WO2010027196A2 - 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기 및 이를 이용한 서브마이크론 입자의 실시간 크기분포 측정방법 - Google Patents

서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기 및 이를 이용한 서브마이크론 입자의 실시간 크기분포 측정방법 Download PDF

Info

Publication number
WO2010027196A2
WO2010027196A2 PCT/KR2009/004975 KR2009004975W WO2010027196A2 WO 2010027196 A2 WO2010027196 A2 WO 2010027196A2 KR 2009004975 W KR2009004975 W KR 2009004975W WO 2010027196 A2 WO2010027196 A2 WO 2010027196A2
Authority
WO
WIPO (PCT)
Prior art keywords
particles
size distribution
real
particle
channels
Prior art date
Application number
PCT/KR2009/004975
Other languages
English (en)
French (fr)
Other versions
WO2010027196A3 (ko
Inventor
황정호
박규태
박동호
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2010027196A2 publication Critical patent/WO2010027196A2/ko
Publication of WO2010027196A3 publication Critical patent/WO2010027196A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0266Investigating particle size or size distribution with electrical classification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0038Investigating nanoparticles

Definitions

  • the present invention relates to a multi-channel type diffuser for measuring the real-time size distribution of submicron particles and a method for measuring the real-time size distribution of submicron particles using the same, and more specifically, charged with a particulate matter and then branched out.
  • the present invention relates to a multi-channel diffused discharger for real-time size distribution measurement of submicron particles, which enables the measurement of particle size distribution in real time by acquiring a current value of, and a method for measuring real-time size distribution of submicron particles using the same.
  • PM Particulate Matter contained in the yellow dust or automobile exhaust gas easily penetrates and accumulates in the respiratory system of the human body, which is a major cause of respiratory diseases, visibility disorders and smog phenomenon in large cities.
  • size is recognized as an important variable for determining the risk of the human body, the trend is shifting from the existing mass regulation to the regulation of the number concentration by particle size.
  • Ultrafine particles can be mainly classified into electrostatic methods and methods by condensation growth of particles, and condensation particle counters (CPC) capable of measuring ultrafine particles in the range of 0.002 ⁇ m to 1 ⁇ m that are difficult to measure optically.
  • CPC condensation particle counters
  • condensation particle counters are most commonly used for particle counting.
  • These condensation particle counters generally consist of a saturator, a condenser, and an optical detector, which saturate an air sample while passing the saturator wet with a working fluid (mainly alcohol) and lower than room temperature.
  • the condenser which is maintained at a temperature (about 10 ° C.), flows into the condenser and grows on the surface of the ultrafine particles, and measures the number of particles by scattering of light using the optical detector at the outlet of the condenser. The principle of operation is implemented.
  • DMA differential mobility analyzer
  • SMPS scanning mobility particle sizer
  • the cutting particle diameter on the flow path of the air stream containing charged particles By sequentially installing a plurality of impingement substrates which are sequentially reduced, the current concentration at each impact stage is measured, and the number concentration for each particle diameter is calculated in real time.
  • the present invention devised to solve the problems described above is a sub-micron that can be manufactured at a lower cost and small size, and can accurately measure the particle size distribution in real time while minimizing the loss of charge or stagnation of particles.
  • An object of the present invention is to provide a multi-channel diffuser for measuring the size distribution of particles in real time and a method for measuring the size distribution of submicron particles using the same.
  • Another object of the present invention is to provide a method for measuring real-time size distribution of submicron particles using the same.
  • the present invention for achieving the object as described above, Particle charge (10) to charge the particles contained in the aerosol air; A plurality of channels 20 for dividing the air in the particle charge unit 10 into a plurality of channels and providing an outflow passage; And a current meter (not shown) electrically connected to an outlet end side of each of the channels 20 to detect a plurality of current values corresponding to the charged amount of particles passing through each of the channels 20.
  • the multi-channel diffused discharger for real-time size distribution measurement of submicron particles is a technical subject.
  • the charged particle 10 the ion generator 11 for generating ions by applying a high voltage to the clean air supplied to the inside;
  • An aerosol supply unit 12 receiving the aerosol air to be measured for particle size distribution;
  • a diffusion charge unit configured to provide a volume in which particles included in the air supplied through the aerosol supply unit 12 and ions generated in the ion generation unit 11 can be mixed by diffusion and to charge the aerosol particles. 13); is preferably configured to include.
  • the ion generating unit 11 may include: an air chamber 11a including an inlet port through which the clean air is introduced and an outlet port through which ions generated therein flow out toward the diffusion charge unit 13 side; A power electrode 11b installed in the air chamber 11a in a pin shape and connected to a power supply device to receive a high voltage; And a ground electrode 11c formed around the outlet of the air chamber 11a at a predetermined interval from the power electrode 11b.
  • the collecting electrode 40 is installed on the outlet end side of the channel 20 to attach and capture the charged particles flowing out through the channel 20, the current measuring device is electrically connected to; It is desirable to be.
  • the flow control means (not shown) detachably assembled to the channel 20 so as to be individually adjustable to control the flow rate of air passing through each of the plurality of channels 20; Do.
  • the flow rate control means a plurality of nozzles (not shown) which are installed to the outlet end of each of the plurality of channels 20 having different inner diameters, preferably comprises a.
  • the flow rate adjusting means may include a flow rate control valve (not shown) for elastically adjusting the width of the flow path provided by the channel 20 or the nozzle.
  • a plurality of current values measured in the current measuring device by substituting a predetermined algorithm to calculate the particle size distribution of the particle preferably further comprises a.
  • the plurality of channels 20 is preferably configured to include three or more channels 20 are installed in parallel to the outlet of the particle charge (10).
  • the computing device Is the current value measured by the current meter, Unit charge , Particle flow rate, Diameter of the particle, The charge efficiency of the particles, Coefficient obtained by the experiment, Obtained by experiment, Concentration of particles, The total number concentration of particles, Is the geometric mean diameter, With geometric standard deviation,
  • the particle charging step of charging the particles contained in the aerosol air A split flow step of dividing and flowing air including charged particles into a plurality of channels through parallel channels 20; A current value measuring step of measuring in real time a current value corresponding to a charged amount of particles passing through each of the plurality of channels 20; And a particle size distribution calculation derivation step of deriving particle size distribution by substituting and calculating a plurality of current values measured in the current value measuring step into a predetermined algorithm.
  • the aerosol particles are charged by the diffusion and collision of ions generated by applying a high voltage to the particles contained in the aerosol air and clean air.
  • the present invention by the configuration as described above, can be manufactured at a lower cost and small size by a simple structure consisting of a plurality of channels connected in parallel to the particle charge and a current meter for detecting the current value in the outlet of each channel,
  • the effect is that the size distribution of particles can be precisely measured in real time while minimizing charge loss or stagnation.
  • the structure and operation control system can replace the existing complex equipment and have other effects that users can easily operate and manage.
  • diffusion charge part 20 channel
  • FIG. , , 3 is a graph illustrating a first embodiment of a method for measuring real-time size distribution of submicron particles according to the present invention.
  • the first embodiment of the multi-channel diffused charge charger for real-time size distribution measurement of submicron particles includes a large particle charger 10, a plurality of channels 20, It consists of a current meter (not shown), each of the channels in the current meter while charging the aerosol air that is the particle size distribution measurement object in the particle charge 10 and flows out through the plurality of channels 20 at the same time
  • the operating principle of measuring the current value by the particles passing through the (20) will be implemented.
  • the particle charge unit 10 is a component that charges particles contained in the aerosol air, consisting of an ion generating unit 11, aerosol supply unit 12, diffusion charge unit 13, in the description of the present invention
  • Aerosol (aerosol) air is air containing fine particles of solid or liquid dispersed in a gas such as air pollutants and refers to the air to be measured the particle size distribution of the present invention.
  • the ion generating unit 11 generates ions by applying a high voltage to the clean air supplied therein, the aerosol supply unit 12 receives the aerosol air, and the diffusion charge unit 13 in the aerosol supply unit ( Particles included in the air supplied through 12) and the ions generated in the ion generator 11 provide a volume that can be mixed and collided by diffusion, so that the aerosol particles are charged.
  • the ion generating unit 11 is composed of an air chamber 11a, a power electrode 11b, and a ground electrode 11c, and an inlet through which the clean air is introduced into the air chamber 11a and the air chamber ( 11a) an outlet through which ions generated therein flow out toward the diffusion charge part 13 is formed, and the power electrode 11b is provided in a fin shape inside the air chamber 11a, and the ground electrode 11c is formed. Is formed around the outlet of the air chamber 11a at a predetermined interval from the power electrode 11b.
  • the power electrode 11b Is formed in the shape of a fin, the electric field near the power electrode 11b is particularly strong, so that partial discharge occurs and gas particles on the surface of the power electrode 11b are ionized.
  • the plurality of channels 20 provide a plurality of passages through which the charged air or particles are divided into a plurality of outflows, and the outflow meter is discharged through each of the channels 20. Detects a plurality of current values corresponding to the charged amount of the particles passing through each of the channels 20 by being electrically connected to the collecting electrode 40 installed at the outlet end side of the channel 20 so that charged particles are attached and captured. do.
  • each of the channels 20 It is preferable to induce the charged water of the particles flowing out through the different.
  • the residence time of the particles in each of the channels 20 is different, the longer the residence time of the particles, the greater the number of charge of the particles, the channel (20)
  • the number of charges of the particles passing through each of them will be different, and a plurality of current values measured by the ammeter will have different values.
  • the inner diameter of each of the channels 20 is different from each other, or the other channel 20 is branched to any one of the channels 20.
  • the shape of the channel 20 itself may be formed to be different from each other, including an embodiment of forming the shape.
  • the channel 20, which is directly connected to the particle charger 1 is required to replace the channel 20 itself.
  • (20) is formed in the particle charger (1) to have a constant inner diameter and shape, and the flow rate is adjusted in the channel (20) to individually control the flow rate of air passing through each of the plurality of channels (20) It is preferable to assemble and detach the means (not shown).
  • the flow rate adjusting means may have a plurality of nozzles (not shown) installed at the outlet end of each of the plurality of channels 20 having different inner diameters, or the assembling and installed at the channel 20 or the channel 20. Including an embodiment such as a flow control valve (not shown) that stretches and adjusts the width of the flow path provided by the nozzle, the flow rate through each of the plurality of channels 20 is not limited to a specific structure and shape. .
  • the plurality of current values measured by the current meter are assigned to a predetermined algorithm composed of variables that provide information on the particle size distribution, such as the total number concentration of particles, the geometric mean diameter, and the geometric standard deviation, by a computing device. It is calculated to derive a number of variable values to finally obtain information about the size distribution of the particles.
  • the first embodiment of the method for measuring the real-time size distribution of submicron particles uses the first embodiment of the multi-channel diffusion charge charger for real-time size distribution measurement of the submicron particles. It relates to a method of measuring the size distribution, as shown in Figure 3, it consists of a particle charging step, a split flow step, a current value measurement step, the operation derivation step.
  • the particles charged by the particle charge 10 are divided into a plurality of flows such that the residence time and the number of charges of the particles are differentiated from each other through a plurality of channels 20 installed in parallel, and the current value is measured.
  • a plurality of current values corresponding to the charged amount of particles passing through each of the plurality of channels 20 are measured in real time.
  • the multi-channel diffuser for measuring the real-time size distribution of the submicron particles having the configuration as described above and the method for measuring the real-time size distribution of the submicron particles using the same, parallel to the particle charge (10)
  • the simple structure consisting of the plurality of channels 20 connected and the current meter for detecting a current value at the outlet end of each of the channels 20 makes it possible to produce a lower cost and a smaller size, while reducing or reducing the amount of charge of the particles. Particle size distribution can be measured accurately in real time with minimal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

