数の端末へのデータ送信を許容する時間区間に対して相対的に短く、該第1の無線フレーム内における前記複数の端末から前記中継局へのデータ送信を許容する時間区間が、該第2の無線フレーム内における前記複数の端末から前記中継局へのデータ送信を許容する時間区間に対して相対的に短い、
     ことを特徴とする請求項6記載の無線中継システム。
  8.  基地局から中継局を介して端末へデータを伝送する無線中継システムにおける無線フレームの利用方法において、
     フレームを時分割で、基地局と中継局の間の通信に使用する区間と、中継局と端末の間の通信に使用する区間を設け、
     フレームごとに、基地局と中継局の間の通信に使用する区間に多くの領域を割り当てるフレームと、中継局と端末の間の通信に使用する区間に多くの領域を割り当てるフレームを交互に繰り返して使用する、
     ことを特徴とした無線中継システムにおける無線フレームの利用方法。
  9.  前記請求項8記載の無線中継システムにおける無線フレームの利用方法において、
     データを送信する領域について、フレームごとに、基地局と中継局の間の通信に使用する区間だけを割り当てるフレームと、中継局と端末の間の通信に使用する区間だけを割り当てるフレームを交互に繰り返して使用する、
     ことを特徴とした無線中継システムにおける無線フレームの利用方法。
  10.  前記請求項8あるいは請求項9記載の無線中継システムにおける無線フレームの利用方法において、
     下りで基地局から中継局に向かったデータ領域を多くあるいはそれだけを割り当てたフレームの
     上りでは中継局から基地局へ向かうデータ領域を多くあるいはそれだけを割り当て、
     下りで中継局から端末に向かったデータ領域を多くあるいはそれだけを割り当てたフレームの
     上りでは端末から中継局へ向かうデータ領域を多くあるいはそれだけを割り当てる、
     ことを特徴とした無線中継システムにおける無線フレームの利用方法。
  11.  前記請求項10記載の無線中継システムにおける無線フレームの利用方法において、
     下りで中継局から端末に向かったデータ領域を多くあるいはそれだけを割り当てたフレームで、中継局から端末に向けた同期信号および共通制御信号を送信する、
     ことを特徴とした無線中継システムにおける無線フレームの利用方法。
  12.  基地局から中継局を介して端末へデータを伝送する無線中継システムにおける無線フレームの設定方法において、
     フレームを時分割で、基地局と中継局の間の通信に使用する区間と、中継局と端末の間の通信に使用する区間を設け、
     それぞれの区間の設定情報について、複数の設定を基地局から中継局に通知し、複数の設定を順番に繰り返して使用する、
     ことを特徴とした無線中継システムにおける無線フレームの設定方法。
  13.  前記請求項12記載の無線中継システムにおける無線フレームの設定方法において、
     複数の区間設定情報は、フレーム番号から一意に導かれる、
     ことを特徴とした無線中継システムにおける無線フレームの設定方法。
  14.  前記請求項12あるいは13記載の無線中継システムにおける無線フレームの設定方法において、
     2通りの区間設定情報を使用する、
     ことを特徴とした無線中継システムにおける無線フレームの設定方法。
PCT/JP2008/066465 2008-09-11 2008-09-11 無線中継システム、無線フレームの利用方法および設定方法 WO2010029631A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2008/066465 WO2010029631A1 (ja) 2008-09-11 2008-09-11 無線中継システム、無線フレームの利用方法および設定方法
JP2010528568A JP5246263B2 (ja) 2008-09-11 2008-09-11 無線中継システム、及び無線フレームの利用方法
EP08810517.6A EP2326028B1 (en) 2008-09-11 2008-09-11 Radio relay system, radio frame utilizing method and setting method
EP11175166A EP2437412A3 (en) 2008-09-11 2008-09-11 Radio relay system, and using method and setting method of radio frame
US13/044,767 US20110164552A1 (en) 2008-09-11 2011-03-10 Radio relay system, and using method and setting method of radio frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/066465 WO2010029631A1 (ja) 2008-09-11 2008-09-11 無線中継システム、無線フレームの利用方法および設定方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/044,767 Continuation US20110164552A1 (en) 2008-09-11 2011-03-10 Radio relay system, and using method and setting method of radio frame

