WO2010027238A2 - 왕복 피스톤 엔진 및 그 작동 방법 - Google Patents

왕복 피스톤 엔진 및 그 작동 방법 Download PDF

Info

Publication number
WO2010027238A2
WO2010027238A2 PCT/KR2009/005076 KR2009005076W WO2010027238A2 WO 2010027238 A2 WO2010027238 A2 WO 2010027238A2 KR 2009005076 W KR2009005076 W KR 2009005076W WO 2010027238 A2 WO2010027238 A2 WO 2010027238A2
Authority
WO
WIPO (PCT)
Prior art keywords
piston
exhaust
intake
cylinder
combustion chamber
Prior art date
Application number
PCT/KR2009/005076
Other languages
English (en)
French (fr)
Other versions
WO2010027238A3 (ko
Inventor
최진희
Original Assignee
Choi Jin Hee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080088282A external-priority patent/KR101065002B1/ko
Priority claimed from KR1020090071715A external-priority patent/KR20110013991A/ko
Application filed by Choi Jin Hee filed Critical Choi Jin Hee
Publication of WO2010027238A2 publication Critical patent/WO2010027238A2/ko
Publication of WO2010027238A3 publication Critical patent/WO2010027238A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/04Varying compression ratio by alteration of volume of compression space without changing piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/06Engines characterised by precombustion chambers with auxiliary piston in chamber for transferring ignited charge to cylinder space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B2023/085Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition using several spark plugs per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/041Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of cylinder or cylinderhead positioning
    • F02B75/042Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of cylinder or cylinderhead positioning the cylinderhead comprising a counter-piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/36Engines with parts of combustion- or working-chamber walls resiliently yielding under pressure
    • F02B75/38Reciprocating - piston engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a reciprocating piston engine and a method of operating the same, and more particularly, to a reciprocating piston engine and a method of operating the same, which can improve engine efficiency and adjust various performance factors of the engine.
  • the engine is a device that converts thermal energy into mechanical work, and is used as a power source for transportation and industrial machinery.
  • Such engines require working materials to convert thermal energy into mechanical work. That is, in a gasoline engine, the fuel gas which mixed gasoline and air, and the combustion gas of the fuel gas are working materials.
  • a gasoline engine the fuel gas which mixed gasoline and air, and the combustion gas of the fuel gas are working materials.
  • a diesel engine a fuel gas obtained by mixing diesel oil and air, and a combustion gas of the fuel gas are working materials.
  • steam engines water and steam are the working substances.
  • the reciprocating piston engine is formed of a cylinder and a piston, and is widely used in automobiles, compressors, generators, ships, and the like.
  • 1 shows an example of a gasoline engine among the conventional reciprocating piston engine 1.
  • the conventional reciprocating piston engine 1 is a device that converts thermal energy generated in the combustion chamber 10, that is, explosion energy of fuel gas, into mechanical work by the reciprocating motion of the piston 4.
  • the reciprocating piston engine 1 requires a crankshaft 6 and a connecting rod 8 to convert the linear movement of the piston 4 into a rotational movement. That is, when the explosive force of the fuel gas compressed in the combustion chamber 10 pushes the piston 4, the connecting rod 8 and the crankshaft 6 are operated together with the piston 4, thereby linearly reciprocating the piston 4. To the rotational movement of the crankshaft (6).
  • the operation of the reciprocating piston engine 1 as described above will be described in more detail for each stroke as follows.
  • the piston 4 descends from the top dead center (TDC, Top Dead Center) of the cylinder 2 to the bottom dead center (BDC) with the intake valve 12 open and the exhaust valve 14 closed.
  • TDC top dead center
  • BDC bottom dead center
  • the piston 4 is raised in a state where both the intake valve 12 and the exhaust valve 14 are closed to compress the fuel gas in the cylinder 2.
  • the ignition mechanism 16 explodes the fuel gas in the combustion chamber 10 so that the piston 4 descends by the explosive force of the fuel gas, and the crankshaft 6 is also caused by the piston 4 and the connecting rod 8.
  • the reciprocating piston engine 1 is a four-stroke one-cycle engine in which four strokes consisting of an intake stroke, a compression stroke, an explosion stroke, and an exhaust stroke form one cycle.
  • the four-stroke one-cycle engine has a structure in which four strokes are completed during two round trip cycles of the piston (4).
  • the conventional reciprocating piston engine 1 operates the ignition mechanism 16 after the piston 4 descends a certain height at the top dead center of the cylinder 2. This is because if the ignition mechanism 16 is operated when the piston 4 reaches the top dead center of the cylinder 2, the crankshaft 6 may be reversely rotated in the opposite direction by the explosive force of the fuel gas. By the way, since the angle formed by the connecting rod 8 and the crankshaft 6 is nearly 180 degrees, the linear kinetic energy of the piston 4 transmitted to the connecting rod 8 is the rotational kinetic energy of the crankshaft 6. There is a problem that all of them cannot be converted and some are lost.
  • the point where the piston 4 and the connecting rod 8 are connected is called the first point P1
  • the point where the connecting rod 8 and the crank shaft 6 are connected is called the second point P2
  • the crank is
  • the rotation center of the shaft 6 is referred to as the third point P3
  • the angle between the line segment passing through the first and second points P1 and P2 and the line segment passing through the second and third points P2 and P3 is At 90 degrees, the linear kinetic energy of the piston 4 can all be converted to the rotational kinetic energy of the crankshaft 6.
  • the angle formed by the line segment passing through the first and second points P1 and P2 and the line segment passing through the second and third points P2 and P3 is nearly 180 degrees. Since the ignition mechanism 16 is operated at, the linear kinetic energy of the piston 4 is not all converted into the rotational kinetic energy of the crankshaft 6, and a part is lost, thereby lowering the efficiency of the engine.
  • the conventional reciprocating piston engine 1 operates the ignition mechanism 16 after the piston 4 is lowered by a certain height at the top dead center of the cylinder 2, so that the fuel gas in the combustion chamber 10 is compressed to the maximum.
  • some of the rotational kinetic energy of the crankshaft 6 is lost in the process of inflation and then inflated, and the fuel gas is incompletely burned in a state in which the fuel gas is not compressed to the maximum.
  • the above problem is not only a four-stroke one-cycle engine performing one cycle during two reciprocating periods of piston 4, but also a two-stroke one-cycle engine performing one cycle during one reciprocating period of pistons 4 Is also occurring.
  • the conventional reciprocating piston engine 1 has a structure in which it is impossible to change the timing and maximum compression pressure at which the inside of the combustion chamber 10 is maximally compressed, and the intake valve 12 and the exhaust valve 14 It is impossible to change the opening and closing time and opening and closing time as needed. Therefore, since the conventional reciprocating piston engine 1 cannot implement the optimum performance according to the driving situation, there is a limit in improving the efficiency. In particular, recently, the need for an engine with high efficiency is increasing due to energy depletion, rising energy costs, environmental pollution, and the like.
  • the maximum compression pressure in the combustion chamber is maintained until the explosion time of the fuel gas incomplete combustion of the fuel gas and the expansion loss of the fuel gas It provides a reciprocating piston engine and a method of operating the same that can be prevented.
  • an embodiment of the present invention provides a reciprocating piston engine and a method of operating the same which can improve the efficiency of the engine by converting all of the linear kinetic energy of the piston in the explosion of fuel gas into the rotational kinetic energy of the crankshaft.
  • the embodiment of the present invention can not only easily ensure the maximum compression pressure in the combustion chamber to the desired level, but also maintains the maximum compression pressure in the combustion chamber to the desired time point, the reciprocating piston engine and its operation that can easily manage the explosion time Provide a method.
  • an embodiment of the present invention provides a reciprocating piston engine and a method of operating the same that can prevent the loss of rotational kinetic energy of the crankshaft and engine vibration by dispersing the force in the reverse direction applied to the piston during the compression stroke.
  • an embodiment of the present invention provides a reciprocating piston engine that can easily adjust the maximum compression time and maximum compression pressure of the fuel, opening and closing time and opening time of the valve according to the design conditions to improve the efficiency of the engine.
  • an embodiment of the present invention provides a reciprocating piston engine that can easily adjust the maximum compression time and maximum compression pressure of the fuel, the opening and closing time and opening and closing time of the fuel and the like simply by modifying the structure of the existing engine. .
  • a cylinder having an intake valve and an exhaust valve, a piston disposed inside the cylinder to linearly reciprocate between the top dead center and the bottom dead center of the cylinder and together with the cylinder to form a combustion chamber And a crank shaft rotatably disposed in the cylinder, a connecting rod rotatably connected to both sides of the crank shaft and the piston to transmit power of the piston to the crank shaft, and to explode fuel in the combustion chamber.
  • a fuel explosion device disposed in the upper portion of the cylinder, and the cylinder, and the linear reciprocating motion of the piston can be switched to the rotational motion of the crankshaft as much as possible when the intake valve and the exhaust valve are closed; While the piston moves from the top dead center of the cylinder toward the bottom dead center, It provides a reciprocating piston engine comprising a pressure maintaining device for maintaining a constant compression pressure in the combustion chamber.
  • the maximum compression pressure in the combustion chamber is the compression pressure of the combustion chamber when the piston reaches the top dead center of the cylinder, and can be maintained by the pressure holding device until the operation time of the fuel explosion device.
  • the fuel explosion device may be activated when the piston reaches a position orthogonal to the orthogonal position of the connecting rod and the crankshaft. Therefore, since the linear kinetic energy of the piston can be converted as much as possible to the rotational kinetic energy of the crankshaft, the efficiency of the engine can be improved. In particular, the performance of converting the linear kinetic energy of the piston into the rotational kinetic energy of the crankshaft is maximized at the position where the connecting rod and the crankshaft are orthogonal.
  • the pressure holding device includes an auxiliary cylinder disposed in the cylinder to have an internal space communicating with the combustion chamber, and an auxiliary piston disposed inside the auxiliary cylinder so as to linearly reciprocate between the top dead center and the bottom dead center of the auxiliary cylinder. And a volume increase amount of the combustion chamber while being connected to the auxiliary piston and moving the piston from the top dead center of the cylinder to the bottom dead center of the cylinder while the intake valve and the exhaust valve are closed. It may include a piston drive mechanism for moving the auxiliary piston to the top dead center of the auxiliary cylinder to reduce the internal space of the auxiliary cylinder.
  • the pressure holding device reduces the internal space of the auxiliary cylinder by the auxiliary piston while the piston is moved from the top dead center of the cylinder where the crankshaft and the connecting rod are disposed at 180 degrees to the bottom dead center.
  • the maximum compression pressure in the combustion chamber can be easily maintained.
  • the maximum compression pressure in the combustion chamber may be variously set according to the volume ratio of the cylinder and the auxiliary cylinder.
  • the piston drive mechanism may further include an auxiliary connecting rod having one side connected to the auxiliary piston, a transfer unit disposed at the other side of the auxiliary connecting rod to transfer the auxiliary connecting rod, and a transfer unit to transfer a driving force to the transfer unit. It may include a drive connected.
  • the transfer unit may include a transfer drum having a transfer groove in which the other side of the auxiliary connecting rod is movably inserted along an outer circumferential surface thereof.
  • the transfer part may include a transfer cam slidably contacting the other side of the auxiliary connecting rod.
  • the transfer unit may include a first transfer gear formed on the other side of the auxiliary connecting rod, and a second transfer gear connected to the driving unit so as to be engaged with the first transfer gear.
  • the efficiency of the engine can be improved by only a simple structural change of arranging the pressure holding device on the upper portion of the cylinder as described above, and the existing reciprocating piston engine can only be adjusted to move only the operation time of the fuel explosion device to the optimum time. It can be applied easily. At this time, the size of the auxiliary piston and the auxiliary cylinder can be adjusted in proportion to the size of the cylinder.
  • the fuel explosion device may include an ignition mechanism for igniting the fuel gas sucked into the combustion chamber.
  • the operation point of the ignition mechanism is a position capable of maximally converting the linear reciprocating motion of the piston into the rotational motion of the crankshaft when the compressed state of the fuel gas is maintained at a pressure for completely burning the fuel gas by the pressure holding device. It may be set to the point at which the piston is reached.
  • the ignition mechanism is a time when the piston is disposed at a position close to the orthogonal position or the orthogonal position of the connecting rod and the crankshaft while keeping fuel gas compressed at a pressure completely burned by the piston and the auxiliary piston.
  • the reciprocating piston engine may include a gasoline engine, wherein the piston and the auxiliary piston compress to a pressure that completely burns fuel gas and maintain the compression pressure until the ignition mechanism is operated.
  • the fuel explosion device may also include a fuel injection mechanism for injecting fuel into the air sucked into the combustion chamber.
  • the operation point of the fuel injection mechanism is a position capable of converting the linear reciprocating motion of the piston to the rotational motion of the crankshaft as much as possible when the compressed state of air is maintained at a pressure for spontaneously igniting fuel gas by the pressure holding device. It may be set to the point at which the piston is reached.
  • the fuel injection mechanism is a time when the piston is disposed at a position close to the orthogonal position or the orthogonal position of the connecting rod and the crankshaft while keeping the air compressed at a pressure at which fuel gas is naturally ignited by the piston and the auxiliary piston.
  • the reciprocating piston engine may include a diesel engine, and the piston and the auxiliary piston compress the air to a pressure that spontaneously ignites the fuel gas injected from the fuel injection mechanism, and then until the fuel injection mechanism is operated. Maintain its compression pressure.
  • the maximum compression pressure in the combustion chamber can be easily secured to a desired level by the operation of the pressure holding device, but also the maximum compression pressure in the combustion chamber is maintained to a desired point in time. You can easily manage the explosion point.
  • the reciprocating piston engine includes the cylinder or the pressure for injecting outside air into the combustion chamber while the piston is moved from the bottom dead center of the cylinder to the top dead center with the intake valve closed and the exhaust valve open. It may further include an air injection mechanism provided in the holding device. Therefore, since the air injection mechanism injects external air into the combustion chamber in the exhaust stroke of the reciprocating piston engine, it is possible to improve the exhaust performance of the reciprocating piston engine.
  • the suction step of moving the piston disposed in the interior of the cylinder to the bottom dead center of the cylinder while the intake valve provided in the cylinder and the exhaust valve provided in the cylinder is closed A compression step of moving the piston to the top dead center of the cylinder with the intake valve and the exhaust valve closed, orthogonal positions of the connecting rod and the crankshaft at the top dead center of the cylinder with the intake valve and the exhaust valve closed; or Disposed inside the auxiliary cylinder to move the piston to a position close to the orthogonal position and to reduce an internal space of the auxiliary cylinder formed in communication with the combustion chamber in response to an increase in volume of the combustion chamber formed by the cylinder and the piston.
  • the auxiliary piston to the top dead center of the auxiliary cylinder.
  • the compression holding step when the piston reaches a position orthogonal to the orthogonal position of the connecting rod and the crankshaft in the compression maintenance step to operate a fuel explosion device for exploding fuel in the combustion chamber of the cylinder And an explosion step of moving the piston to a bottom dead center, and an exhaust step of moving the piston to a top dead center of the cylinder in a state in which the intake valve is closed and the exhaust valve is opened.
  • the compression pressure of the combustion chamber is kept constant while the piston is moved from a top dead center of the cylinder to a position orthogonal to the connecting rod and the crankshaft or close to the orthogonal position.
  • the explosive force loss due to the pressure drop can be prevented by the expansion of the fuel gas.
  • the exhausting step may include an air injection step of injecting outside air by an air injection mechanism disposed in the cylinder or the auxiliary cylinder into the combustion chamber.
  • the air injection step may be started after the exhaust valve is opened and stopped before the intake valve is opened. Therefore, in the air injection step, since the combustion gas in the combustion chamber is smoothly exhausted by external air injected into the combustion chamber, the exhaust performance of the engine can be further improved.
  • the auxiliary piston may be moved from the top dead center of the auxiliary cylinder to the bottom dead center. Therefore, in the intake step, since the internal space of the auxiliary cylinder is increased by the auxiliary piston, the intake performance of the engine can be improved by increasing the suction amount sucked into the intake valve by the capacity of increasing the internal space of the auxiliary cylinder. have.
  • the auxiliary piston may be moved from the bottom dead center of the auxiliary cylinder toward the top dead center. Accordingly, in the compression step, since the internal space of the auxiliary cylinder is reduced by the auxiliary piston, the auxiliary piston may further provide a compression force to the inside of the combustion chamber, thereby improving the compression performance of the engine.
  • the force in the reverse direction can be distributed to the piston and the auxiliary piston, it is possible to prevent the loss of the rotational kinetic energy of the crankshaft and the vibration of the engine caused by the force acting in the reverse direction only to the piston as in the prior art.
  • the auxiliary piston is formed in a smaller cross-sectional area than the piston, it is possible to increase the pressure of the combustion chamber more easily than the piston.
  • the auxiliary piston may be stopped at the top dead center of the auxiliary cylinder. Therefore, in the explosion step, since the internal space of the auxiliary cylinder is maintained at the smallest size by the auxiliary piston, the explosive force of the fuel gas is not used for the movement of the auxiliary piston but is used for all the movement of the piston. Can improve explosion performance.
  • the auxiliary piston may be stopped at the top dead center of the auxiliary cylinder. Therefore, in the exhausting step, since the internal space of the auxiliary cylinder is maintained at the smallest size by the auxiliary piston, the exhaust performance of the engine can be improved by reducing the residual amount of combustion gas remaining in the internal space of the auxiliary cylinder. .
  • the auxiliary piston may be moved toward the top dead center of the auxiliary cylinder.
  • the inner space of the auxiliary cylinder is formed to be smaller in size than the compression holding step and the explosion step by the auxiliary piston, the residual amount of combustion gas remaining in the internal space of the auxiliary cylinder can be further reduced.
  • a combustion chamber is formed together with a cylinder, a first piston provided in a vertical direction inside the cylinder and connected to a crankshaft by a connecting rod, the first piston, and the cylinder.
  • a second piston disposed above the first piston and provided between the second piston and the crankshaft so as to be movable up and down in the cylinder; and a predetermined time point at which the first piston descends from the highest point.
  • Piston lifting device for adjusting the lifting operation of the second piston in accordance with the rotation angle of the crankshaft to minimize the size of the combustion chamber in the, and when the combustion chamber is formed in the combustion chamber to the minimum size of the combustion chamber
  • a reciprocating piston engine including a fuel explosion device for exploding fuel therein.
  • the piston lifting device properly controls the lifting operation of the second piston, it is possible to easily adjust the time of forming the minimum size of the combustion chamber and the maximum compression pressure in the combustion chamber.
  • the time when the size of the combustion chamber is the minimum is the time of operation of the fuel explosion device, the maximum compression pressure in the combustion chamber is the pressure in the combustion chamber when the size of the combustion chamber is the minimum. Therefore, the reciprocating piston engine can optimize the engine efficiency according to the design conditions or the operating environment.
  • the time when the size of the combustion chamber is minimum may be set to a time when the crankshaft is rotated at an angle of 10 degrees to 50 degrees from when the first piston and the second piston are lowered together at the highest point. That is, the point of time when the size of the combustion chamber is the minimum can be set at any angle that can realize the maximum efficiency according to the design conditions of the reciprocating piston engine.
  • the piston lifting device may include a plurality of lifting protrusions protruding in a radial direction from an outer circumferential surface of the second piston so as to be inserted into a plurality of lifting hole portions formed vertically in the cylinder, and the lifting protrusions passing through the lifting hole portions.
  • An elevating groove having an end portion inserted therein, and an elevating guide disposed so as to move or rotate in the cylinder so that the elevating protrusions are operated up and down along the elevating groove, and the elevating guide of the crank shaft being linked with the crank shaft. It may include a power transmission mechanism for transmitting power to the lifting guide.
  • the lifting guide may be moved or rotated by the power of the power transmission mechanism, and the lifting protrusions may be lifted up and down along the lifting grooves when the lifting guide is driven. Therefore, when the lifting guides having the lifting grooves of various shapes are selectively employed, the lifting operation of the second piston can be easily changed.
  • the second piston may be formed such that a lower portion thereof is disposed below the lifting hole portions when the piston lifting device is operated. Therefore, since the lifting hole parts are not exposed to the lower side of the second piston when the second piston is raised and lowered, the closed state of the combustion chamber may be maintained.
  • the elevating guide may be formed in a ring shape formed on the inner circumferential surface of the elevating grooves into which end portions of the elevating protrusions are inserted, and may be rotatably disposed on the outer side of the cylinder in a circumferential direction.
  • the lifting protrusions may be disposed on the outer circumferential surface of the second piston at equal intervals along the circumferential direction. Therefore, the lifting grooves may be formed in the same shape on the portions corresponding to the lifting projections among the inner circumferential surface of the lifting guide.
  • the lifting grooves may be formed in a closed curve shape connected to each other in the circumferential direction on the inner peripheral surface of the lifting guide. Therefore, when the elevating guide continues to rotate in one direction, the elevating protrusions may be sequentially inserted into the elevating grooves.
  • the power transmission mechanism may include a cam shaft connected to the crank shaft so as to be interlocked with each other, and a driving lift gear on which one side of the cam shaft is connected to the cam shaft so as to be engaged with the driven lift gear formed on the outer circumferential surface of the lifting guide. Therefore, by changing the structure of the driven lift gear and the driven lift gear, the rotation speed and rotation period of the lift guide can be easily changed.
  • the fuel explosion device at least one may be provided on the side of the cylinder to be disposed between the first piston and the second piston. That is, since the second piston is disposed on the upper portion of the cylinder, it is advantageous to secure the installation space by disposing the fuel explosion device on the side of the cylinder.
  • the fuel explosion apparatus may include a fuel injection mechanism for injecting fuel gas into the combustion chamber when the size of the combustion chamber is minimum. That is, if the reciprocating piston engine is a diesel engine, the fuel explosion device may be composed of the fuel injection mechanism. Therefore, when the size of the combustion chamber is minimum, the first piston and the second piston may raise the fuel gas to a temperature at which natural ignition is possible.
  • the fuel explosion device may include an ignition mechanism for igniting the fuel gas in the combustion chamber when the size of the combustion chamber is minimum. That is, if the reciprocating piston engine is a gasoline engine, the fuel explosion device may be configured with the ignition mechanism. Therefore, when the size of the combustion chamber is minimum, the air in the combustion chamber may be compressed to a pressure at which the first piston and the second piston completely burn the fuel gas.
  • the ignition mechanism may include a first spark plug protruding from an end disposed inside the cylinder, and at least one second protrusion protruding at a distance from the first spark plug and formed in parallel with the first spark plug.
  • a spark plug can be provided. That is, the first spark plug and the second spark plug may be formed to have an open structure inwardly of the cylinder. Therefore, the spark generated between the first spark plug and the second spark plug can be effectively propagated inside the combustion chamber, thereby sufficiently securing the ignition performance of the ignition mechanism disposed on the side of the cylinder. .
  • the reciprocating piston engine disposed on the upper portion of the second piston, further comprises a valve control device for controlling the opening and closing of the exhaust valve and the intake valve in accordance with the rotation angle of the crankshaft. can do. That is, when the valve control device adjusts the opening and closing time or opening and closing time of the intake valve and the exhaust valve, the performance of the reciprocating piston engine can also be optimally adjusted according to the design conditions and the operating environment.
  • An intake pipe and an exhaust pipe may be formed at an upper portion of the cylinder.
  • the second piston may be provided with at least one inlet for communicating the intake pipe and the combustion chamber and at least one exhaust port for communicating the exhaust pipe with the combustion chamber.
  • at least one exhaust port may be provided to open and close the exhaust valve, the at least one inlet may be provided to open and close the intake valve.
  • the valve adjustment device is rotatably provided on the upper portion of the second piston, the case is connected to the crankshaft, the case is disposed in the case, and the intake valve as the case is rotated by the crankshaft And a valve opening and closing mechanism formed to control the opening and closing operation of the exhaust valve, and an opening and closing control mechanism provided in the valve opening and closing mechanism and selectively controlling the opening and closing time and opening and closing time of the intake valve and the exhaust valve.
  • the case may include a rotating part operatively connected to the crankshaft, an intake passage connected to the rotating part to be liftable and rotatably connected to an upper portion of the second piston, and connecting the intake pipe to the at least one intake port; It may include a main body portion formed with an exhaust passage for connecting the exhaust pipe and at least one exhaust port. That is, the rotating part may be rotated by receiving the power of the crankshaft, and the main body part may not only be moved up and down together with the second piston, but may also be rotated together with the rotating part. Thus, the body portion may be connected in a structure that does not transmit the rotational force to the upper portion of the second piston.
  • the valve opening and closing mechanism is provided on one side of the main body part, and an intake cam guide surface having a lower side of the intake valve guide surface slidably contacting the upper part of the intake valve when the main body part rotates, the other side is provided on the other side of the main body part,
  • An exhaust cam having an exhaust valve guide surface slidably contacted with an upper portion of the exhaust valve at a lower portion thereof, and the intake valve so that the upper portion of the intake valve and the exhaust valve elastically closely adheres to the intake valve guide surface and the exhaust valve guide surface It may include an elastic member provided in each of the valve and the exhaust valve.
  • the intake valve and the exhaust valve are in close contact with the intake valve guide surface and the exhaust valve guide surface by the elastic member, so that the shape of the intake valve guide surface and the exhaust valve guide surface when the intake cam and the exhaust cam rotate. Accordingly, the opening and closing time and opening and closing time of the valve may be determined.
  • the intake cam and the exhaust cam may be formed in a cylindrical shape having a different radius.
  • the intake cam and the exhaust cam may be disposed to overlap each other in the radial direction so as to have the same rotation center as the main body. That is, the intake cam and the exhaust cam are cylindrical cams which rotate together with the main body, and any one of the intake cam and the exhaust cam is inserted into the other one.
  • the intake valve and the exhaust valve may be arranged in a plurality of different positions in the radial direction of the second piston. That is, the distances from the center of the second piston to the intake valves and the exhaust valves may be formed differently.
  • the intake cam and the exhaust cam may be provided in plural in the radial direction so as to individually contact the intake valves and the upper portions of the exhaust valves. That is, the intake cam and the exhaust cam may be provided in the main body in the same number as the number of the intake valves and the exhaust valves. Accordingly, the intake valves may be disposed in the intake cams one-to-one, and the exhaust valves may be disposed in the exhaust cams in one-to-one.
  • the intake valve and the exhaust valve may be arranged in a plurality of different positions in the circumferential direction of the second piston. That is, the distances from the center of the second piston to the intake valves and the exhaust valves may all be the same.
  • the intake cam and the exhaust cam may have a plurality of intake valve guide surfaces and the exhaust valve guide surface in a circumferential direction at the bottom thereof to be in contact with the upper portions of the intake valves and the exhaust valves simultaneously. That is, the intake valve guide surface and the exhaust valve guide surface may be provided in the intake cam and the exhaust cam in the same number as the number of the intake valves and the exhaust valves. Therefore, all of the intake valves may be disposed in the intake cam, and the exhaust valves may be disposed in the exhaust cam.
  • the intake cam and the exhaust cam may be provided so that a plurality of the intake cam is rotatable in the circumferential direction. That is, the intake cams and the exhaust cams each have an intake cam having the same shape or an exhaust cam having the same shape, and at least one of the plurality of cylindrical cams may be rotatably disposed in the circumferential direction.
  • the opening and closing control mechanism may rotate at least one of the intake cams or at least one of the exhaust cams in the circumferential direction to adjust the opening and closing time and opening and closing time of the intake valve or the exhaust valve.
  • the opening and closing control mechanism is disposed in at least one of the intake cams, the intake cam control unit, the exhaust cam control unit is connected to at least one of the exhaust cams, and the intake cam control unit and the exhaust cam control unit And a rotation guide part configured to rotate at least one of the intake cams and the exhaust cams in a circumferential direction. That is, when the rotation guide portion rotates the upper portion of the intake cam adjusting portion and the exhaust cam adjusting portion, the intake cam connected to the lower portion of the intake cam adjusting portion and the exhaust cam connected to the lower portion of the exhaust cam adjusting portion may be rotated at a predetermined angle. have.
  • the rotation guide part, the intake rotation guide portion is formed to be able to move up and down on the intake cam control unit and the intake cam guide surface is slidably contacted with the upper portion of the intake cam control unit to rotate the intake cam control unit during the lifting operation.
  • an exhaust rotation guide part disposed on the upper part of the exhaust cam adjusting part and configured to have an exhaust cam guide surface slidably contacting the upper part of the exhaust cam adjusting part so as to rotate the exhaust cam adjusting part during the lifting operation. It may include an elastic member disposed on the intake cam control unit and the exhaust cam control unit to elastically close the upper portion of the intake cam control unit and the exhaust cam control unit to the cam guide surface and the exhaust cam guide surface.
  • the upper portion of the intake rotation guide portion may be rotated by the intake cam guide surface, and the upper portion of the exhaust rotation guide portion is on the exhaust cam guide surface.
  • the elastic member serves to keep the upper part of the intake rotation guide portion and the exhaust rotation guide portion in close contact with the intake cam guide surface and the exhaust cam guide surface.
  • the intake cam control unit is connected to the lower portion at least one of the intake cams
  • the exhaust cam control unit is connected to at least one of the exhaust cams
  • the intake cam control unit and the exhaust It is formed on the upper part of the cam adjusting portion, and the intake cam adjusting portion and the exhaust cam adjusting portion may include a centrifugal weight for rotating the intake cams and the exhaust cams in the circumferential direction by centrifugal force when the valve opening and swing mechanism is turned together. have.
  • the centrifugal weight is one direction by centrifugal force around the upper portion of the intake cam adjusting unit and the exhaust cam adjusting unit.
  • the intake cam control unit and the exhaust cam control unit may be rotated in one direction together with the centrifugal weight.
  • the intake cam connected to the lower portion of the intake cam adjusting unit and the exhaust cam connected to the lower portion of the exhaust cam adjusting unit may be rotated at a predetermined angle.
  • opening and closing times and opening and closing times of the intake valves and the exhaust valves may be adjusted. Therefore, when the reciprocating piston engine is operated, opening and closing times and opening and closing times of the intake valves and the exhaust valves may be automatically adjusted according to the rotation speeds of the intake cam adjusting unit and the exhaust cam adjusting unit.
  • the opening and closing control mechanism may further include a rotation guide part disposed on the intake cam adjusting part and the exhaust cam adjusting part and limiting a rotatable range of the centrifugal weight.
  • the rotation guide unit, the intake cam adjusting unit and the exhaust cam adjusting unit disposed on the upper portion of the intake and exhaust exhaust rotation guide portion having at least one interface for setting the rotation range of the centrifugal weight, and the centrifugal weight of It may include an elastic member disposed in the intake cam control unit and the exhaust cam control unit to elastically rotate the centrifugal weight toward the boundary surface for setting the initial position.
  • the at least one boundary surface may include a boundary surface for setting an initial position of the centrifugal weight, and a boundary surface for setting a maximum rotation position of the centrifugal weight. That is, the centrifugal weight can be rotated only at an angle between the boundary surfaces.
  • the position of the boundary surface by changing the rotation guide portion for the intake and exhaust, or by replacing the centrifugal weight of the centrifugal weight may be changed by changing the mass or by replacing the elastic member.
  • the reciprocating piston engine and its operating method according to an embodiment of the present invention explode fuel gas at orthogonal or near positions of the connecting rod and the crankshaft, the linear kinetic energy of the piston is converted to the rotational kinetic energy of the crankshaft. Can be switched as much as possible to improve engine efficiency.
  • the pressure holding device is the maximum compression in the combustion chamber until the fuel explosion device is operated at orthogonal positions of the connecting rod and the crankshaft or close to the orthogonal position.
  • the pressure holding device is the maximum compression in the combustion chamber until the fuel explosion device is operated at orthogonal positions of the connecting rod and the crankshaft or close to the orthogonal position.
  • the reciprocating piston engine and its operation method according to an embodiment of the present invention can not only easily secure the maximum compression pressure in the combustion chamber to a desired level by the operation of the pressure holding device, but also desire the maximum compression pressure in the combustion chamber. You can easily manage the explosion point by keeping it up to the point of view.
  • the reciprocating piston engine and its operation method according to an embodiment of the present invention the piston and the pressure holding device simultaneously increases the compression pressure in the combustion chamber to a pressure for completely burning the fuel gas or a pressure for spontaneous ignition of the fuel gas.
  • the compression pressure in the combustion chamber in gasoline and diesel engines can be easily adjusted to optimum pressure conditions.
  • the reciprocating piston engine according to the exemplary embodiment of the present invention may variously design the maximum compression pressure in the combustion chamber according to the volume ratio of the cylinder and the auxiliary cylinder.
  • the operating method of the reciprocating piston engine according to an embodiment of the present invention further improves the compression efficiency of the engine because the auxiliary piston compresses the fuel gas together with the piston in the compression step, and reverses the piston and the auxiliary piston. Since the force is distributed, the loss of rotational kinetic energy of the crankshaft and vibration of the engine can be prevented.
  • the operation method of the reciprocating piston engine according to an embodiment of the present invention in the intake stage, the pressure holding device may further provide the intake capacity of the engine to improve the intake performance of the engine, the pressure holding device in the compression step By providing additional compression to the combustion chamber, it is possible to improve the compression performance of the engine.
  • the method of operating the reciprocating piston engine according to the embodiment of the present invention maintains the internal space of the compression holding mechanism in the smallest state in the explosion and exhaust phases, thereby acting on the pistons to explode the fuel gas explosive force.
  • the explosion performance can be improved, and the exhaust performance of the engine can be improved by reducing the amount of combustion gas remaining inside the compression holding mechanism.
  • the method of operating the reciprocating piston engine according to the exemplary embodiment of the present invention may further improve exhaust performance of the engine since the air injection mechanism injects external air into the combustion chamber in the exhaust stage.
  • the reciprocating piston engine and the operation method according to another embodiment of the present invention by properly controlling the lifting operation of the second piston disposed on the upper side of the first piston at the time of the minimum combustion chamber size and the maximum compression pressure in the combustion chamber Etc. can be adjusted. Therefore, by optimizing the timing of the minimum combustion chamber size, the maximum compression pressure in the combustion chamber, and the like according to the design conditions and the operating conditions of the reciprocating piston engine, the efficiency of the engine can be significantly improved.
  • the reciprocating piston engine and its operation method according to another embodiment of the present invention can easily change the performance and efficiency of the reciprocating piston engine by only a simple operation of replacing or changing the piston lifting device for elevating the second piston.
  • the reciprocating piston engine and its operation method according to another embodiment of the present invention it is possible to easily adjust the opening and closing time and opening and closing time of the valve using a valve control device. Therefore, the intake efficiency and exhaust efficiency of the engine can be improved, and the engine performance can be improved according to the operating conditions of the engine.
  • the reciprocating piston engine according to another embodiment of the present invention can be implemented not only by a simple structural change to add the second piston and the piston lifting device and the valve adjusting device to the existing engine, but also can be implemented at a low cost.
  • the reciprocating piston engine and the operation method thereof according to another embodiment of the present invention are formed in a structure in which the first spark plug and the second spark plug of the ignition mechanism are open toward the inside of the cylinder, 2 The spark plug may not interfere with the propagation of sparks generated between the first spark plug and the second spark plug.
  • the reciprocating piston engine can further improve the combustion performance of the fuel.
  • FIG. 1 is a cross-sectional view showing a reciprocating piston engine according to the prior art.
  • FIG. 2 is a cross-sectional view showing a reciprocating piston engine according to an embodiment of the present invention.
  • FIG. 3 is a plan view showing the piston drive mechanism shown in FIG.
  • FIG. 4 is a cross-sectional view taken along line II of FIG. 2.
  • FIG. 5 is a perspective view showing another example of the piston drive mechanism shown in FIG.
  • FIG. 6 is a perspective view showing still another example of the piston drive mechanism shown in FIG.
  • FIG. 7 is a perspective view showing still another example of the piston drive mechanism shown in FIG.
  • Figure 8 is a state diagram showing the suction step in the operating method of the reciprocating piston engine according to an embodiment of the present invention.
  • FIG. 9 is a state diagram showing a compression step in the operating method of the reciprocating piston engine according to an embodiment of the present invention.
  • FIG. 10 is a state diagram showing a compression maintaining step in the operating method of the reciprocating piston engine according to an embodiment of the present invention.
  • FIG. 11 is a state diagram showing the explosion step in the operating method of the reciprocating piston engine according to an embodiment of the present invention.
  • FIG. 12 is a state diagram showing the exhaust step in the operating method of the reciprocating piston engine according to an embodiment of the present invention.
  • FIG. 13 is a graph illustrating an operating state of the piston illustrated in FIGS. 8 to 12.
  • FIG. 14 is a graph illustrating an operating state of the auxiliary piston illustrated in FIGS. 8 to 12.
  • 15 is a sectional view showing a reciprocating piston engine according to another embodiment of the present invention.
  • FIG. 16 is an enlarged view of "J" shown in FIG. 15.
  • FIG. 17 is a plan view illustrating a lift guide of the reciprocating piston engine illustrated in FIG. 15.
  • FIG. 18 is a cross-sectional view taken along the line II-II of FIG. 17.
  • FIG. 19 is a plan view illustrating a valve opening and closing mechanism of the reciprocating piston engine illustrated in FIG. 15.
  • FIG. 20 is a cross-sectional view taken along line III-III of FIG. 19.
  • FIG. 21 is a view illustrating an operating state of adjusting the opening and closing time and opening and closing time of the valve using the valve opening and closing mechanism shown in FIG. 19.
  • FIG. 22 is a cross-sectional view showing the opening and closing control mechanism of the reciprocating piston engine shown in FIG.
  • FIG. 23 is a plan sectional view showing an operating state of the opening and closing control mechanism shown in FIG.
  • FIG. 24 is a cross-sectional view showing another example of the opening and closing control mechanism of the reciprocating piston engine shown in FIG. 15.
  • FIG. 25 is a cross-sectional view showing still another example of the opening and closing control mechanism of the reciprocating piston engine shown in FIG.
  • 26 is a plan sectional view showing an operating state of the opening and closing control mechanism shown in FIG.
  • FIG. 27 is a plan view showing still another example of the valve opening and closing mechanism of the reciprocating piston engine shown in FIG. 15.
  • FIG. 28 is a view illustrating an operating state of adjusting the opening and closing time and opening and closing time of the valve using the valve opening and closing mechanism shown in FIG. 27.
  • FIG. 29 is a plan view illustrating another example of the valve opening and closing mechanism of the reciprocating piston engine illustrated in FIG. 15.
  • 30 to 34 are operation state diagrams showing the intake stroke, the compression stroke, the explosion stroke, the expansion stroke, and the exhaust stroke of the reciprocating piston engine according to another embodiment of the present invention, respectively.
  • FIG. 2 is a cross-sectional view showing a reciprocating piston engine according to an embodiment of the present invention
  • Figure 3 is a plan view showing the piston drive mechanism shown in Figure 2
  • Figure 4 is a line I-I shown in Figure 2 It is a figure which shows a cross section. 2 shows a four stroke one cycle reciprocating piston engine 100 in which the intake stroke, compression stroke, explosion stroke, and exhaust stroke constitute one cycle.
  • the present invention is not limited to the four-stroke one-cycle reciprocating piston engine 100, and may be applied to various kinds of reciprocating piston engines.
  • the reciprocating piston engine 100 of the present invention includes a cylinder 102 provided with an intake valve 112 and an exhaust valve 114, and a top dead center (TDC) and a bottom dead center (TDC) of the cylinder 102.
  • Piston 104 disposed inside the cylinder 102 so as to linearly reciprocate between the BDCs, a crank shaft 106 rotatably disposed on the cylinder 102, and the crank shaft 106 of the piston 104
  • the connecting rod 108 and the fuel explosion device 110 disposed above the cylinder 102 are rotatably connected to both sides of the crankshaft 106 and the piston 104 to transmit power.
  • the cylinder 102 is coupled to the upper portion of the cylinder body 102a, the cylinder body 102a in which the piston 104 is movable in the vertical direction, and the intake valve 112 and the exhaust valve 114 are disposed. It may include a cylinder head 102b, and an oil pan 102c coupled to the lower portion of the cylinder body 102a and containing oil for lubrication and cooling of the parts.
  • the cylinder head 102b is provided with an intake passage 113 for guiding fuel gas or air into the cylinder body 102a, and an exhaust passage 115 for guiding combustion gas to the outside of the cylinder body 102a.
  • the intake valve 112 is disposed on the upper left side of the cylinder head 102b to open and close the intake passage 113
  • the exhaust valve 114 is disposed on the upper right side of the cylinder head 102b to open and close the exhaust passage 115. do.
  • the intake valve 112 and the exhaust valve 114 as described above may be controlled by the opening and closing operation by a cam (not shown) in conjunction with the crank shaft 106.
  • the piston 104 together with the cylinder 102 forms a combustion chamber 116 in which fuel gas is combusted.
  • the combustion chamber 116 is a sealed space that the cylinder 102 and the piston 104 wrap when the piston 104 reaches the top dead center TDC of the cylinder 102.
  • the crankshaft 106 is a component that receives linear kinetic energy of the piston 104 and converts it into rotational kinetic energy, and is rotatably disposed in the cylinder 102.
  • the crankshaft 106 is provided with a connecting portion 106a rotatably connected to the connecting rod 108 at a distance away from the center of rotation.
  • the crankshaft 106 is rotated only in either the clockwise or counterclockwise direction, but in the present embodiment, it will be described as being rotated only in the clockwise direction.
  • the connecting rod 108 is a component that transmits the linear kinetic energy of the piston 104 to the crankshaft 106, the lower end is rotatably connected to the connection portion 106a of the crankshaft 106, the piston 104 The upper end is rotatably connected.
  • the fuel explosion apparatus 110 is a component that explodes fuel gas in the combustion chamber 116 and is disposed to penetrate the cylinder head 102b.
  • the reciprocating piston engine 100 is a gasoline engine
  • fuel gas mixed with gasoline and air is sucked through the intake passage 113
  • the fuel explosion device 110 converts the fuel gas in the combustion chamber 116 into an electrical spark.
  • An ignition mechanism 110 for igniting is included.
  • the reciprocating piston engine 100 is a diesel engine
  • air is sucked through the intake passage 113 and the fuel explosion device 110 includes a fuel injection mechanism for injecting fuel into the combustion chamber 116.
  • the present embodiment will be limited to the gasoline engine for convenience of explanation.
  • the reciprocating piston engine 100 according to an embodiment of the present invention, the cylinder 102 until the ignition mechanism 110 is operated in the intake valve 112 and the exhaust valve 114 is closed state
  • the pressure holding device 120 further maintains a constant compression pressure in the combustion chamber 116 while the piston 104 is moved from the top dead center (TDC) to the bottom dead center (BDC).
  • the pressure maintaining device 120 may be disposed above the cylinder 102 so as to be in communication with the combustion chamber 116. However, the pressure maintaining device 120 may not only be disposed in communication with the combustion chamber 116 at various positions of the cylinder 102, but a plurality of cylinders may be provided.
  • the pressure holding device 120 includes an auxiliary cylinder 122 disposed above the cylinder 102 so as to have an internal space communicating with the combustion chamber 116, and a top dead center (TDC ′) of the auxiliary cylinder 122.
  • TDC ′ top dead center
  • One side connected to the auxiliary piston 124 disposed inside the auxiliary cylinder 122 and the auxiliary piston 124 to move the auxiliary piston 124 so as to linearly reciprocate between the bottom dead center (BDC ′) and the bottom dead center (BDC ′). It may include a piston drive mechanism 126.
  • the auxiliary cylinder 122 may have an entrance 122a formed at a portion connected to the combustion chamber 116.
  • the auxiliary cylinder 122 is horizontally disposed on the upper portion of the cylinder 102 in a structure orthogonal to the cylinder 102 and the auxiliary piston 124 is linearly moved in the left and right directions.
  • the auxiliary cylinder 122 may be arranged in various directions at various positions of the cylinder 102.
  • the piston drive mechanism 126 may include an auxiliary connecting rod 130 having one side connected to the auxiliary piston 124 and an auxiliary connecting rod 130 to transfer the auxiliary connecting rod 130.
  • the transfer unit 132 disposed on the other side may include a driving unit 134 connected to the transfer unit 132 to transfer the driving force to the transfer unit 132.
  • the auxiliary connecting rod 130 is a component that transfers the transfer force of the transfer unit 132 to the auxiliary piston 124 and moves in the left and right directions together with the auxiliary piston 124.
  • the auxiliary cylinder 122 may be provided with a rod support part 122b that supports the intermediate portion of the auxiliary connecting rod 130 to be moved to a portion opposite to the transfer part 132. Therefore, the auxiliary connecting rod 130 can be moved more stably by the rod support 122b.
  • the transfer unit 132 may include a transfer drum 132 formed along a circumference of an outer circumferential surface of the transfer groove 140 in which the other side of the auxiliary connecting rod 130 is movably inserted.
  • the conveying drum 132 may be formed in a cylindrical shape.
  • the rotating shaft 132a of the transfer drum 132 may be disposed in parallel with the auxiliary connecting rod 130, and may be disposed at a position spaced apart from the auxiliary connecting rod 130 by the radial length of the transfer drum 132. .
  • the transfer groove 140 is formed in a closed curve shape around the outer circumferential surface of the transfer drum 132. Can be.
  • the transfer groove 140 may be formed in a shape in which the position is changed in the left and right direction on the outer circumferential surface of the transfer drum 132. Can be.
  • Such a shape of the conveying groove 140 may be formed in the same shape as the movement path of the auxiliary piston 124 shown in FIG. 14 when the outer peripheral surface of the conveying drum 132 is unfolded in the left and right directions.
  • connection structure of the transfer drum 132 and the auxiliary connecting rod 130 is not limited to the example of FIG. 4, and the other side of the auxiliary connecting rod 130 along the transfer groove 140 when the transfer drum 132 is rotated.
  • Various structures may be employed to move.
  • the other side of the auxiliary connecting rod 130 may be provided with a roller member 130a which is inserted into the transfer groove 140 and moved along the transfer groove 140.
  • a locking jaw 142 may be formed at the inlet of the transfer groove 140 to prevent the roller member 130a from being separated.
  • the roller member 130a since the roller member 130a contacts the inner wall of the conveying groove 140 when the conveying drum 132 rotates, the other side of the auxiliary connecting rod 130 may be smoothly moved along the conveying groove 140. . In addition, since the roller member 130a moved in the direction away from the conveying groove 140 is caught by the catching jaw 142, any detachment of the other side of the auxiliary connecting rod 130 and the conveying drum 132 may be prevented. have.
  • the transfer part 132 of the piston drive mechanism 126 is not limited to the transfer drum 132 of FIG. 3, and may be formed in various configurations. In FIGS. 5 to 7, the transfer part of the piston drive mechanism 126 may be formed. Another example for 132 is shown, respectively.
  • the transfer unit 232 illustrated in FIG. 5 may include a transfer drum 232 on which a rotating shaft 232a is disposed to be orthogonal to the auxiliary connecting rod 130.
  • a conveying groove 240 having a different depth may be formed to insert the other side of the connecting rod 130.
  • the other side of the connecting rod 130 may be rotatably disposed a roller member 230a inserted into the transfer groove 240. Therefore, when the transfer drum 232 is rotated, the other side of the auxiliary connecting rod 130 may also be transferred in the left and right directions in response to the change in the depth of the transfer groove 240.
  • the transfer unit 332 illustrated in FIG. 6 may include a transfer cam 332 slidably contacted with the other side of the auxiliary connecting rod 130.
  • the other side of the connecting rod 130 may be rotatably disposed roller member 330a in contact with the contact surface 332a of the transfer cam 332. Therefore, when the transfer drum 132 is rotated, the other side of the auxiliary connecting rod 130 may also be transferred in the left and right directions corresponding to the shape of the contact surface 332a of the transfer cam 332.
  • the transfer part 432 illustrated in FIG. 7 includes a first transfer gear 432a formed on the other side of the auxiliary connecting rod 130 and a first connection gear 432a connected to the driving unit 134 so as to be engaged with the first transfer gear 432a.
  • 2 may include a transmission gear 432b.
  • the first transfer gear 432a is a rack gear formed in the longitudinal direction on the other side of the auxiliary connecting rod 130
  • the second transfer gear 432b is a pinion gear meshed with the rack gear and the rotation shaft is connected to the driving unit 134.
  • the driving unit 134 is connected to the rotating shaft 132a of the conveying drum 132 to rotate the conveying drum 132.
  • the drive unit 134 is a power transmission mechanism 134 which is operatively connected to the rotation shaft 132a of the transfer drum 132 and the crank shaft 106 in order to transmit the rotational force of the crank shaft 106 to the transfer drum 132. ) May be included. Therefore, the operation of the piston 104 and the auxiliary piston 124 can be synchronized with each other by the power transmission mechanism 134 and the transfer drum 132.
  • the power transmission mechanism 134 controls the operation of the crank shaft 106 and the transfer drum 132 so that the rotation angles of the crank shaft 106 and the transfer drum 132 coincide with each other, and the crank shaft 106 and Similarly, the conveying drum 132 is rotated in only one direction.
  • the power transmission mechanism 134 may be composed of power transmission components such as gears, pulleys, belts, and the like, and a detailed description thereof will be omitted.
  • the drive unit 134 a separate power generating mechanism, such as a motor, a sensing unit for detecting the rotation state of the crankshaft 106 or the movement state of the piston 104, and the power according to the detection value of the detection unit It may also include a control unit for controlling the operation of the generator. Therefore, the driving unit 134 may independently control the operation of the transfer drum 132 by the power of the power generating mechanism.
  • the driving unit 134 will be described as including a power transmission mechanism 134.
  • the reciprocating piston engine 100 may further include an air injection mechanism 150 for injecting external air at a high pressure into the combustion chamber 116.
  • the air injection mechanism 150 may be provided in the cylinder 102 or the pressure holding device 120.
  • the air injection mechanism 150 is provided in the auxiliary cylinder 122 of the pressure holding device 120.
  • the air injection mechanism 150 guides the high pressure air to the air injection nozzle 152 disposed between the entrance and exit 122a of the auxiliary cylinder 122 and the top dead center TDC ', and the air injection nozzle 152. It may include an air guide passage 154, and an air pump 156 connected to the air guide passage 154 to pump external air.
  • the air injection nozzle 152 may be disposed in a structure that faces the entrance and exit 122a of the auxiliary cylinder 122.
  • a valve for intermittent discharge of air may be disposed on the flow path of the air injection mechanism 150.
  • the high pressure air pumped by the air pump 156 is moved to the air injection nozzle 152 along the air guide passage 154, and the high pressure air is transferred to the auxiliary cylinder 122 through the air injection nozzle 152.
  • the air discharged into the inside of the auxiliary cylinder 122 is supplied to the inside of the cylinder 102 through the inlet 122a.
  • FIG. 8 to 12 is a state diagram showing the intake step, compression step, compression maintenance step, explosion step, exhaust step of the reciprocating piston engine according to the present invention, respectively,
  • Figures 13 and 14 are the piston shown in Figures 8 to 12 And a graph showing an operating state of the auxiliary piston.
  • the method of operation of the reciprocating piston engine 100 according to the invention comprises an intake stage (A), a compression stage (B), a compression holding stage (C), an explosion stage (D), and an exhaust stage (E).
  • the intake valve 112 is opened and the exhaust valve 114 is closed. Then, the piston 104 is lowered from the top dead center TDC of the cylinder 102 to the bottom dead center BDC to increase the internal space of the cylinder 102, and at the top dead center TDC ′ of the auxiliary cylinder 122.
  • the auxiliary piston 124 is moved to the bottom dead center BDC 'to increase the internal space of the auxiliary cylinder 122. Therefore, since the inner spaces of the cylinder 102 and the auxiliary cylinder 122 increase together, the suction amount of the fuel gas sucked into the intake passage 113 can be increased.
  • the auxiliary cylinder 122 since the inner space of the cylinder 102 and the auxiliary cylinder 122 is formed in a size in which the inner space of the auxiliary cylinder 122 is added to more than the reciprocating piston engine 1 shown in FIG. 1, the auxiliary cylinder 122 The fuel gas may be sucked in as much as the inner space of the fuel cell.
  • the piston 104 is lowered by the rotational force of the crankshaft 106, the auxiliary piston 124 is moved to the left by the rotational force of the transfer drum 132.
  • the rotation angle ⁇ of the crankshaft 106 and the transfer drum 132 is equal to 180 degrees, and the piston 104 and the auxiliary piston 124 have a bottom dead center TDC at the top dead center TDC (TDC ′). It is 1 stroke which is moved linearly to (BDC '). That is, the intake stage A corresponds to the intake stroke of the four-stroke single cycle engine.
  • the intake valve 112 and the exhaust valve 114 are closed. Then, the piston 104 is raised from the bottom dead center BDC of the cylinder 102 to the top dead center TDC to reduce the internal space of the cylinder 102. At this time, the auxiliary cylinder 122 continues to be stopped at the bottom dead center BDC '. As such, since the internal space of the cylinder 102 is reduced by the piston 104, the fuel gas sucked in the suction step A can be compressed.
  • the piston 104 is raised by the rotational force of the crankshaft 106.
  • the rotation angle ⁇ of the crankshaft 106 and the transfer drum 132 is equal to 180 degrees, and the piston 104 is a single stroke that is linearly moved from the bottom dead center BDC to the top dead center TDC. Therefore, the compression step B corresponds to the compression stroke of the four stroke one cycle engine.
  • the auxiliary piston 124 is stopped at the bottom dead center BDC ', it does not reach the top dead center TDC'.
  • the internal space of the cylinder 102 and the auxiliary cylinder 122 forms the combustion chamber 116.
  • This combustion chamber 116 is larger in size than the combustion chamber 116 of the reciprocating piston engine 1 shown in FIG. 1 by the inner space of the auxiliary cylinder 122.
  • the inner space of the auxiliary cylinder 122 acts as a suction capacity also in the suction stage (A)
  • the compression loss due to the capacity of the internal space of the auxiliary cylinder 112 in the suction stage (A) and the compression stage (B) It does not occur.
  • the intake valve 112 and the exhaust valve 114 remain closed. Then, the piston 104 is lowered from the top dead center TDC of the cylinder 102 to the bottom dead center BCD until the operation time of the ignition mechanism 110 is increased to increase the internal space of the cylinder 102, and the auxiliary cylinder ( The auxiliary piston 124 is moved to the top dead center TDC ′ of 122 to minimize the internal space of the auxiliary cylinder 122.
  • the ignition mechanism 110 can be operated in a position close to the orthogonal position (G) of the connecting rod 108 and the crankshaft 106 or the orthogonal position (G) above. That is, the point where the piston 104 and the connecting rod 108 is connected is called the first point P1, and the point where the connecting rod 108 and the crankshaft 106 is connected is called the second point P2, and the crank is When the rotation center of the shaft 106 is referred to as the third point P3, the position G at which the connecting rod 108 and the crankshaft 106 are orthogonal is a line segment passing through the first and second points P1 and P2. And the angle formed by the line passing through the second and third points P2 and P3 is 0 to 90 degrees.
  • the linear kinetic energy of the piston 104 is the rotational kinetic energy of the crankshaft 106.
  • the linear kinetic energy of the piston 104 is the crankshaft 106 when the operation time of the ignition mechanism 100 is the orthogonal position G of the connecting rod 108 and the crankshaft 106.
  • the ignition mechanism 110 is operated at the orthogonal position G between the connecting rod 108 and the crankshaft 106.
  • the piston 104 is lowered by the rotational force of the crankshaft 106, the auxiliary piston 124 is moved to the right by the rotational force of the transfer drum 132.
  • the rotation angle ⁇ of the crankshaft 106 and the transfer drum 132 is smaller than 90 degrees, and the piston 104 has the connecting rod 108 and the crankshaft 106 at right angles at the bottom dead center BDC.
  • the auxiliary piston 124 is moved to the right to reach the top position G, and reaches the top dead center TDC '.
  • the auxiliary piston 124 reaches the top dead center (TDC ') of the auxiliary cylinder 122 at the time of operation of the ignition mechanism 110, the auxiliary cylinder 122 is made to minimize the internal space of the auxiliary cylinder 122 The loss due to the internal space of the can be prevented.
  • the increase amount of the internal space of the cylinder 102 may be equal to or smaller than the decrease amount of the internal space of the auxiliary cylinder 122.
  • the auxiliary piston 124 compensates for the volume increase of the combustion chamber 116 due to the lowering of the piston 104 as described above, the volume of the combustion chamber 116 is changed to the combustion chamber ( It may remain the same as the volume of 116 or more compressed. Therefore, the maximum compression pressure of the combustion chamber 116 when the piston 104 reaches the top dead center TDC of the cylinder 102 in the compression step B can be maintained as it is in the compression holding step C, Thereby, the expansion of the fuel gas can be prevented and the pressure drop due to the expansion can also be prevented.
  • the compression step (B) and the compression maintenance step (C) correspond to the compression stroke of the four-stroke single cycle engine.
  • the intake valve 112 and the exhaust valve 114 are kept closed.
  • the ignition mechanism 110 when the ignition mechanism 110 is operated when the auxiliary piston 124 reaches the top dead center TDC ′ of the auxiliary cylinder 122, the ignition mechanism 110 causes the combustion chamber 116 to operate. Explosion of fuel gas by generating sparks inside.
  • the auxiliary piston 124 is caught in the conveying groove 140 of the conveying drum 132 to stop the movement in the left and right directions.
  • the internal space of the auxiliary cylinder 122 may also be maintained at the smallest size. Therefore, the explosive force of the fuel gas is all transmitted only to the piston 104, and the loss due to the increase in the internal space of the auxiliary cylinder 122 is prevented.
  • the explosive force of the fuel gas is lowered by the piston 104 to the bottom dead center (BDC) of the cylinder 102 at the orthogonal position (G) of the connecting rod 108 and the crankshaft 106 to reduce the internal space of the cylinder 102. Increase. Therefore, since the ignition mechanism 110 is operated at the point G at which the piston 104 is lowered than the reciprocating piston engine 1 shown in FIG. 1, the operation timing of the ignition mechanism 110 is shown in FIG. 1. It is delayed by a predetermined time from the reciprocating piston engine 1.
  • the piston 104 is lowered by the explosive force of the fuel gas, the linear kinetic energy of the piston 104 is transmitted to the crankshaft 106 through the connecting rod 108 and then the rotational kinetic energy of the crankshaft 106 Is switched to.
  • the linear kinetic energy of the piston 104 transmitted to the connecting rod 108 is changed to the crankshaft 106. All of which are converted to rotational kinetic energy, the efficiency of the engine can be improved to the maximum.
  • the rotation angle ⁇ of the crankshaft 106 and the conveying drum 132 is larger than 90 degrees and smaller than 180 degrees
  • the piston 104 has an orthogonal position between the connecting rod 108 and the crankshaft 106. It is linearly moved from G) to the bottom dead center BDC, and the auxiliary piston 124 is fixed at the top dead center TDC '.
  • the total rotation angle ⁇ of the crankshaft 106 and the transfer drum 132 is equal to 180 degrees, and the piston 104 is at the top dead center (TDC).
  • One stroke is moved linearly to the bottom dead center (BDC). That is, the explosion step D corresponds to the explosion stroke and the expansion stroke of the four-stroke single cycle engine.
  • the intake valve 112 is closed and the exhaust valve 114 is opened. Then, the piston 104 is raised from the bottom dead center BDC of the cylinder 102 to the top dead center TDC to reduce the internal space of the cylinder 102 and assist the top dead center TDC of the auxiliary cylinder 122. The piston 124 is stopped to keep the internal space of the auxiliary cylinder 122 in the smallest state.
  • the discharge performance of the combustion gas discharged to the exhaust passage 115 can be improved. That is, in the exhaust stage E, since the internal space of the cylinder 102 and the auxiliary cylinder 122 is formed smaller than the suction stage A, the difference between the internal space in the exhaust stage E and the suction stage A is reduced. As such, the combustion gas can be further exhausted in the exhaust stage E and the fuel gas can be further inhaled in the intake stage A.
  • the piston 104 is raised by the rotational force of the crankshaft 106, the auxiliary piston 124 is caught by the conveying groove 140 of the conveying drum 132, the movement in the left and right direction is stopped.
  • the rotation angle ⁇ of the crankshaft 106 and the transfer drum 132 is equal to 180 degrees, and the piston 104 and the auxiliary piston 124 have a bottom dead center BDC at the top dead center TDC (TDC '). It is 1 stroke which is moved linearly to (BDC '). Therefore, the exhaust stage E corresponds to the exhaust stroke of the four-stroke single cycle engine.
  • the exhaust step (E) as described above may further include an air injection step (F) for operating the air injection mechanism 150 to inject high-pressure external air into the combustion chamber 116.
  • the air injection mechanism 150 is operated after the exhaust valve 114 is opened, and the operation is stopped before the intake valve 112 is opened.
  • the air injection mechanism 150 may continuously inject air into the combustion chamber 116 or intermittently inject air into the combustion chamber 116 at a predetermined interval. When high pressure air is injected into the combustion chamber 116, the combustion gas in the combustion chamber 116 may be more smoothly discharged to the exhaust passage 115 to further improve the exhaust performance of the engine.
  • the auxiliary piston 124 is not stopped at the top dead center TDC 'of the auxiliary cylinder 122, and can be moved further to the right than the top dead center TDC' of the auxiliary cylinder 122. have.
  • the amount of reduction in the internal space of the auxiliary cylinder 122 may be increased to further improve the exhaust performance of the engine.
  • the shape of the conveying groove 140 formed in the conveying drum 132 should be changed, and sufficient space must exist between the top dead center TDC 'of the auxiliary cylinder 122 and the entrance 122a, and air injection Interference with the air injection nozzle 152 of the instrument 150 should also be avoided.
  • the piston 104 and the auxiliary piston performs the reciprocating motion asymmetrically with each other inside the cylinder 102 and the auxiliary cylinder 122.
  • FIG. 15 is a cross-sectional view of a reciprocating piston engine according to another exemplary embodiment of the present invention
  • FIG. 16 is an enlarged view of 'J' illustrated in FIG. 15.
  • 17 is a plan view illustrating a lifting guide of the reciprocating piston engine illustrated in FIG. 15, and
  • FIG. 18 is a cross-sectional view taken along the line II-II of FIG. 17.
  • a reciprocating piston engine 500 includes a cylinder 510, a first piston 520, a second piston 530, a piston lifter 540, and a fuel explosion.
  • the combustion chamber I is formed in the cylinder 510, the first piston 520, and the second piston 530.
  • the combustion chamber I is a space for accommodating or burning fuel gas.
  • the first piston 520 and the second piston 530 may be disposed in the cylinder 510 to be movable in the vertical direction.
  • the first piston 520 may be disposed below the second piston 530.
  • An upper portion of the cylinder 510 may include an intake pipe 512 for sucking fuel gas or air and an exhaust pipe 514 for exhausting combustion gas.
  • the first piston 520 is provided to be capable of lifting up and down inside the cylinder 510 and is connected to the crank shaft 522 by a connecting rod 524. Therefore, the energy of the combustion gas exploded in the combustion chamber I is transmitted to the crankshaft 522 through the first piston 520 and the connecting rod 524.
  • the fuel explosion device is provided in the cylinder 510 and performs a function of exploding fuel in the combustion chamber I when the size of the combustion chamber I is minimized.
  • At least one fuel explosion device may be provided on a side surface of the cylinder 510 to be disposed between the first piston 520 and the second piston 530. That is, the fuel explosion device is disposed at a portion that does not interfere with the first piston 520 and the second piston 530.
  • the fuel explosion device may be provided with a fuel injection mechanism (not shown) for injecting fuel gas into the combustion chamber I when the size of the combustion chamber I is minimum. Can be. At this time, when the size of the combustion chamber I is minimum, the first piston 520 and the second piston 530 compress the air in the combustion chamber I to a temperature at which the fuel gas spontaneously ignites.
  • the fuel explosion device may include an ignition mechanism 550 for igniting the fuel gas in the combustion chamber I when the size of the combustion chamber I is minimum. At this time, when the size of the combustion chamber I is the minimum, the first piston 520 and the second piston 530 may compress the air in the combustion chamber I to a pressure for completely burning the fuel gas.
  • the reciprocating piston engine 500 is a gasoline engine
  • the fuel explosion device includes the ignition mechanism 550.
  • the ignition mechanism 550 may be disposed horizontally on the side of the cylinder 510.
  • two ignition mechanisms 550 may be disposed to face each other on the side of the cylinder 510.
  • the number and position of the ignition mechanism 550 is not limited to this embodiment, and may be arranged in one or more at a variety of positions as necessary.
  • the ignition mechanism 550 includes a first spark plug 552 protruding at an end disposed inside the cylinder 510, and sparks generated between the first spark plug 552 and the combustion chamber I. At least one second spark plug 554 and 556 may protrude at a position spaced apart from the first spark plug 552 by a predetermined distance so as to propagate smoothly.
  • a plurality of second spark plugs 554 and 556 are disposed around the first spark plug 552.
  • the second spark plugs 554 and 556 may be formed in parallel with the first spark plug 552. Therefore, the first spark plug 552 and the second spark plugs 554 and 556 may be formed to have an open structure toward the inside of the combustion chamber I.
  • the second piston 530 may be disposed up and down in an up and down direction to form a combustion chamber I together with the cylinder 510 and the first piston 520. have. At least one inlet port 532 may be formed in the second piston 530 to communicate the intake pipe 512 and the combustion chamber I, and include at least one exhaust port communicating the exhaust pipe 514 and the combustion chamber I. 534 may be formed.
  • two inlet ports 532 and two exhaust ports 534 are formed in the second piston 530, but the number of the inlet ports 532 and the exhaust ports 534 may be variously determined as necessary. .
  • Exhaust ports 534 may be provided to open and close the exhaust valve 535, respectively, and inlet ports 532 may be provided to open and close respectively.
  • the exhaust valves 535 and the intake valves 533 may be disposed to be movable up and down in the exhaust ports 534 and the intake ports 532 of the second piston 530.
  • the piston lifting device 540 is a device for adjusting the lifting operation of the second piston 530 according to the rotation angle of the crank shaft 522. That is, the piston lifting device 540 may adjust the lifting operation of the second piston 530 to minimize the size of the combustion chamber I at a time point O at which the first piston 520 is lowered from the highest point. .
  • the piston lifting device 540 may be provided between the second piston 530 and the crankshaft 522 to transfer the power of the crankshaft 522 to the second piston 530.
  • the crankshaft 522 rotates at an angle of 30 degrees to 40 degrees from when the first piston 520 and the second piston 530 are lowered together at the highest point. Can be set to the point in time. This is because the rotation of the crankshaft 522 is large while the first piston 520 and the second piston 530 are not lowered at this time point O, and the rotated angle of the crankshaft 522 is 30 degrees. This is because it is an angle that generates 50% rotational force.
  • the ignition mechanism 550 may be operated at a time point O at which the size of the combustion chamber I is minimum.
  • the time point O at which the size of the combustion chamber I is minimum is not necessarily limited to the time point at which the crankshaft 522 is rotated at an angle of 30 degrees to 40 degrees, and may be at various arbitrary angles according to the design conditions of the engine. Can be set.
  • the piston lifting device 540 may include a lifting protrusion 542, a lifting guide 544, and a power transmission mechanism 546.
  • the lifting protrusion 542 may protrude radially from the outer circumferential surface of the second piston 530.
  • Lifting hole portions 516 into which the lifting protrusions 542 are inserted may be formed at an upper side of the cylinder 510.
  • the lifting protrusions 542 may be formed on the outer circumferential surface of the second piston 530 at equal intervals along the circumferential direction.
  • the lifting hole parts 516 may be formed to be spaced apart from the lifting protrusions 542 on the side surface of the cylinder 510.
  • the lifting hole parts 516 may be formed long in the vertical direction to guide the vertical movement of the lifting protrusions 542.
  • the vertical length of the second piston 530 or the vertical position of the lifting protrusions 542 may be such that the lifting hole portions 516 are not exposed to the lower side of the second piston 530 as the second piston 530 is lifted. Can be formed. That is, the phenomenon in which the combustion chamber I is opened by the lifting hole parts 516 during the lifting of the second piston 530 may be prevented.
  • the elevating guide 544 is a member for elevating the elevating protrusions 542 along the elevating holes 516 by the power of the power transmission mechanism 546.
  • the elevating guide 544 may be arranged to be movable or rotatable in the cylinder 510.
  • the lifting guide 544 may include lifting grooves 544a through which end portions of the lifting protrusions 542 passing through the lifting holes 516 are inserted.
  • the lifting grooves 544a may be formed in the same shape at portions corresponding to the ends of the lifting protrusions 542, respectively.
  • the lifting grooves 544a may guide the lifting operation of the lifting protrusions 542 when the lifting guide 544 is rotated or moved.
  • the lifting guide 544 is described as being rotatably disposed on the upper outer periphery of the cylinder 510. That is, the lifting guide 544 may be formed in a ring shape rotatably disposed in the circumferential direction on the upper outer circumferential surface of the cylinder 510. On the inner circumferential surface of the elevating guide 544, the elevating grooves 544a may be formed in a closed curve shape connected to each other along the circumferential direction. On the outer circumferential surface of the elevating guide 544, a driven elevating gear 544b meshing with the driving elevating gear 546b of the power transmission mechanism 546 described later may be formed.
  • the power transmission mechanism 546 is a device for transmitting the power of the crankshaft 522 to the lifting guide 544 to link the lifting guide 544 with the crankshaft 522.
  • the power transmission mechanism 546 may include a cam shaft 546a and a drive lift gear 546b.
  • the camshaft 546a may be linked to the crankshaft 522 so as to be rotated by the rotational force of the crankshaft 522.
  • the cam shaft 546a may not only provide driving force to the driving lift gear 546b but also provide driving force to the valve opening and closing mechanism 564 described later.
  • the camshaft 546a may be indirectly connected to the crankshaft 522 by a timing belt, a pulley, or the like as a general gasoline engine, but the camshaft 546a and the crankshaft 522 may be directly connected as necessary.
  • the driving lift gear 546b may be omitted, and the cam shaft 546a and the lifting guide 544 may be directly connected and synchronized with each other.
  • the driving elevating gear 546b may be connected to the cam shaft 546a so that one side may be interlocked, and the driving elevating gear 546b may be interlocked with the driven elevating gear 544b. That is, one side of the driving lift gear 546b may be connected to the camshaft 546a or directly to the camshaft 546a through a gear, a chain and a sprocketwheel, a belt and a pulley. Hereinafter, one side of the driving lift gear 546b will be described as being connected to the cam shaft 546a using a bevel gear.
  • the other side of the driving elevating gear 546b may be formed as a cylindrical spur gear to be engaged with the driven elevating gear 544b of the elevating guide 544 in the horizontal direction.
  • FIG. 19 is a plan view illustrating a valve opening and closing mechanism of the reciprocating piston engine illustrated in FIG. 15.
  • 20 is a cross-sectional view taken along line III-III shown in FIG. 19, and
  • FIG. 21 is a view illustrating an operating state of controlling opening / closing time and opening / closing time of the valve using the valve opening / closing mechanism shown in FIG. 19. Drawing.
  • the reciprocating piston engine 500 the valve control device 560 for controlling the opening and closing of the exhaust valve 535 and the intake valve 533 according to the rotation angle of the crankshaft 522. It may further include.
  • the valve adjusting device 560 may be disposed above the second piston 530.
  • the valve adjusting device 560 may include a case 562, a valve opening and closing mechanism 564, and an opening and closing adjustment mechanism 566.
  • the case 562 may be rotatably provided on an upper portion of the second piston 530. That is, the case 562 may be elevated in the vertical direction together with the second piston 530, but may be rotated separately from the second piston 530.
  • the case 562 is connected to the crankshaft 522 so as to be interlockable.
  • the case 562 may be directly connected to the crankshaft 522, but may be indirectly connected to the camshaft 546a.
  • the case 562 may include a rotating part 568 connected to the cam shaft 546a so as to be interlocked with each other, and a main body part 569 connected to the rotating part 568 so as to be liftable and rotatably connected to an upper portion of the second piston 530. ) May be included.
  • An upper portion of the rotating part 568 may be connected to the camshaft 546a so as to be interlocked with the bevel gear to receive the driving force from the camshaft 546a.
  • the lower portion of the rotating part 568 may be formed of a cylinder formed long in the vertical direction, a gear formed long in the vertical direction may be provided on the surface. Such a rotating part 568 may be disposed only on the upper portion of the cylinder 510 to be rotated.
  • the main body 569 is a ring-shaped member rotatably connected to the upper portion of the second piston 530.
  • the body portion 569 may be rotated on the upper portion of the second piston 530 together with the rotation portion 568, and may be lifted up and down together with the second piston 530.
  • a gear ring 567 may be disposed to be engaged with the lower portion of the rotating portion 568 in a vertical direction.
  • the lower portion of the rotating portion 568 and the interference of the second piston 530 when the main body portion 569 and the second piston 530 ascend (not shown) in the upper center of the upper portion of the second piston (530) C) can be formed.
  • an intake passage 569a may be formed at one side of the main body 569 to connect the intake pipe 512 and the inlet 532, and the exhaust pipe 514 and the exhaust port 534 may be formed at the other side of the main body 569.
  • Exhaust passages 569b may be formed to connect the plurality of fans.
  • the intake passages 569a and the exhaust passages 569b may be formed as a plurality of holes formed along the circumferential direction at the outer circumferential portion of the body portion 569. These holes are not limited to the intake passages 569a and the exhaust passages 569b in advance, and may serve as either the intake passages 569a or the exhaust passages 569b when the body portion 569 rotates. Can be.
  • the valve opening and closing mechanism 564 is a device for controlling the opening and closing operation of the intake valve 533 and the exhaust valve 535 during the rotation of the case 562.
  • the valve opening and closing mechanism 564 may be disposed in the case 562 to be rotated together with the case 562.
  • the valve opening and closing mechanism 564 may include intake cams 570 and 571, exhaust cams 572 and 573, and elastic members 574 and 575.
  • the intake cams 570 and 571 are cylindrical cams disposed in the main body 569 so as to rotate together with the main body 569.
  • the intake cams 570 and 571 may be formed to have a radius larger than that of the gearing 567 of the body portion 569.
  • the intake cams 570 and 571 may be disposed in the body portion 569 so as to share the rotation center line of the body portion 569.
  • an intake valve guide surface 570a and 571b may be formed at a lower portion of the intake cams 570 and 571 in which an upper portion of the intake valve 533 is slidably contacted.
  • the upper portion of the intake valve 533 may be formed in a circular shape or a roller may be provided to facilitate the sliding movement along the intake valve guide surface (570a, 571b).
  • the intake valve guide surfaces 570a and 571b may be formed in a predetermined shape along the circumferential direction. Therefore, when the intake cams 570 and 571 are rotated, the intake valve 533 may be elevated along the intake valve guide surfaces 570a and 571b.
  • the exhaust cams 572 and 573 are cylindrical cams disposed in the main body 569 so as to rotate together with the main body 569.
  • the exhaust cams 572 and 573 may be formed to have a larger radius than the intake cams 570 and 571.
  • the exhaust cams 572 and 573 may be disposed in the body portion 569 so as to share the rotation center line of the body portion 569. Therefore, the gearing 567, the intake cams 570 and 571, and the exhaust cams 572 and 573 may be arranged to overlap each other from the center of the main body 569.
  • exhaust valve guide surfaces 572a and 573b may be formed below the exhaust cams 572 and 573 to which the upper portion of the exhaust valve 535 is slidably contacted.
  • the upper portion of the exhaust valve 535 may be formed in a circular shape or a roller to facilitate the sliding movement along the exhaust valve guide surface 572a (573b).
  • Exhaust valve guide surfaces 572a and 573b may be formed in a predetermined shape along the circumferential direction. Therefore, when the exhaust cams 572 and 573 are rotated, the exhaust valve 535 can be elevated along the exhaust valve guide surfaces 572a and 573b.
  • the elastic members 574 and 575 may be provided at the intake valve 533 and the exhaust valve 535 to elastically support the intake valve 533 and the exhaust valve 535, respectively.
  • one side of the elastic members 574 and 575 is disposed on the second piston 530, and the other side of the elastic members 574 and 575 to the intake valve 533 or the exhaust valve 535. It will be described as being placed.
  • the elastic members 574 and 575 may have various shapes and arrangement structures as necessary.
  • the elastic members 574 and 575 not only elastically adhere the upper portion of the intake valve 533 to the intake valve guide surfaces 570a and 571b, but also the upper portion of the exhaust valve 535 to the exhaust valve guide surface 572a. ) Can be elastically in close contact with 573b.
  • the intake valve guide surfaces 570a and 571b and the exhaust valve guide surfaces 572a and 573b may be formed to protrude downward at a portion corresponding to the opening point of the valve. Accordingly, the upper portions of the intake valve 533 and the exhaust valve 535 are lowered along the protruding portions of the intake valve guide surfaces 570a and 571b and the exhaust valve guide surfaces 572a and 573b, so that the intake valve 533 is provided. And the exhaust valve 535 may be opened.
  • Intake valve guide surfaces 570a and 571b have a section corresponding to the intake stroke K of the reciprocating piston engine 500 than a section corresponding to the compression stroke L, the expansion stroke M, and the exhaust stroke N. It may be formed to protrude downward.
  • Exhaust valve guide surfaces 572a and 573b have sections corresponding to the exhaust stroke N of the reciprocating piston engine 500 than sections corresponding to the intake stroke K, the compression stroke L, and the expansion stroke M. It may be formed to protrude downward.
  • intake valves formed on the intake cams 570, 571 and the exhaust cams 572, 573 according to the number and positions of the intake valves 533 and the exhaust valves 535 disposed on the second piston 530.
  • the number and positions of the guide surfaces 570a and 571b and the exhaust valve guide surfaces 572a and 573b may also be modified.
  • the intake valve guide surfaces 570a and 571b or the exhaust valve guide surfaces 572a and 573b are also intake cams 570 and 571.
  • the exhaust cams 572 and 573 may be formed at two eccentric positions along the circumferential direction. 20 shows exhaust cams 572 and 573 with two exhaust valve guide surfaces 572a and 573b formed therein.
  • the intake valves 533 may be disposed at two different positions in the circumferential direction with respect to the second piston 530 such that the upper portion is in close contact with the lower portions of the intake cams 570 and 571.
  • the exhaust valves 535 may be disposed at two different positions in the circumferential direction of the second piston 530 such that an upper portion of the exhaust valves 535 is in close contact with the lower portions of the exhaust cams 572 and 573. That is, the two intake valves 533 and the exhaust valves 535 may be disposed at the same radius with respect to the rotation center line of the body portion 569.
  • the intake cams 570 and 571 or the exhaust cams 572 and 573 may be formed in a single number or may have a plurality of overlapping structures.
  • the intake cams 570 and 571 and the exhaust cams 572 and 573 are described as being disposed in the main body portion 569 in a structure in which two are superimposed on each other. It may be arranged in a structure.
  • the intake cams 570 and 571 may include a first intake cam 570 and a second intake cam 571, and the first intake cam 570 may be disposed to be rotated by a predetermined angle in the circumferential direction.
  • the first intake cam 570 may be rotatably disposed on an outer circumferential surface of the second intake cam 571.
  • the exhaust cams 572 and 573 may include a first exhaust cam 572 and a second exhaust cam 573, and the first exhaust cam 572 may be disposed to be rotated by a predetermined angle in the circumferential direction.
  • the first exhaust cam 572 may be rotatably disposed on an outer circumferential surface of the second exhaust cam 573. Therefore, when the opening and closing control mechanism 566 rotates the first intake cam 570 and the first exhaust cam 572, the opening and closing time and opening and closing time of the intake valve 533 and the exhaust valve 535 can be adjusted. .
  • the exhaust valve guide surfaces 572a and 573b of the first exhaust cam 572 are rotated.
  • the protruding portion may be disposed in front of the protruding portion of the exhaust valve guide surfaces 572a and 573b of the second exhaust cam 573. Therefore, the opening time of the exhaust valve 535 can be increased by the set time Q1, and the opening time of the exhaust valve 535 can be increased by the set time Q1.
  • the exhaust valve guide surface 572a of the first exhaust cam 572 ( The protrusion portion of 573b may be disposed behind the protrusion portion of the exhaust valve guide surfaces 572a and 573b of the second exhaust cam 573. Therefore, the closing time of the exhaust valve 535 can be slowed by the set time Q2, and the opening time of the exhaust valve 535 can be increased by the set time Q2.
  • the exhaust valve 535 can easily adjust the opening and closing time and the opening and closing time by only a simple operation of rotating the first exhaust cam 572.
  • the intake valve 533 can also control the opening and closing time and opening and closing time by rotating the first intake cam 570 in the same manner as the exhaust valve 535, a detailed description thereof will be omitted.
  • FIG. 22 is a cross-sectional view showing the opening and closing control mechanism of the reciprocating piston engine shown in FIG. 15, and FIG. And, Figure 24 is a cross-sectional view showing another example of the opening and closing control mechanism of the reciprocating piston engine shown in FIG.
  • the opening and closing control mechanism 566 rotates the first intake cam 570 and the first exhaust cam 572 to control the intake valve 533 and the exhaust valve 535. It is a device to control the opening and closing time and opening and closing time.
  • the opening and closing control mechanism 566 may include an intake cam adjusting unit 580, an exhaust cam adjusting unit 582, and a rotation guide unit 584.
  • the intake cam adjusting unit 580 is a rod-shaped member formed long in the vertical direction, and may be disposed in a structure in which a part of the intake cam adjusting unit 580 is rotatably inserted.
  • a contact protrusion 580a may be formed at an upper portion of the intake cam adjusting unit 580 to slidably contact the intake cam guide surface 586a of the rotation guide unit 584 to be described later.
  • a connection protrusion 580b rotatably connected to an upper portion of the first intake cam 570 may be formed below the intake cam adjusting unit 580.
  • the exhaust cam adjusting unit 582 is a rod-shaped member formed long in the vertical direction, and may be disposed in a structure in which a part of the exhaust cam adjusting unit 582 is rotatably inserted into the rotating unit 568 of the case 562.
  • a contact protrusion 582a may be formed on an upper portion of the exhaust cam control unit 582 so as to slidably contact the exhaust cam guide surface 587a of the rotation guide unit 584, which will be described later.
  • a connection protrusion 582b rotatably connected to an upper portion of the first exhaust cam 572 may be formed below the exhaust cam control unit 582.
  • connection protrusion 582b of the exhaust cam adjusting unit 582 is connected to the first exhaust cam 572 across the upper portions of the intake cams 570 and 571, so that the intake cam corresponding to the connection protrusion 582b is provided.
  • An avoidance groove 576 may be formed at an upper portion of the 570 and 571 to prevent interference between the connection protrusion 582b and the intake cams 570 and 571.
  • the rotation guide part 584 adjusts the intake cam adjusting part 580 and the exhaust cam to rotate the intake cam adjusting part 580 and the exhaust cam adjusting part 582 in the circumferential direction.
  • the contact protrusions 580a and 582a of the unit 582 may be disposed to be in contact with each other.
  • the rotation guide part 584 is an intake rotation guide part 586 disposed to be elevated on the contact protrusion 580a of the intake cam adjustment part 580 in order to rotate the intake cam adjustment part 580.
  • the exhaust rotation guide unit 587 disposed so as to be elevated on the contact projections 582a of the exhaust cam control unit 582, and the intake cam control unit 580 and exhaust It may include an elastic member 588 disposed in the intake cam adjusting unit 580 and the exhaust cam adjusting unit 582 so as to elastically support the cam adjusting unit 582 in the rotation direction.
  • the intake rotation guide part 586 has an intake cam guide surface 586a which is slidably contacted with the contact protrusion 580a of the intake cam adjusting part 580 to rotate the intake cam adjusting part 580 during the lifting operation. Can be formed.
  • the intake cam guide surface 586a may be formed in the circumferential direction inside the intake rotation guide part 586. Intake cam guide surface 586a may be formed to be inclined in the vertical direction. As shown in FIG. 23, when the intake rotation guide part 586 is elevated in the vertical direction, the distance between the upper portion of the intake cam adjusting unit 580 and the intake cam guide surface 586a may be changed, and the intake cam may be changed.
  • the contact protrusion 580a in contact with the guide surface 586a may be rotated in one direction.
  • the exhaust rotation guide portion 587 has an exhaust cam guide surface 587a which is in sliding contact with the contact projection 582a of the exhaust cam adjusting portion 582 so as to rotate the exhaust cam adjusting portion 582 during the lifting operation. Can be formed. Since the exhaust cam guide surface 587a may be formed in the same manner as the intake cam guide surface 586a, the exhaust rotation guide portion 587 may operate similarly to the intake rotation guide portion 586, The description will be omitted.
  • the exhaust rotation guide part 587 may be disposed above the intake rotation guide part 586.
  • the exhaust rotation guide part 587 and the intake rotation guide part 586 may be disposed on the upper part of the cylinder 510 to be rotated together with the case 562, and the arrangement structure thereof may vary depending on design conditions. Can be implemented.
  • the elastic member 588 intakes the intake cam guide surface 586a and the exhaust cam guide surface 587a to elastically contact the contact projections 582a of the intake cam adjusting unit 580 and the exhaust cam adjusting unit 582.
  • the cam adjusting unit 580 and the exhaust cam adjusting unit 582 may be disposed.
  • the elastic member 588 may be provided in various shapes and various arrangement structures according to design conditions.
  • Figure 24 is a cross-sectional view showing another example of the opening and closing control mechanism of the reciprocating piston engine shown in FIG.
  • the rotation guide part 684 of the present embodiment may include an intake rotation guide part 686, an exhaust rotation guide part 687, and an elastic member 688.
  • the elastic member 688 is formed in the same manner as the elastic member 588 of FIG. 22, a description thereof will be omitted.
  • the intake rotation guide portion 686 is formed in a ring shape with a hollow center, and the intake cam guide surface 686a having the same shape as the intake cam guide surface 586a of FIG. 22 along the circumferential direction therein. Can be formed.
  • the exhaust rotation guide part 687 may be disposed at a hollow portion of the intake rotation guide part 686, and performs the same function as the exhaust cam guide surface 587a of FIG. 22 along the circumferential direction therein.
  • An exhaust cam guide surface 687a may be formed.
  • the intake rotation guide portion 686 and the exhaust rotation guide portion 687 shown in FIG. 24 are more compact than the intake rotation guide portion 586 and the exhaust rotation guide portion 587 shown in FIG. It is possible to reduce the overall height of the engine.
  • the intake rotation guide portion 686 and the exhaust rotation guide portion 687 shown in FIG. 24 are the same as the intake rotation guide portion 586 and the exhaust rotation guide portion 587 shown in FIG. The structure does not need to be rotated together with the case 562.
  • FIG. 25 is a cross-sectional view showing still another example of the opening and closing control mechanism of the reciprocating piston engine shown in FIG. 15, and FIG. That is, FIGS. 25 and 26 show another example of the opening and closing adjustment mechanism 766 applicable to the reciprocating piston engine 500 according to another embodiment of the present invention.
  • the opening and closing adjustment mechanism 766 illustrated in FIGS. 25 and 26 differs from the opening and closing adjustment mechanism 566 of FIG. 22 in that the intake cam adjusting unit 780 and the exhaust cam adjusting unit are operated during operation of the reciprocating piston engine 500. The difference is that the centrifugal weights 780a and 782a provided at the top of 782 can be rotated in one direction by centrifugal force.
  • the centrifugal weight 780a which is rotated by the centrifugal force acted upon the rotation of the intake cam adjusting unit 780 and the exhaust cam adjusting unit 782 at the upper portion of the intake cam adjusting unit 780 and the exhaust cam adjusting unit 782. 782a may be provided.
  • the centrifugal weights 780a and 782a may be formed to protrude from the upper portion of the intake cam control unit 780 and the exhaust cam control unit 782.
  • the ends of the centrifugal weights 780a and 782a may be formed in a structure having a mass larger than that of other portions. Accordingly, the end portions of the centrifugal weights 780a and 782a may be smoothly rotated by the centrifugal force about the upper portions of the intake cam adjusting unit 780 and the exhaust cam adjusting unit 782.
  • the intake cam adjusting unit 780 and the exhaust cam adjusting unit 782 may be rotated in the same direction together with the centrifugal weights 780a and 782a.
  • the intake cams 570 and 571 and the exhaust cams 572 and 573 may also be rotated by the rotation of the intake cam adjusting unit 780 and the exhaust cam adjusting unit 782. Therefore, the opening and closing time and opening and closing time of the intake valve 533 and the exhaust valve 535 can be automatically adjusted by the centrifugal force generated when the reciprocating piston engine 500 operates.
  • the opening and closing adjustment mechanism 766 shown in Figs. 25 and 26 replaces the centrifugal weights 780a and 782a with different masses, thereby opening and closing time and opening and closing time of the intake valve 533 and the exhaust valve 535. I can adjust it.
  • the opening / closing adjustment mechanism 766 shown in FIGS. 25 and 26 differs from the opening / closing adjustment mechanism 566 of FIG. 22 in one direction of opening and closing time and opening / closing time of the intake valve 533 and the exhaust valve 535. Can only be adjusted with. This is because the opening / closing control mechanism 766 shown in FIGS. 25 and 26 has a centrifugal force acting on the centrifugal weights 780a and 782a only in one direction.
  • the opening / closing adjustment mechanism 566 of FIG. 22 raises and lowers the exhaust rotation guide part 587 and the intake rotation guide part 586, thereby combining various combinations of opening and closing times of the intake valve 533 and the exhaust valve 535.
  • the opening and closing time of the intake valve 533 and the exhaust valve 535 can be adjusted only quickly, or the opening and closing time of the intake valve 533 and the exhaust valve 535 can be adjusted only slowly.
  • the opening timing of the intake valve 533 and the exhaust valve 535 may be adjusted quickly, and the closing timing of the intake valve 533 and the exhaust valve 535 may be adjusted slowly, and vice versa. .
  • the intake cam adjusting unit 780 and the exhaust cam are The adjusting unit 782 may rotate only in one direction, and the intake cams 570 and 571 and the exhaust cams 572 and 573 may also rotate in one direction. Therefore, the opening and closing times of the intake valve 533 and the exhaust valve 535 can be adjusted only quickly or only slowly.
  • the opening and closing adjustment mechanism 766 shown in FIGS. 25 and 26 may further include a rotation guide part 784.
  • the rotation guide part 784 may include a rotation guide part 786 and an elastic member 788 for intake and exhaust.
  • the intake and exhaust guide portion 786 may be disposed above the intake cam control unit 780 and the exhaust cam control unit 782.
  • the rotation guide part 786 for the intake and exhaust may be fixed to be impossible to move and rotate.
  • the outer boundary surface 786a and the inner boundary surface slidably contacting the centrifugal weights 780a and 782a of the intake cam adjusting unit 780 and the exhaust cam adjusting unit 782 in the intake exhaust rotation guide part 786. 786b) may be formed.
  • the outer boundary surface 786a can set the maximum rotational position of the centrifugal weights 780a and 782a rotated by the centrifugal force
  • the inner boundary surface 786b can set the initial position of the centrifugal weights 780a and 782a. That is, the centrifugal weights 780a and 782a can be rotated between the outer boundary surface 786a and the inner boundary surface 786b.
  • the opening and closing adjustment mechanism 766 shown in Figs. The opening and closing time and opening and closing time of the exhaust valve 535 can be adjusted.
  • the elastic member 788 is in a direction in which the intake cam adjusting unit 780 and the centrifugal weights 780a and 782a of the exhaust cam adjusting unit 782 are in close contact with the inner boundary surface 786b of the intake and exhaust guide rotation guide portion 786.
  • An elastic force may be provided to the intake cam adjusting unit 780 and the exhaust cam adjusting unit 782.
  • the elastic force of the elastic member 788 is set smaller than the maximum centrifugal force provided to the centrifugal weights (780a) (782a). Therefore, when the centrifugal force applied to the centrifugal weights 780a and 782a is reduced, the elastic member 788 may return the intake cam adjusting unit 780 and the exhaust cam adjusting unit 782 to the initial position.
  • the opening and closing adjustment mechanism 766 illustrated in FIGS. 25 and 26 may adjust the opening and closing time and opening and closing time of the intake valve 533 and the exhaust valve 535 by replacing the elastic member 788 having different elastic force. .
  • FIG. 27 is a plan view illustrating another example of a valve opening and closing mechanism of the reciprocating piston engine illustrated in FIG. 15, and FIG. 28 is an operation of controlling opening and closing time and opening and closing time of a valve using the valve opening and closing mechanism shown in FIG. 27. It is a figure which shows the state. That is, FIGS. 27 and 28 show another example of the valve opening and closing mechanism 864 applicable to the reciprocating piston engine 500 according to another embodiment of the present invention.
  • valve opening and closing mechanism 864 shown in FIGS. 27 and 28 and the valve opening and closing mechanism 564 of FIGS. 19 to 21 is that the connection protrusions 880b and 880b 'of the intake cam control units 580 are formed.
  • the first intake cams 870 and the second intake cams 871 of the intake cams 870 and 871 are respectively connected separately, and the connecting projections 882b and 882b 'of the exhaust cam control units 582 are exhausted.
  • the difference is that they are respectively connected to the first exhaust cam 872 and the second exhaust cam 873 of the cams 872 and 873 respectively.
  • both the first intake cam 870 and the second intake cam 871 may be disposed rotatably in the circumferential direction on both of the main body portion 569, and the first exhaust cam 872 and the second exhaust cam 873.
  • the intake valve 533 and Opening and closing time and opening and closing time of the exhaust valve 535 can be further adjusted. That is, as shown in FIG. 28, while the first exhaust cam 872 and the second exhaust cam 873 are disposed at the same position, the first exhaust cam 872 is rotated forward and at the same time, the second exhaust cam is formed. The cam 873 can be rotated backwards. Then, the opening time of the exhaust valve 535 may be shortened by the set time Q1 due to the rotation of the first exhaust cam 872, and exhausted by the set time Q2 due to the rotation of the second exhaust cam 873. The closing time of the valve 535 may be delayed. In addition, the opening time of the exhaust valve 535 may be increased by the set time Q1 and Q2 of the first exhaust cam 872 and the second exhaust cam 873.
  • FIG. 29 is a plan view illustrating another example of the valve opening and closing mechanism of the reciprocating piston engine illustrated in FIG. 15. That is, FIG. 29 shows another example of the valve opening / closing mechanism 964 applicable to the reciprocating piston engine 500 according to another embodiment of the present invention.
  • valve opening and closing mechanism 964 shown in FIG. 29 The difference between the valve opening and closing mechanism 964 shown in FIG. 29 and the valve opening and closing mechanism 564 of FIGS. 19 to 21 is that the intake valves 933 and 933 'and the intake cams 970 and 971 and 970 are different. '971' may be provided to correspond to each other one-to-one, and the exhaust valves 935 and 935 'and the exhaust cams 972, 973, 972' and 973 'may correspond to each other one-to-one. It is different that it can be provided.
  • two intake cams 970, 971, 970' and 971 ' may be provided, and exhaust valves 935 and 935' are two.
  • the exhaust cams 972, 973, 972 'and 973' may also be provided. Therefore, operation of the intake valves 933 and 933 'is performed by the intake cams 970 and 971 and the intake cams 970' and 971 'disposed outside the intake cams 970 and 971. Can be controlled independently. Operation of the exhaust valves 935 and 935 'is performed by exhaust cams 972 and 973 and exhaust cams 972' and 973 'disposed outside the exhaust cams 972 and 973. Can be controlled independently.
  • the valves 933 and the exhaust valves 935 may be disposed at different positions in the radial direction of the second piston 530.
  • the connecting protrusions 980b and 980b 'of the intake cam adjusting units 580 may be individually connected to the first intake cams 970 and 970', respectively, and the connecting protrusions of the exhaust cam adjusting units 582 may be connected to each other. 982b) and 982b 'may be individually connected to the first exhaust cams 972 and 972', respectively.
  • FIGS. 15 to 23. 30 to 34 illustrate the intake stroke K, the compression stroke L, the explosion stroke O, the expansion stroke M, and the exhaust stroke N, respectively, of the reciprocating piston engine according to another embodiment of the present invention.
  • the first piston 520 is lowered downward and the second piston 530 is stopped at the highest point.
  • the intake valve 533 is in an open state, and the exhaust valve 535 is in a closed state.
  • the size of the combustion chamber I is maximized by the first piston 520 and the second piston 530, and the pressure in the combustion chamber I is lowered due to the increase in the size of the combustion chamber I.
  • fuel gas may flow into the combustion chamber I through the intake pipe 512, the intake passage 569a, and the intake port 532.
  • the combustion chamber I may be expanded to the maximum size. That is, since the fuel gas may be sucked up to the inside of the reciprocating piston engine 500, the suction efficiency of the reciprocating piston engine 500 may also be improved.
  • the first piston 520 is raised upward from the lowest point, and the second piston 530 is raised to the highest point when the first piston 520 is raised.
  • the intake valve 533 and the exhaust valve 535 are closed.
  • the second piston 530 is also disposed at the highest point in the state where the first piston 520 is raised to the top dead center, the size of the combustion chamber I is not formed to the minimum. Subsequently, when the first piston 520 and the second piston 530 are lowered together from the highest point, the second piston 530 is lowered faster than the lowering speed of the first piston 520, so that the second piston 530 is lowered. At a time point O at which ⁇ is lowered to the maximum, the combustion chamber I may have a minimum size. At this time, the compression pressure in the combustion chamber I is also formed maximum.
  • the reciprocating piston engine 500 of the present embodiment may have a longer compression stroke L than the conventional reciprocating piston engine, but the explosion stroke O may be shorter.
  • the ignition mechanism 550 is operated at a time point O at which the size of the combustion chamber I is minimized to explode the fuel gas in the combustion chamber I.
  • the first piston 520 is lowered downward, and the second piston 530 is stopped at the lowest point.
  • the intake valve 533 and the exhaust valve 535 are closed.
  • the time point O at which the size of the combustion chamber I becomes small is the angle at which the crankshaft 522 is rotated from 30 degrees to 40 degrees from the time when the first piston 520 and the second piston 530 are lowered together. It may be set to a viewpoint. Alternatively, the time point O at which the size of the combustion chamber I is minimized may be set to a time point at which the angle between the crankshaft 522 and the connecting rod 524 is at right angles or close to right angles. Hereinafter, in the present embodiment, the time point O at which the rotation angle of the crankshaft 522 is 30 degrees to 35 degrees may be set to the time point at which the size of the combustion chamber I is minimized.
  • the elevating time point of the second piston 530 And lifting speed can be easily adjusted. Therefore, the operation time of the ignition mechanism 550 and the compression pressure of the fuel gas can be adjusted according to the design conditions of the reciprocating piston engine 500 and the surrounding environment, so that the efficiency of the reciprocating piston engine 500 can be maximized according to the design conditions. Can be improved.
  • the first piston 520 is lowered downward and the second piston 530 is stopped at the lowest point.
  • the intake valve 533 and the exhaust valve 535 are closed. Accordingly, the explosive force of the fuel gas may be transmitted to both the crankshaft 522 through the first piston 520 and the connecting rod 524.
  • the first piston 520 is raised upward, and the second piston 530 is stopped at the lowest point.
  • the intake valve 533 is in a closed state, and the exhaust valve 535 is in an open state.
  • the size of the combustion chamber I is reduced to a minimum by the first piston 520 and the second piston 530.
  • fuel gas in the combustion chamber I may be discharged to the outside of the combustion chamber I through the exhaust port 534, the exhaust passage 569b, and the exhaust pipe 514.
  • the combustion chamber I is formed to a minimum size. Therefore, since the combustion gas in the combustion chamber I can also be discharged to the outside as much as possible, the exhaust efficiency of the reciprocating piston engine 500 can also be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

본 발명은 왕복 피스톤 엔진 및 그 작동 방법에 관한 것으로서, 커넥팅 로드와 크랭크축의 직교 위치 또는 상기 직교 위치와 근접한 위치에 피스톤이 도달될 때 연료폭발장치를 작동시켜 피스톤의 직선 운동 에너지를 크랭크축의 회전 운동 에너지로 최대한 많이 전환할 수 있다. 그리고, 상기 연료폭발장치의 작동 시점까지 압력유지장치가 연소실 내의 최대 압축 압력을 일정하게 유지시키므로, 연료 가스의 불완전 연소 및 팽창 손실을 방지할 수 있다. 한편, 피스톤 승강장치가 실린더의 상부에 배치된 제2 피스톤의 동작을 적절히 제어하여 연소실의 최대 압축 시점 및 최대 압축 압력을 최적화시킬 수 있고, 뿐만 아니라 밸브조절장치가 밸브와 연결된 캠의 형상을 제어하여 밸브의 밸브 개폐 시점 및 밸브 개폐 시간 등을 간편하게 조절할 수 있다.

Description

왕복 피스톤 엔진 및 그 작동 방법
본 발명은 왕복 피스톤 엔진 및 그 작동 방법에 관한 것으로서, 보다 상세하게는 엔진의 효율을 향상시킬 수 있고, 엔진의 각종 성능 인자들을 조절할 수 있는 왕복 피스톤 엔진 및 그 작동 방법에 관한 것이다.
일반적으로 엔진은 열에너지를 기계적인 일로 바꾸는 장치로써, 운송기계나 산업기계의 동력원으로 사용되고 있다. 이와 같은 엔진이 열에너지를 기계적인 일로 바꾸기 위해서는 작동물질이 필요하다. 즉, 가솔린 엔진에서는 가솔린과 공기를 혼합시킨 연료 가스, 및 그 연료 가스의 연소 가스가 작동물질이다. 또한, 디젤기관에서는 디젤유와 공기를 혼합시킨 연료 가스, 및 그 연료 가스의 연소 가스가 작동물질이다. 증기기관에서는 물 및 수증기가 작동물질이다.
이와 같은 엔진들 중에서 왕복 피스톤 엔진은, 실린더와 피스톤으로 형성되어 있으며, 자동차, 압축기, 발전기, 배 등에 널리 사용되고 있다. 도 1에는 종래의 왕복 피스톤 엔진(1) 중에서 가솔린 엔진의 일예가 도시되어 있다.
종래의 왕복 피스톤 엔진(1)은 연소실(10)에서 발생한 열에너지, 즉 연료 가스의 폭발 에너지를 피스톤(4)의 왕복 운동에 의해 기계적인 일로 바꾸는 장치이다. 그리고, 상기 왕복 피스톤 엔진(1)은 피스톤(4)의 직선운동을 회전운동으로 바꾸기 위하여 크랭크축(6) 및 커넥팅 로드(8)를 필요로 한다. 즉, 연소실(10)에서 압축된 연료 가스의 폭발력이 피스톤(4)을 밀어주면, 피스톤(4)과 함께 커넥팅 로드(8)와 크랭크축(6)이 동작되면서 피스톤(4)의 직선 왕복운동을 크랭크축(6)의 회전운동으로 전환한다.
상기와 같은 왕복 피스톤 엔진(1)의 작동을 행정 별로 보다 상세하게 설명하면 다음과 같다. 흡입 행정에서는 흡입 밸브(12)가 열리고 배기 밸브(14)가 닫힌 상태에서 실린더(2)의 상사점(TDC, Top Dead Center)에서 하사점(BDC, Bottom Dead Center)으로 피스톤(4)이 하강하여 실린더(2)의 내부로 연료 가스를 흡입한다. 압축 행정에서는 흡입 밸브(12)와 배기 밸브(14)가 모두 닫힌 상태에서 피스톤(4)이 상승하여 실린더(2) 내의 연료 가스를 압축한다. 폭발행정에서는 점화기구(16)가 연소실(10) 내의 연료 가스를 폭발시켜 연료 가스의 폭발력으로 피스톤(4)이 하강하고, 피스톤(4)과 커넥팅 로드(8)에 의해서 크랭크축(6)도 회전한다. 배기 행정에서는 흡입 밸브(12)가 닫히고 배기 밸브(14)가 열린 상태에서 실린더(2)의 상사점으로 피스톤(4)이 상승하여 실린더(2) 내의 연소 가스를 외부로 배출시킨다. 따라서, 왕복 피스톤 엔진(1)은 흡입 행정, 압축 행정, 폭발 행정, 배기 행정으로 이루어진 4개의 행정이 1개의 사이클을 형성하는 4행정 1사이클 엔진이다. 상기 4행정 1사이클 엔진은 피스톤(4)의 2왕복 주기 동안에 4행정이 완료되는 구조이다.
하지만, 종래의 왕복 피스톤 엔진(1)은 실린더(2)의 상사점에서 피스톤(4)이 일정 높이 하강한 후에 점화기구(16)를 작동시킨다. 왜냐하면, 피스톤(4)이 실린더(2)의 상사점에 도달되었을 때 점화기구(16)를 작동시키면, 연료 가스의 폭발력에 의해 크랭크축(6)이 반대 방향으로 역회전될 수 있기 때문이다. 그런데, 커넥팅 로드(8)와 크랭크축(6)이 이루는 각도가 거의 180도에 가깝기 때문에, 커넥팅 로드(8)에 전달된 피스톤(4)의 직선 운동 에너지가 크랭크축(6)의 회전 운동 에너지로 모두 전환되지 못하고 일부가 소실되는 문제점이 있다.
즉, 피스톤(4)과 커넥팅 로드(8)가 연결된 지점을 제 1 포인트(P1)라 하고, 커넥팅 로드(8)와 크랭크축(6)이 연결된 지점을 제 2 포인트(P2)라 하며, 크랭크축(6)의 회전 중심을 제 3 포인트(P3)라고 하면, 제 1,2 포인트(P1)(P2)를 지나는 선분과 제 2,3 포인트(P2)(P3)를 지나는 선분이 이루는 각도가 90도일 때, 피스톤(4)의 직선 운동 에너지가 크랭크축(6)의 회전 운동 에너지로 모두 전환될 수 있다. 그러나, 종래의 왕복 피스톤 엔진(1)은 제 1,2 포인트(P1)(P2)를 지나는 선분과 제 2,3 포인트(P2)(P3)를 지나는 선분이 이루는 각도가 거의 180도에 가까운 위치에서 점화기구(16)가 작동되므로, 피스톤(4)의 직선 운동 에너지가 크랭크축(6)의 회전 운동 에너지로 모두 전환되지 못하고 일부가 손실되어 엔진의 효율이 저하된다.
또한, 종래의 왕복 피스톤 엔진(1)은 실린더(2)의 상사점에서 피스톤(4)이 일정 높이 하강한 후에 점화기구(16)를 작동시키기 때문에, 연소실(10) 내의 연료 가스를 최대로 압축시킨 후 다시 팽창되는 과정에서 크랭크축(6)의 회전 운동 에너지가 일부 손실될 뿐만 아니라, 연료 가스가 최대로 압축되지 않은 상태에서 불완전 연소되어 엔진의 효율이 저하되는 문제점이 있다.
최근에는 왕복 피스톤 엔진(1)의 효율을 높이기 위하여 터보 차져 또는 슈퍼 차쳐를 구비한 엔진이 출시되고 있다. 그러나, 터보 차져 또는 슈퍼 차져를 구비한 엔진은, 구성이 복잡하고 제작비용이 높으며 사후 관리가 어려운 반면에, 엔진의 효율 향상은 상대적으로 적기 때문에 대부분의 왕복 피스톤 엔진(1)에 적용하지 않고 있다.
한편, 상기와 같은 문제점은 피스톤(4)의 2왕복 운동 기간 동안에 1사이클을 수행하는 4행정 1사이클 엔진뿐만 아니라, 피스톤(4)의 1왕복 운동 기간 동안에 1사이클을 수행하는 2행정 1사이클 엔진에도 발생되고 있다.
또한, 종래의 왕복 피스톤 엔진(1)은, 연소실(10)의 내부를 최대로 압축시키는 시점 및 최대 압축 압력을 변경하는 것이 불가능한 구조일 뿐만 아니라, 흡입 밸브(12)와 배기 밸브(14)의 개폐시점 및 개폐시간 등을 필요에 따라 다양하게 변경하는 것이 불가능하다. 따라서, 종래의 왕복 피스톤 엔진(1)은 운전 상황에 따라 최적의 성능을 구현할 수 없기 때문에, 효율의 향상에 한계가 있다. 특히, 최근에는 에너지 고갈, 에너지 비용 상승, 환경 오염 등과 같은 이유로 효율이 우수한 엔진의 필요성이 더욱 증가되는 추세이다.
본 발명의 실시예는 실린더의 상사점에서 피스톤이 일정 높이 하강된 후 연료 가스가 폭발될 경우, 연소실 내의 최대 압축 압력을 연료 가스의 폭발 시점까지 유지시켜 연료 가스의 불완전 연소 및 연료 가스의 팽창 손실을 방지할 수 있는 왕복 피스톤 엔진 및 그 작동 방법을 제공한다.
또한, 본 발명의 실시예는 연료 가스의 폭발시 피스톤의 직선 운동 에너지를 크랭크축의 회전 운동 에너지로 모두 전환시켜 엔진의 효율을 향상시킬 수 있는 왕복 피스톤 엔진 및 그 작동 방법을 제공한다.
또한, 본 발명의 실시예는 연소실 내의 최대 압축 압력을 원하는 수준까지 간편하게 확보할 수 있을 뿐만 아니라, 연소실 내의 최대 압축 압력을 원하는 시점까지 유지시켜 폭발 시점을 간편하게 관리할 수 있는 왕복 피스톤 엔진 및 그 작동 방법을 제공한다.
또한, 본 발명의 실시예는 압축 행정시 피스톤에 가해지는 역방향의 힘을 분산시켜 크랭크축의 회전 운동 에너지의 손실 및 엔진의 진동을 방지할 수 있는 왕복 피스톤 엔진 및 그 작동 방법을 제공한다.
또한, 본 발명의 실시예는 연료의 최대 압축 시점과 최대 압축 압력, 밸브의 개폐 시점과 개폐 시간 등을 설계 조건에 따라 간편하게 조절하여 엔진의 효율을 향상시킬 수 있는 왕복 피스톤 엔진을 제공한다.
또한, 본 발명의 실시예는 기존에 사용되는 엔진의 구조를 간단히 변형하는 것만으로 연료의 최대 압축 시점과 최대 압축 압력, 밸브의 개폐 시점과 개폐 시간 등을 간편하게 조절할 수 있는 왕복 피스톤 엔진을 제공한다.
본 발명의 일실시예에 따르면, 흡기 밸브와 배기 밸브가 구비된 실린더, 상기 실린더의 상사점과 하사점 사이를 직선 왕복할 수 있도록 상기 실린더의 내부에 배치되고 상기 실린더와 함께 연소실을 형성하는 피스톤, 상기 실린더에 회전 가능하게 배치된 크랭크축, 상기 크랭크축에 상기 피스톤의 동력을 전달하기 위하여 상기 크랭크축과 상기 피스톤에 양측이 회전 가능하게 연결된 커넥팅 로드, 상기 연소실의 내부에서 연료를 폭발시키기 위하여 상기 실린더의 상부에 배치된 연료폭발장치, 및 상기 실린더에 구비되고, 상기 흡기 밸브와 상기 배기 밸브가 닫힌 상태에서 상기 피스톤의 직선 왕복 운동이 상기 크랭크축의 회전 운동으로 최대한 전환될 수 있는 시점까지 상기 피스톤이 상기 실린더의 상사점으로부터 하사점을 향해 이동되는 동안, 상기 연소실 내의 압축 압력을 일정하게 유지시키는 압력유지장치 를 포함하는 왕복 피스톤 엔진을 제공한다.
상기와 같이 연료폭발장치가 작동될 때까지 상기 피스톤이 상기 실린더의 상사점에서 하사점을 향해 이동될 경우, 상기 압력유지장치에 의해 연소실 내의 최대 압축 압력이 일정하게 유지되면, 연료 가스의 불완전 연소를 방지하여 엔진의 효율을 향상시킬 수 있을 뿐만 아니라, 연료 가스의 팽창으로 압력 저하에 의한 폭발력 손실을 방지할 수 있다. 여기서, 상기 연소실 내의 최대 압축 압력은 상기 실린더의 상사점에 상기 피스톤이 도달할 때의 연소실의 압축 압력으로써, 상기 연료폭발장치의 작동 시점까지 압력유지장치에 의해 계속 유지될 수 있다.
또한, 상기 연료폭발장치는 상기 커넥팅 로드와 상기 크랭크축의 직교 위치 또는 상기 직교 위치와 근접한 위치에 상기 피스톤이 도달될 때 작동될 수 있다. 따라서, 상기 피스톤의 직선 운동 에너지를 상기 크랭크축의 회전 운동 에너지로 최대한 많이 전환시킬 수 있기 때문에 엔진의 효율을 향상시킬 수 있다. 특히, 상기 커넥팅 로드와 상기 크랭크축이 직교되는 위치에서 상기 피스톤의 직선 운동 에너지를 상기 크랭크축의 회전 운동 에너지로 전환시키는 성능이 최대가 된다.
상기 압력유지장치는, 상기 연소실과 연통되는 내부 공간을 구비하도록 상기 실린더에 배치된 보조 실린더, 상기 보조 실린더의 상사점과 하사점 사이를 직선 왕복할 수 있도록 상기 보조 실린더의 내부에 배치된 보조 피스톤, 및 상기 보조 피스톤과 연결되고 상기 흡기 밸브와 상기 배기 밸브가 닫힌 상태에서 상기 피스톤이 상기 실린더의 상사점으로부터 하사점을 향해 상기 연료폭발장치의 작동 시점까지 이동되는 동안 상기 연소실의 용적 증가량에 대응하여 상기 보조 실린더의 내부 공간을 감소시키도록 상기 보조 실린더의 상사점으로 상기 보조 피스톤을 이동시키는 피스톤 구동기구를 포함할 수 있다.
따라서, 상기 압력유지장치는, 상기 크랭크축과 상기 커넥팅 로드가 180도로 배치되는 실린더의 상사점으로부터 하사점을 향해 상기 피스톤이 이동되는 동안, 상기 보조 피스톤에 의해 상기 보조 실린더의 내부 공간을 감소시켜 상기 연소실 내의 최대 압축 압력을 간편하게 유지시킬 수 있다. 또한, 상기 실린더와 상기 보조 실린더의 체적 비율에 따라 상기 연소실 내의 최대 압축 압력을 다양하게 설정할 수도 있다.
또한, 상기 피스톤 구동기구는, 상기 보조 피스톤에 일측이 연결된 보조 커넥팅 로드, 상기 보조 커넥팅 로드를 이송시키기 위하여 상기 보조 커넥팅 로드의 타측에 배치된 이송부, 및 상기 이송부에 구동력을 전달하기 위하여 상기 이송부에 연결된 구동부를 포함할 수 있다. 상기 이송부는 상기 보조 커넥팅 로드의 타측이 이동 가능하게 삽입되는 이송홈이 외주면에 둘레를 따라 형성된 이송 드럼을 포함할 수 있다. 또는, 상기 이송부는 상기 보조 커넥팅 로드의 타측과 슬라이딩 가능하게 접촉되는 이송 캠을 포함할 수도 있다. 또는, 상기 이송부는 상기 보조 커넥팅 로드의 타측에 형성된 제 1 이송 기어와, 상기 제 1 이송 기어와 치합되게 배치되도록 상기 구동부에 연결된 제 2 이송 기어를 포함할 수도 있다.
따라서, 상기와 같이 실린더의 상부에 상기 압력유지장치를 배치하는 간단한 구조 변경만으로 엔진의 효율을 향상시킬 수 있고, 기존의 왕복 피스톤 엔진에도 연료폭발장치의 작동 시점만 최적의 시점으로 이동하는 조정만으로 용이하게 적용시킬 수 있다. 이때, 보조 피스톤과 보조 실린더의 크기는 실린더의 크기에 비례하여 조정할 수 있다.
상기 연료폭발장치는 상기 연소실의 내부로 흡입된 연료 가스를 점화시키는 점화기구를 포함할 수 있다. 상기 점화기구의 작동 시점은, 상기 압력유지장치에 의해 연료 가스를 완전 연소시키는 압력으로 연료 가스의 압축 상태가 유지될 때 상기 피스톤의 직선 왕복 운동을 상기 크랭크축의 회전 운동으로 최대한 전환할 수 있는 위치에 상기 피스톤이 도달되는 시점으로 설정될 수 있다. 구체적으로, 상기 점화기구는 상기 피스톤과 상기 보조 피스톤에 의해 완전 연소되는 압력으로 연료 가스가 압축 유지됨과 아울러 상기 커넥팅 로드와 상기 크랭크축의 직교 위치 또는 상기 직교 위치와 근접한 위치에 상기 피스톤이 배치되는 시점에 작동될 수 있다. 즉, 상기 왕복 피스톤 엔진은 가솔린 엔진을 포함할 수 있으며, 상기 피스톤과 상기 보조 피스톤은 연료 가스를 완전 연소시키는 압력까지 압축한 후 상기 점화기구가 작동될 때까지 그 압축 압력을 유지한다.
또한, 상기 연료폭발장치는 상기 연소실의 내부로 흡입된 공기에 연료를 분사시키는 연료분사기구를 포함할 수도 있다. 상기 연료분사기구의 작동 시점은, 상기 압력유지장치에 의해 연료 가스를 자연 착화시키는 압력으로 공기의 압축 상태가 유지될 때 상기 피스톤의 직선 왕복 운동을 상기 크랭크축의 회전 운동으로 최대한 전환할 수 있는 위치에 상기 피스톤이 도달되는 시점으로 설정될 수 있다. 상기 연료분사기구는 상기 피스톤과 상기 보조 피스톤에 의해 연료 가스가 자연 착화되는 압력으로 공기가 압축 유지됨과 아울러 상기 커넥팅 로드와 상기 크랭크축의 직교 위치 또는 상기 직교 위치와 근접한 위치에 상기 피스톤이 배치되는 시점에 작동될 수 있다. 즉, 상기 왕복 피스톤 엔진은 디젤 엔진을 포함할 수 있으며, 상기 피스톤과 상기 보조 피스톤은 연료분사기구에서 분사된 연료 가스를 자연 착화시키는 압력까지 공기를 압축한 후 상기 연료분사기구가 작동될 때까지 그 압축 압력을 유지한다.
상기와 같은 가솔린 엔진과 디젤 엔진에서 살펴본 바와 같이, 상기 압력유지장치의 작동에 의하여 상기 연소실 내의 최대 압축 압력을 원하는 수준까지 간편하게 확보할 수 있을 뿐만 아니라, 상기 연소실 내의 최대 압축 압력을 원하는 시점까지 유지시켜 폭발 시점을 간편하게 관리할 수 있다.
상기 왕복 피스톤 엔진은, 상기 흡기 밸브가 닫히고 상기 배기 밸브가 열린 상태에서 상기 피스톤이 상기 실린더의 하사점에서부터 상사점으로 이동되는 동안, 상기 연소실의 내부로 외부 공기를 주입하기 위하여 상기 실린더 또는 상기 압력유지장치에 구비된 공기주입기구를 더 포함할 수 있다. 따라서, 상기 왕복 피스톤 엔진의 배기 행정에서 상기 공기주입기구가 연소실의 내부에 외부 공기를 주입하기 때문에, 왕복 피스톤 엔진의 배기 성능을 향상시킬 수 있다.
본 발명의 일실시예의 다른 측면에 따르면, 실린더에 구비된 흡기 밸브를 열고 상기 실린더에 구비된 배기 밸브를 닫은 상태에서 상기 실린더의 하사점으로 상기 실린더의 내부에 배치된 피스톤을 이동시키는 흡입 단계, 상기 흡입 밸브와 상기 배기 밸브를 닫은 상태에서 상기 실린더의 상사점으로 상기 피스톤을 이동시키는 압축 단계, 상기 흡입 밸브와 상기 배기 밸브를 닫은 상태에서 상기 실린더의 상사점에서 커넥팅 로드와 크랭크축의 직교 위치 또는 상기 직교 위치와 근접한 위치로 상기 피스톤을 이동시키고 상기 실린더와 상기 피스톤이 형성하는 연소실의 용적 증가량에 대응하여 상기 연소실과 연통되게 형성된 보조 실린더의 내부 공간을 감소시키도록 상기 보조 실린더의 내부에 배치된 보조 피스톤을 상기 보조 실린더의 상사점으로 이동시키는 압축 유지 단계, 상기 압축 유지 단계에서 상기 커넥팅 로드와 상기 크랭크축의 직교 위치 또는 상기 직교 위치와 근접한 위치에 상기 피스톤이 도달되면 상기 연소실의 내부에서 연료를 폭발시키는 연료폭발장치를 작동시켜 상기 실린더의 하사점으로 상기 피스톤을 이동시키는 폭발 단계, 및 상기 흡입 밸브를 닫고 상기 배기 밸브를 열은 상태에서 상기 실린더의 상사점으로 상기 피스톤을 이동시키는 배기 단계를 포함하는 왕복 피스톤 엔진의 작동 방법을 제공한다.
따라서, 상기 압축 유지 단계에서는, 상기 실린더의 상사점에서 상기 커넥팅 로드와 상기 크랭크축이 직교되는 위치 또는 상기 직교 위치와 근접한 위치까지 상기 피스톤이 이동되는 동안, 상기 연소실의 압축 압력이 일정하게 유지되므로, 연료 가스의 팽창으로 압력 저하에 의한 폭발력 손실을 방지할 수 있다.
상기 배기 단계는 상기 연소실의 내부로 상기 실린더 또는 상기 보조 실린더에 배치된 공기주입기구가 외부 공기를 주입하는 공기주입단계를 포함할 수 있다. 그리고, 상기 공기주입단계는, 상기 배기 밸브가 열린 후에 시작되고, 상기 흡기 밸브가 열리기 전에 정지될 수 있다. 따라서, 상기 공기주입단계에서는 상기 연소실의 내부로 주입되는 외부 공기에 의하여 상기 연소실 내의 연소 가스가 원활하게 배기되므로, 상기 엔진의 배기 성능을 더욱 향상시킬 수 있다.
상기 흡입 단계에서는 상기 보조 실린더의 상사점에서 하사점으로 상기 보조 피스톤을 이동시킬 수 있다. 따라서, 상기 흡입 단계에서는 상기 보조 피스톤에 의해 상기 보조 실린더의 내부 공간이 증가되므로, 상기 보조 실린더의 내부 공간이 증가되는 용량만큼 상기 흡기 밸브로 흡입되는 흡입량을 증가시켜 엔진의 흡입 성능을 향상시킬 수 있다.
상기 압축 단계에서는 상기 보조 실린더의 하사점에서 상사점을 향해 상기 보조 피스톤을 이동시킬 수 있다. 따라서, 상기 압축 단계에서는 상기 보조 피스톤에 의해 상기 보조 실린더의 내부 공간이 감소되므로, 상기 보조 피스톤이 상기 연소실의 내부에 압축력을 추가적으로 제공하여 엔진의 압축 성능을 향상시킬 수 있다. 또한, 상기 피스톤과 상기 보조 피스톤에 역방향의 힘이 분산 작용될 수 있기 때문에, 종래와 같이 피스톤에만 역방향의 힘이 작용됨으로써 발생되는 크랭크축의 회전 운동 에너지의 손실 및 엔진의 진동을 방지할 수 있다. 특히, 상기 보조 피스톤이 상기 피스톤보다 작은 단면적으로 형성되면, 상기 피스톤보다 쉽게 상기 연소실의 압력을 높일 수 있다.
상기 폭발 단계에서는 상기 보조 실린더의 상사점에 상기 보조 피스톤을 정지시킬 수 있다. 따라서, 상기 폭발 단계에서는 상기 보조 피스톤에 의해 상기 보조 실린더의 내부 공간이 가장 작은 크기로 유지되므로, 상기 연료 가스의 폭발력이 상기 보조 피스톤의 이동에 사용되지 않고 상기 피스톤의 이동에 모두 사용되어 엔진의 폭발 성능을 향상시킬 수 있다.
상기 배기 단계에서는 상기 보조 실린더의 상사점에 상기 보조 피스톤을 정지시킬 수 있다. 따라서, 상기 배기 단계에서는 상기 보조 피스톤에 의해 상기 보조 실린더의 내부 공간이 가장 작은 크기로 유지되므로, 상기 보조 실린더의 내부 공간에 잔류되는 연소 가스의 잔류량을 감소시켜 엔진의 배기 성능을 향상시킬 수 있다.
하지만, 상기 배기 단계에서는 상기 보조 실린더의 상사점을 향해 상기 보조 피스톤을 이동시킬 수도 있다. 그렇게 하면, 상기 보조 실린더의 내부 공간이 상기 보조 피스톤에 의해 상기 압축유지단계와 상기 폭발단계보다 더 작은 크기로 형성되므로, 상기 보조 실린더의 내부 공간에 잔류되는 연소 가스의 잔류량을 더욱 감소시킬 수 있다.
한편, 본 발명의 다른 실시예에 따르면, 실린더, 상기 실린더의 내부에 상하 방향으로 승강 가능하게 구비되고 커넥팅 로드에 의해 크랭크축과 연결된 제1 피스톤, 상기 제1 피스톤 및 상기 실린더와 함께 연소실을 형성하도록 상기 제1 피스톤의 상측에 배치되고 상기 실린더의 내부에 상하 방향으로 승강 가능하게 구비된 제2 피스톤, 상기 제2 피스톤과 상기 크랭크축 사이에 구비되고 상기 제1 피스톤이 최고점으로부터 하강되는 일정 시점에서 상기 연소실의 크기를 최소로 만들도록 상기 크랭크축의 회전 각도에 따라 상기 제2 피스톤의 승강 동작을 조절하는 피스톤 승강장치, 및 상기 실린더에 구비되고 상기 연소실이 최소의 크기로 형성될 때 상기 연소실의 내부에서 연료를 폭발시키는 연료폭발장치를 포함하는 왕복 피스톤 엔진을 제공한다.
즉, 상기 피스톤 승강장치가 상기 제2 피스톤의 승강 동작을 적절히 제어하면, 상기 연소실의 크기를 최소로 형성하는 시점 및 상기 연소실 내의 최대 압축 압력 등을 간편하게 조절할 수 있다. 상기 연소실의 크기가 최소인 시점은 상기 연료폭발장치의 작동 시점이며, 상기 연소실 내의 최대 압축 압력은 상기 연소실의 크기가 최소인 시점에서 상기 연소실 내의 압력이다. 따라서, 상기 왕복 피스톤 엔진은 설계 조건 또는 운전 환경에 따라 엔진 효율을 최적화시킬 수 있다.
상기 연소실의 크기가 최소인 시점은, 상기 제1 피스톤과 상기 제2 피스톤이 최고점에서 함께 하강될 때부터 상기 크랭크축이 10도 내지 50도의 각도로 회전된 시점으로 설정될 수 있다. 즉, 상기 연소실의 크기가 최소인 시점은 상기 왕복 피스톤 엔진의 설계 조건에 따라 최대 효율을 실현할 수 있는 임의의 각도로 설정될 수 있다.
상기 피스톤 승강장치는, 상기 실린더에 상하방향으로 길게 형성된 복수개의 승강홀부들에 삽입되도록 상기 제2 피스톤의 외주면에서 반경 방향으로 돌출된 복수개의 승강돌기들, 상기 승강홀부들을 관통한 상기 승강돌기들의 단부가 삽입되는 승강홈부들이 형성되고 상기 승강돌기들이 상기 승강홈부들을 따라 승강 작동되도록 상기 실린더에 이동 또는 회전 가능하게 배치된 승강가이드, 및 상기 승강가이드가 상기 크랭크축과 연동되도록 상기 크랭크축의 동력을 상기 승강가이드에 전달하는 동력전달기구를 포함할 수 있다.
즉, 상기 승강가이드는 상기 동력전달기구의 동력에 의해 이동 또는 회전될 수 있고, 상기 승강돌기들은 상기 승강가이드의 구동시 상기 승강홈부들을 따라 상하방향으로 승강될 수 있다. 따라서, 다양한 형상의 승강홈부들을 구비한 승강가이드들이 선택적으로 채용되면, 상기 제2 피스톤의 승강 동작이 간편하게 변경될 수 있다.
상기 제2 피스톤은 상기 피스톤 승강장치의 작동시 상기 승강홀부들보다 하부가 하측에 배치되도록 형성될 수 있다. 따라서, 상기 승강홀부들이 상기 제2 피스톤의 승강시 상기 제2 피스톤의 하측으로 노출되지 않으므로, 상기 연소실의 밀폐 상태가 계속 유지될 수 있다.
상기 승강가이드는, 상기 승강돌기들의 단부가 삽입되는 승강홈부들이 내주면에 형성된 링 형상으로 형성될 수 있고, 상기 실린더의 외측에 원주 방향으로 회전 가능하게 배치될 수 있다. 그리고, 상기 승강돌기들은 상기 제2 피스톤의 외주면에 원주 방향을 따라 동일 간격으로 이격되게 배치될 수 있다. 따라서, 상기 승강홈부들은 상기 승강가이드의 내주면 중에서 상기 승강돌기들과 대응되는 부위들에 각각 동일 형상으로 형성될 수 있다.
또한, 상기 승강홈부들은 상기 승강가이드의 내주면에 원주 방향을 따라 서로 연결된 폐곡선 형상으로 형성될 수 있다. 따라서, 상기 승강가이드가 일방향으로 계속 회전되면, 상기 승강돌기들은 상기 승강홈부들에 차례로 삽입될 수 있다.
상기 동력전달기구는, 상기 크랭크축과 연동 가능하게 연결된 캠축, 및 상기 캠축에 일측이 연동 가능하게 연결되고 상기 승강가이드의 외주면에 형성된 종동승강기어와 타측이 치합되는 구동승강기어를 포함할 수 있다. 따라서, 상기 종동승강기어와 상기 종동승강기어의 구조를 변경하면, 상기 승강가이드의 회전 속도 및 회전 주기 등이 간편하게 변경될 수 있다.
상기 연료폭발장치는, 상기 제1 피스톤과 상기 제2 피스톤 사이에 배치되도록 상기 실린더의 측면에 적어도 하나가 구비될 수 있다. 즉, 상기 실린더의 상부에 상기 제2 피스톤이 배치되므로, 상기 실린더의 측면에 상기 연료폭발장치를 배치하는 것이 설치 공간의 확보에 유리하다.
여기서, 상기 연료폭발장치는 상기 연소실의 크기가 최소인 시점에 상기 연소실의 내부로 연료 가스를 분사하는 연료분사기구를 구비할 수 있다. 즉, 상기 왕복 피스톤 엔진이 디젤 엔진이면, 상기 연료폭발장치는 상기 연료분사기구로 구성될 수 있다. 따라서, 상기 연소실의 크기가 최소인 시점에서는 상기 제1 피스톤과 상기 제2 피스톤이 상기 연료 가스를 자연 착화가 가능한 온도까지 상승시킬 수 있다.
그리고, 상기 연료폭발장치는 상기 연소실의 크기가 최소인 시점에 상기 연소실 내의 연료 가스를 점화시키는 점화기구를 구비할 수 있다. 즉, 상기 왕복 피스톤 엔진이 가솔린 엔진이면, 상기 연료폭발장치는 상기 점화기구로 구성될 수 있다. 따라서, 상기 연소실의 크기가 최소인 시점에서는 상기 제1 피스톤과 상기 제2 피스톤이 상기 연료 가스를 완전 연소시키는 압력으로 상기 연소실 내의 공기를 압축시킬 수 있다.
상기 점화기구는, 상기 실린더의 내부에 배치된 단부에 돌출된 제1 점화 플러그, 및 상기 제1 점화 플러그에서 일정 거리 이격된 위치에 돌출되고 상기 제1 점화 플러그와 평행하게 형성된 적어도 하나의 제2 점화 플러그를 구비할 수 있다. 즉, 상기 제1 점화 플러그와 상기 제2 점화 플러그는 상기 실린더의 내측으로 개방된 구조로 형성될 수 있다. 따라서, 상기 제1 점화 플러그와 상기 제2 점화 플러그 사이에 발생되는 불꽃이 상기 연소실의 내부에 효과적으로 전파될 수 있고, 그로 인하여 상기 실린더의 측면에 배치된 점화기구의 점화 성능을 충분히 확보할 수 있다.
한편, 본 발명의 다른 실시예에 따른 왕복 피스톤 엔진은, 상기 제2 피스톤의 상부에 배치되고, 상기 크랭크축의 회전 각도에 따라 상기 배기밸브와 상기 흡기밸브의 개폐를 조절하는 밸브조절장치를 더 포함할 수 있다. 즉, 상기 밸브조절장치가 상기 흡기밸브와 상기 배기밸브의 개폐 시점 또는 개폐 시간 등을 조절하면, 상기 왕복 피스톤 엔진의 성능도 설계 조건과 운전 환경에 따라 최적으로 조절될 수 있다.
상기 실린더의 상부에는 흡기관 및 배기관이 형성될 수 있다. 그리고, 상기 제2 피스톤에는 상기 흡기관과 상기 연소실을 연통시키는 적어도 하나의 흡기구 및 상기 배기관과 상기 연소실을 연통시키는 적어도 하나의 배기구가 형성될 수 있다. 또한, 적어도 하나의 상기 배기구에는 배기밸브가 개폐 가능하게 구비될 수 있고, 적어도 하나의 상기 흡기구에는 흡기밸브가 개폐 가능하게 구비될 수 있다.
상기 밸브조절장치는, 상기 제2 피스톤의 상부에 회전 가능하게 구비되고, 상기 크랭크축과 연동 가능하게 연결된 케이스, 상기 케이스에 배치되고, 상기 크랭크축에 의해 상기 케이스가 회전됨에 따라 상기 흡기밸브와 상기 배기밸브의 개폐 동작을 제어하도록 형성된 밸브개폐기구, 및 상기 밸브개폐기구에 구비되고, 상기 흡기밸브와 상기 배기밸브의 개폐 시점 및 개폐 시간을 선택적으로 조절하는 개폐조절기구를 포함할 수 있다.
상기 케이스는, 상기 크랭크축에 연동 가능하게 연결된 회전부, 및 상기 회전부에 승강 가능하게 연결되고 상기 제2 피스톤의 상부에 회전 가능하게 연결되며 상기 흡기관과 적어도 하나의 상기 흡기구를 연결하는 흡기 통로 및 상기 배기관과 적어도 하나의 상기 배기구를 연결하는 배기 통로가 형성된 본체부를 포함할 수 있다. 즉, 상기 회전부는 상기 크랭크축의 동력을 전달받아 회전될 수 있으며, 상기 본체부는 상기 제2 피스톤과 함께 상하방향으로 승강될 뿐만 아니라 상기 회전부와 함께 회전될 수 있다. 따라서, 상기 본체부는 상기 제2 피스톤의 상부에 회전력을 전달하는 않는 구조로 연결될 수 있다.
상기 밸브개폐기구는, 상기 본체부의 일측에 구비되고 상기 본체부의 회전시 상기 흡기밸브의 상부가 슬라이딩 가능하게 접촉되는 흡기밸브 안내면이 하부에 형성된 흡기캠, 상기 본체부의 타측에 구비되고 상기 본체부의 회전시 상기 배기밸브의 상부가 슬라이딩 가능하게 접촉되는 배기밸브 안내면이 하부에 형성된 배기캠, 및 상기 흡기밸브와 상기 배기밸브의 상부가 상기 흡기밸브 안내면과 상기 배기밸브 안내면에 탄성적으로 밀착되도록 상기 흡기밸브와 상기 배기밸브에 각각 구비된 탄성부재를 포함할 수 있다.
따라서, 상기 흡기밸브와 상기 배기밸브는 상기 탄성부재에 의해 상기 흡기밸브 안내면과 상기 배기밸브 안내면에 밀착되므로, 상기 흡기캠과 상기 배기캠의 회전시 상기 흡기밸브 안내면과 상기 배기밸브 안내면의 형상에 따라 밸브의 개폐 시점 및 개폐 시간 등이 결정될 수 있다.
상기 흡기캠과 상기 배기캠은 서로 다른 반경을 갖는 원통 형상으로 형성될 수 있다. 그리고, 상기 흡기캠과 상기 배기캠은 상기 본체부와 동일한 회전 중심을 갖도록 상기 본체부에 반경 방향으로 상호 중첩되게 배치될 수 있다. 즉, 상기 흡기캠과 상기 배기캠은 상기 본체부와 함께 회전되는 원통캠이며, 상기 흡기캠과 상기 배기캠 중 어느 하나가 다른 하나의 내부에 삽입된 구조로 배치된다.
여기서, 상기 흡기밸브 및 상기 배기밸브는 상기 제2 피스톤의 반경 방향으로 복수개가 서로 다른 위치에 배치될 수 있다. 즉, 상기 제2 피스톤의 중심에서 상기 흡기밸브들 및 상기 배기밸브들까지의 거리가 모두 다르게 형성될 수 있다. 그리고, 상기 흡기캠 및 상기 배기캠은 상기 흡기밸브들 및 상기 배기밸브들의 상부에 개별적으로 접촉되도록 상기 본체부에 반경 방향으로 복수개가 구비될 수 있다. 즉, 상기 흡기캠과 상기 배기캠은 상기 흡기밸브들과 상기 배기밸브들의 개수와 동일한 개수로 상기 본체부에 구비될 수 있다. 따라서, 상기 흡기밸브들은 상기 흡기캠들에 일대일로 각각 배치될 수 있고, 상기 배기밸브들은 상기 배기캠들에 일대일로 각각 배치될 수 있다.
또는 상기와 다르게, 상기 흡기밸브 및 상기 배기밸브는 상기 제2 피스톤의 원주 방향으로 복수개가 서로 다른 위치에 배치될 수도 있다. 즉, 상기 제2 피스톤의 중심에서 상기 흡기밸브들 및 상기 배기밸브들까지의 거리가 모두 동일하게 형성될 수 있다. 그리고, 상기 흡기캠 및 상기 배기캠은 상기 흡기밸브들 및 상기 배기밸브들의 상부에 동시에 접촉되도록 하부에 상기 흡기밸브 안내면 및 상기 배기밸브 안내면이 원주 방향으로 복수개가 형성될 수 있다. 즉, 상기 흡기밸브 안내면 및 상기 배기밸브 안내면은 상기 흡기밸브들과 상기 배기밸브들의 개수와 동일한 개수로 상기 흡기캠과 상기 배기캠에 구비될 수 있다. 따라서, 상기 흡기밸브들은 상기 흡기캠에 모두 배치될 수 있고, 상기 배기밸브들은 상기 배기캠에 모두 배치될 수 있다.
상기 흡기캠과 상기 배기캠은 상기 본체부에 원주 방향으로 회전 가능하도록 복수개가 중첩되게 구비될 수 있다. 즉, 상기 흡기캠들과 상기 배기캠들은 동일 형상의 흡기캠 또는 동일 형상의 배기캠을 각각 중첩시킨 구조로써, 복수개의 원통형 캠들 중 적어도 하나는 원주 방향을 따라 회전 가능하게 배치될 수 있다. 상기 개폐조절기구는 상기 흡기캠들의 적어도 하나 또는 상기 배기캠들의 적어도 하나를 원주 방향으로 회전시켜 상기 흡기밸브 또는 상기 배기밸브의 개폐 시점 및 개폐 시간을 조절할 수 있다.
상기 개폐조절기구는, 상기 흡기캠들의 적어도 하나에 하부가 연결된 흡기캠 조절부, 상기 배기캠들의 적어도 하나에 하부가 연결된 배기캠 조절부, 및 상기 흡기캠 조절부와 상기 배기캠 조절부에 배치되고 상기 흡기캠들과 상기 배기캠들의 적어도 하나를 원주 방향으로 회전시키는 회전가이드부를 포함할 수 있다. 즉, 상기 회전가이드부가 상기 흡기캠 조절부 및 상기 배기캠 조절부의 상부를 회전시키면, 상기 흡기캠 조절부의 하부에 연결된 흡기캠 및 상기 배기캠 조절부의 하부에 연결된 배기캠이 소정 각도로 회전될 수 있다.
상기 회전가이드부는, 상기 흡기캠 조절부의 상부에 승강 가능하게 배치되고 승강 작동시 상기 흡기캠 조절부를 회전시키도록 상기 흡기캠 조절부의 상부와 슬라이딩 가능하게 접촉되는 흡기캠 안내면이 형성된 흡기용 회전가이드부, 상기 배기캠 조절부의 상부에 승강 가능하게 배치되고 승강 작동시 상기 배기캠 조절부를 회전시키도록 상기 배기캠 조절부의 상부와 슬라이딩 가능하게 접촉되는 배기캠 안내면이 형성된 배기용 회전가이드부, 및 상기 흡기캠 안내면 및 상기 배기캠 안내면에 상기 흡기캠 조절부와 상기 배기캠 조절부의 상부를 탄성적으로 밀착시키도록 상기 흡기캠 조절부 및 상기 배기캠 조절부에 배치된 탄성부재를 포함할 수 있다.
즉, 상기 흡기용 회전가이드부 또는 상기 배기용 회전가이드부가 승강되면, 상기 흡기용 회전가이드부의 상부가 상기 흡기캠 안내면에 의해 회전될 수 있고, 상기 배기용 회전가이드부의 상부가 상기 배기캠 안내면에 의해 회전될 수 있다. 이때, 상기 탄성부재는 상기 흡기캠 안내면 및 상기 배기캠 안내면에 상기 흡기용 회전가이드부와 상기 배기용 회전가이드부의 상부를 항상 밀착시키는 역할을 수행한다.
또는 상기와 다르게, 상기 개폐조절기구는, 상기 흡기캠들의 적어도 하나에 하부가 연결된 흡기캠 조절부, 상기 배기캠들의 적어도 하나에 하부가 연결된 배기캠 조절부, 및 상기 흡기캠 조절부와 상기 배기캠 조절부의 상부에 형성되고, 상기 흡기캠 조절부와 상기 배기캠 조절부가 상기 밸브개폐기구와 함께 선회되면 원심력에 의해 상기 흡기캠들과 상기 배기캠들을 원주 방향으로 회전시키는 원심추를 포함할 수 있다.
즉, 상기 왕복 피스톤 엔진의 작동시 상기 흡기캠 조절부와 상기 배기캠 조절부가 원형의 경로를 따라 선회되면, 상기 원심추는 상기 흡기캠 조절부와 상기 배기캠 조절부의 상부를 중심으로 원심력에 의해 일방향으로 회전될 수 있고, 상기 흡기캠 조절부와 상기 배기캠 조절부는 상기 원심추와 함께 일방향으로 회전될 수 있다. 그리고, 상기 흡기캠 조절부와 상기 배기캠 조절부가 일방향으로 회전되면, 상기 흡기캠 조절부의 하부에 연결된 흡기캠 및 상기 배기캠 조절부의 하부에 연결된 배기캠이 소정 각도로 회전될 수 있다.
상기와 같이 흡기캠들과 배기캠들이 회전되면, 상기 흡기밸브들과 상기 배기밸브들의 개폐 시점 및 개폐 시간 등이 조절될 수 있다. 따라서, 상기 왕복 피스톤 엔진의 작동시 상기 흡기캠 조절부와 상기 배기캠 조절부의 회전수에 따라 상기 흡기밸브들과 상기 배기밸브들의 개폐 시점 및 개폐 시간 등이 자동으로 조절될 수 있다.
상기 개폐조절기구는, 상기 흡기캠 조절부와 상기 배기캠 조절부에 배치되고, 상기 원심추의 회전 가능한 범위를 제한하는 회전가이드부를 더 포함할 수 있다. 예를 들면, 상기 회전가이드부는, 상기 흡기캠 조절부와 상기 배기캠 조절부의 상부에 배치되고 상기 원심추의 회전 범위를 설정하는 적어도 하나의 경계면이 형성된 흡배기용 회전가이드부, 및 상기 원심추의 초기 위치를 설정하는 경계면을 향해 상기 원심추를 탄성적으로 회전시키도록 상기 흡기캠 조절부 및 상기 배기캠 조절부에 배치된 탄성부재를 포함할 수 있다.
상기 적어도 하나의 경계면은, 상기 원심추의 초기 위치를 설정하는 경계면, 및 상기 원심추의 최대 회전 위치를 설정하는 경계면을 포함할 수 있다. 즉, 상기 원심추는 상기 경계면들의 사이에서 일정 각도로만 회전될 수 있다.
한편, 상기 흡기밸브들과 상기 배기밸브들의 개폐 시점 및 개폐 시간 등을 조정하는 방법으로는, 상기 흡배기용 회전가이드부를 교체하여 상기 경계면들의 위치를 변경하거나, 상기 원심추를 교체하여 상기 원심추의 질량을 변경하거나, 또는 상기 탄성부재를 교체하여 상기 흡기캠 조절부 및 상기 배기캠 조절부에 작용되는 탄성력을 변경할 수 있다.
본 발명의 일실시예에 따른 왕복 피스톤 엔진 및 그 작동 방법은, 커넥팅 로드와 크랭크축의 직교 위치 또는 상기 직교 위치와 근접한 위치에서 연료 가스를 폭발시키기 때문에, 피스톤의 직선 운동 에너지를 크랭크축의 회전 운동 에너지로 최대한 전환시킬 수 있어 엔진의 효율을 향상시킬 수 있다.
또한, 본 발명의 일실시예에 따른 왕복 피스톤 엔진 및 그 작동 방법은, 커넥팅 로드와 크랭크축의 직교 위치 또는 상기 직교 위치와 근접한 위치에서 연료폭발장치가 작동될 때까지 압력유지장치가 연소실 내의 최대 압축 압력을 일정하게 유지시키므로, 연료 가스의 불완전 연소를 방지하여 엔진의 효율을 향상시킬 수 있고, 연료폭발장치의 작동 이전에 연료 가스의 팽창으로 인한 압력 저하로 발생되는 폭발력 손실을 방지할 수 있다. 뿐만 아니라, 본 발명의 일실시예에 따른 왕복 피스톤 엔진은, 상기 압력유지장치를 배치하는 간단한 구조 변경만으로 엔진의 효율을 현저히 향상시킬 수 있고, 기존의 왕복 피스톤 엔진에 적은 비용과 간단한 설계 변경으로 용이하게 적용시킬 수 있다.
또한, 본 발명의 일실시예에 따른 왕복 피스톤 엔진 및 그 작동 방법은, 압력유지장치의 작동에 의하여 연소실 내의 최대 압축 압력을 원하는 수준까지 간편하게 확보할 수 있을 뿐만 아니라, 연소실 내의 최대 압축 압력을 원하는 시점까지 유지시켜 폭발 시점을 간편하게 관리할 수 있다. 뿐만 아니라, 본 발명의 일실시예에 따른 왕복 피스톤 엔진 및 그 작동 방법은, 연료 가스를 완전 연소시키는 압력이나 또는 연료 가스를 자연 착화시키는 압력까지 연소실 내의 압축 압력을 피스톤과 압력유지장치가 동시에 증가시킬 수 있으므로, 가솔린 엔진과 디젤 엔진에서 연소실 내의 압축 압력을 최적의 압력 조건으로 간편하게 만들 수 있다. 그리고, 본 발명의 일실시예에 따른 왕복 피스톤 엔진은, 실린더와 보조 실린더의 체적 비율에 따라 연소실 내의 최대 압축 압력을 다양하게 설계할 수 있다.
또한, 본 발명의 일실시예에 따른 왕복 피스톤 엔진의 작동 방법은, 압축 단계에서 피스톤과 함께 보조 피스톤이 연료 가스를 압축하기 때문에 엔진의 압축 효율을 더욱 향상시킬 수 있고, 피스톤과 보조 피스톤에 역방향의 힘이 분산 작용되기 때문에 크랭크축의 회전 운동 에너지의 손실 및 엔진의 진동을 방지할 수 있다. 그리고, 본 발명의 일실시예에 따른 왕복 피스톤 엔진의 작동 방법은, 흡기 단계에서 압력유지장치가 엔진의 흡입 용량을 추가적으로 제공하여 엔진의 흡입 성능을 향상시킬 수 있고, 압축 단계에서 압력유지장치가 연소실에 압축력을 추가적으로 제공하여 엔진의 압축 성능을 향상시킬 수 있다.
또한, 본 발명의 일실시예에 따른 왕복 피스톤 엔진의 작동 방법은, 폭발 단계 및 배기 단계에서 압축유지기구의 내부 공간을 가장 작은 상태로 유지시키므로, 연료 가스의 폭발력을 피스톤에 모두 작용시켜 엔진의 폭발 성능을 향상시킬 수 있고, 압축유지기구의 내부에 잔류되는 연소 가스의 양을 감소시켜 엔진의 배기 성능을 향상시킬 수 있다. 그리고, 본 발명의 일실시예에 따른 왕복 피스톤 엔진의 작동 방법은, 배기 단계에서 공기주입기구가 연소실의 내부로 외부 공기를 주입하기 때문에 엔진의 배기 성능을 더욱 향상시킬 수 있다.
한편, 본 발명의 다른 실시예에 따른 왕복 피스톤 엔진 및 그 작동 방법은, 제1 피스톤의 상측에 배치된 제2 피스톤의 승강 작동을 적절히 제어하여 연소실의 크기가 최소인 시점 및 연소실 내의 최대 압축 압력 등을 조절할 수 있다. 그러므로, 왕복 피스톤 엔진의 설계 조건 및 운전 조건에 따라 연소실의 크기가 최소인 시점 및 연소실 내의 최대 압축 압력 등을 최적화시키면, 엔진의 효율을 현저히 향상시킬 수 있다.
또한, 본 발명의 다른 실시예에 따른 왕복 피스톤 엔진 및 그 작동 방법은, 제2 피스톤을 승강시키는 피스톤 승강장치를 교체하거나 변경하는 간단한 작업만으로 왕복 피스톤 엔진의 성능과 효율을 간편하게 변경할 수 있다. 뿐만 아니라, 본 발명의 다른 실시예에 따른 왕복 피스톤 엔진 및 그 작동 방법은, 밸브조절장치를 이용하여 밸브의 개폐시점과 개폐시간을 간편하게 조절할 수 있다. 그러므로, 엔진의 흡기효율과 배기효율을 향상시킬 수 있고, 엔진의 운전 조건에 따라 엔진 성능도 향상시킬 수 있다.
또한, 본 발명의 다른 실시예에 따른 왕복 피스톤 엔진은, 기존의 엔진에 제2 피스톤과 피스톤 승강장치 및 밸브조절장치를 추가하는 간단한 구조 변경만으로 구현이 가능할 뿐만 아니라 적은 비용으로도 구현이 가능할 수 있다. 또한, 본 발명의 다른 실시예에 따른 왕복 피스톤 엔진 및 그 작동 방법은, 점화기구의 제1 점화 플러그와 제2 점화 플러그가 실린더의 내부를 향해 개방된 구조로 형성되므로, 제1 점화 플러그와 제2 점화 플러그가 제1 점화 플러그 및 제2 점화 플러그의 사이에 발생된 불꽃의 전파를 방해하지 않을 수 있다. 따라서, 왕복 피스톤 엔진은 연료의 연소 성능을 더 향상시킬 수 있다.
도 1은 종래 기술에 따른 왕복 피스톤 엔진이 도시된 단면도이다.
도 2는 본 발명의 일실시예에 따른 왕복 피스톤 엔진이 도시된 단면도이다.
도 3은 도 2에 도시된 피스톤 구동기구를 나타낸 평면도이다.
도 4는 도 2에 도시된 Ⅰ-Ⅰ선에 따른 단면을 나타낸 도면이다.
도 5는 도 2에 도시된 피스톤 구동기구의 다른 예를 나타낸 사시도이다.
도 6은 도 2에 도시된 피스톤 구동기구의 또 다른 예를 나타낸 사시도이다.
도 7은 도 2에 도시된 피스톤 구동기구의 또 다른 예를 나타낸 사시도이다.
도 8은 본 발명의 일실시예에 따른 왕복 피스톤 엔진의 작동 방법에서 흡입 단계를 나타낸 상태도이다.
도 9는 본 발명의 일실시예에 따른 왕복 피스톤 엔진의 작동 방법에서 압축 단계를 나타낸 상태도이다.
도 10은 본 발명의 일실시예에 따른 왕복 피스톤 엔진의 작동 방법에서 압축 유지 단계를 나타낸 상태도이다.
도 11은 본 발명의 일실시예에 따른 왕복 피스톤 엔진의 작동 방법에서 폭발 단계를 나타낸 상태도이다.
도 12는 본 발명의 일실시예에 따른 왕복 피스톤 엔진의 작동 방법에서 배기 단계를 나타낸 상태도이다.
도 13은 도 8 내지 도 12에 도시된 피스톤의 작동 상태를 나타낸 그래프이다.
도 14는 도 8 내지 도 12에 도시된 보조 피스톤의 작동 상태를 나타낸 그래프이다.
도 15는 본 발명의 다른 실시예에 따른 왕복 피스톤 엔진이 도시된 단면도이다.
도 16은 도 15에 도시된 ‘J’를 확대하여 나타낸 도면이다.
도 17은 도 15에 도시된 왕복 피스톤 엔진의 승강가이드를 나타낸 평면도이다.
도 18은 도 17에 도시된 Ⅱ-Ⅱ선에 따른 단면을 나타낸 도면이다.
도 19는 도 15에 도시된 왕복 피스톤 엔진의 밸브개폐기구를 나타낸 평면도이다.
도 20은 도 19에 도시된 Ⅲ-Ⅲ선에 따른 단면을 나타낸 도면이다.
도 21은 도 19에 도시된 밸브개폐기구를 이용하여 밸브의 개폐 시점 및 개폐 시간을 조절하는 작동 상태를 나타낸 도면이다.
도 22는 도 15에 도시된 왕복 피스톤 엔진의 개폐조절기구를 나타낸 단면도이다.
도 23은 도 22에 도시된 개폐조절기구의 작동 상태를 나타낸 평단면도이다.
도 24는 도 15에 도시된 왕복 피스톤 엔진의 개폐조절기구에 대한 다른 예를 나타낸 단면도이다.
도 25는 도 15에 도시된 왕복 피스톤 엔진의 개폐조절기구에 대한 또 다른 예를 나타낸 단면도이다.
도 26은 도 25에 도시된 개폐조절기구의 작동 상태를 나타낸 평단면도이다.
도 27은 도 15에 도시된 왕복 피스톤 엔진의 밸브개폐기구에 대한 또 다른 예를 나타낸 평면도이다.
도 28은 도 27에 도시된 밸브개폐기구를 이용하여 밸브의 개폐 시점 및 개폐 시간을 조절하는 작동 상태를 나타낸 도면이다.
도 29는 도 15에 도시된 왕복 피스톤 엔진의 밸브개폐기구에 대한 또 다른 예를 나타낸 평면도이다.
도 30 내지 도 34는 본 발명의 다른 실시예에 따른 왕복 피스톤 엔진의 흡입행정, 압축행정, 폭발행정, 팽창행정, 및 배기행정이 각각 도시된 작동 상태도이다.
이하에서, 본 발명에 따른 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다. 그러나, 본 발명이 실시예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
도 2는 본 발명의 일실시예에 따른 왕복 피스톤 엔진이 도시된 단면도이고, 도 3은 도 2에 도시된 피스톤 구동기구를 나타낸 평면도이며, 도 4는 도 2에 도시된 Ⅰ-Ⅰ선에 따른 단면을 나타낸 도면이다. 도 2에는 흡기 행정, 압축 행정, 폭발 행정, 및 배기 행정이 하나의 사이클을 이루는 4행정 1사이클의 왕복 피스톤 엔진(100)이 도시되어 있다. 하지만, 본 발명은 4행정 1사이클의 왕복 피스톤 엔진(100)에 한정되지 않으며, 다양한 종류의 왕복 피스톤 엔진에 적용될 수도 있다.
도 2를 참조하면, 본 발명의 왕복 피스톤 엔진(100)은, 흡기 밸브(112)와 배기 밸브(114)가 구비된 실린더(102), 실린더(102)의 상사점(TDC)과 하사점(BDC) 사이를 직선 왕복할 수 있도록 실린더(102)의 내부에 배치된 피스톤(104), 실린더(102)에 회전 가능하게 배치된 크랭크축(106), 크랭크축(106)에 피스톤(104)의 동력을 전달하기 위하여 크랭크축(106)과 피스톤(104)에 양측이 회전 가능하게 연결된 커넥팅 로드(108), 실린더(102)의 상부에 배치된 연료폭발장치(110)를 포함한다.
상기 실린더(102)는, 피스톤(104)이 상하방향으로 이동 가능하게 배치되는 실린더 본체(102a), 실린더 본체(102a)의 상부에 결합되고 흡기 밸브(112)와 배기 밸브(114)가 배치되는 실린더 헤드(102b), 및 실린더 본체(102a)의 하부에 결합되고 부품의 윤활과 냉각을 위한 오일이 수용되는 오일 팬(102c)을 포함할 수 있다.
그리고, 실린더 헤드(102b)에는 연료 가스 또는 공기를 실린더 본체(102a)의 내부로 안내하는 흡기 통로(113), 및 연소 가스를 실린더 본체(102a)의 외부로 안내하는 배기 통로(115)가 형성될 수 있다. 흡기 밸브(112)는 흡기 통로(113)를 개폐하도록 실린더 헤드(102b)의 상부 좌측에 배치되고, 배기 밸브(114)는 배기 통로(115)를 개폐하도록 실린더 헤드(102b)의 상부 우측에 배치된다. 상기와 같은 흡기 밸브(112)와 배기 밸브(114)는 크랭크축(106)과 연동되는 캠(미도시)에 의하여 개폐 동작의 조절될 수 있다.
상기 피스톤(104)은 실린더(102)와 함께 연료 가스가 연소되는 연소실(116)을 형성한다. 연소실(116)은 실린더(102)의 상사점(TDC)에 피스톤(104)이 도달했을 때 실린더(102)와 피스톤(104)이 감싸는 밀폐 공간이다.
상기 크랭크축(106)은 피스톤(104)의 직선 운동 에너지를 전달받아 회전 운동 에너지로 전환하는 부품으로써, 실린더(102)에 회전 가능하게 배치된다. 크랭크축(106)은 회전 중심으로부터 일정 거리 떨어진 위치에 커넥팅 로드(108)와 회전 가능하게 연결되는 연결부(106a)가 구비된다. 크랭크축(106)은 시계 방향 또는 반시계 방향 중 어느 한 방향으로만 회전되나, 본 실시예에서는 시계 방향으로만 회전되는 것으로 설명한다.
상기 커넥팅 로드(108)는 피스톤(104)의 직선 운동 에너지를 크랭크축(106)에 전달하는 부품으로써, 크랭크축(106)의 연결부(106a)에 하단이 회전 가능하게 연결되고, 피스톤(104)에 상단이 회전 가능하게 연결된다.
상기 연료폭발장치(110)는 연소실(116)의 내부에서 연료 가스를 폭발시키는 부품으로써, 실린더 헤드(102b)에 관통되게 배치된다.
한편, 왕복 피스톤 엔진(100)이 가솔린 엔진이면, 가솔린과 공기를 혼합한 연료 가스가 흡기 통로(113)를 통해 흡입되고, 연료폭발장치(110)는 연소실(116) 내의 연료 가스를 전기 스파크로 점화시키는 점화기구(110)를 포함한다. 반면에, 왕복 피스톤 엔진(100)이 디젤 엔진이면, 공기가 흡기 통로(113)를 통해 흡입되고, 연료폭발장치(110)는 연소실(116)의 내부로 연료를 분사하는 연료분사기구를 포함한다. 이하, 본 실시예에서는 설명의 편의를 위하여 가솔린 엔진으로 한정하여 설명한다.
도 2를 참조하면, 본 발명의 일실시예에 따른 왕복 피스톤 엔진(100)은, 흡기 밸브(112)와 배기 밸브(114)가 닫힌 상태에서 점화기구(110)가 작동되는 시점까지 실린더(102)의 상사점(TDC)으로부터 하사점(BDC)을 향해 피스톤(104)이 이동되는 동안, 연소실(116) 내의 압축 압력을 일정하게 유지시키는 압력유지장치(120)를 더 포함한다. 압력유지장치(120)는 연소실(116)과 연통되게 연결되도록 실린더(102)의 상부에 배치될 수 있다. 하지만, 압력유지장치(120)는 실린더(102)의 다양한 위치에 연소실(116)과 연통되게 배치될 수 있을 뿐만 아니라, 실린더(102)에 복수개가 구비될 수도 있다.
그리고, 압력유지장치(120)는, 연소실(116)과 연통되는 내부 공간을 구비하도록 실린더(102)의 상부에 배치된 보조 실린더(122), 상기 보조 실린더(122)의 상사점(TDC′)과 하사점(BDC′) 사이를 직선 왕복할 수 있도록 보조 실린더(122)의 내부에 배치된 보조 피스톤(124), 및 상기 보조 피스톤(124)을 이동시키기 위하여 보조 피스톤(124)에 일측이 연결된 피스톤 구동기구(126)를 포함할 수 있다.
보조 실린더(122)는 연소실(116)과 연통되게 연결되는 부위에 출입구(122a)가 형성될 수 있다. 이하에서는 보조 실린더(122)가 실린더(102)와 직교되는 구조로 실린더(102)의 상부에 수평하게 배치되고 보조 피스톤(124)이 좌우방향으로 직선 이동되는 것으로 설명한다. 하지만, 보조 실린더(122)는 실린더(102)의 다양한 위치에 다양한 방향으로 배치될 수 있다.
도 2 내지 도 4를 참조하면, 피스톤 구동기구(126)는, 보조 피스톤(124)에 일측이 연결된 보조 커넥팅 로드(130), 보조 커넥팅 로드(130)를 이송시키기 위하여 보조 커넥팅 로드(130)의 타측에 배치된 이송부(132), 및 이송부(132)에 구동력을 전달하기 위하여 이송부(132)에 연결된 구동부(134)를 포함할 수 있다.
보조 커넥팅 로드(130)는 이송부(132)의 이송력을 보조 피스톤(124)에 전달하는 부품으로써, 보조 피스톤(124)과 함께 좌우 방향으로 이동된다. 보조 실린더(122)는 이송부(132)와 대향되는 부위에 보조 커넥팅 로드(130)의 중간 부분을 이동 가능하게 지지하는 로드 지지부(122b)가 형성될 수 있다. 따라서, 보조 커넥팅 로드(130)는 로드 지지부(122b)에 의해 보다 안정적으로 이동될 수 있다.
이송부(132)는 보조 커넥팅 로드(130)의 타측이 이동 가능하게 삽입되는 이송홈(140)이 외주면에 둘레를 따라 형성된 이송 드럼(132)을 포함할 수 있다. 이송 드럼(132)은 원기둥 형상으로 형성될 수 있다. 이송 드럼(132)의 회전축(132a)은, 보조 커넥팅 로드(130)와 평행하게 배치될 수 있으며, 이송 드럼(132)의 반경 길이만큼 보조 커넥팅 로드(130)로부터 이격된 위치에 배치될 수 있다.
또한, 이송 드럼(132)의 회전시 보조 커넥팅 로드(130)의 타측이 이송홈(140)을 따라 이동되기 위하여 이송홈(140)은 이송 드럼(132)의 외주면에 둘레를 따라 폐곡선 형상으로 형성될 수 있다. 그리고, 이송 드럼(132)의 회전시 보조 커넥팅 로드(130)의 타측이 좌우 방향으로 이동되기 위하여 이송홈(140)은 이송 드럼(132)의 외주면에 좌우 방향으로 위치가 가변되는 형상으로 형성될 수 있다. 이와 같은 이송홈(140)의 형상은, 이송 드럼(132)의 외주면을 좌우 방향으로 펼치는 경우, 도 14에 도시된 보조 피스톤(124)의 이동 경로와 동일한 형상으로 형성될 수 있다.
도 4에는 이송 드럼(132)과 보조 커넥팅 로드(130)의 연결 구조에 대한 일 예가 도시되어 있다. 하지만, 이송 드럼(132)과 보조 커넥팅 로드(130)의 연결 구조는 도 4의 일 예에 한정되지 아니하고 이송 드럼(132)의 회전시 이송홈(140)을 따라 보조 커넥팅 로드(130)의 타측을 이동시킬 수 있는 다양한 구조가 채용될 수 있다. 도 4를 참조하면, 보조 커넥팅 로드(130)의 타측에는 이송홈(140)의 내부에 삽입된 후 이송홈(140)을 따라 이동되는 롤러 부재(130a)가 구비될 수 있다. 이송홈(140)의 입구에는 롤러 부재(130a)의 이탈을 방지하는 걸림턱(142)이 형성될 수 있다. 따라서, 이송 드럼(132)의 회전시 이송홈(140)의 내벽에 롤러 부재(130a)가 구름 접촉되기 때문에, 보조 커넥팅 로드(130)의 타측이 이송홈(140)을 따라 부드럽게 이동될 수 있다. 그리고, 이송홈(140)에서 이탈되는 방향으로 이동되는 롤러 부재(130a)는 걸림턱(142)에 걸리기 때문에, 보조 커넥팅 로드(130)의 타측과 이송 드럼(132)의 임의 탈거가 방지될 수 있다.
한편, 피스톤 구동기구(126)의 이송부(132)는 도 3의 이송 드럼(132)에 한정되지 않고 다양한 구성으로 형성될 수 있는 바, 도 5 내지 도 7에는 피스톤 구동기구(126)의 이송부(132)에 대한 다른 예가 각각 도시되어 있다.
도 5에 도시된 이송부(232)는 보조 커넥팅 로드(130)와 직교되게 회전축(232a)이 배치된 이송 드럼(232)을 포함할 수 있다. 이송 드럼(232)의 외주면에는 커넥팅 로드(130)의 타측이 삽입되기 위하여 깊이가 다르게 형성된 이송홈(240)이 형성될 수 있다. 커넥팅 로드(130)의 타측에는 이송홈(240)에 삽입되는 롤러 부재(230a)가 회전 가능하게 배치될 수 있다. 따라서, 이송 드럼(232)이 회전되면, 이송홈(240)의 깊이 변화에 대응하여 보조 커넥팅 로드(130)의 타측도 좌우 방향으로 이송될 수 있다.
또한, 도 6에 도시된 이송부(332)는 보조 커넥팅 로드(130)의 타측과 슬라이딩 가능하게 접촉되는 이송 캠(332)을 포함할 수 있다. 커넥팅 로드(130)의 타측에는 이송 캠(332)의 접촉면(332a)에 구름 접촉되는 롤러 부재(330a)가 회전 가능하게 배치될 수 있다. 따라서, 이송 드럼(132)이 회전되면, 이송 캠(332)의 접촉면(332a) 형상에 대응하여 보조 커넥팅 로드(130)의 타측도 좌우 방향으로 이송될 수 있다.
또한, 도 7에 도시된 이송부(432)는, 보조 커넥팅 로드(130)의 타측에 형성된 제 1 이송 기어(432a)와, 제 1 이송 기어(432a)와 치합되도록 상기 구동부(134)에 연결된 제 2 이송 기어(432b)를 포함할 수 있다. 제 1 이송 기어(432a)는 보조 커넥팅 로드(130)의 타측에 길이 방향으로 형성된 렉 기어이고, 상기 제 2 이송 기어(432b)는 렉 기어와 치합되고 구동부(134)에 회전축이 연결된 피니언 기어이다.
도 2를 참조하면, 구동부(134)는 이송 드럼(132)을 회전시키기 위하여 이송 드럼(132)의 회전축(132a)에 연결된다. 구동부(134)는, 크랭크축(106)의 회전력을 이송 드럼(132)에 전달하기 위하여 이송 드럼(132)의 회전축(132a)과 크랭크축(106)에 연동 가능하게 연결되는 동력전달기구(134)를 포함할 수 있다. 따라서, 동력전달기구(134)와 이송 드럼(132)에 의하여 피스톤(104)과 보조 피스톤(124)의 작동이 서로 동기화(同期化)될 수 있다. 즉, 동력전달기구(134)는 크랭크축(106)과 이송 드럼(132)의 회전 각도가 서로 일치되도록 크랭크축(106)과 이송 드럼(132)의 작동을 조절하고, 크랭크축(106)과 마찬가지로 이송 드럼(132)을 한 방향으로만 회전시킨다. 동력전달기구(134)는 기어, 풀리, 벨트 등과 같은 동력전달용 부품들로 구성될 수 있는 데, 이에 대한 상세한 설명은 생략하기로 한다.
상기와 다르게, 구동부(134)는, 모터와 같은 별도의 동력발생기구와, 크랭크축(106)의 회전 상태 또는 피스톤(104)의 이동 상태를 감지하는 감지부와, 감지부의 감지값에 따라 동력발생기구의 작동을 제어하는 제어부를 포함할 수도 있다. 따라서, 구동부(134)는 동력발생기구의 동력으로 이송 드럼(132)의 작동을 독립적으로 제어할 수 있다. 이하, 본 실시예에서는 설명의 편의를 위하여 구동부(134)가 동력전달기구(134)를 포함하는 것으로 설명한다.
도 2를 참고하면, 왕복 피스톤 엔진(100)은, 연소실(116)의 내부로 외부 공기를 고압으로 주입시키는 공기주입기구(150)를 더 포함할 수 있다. 공기주입기구(150)는 실린더(102) 또는 압력유지장치(120)에 구비될 수 있다. 이하에서는, 압력유지장치(120)의 보조 실린더(122)에 공기주입기구(150)가 구비된 것으로 설명한다.
공기주입기구(150)는, 보조 실린더(122)의 출입구(122a)와 상사점(TDC′) 사이에 배치된 공기주입노즐(152)과, 공기주입노즐(152)로 고압의 공기를 안내하는 공기안내유로(154)와, 공기안내유로(154)와 연결되어 외부 공기를 펌핑하는 공기펌프(156)를 포함할 수 있다. 공기주입노즐(152)은 보조 실린더(122)의 출입구(122a)를 향하는 구조로 배치될 수 있다. 공기주입기구(150)의 유로 상에 공기의 토출을 단속하는 밸브가 배치될 수 있다. 따라서, 공기펌프(156)가 펌핑한 고압의 공기는 공기안내유로(154)를 따라 공기주입노즐(152)로 이동되고, 공기주입노즐(152)을 통해 고압의 공기가 보조 실린더(122)의 내부로 토출되며, 보조 실린더(122)의 내부로 토출된 공기는 출입구(122a)를 통해 실린더(102)의 내부로 공급된다.
상기와 같이 구성된 본 발명의 일실시예에 따른 왕복 피스톤 엔진의 작동 방법을 살펴보면 다음과 같다.
도 8 내지 도 12는 본 발명에 따른 왕복 피스톤 엔진의 흡입 단계, 압축 단계, 압축 유지 단계, 폭발 단계, 배기 단계를 각각 나타낸 상태도이고, 도 13 및 도 14는 도 8 내지 도 12에 도시된 피스톤 및 보조 피스톤의 작동 상태를 나타낸 그래프이다. 본 발명에 따른 왕복 피스톤 엔진(100)의 작동 방법은 흡입 단계(A), 압축 단계(B), 압축 유지 단계(C), 폭발 단계(D), 및 배기 단계(E)를 포함한다.
도 8과 도 13 및 도 14를 참조하면, 상기 흡입 단계(A)에서는, 흡기 밸브(112)가 열리고 배기 밸브(114)가 닫힌다. 그리고, 실린더(102)의 상사점(TDC)에서 하사점(BDC)으로 피스톤(104)을 하강시켜 실린더(102)의 내부 공간을 증가시키고, 보조 실린더(122)의 상사점(TDC′)에서 하사점(BDC′)으로 보조 피스톤(124)을 이동시켜 보조 실린더(122)의 내부 공간을 증가시킨다. 따라서, 실린더(102)와 보조 실린더(122)의 내부 공간이 함께 증가되기 때문에, 흡기 통로(113)로 흡입되는 연료 가스의 흡입량이 증가될 수 있다. 즉, 실린더(102)와 보조 실린더(122)의 내부 공간은 도 1에 도시된 왕복 피스톤 엔진(1)보다 보조 실린더(122)의 내부 공간이 더 추가된 크기로 형성되므로, 보조 실린더(122)의 내부 공간만큼 연료 가스를 더 흡입할 수 있다.
여기서, 피스톤(104)은 크랭크축(106)의 회전력에 의해 하강되고, 보조 피스톤(124)은 이송 드럼(132)의 회전력에 의해 좌측으로 이동된다. 이때, 크랭크축(106)과 이송 드럼(132)의 회전각도(θ)는 180도로 동일하고, 피스톤(104)과 보조 피스톤(124)은 상사점(TDC)(TDC′)에서 하사점(TDC)(BDC′)으로 직선 이동되는 1행정이다. 즉, 흡입 단계(A)는 4행정 1사이클 엔진의 흡입 행정에 해당된다.
도 9와 도 13 및 도 14를 참조하면, 상기 압축 단계(B)에서는, 흡기 밸브(112)와 배기 밸브(114)가 닫힌다. 그리고, 실린더(102)의 하사점(BDC)에서 상사점(TDC)으로 피스톤(104)을 상승시켜 실린더(102)의 내부 공간을 감소시킨다. 이때, 보조 실린더(122)는 하사점(BDC′)에 정지된 상태를 계속 유지한다. 이와 같이 피스톤(104)에 의해 실린더(102)의 내부 공간이 감소되므로, 흡입 단계(A)에서 흡입된 연료 가스가 압축될 수 있다.
여기서, 피스톤(104)은 크랭크축(106)의 회전력에 의해 상승된다. 이때, 크랭크축(106)과 이송 드럼(132)의 회전각도(θ)는 180도로 동일하고, 피스톤(104)은 하사점(BDC)에서 상사점(TDC)으로 직선 이동되는 1행정이다. 따라서, 압축 단계(B)는 4행정 1사이클 엔진의 압축 행정에 해당된다. 그러나, 보조 피스톤(124)은 하사점(BDC′)에 정지된 상태이므로, 상사점(TDC′)에 도달되지 못한다.
상기와 같이 실린더(102)의 상사점(TDC)에 피스톤(104)이 도달되면, 실린더(102)와 보조 실린더(122)의 내부 공간이 연소실(116)을 형성한다. 이러한 연소실(116)은 도 1에 도시된 왕복 피스톤 엔진(1)의 연소실(116)보다 보조 실린더(122)의 내부 공간만큼 더 증대된 크기이다. 그러나, 보조 실린더(122)의 내부 공간은 흡입 단계(A)에서도 흡입 용량으로 작용되므로, 흡입 단계(A)와 압축 단계(B)에서 보조 실린더(112)의 내부 공간의 용량으로 인한 압축 손실은 발생되지 않는다.
도 10과 도 13 및 도 14를 참조하면, 상기 압축 유지 단계(C)에서는, 흡기 밸브(112)와 배기 밸브(114)는 닫힌 상태를 유지한다. 그리고, 실린더(102)의 상사점(TDC)에서 하사점(BCD)을 향해 점화기구(110)의 작동 시점까지 피스톤(104)을 하강시켜 실린더(102)의 내부 공간을 증가시키고, 보조 실린더(122)의 상사점(TDC′)으로 보조 피스톤(124)을 이동시켜 보조 실린더(122)의 내부 공간을 최소화시킨다.
한편, 점화기구(110)는 커넥팅 로드(108)와 크랭크축(106)의 직교 위치(G) 또는 상기의 직교 위치(G)와 근접한 위치에서 작동될 수 있다. 즉, 피스톤(104)과 커넥팅 로드(108)가 연결된 지점을 제 1 포인트(P1)라 하고, 커넥팅 로드(108)와 크랭크축(106)이 연결된 지점을 제 2 포인트(P2)라 하며, 크랭크축(106)의 회전 중심을 제 3 포인트(P3)라고 하면, 커넥팅 로드(108)와 크랭크축(106)이 직교되는 위치(G)는 제 1,2 포인트(P1)(P2)를 지나는 선분과 제 2,3 포인트(P2)(P3)를 지나는 선분이 이루는 각도가 0도~90도일 때이다. 그런데, 점화기구(100)의 작동 시점이 커넥팅 로드(108)와 크랭크축(106)의 직교 위치(G)에 가까워질수록 피스톤(104)의 직선 운동 에너지가 크랭크축(106)의 회전 운동 에너지로 보다 많이 전환될 수 있고, 점화기구(100)의 작동 시점이 커넥팅 로드(108)와 크랭크축(106)의 직교 위치(G)일 때에 피스톤(104)의 직선 운동 에너지가 크랭크축(106)의 회전 운동 에너지로 모두 전환될 수 있다. 따라서, 점화기구(110)는 커넥팅 로드(108)와 크랭크축(106)의 직교 위치(G) 또는 직교 위치(G)와 최대한 근접한 위치에서 작동되는 것이 엔진의 효율에 유리하다. 이하, 본 실시예에서는 커넥팅 로드(108)와 크랭크축(106)의 직교 위치(G)에서 점화기구(110)가 작동되는 것으로 설명한다.
여기서, 피스톤(104)은 크랭크축(106)의 회전력에 의해 하강되고, 보조 피스톤(124)은 이송 드럼(132)의 회전력에 의해 우측으로 이동된다. 이때, 크랭크축(106)과 이송 드럼(132)의 회전각도(θ)는 90도보다 작으며, 피스톤(104)은 하사점(BDC)에서 커넥팅 로드(108)와 크랭크축(106)이 직교되는 위치(G)까지 직선 이동되고, 보조 피스톤(124)은 우측으로 이동되어 상사점(TDC′)에 도달된다. 따라서, 보조 피스톤(124)은 점화기구(110)의 작동 시점에 보조 실린더(122)의 상사점(TDC′)에 도달되므로, 보조 실린더(122)의 내부 공간을 최소로 만들어 보조 실린더(122)의 내부 공간으로 인한 손실을 방지할 수 있다.
또한, 상기 실린더(102)의 내부 공간이 증가되면 연소실(116)의 용적도 증가되나, 보조 실린더(122)의 내부 공간의 감소로 인하여 연소실(116)의 용적 증가가 보상된다. 즉, 피스톤(104)의 하강으로 인한 연소실(116)의 용적 증가량에 대응하여 보조 피스톤(124)이 좌측으로 이동된다. 따라서, 실린더(102)의 내부 공간의 증가량은 보조 실린더(122)의 내부 공간의 감소량과 동일하거나 작을 수 있다.
상기와 같이 피스톤(104)의 하강으로 인한 연소실(116)의 용적 증가량을 보조 피스톤(124)이 좌측으로 이동되면서 보상해 주기 때문에, 연소실(116)의 용적이 압축 단계(B)에서의 연소실(116)의 용적과 동일하게 유지되거나 또는 더 압축될 수 있다. 따라서, 압축 단계(B)에서 피스톤(104)이 실린더(102)의 상사점(TDC)에 도달될 때의 연소실(116)의 최대 압축 압력이 압축 유지 단계(C)에서 그대로 유지될 수 있고, 그로 인하여 연료 가스의 팽창이 방지되어 팽창으로 인한 압력 저하도 방지될 수 있다. 한편, 압축 단계(B)와 압축 유지 단계(C)는 4행정 1사이클 엔진의 압축 행정에 해당된다.
도 10, 도 11, 도 13, 및 도 14를 참조하면, 상기 폭발 단계(D)에서는, 흡기 밸브(112)와 배기 밸브(114)가 닫힌 상태를 유지한다. 도 10에 도시된 바와 같이, 보조 실린더(122)의 상사점(TDC′)에 보조 피스톤(124)이 도달된 시점에 점화기구(110)를 작동시키면, 점화기구(110)가 연소실(116)의 내부에 스파크를 발생시켜 연료 가스를 폭발시킨다.
보조 피스톤(124)은 이송 드럼(132)의 이송홈(140)에 걸려 좌우방향으로의 이동이 정지된다. 상기와 같이 보조 피스톤(124)은 보조 실린더(122)의 상사점(TDC′)에 도달된 상태를 유지하고 있기 때문에, 보조 실린더(122)의 내부 공간도 가장 작은 크기로 유지될 수 있다. 따라서, 연료 가스의 폭발력은 피스톤(104)에만 모두 전달되고, 보조 실린더(122)의 내부 공간의 증가로 인한 손실이 방지된다.
연료 가스의 폭발력은 커넥팅 로드(108)와 크랭크축(106)의 직교되는 위치(G)에서 실린더(102)의 하사점(BDC)으로 피스톤(104)을 하강시켜 실린더(102)의 내부 공간을 증가시킨다. 따라서, 도 1에 도시된 왕복 피스톤 엔진(1)보다 피스톤(104)이 더 하강된 지점(G)에서 점화기구(110)가 작동되므로, 점화기구(110)의 작동 시점이 도 1에 도시된 왕복 피스톤 엔진(1)보다 소정 시간 지연된다.
여기서, 피스톤(104)은 연료 가스의 폭발력에 의해 하강되고, 피스톤(104)의 직선 운동 에너지는 커넥팅 로드(108)를 통해 크랭크축(106)에 전달된 후 크랭크축(106)의 회전 운동 에너지로 전환된다. 상기와 같이 상기 커넥팅 로드(108)와 크랭크축(106)이 직교되는 위치(G)에서 연료 가스가 폭발되면, 커넥팅 로드(108)로 전달된 피스톤(104)의 직선 운동 에너지가 크랭크축(106)의 회전 운동 에너지로 모두 전환되어 엔진의 효율이 최대로 향상될 수 있다.
또한, 크랭크축(106)과 이송 드럼(132)의 회전각도(θ)는 90도보다 크고 180도보다 작으며, 피스톤(104)은 커넥팅 로드(108)와 크랭크축(106)의 직교 위치(G)에서 하사점(BDC)까지 직선 이동되고, 보조 피스톤(124)은 상사점(TDC′)에서 위치가 고정된다. 특히, 압축 유지 단계(C)와 폭발 단계(D)에서는 크랭크축(106)과 이송 드럼(132)의 총 회전각도(θ)가 180도로 동일하고, 피스톤(104)은 상사점(TDC)에서 하사점(BDC)으로 직선 이동되는 1행정을 이루고 있다. 즉, 폭발 단계(D)는 4행정 1사이클 엔진의 폭발 행정 및 팽창 행정에 해당된다.
도 12와 도 13 및 도 14를 참조하면, 상기 배기 단계(E)에서는, 흡기 밸브(112)가 닫히고 배기 밸브(114)가 열린다. 그리고, 실린더(102)의 하사점(BDC)에서 상사점(TDC)으로 피스톤(104)을 상승시켜 실린더(102)의 내부 공간을 감소시키고, 보조 실린더(122)의 상사점(TDC)에 보조 피스톤(124)을 정지시켜 보조 실린더(122)의 내부 공간을 가장 작은 상태로 유지한다.
따라서, 실린더(102)와 보조 실린더(122)의 내부 공간이 최소로 형성되기 때문에, 배기 통로(115)로 배출되는 연소 가스의 배출 성능이 향상될 수 있다. 즉, 배기 단계(E)에서는 흡입 단계(A)보다 실린더(102)와 보조 실린더(122)의 내부 공간이 작게 형성되기 때문에, 배기 단계(E)와 흡입 단계(A)에서의 내부 공간의 차이만큼, 배기 단계(E)에서 연소 가스가 더 배기될 수 있고 흡입 단계(A)에서 연료 가스가 더 흡입될 수 있다.
여기서, 피스톤(104)은 크랭크축(106)의 회전력에 의해 상승되고, 보조 피스톤(124)은 이송 드럼(132)의 이송홈(140)에 걸려 좌우방향으로의 이동이 정지된다. 이때, 크랭크축(106)과 이송 드럼(132)의 회전각도(θ)는 180도로 동일하고, 피스톤(104)과 보조 피스톤(124)은 상사점(TDC)(TDC′)에서 하사점(BDC)(BDC′)으로 직선 이동되는 1행정이다. 따라서, 배기 단계(E)는 4행정 1사이클 엔진의 배기 행정에 해당된다.
상기와 같은 배기 단계(E)는 공기주입기구(150)를 작동시켜 연소실(116)의 내부로 고압의 외부 공기를 주입하는 공기주입단계(F)를 더 포함할 수 있다. 공기주입기구(150)는, 배기 밸브(114)가 열린 후에 작동되고, 흡기 밸브(112)가 열리기 전에 작동이 정지된다. 공기주입기구(150)는 연소실(116)의 내부에 공기를 연속적으로 주입하거나, 또는 연소실(116)의 내부에 일정 간격으로 공기를 단속적으로 주입할 수 있다. 연소실(116)의 내부로 고압의 공기가 주입되면, 연소실(116) 내의 연소 가스가 배기 통로(115)로 더욱 원활히 배출되어 엔진의 배기 성능이 더욱 향상될 수 있다.
한편, 배기 단계(E)에서 보조 피스톤(124)이 보조 실린더(122)의 상사점(TDC′)에 정지되지 않고, 보조 실린더(122)의 상사점(TDC′)보다 우측으로 더 이동될 수 있다. 상기와 같이 보조 피스톤(124)이 보조 실린더(122)의 상사점(TDC′) 우측으로 이동되면, 보조 실린더(122)의 내부 공간의 감소량이 더욱 커져서 엔진의 배기 성능이 더욱 향상될 수 있다. 이를 위하여, 이송 드럼(132)에 형성된 이송홈(140)의 형상이 변경되어야 하고, 보조 실린더(122)의 상사점(TDC′)과 출입구(122a) 사이에 충분한 공간이 존재하여야 하며, 공기주입기구(150)의 공기주입노즐(152)과의 간섭도 회피될 수 있어야 한다.
도 13과 도 14에 도시된 바와 같이 흡입 단계(A), 압축 단계(B), 압축 유지 단계(C), 폭발 단계(D), 및 배기 단계(E)에서는 피스톤(104)과 보조 피스톤(124)이 실린더(102)와 보조 실린더(122)의 내부에서 서로 비대칭적으로 왕복 운동을 수행한다.
도 15는 본 발명의 다른 실시예에 따른 왕복 피스톤 엔진이 도시된 단면도이고, 도 16은 도 15에 도시된 ‘J’를 확대하여 나타낸 도면이다. 그리고, 도 17은 도 15에 도시된 왕복 피스톤 엔진의 승강가이드를 나타낸 평면도이고, 도 18은 도 17에 도시된 Ⅱ-Ⅱ선에 따른 단면을 나타낸 도면이다.
도 15를 참조하면, 본 발명의 다른 실시예에 따른 왕복 피스톤 엔진(500)는 실린더(510), 제1 피스톤(520), 제2 피스톤(530), 피스톤 승강장치(540), 및 연료폭발장치를 포함한다. 여기서, 실린더(510)와 제1 피스톤(520) 및 제2 피스톤(530)의 내부에는 연소실(I)이 형성된다. 연소실(I)은 연료 가스를 수용하거나 연소시키는 공간이다.
상기 실린더(510)의 내부에는 제1 피스톤(520)과 제2 피스톤(530)이 상하방향으로 이동 가능하게 배치될 수 있다. 제1 피스톤(520)은 제2 피스톤(530)의 하측에 배치될 수 있다. 실린더(510)의 상부에는 연료 가스 또는 공기를 흡입하는 흡기관(512) 및 연소 가스를 배기하는 배기관(514)이 형성될 수 있다.
상기 제1 피스톤(520)은 실린더(510)의 내부에 상하 방향으로 승강 가능하게 구비되며, 크랭크축(522)에 커넥팅 로드(524)로 연결된다. 따라서, 상기 연소실(I) 내에서 폭발된 연소 가스의 에너지는 제1 피스톤(520)과 커넥팅 로드(524)를 통해 크랭크축(522)에 전달된다.
도 15 및 도 16를 참조하면, 상기 연료폭발장치는 실린더(510)에 구비되고, 연소실(I)의 크기가 최소로 작아질 때 연소실(I)의 내부에서 연료를 폭발시키는 기능을 수행한다. 연료폭발장치는 제1 피스톤(520)과 제2 피스톤(530) 사이에 배치되도록 실린더(510)의 측면에 적어도 하나가 구비될 수 있다. 즉, 연료폭발장치는 제1 피스톤(520)과 제2 피스톤(530)에 간섭되지 않는 부위에 배치된다.
여기서, 왕복 피스톤 엔진(500)이 디젤 엔진이면, 연료폭발장치는 연소실(I)의 크기가 최소인 시점에서 연소실(I)의 내부로 연료 가스를 분사하는 연료분사기구(미도시)를 구비할 수 있다. 이때, 연소실(I)의 크기가 최소인 시점에서는 제1 피스톤(520)과 제2 피스톤(530)이 연료 가스를 자연 착화시키는 온도로 연소실(I) 내의 공기를 압축시킨다.
또는, 왕복 피스톤 엔진(500)이 가솔린 엔진이면, 연료폭발장치는 연소실(I)의 크기가 최소인 시점에 연소실(I) 내의 연료 가스를 점화시키는 점화기구(550)를 구비할 수 있다. 이때, 연소실(I)의 크기가 최소인 시점에서는 제1 피스톤(520)과 제2 피스톤(530)이 연료 가스를 완전 연소시키는 압력으로 연소실(I) 내의 공기를 압축시킬 수 있다.
이하, 본 실시예에서는 왕복 피스톤 엔진(500)이 가솔린 엔진이고, 연료폭발장치가 점화기구(550)를 포함하는 것으로 설명한다. 점화기구(550)는 실린더(510)의 측면에 수평하게 배치될 수 있다. 그리고, 점화기구(550)는 실린더(510)의 측면에 2개가 서로 대향되게 배치될 수 있다. 하지만, 점화기구(550)의 개수와 위치가 본 실시예에 한정되는 것은 아니며, 필요에 따라 다양한 위치에 단수개 또는 복수개가 배치될 수도 있다.
점화기구(550)는, 실린더(510)의 내부에 배치된 단부에 돌출된 제1 점화 플러그(552), 및 제1 점화 플러그(552)와의 사이에 발생된 불꽃이 연소실(I)의 내부로 원활하게 전파될 수 있도록 제1 점화 플러그(552)에서 일정 거리 이격된 위치에 돌출된 적어도 하나의 제2 점화 플러그(554)(556)를 포함할 수 있다. 이하, 본 실시예에서는 제1 점화 플러그(552)의 주위에 복수개의 제2 점화 플러그(554)(556)가 배치된 것으로 설명한다. 그리고, 제2 점화 플러그(554)(556)들은 제1 점화 플러그(552)와 평행하게 형성될 수 있다. 따라서, 제1 점화 플러그(552)와 제2 점화 플러그(554)(556)들은 연소실(I)의 내부를 향해 개방된 구조로 형성될 수 있다.
도 15을 참조하면, 상기 제2 피스톤(530)은 실린더(510) 및 제1 피스톤(520)과 함께 연소실(I)을 형성하도록 실린더(510)의 상부에 상하 방향으로 승강 가능하게 배치될 수 있다. 제2 피스톤(530)에는 흡기관(512)과 연소실(I)을 연통시키는 적어도 하나의 흡기구(532)가 형성될 수 있고, 배기관(514)과 연소실(I)을 연통시키는 적어도 하나의 배기구(534)가 형성될 수 있다. 이하, 본 실시예에서는 흡기구(532)과 배기구(534)가 2개씩 제2 피스톤(530)에 형성된 것으로 설명하지만, 필요에 따라 흡기구(532)와 배기구(534)의 개수는 다양하게 결정될 수 있다.
배기구(534)들에는 배기밸브(535)가 개폐 가능하게 각각 구비될 수 있고, 흡기구(532)들에는 흡기밸브(533)가 개폐 가능하게 각각 구비될 수 있다. 배기밸브(535)들과 흡기밸브(533)들은 제2 피스톤(530)의 배기구(534)들 및 흡기구(532)들에 상하 방향으로 이동 가능하게 배치될 수 있다.
도 15과 도 17 및 도 18를 참조하면, 상기 피스톤 승강장치(540)는 제2 피스톤(530)의 승강 동작을 크랭크축(522)의 회전 각도에 따라 조절하는 장치이다. 즉, 피스톤 승강장치(540)는 제1 피스톤(520)이 최고점으로부터 하강되는 일정 시점(O)에서 연소실(I)의 크기를 최소로 만들도록 제2 피스톤(530)의 승강 동작을 조절할 수 있다. 이와 같은 피스톤 승강장치(540)는 크랭크축(522)의 동력을 제2 피스톤(530)에 전달하도록 제2 피스톤(530)과 크랭크축(522) 사이에 구비될 수 있다.
연소실(I)의 크기가 최소인 시점(O)은, 제1 피스톤(520)과 제2 피스톤(530)이 최고점에서 함께 하강될 때부터 크랭크축(522)이 30도 내지 40도의 각도로 회전된 시점으로 설정될 수 있다. 왜냐하면, 이 시점(O)에서는 제1 피스톤(520)과 제2 피스톤(530)의 하강은 크지 않으면서 크랭크축(522)의 회전은 크기 때문이며, 크랭크축(522)의 회전된 각도가 30도일 때 50%의 회전력을 발생시키는 각도가 되기 때문이다. 상기 연소실(I)의 크기가 최소인 시점(O)에서 점화기구(550)가 작동될 수 있다. 하지만, 연소실(I)의 크기가 최소인 시점(O)은 크랭크축(522)이 30도 내지 40도의 각도로 회전된 시점으로 반드시 한정되는 것은 아니며, 엔진의 설계 조건에 따라 다양한 임의의 각도로 설정될 수 있다.
예를 들면, 피스톤 승강장치(540)는 승강돌기(542), 승강가이드(544), 및 동력전달기구(546)를 포함할 수 있다. 상기 승강돌기(542)는 제2 피스톤(530)의 외주면에서 반경 방향으로 돌출될 수 있다. 실린더(510)의 상부 측면에는 승강돌기(542)들이 관통되게 삽입되는 승강홀부(516)들이 형성될 수 있다. 승강돌기(542)들은 제2 피스톤(530)의 외주면에 원주 방향을 따라 동일 간격으로 이격되게 형성될 수 있다. 승강홀부(516)들은 실린더(510)의 측면에 승강돌기(542)들과 대향되는 위치에 이격되게 형성될 수 있다.
승강홀부(516)들은 승강돌기(542)들의 상하 이동을 안내할 수 있도록 상하 방향으로 길게 형성될 수 있다. 이때, 제2 피스톤(530)의 상하 길이 또는 승강돌기(542)들의 상하 위치는, 제2 피스톤(530)이 승강됨에 따라 제2 피스톤(530)의 하측으로 승강홀부(516)들이 노출되지 않도록 형성될수 있다. 즉, 제2 피스톤(530)의 승강시 연소실(I)이 승강홀부(516)들에 의해 개방되는 현상을 방지할 수 있다.
또한, 상기 승강가이드(544)는 동력전달기구(546)의 동력에 의해 승강홀부(516)들을 따라 승강돌기(542)들을 승강시키는 부재이다. 승강가이드(544)는 실린더(510)에 이동 또는 회전 가능하게 배치될 수 있다. 그리고, 승강가이드(544)에는 승강홀부(516)들을 관통한 승강돌기(542)들의 단부가 삽입되는 승강홈부(544a)들이 형성될 수 있다. 이러한 승강홈부(544a)들은 승강돌기(542)들의 단부와 대응되는 부분에 각각 동일한 형상으로 형성될 수 있다. 승강홈부(544a)들은 승강가이드(544)의 회전 또는 이동시 승강돌기(542)들의 승강 동작을 안내할 수 있다.
이하, 본 실시예에서는 승강가이드(544)가 실린더(510)의 상부 외주에 회전 가능하게 배치된 것으로 설명한다. 즉, 승강가이드(544)는 실린더(510)의 상부 외주면에 원주 방향으로 회전 가능하게 배치되는 링 형상으로 형성될 수 있다. 승강가이드(544)의 내주면에는 승강홈부(544a)들이 원주 방향을 따라 서로 연결된 폐곡선 형상으로 형성될 수 있다. 승강가이드(544)의 외주면에는 후술하는 동력전달기구(546)의 구동승강기어(546b)와 치합되는 종동승강기어(544b)가 형성될 수 있다.
또한, 상기 동력전달기구(546)는 크랭크축(522)의 동력을 승강가이드(544)에 전달하여 승강가이드(544)를 크랭크축(522)과 연동시키는 장치이다. 예를 들면, 동력전달기구(546)는 캠축(546a) 및 구동승강기어(546b)를 포함할 수 있다.
상기 캠축(546a)은 크랭크축(522)의 회전력에 의해 회전되도록 크랭크축(522)과 연동 가능하게 연결될 수 있다. 캠축(546a)은 구동승강기어(546b)에 구동력을 제공할 뿐만 아니라 후술하는 밸브개폐기구(564)에 구동력을 제공할 수 있다.
한편, 캠축(546a)은 일반적인 가솔린 엔진과 같이 타이밍 벨트와 풀리 등으로 크랭크축(522)과 간접적으로 연결될 수 있지만, 필요에 따라 캠축(546a)과 크랭크축(522)이 직접 연결될 수 있다. 또한, 방편으로 구동승강기어(546b)가 생략되고, 캠축(546a)과 승강가이드(544)가 직접 연결되어 동기될 수도 있다.
상기 구동승강기어(546b)는, 캠축(546a)에 일측이 연동 가능하게 연결될 수 있고, 종동승강기어(544b)에 타측이 연동 가능하게 치합될 수 있다. 즉, 구동승강기어(546b)의 일측은 기어, 체인과 스프로킷휠(sprocketwheel), 벨트와 풀리 등을 통해 캠축(546a)에 연결되거나 또는 캠축(546a)에 직접적으로 연결될 수 있다. 이하에서는 구동승강기어(546b)의 일측이 베벨기어를 이용하여 캠축(546a)과 연결된 것으로 설명한다. 그리고, 구동승강기어(546b)의 타측은 승강가이드(544)의 종동승강기어(544b)와 수평 방향으로 치합되도록 원통형의 평기어로 형성될 수 있다.
도 19는 도 15에 도시된 왕복 피스톤 엔진의 밸브개폐기구를 나타낸 평면도이다. 그리고, 도 20은 도 19에 도시된 Ⅲ-Ⅲ선에 따른 단면을 나타낸 도면이며, 도 21은 도 19에 도시된 밸브개폐기구를 이용하여 밸브의 개폐 시점 및 개폐 시간을 조절하는 작동 상태를 나타낸 도면이다.
도 15 및 도 19를 참조하면, 상기 왕복 피스톤 엔진(500)은, 크랭크축(522)의 회전 각도에 따라 배기밸브(535)와 흡기밸브(533)의 개폐를 조절하는 밸브조절장치(560)를 더 포함할 수 있다. 밸브조절장치(560)는 제2 피스톤(530)의 상부에 배치될 수 있다. 예를 들면, 밸브조절장치(560)는 케이스(562), 밸브개폐기구(564), 및 개폐조절기구(566)를 포함할 수 있다.
상기 케이스(562)는 제2 피스톤(530)의 상부에 회전 가능하게 구비될 수 있다. 즉, 케이스(562)는 제2 피스톤(530)과 함께 상하 방향으로 승강될 수 있지만, 제2 피스톤(530)과 개별적으로 회전될 수 있다. 또한, 케이스(562)는 크랭크축(522)과 연동 가능하게 연결된다. 이러한 케이스(562)는 크랭크축(522)에 직접 연결될 수도 있지만, 캠축(546a)을 통해 간접적으로 연결될 수도 있다. 이와 같은 케이스(562)는, 캠축(546a)에 연동 가능하게 연결된 회전부(568), 및 회전부(568)에 승강 가능하게 연결되고 제2 피스톤(530)의 상부에 회전 가능하게 연결된 본체부(569)를 포함할 수 있다.
회전부(568)의 상부는 캠축(546a)으로부터 구동력을 전달받도록 캠축(546a)에 베벨기어로 연동 가능하게 연결될 수 있다. 회전부(568)의 하부는 상하방향으로 길게 형성된 원기둥으로 형성될 수 있고, 표면에 상하방향으로 길게 형성된 기어가 구비될 수 있다. 이와 같은 회전부(568)는 실린더(510)의 상부에 회전만 가능하게 배치될 수 있다.
본체부(569)는 제2 피스톤(530)의 상부에 회전 가능하게 연결된 링 형상의 부재이다. 본체부(569)는, 회전부(568)와 함께 제2 피스톤(530)의 상부에서 회전될 수 있고, 제2 피스톤(530)과 함께 상하방향으로 승강될 수 있다. 본체부(569)의 중앙에는 회전부(568)의 하부와 상하방향으로 승강 가능하게 치합되는 기어링(567)이 배치될 수 있다. 한편, 본체부(569)와 제2 피스톤(530)의 승강시 회전부(568)의 하부와 제2 피스톤(530)의 간섭을 방지하기 위하여 제2 피스톤(530)의 상부 중앙에 회피홈(미도시)이 형성될 수 있다.
그리고, 본체부(569)의 일측에는 흡기관(512)과 흡기구(532)들을 연결하는 흡기 통로(569a)들이 형성될 수 있고, 본체부(569)의 타측에는 배기관(514)과 배기구(534)들을 연결하는 배기 통로(569b)들이 형성될 수 있다. 흡기 통로(569a)들과 배기 통로(569b)들은 본체부(569)의 외주 부위에 원주 방향을 따라 복수개가 형성된 홀로 형성될 수 있다. 이와 같은 홀들은 흡기 통로(569a)들과 배기 통로(569b)들로 미리 한정된 것은 아니며, 본체부(569)의 회전시 흡기 통로(569a) 또는 배기 통로(569b) 중 어느 하나의 역할을 수행할 수 있다.
도 15, 도 19 내지 도 21을 참조하면, 상기 밸브개폐기구(564)는 케이스(562)의 회전시 흡기밸브(533)와 배기밸브(535)의 개폐 동작을 제어하는 장치이다. 밸브개폐기구(564)는 케이스(562)와 함께 회전될 수 있도록 케이스(562)에 배치될 수 있다. 예를 들면, 밸브개폐기구(564)는 흡기캠(570)(571), 배기캠(572)(573), 및 탄성부재(574)(575)를 포함할 수 있다.
흡기캠(570)(571)은 본체부(569)와 함께 회전되도록 본체부(569)에 배치된 원통 형상의 캠이다. 흡기캠(570)(571)은 본체부(569)의 기어링(567)보다 큰 반경을 갖도록 형성될 수 있다. 흡기캠(570)(571)은 본체부(569)의 회전 중심선을 공유하도록 본체부(569)에 배치될 수 있다. 그리고, 흡기캠(570)(571)의 하부에는 흡기밸브(533)의 상부가 슬라이딩 가능하게 접촉되는 흡기밸브 안내면(570a)(571b)이 형성될 수 있다. 한편, 흡기밸브(533)의 상부는 흡기밸브 안내면(570a)(571b)을 따라 슬라이딩 이동이 용이하도록 원형으로 형성되거나 또는 롤러가 구비될 수 있다.
흡기밸브 안내면(570a)(571b)은 원주 방향을 따라 일정 형상으로 형성될 수 있다. 따라서, 흡기캠(570)(571)이 회전되면, 흡기밸브 안내면(570a)(571b)을 따라 흡기밸브(533)가 승강될 수 있다.
배기캠(572)(573)은 본체부(569)와 함께 회전되도록 본체부(569)에 배치된 원통 형상의 캠이다. 배기캠(572)(573)은 흡기캠(570)(571)보다 큰 반경을 갖도록 형성될 수 있다. 배기캠(572)(573)은 본체부(569)의 회전 중심선을 공유하도록 본체부(569)에 배치될 수 있다. 따라서, 본체부(569)의 중심으로부터 기어링(567), 흡기캠(570)(571), 배기캠(572)(573) 순으로 중첩되게 배치될 수 있다. 그리고, 배기캠(572)(573)의 하부에는 배기밸브(535)의 상부가 슬라이딩 가능하게 접촉되는 배기밸브 안내면(572a)(573b)이 형성될 수 있다. 한편, 배기밸브(535)의 상부는 배기밸브 안내면(572a)(573b)을 따라 슬라이딩 이동이 용이하도록 원형으로 형성되거나 또는 롤러가 구비될 수 있다.
배기밸브 안내면(572a)(573b)은 원주 방향을 따라 일정 형상으로 형성될 수 있다. 따라서, 배기캠(572)(573)이 회전되면, 배기밸브 안내면(572a)(573b)을 따라 배기밸브(535)가 승강될 수 있다.
상기 탄성부재(574)(575)는 흡기밸브(533)와 배기밸브(535)를 탄성적으로 지지하도록 흡기밸브(533)와 배기밸브(535)에 각각 구비될 수 있다. 이하, 본 실시예에서는 탄성부재(574)(575)의 일측이 제2 피스톤(530)에 배치되고, 탄성부재(574)(575)의 타측이 흡기밸브(533) 또는 배기밸브(535)에 배치된 것으로 설명한다. 하지만, 탄성부재(574)(575)는 필요에 따라 다양한 형상과 배치 구조를 가질 수 있다. 탄성부재(574)(575)는 흡기밸브(533)의 상부를 흡기밸브 안내면(570a)(571b)에 탄성적으로 밀착시킬 수 있을 뿐만 아니라, 배기밸브(535)의 상부를 배기밸브 안내면(572a)(573b)에 탄성적으로 밀착시킬 수 있다.
한편, 흡기밸브 안내면(570a)(571b)과 배기밸브 안내면(572a)(573b)은 밸브의 개방 시점과 대응되는 부위에 하측으로 돌출되게 형성될 수 있다. 따라서, 흡기밸브(533)와 배기밸브(535)의 상부는 흡기밸브 안내면(570a)(571b)과 배기밸브 안내면(572a)(573b)의 돌출 부위를 따라 하측으로 하강되므로, 흡기밸브(533)와 배기밸브(535)가 개방될 수 있다. 흡기밸브 안내면(570a)(571b)은 왕복 피스톤 엔진(500)의 흡입 행정(K)과 대응하는 구간이 압축 행정(L), 팽창 행정(M), 및 배기 행정(N)과 대응하는 구간보다 하측으로 돌출되게 형성될 수 있다. 배기밸브 안내면(572a)(573b)은 왕복 피스톤 엔진(500)의 배기 행정(N)과 대응하는 구간이 흡입 행정(K), 압축 행정(L), 및 팽창 행정(M)과 대응하는 구간보다 하측으로 돌출되게 형성될 수 있다.
또한, 제2 피스톤(530)에 배치된 흡기밸브(533)와 배기밸브(535)의 개수 및 위치에 따라 흡기캠(570)(571)과 배기캠(572)(573)에 형성되는 흡기밸브 안내면(570a)(571b)과 배기밸브 안내면(572a)(573b)의 개수 및 위치도 변형될 수 있다. 흡기밸브(533) 또는 배기밸브(535)가 한쪽으로 편심된 위치에 2개가 배치되면, 흡기밸브 안내면(570a)(571b) 또는 배기밸브 안내면(572a)(573b)도 흡기캠(570)(571)와 배기캠(572)(573)의 하부에 원주 방향을 따라 2개가 편심된 위치에 형성될 수 있다. 도 20에는 2개의 배기밸브 안내면(572a)(573b)이 형성된 배기캠(572)(573)이 도시되어 있다.
흡기밸브(533)들은 흡기캠(570)(571)의 하부에 상부가 밀착되도록 제2 피스톤(530)에 원주 방향으로 2개가 서로 다른 위치에 배치될 수 있다. 그리고, 배기밸브(535)들은 배기캠(572)(573)의 하부에 상부가 밀착되도록 제2 피스톤(530)에 원주 방향으로 2개가 서로 다른 위치에 배치될 수 있다. 즉, 흡기밸브(533)들과 배기밸브(535)들은 본체부(569)의 회전 중심선을 기준으로 각각 2개가 동일 반경으로 배치될 수 있다.
또한, 흡기캠(570)(571) 또는 배기캠(572)(573)은 단수개로 각각 형성되거나 복수개가 중첩된 구조로 각각 형성될 수 있다. 이하, 본 실시예에서는 흡기캠(570)(571)과 배기캠(572)(573)이 2개를 상호 중첩시킨 구조로 본체부(569)에 배치된 것으로 설명하지만, 3개 이상을 중첩시킨 구조로 배치될 수도 있다.
흡기캠(570)(571)들은 제1 흡기캠(570)과 제2 흡기캠(571)으로 구성되며, 제1 흡기캠(570)은 원주 방향으로 소정 각도 회전 가능하게 배치될 수 있다. 제1 흡기캠(570)은 제2 흡기캠(571)의 외주면에 회전 가능하게 배치될 수 있다. 배기캠(572)(573)들은 제1 배기캠(572)과 제2 배기캠(573)으로 구성되며, 제1 배기캠(572)은 원주 방향으로 소정 각도 회전 가능하게 배치될 수 있다. 제1 배기캠(572)은 제2 배기캠(573)의 외주면에 회전 가능하게 배치될 수 있다. 따라서, 개폐조절기구(566)가 제1 흡기캠(570)과 제1 배기캠(572)을 회전시키면, 흡기밸브(533)와 배기밸브(535)의 개폐 시점 및 개폐 시간이 조절될 수 있다.
도 21의 (a)를 참조하면, 제1 배기캠(572)을 본체부(569)의 회전 방향으로 소정 각도 회전시키면, 제1 배기캠(572)의 배기밸브 안내면(572a)(573b)의 돌기 부위가 제2 배기캠(573)의 배기밸브 안내면(572a)(573b)의 돌기 부위보다 전방에 배치될 수 있다. 따라서, 배기밸브(535)의 개방 시점이 설정 시간(Q1)만큼 빨라질 수 있고, 배기밸브(535)의 개방 시간이 설정 시간(Q1)만큼 증대될 수 있다.
도 21의 (b)를 참조하면, 제1 배기캠(572)을 본체부(569)의 회전 방향과 반대 방향으로 소정 각도 회전시키면, 제1 배기캠(572)의 배기밸브 안내면(572a)(573b)의 돌기 부위가 제2 배기캠(573)의 배기밸브 안내면(572a)(573b)의 돌기 부위보다 후방에 배치될 수 있다. 따라서, 배기밸브(535)의 폐쇄 시점이 설정 시간(Q2)만큼 느려질 수 있고, 배기밸브(535)의 개방 시간이 설정 시간(Q2)만큼 증대될 수 있다.
상기와 같이 배기밸브(535)는 제1 배기캠(572)을 회전시키는 간단한 조작만으로 개폐 시점 및 개폐 시간을 간편하게 조절할 수 있다. 한편, 흡기밸브(533)도 배기밸브(535)와 동일 유사한 방법으로 제1 흡기캠(570)을 회전시켜 개폐 시점과 개폐 시간을 조절할 수 있으나, 그에 대한 상세한 설명은 생략하기로 한다.
도 22는 도 15에 도시된 왕복 피스톤 엔진의 개폐조절기구를 나타낸 단면도이고, 도 23은 도 22에 도시된 개폐조절기구의 작동 상태를 나타낸 평단면도이다. 그리고, 도 24는 도 15에 도시된 왕복 피스톤 엔진의 개폐조절기구에 대한 다른 예를 나타낸 단면도이다.
도 15과 도 19 및 도 22을 참조하면, 상기 개폐조절기구(566)는 제1 흡기캠(570)과 제1 배기캠(572)을 회전시켜 흡기밸브(533)와 배기밸브(535)의 개폐 시점 및 개폐 시간을 조절하는 장치이다. 예를 들면, 개폐조절기구(566)는 흡기캠 조절부(580), 배기캠 조절부(582), 및 회전가이드부(584)를 포함할 수 있다.
상기 흡기캠 조절부(580)는 상하방향으로 길게 형성된 로드 형상의 부재로써, 케이스(562)의 회전부(568)에 일부가 회전 가능하게 삽입된 구조로 배치될 수 있다. 흡기캠 조절부(580)의 상부에는 후술하는 회전가이드부(584)의 흡기캠 안내면(586a)에 슬라이딩 가능하게 접촉되는 접촉돌기(580a)가 형성될 수 있다. 흡기캠 조절부(580)의 하부에는 제1 흡기캠(570)의 상부에 회전 가능하게 연결되는 연결돌기(580b)가 형성될 수 있다.
상기 배기캠 조절부(582)는 상하방향으로 길게 형성된 로드 형상의 부재로써, 케이스(562)의 회전부(568)에 일부가 회전 가능하게 삽입된 구조로 배치될 수 있다. 배기캠 조절부(582)의 상부에는 후술하는 회전가이드부(584)의 배기캠 안내면(587a)에 슬라이딩 가능하게 접촉되는 접촉돌기(582a)가 형성될 수 있다. 배기캠 조절부(582)의 하부에는 제1 배기캠(572)의 상부에 회전 가능하게 연결되는 연결돌기(582b)가 형성될 수 있다.
그리고, 배기캠 조절부(582)의 연결돌기(582b)는 흡기캠(570)(571)들의 상부를 가로질러 제1 배기캠(572)과 연결되므로, 연결돌기(582b)와 대응되는 흡기캠(570)(571)들의 상부에는 연결돌기(582b)와 흡기캠(570)(571)들의 간섭을 방지하도록 회피홈(576)이 형성될 수 있다.
도 22 및 도 23를 참조하면, 상기 회전가이드부(584)는 흡기캠 조절부(580)와 배기캠 조절부(582)를 원주 방향으로 회전시키기 위하여 흡기캠 조절부(580)와 배기캠 조절부(582)의 접촉돌기(580a)(582a)에 접촉 가능하게 배치될 수 있다. 예를 들면, 회전가이드부(584)는, 흡기캠 조절부(580)를 회전시키기 위하여 흡기캠 조절부(580)의 접촉돌기(580a)에 승강 가능하게 배치된 흡기용 회전가이드부(586), 배기캠 조절부(582)를 회전시키기 위하여 배기캠 조절부(582)의 접촉돌기(582a)에 승강 가능하게 배치된 배기용 회전가이드부(587), 및 흡기캠 조절부(580) 및 배기캠 조절부(582)를 회전 방향으로 탄성적으로 지지하도록 흡기캠 조절부(580) 및 배기캠 조절부(582)에 배치된 탄성부재(588)를 포함할 수 있다.
상기 흡기용 회전가이드부(586)는 승강 작동시 흡기캠 조절부(580)를 회전시키도록 흡기캠 조절부(580)의 접촉돌기(580a)와 슬라이딩 가능하게 접촉되는 흡기캠 안내면(586a)이 형성될 수 있다. 흡기캠 안내면(586a)은 흡기용 회전가이드부(586)의 내부에 원주방향을 따라 형성될 수 있다. 흡기캠 안내면(586a)은 상하방향으로 경사지게 형성될 수 있다. 도 23에 도시된 바와 같이, 흡기용 회전가이드부(586)가 상하방향으로 승강되면, 흡기캠 조절부(580)의 상부와 흡기캠 안내면(586a) 사이의 간격이 변경될 수 있고, 흡기캠 안내면(586a)과 접촉된 접촉돌기(580a)는 일방향으로 회전될 수 있다.
상기 배기용 회전가이드부(587)는 승강 작동시 배기캠 조절부(582)를 회전시키도록 배기캠 조절부(582)의 접촉돌기(582a)와 슬라이딩 가능하게 접촉되는 배기캠 안내면(587a)이 형성될 수 있다. 배기캠 안내면(587a)은 흡기캠 안내면(586a)과 동일 유사하게 형성될 수 있으므로, 배기용 회전가이드부(587)는 흡기용 회전가이드부(586)와 동일 유사하게 작동될 수 있고, 그에 대한 설명은 생략하기로 한다.
배기용 회전가이드부(587)는 흡기용 회전가이드부(586)의 상측에 배치될 수 있다. 배기용 회전가이드부(587)와 흡기용 회전가이드부(586)는 케이스(562)와 함께 회전될 수 있도록 실린더(510)의 상부에 배치될 수 있으며, 그 배치 구조는 설계 조건에 따라 다양하게 구현될 수 있다.
상기 탄성부재(588)는 흡기캠 안내면(586a)와 배기캠 안내면(587a)에 흡기캠 조절부(580)와 배기캠 조절부(582)의 접촉돌기(582a)를 탄성적으로 밀착시키도록 흡기캠 조절부(580) 및 배기캠 조절부(582)에 배치될 수 있다. 탄성부재(588)는 설계 조건에 따라 다양한 형상 및 다양한 배치 구조로 구비될 수 있다.
한편, 도 24는 도 15에 도시된 왕복 피스톤 엔진의 개폐조절기구에 대한 다른 예를 나타낸 단면도이다. 도 24에 도시된 개폐조절기구(666)에서는 회전가이드부(684)를 제외한 다른 구성은 도 22의 개폐조절기구(566)와 동일 유사하게 형성될 수 있다. 본 실시예의 회전가이드부(684)는 흡기용 회전가이드부(686), 배기용 회전가이드부(687), 및 탄성부재(688)를 포함할 수 있다. 여기서, 탄성부재(688)는 도 22의 탄성부재(588)와 동일 유사하게 형성되므로 그에 대한 설명은 생략한다.
반면에, 흡기용 회전가이드부(686)는, 중앙이 중공된 링 형상으로 형성되고, 내부에 원주 방향을 따라 도 22의 흡기캠 안내면(586a)과 동일 유사한 형상의 흡기캠 안내면(686a)이 형성될 수 있다. 그리고, 배기용 회전가이드부(687)는 흡기용 회전가이드부(686)의 중공된 부위에 배치될 수 있으며, 내부에 원주 방향을 따라 도 22의 배기캠 안내면(587a)과 동일한 기능을 수행하는 배기캠 안내면(687a)이 형성될 수 있다.
따라서, 도 24에 도시된 흡기용 회전가이드부(686)와 배기용 회전가이드부(687)는, 도 22에 도시된 흡기용 회전가이드부(586)와 배기용 회전가이드부(587)보다 콤팩트하게 구성될 수 있으며, 그로 인해 엔진의 전체 높이도 감소될 수 있다. 특히, 도 24에 도시된 흡기용 회전가이드부(686)와 배기용 회전가이드부(687)는, 도 22에 도시된 흡기용 회전가이드부(586)와 배기용 회전가이드부(587)와 같이 케이스(562)와 함께 회전될 필요가 없는 구조이다.
도 25은 도 15에 도시된 왕복 피스톤 엔진의 개폐조절기구에 대한 또 다른 예를 나타낸 단면도이고, 도 26는 도 25에 도시된 개폐조절기구의 작동 상태를 나타낸 평단면도이다. 즉, 도 25 및 도 26에는 본 발명의 다른 실시예에 따른 왕복 피스톤 엔진(500)에 적용 가능한 개폐조절기구(766)의 다른 예가 도시되어 있다.
도 25 및 도 26에 도시된 개폐조절기구(766)가 도 22의 개폐조절기구(566)와 상이한 점은, 왕복 피스톤 엔진(500)의 작동시 흡기캠 조절부(780)와 배기캠 조절부(782)의 상부에 구비된 원심추(780a)(782a)가 원심력에 의해 일방향으로 회전될 수 있다는 점이 상이하다.
즉, 흡기캠 조절부(780)와 배기캠 조절부(782)의 상부에는 흡기캠 조절부(780)와 배기캠 조절부(782)의 회전시 작용되는 원심력에 의해 회전되는 원심추(780a)(782a)가 구비될 수 있다. 원심추(780a)(782a)는 흡기캠 조절부(780)와 배기캠 조절부(782)의 상부에서 길게 돌출된 구조로 형성될 수 있다. 원심추(780a)(782a)의 단부는 다른 부분보다 큰 질량을 가지는 구조로 형성될 수 있다. 따라서, 원심추(780a)(782a)의 단부는 흡기캠 조절부(780)와 배기캠 조절부(782)의 상부를 중심으로 원심력에 의해 원활하게 회전될 수 있다.
상기와 같이 원심추(780a)(782a)가 원심력에 의해 회전되면, 흡기캠 조절부(780)와 배기캠 조절부(782)가 원심추(780a)(782a)와 함께 동일 방향으로 회전될 수 있고, 흡기캠 조절부(780)와 배기캠 조절부(782)의 회전에 의해 흡기캠(570)(571)과 배기캠(572)(573)도 회전될 수 있다. 따라서, 흡기밸브(533)와 배기밸브(535)의 개폐 시점 및 개폐 시간은 왕복 피스톤 엔진(500)의 작동시 발생되는 원심력에 의해 자동적으로 조절될 수 있다. 한편, 도 25 및 도 26에 도시된 개폐조절기구(766)는 질량이 다른 원심추(780a)(782a)로 교체함으로써, 흡기밸브(533)와 배기밸브(535)의 개폐 시점 및 개폐 시간을 조정할 수 있다.
하지만, 도 25 및 도 26에 도시된 개폐조절기구(766)는, 도 22의 개폐조절기구(566)와 달리, 흡기밸브(533)와 배기밸브(535)의 개폐 시점 및 개폐 시간을 한쪽 방향으로만 조절할 수 있다. 왜냐하면, 도 25 및 도 26에 도시된 개폐조절기구(766)는 원심추(780a)(782a)에 작용되는 원심력이 한쪽 방향으로만 작용되기 때문이다.
즉, 도 22의 개폐조절기구(566)는 배기용 회전가이드부(587)와 흡기용 회전가이드부(586)를 승강시킴으로써, 흡기밸브(533)와 배기밸브(535)의 개폐 시점을 다양한 조합으로 조절할 수 있다. 예를 들면, 흡기밸브(533)와 배기밸브(535)의 개폐 시점을 빠르게만 조절하거나, 흡기밸브(533)와 배기밸브(535)의 개폐 시점을 느리게만 조절할 수 있다. 뿐만 아니라, 흡기밸브(533)와 배기밸브(535)의 개방 시점은 빠르게 조절하고 흡기밸브(533)와 배기밸브(535)의 폐쇄 시점은 느리게 조절할 수 있고, 그 반대도 조절하는 것도 가능할 수 있다.
반면에, 도 25 및 도 26에 도시된 개폐조절기구(766)에서는 원심추(780a)(782a)에 작용되는 원심력이 한쪽 방향으로만 작용되는 구조이므로, 흡기캠 조절부(780)와 배기캠 조절부(782)가 한쪽 방향으로만 회전되고, 흡기캠(570)(571)과 배기캠(572)(573)도 한쪽 방향으로만 회전될 수 있다. 따라서, 흡기밸브(533)와 배기밸브(535)의 개폐 시점은 빠르게만 조절되거나 느리게만 조절될 수 있다.
도 25 및 도 26에 도시된 개폐조절기구(766)는 회전가이드부(784)를 더 포함할 수 있다. 회전가이드부(784)는 흡배기용 회전가이드부(786) 및 탄성부재(788)를 포함할 수 있다. 상기 흡배기용 회전가이드부(786)는 흡기캠 조절부(780)와 배기캠 조절부(782)의 상부에 배치될 수 있다. 그리고, 흡배기용 회전가이드부(786)는 이동과 회전이 불가능하게 고정될 수 있다.
흡배기용 회전가이드부(786)의 내부에는 흡기캠 조절부(780)와 배기캠 조절부(782)의 원심추(780a)(782a)와 슬라이딩 가능하게 접촉되는 외측 경계면(786a) 및 내측 경계면(786b)이 형성될 수 있다. 외측 경계면(786a)은 원심력에 의해 회전되는 원심추(780a)(782a)의 최대 회전 위치를 설정할 수 있고, 내측 경계면(786b)은 원심추(780a)(782a)의 초기 위치를 설정할 수 있다. 즉, 원심추(780a)(782a)는 외측 경계면(786a)과 내측 경계면(786b)의 사이에서 회전될 수 있다. 한편, 도 25 및 도 26에 도시된 개폐조절기구(766)는 외측 경계면(786a) 및 내측 경계면(786b)의 위치가 다른 흡배기용 회전가이드부(786)로 교체함으로써, 흡기밸브(533)와 배기밸브(535)의 개폐 시점 및 개폐 시간을 조정할 수 있다.
탄성부재(788)는 흡배기용 회전가이드부(786)의 내측 경계면(786b)에 흡기캠 조절부(780)와 배기캠 조절부(782)의 원심추(780a)(782a)를 밀착시키는 방향으로 흡기캠 조절부(780)와 배기캠 조절부(782)에 탄성력을 제공할 수 있다. 물론, 상기 탄성부재(788)의 탄성력은 상기 원심추(780a)(782a)에 제공되는 최대 원심력보다 작게 설정된다. 따라서, 탄성부재(788)는 원심추(780a)(782a)에 작용되는 원심력이 감소되면, 흡기캠 조절부(780)와 배기캠 조절부(782)를 초기 위치로 리턴시킬 수 있다. 한편, 도 25 및 도 26에 도시된 개폐조절기구(766)는 탄성력이 다른 탄성부재(788)로 교체함으로써, 흡기밸브(533)와 배기밸브(535)의 개폐 시점 및 개폐 시간을 조정할 수 있다.
도 27은 도 15에 도시된 왕복 피스톤 엔진의 밸브개폐기구에 대한 또 다른 예를 나타낸 평면도이고, 도 28은 도 27에 도시된 밸브개폐기구를 이용하여 밸브의 개폐 시점 및 개폐 시간을 조절하는 작동 상태를 나타낸 도면이다. 즉, 도 27 및 도 28에는 본 발명의 다른 실시예에 따른 왕복 피스톤 엔진(500)에 적용 가능한 밸브개폐기구(864)의 다른 예가 도시되어 있다.
도 27 및 도 28에 도시된 밸브개폐기구(864)에서 도 19 내지 도 21의 밸브개폐기구(564)와 상이한 점은, 흡기캠 조절부(580)들의 연결돌기(880b)(880b′)들이 흡기캠(870)(871)들의 제1 흡기캠(870)과 제2 흡기캠(871)에 개별적으로 각각 연결되고, 배기캠 조절부(582)들의 연결돌기(882b)(882b′)들이 배기캠(872)(873)들의 제1 배기캠(872)과 제2 배기캠(873)에 개별적으로 각각 연결된다는 점이 상이하다.
즉, 제1 흡기캠(870)과 제2 흡기캠(871)은 본체부(569)에 모두 원주 방향으로 회전 가능하게 배치될 수 있고, 제1 배기캠(872)과 제2 배기캠(873)도 본체부(569)에 모두 원주 방향으로 회전 가능하게 배치될 수 있다. 따라서, 개폐조절기구(566)가 흡기캠 조절부(580)와 배기캠 조절부(582)의 작동을 조절하면, 제1 흡기캠(870)과 제2 흡기캠(871)을 독립적으로 회전시킬 수 있고, 제1 배기캠(872)과 제2 배기캠(873)을 독립적으로 회전시킬 수 있다. 한편, 흡기캠(570)(571)들과 배기캠(572)(573)의 상부에는 연결돌기(582b)들과의 간섭을 방지하기 위해 회피홈(876)(877)(878)이 각각 형성될 수 있다.
상기와 같이 제1 흡기캠(870), 제2 흡기캠(871), 제1 배기캠(872), 및 제2 배기캠(873)의 회전 동작이 독립적으로 제어되면, 흡기밸브(533)와 배기밸브(535)의 개폐 시점 및 개폐 시간을 더욱 넓게 조정할 수 있다. 즉 도 28에 도시된 바와 같이, 제1 배기캠(872)과 제2 배기캠(873)이 서로 동일한 위치에 배치된 상태에서 제1 배기캠(872)을 전방으로 회전시킴과 동시에 제2 배기캠(873)을 후방으로 회전시킬 수 있다. 그러면, 제1 배기캠(872)의 회전으로 인해 설정 시간(Q1)만큼 배기밸브(535)의 개방시점이 빨라질 수 있고, 제2 배기캠(873)의 회전으로 인해 설정 시간(Q2)만큼 배기밸브(535)의 폐쇄시점이 늦어질 수 있다. 또한, 제1 배기캠(872)과 제2 배기캠(873)의 설정 시간(Q1)(Q2)만큼 배기밸브(535)의 개방시간도 증가될 수 있다.
도 29는 도 15에 도시된 왕복 피스톤 엔진의 밸브개폐기구에 대한 또 다른 예를 나타낸 평면도이다. 즉, 도 29에는 본 발명의 다른 실시예에 따른 왕복 피스톤 엔진(500)에 적용 가능한 밸브개폐기구(964)의 또 다른 예가 도시되어 있다.
도 29에 도시된 밸브개폐기구(964)에서 도 19 내지 도 21의 밸브개폐기구(564)와 상이한 점은, 흡기밸브(933)(933′)들과 흡기캠(970)(971)(970′)(971′)들이 일대일로 서로 대응되게 구비될 수 있고, 배기밸브(935)(935′)들과 배기캠(972)(973)(972′)(973′)들이 일대일로 서로 대응되게 구비될 수 있다는 점이 상이하다.
즉, 흡기밸브(933)(933′)가 2개이면 흡기캠(970)(971)(970′)(971′)도 2개가 구비될 수 있고, 배기밸브(935)(935′)가 2개이면 배기캠(972)(973)(972′)(973′)도 2개가 구비될 수 있다. 따라서, 흡기밸브(933)(933′)의 작동은 흡기캠(970)(971), 및 상기 흡기캠(970)(971)의 외측에 배치된 흡기캠(970′)(971′)에 의해 독립적으로 제어될 수 있다. 그리고, 배기밸브(935)(935′)의 작동은 배기캠(972)(973), 및 상기 배기캠(972)(973) 의 외측에 배치된 배기캠 (972′)(973′)에 의해 독립적으로 제어될 수 있다.
흡기캠(970)(971)(970′)(971′)들과 배기캠(972)(973)(972′)(973′)들은 본체부(569)에 반경방향으로 중첩된 구조이므로, 흡기밸브(933)들과 배기밸브(935)들은 제2 피스톤(530)의 반경 방향으로 서로 다른 위치에 배치될 수 있다. 또한, 흡기캠 조절부(580)들의 연결돌기(980b)(980b′)들은 제1 흡기캠(970)(970′)에 개별적으로 각각 연결될 수 있고, 배기캠 조절부(582)들의 연결돌기(982b)(982b′)들은 제1 배기캠(972)(972′)들에 개별적으로 각각 연결될 수 있다.
상기와 같이 구성된 본 발명의 다른 실시예에 따른 왕복 피스톤 엔진(500)의 작동을 살펴보면 다음과 같다. 이하에서는, 설명의 편의를 위하여 도 15 내지 도 23에 도시된 왕복 피스톤 엔진(500)으로 한정하여 설명한다. 도 30 내지 도 34는 본 발명의 다른 실시예에 따른 왕복 피스톤 엔진의 흡입 행정(K), 압축 행정(L), 폭발 행정(O), 팽창 행정(M), 및 배기 행정(N)이 각각 도시된 작동 상태도이다.
도 30을 참조하면, 상기 흡입 행정(K)에서는 제1 피스톤(520)이 하측으로 하강되고, 제2 피스톤(530)은 최고점에 정지된 상태이다. 그리고, 흡기밸브(533)는 개방된 상태이고, 배기밸브(535)는 폐쇄된 상태이다.
따라서, 제1 피스톤(520)과 제2 피스톤(530)에 의해 연소실(I)의 크기가 최대로 증가되고, 연소실(I)의 크기 증가로 인해 연소실(I) 내의 압력이 저하된다. 상기와 같이 연소실(I) 내의 압력이 저하되면, 연료 가스가 흡기관(512), 흡기 통로(569a), 및 흡기구(532)를 통해 연소실(I)의 내부로 유입될 수 있다.
이때, 제1 피스톤(520)은 최저점으로 하강되고 제2 피스톤(530)은 최고점에 배치되므로, 연소실(I)은 최대 크기로 확장될 수 있다. 즉, 왕복 피스톤 엔진(500)의 내부에 연료 가스가 최대로 흡입될 수 있으므로, 왕복 피스톤 엔진(500)의 흡입 효율도 향상될 수 있다.
도 31을 참조하면, 상기 압축 행정(L)에서는 제1 피스톤(520)이 최저점에서 상측으로 상승되고, 제2 피스톤(530)은 제1 피스톤(520)의 상승시 최고점으로 상승된다. 그리고, 흡기밸브(533)와 배기밸브(535)는 폐쇄된 상태이다.
즉, 제1 피스톤(520)이 상사점으로 상승된 상태에서는 제2 피스톤(530)도 최고점에 배치되므로, 연소실(I)의 크기가 최소로 형성되지 않는다. 이후에, 제1 피스톤(520)과 제2 피스톤(530)이 최고점으로부터 함께 하강될 경우, 제2 피스톤(530)이 제1 피스톤(520)의 하강 속도보다 빠르게 하강되므로, 제2 피스톤(530)이 최대로 하강된 시점(O)에서 연소실(I)의 크기가 최소로 형성될 수 있다. 이때, 연소실(I) 내의 압축 압력도 최대로 형성된다.
따라서, 본 실시예의 왕복 피스톤 엔진(500)은 기존의 왕복 피스톤 엔진보다 압축 행정(L)이 더 길게 실시될 수 있으나, 폭발 행정(O)은 더 짧게 실시될 수 있다.
도 32를 참조하면, 상기 폭발 행정(O)에서는 연소실(I)의 크기가 최소로 작아지는 시점(O)에 점화기구(550)를 작동시켜 연소실(I) 내의 연료 가스를 폭발시킨다. 이때, 제1 피스톤(520)은 하측으로 하강되고, 제2 피스톤(530)은 최저점에 정지된 상태이다. 그리고, 흡기밸브(533)와 배기밸브(535)는 폐쇄된 상태이다.
상기와 같이 연소실(I)의 크기가 최소이면, 연소실(I) 내의 압축 압력이 최대로 형성되기 때문에 연료 가스의 불완전 연소가 방지될 수 있다. 연소실(I)의 크기가 최소로 작아지는 시점(O)은 제1 피스톤(520)과 제2 피스톤(530)이 함께 하강되는 시점부터 크랭크축(522)이 회전한 각도가 30도~40도인 시점으로 설정될 수 있다. 또는, 연소실(I)의 크기가 최소로 작아지는 시점(O)은 크랭크축(522)과 커넥팅 로드(524) 사이의 각도가 직각 또는 직각에 근접한 각도인 시점으로 설정될 수도 있다. 이하, 본 실시예에서는 크랭크축(522)의 회전 각도가 30도~35도인 시점(O)을 연소실(I)의 크기가 최소로 작아지는 시점으로 설정할 수 있다.
한편, 다른 형상의 승강홈부(544a)가 형성된 승강가이드(544)로 교체하거나 동력전달기구(546)에 의해 승강가이드(544)로 전달하는 동력을 조절하면, 제2 피스톤(530)의 승강 시점과 승강 속도 등이 간편하게 조절될 수 있다. 따라서, 왕복 피스톤 엔진(500)의 설계 조건 및 주변 환경에 따라 점화기구(550)의 작동 시점 및 연료 가스의 압축 압력 등을 조절할 수 있으므로, 왕복 피스톤 엔진(500)의 효율을 설계 조건에 따라 최대로 향상시킬 수 있다.
도 33을 참조하면, 상기 팽창 행정(M)에서는 제1 피스톤(520)이 하측으로 하강되고, 제2 피스톤(530)은 최저점에 정지된 상태이다. 그리고, 흡기밸브(533)와 배기밸브(535)는 폐쇄된 상태이다. 따라서, 연료 가스의 폭발력은 제1 피스톤(520)과 커넥팅 로드(524)를 통해 크랭크축(522)으로 모두 전달될 수 있다.
도 34를 참조하면, 상기 배기 행정(N)에서는 제1 피스톤(520)이 상측으로 상승되고, 제2 피스톤(530)은 최저점에 정지된 상태이다. 그리고, 흡기밸브(533)는 폐쇄된 상태이고, 배기밸브(535)는 개방된 상태이다.
따라서, 제1 피스톤(520)과 제2 피스톤(530)에 의해 연소실(I)의 크기가 최소로 감소된다. 연소실(I)의 크기 감소되면, 연소실(I) 내의 연료 가스가 배기구(534), 배기 통로(569b), 및 배기관(514)을 통해 연소실(I)의 외부로 배출될 수 있다.
이때, 제1 피스톤(520)은 최고점으로 상승되고 제2 피스톤(530)은 최저점에 정지된 상태이므로, 연소실(I)은 최소의 크기로 형성된다. 따라서, 연소실(I) 내의 연소 가스도 최대한 많이 외부로 배출시킬 수 있으므로, 왕복 피스톤 엔진(500)의 배기 효율도 향상될 수 있다.
이상과 같이 본 발명의 실시예들에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예들 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예들에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (44)