본 발명은 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기 및 이를 이용한 서브마이크론 입자의 실시간 크기분포 측정방법에 관한 것으로, 에어로졸 공기에 포함된 입자를 하전시키는 입자하전기(10); 상기 입자하전기(10) 내부의 공기가 다수로 분할되며 유출가능한 통로를 제공하는 다수의 채널(20); 및 상기 채널(20) 각각의 유출단부측에 전기적으로 연결되어 상기 채널(20) 각각을 통과한 입자의 하전량에 해당되는 다수의 전류값을 검출하는 전류측정기;를 포함하여 구성되는 것을 기술적 요지로 하여, 보다 저가 및 소형으로 제작가능하면서도, 입자의 하전량 손실이나 정체를 최소하하면서 입자의 크기분포를 실시간으로 정밀하게 측정할 수 있으며, 입자의 총 개수농도, 기하평균직경, 기하표준편차와 같이 입자 크기분포에 관한 정보를 제공하는 변수들로 구성되는 알고리즘에 전류값 데이터를 대입하여 다수의 변수값을 도출함에 있어서도, 변수의 갯수에 대응되는 다수의 연립방정식을 형성함으로써, 일부 변수에 임의의 가정값을 설정할 필요없이 정확하게 변수값을 연산, 도출할 수 있는 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기 및 이를 이용한 서브마이크론 입자의 실시간 크기분포 측정방법에 관한 것이다.

Description

서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기 및 이를 이용한 서브마이크론 입자의 실시간 크기분포 측정방법
본 발명은 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기 및 이를 이용한 서브마이크론 입자의 실시간 크기분포 측정방법에 관한 것으로, 보다 상세하게는 입자상 물질을 하전시킨 후 분기하여 유출시키면서 다수의 전류값을 동시에 취득함으로써 입자의 크기분포를 실시간으로 측정가능하도록 하는 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기 및 이를 이용한 서브마이크론 입자의 실시간 크기분포 측정방법에 관한 것이다.
황사나 자동차 배기가스 등에 포함된 입자상 물질(PM, Particulate Matter) 중 미세입자는 인체의 호흡기에 쉽게 침투,축적되어 호흡기 질환, 대도시의 시정장애 및 스모그 현상의 주원인이 되고 있으며, 이에 따라 입자상물질의 크기가 인체의 위해도를 결정하는 중요한 변수로 인식되면서 기존의 질량규제에서 입경별 개수 농도에 대한 규제로 전환되고 있는 추세이다.
또한, 반도체 생산공정을 포함한 각종 첨단 생산공정에서 공기중에 포함된 미세입자의 양을 감시해 불량률을 감소시켜야 할 필요성이 생기고, 나노미터 내지 마이크로 크기의 구조를 가지는 입자의 적용범위가 확대되어 감에 따라 초미세 크기의 입자를 연구하기 위해 입자의 크기 측정에 관한 중요성과 그 적용분야가 급격히 확대되어 가고 있다.
초미세 입자는 주로 정전기적인 방법과 입자의 응축 성장에 의한 방법 등으로 개수될 수 있으며, 광학적으로 측정하기 어려운 0.002㎛에서 1㎛범위의 초미세크기의 입자를 계측할 수 있는 응축 입자 계수기(CPC, condensation particle counter)를 입자개수 측정에 가장 많이 사용하고 있다.
이러한 응축 입자 계수기는 일반적으로 크게 포화기(saturator), 응축기(condenser), 광학 탐지기(optical detector)로 구성되며, 작동유체(주로 alcohol)로 젖은 상기 포화기를 통과시키면서 공기샘플을 포화시키고 상온보다 낮은 온도(약 10℃)로 유지되고 있는 상기 응축기로 유입시켜 초미세입자의 표면에 응결, 성장이 이루어지도록하며, 상기 응축기 출구 부분에서 상기 광학 탐지기를 이용하여 빛의 산란현상으로 입자의 개수를 측정하는 작동원리로 구현된다.
DMA(differential mobility analyzer)는 입자를 전기적 이동도에 따라 분류하는 장치로 일반적으로 다분산(polydisperse) 입자들 중에서 필요한 크기의 단분산(monodisperse) 입자만을 골라내어 상기 응축 입자 계수기에 유입시키기 위해 사용되며, 상기 DMA의 전압을 시간에 대해 지수적으로 변화시키면서 상기 응축 입자 계수기로 입자 개수를 측정하는 SMPS(scanning mobility particle sizer)가 고안되어 입자의 실시간 계측에 사용되고 있다.
그러나, 상기와 같은 종래기술을 적용하여 입자의 크기분포를 실시간으로 측정하기 위해서는 상기 CPC, DMA, SMPS와 같은 매우 고가의 장비를 사용하여야 하고 장치 자체의 설치규모가 비대하여 연구나 산업상 목적으로 광범위하게 적용하기에 한계가 있었다.
한편으로, 정전기적인 방법으로 입자상 물질의 크기분포를 측정함에 있어서는, 한국실용신안등록 제378620호의 대기중 부유 입자상 물질의 실시간 측정 장치를 포함하여, 하전 입자를 포함한 기류의 유동경로상에 절단입경이 순차적으로 작아지는 다수의 충돌기판을 연속적으로 설치함으로써, 각각의 임팩터 스테이지에서의 전류값을 측정하여 입경별 개수 농도를 실시간으로 산출하고 있다.
그러나, 이러한 종래의 입자 크기분포 측정장치는 다수의 임팩터 스테이지를 직렬로 연속하여 설치하여야 하므로 장치 전체의 사이즈가 크고, 입자가 장시간 유동되는 과정에서 하전값의 손실이나 스테이지 내부에 정체되는 경우가 많으며, 각각의 스테이지에 구비된 충돌기판의 절단입경에 해당되는 개수농도를 각각 구하게 되므로 입자의 크기분포를 측정함에 있어서 정밀도가 낮다는 문제점이 있었다.
그리고, 입자의 총 개수농도, 기하평균직경, 기하표준편차와 같이 입자 크기분포에 관한 정보를 제공하는 변수들로 구성되는 알고리즘에 전류값 데이터를 대입하여 다수의 변수값을 도출함에 있어서도, 방정식의 갯수 대비 변수의 갯수가 많은 한계가 있어, 기하표준편차와 같은 일부 변수에 임의의 가정값을 설정하여 알고리즘을 연산할 수 밖에 없다는 한계가 있었다.
상술한 바와 같은 문제점을 해결하기 위해 안출된 본 발명은, 보다 저가 및 소형으로 제작가능하면서도, 입자의 하전량 손실이나 정체를 최소하하면서 입자의 크기분포를 실시간으로 정밀하게 측정할 수 있는 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기 및 이를 이용한 서브마이크론 입자의 실시간 크기분포 측정방법을 제공하는 것을 목적으로 한다.
또한, 입자의 총 개수농도, 기하평균직경, 기하표준편차와 같이 입자 크기분포에 관한 정보를 제공하는 변수들로 구성되는 알고리즘에 전류값 데이터를 대입하여 다수의 변수값을 도출함에 있어서도, 변수의 갯수에 대응되는 다수의 연립방정식을 형성함으로써, 일부 변수에 임의의 가정값을 설정할 필요없이 정확하게 변수값을 연산, 도출할 수 있는 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기 및 이를 이용한 서브마이크론 입자의 실시간 크기분포 측정방법을 제공하는 것을 다른 목적으로 한다.
상술한 바와 같은 목적 달성을 위한 본 발명은, 에어로졸 공기에 포함된 입자를 하전시키는 입자하전기(10); 상기 입자하전기(10) 내부의 공기가 다수로 분할되며 유출가능한 통로를 제공하는 다수의 채널(20); 및 상기 채널(20) 각각의 유출단부측에 전기적으로 연결되어 상기 채널(20) 각각을 통과한 입자의 하전량에 해당되는 다수의 전류값을 검출하는 전류측정기(미도시);를 포함하여 구성되는 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기를 기술적 요지로 한다.
여기서, 상기 입자하전기(10)는, 내부로 공급된 청정 공기에 고전압을 인가하여 이온을 생성하는 이온생성부(11); 입자 크기분포의 측정대상이 되는 상기 에어로졸 공기를 공급받는 에어로졸공급부(12); 및 상기 에어로졸공급부(12)를 통해 공급받은 공기에 포함된 입자와 상기 이온생성부(11)에서 생성된 이온이 확산에 의해 혼합가능한 용적을 제공하며 에어로졸 입자의 하전이 이루어지도록 하는 확산하전부(13);를 포함하여 구성되는 것이 바람직하다.
그리고, 상기 이온생성부(11)는, 상기 청정 공기가 유입되는 유입구와, 내부에서 생성된 이온이 상기 확산하전부(13)측으로 유출되는 유출구가 형성된 공기실(11a); 상기 공기실(11a) 내부에 핀형상으로 설치되며, 전원공급장치와 연결되어 고전압을 인가받는 전원전극(11b); 및 상기 전원전극(11b)과 지정간격을 두고 상기 공기실(11a)의 유출구 둘레에 형성되는 접지전극(11c);을 포함하여 구성되는 것이 바람직하다.
또한, 상기 채널(20)을 통해 유출되는 하전 입자가 부착, 포획되도록 상기 채널(20)의 유출단부측에 설치되며, 상기 전류측정기가 전기적으로 연결되는 포집전극(40);을 더 포함하여 구성되는 것이 바람직하다.
그리고, 상기 다수의 채널(20) 각각을 통과하는 공기의 유량을 개별적으로 조절가능하도록 상기 채널(20)에 착탈가능하게 조립설치되는 유량조절수단(미도시);을 더 포함하여 구성되는 것이 바람직하다.
또한, 상기 유량조절수단은, 서로 다른 내경을 가지고 상기 다수의 채널(20) 각각의 유출단부에 조립설치되는 다수의 노즐(미도시);을 포함하여 구성되는 것이 바람직하다.
그리고, 상기 유량조절수단은, 상기 채널(20) 또는 노즐이 제공하는 유로의 너비를 신축조절하는 유량조절밸브(미도시);를 포함하여 구성되는 것도 바람직하다.
또한, 상기 전류측정기에서 측정된 다수의 전류값들을 기설정된 알고리즘에 대입, 연산하여 입자의 크기분포를 도출하는 연산장치(미도시);를 더 포함하여 구성되는 것이 바람직하다.
여기서, 상기 다수의 채널(20)은, 상기 입자하전기(10)의 유출부에 병렬되게 설치되는 3개 이상의 채널(20)을 포함하여 구성되는 것이 바람직하다.
[규칙 제26조에 의한 보정 22.09.2009] 
그리고, 상기 연산장치는,
Figure WO-DOC-23
를 상기 전류측정기에서 측정된 전류값,
Figure WO-DOC-232
를 단위전하량
Figure WO-DOC-233
,
Figure WO-DOC-234
를 입자의 유량,
Figure WO-DOC-235
를 입자의 직경,
Figure WO-DOC-236
를 입자의 하전효율,
Figure WO-DOC-237
를 실험에 의해 취득한 계수,
Figure WO-DOC-238
를 실험에 의해 취득한 차수,
Figure WO-DOC-239
를 입자의 농도,
Figure WO-DOC-2310
을 입자의 총 개수농도,
Figure WO-DOC-2311
을 기하평균직경,
Figure WO-DOC-2312
를 기하표준편차로 하여,
[규칙 제26조에 의한 보정 22.09.2009] 
Figure WO-DOC-24
(1)
[규칙 제26조에 의한 보정 22.09.2009] 
Figure WO-DOC-25
(2)
[규칙 제26조에 의한 보정 22.09.2009] 
Figure WO-DOC-26
(3)
[규칙 제26조에 의한 보정 22.09.2009] 
로 부터
Figure WO-DOC-27
로 표현되는 함수에, 상기 전류측정기에서 측정된 다수의 전류값
Figure WO-DOC-271
,
Figure WO-DOC-272
,
Figure WO-DOC-273
Figure WO-DOC-274
에 각각 대입하여 형성한 3개의 연립방정식을 연산함으로써
Figure WO-DOC-275
,
Figure WO-DOC-276
,
Figure WO-DOC-277
을 도출하는 것이 바람직하다.
또한, 본 발명은, 에어로졸 공기에 포함된 입자를 하전시키는 입자하전단계; 하전된 입자를 포함한 공기를 병렬설치된 다수의 채널(20)을 통해 다수로 분할하며 유동시키는 분할유동단계; 상기 다수의 채널(20) 각각을 통과한 입자의 하전량에 해당되는 전류값을 실시간으로 측정하는 전류값측정단계; 및 상기 전류값측정단계에서 측정된 다수의 전류값들을 기설정된 알고리즘에 대입, 연산하여 입자의 크기분포를 도출하는 입경분포 연산도출단계;를 포함하여 구성되는 서브마이크론 입자의 실시간 크기분포 측정방법을 다른 기술적 요지로 한다.
여기서, 상기 입자하전단계는, 상기 에어로졸 공기에 포함된 입자와 청정 공기에 고전압을 인가하여 생성시킨 이온의 확산, 충돌에 의해 에어로졸 입자의 하전이 이루어지도록 하는 것이 바람직하다.
[규칙 제26조에 의한 보정 22.09.2009] 
그리고, 상기 입경분포 연산도출단계는,
Figure WO-DOC-23
를 상기 전류측정기에서 측정된 전류값,
Figure WO-DOC-232
를 단위전하량
Figure WO-DOC-233
,
Figure WO-DOC-234
를 입자의 유량,
Figure WO-DOC-235
를 입자의 직경,
Figure WO-DOC-236
를 입자의 하전효율,
Figure WO-DOC-237
를 실험에 의해 취득한 계수,
Figure WO-DOC-238
를 실험에 의해 취득한 차수,
Figure WO-DOC-239
를 입자의 농도,
Figure WO-DOC-2310
을 입자의 총 개수농도,
Figure WO-DOC-2311
을 기하평균직경,
Figure WO-DOC-2312
를 기하표준편차로 하여,
[규칙 제26조에 의한 보정 22.09.2009] 
Figure WO-DOC-24
(1)
[규칙 제26조에 의한 보정 22.09.2009] 
Figure WO-DOC-25
(2)
[규칙 제26조에 의한 보정 22.09.2009] 
Figure WO-DOC-26
(3)
[규칙 제26조에 의한 보정 22.09.2009] 
로 부터
Figure WO-DOC-27
로 표현되는 함수에, 상기 전류측정기에서 측정된 다수의 전류값
Figure WO-DOC-271
,
Figure WO-DOC-272
,
Figure WO-DOC-273
Figure WO-DOC-274
에 각각 대입하여 3개의 연립방정식을 형성하는 전류값대입단계; 및 상기 3개의 연립방정식을 연산함으로써, 지정범위의
Figure WO-DOC-34
에 대해
Figure WO-DOC-275
,
Figure WO-DOC-276
,
Figure WO-DOC-277
을 도출하는 연립연산단계;를 포함하여 구성되는 것이 바람직하다.
상기와 같은 구성에 의한 본 발명은, 입자하전기에 병렬연결된 다수의 채널과 채널 각각의 유출부에서 전류값을 검출하는 전류측정기로 이루어진 간단한 구조에 의해 보다 저가 및 소형으로 제작가능하면서도, 입자의 하전량 손실이나 정체를 최소하하면서 입자의 크기분포를 실시간으로 정밀하게 측정할 수 있다는 효과가 있다.
또한, 입자의 총 개수농도, 기하평균직경, 기하표준편차와 같이 입자 크기분포에 관한 정보를 제공하는 변수들로 구성되는 알고리즘에 전류값 데이터를 대입하여 다수의 변수값을 도출함에 있어서도, 각각의 채널에서 하전 입자를 포집하여 측정된 다수의 전류값을 적용하여 변수의 갯수에 대응되는 다수의 연립방정식을 형성함으로써, 일부 변수에 임의의 가정값을 설정할 필요없이 정확하게 입자의 총 개수농도, 기하평균직경, 기하표준편차를 연산, 도출할 수 있다는 다른 효과가 있다.
이에 따라, 200배 이상 저렴한 합리적인 가격으로 SMPS와 같은 고가의 장비를 대체할 수 있어, 경제적인 이유로 용이하게 적용하기 어렵던 나노미터에서 서브마이크로 단위 이상의 입자크기 측정 분야에도 광범위하게 적용가능하며, 간단한 장비구조와 연산제어시스템으로 기존의 복잡한 장비를 대체할 수 있고, 사용자들이 간편하게 조작, 관리할 수 있다는 다른 효과가 있다.
도 1 - 본 발명에 따른 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기의 제1실시예를 도시한 개략도
[규칙 제26조에 의한 보정 22.09.2009] 
도 2 - 로그정규분포를 따르는 입자의 크기분포에 있어서
Figure WO-DOC-2310
,
Figure WO-DOC-2311
,
Figure WO-DOC-2312
을 설명하고자 도시한 그래프
도 3 - 본 발명에 따른 서브마이크론 입자의 실시간 크기분포 측정방법의 제1실시예를 도시한 흐름도
<도면에 사용된 주요 부호에 대한 설명>
10 : 입자하전기 11 : 이온생성부
11a : 공기실 11b : 전원전극
11c : 접지전극 12 : 에어로졸공급부
13 : 확산하전부 20 : 채널
40 : 포집전극
상기와 같은 구성을 가지는 본 발명에 따른 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기 및 이를 이용한 서브마이크론 입자의 실시간 크기분포 측정방법을 다음의 도면을 참조하여 보다 상세하게 설명하기로 한다.
[규칙 제26조에 의한 보정 22.09.2009] 
도 1은 본 발명에 따른 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기의 제1실시예를 도시한 개략도이고, 도 2는 로그정규분포를 따르는 입자의 크기분포에 있어서
Figure WO-DOC-2310
,
Figure WO-DOC-2311
,
Figure WO-DOC-2312
을 설명하고자 도시한 그래프이며, 도 3은 본 발명에 따른 서브마이크론 입자의 실시간 크기분포 측정방법의 제1실시예를 도시한 흐름도이다.
먼저, 본 발명에 따른 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기의 제1실시예에 대해 설명하기로 한다.
본 발명에 따른 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기의 제1실시예는, 도 1에 도시된 바와 같이, 크게 입자하전기(10), 다수의 채널(20), 전류측정기(미도시)로 이루어지며, 입자 크기분포 측정대상이 되는 에어로졸 공기를 상기 입자하전기(10)에서 하전시키고 상기 다수의 채널(20)을 통해 동시에 유출시키면서 상기 전류측정기에서 각각의 상기 채널(20)을 통과한 입자에 의한 전류값을 측정하는 작동원리를 구현하게 된다.
상기 입자하전기(10)는 에어로졸 공기에 포함된 입자를 하전시키는 구성요소로, 크게 이온생성부(11), 에어로졸공급부(12), 확산하전부(13)로 이루어지며, 본 발명의 설명에서 에어로졸(aerosol) 공기는 대기오염물질 등 기체중에 분산되어 부유하는 고체 또는 액체의 미립자가 포함된 공기로 본 발명의 입자 크기분포의 측정대상이 되는 공기를 말한다.
상기 이온생성부(11)에서는 내부로 공급된 청정 공기에 고전압을 인가하여 이온을 생성하고, 상기 에어로졸공급부(12)에서는 상기 에어로졸 공기를 공급받으며, 상기 확산하전부(13)에서는 상기 에어로졸공급부(12)를 통해 공급받은 공기에 포함된 입자와 상기 이온생성부(11)에서 생성된 이온이 확산에 의해 혼합, 충돌가능한 용적을 제공하며 에어로졸 입자의 하전이 이루어지도록 한다.
상기 이온생성부(11)는, 크게 공기실(11a), 전원전극(11b), 접지전극(11c)으로 이루어지며, 상기 공기실(11a)에는 상기 청정 공기가 유입되는 유입구와 상기 공기실(11a) 내부에서 생성된 이온이 상기 확산하전부(13)측으로 유출되는 유출구가 형성되고, 상기 전원전극(11b)은 상기 공기실(11a) 내부에 핀형상으로 설치되고, 상기 접지전극(11c)은 상기 전원전극(11b)과 지정간격을 두고 상기 공기실(11a)의 유출구 둘레에 형성된다.
상기 전원전극(11b)에 인가되는 고전압을 인가하면, 상기 접지전극(11c)과의 사이에 형성되는 전기장의 강한 부분만이 발광하여 전도성을 가지면서 코로나 방전 현상이 나타나게 되며, 상기 전원전극(11b)이 핀형상으로 형성됨에 따라 상기 전원전극(11b) 부근의 전기장이 특히 강해져 부분적인 방전이 일어나면서 상기 전원전극(11b) 표면의 기체 입자가 이온화하게 된다.
상기 다수의 채널(20)은 상기 입자하전기(10) 내부에서 하전된 공기 내지 입자가 다수로 분할되며 유출가능한 다수의 통로를 제공하며, 상기 전류측정기는 상기 채널(20) 각각을 통해 유출되는 하전 입자가 부착, 포획되도록 상기 채널(20)의 유출단부측에 설치된 포집전극(40)에 전기적으로 연결되어 상기 채널(20) 각각을 통과한 입자의 하전량에 해당되는 다수의 전류값을 검출한다.
상기 이온생성부(11)에서 방전된 이온들과 상기 에어로졸공급부(12)를 통해 상기 확산하전부(13) 내부로 공급된 입자들이 서로 확산, 충돌하여 상기 입자하전기(10)내에서 입자의 하전이 이루어지게 되고, 하전된 입자들과 이온은 상기 다수의 채널(20)로 나누어져 유출이 이루어지되는데, 상기 전류측정기에서 상호차별되는 다수의 전류값을 획득하기 위해서는 상기 채널(20) 각각을 통해 유출되는 입자의 하전수가 다르도록 유도하는 것이 바람직하다.
상기 다수의 채널(20)을 통과하는 유량이 서로 다르도록 설계하면, 상기 채널(20) 각각에서의 입자의 체류시간이 달라지게 되며, 입자의 체류시간이 길수록 입자의 하전수가 많아짐에 따라 상기 채널(20) 각각을 통과하는 입자의 하전수가 달라지게 되고, 상기 전류측정기에서 측정되는 다수의 전류값이 서로 다른 값을 가지게 된다.
상기와 같이 상기 채널(20) 각각에서의 입자의 체류시간을 다르게 하기 위해서 상기 채널(20) 각각의 내경을 서로 다르게 형성하거나, 상기 채널(20) 중 어느 하나에 다른 채널(20)을 분기시킨 형상으로 형성시키는 실시예 등을 포함하여 상기 채널(20) 자체의 형상을 상호 차별되게 형성할 수도 있다.
그러나, 실험조건이나 공정조건 등에 따라 유량을 변경해야할 필요성이 있을 경우, 상기 입자하전기(1)에 직접적으로 연결설치되는 상기 채널(20) 자체를 교체해야하는 번거로운 작업을 거쳐야 하므로, 상기 다수의 채널(20)을 일정한 내경과 형상을 가지도록 상기 입자하전기(1)에 형성하고, 상기 다수의 채널(20) 각각을 통과하는 공기의 유량을 개별적으로 조절가능하도록 상기 채널(20)에 유량조절수단(미도시)을 착탈가능하게 조립설치하는 것이 바람직하다.
상기 유량조절수단은, 서로 다른 내경을 가지고 상기 다수의 채널(20) 각각의 유출단부에 조립설치되는 다수의 노즐(미도시), 또는 상기 채널(20)이나 상기 채널(20)에 조립설치된 상기 노즐이 제공하는 유로의 너비를 신축조절하는 유량조절밸브(미도시)와 같은 실시예를 포함하여, 상기 다수의 채널(20) 각각을 통과하는 유량을 조절가능하다면 특정한 구조와 형상으로 한정되지 않는다.
상기 전류측정기에서 측정된 다수의 전류값들은 연산장치에 의해 입자의 총 개수농도, 기하평균직경, 기하표준편차와 같이 입자 크기분포에 관한 정보를 제공하는 변수들로 구성되는 기설정된 알고리즘에 대입, 연산되어 다수의 변수값을 도출함으로써 입자의 크기분포에 관한 정보를 최종적으로 획득하게 된다.
[규칙 제26조에 의한 보정 09.11.2009] 
Figure WO-DOC-FIGURE-1
를 상기 전류측정기에서 측정된 전류값,
Figure WO-DOC-FIGURE-2
를 단위전하량
Figure WO-DOC-FIGURE-3
,
Figure WO-DOC-FIGURE-4
를 입자의 유량,
Figure WO-DOC-FIGURE-5
를 입자의 직경,
Figure WO-DOC-FIGURE-6
를 입자의 하전효율,
Figure WO-DOC-FIGURE-7
를 실험에 의해 취득한 계수,
Figure WO-DOC-FIGURE-8
를 실험에 의해 취득한 차수,
Figure WO-DOC-FIGURE-9
를 입자의 농도,
Figure WO-DOC-FIGURE-10
을 입자의 총 개수농도,
Figure WO-DOC-FIGURE-11
을 기하평균직경,
Figure WO-DOC-FIGURE-12
를 기하표준편차로 할 때, 각 변수들의 관계는,
[규칙 제26조에 의한 보정 09.11.2009] 
Figure WO-DOC-FIGURE-13
(1)
[규칙 제26조에 의한 보정 09.11.2009] 
Figure WO-DOC-FIGURE-14
(2)
[규칙 제26조에 의한 보정 09.11.2009] 
Figure WO-DOC-FIGURE-15
(3)
의 관계식으로 정리된다.
상기 관계식(1), (2), (3)은, Journal of Aerosol Science 38(2007) p420-423의 [Development and performance test of a unipolar diffusion charger for real-time measurements of submicron aerosol particles having a log-normal size distribution(by D.Park, M.An, J.Hwang)], Journal of Aerosol Science 38(2007) p1240-1245의 [Real-time measurements of submicron aerosol particles having a log-normal size distribution by simultaneously using unipolar diffusion charger and unipolar field charger(by D.Park, S.Kim, M.An, J.Hwang)], 한국등록실용 제378620호의 대기중 부유 입자상 물질의 실시간 측정 장치 등에 기재된 바와 같이 당업계에서 공지된 관계식인 바 그 상세한 설명을 생략하기로 한다.
[규칙 제26조에 의한 보정 09.11.2009] 
상기 관계식(2)에서
Figure WO-DOC-FIGURE-16
는 입자의 통과량,
Figure WO-DOC-FIGURE-17
은 입자의 평균하전수로,
Figure WO-DOC-FIGURE-18
,
Figure WO-DOC-FIGURE-19
의 곱으로 입자의 하전율인
Figure WO-DOC-FIGURE-20
을 정의하며, 예를 들어, 입경
Figure WO-DOC-FIGURE-21
Figure WO-DOC-FIGURE-22
인 경우, 상기 관계식 (2)를
Figure WO-DOC-FIGURE-23
로 나타낼 수 있는 바와 같이, 실험에 의해 계수
Figure WO-DOC-FIGURE-24
와, 차수
Figure WO-DOC-FIGURE-25
를 취득하여 입자의 직경인
Figure WO-DOC-FIGURE-26
의 함수로 나타낼 수 있다.
[규칙 제26조에 의한 보정 09.11.2009] 
상기 관계식(2)의
Figure WO-DOC-FIGURE-27
Figure WO-DOC-FIGURE-28
에 대한 함수로써 관계식(1)의
Figure WO-DOC-FIGURE-29
에 치환하고, 상기 관계식 (3)의
Figure WO-DOC-FIGURE-30
Figure WO-DOC-FIGURE-31
,
Figure WO-DOC-FIGURE-32
,
Figure WO-DOC-FIGURE-33
,
Figure WO-DOC-FIGURE-34
에 대한 함수로써 상기 관계식(1)의
Figure WO-DOC-FIGURE-35
에 치환하면, 상기 관계식(1)을
Figure WO-DOC-FIGURE-36
로 표현되는
Figure WO-DOC-FIGURE-37
의 부정적분함수로 정리할 수 있다.
[규칙 제26조에 의한 보정 09.11.2009] 
상기 연산장치에서는, 상기와 같이 정리된 상기 관계식(1)의
Figure WO-DOC-FIGURE-38
에 상기 전류측정기에서 측정된 다수의 전류값
Figure WO-DOC-FIGURE-39
,
Figure WO-DOC-FIGURE-40
,
Figure WO-DOC-FIGURE-41
을 각각 대입하여 3개의 연립방정식을 형성하고,
Figure WO-DOC-FIGURE-42
의 범위를 설정하여 상기 3개의 연립방정식을 연산하는 것에 의해, 입자크기 분포가 도 2에 도시된 바와 같이 첨점이 하나인 로그정규분포를 따른다는 가정하에서, 입자크기 분포에 대한 정보인
Figure WO-DOC-FIGURE-43
,
Figure WO-DOC-FIGURE-44
,
Figure WO-DOC-FIGURE-45
을 도출할 수 있다.
[규칙 제26조에 의한 보정 09.11.2009] 
종래에는 상기 관계식 (1), (2), (3)을 이용하여 입자크기 분포에 대한 정보를 연산에 의해 취득함에 있어서는
Figure WO-DOC-FIGURE-46
,
Figure WO-DOC-FIGURE-47
,
Figure WO-DOC-FIGURE-48
에 해당되는 3개의 변수를 연산하기 위해
Figure WO-DOC-FIGURE-49
값을 임의로 가정해야함에 따라 입자크기 분포에 대한 정보를 정확하기 구하기 어렵고, 다른 변수값을 구하기 위해 실험에 장시간이 소요되어 실시간 측정이 이루어질 수 없는 한계가 있었다.
[규칙 제26조에 의한 보정 09.11.2009] 
그러나, 본 발명에 따르면 상기 입자하전기(10)의 유출부에 3개 이상의 상기 채널(20)을 병렬되게 설치함으로써,
Figure WO-DOC-FIGURE-50
,
Figure WO-DOC-FIGURE-51
,
Figure WO-DOC-FIGURE-52
에 해당되는 3개의 변수를 가지는 상기 관계식 (1)에 3개의 전류값을 대입하여 3개의 연립방정식을 형성하여, 변수를 임의로 가정하는 것 없이 용이하고 정확하게
Figure WO-DOC-FIGURE-53
,
Figure WO-DOC-FIGURE-54
,
Figure WO-DOC-FIGURE-55
를 구할 수 있다.
다음으로, 본 발명에 따른 서브마이크론 입자의 실시간 크기분포 측정방법의 제1실시예에 대해 설명하기로 한다.
본 발명에 따른 서브마이크론 입자의 실시간 크기분포 측정방법의 제1실시예는, 상기 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기의 제1실시예를 이용하여 서브마이크론 입자의 실시간 크기분포 측정하는 방법에 관한 것으로, 도 3에 도시된 바와 같이, 크게 입자하전단계, 분할유동단계, 전류값측정단계, 연산도출단계로 이루어진다.
상기 입자하전단계에서는, 상기 입자하전기(10)를 이용하여, 상기 이온생성부(11)에서 방전된 이온들과 상기 에어로졸공급부(12)를 통해 상기 확산하전부(13) 내부로 공급된 에어로졸 공기에 포함된 입자를 확산, 충돌시켜 상기 확산하전부(13)를 통해 공급된 입자를 하전시키게 된다.
상기 분할유동단계에서는, 상기 입자하전기(10)에 의해 하전된 입자를 병렬설치된 다수의 채널(20)을 통해 입자의 체류시간 및 하전수가 서로 차별되도록 다수로 분할하여 유동시키고, 상기 전류값측정단계에서는, 상기 다수의 채널(20) 각각을 통과한 입자의 하전량에 해당되는 다수의 전류값을 실시간으로 측정한다.
[규칙 제26조에 의한 보정 09.11.2009] 
상기 연산도출단계에서는, 전류값대입단계와 연립연산단계를 거쳐 상기 전류값측정단계에서 측정된 다수의 전류값들을 기설정된 알고리즘에 대입, 연산하여 입자의 크기분포에 관한 정보를 도출하게 되며, 상기 전류값대입단계에서는
Figure WO-DOC-FIGURE-56
,
Figure WO-DOC-FIGURE-57
,
Figure WO-DOC-FIGURE-58
에 해당되는 3개의 변수를 가지는 상기 관계식 (1)에 3개의 전류값을 대입하여 3개의 연립방정식을 형성하고, 상기 연립연산단계에서는 상기 3개의 연립방정식을 연산함으로써, 지정범위의
Figure WO-DOC-FIGURE-59
값에 대해
Figure WO-DOC-FIGURE-60
,
Figure WO-DOC-FIGURE-61
,
Figure WO-DOC-FIGURE-62
을 도출하게 된다.
상기와 같은 구성을 가지는 본 발명에 따른 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기 및 이를 이용한 서브마이크론 입자의 실시간 크기분포 측정방법에 의하면, 상기 입자하전기(10)에 병렬연결된 상기 다수의 채널(20)과 상기 채널(20) 각각의 유출단부에서 전류값을 검출하는 상기 전류측정기로 이루어진 간단한 구조에 의해, 보다 저가 및 소형으로 제작가능하면서도, 입자의 하전량 손실이나 정체를 최소하하면서 입자의 크기분포를 실시간으로 정밀하게 측정할 수 있다.
또한, 입자의 총 개수농도, 기하평균직경, 기하표준편차와 같이 입자 크기분포에 관한 정보를 제공하는 변수들로 구성되는 알고리즘에 전류값 데이터를 대입하여 다수의 변수값을 도출함에 있어서도, 각각의 상기 채널(20)에서 하전 입자를 포집하여 측정된 다수의 전류값을 적용하여 변수의 갯수에 대응되는 다수의 연립방정식을 형성함으로써, 일부 변수에 임의의 가정값을 설정할 필요없이 정확하게 입자의 총 개수농도, 기하평균직경, 기하표준편차를 연산, 도출할 수 있다.
이에 따라, 200배 이상 저렴한 합리적인 가격으로 기존의 SMPS와 같은 고가의 장비를 대체할 수 있어, 경제적인 이유로 용이하게 적용하기 어렵던 서브마이크로 단위 이상의 입자크기 측정 분야에도 광범위하게 적용할 수 있으며, 간단한 장비구조와 연산제어시스템으로 기존의 복잡한 장비를 대체할 수 있고, 사용자들이 보다 간편하게 조작, 관리할 수 있다.
이상에서는 본 발명의 바람직한 실시예를 들어 설명하였으나, 본 발명은 이러한 실시예에 한정되는 것이 아니고, 상기 실시예들을 기존의 공지기술과 단순히 조합적용한 실시예와 함께 본 발명의 특허청구범위와 상세한 설명에서 본 발명이 속하는 기술분야의 당업자가 변형하여 이용할 수 있는 기술은 본 발명의 기술범위에 당연히 포함된다고 보아야 할 것이다.

Claims (13)

  1. 에어로졸 공기에 포함된 입자를 하전시키는 입자하전기(10);
    상기 입자하전기(10) 내부의 공기가 다수로 분할되며 유출가능한 통로를 제공하는 다수의 채널(20); 및
    상기 채널(20) 각각의 유출단부측에 전기적으로 연결되어 상기 채널(20) 각각을 통과한 입자의 하전량에 해당되는 다수의 전류값을 검출하는 전류측정기;
    를 포함하여 구성되는 것을 특징으로 하는 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기.
  2. 제1항에 있어서, 상기 입자하전기(10)는,
    내부로 공급된 청정 공기에 고전압을 인가하여 이온을 생성하는 이온생성부(11);
    입자 크기분포의 측정대상이 되는 상기 에어로졸 공기를 공급받는 에어로졸공급부(12); 및
    상기 에어로졸공급부(12)를 통해 공급받은 공기에 포함된 입자와 상기 이온생성부(11)에서 생성된 이온이 확산에 의해 혼합가능한 용적을 제공하며 에어로졸 입자의 하전이 이루어지도록 하는 확산하전부(13);
    를 포함하여 구성되는 것을 특징으로 하는 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기.
  3. 제2항에 있어서, 상기 이온생성부(11)는,
    상기 청정 공기가 유입되는 유입구와, 내부에서 생성된 이온이 상기 확산하전부(13)측으로 유출되는 유출구가 형성된 공기실(11a);
    상기 공기실(11a) 내부에 핀형상으로 설치되며, 전원공급장치와 연결되어 고전압을 인가받는 전원전극(11b); 및
    상기 전원전극(11b)과 지정간격을 두고 상기 공기실(11a)의 유출구 둘레에 형성되는 접지전극(11c);
    을 포함하여 구성되는 것을 특징으로 하는 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기.
  4. 제1항에 있어서,
    상기 채널(20)을 통해 유출되는 하전 입자가 부착, 포획되도록 상기 채널(20)의 유출단부측에 설치되며, 상기 전류측정기가 전기적으로 연결되는 포집전극(40);
    을 더 포함하여 구성되는 것을 특징으로 하는 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기.
  5. 제1항에 있어서,
    상기 다수의 채널(20) 각각을 통과하는 공기의 유량을 개별적으로 조절가능하도록 상기 채널(20)에 착탈가능하게 조립설치되는 유량조절수단;
    을 더 포함하여 구성되는 것을 특징으로 하는 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기.
  6. 제5항에 있어서, 상기 유량조절수단은,
    서로 다른 내경을 가지고 상기 다수의 채널(20) 각각의 유출단부에 조립설치되는 다수의 노즐;
    을 포함하여 구성되는 것을 특징으로 하는 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기.
  7. 제5항 또는 제6항에 있어서, 상기 유량조절수단은,
    상기 채널(20) 또는 노즐이 제공하는 유로의 너비를 신축조절하는 유량조절밸브;
    를 포함하여 구성되는 것을 특징으로 하는 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기.
  8. 제1항에 있어서,
    상기 전류측정기에서 측정된 다수의 전류값들을 기설정된 알고리즘에 대입, 연산하여 입자의 크기분포를 도출하는 연산장치;
    를 더 포함하여 구성되는 것을 특징으로 하는 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기.
  9. 제8항에 있어서, 상기 다수의 채널(20)은,
    상기 입자하전기(10)의 유출부에 병렬되게 설치되는 3개 이상의 채널(20)을 포함하여 구성되는 것을 특징으로 하는 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기.
  10. [규칙 제26조에 의한 보정 22.09.2009] 
    제8항 또는 제9항에 있어서, 상기 연산장치는,
    Figure WO-DOC-c10
    를 상기 전류측정기에서 측정된 전류값,
    Figure WO-DOC-c101
    를 단위전하량
    Figure WO-DOC-c102
    ,
    Figure WO-DOC-c103
    를 입자의 유량,
    Figure WO-DOC-c104
    를 입자의 직경,
    Figure WO-DOC-c105
    를 입자의 하전효율,
    Figure WO-DOC-237
    를 실험에 의해 취득한 계수,
    Figure WO-DOC-238
    를 실험에 의해 취득한 차수,
    Figure WO-DOC-239
    를 입자의 농도,
    Figure WO-DOC-2310
    을 입자의 총 개수농도,
    Figure WO-DOC-2311
    을 기하평균직경,
    Figure WO-DOC-2312
    를 기하표준편차로 하여,
    Figure WO-DOC-24
    (1)
    Figure WO-DOC-25
    (2)
    Figure WO-DOC-26
    (3) 로 부터
    Figure WO-DOC-27
    로 표현되는 함수에, 상기 전류측정기에서 측정된 다수의 전류값
    Figure WO-DOC-271
    ,
    Figure WO-DOC-272
    ,
    Figure WO-DOC-273
    Figure WO-DOC-274
    에 각각 대입하여 형성한 3개의 연립방정식을 연산함으로써
    Figure WO-DOC-275
    ,
    Figure WO-DOC-276
    ,
    Figure WO-DOC-277
    을 도출하는 것을 특징으로 하는 서브마이크론 입자 크기분포의 실시간 측정을 위한 다중채널형 하전기.
  11. 에어로졸 공기에 포함된 입자를 하전시키는 입자하전단계;
    하전된 입자를 포함한 공기를 병렬설치된 다수의 채널(20)을 통해 다수로 분할하며 유동시키는 분할유동단계;
    상기 다수의 채널(20) 각각을 통과한 입자의 하전량에 해당되는 전류값을 실시간으로 측정하는 전류값측정단계; 및
    상기 전류값측정단계에서 측정된 다수의 전류값들을 기설정된 알고리즘에 대입, 연산하여 입자의 크기분포를 도출하는 입경분포 연산도출단계;
    를 포함하여 구성되는 것을 특징으로 하는 서브마이크론 입자의 실시간 크기분포 측정방법.
  12. 제11항에 있어서, 상기 입자하전단계는,
    상기 에어로졸 공기에 포함된 입자와 청정 공기에 고전압을 인가하여 생성시킨 이온의 확산, 충돌에 의해 에어로졸 입자의 하전이 이루어지도록 하는 것을 특징으로 하는 서브마이크론 입자의 실시간 크기분포 측정방법.
  13. [규칙 제26조에 의한 보정 22.09.2009] 
    제13항에 있어서, 상기 입경분포 연산도출단계는,
    Figure WO-DOC-23
    를 상기 전류측정기에서 측정된 전류값,
    Figure WO-DOC-232
    를 단위전하량
    Figure WO-DOC-233
    ,
    Figure WO-DOC-234
    를 입자의 유량,
    Figure WO-DOC-235
    를 입자의 직경,
    Figure WO-DOC-236
    를 입자의 하전효율,
    Figure WO-DOC-237
    를 실험에 의해 취득한 계수,
    Figure WO-DOC-238
    를 실험에 의해 취득한 차수,
    Figure WO-DOC-239
    를 입자의 농도,
    Figure WO-DOC-2310
    을 입자의 총 개수농도,
    Figure WO-DOC-2311
    을 기하평균직경,
    Figure WO-DOC-2312
    를 기하표준편차로 하여,
    Figure WO-DOC-24
    (1)
    Figure WO-DOC-25
    (2)
    Figure WO-DOC-26
    (3) 로 부터
    Figure WO-DOC-27
    로 표현되는 함수에, 상기 전류측정기에서 측정된 다수의 전류값
    Figure WO-DOC-271
    ,
    Figure WO-DOC-272
    ,
    Figure WO-DOC-273
    Figure WO-DOC-274
    에 각각 대입하여 3개의 연립방정식을 형성하는 전류값대입단계; 및 상기 3개의 연립방정식을 연산함으로써, 지정범위의
    Figure WO-DOC-34
    에 대해
    Figure WO-DOC-275
    ,
    Figure WO-DOC-276
    ,
    Figure WO-DOC-277
    을 도출하는 연립연산단계; 를 포함하여 구성되는 것을 특징으로 하는 서브마이크론 입자의 실시간 크기분포 측정방법.
PCT/KR2009/004975 2008-09-04 2009-09-03 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기 및 이를 이용한 서브마이크론 입자의 실시간 크기분포 측정방법 WO2010027196A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080087433A KR101040444B1 (ko) 2008-09-04 2008-09-04 서브마이크론 입자의 실시간 크기분포 측정을 위한다중채널형 확산하전기 및 이를 이용한 서브마이크론입자의 실시간 크기분포 측정방법
KR10-2008-0087433 2008-09-04