Publications (1)

Publication Number Publication Date
WO2010029631A1 true WO2010029631A1 (ja) 2010-03-18

Family

ID=42004899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/066465 WO2010029631A1 (ja) 2008-09-11 2008-09-11 無線中継システム、無線フレームの利用方法および設定方法

Country Status (4)

Country Link
US (1) US20110164552A1 (ja)
EP (2) EP2326028B1 (ja)
JP (1) JP5246263B2 (ja)
WO (1) WO2010029631A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528030A (ja) * 2010-04-21 2013-07-04 エルジー エレクトロニクス インコーポレイティド 中継局を含む無線通信システムにおけるフレーム構成方法及び装置
CN103220193A (zh) * 2012-01-18 2013-07-24 京信通信系统(中国)有限公司 一种直放站中的以太网接入传输装置及方法
JP2019115014A (ja) * 2017-12-26 2019-07-11 株式会社日立国際電気 無線通信システムおよび無線通信方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011055780A1 (ja) * 2009-11-05 2013-03-28 シャープ株式会社 無線通信システム、中継局装置および無線通信方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8774019B2 (en) * 2005-11-10 2014-07-08 Apple Inc. Zones for wireless networks with relays
BRPI0620674A2 (pt) * 2005-12-13 2011-11-22 Lg Electronics Inc método de comunicação usando estação retransmissora em um sistema de comunicação móvel
WO2007100232A1 (en) * 2006-03-03 2007-09-07 Samsung Electronics Co., Ltd. Apparatus and method for supporting relay service in a multi-hop relay broadband wireless access communication system
JP5251512B2 (ja) * 2006-10-25 2013-07-31 富士通株式会社 無線基地局,中継局,無線通信システムおよび無線通信方法
US7990906B2 (en) * 2006-11-03 2011-08-02 Fujitsu Semiconductor Limited Frame structure for a relay station operating in mobile networks
US7920826B2 (en) * 2006-11-10 2011-04-05 Electronics And Telecommunications Research Institute Method of forming frame in multi-hop relay system and system for implementing the method
US7916704B2 (en) * 2007-06-29 2011-03-29 Motorola Solutions, Inc. Method of communication scheduling in a multihop network
US8867983B2 (en) * 2007-09-19 2014-10-21 Fujitsu Semiconductor Limited Method and apparatus for controlling a relay station in a multi-hop relay network
KR101445078B1 (ko) * 2007-10-04 2014-11-03 삼성전자주식회사 릴레이 시스템 및 상기 릴레이 시스템을 위한 데이터프레임 구조
US8830952B2 (en) * 2008-08-19 2014-09-09 Fujitsu Limited System and method for balancing network load in a non-transparent multi-hop relay network

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"6th International Conference on Information, Communications & Signal Processing, 2007.12.10", 10 December 2007, article KOON HOO TEO ET AL.: "Adaptive Frame Structure for Mobile Multihop Relay(MMR) Networks", pages: 1 - 5, XP031229602 *
"Global Telecommunications Conference, 2007., 2007.11", November 2007, article ZHIFENG TAO ET AL.: "Frame Structure Design for IEEE 802.16j MobileMultihop Relay (MMR) Networks", pages: 4301 - 4306, XP031196746 *
"IEEE P802.16j/D5 Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Multi-hop Relay Specification", THE RELAY TASK GROUP OF IEEE 802.16, 30 May 2008 (2008-05-30), pages 201
TAKASHI SHONO: "WiMAX Textbook", IMPRESS R&D COMPANY, 5 August 2008 (2008-08-05), pages 262 - 283