  1. 흡기 밸브와 배기 밸브가 구비된 실린더;
    상기 실린더의 상사점과 하사점 사이를 직선 왕복할 수 있도록 상기 실린더의 내부에 배치되고, 상기 실린더와 함께 연소실을 형성하는 피스톤;
    상기 실린더에 회전 가능하게 배치된 크랭크축;
    상기 크랭크축에 상기 피스톤의 동력을 전달하기 위하여 상기 크랭크축과 상기 피스톤에 양측이 회전 가능하게 연결된 커넥팅 로드;
    상기 연소실의 내부에서 연료를 폭발시키기 위하여 상기 실린더의 상부에 배치된 연료폭발장치; 및
    상기 실린더에 구비되고, 상기 흡기 밸브와 상기 배기 밸브가 닫힌 상태에서 상기 피스톤의 직선 왕복 운동이 상기 크랭크축의 회전 운동으로 최대한 전환될 수 있는 시점까지 상기 피스톤이 상기 실린더의 상사점으로부터 하사점을 향해 이동되는 동안, 상기 연소실 내의 압축 압력을 일정하게 유지시키는 압력유지장치;
    를 포함하는 왕복 피스톤 엔진.
  2. 청구항 1에 있어서,
    상기 연료폭발장치는 상기 커넥팅 로드와 상기 크랭크축의 직교 위치 또는 상기 직교 위치와 근접한 위치에 상기 피스톤이 도달될 때 작동되는 왕복 피스톤 엔진.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 압력유지장치는, 상기 연소실과 연통되는 내부 공간을 구비하도록 상기 실린더에 배치된 보조 실린더; 상기 보조 실린더의 상사점과 하사점 사이를 직선 왕복할 수 있도록 상기 보조 실린더의 내부에 배치된 보조 피스톤; 및 상기 보조 피스톤과 연결되고, 상기 흡기 밸브와 상기 배기 밸브가 닫힌 상태에서 상기 피스톤이 상기 실린더의 상사점으로부터 하사점을 향해 상기 연료폭발장치의 작동 시점까지 이동되는 동안, 상기 연소실의 용적 증가량에 대응하여 상기 보조 실린더의 내부 공간을 감소시키도록 상기 보조 실린더의 상사점으로 상기 보조 피스톤을 이동시키는 피스톤 구동기구;를 포함하는 왕복 피스톤 엔진.
  4. 청구항 3에 있어서,
    상기 피스톤 구동기구는, 상기 보조 피스톤에 일측이 연결된 보조 커넥팅 로드; 상기 보조 커넥팅 로드를 이송시키기 위하여 상기 보조 커넥팅 로드의 타측에 배치된 이송부; 및 상기 이송부에 구동력을 전달하기 위하여 상기 이송부에 연결된 구동부;를 포함하는 왕복 피스톤 엔진.
  5. 청구항 4에 있어서,
    상기 이송부는, 상기 보조 커넥팅 로드의 타측이 이동 가능하게 삽입되는 이송홈이 외주면에 둘레를 따라 형성된 이송 드럼을 포함하는 왕복 피스톤 엔진.
  6. 청구항 4에 있어서,
    상기 이송부는, 상기 보조 커넥팅 로드의 타측과 슬라이딩 가능하게 접촉되는 이송 캠을 포함하는 왕복 피스톤 엔진.
  7. 청구항 4에 있어서,
    상기 이송부는, 상기 보조 커넥팅 로드의 타측에 형성된 제 1 이송 기어와, 상기 제 1 이송 기어와 치합되게 배치되도록 상기 구동부에 연결된 제 2 이송 기어를 포함하는 왕복 피스톤 엔진.
  8. 청구항 3에 있어서,
    상기 연료폭발장치는 상기 연소실의 내부로 흡입된 연료 가스를 점화시키는 점화기구를 포함하고,
    상기 점화기구의 작동 시점은,
    상기 압력유지장치에 의해 연료 가스를 완전 연소시키는 압력으로 연료 가스의 압축 상태가 유지될 때 상기 피스톤의 직선 왕복 운동을 상기 크랭크축의 회전 운동으로 최대한 전환할 수 있는 위치에 상기 피스톤이 도달되는 시점으로 설정된 왕복 피스톤 엔진.
  9. 청구항 3에 있어서,
    상기 연료폭발장치는 상기 연소실의 내부로 흡입된 공기에 연료를 분사시키는 연료분사기구를 포함하고,
    상기 연료분사기구의 작동 시점은,
    상기 압력유지장치에 의해 연료 가스를 자연 착화시키는 압력으로 공기의 압축 상태가 유지될 때 상기 피스톤의 직선 왕복 운동을 상기 크랭크축의 회전 운동으로 최대한 전환할 수 있는 위치에 상기 피스톤이 도달되는 시점으로 설정된 왕복 피스톤 엔진.
  10. 청구항 1 또는 청구항 2에 있어서,
    상기 흡기 밸브가 닫히고 상기 배기 밸브가 열린 상태에서 상기 피스톤이 상기 실린더의 하사점에서부터 상사점으로 이동되는 동안, 상기 연소실의 내부로 외부 공기를 주입하기 위하여 상기 실린더 또는 상기 압력유지장치에 구비된 공기주입기구를 더 포함하는 왕복 피스톤 엔진.
  11. 실린더에 구비된 흡기 밸브를 열고 상기 실린더에 구비된 배기 밸브를 닫은 상태에서, 상기 실린더의 하사점으로 상기 실린더의 내부에 배치된 피스톤을 이동시키는 흡입 단계;
    상기 흡입 밸브와 상기 배기 밸브를 닫은 상태에서, 상기 실린더의 상사점으로 상기 피스톤을 이동시키는 압축 단계;
    상기 흡입 밸브와 상기 배기 밸브를 닫은 상태에서, 상기 실린더의 상사점에서 커넥팅 로드와 크랭크축의 직교 위치 또는 상기 직교 위치와 근접한 위치로 상기 피스톤을 이동시키고, 상기 실린더와 상기 피스톤이 형성하는 연소실의 용적 증가량에 대응하여 상기 연소실과 연통되게 형성된 보조 실린더의 내부 공간을 감소시키도록 상기 보조 실린더의 내부에 배치된 보조 피스톤을 상기 보조 실린더의 상사점으로 이동시키는 압축 유지 단계;
    상기 압축 유지 단계에서 상기 커넥팅 로드와 상기 크랭크축의 직교 위치 또는 상기 직교 위치와 근접한 위치에 상기 피스톤이 도달되면, 상기 연소실의 내부에서 연료를 폭발시키는 연료폭발장치를 작동시켜 상기 실린더의 하사점으로 상기 피스톤을 이동시키는 폭발 단계; 및
    상기 흡입 밸브를 닫고 상기 배기 밸브를 열은 상태에서, 상기 실린더의 상사점으로 상기 피스톤을 이동시키는 배기 단계;
    를 포함하는 왕복 피스톤 엔진의 작동 방법.
  12. 청구항 11에 있어서,
    상기 배기 단계는 상기 연소실의 내부로 상기 실린더 또는 상기 보조 실린더에 배치된 공기주입기구가 외부 공기를 주입하는 공기주입단계를 포함하는 왕복 피스톤 엔진의 작동방법.
  13. 청구항 12에 있어서,
    상기 공기주입단계는, 상기 배기 밸브가 열린 후에 시작되고, 상기 흡기 밸브가 열리기 전에 정지되는 왕복 피스톤 엔진의 작동방법.
  14. 청구항 11 내지 청구항 13 중 어느 한 항에 있어서,
    상기 흡입 단계에서는 상기 보조 실린더의 상사점에서 하사점으로 상기 보조 피스톤을 이동시키는 왕복 피스톤 엔진의 작동방법.
  15. 청구항 11 내지 청구항 13 중 어느 한 항에 있어서,
    상기 압축 단계에서는 상기 보조 실린더의 하사점에서 상사점을 향해 상기 보조 피스톤을 이동시키는 왕복 피스톤 엔진의 작동방법.
  16. 청구항 11 내지 청구항 13 중 어느 한 항에 있어서,
    상기 폭발 단계에서는 상기 보조 실린더의 상사점에 상기 보조 피스톤을 정지시키는 왕복 피스톤 엔진의 작동 방법.
  17. 청구항 11 내지 청구항 13 중 어느 한 항에 있어서,
    상기 배기 단계에서는 상기 보조 실린더의 상사점에 상기 보조 피스톤을 정지시키는 왕복 피스톤 엔진의 작동 방법.
  18. 청구항 11 내지 청구항 13 중 어느 한 항에 있어서,
    상기 배기 단계에서는 상기 보조 실린더의 상사점을 향해 상기 보조 피스톤을 이동시키는 왕복 피스톤 엔진의 작동 방법.
  19. 실린더;
    상기 실린더의 내부에 상하 방향으로 승강 가능하게 구비되고, 커넥팅 로드에 의해 크랭크축과 연결된 제1 피스톤;
    상기 제1 피스톤 및 상기 실린더와 함께 연소실을 형성하도록 상기 제1 피스톤의 상측에 배치되고, 상기 실린더의 내부에 상하 방향으로 승강 가능하게 구비된 제2 피스톤;
    상기 제2 피스톤과 상기 크랭크축 사이에 구비되고, 상기 제1 피스톤이 최고점으로부터 하강되는 일정 시점에서 상기 연소실의 크기를 최소로 만들도록 상기 크랭크축의 회전 각도에 따라 상기 제2 피스톤의 승강 동작을 조절하는 피스톤 승강장치; 및
    상기 실린더에 구비되고, 상기 연소실이 최소의 크기로 형성될 때 상기 연소실의 내부에서 연료를 폭발시키는 연료폭발장치;
    를 포함하는 왕복 피스톤 엔진.
  20. 제19항에 있어서,
    상기 연소실의 크기가 최소인 시점은,
    상기 제1 피스톤과 상기 제2 피스톤이 최고점에서 함께 하강될 때부터 상기 크랭크축이 10도 내지 50도의 각도로 회전된 시점으로 설정되는 왕복 피스톤 엔진.
  21. 제19항에 있어서,
    상기 피스톤 승강장치는,
    상기 실린더에 상하방향으로 길게 형성된 복수개의 승강홀부들에 삽입되도록 상기 제2 피스톤의 외주면에서 반경 방향으로 돌출된 복수개의 승강돌기들;
    상기 승강홀부들을 관통한 상기 승강돌기들의 단부가 삽입되는 승강홈부들이 형성되고, 상기 승강돌기들이 상기 승강홈부들을 따라 승강 작동되도록 상기 실린더에 이동 또는 회전 가능하게 배치된 승강가이드; 및
    상기 승강가이드가 상기 크랭크축과 연동되도록 상기 크랭크축의 동력을 상기 승강가이드에 전달하는 동력전달기구;
    를 포함하는 왕복 피스톤 엔진.
  22. 제21항에 있어서,
    상기 제2 피스톤은 상기 피스톤 승강장치의 작동시 상기 승강홀부들보다 하부가 하측에 배치되도록 형성된 왕복 피스톤 엔진.
  23. 제22항에 있어서,
    상기 승강가이드는, 상기 승강돌기들의 단부가 삽입되는 승강홈부들이 내주면에 형성된 링 형상으로 형성되고, 상기 실린더의 외측에 원주 방향으로 회전 가능하게 배치되는 왕복 피스톤 엔진.
  24. 제23항에 있어서,
    상기 승강돌기들은 상기 제2 피스톤의 외주면에 원주 방향을 따라 동일 간격으로 이격되게 배치되고,
    상기 승강홈부들은 상기 승강가이드의 내주면 중에서 상기 승강돌기들과 대응되는 부위들에 각각 동일 형상으로 형성된 왕복 피스톤 엔진.
  25. 제24항에 있어서,
    상기 승강홈부들은 상기 승강가이드의 내주면에 원주 방향을 따라 서로 연결된 폐곡선 형상으로 형성된 왕복 피스톤 엔진.
  26. 제23항에 있어서,
    상기 동력전달기구는,
    상기 크랭크축과 연동 가능하게 연결된 캠축; 및
    상기 캠축에 일측이 연동 가능하게 연결되고, 상기 승강가이드의 외주면에 형성된 종동승강기어와 타측이 치합되는 구동승강기어;
    를 포함하는 왕복 피스톤 엔진.
  27. 제19항 내지 제26항 중 어느 한 항에 있어서,
    상기 연료폭발장치는, 상기 제1 피스톤과 상기 제2 피스톤 사이에 배치되도록 상기 실린더의 측면에 적어도 하나가 구비된 왕복 피스톤 엔진.
  28. 제27항에 있어서,
    상기 연료폭발장치는 상기 연소실의 크기가 최소인 시점에 상기 연소실의 내부로 연료 가스를 분사하는 연료분사기구를 구비하고,
    상기 연소실의 크기가 최소인 시점에서는 상기 제1 피스톤과 상기 제2 피스톤이 상기 연료 가스를 자연 착화시키는 온도로 상기 연소실 내의 공기를 압축시키는 왕복 피스톤 엔진.
  29. 제27항에 있어서,
    상기 연료폭발장치는 상기 연소실의 크기가 최소인 시점에 상기 연소실 내의 연료 가스를 점화시키는 점화기구를 구비하고,
    상기 연소실의 크기가 최소인 시점에서는 상기 제1 피스톤과 상기 제2 피스톤이 상기 연료 가스를 완전 연소시키는 압력으로 상기 연소실 내의 공기를 압축시키는 왕복 피스톤 엔진.
  30. 제29항에 있어서,
    상기 점화기구는,
    상기 실린더의 내부에 배치된 단부에 돌출된 제1 점화 플러그; 및
    상기 제1 점화 플러그에서 일정 거리 이격된 위치에 돌출되고, 상기 제1 점화 플러그와 평행하게 형성된 적어도 하나의 제2 점화 플러그;
    를 구비한 왕복 피스톤 엔진.
  31. 실린더;
    상기 실린더의 내부에 상하 방향으로 승강 가능하게 구비되고, 커넥팅 로드에 의해 크랭크축과 연결된 제1 피스톤;
    상기 제1 피스톤 및 상기 실린더와 함께 연소실을 형성하도록 상기 제1 피스톤의 상측에 배치되고, 흡기밸브와 배기밸브가 개폐 가능하게 배치되며, 상기 실린더의 내부에 상하 방향으로 승강되는 제2 피스톤;
    상기 제2 피스톤의 상부에 배치되고, 상기 크랭크축의 회전 각도에 따라 상기 배기밸브와 상기 흡기밸브의 개폐를 조절하는 밸브조절장치; 및
    상기 실린더에 구비되고, 상기 연소실이 최소의 크기로 형성될 때 상기 연소실의 내부에서 연료를 폭발시키는 연료폭발장치;
    를 포함하는 왕복 피스톤 엔진.
  32. 제31항에 있어서,
    상기 실린더의 상부에는 흡기관 및 배기관이 형성되고,
    상기 제2 피스톤에는 상기 흡기관과 상기 연소실을 연통시키는 적어도 하나의 흡기구 및 상기 배기관과 상기 연소실을 연통시키는 적어도 하나의 배기구가 형성되며,
    상기 흡기밸브는 적어도 하나의 상기 흡기구에 개폐 가능하게 구비되고, 상기 배기밸브는 적어도 하나의 상기 배기구에 개폐 가능하게 구비된 왕복 피스톤 엔진.
  33. 제32항에 있어서,
    상기 밸브조절장치는,
    상기 제2 피스톤의 상부에 회전 가능하게 구비되고, 상기 크랭크축과 연동 가능하게 연결된 케이스;
    상기 케이스에 배치되고, 상기 크랭크축에 의해 상기 케이스가 회전됨에 따라 상기 흡기밸브와 상기 배기밸브의 개폐 동작을 제어하도록 형성된 밸브개폐기구; 및
    상기 밸브개폐기구에 구비되고, 상기 흡기밸브와 상기 배기밸브의 개폐 시점 및 개폐 시간을 선택적으로 조절하는 개폐조절기구;
    를 포함하는 왕복 피스톤 엔진.
  34. 제33항에 있어서,
    상기 케이스는,
    상기 크랭크축에 연동 가능하게 연결된 회전부; 및
    상기 회전부에 승강 가능하게 연결되고, 상기 제2 피스톤의 상부에 회전 가능하게 연결되며, 상기 흡기관과 적어도 하나의 상기 흡기구를 연결하는 흡기 통로 및 상기 배기관과 적어도 하나의 상기 배기구를 연결하는 배기 통로가 형성된 본체부;
    를 포함하는 왕복 피스톤 엔진.
  35. 제34항에 있어서,
    상기 밸브개폐기구는,
    상기 본체부의 일측에 구비되고, 상기 본체부의 회전시 상기 흡기밸브의 상부가 슬라이딩 가능하게 접촉되는 흡기밸브 안내면이 하부에 형성된 흡기캠;
    상기 본체부의 타측에 구비되고, 상기 본체부의 회전시 상기 배기밸브의 상부가 슬라이딩 가능하게 접촉되는 배기밸브 안내면이 하부에 형성된 배기캠; 및
    상기 흡기밸브와 상기 배기밸브의 상부가 상기 흡기밸브 안내면과 상기 배기밸브 안내면에 탄성적으로 밀착되도록 상기 흡기밸브와 상기 배기밸브에 각각 구비된 탄성부재;
    를 포함하는 왕복 피스톤 엔진.
  36. 제35항에 있어서,
    상기 흡기캠과 상기 배기캠은, 서로 다른 반경을 갖는 원통 형상으로 형성되고, 상기 본체부와 동일한 회전 중심을 갖도록 상기 본체부에 반경 방향으로 상호 중첩되게 배치된 왕복 피스톤 엔진.
  37. 제36항에 있어서,
    상기 흡기밸브 및 상기 배기밸브는 상기 제2 피스톤의 반경 방향으로 복수개가 서로 다른 위치에 배치되며,
    상기 흡기캠 및 상기 배기캠은 상기 흡기밸브들 및 상기 배기밸브들의 상부에 개별적으로 접촉되도록 상기 본체부에 반경 방향으로 복수개가 구비된 왕복 피스톤 엔진.
  38. 제36항에 있어서,
    상기 흡기밸브 및 상기 배기밸브는 상기 제2 피스톤의 원주 방향으로 복수개가 서로 다른 위치에 배치되며,
    상기 흡기캠 및 상기 배기캠은 상기 흡기밸브들 및 상기 배기밸브들의 상부에 동시에 접촉되도록 하부에 상기 흡기밸브 안내면 및 상기 배기밸브 안내면이 원주 방향으로 복수개가 형성된 왕복 피스톤 엔진.
  39. 제36항에 있어서,
    상기 흡기캠과 상기 배기캠은 상기 본체부에 원주 방향으로 회전 가능하도록 복수개가 중첩되게 구비되고,
    상기 개폐조절기구는 상기 흡기캠들의 적어도 하나 또는 상기 배기캠들의 적어도 하나를 원주 방향으로 회전시켜 상기 흡기밸브 또는 상기 배기밸브의 개폐 시점 및 개폐 시간을 조절하는 왕복 피스톤 엔진.
  40. 제39항에 있어서,
    상기 개폐조절기구는,
    상기 흡기캠들의 적어도 하나에 하부가 연결된 흡기캠 조절부;
    상기 배기캠들의 적어도 하나에 하부가 연결된 배기캠 조절부; 및
    상기 흡기캠 조절부와 상기 배기캠 조절부에 배치되고, 상기 흡기캠들과 상기 배기캠들의 적어도 하나를 원주 방향으로 회전시키는 회전가이드부;
    를 포함하는 왕복 피스톤 엔진.
  41. 제40항에 있어서,
    상기 회전가이드부는,
    상기 흡기캠 조절부의 상부에 승강 가능하게 배치되고, 승강 작동시 상기 흡기캠 조절부를 회전시키도록 상기 흡기캠 조절부의 상부와 슬라이딩 가능하게 접촉되는 흡기캠 안내면이 형성된 흡기용 회전가이드부;
    상기 배기캠 조절부의 상부에 승강 가능하게 배치되고, 승강 작동시 상기 배기캠 조절부를 회전시키도록 상기 배기캠 조절부의 상부와 슬라이딩 가능하게 접촉되는 배기캠 안내면이 형성된 배기용 회전가이드부; 및
    상기 흡기캠 안내면 및 상기 배기캠 안내면에 상기 흡기캠 조절부와 상기 배기캠 조절부의 상부를 탄성적으로 밀착시키도록 상기 흡기캠 조절부 및 상기 배기캠 조절부에 배치된 탄성부재;
    를 포함하는 왕복 피스톤 엔진.
  42. 제39항에 있어서,
    상기 개폐조절기구는,
    상기 흡기캠들의 적어도 하나에 하부가 연결된 흡기캠 조절부;
    상기 배기캠들의 적어도 하나에 하부가 연결된 배기캠 조절부; 및
    상기 흡기캠 조절부와 상기 배기캠 조절부의 상부에 형성되고, 상기 흡기캠 조절부와 상기 배기캠 조절부가 상기 밸브개폐기구와 함께 선회되면 원심력에 의해 상기 흡기캠들과 상기 배기캠들을 원주 방향으로 회전시키는 원심추;
    를 포함하는 왕복 피스톤 엔진.
  43. 제42항에 있어서,
    상기 개폐조절기구는,
    상기 흡기캠 조절부와 상기 배기캠 조절부에 배치되고, 상기 원심추의 회전 가능한 범위를 제한하는 회전가이드부를 더 포함하는 왕복 피스톤 엔진.
  44. 제43항에 있어서,
    상기 회전가이드부는,
    상기 흡기캠 조절부와 상기 배기캠 조절부의 상부에 배치되고, 상기 원심추의 회전 범위를 설정하는 적어도 하나의 경계면이 형성된 흡배기용 회전가이드부; 및
    상기 원심추의 초기 위치를 설정하는 경계면을 향해 상기 원심추를 탄성적으로 회전시키도록 상기 흡기캠 조절부 및 상기 배기캠 조절부에 배치된 탄성부재;
    를 포함하는 왕복 피스톤 엔진.
PCT/KR2009/005076 2008-09-08 2009-09-08 왕복 피스톤 엔진 및 그 작동 방법 WO2010027238A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020080088282A KR101065002B1 (ko) 2008-09-08 2008-09-08 왕복 피스톤 엔진 및 그 작동 방법
KR10-2008-0088282 2008-09-08
KR10-2009-0071715 2009-08-04
KR1020090071715A KR20110013991A (ko) 2009-08-04 2009-08-04 왕복 피스톤 엔진

Publications (2)

Publication Number Publication Date
WO2010027238A2 true WO2010027238A2 (ko) 2010-03-11
WO2010027238A3 WO2010027238A3 (ko) 2010-06-24

Family

ID=41797685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/005076 WO2010027238A2 (ko) 2008-09-08 2009-09-08 왕복 피스톤 엔진 및 그 작동 방법

Country Status (1)

Country Link
WO (1) WO2010027238A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107476886A (zh) * 2017-09-30 2017-12-15 中国第汽车股份有限公司 一种汽油机压缩比连续可变气缸及其工作方法
CN113389639A (zh) * 2020-03-12 2021-09-14 赵天安 一种带压缩比调节机构的发动机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0632191A1 (en) * 1993-06-26 1995-01-04 Coventry University Internal combustion engine
JP2000230439A (ja) * 1999-02-09 2000-08-22 Tokyo Gas Co Ltd 予混合圧縮自着火機関及びその運転方法
JP2002266645A (ja) * 2001-03-13 2002-09-18 Osaka Gas Co Ltd エンジン及びその運転方法及び副室機構
JP2004316526A (ja) * 2003-04-15 2004-11-11 Daihatsu Motor Co Ltd 2サイクル内燃機関

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0632191A1 (en) * 1993-06-26 1995-01-04 Coventry University Internal combustion engine
JP2000230439A (ja) * 1999-02-09 2000-08-22 Tokyo Gas Co Ltd 予混合圧縮自着火機関及びその運転方法
JP2002266645A (ja) * 2001-03-13 2002-09-18 Osaka Gas Co Ltd エンジン及びその運転方法及び副室機構
JP2004316526A (ja) * 2003-04-15 2004-11-11 Daihatsu Motor Co Ltd 2サイクル内燃機関

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107476886A (zh) * 2017-09-30 2017-12-15 中国第汽车股份有限公司 一种汽油机压缩比连续可变气缸及其工作方法
CN113389639A (zh) * 2020-03-12 2021-09-14 赵天安 一种带压缩比调节机构的发动机
CN113389639B (zh) * 2020-03-12 2022-09-27 赵天安 一种带压缩比调节机构的发动机

Also Published As

Publication number Publication date
WO2010027238A3 (ko) 2010-06-24

Similar Documents

Publication Publication Date Title
WO2017111311A1 (ko) 로터리 엔진
JP3385023B2 (ja) 自由ピストンエンジンのコールドスタートの為の方法、およびこの方法の使用に適した自由ピストンエンジン
JP5395848B2 (ja) 低速2サイクルガスエンジン
KR101725850B1 (ko) 단류 소기식 2사이클 엔진
WO2010027238A2 (ko) 왕복 피스톤 엔진 및 그 작동 방법
WO2021194113A1 (ko) 로터리 엔진
US20160252011A1 (en) Two-cycle gas engine
KR101741860B1 (ko) 스플릿-사이클 엔진
WO2015163661A1 (ko) 흡입기, 동력발생기, 흡입기와 동력발생기를 이용한 외연기관 시스템, 흡입기와 동력발생기를 이용한 내연기관 시스템, 흡입기와 동력발생기를 이용한 에어 하이브리드 동력발생 시스템.
SK3962000A3 (en) Method for controlling machine piston movement, implementing device and balancing of said device
US4993372A (en) Two stroke internal combustion engine with decompression valve
WO2011037369A4 (ko) 크랭크리스 엔진
US5080081A (en) Four-cycle heat insulating engine
EP0645529B1 (en) Thermally insulating engine
WO2019098655A1 (ko) 로터리 엔진
WO2009139539A9 (ko) 4행정 내연기관의 흡배기 장치
WO2021246712A1 (ko) 선박 이중연료엔진의 가스공급펌프
WO2020242230A1 (ko) 배기가스 재순환 시스템 및 이를 구비하는 선박
US2512254A (en) Jet engine, including reciprocating pressure gas generator
GB2425808A (en) Supercharged two-stroke engine with separate direct injection of air and fuel
GB2229223A (en) Air injection into a two-stroke engine exhaust port
WO2017052207A1 (ko) 기관부 외부의 공기 압축 기구에 의한 급기 방식의 2 행정 1 사이클 내연기관
JP7236407B2 (ja) 水素燃料を用いた内燃機関
US7198011B2 (en) Internal combustion engine
US848029A (en) Internal-combustion engine.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811737

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811737

Country of ref document: EP

Kind code of ref document: A2