Publications (2)

Publication Number Publication Date
WO2010027196A2 true WO2010027196A2 (ko) 2010-03-11
WO2010027196A3 WO2010027196A3 (ko) 2010-06-17

Family

ID=41797651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004975 WO2010027196A2 (ko) 2008-09-04 2009-09-03 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기 및 이를 이용한 서브마이크론 입자의 실시간 크기분포 측정방법

Country Status (2)

Country Link
KR (1) KR101040444B1 (ko)
WO (1) WO2010027196A2 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101146302B1 (ko) * 2010-06-28 2012-05-21 한국표준과학연구원 미세입자 크기분포 실시간 측정장치
KR101156104B1 (ko) 2011-12-28 2012-06-20 서울대학교산학협력단 Cseof를 이용한 입자 생성 및 성장 현상 판독 방법
KR101328522B1 (ko) * 2012-08-06 2013-11-20 김제원 입자 측정방법
KR101551289B1 (ko) * 2014-05-22 2015-09-09 한국과학기술연구원 미세 입자 측정 장치 및 이를 이용한 미세 입자 측정 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028741A (ja) * 2002-06-25 2004-01-29 Matsushita Electric Ind Co Ltd パーティクルカウンタ装置およびパーティクル計数方法
KR100567789B1 (ko) * 2006-02-20 2006-04-05 주식회사 현대교정인증기술원 입자측정기 및 입자측정방법
JP2006308370A (ja) * 2005-04-27 2006-11-09 Shimadzu Corp ナノ粒子分級捕集装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028741A (ja) * 2002-06-25 2004-01-29 Matsushita Electric Ind Co Ltd パーティクルカウンタ装置およびパーティクル計数方法
JP2006308370A (ja) * 2005-04-27 2006-11-09 Shimadzu Corp ナノ粒子分級捕集装置
KR100567789B1 (ko) * 2006-02-20 2006-04-05 주식회사 현대교정인증기술원 입자측정기 및 입자측정방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, SEONG BAE ET AL.: 'Data inversion of size distribution of submicron aerosol particles by using dual charger system for real-time measurements' KOREAN ASSOCIATION FOR PARTICLE AND AEROSOL RESEARCH vol. 3, no. 1, 2007, pages 21 - 27 *

Also Published As

Publication number Publication date
KR101040444B1 (ko) 2011-06-09
WO2010027196A3 (ko) 2010-06-17
KR20100028409A (ko) 2010-03-12

Similar Documents

Publication Publication Date Title
WO2010027196A2 (ko) 서브마이크론 입자의 실시간 크기분포 측정을 위한 다중채널형 확산하전기 및 이를 이용한 서브마이크론 입자의 실시간 크기분포 측정방법
CN105115870B (zh) 一种微米级气溶胶测量仪器标定系统和方法
CN106153830B (zh) 通用电子鼻系统及其检测方法
WO2017095101A1 (ko) 건물 에너지 성능 측정 평가 시스템 및 구동 방법
CN106153849A (zh) 一种多功能在线水质检测装置
CN107271704A (zh) 半导体气体传感器测试系统
CN109444340A (zh) 基于图像识别的可燃气体报警器自动检定装置及其操作方法
CN109084408A (zh) 空调系统能效在线检测诊断分析仪及方法
CN201269796Y (zh) 高效过滤器扫描试验台
CN105354358A (zh) 湿式电除尘器性能现场验证方法与系统
CN105301059B (zh) 测定气液旋流液相停留时间分布的装置和方法
WO2017030313A1 (ko) 레독스 흐름 전지의 전해액 유량 제어 방법 및 장치
Kojima Measurements of equilibrium charge distribution on aerosols in bipolar ionic atmosphere
CN212159642U (zh) 一种气体传感器测试腔体、测试装置及测试系统
CN205148071U (zh) 一种气-液-固三相磨粒流旋流流场在线观测装置
CN106057627B (zh) 一种循环模式高场不对称波形离子迁移谱仪
CN107085079A (zh) 一种人工嗅觉装置以及有机污染物控制设备
CN204594710U (zh) 一种最易穿透粒径法高效过滤器测试台
US7131343B2 (en) Method of measuring density properties of a particle distribution
CN114138038B (zh) 基于空压气站的空气净化系统
CN205719875U (zh) 一种新型等速烟气采样检测设备
WO2022215817A1 (ko) 액적의 크기 제어가 가능한 능동형 액적 생성장치, 이를 이용한 액적 크기 제어방법 및 액적 생성 자가진단 장치
CN108318592A (zh) 一种多晶硅生产尾气中痕量硅烷的检测装置及检测方法
CN104990846B (zh) 一种药粉气溶胶浓度传感器的标定方法
Intra et al. Aerosol size distribution measurement using multi-channel electrical mobility sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811695

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811695

Country of ref document: EP

Kind code of ref document: A2