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528030A (ja) * 2010-04-21 2013-07-04 エルジー エレクトロニクス インコーポレイティド 中継局を含む無線通信システムにおけるフレーム構成方法及び装置
US9014067B2 (en) 2010-04-21 2015-04-21 Lg Electronics Inc. Method and apparatus for configuring frame in wireless communication system including relay station
CN103220193A (zh) * 2012-01-18 2013-07-24 京信通信系统(中国)有限公司 一种直放站中的以太网接入传输装置及方法
CN103220193B (zh) * 2012-01-18 2016-08-10 京信通信系统(中国)有限公司 一种直放站中的以太网接入传输装置及方法
JP2019115014A (ja) * 2017-12-26 2019-07-11 株式会社日立国際電気 無線通信システムおよび無線通信方法
JP7062437B2 (ja) 2017-12-26 2022-05-06 株式会社日立国際電気 無線通信システムおよび無線通信方法

Also Published As

Publication number Publication date
EP2326028A1 (en) 2011-05-25
US20110164552A1 (en) 2011-07-07
EP2326028A4 (en) 2012-04-25
JP5246263B2 (ja) 2013-07-24
EP2437412A3 (en) 2012-04-25
JPWO2010029631A1 (ja) 2012-02-02
EP2326028B1 (en) 2014-04-09
EP2437412A2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4751451B2 (ja) 無線通信システムでのリレーステーションを用いた通信方法
RU2539972C2 (ru) Временное мультиплексирование внутри подкадров
US8121549B2 (en) Method and system for allocating resource in a communication system
RU2534734C2 (ru) Система связи, устройство связи, способ связи и компьютерный программный продукт
CN102763363B (zh) 控制信息指派方法
KR100965673B1 (ko) 이동통신 시스템에서 데이터 송신 방법
JP5132568B2 (ja) 移動体通信システムにおける中継局および中継送信用チャネル設定方法
JP5167760B2 (ja) 無線通信システムにおける上り通信方法並びに無線通信システム、無線端末及び無線基地局
JP5191202B2 (ja) 無線通信システム、方法、およびデータ構造
KR20080072288A (ko) 이종망간 서비스 연동 방법 및 시스템
JP5398585B2 (ja) 無線通信システム及び基地局間協調通信制御方法
US20100103869A1 (en) Transferring data in a mobile telephony network
JP5246263B2 (ja) 無線中継システム、及び無線フレームの利用方法
KR101162212B1 (ko) 이동통신 시스템에서 중계국을 통한 통신 방법 및 그를위한 프레임 구조
KR20070062757A (ko) 데이터 전송 중계 방법
CN101529751B (zh) 用于多跳无线宽带接入通信的从帧控制头(fch)位置向前导码序列集的映射
KR100949986B1 (ko) 다중 홉 중계방식을 사용하는 광대역 무선통신 시스템에서제어 정보 송수신 장치 및 방법
JP4496336B2 (ja) 無線マルチホップネットワークにおけるパケット伝送方法
US8457223B2 (en) Wireless communication device, wireless communication method, program and wireless communication system
KR20070099172A (ko) 이동통신 시스템에서의 중계국 영역 지정 방법 및 검색방법
RU2358396C2 (ru) Способ, промежуточная станция и центральное устройство управления для передачи данных с коммутацией пакетов в самоорганизующейся сети радиосвязи
JP2008283384A (ja) 無線通信装置
JP7120321B2 (ja) 基地局装置、端末装置及び無線通信システム
KR20070117407A (ko) 다중 홉 중계방식의 광대역 무선 접속 통신시스템에서 중계서비스를 지원하기 위한 스케줄링 장치 및 방법
JP2009044317A (ja) 無線通信システム、無線中継方法、基地局装置、中継局装置および無線中継プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08810517

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010528568

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008810517

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE