WO2010027066A1 - Blast furnace bottom dismantlement method and transport device - Google Patents

Blast furnace bottom dismantlement method and transport device Download PDF

Info

Publication number
WO2010027066A1
WO2010027066A1 PCT/JP2009/065554 JP2009065554W WO2010027066A1 WO 2010027066 A1 WO2010027066 A1 WO 2010027066A1 JP 2009065554 W JP2009065554 W JP 2009065554W WO 2010027066 A1 WO2010027066 A1 WO 2010027066A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
furnace bottom
blast furnace
bottom block
cooling
Prior art date
Application number
PCT/JP2009/065554
Other languages
French (fr)
Japanese (ja)
Inventor
竹下博喜
高崎洋
Original Assignee
新日本製鐵株式会社
新日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社, 新日鉄エンジニアリング株式会社 filed Critical 新日本製鐵株式会社
Priority to BRPI0915183A priority Critical patent/BRPI0915183B1/en
Priority to CN200980122846.XA priority patent/CN102224262B/en
Publication of WO2010027066A1 publication Critical patent/WO2010027066A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/02Internal forms
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces

Definitions

  • the present invention relates to a blast furnace bottom disassembly method and a transport device, and relates to the removal of a bottom block at the time of renewal or dismantling of a blast furnace, in particular, only the bottom block is renewed and the bottom block when reusing an upper furnace body
  • the present invention relates to a method and apparatus suitable for unloading.
  • Patent Document 1 a furnace body of a blast furnace to be repaired is divided into a plurality of ring blocks, and each block is sequentially taken out to a work site for dismantling and disassembled. On the other hand, each block of the furnace body is assembled in advance at another assembly work site, and each block is sequentially carried to the installation position of the blast furnace.
  • each block is suspended on the installation site by, for example, a lift-up method, and sequentially joined onto the furnace bottom block on the foundation, and the whole is integrated to construct a blast furnace body.
  • a dedicated furnace body transport carriage (dolly) is used for carrying out and carrying in a plurality of ring blocks constituting each part of the furnace body.
  • all the furnace bodies of the blast furnace were replaced with new ones. For this reason, the division and removal of the blast furnace body to be refurbished, the dismantling / removal of the blast furnace ancillary equipment such as the annular pipe, and the import / installation of each block of the blast furnace body and the ancillary equipment have become major.
  • the shaft life of the blast furnace can be extended to more than 15 years due to improvements in cooling staves, refractories, etc., and advances in repair technology through reduced scale operation.
  • the lifetime of the bottom of the furnace is still technically limited to about 15 years.
  • Patent Document 2 for the purpose of extending the life of the blast furnace, a technique has been proposed in which only the bottom of the blast furnace is refurbished (see Patent Document 2).
  • Patent Document 2 among the blast furnace bodies to be refurbished, at least the furnace bottom portion is separated from the furnace body, and the separated old furnace bottom block is moved and removed from the blast furnace installation site and assembled at another work site. The new furnace bottom block is carried into the installation site, and the furnace body is updated by replacing the old furnace bottom block.
  • Patent Document 2 when a furnace bottom block is carried out or carried in, a fluid orbiting device (air caster) that floats by forming a moving film from the blast furnace foundation at the installation site to the outside and forming a fluid film thereon.
  • a fluid orbiting device air caster
  • a system in which the furnace bottom block is levitated and conveyed by the fluid levitation apparatus is used.
  • the ring blocks that can be conveyed structurally are limited to 4000 tons.
  • the furnace bottom block when the furnace body is dismantled is particularly heavy and may exceed 4000 tons. This is because, when dismantling, the hot metal that was in the furnace at the time of blowing was cooled and solidified and deposited on the furnace bottom as residue and other residues (slag and coke). Work to remove residues, firewood, coke, etc. remaining in the furnace bottom, stave coolers, refractory bricks, etc.
  • the present applicant has proposed a transport apparatus and a transport method capable of transporting a furnace bottom block of 4000 tons or more (Japanese Patent Application No. 2007-207734, Japanese Patent Application No. 2008-196528, etc.). This proposed technology installs a transport path using steel plates between the blast furnace installation site and the work site where each ring block is assembled and disassembled, and then uses a high load bearing sliding means on it.
  • a transfer stand was installed, which enabled the transfer of furnace bottom blocks of about 8000 tons.
  • it is possible to expand the pre-assembly of the bottom of the furnace block greatly simplify the removal of the bottom of the furnace bottom at the time of dismantling, and shorten the repair period.
  • the processing of the furnace bottom at the time of furnace body dismantling is simplified.
  • further improvement is desired for shortening the above-mentioned construction period, and another problem has become apparent in the treatment of the bottom of the furnace when dismantling the furnace body.
  • the scaled-down operation that gradually reduces the furnace interior entry is performed, and when the furnace interior entry is lowered to the tuyere level, water injection cooling into the furnace body is performed, The furnace body is cut after the furnace temperature is lowered by this water injection cooling.
  • Water injection cooling is performed by spraying water into the furnace after blowing off the blast furnace, spraying cooling water on the coke and hot metal remaining in the bottom of the furnace, suppressing combustion of red hot coke, and reducing the amount of generated gas generated.
  • the temperature of the remaining coke and hot metal is lowered to such an extent that it can be discharged outside the furnace.
  • the blast furnace at the time of blow-off requires water injection equipment that can inject a large amount of water into the bottom of the furnace and remove gas components generated from coke and hot metal in the furnace.
  • Gas treatment equipment that performs the filtration treatment when draining the cooling water in the furnace is required.
  • work time is required for water injection or cooling, which hinders shortening of the repair period.
  • sufficient countermeasures are taken for the generation of gas components, hot water, and the above. It was necessary to eliminate the cooling of the water injection.
  • a main object of the present invention is to provide a method for dismantling a blast furnace furnace bottom portion and a transfer device that can carry out a furnace bottom block without performing water injection cooling after blowing.
  • the present invention is a method for disassembling a blast furnace furnace bottom part in which a furnace bottom block is separated from a furnace body installed at an installation site, and the separated furnace bottom block is carried out from the installation site, and does not cool by pouring water into the furnace body A separation step of separating the furnace bottom block from the furnace body in a state; and a carrying-out step of carrying out the separation from the installation site while cooling the separated furnace bottom block.
  • the conventional problem caused by the water injection cooling can be solved by not performing the water injection cooling into the furnace body in the separation process, and the furnace bottom block is carried out while cooling in the carrying out process. An increase in the temperature of the bottom block can be suppressed, and unnecessary effects can be avoided.
  • the bottom block can be transferred from the blast furnace foundation to the transportation platform, and the transportation platform can be transported to the dismantling work site by towing or the like.
  • the conveyance path of the conveyance platform is made of a steel plate with high load resistance, etc., and sliding means (for example, stainless steel plate and steel plate) that can reduce the friction coefficient with high load resistance between the conveyance path and the conveyance platform.
  • the furnace block can reach about 8000 tons (see Japanese Patent Application Nos. 2007-207734 and 2008-196528 by the applicant mentioned above).
  • an existing dolly or an air caster may be used as long as it can withstand a similar load.
  • the furnace bottom block is cooled in the unloading step by using a cooling device installed on the transportation platform.
  • the cooling device can be moved integrally even if the transportation platform moves along with the transportation, and the complication of the cooling device can be avoided.
  • the refrigerant piping and the like can be minimized.
  • the separation step is a cooling in which piping connected to the cooling stave of the furnace bottom block is switched from a cooling device installed at the installation site to a cooling device installed on the transportation platform.
  • a system switching step and during normal operation, the refrigerant is circulated from the cooling device installed at the installation site to the stave, and in the unloading step, the cooling device installed on the transportation platform is transferred to the stave. It is desirable to circulate the refrigerant.
  • the pipe connected to the cooling stave of the furnace bottom block is installed on the transportation platform from the cooling device installed on the installation site. Switch to cooling device.
  • the refrigerant is circulated from the cooling device installed at the installation site to the stave, and an expected cooling function is obtained in the portion corresponding to the furnace bottom block before separation.
  • the coolant is circulated from the cooling device installed on the carrier to the stave, and the desired cooling function is obtained in the separated bottom block. Therefore, in the separation process or the unloading process, it is possible to ensure the cooling performance required for the furnace bottom block regardless of whether the furnace bottom block is separated or after the separation.
  • the stave pre-installed in the furnace bottom block can be shared as the heat absorption means in the furnace bottom block, so there is no need to install a separate heat absorption means for carrying out.
  • the equipment cost can be reduced and the work period can be shortened.
  • the cooling capacity of the cooling device installed on the transportation platform may be smaller than that of the cooling device installed at the installation site. This is because, in addition to cooling of the bottom block to be carried out, in the bottom block to be carried out, the combustion state is greatly suppressed and the calorific value is suppressed as compared with the normal operation.
  • the upper furnace body When renewing only the furnace bottom block and reusing the upper furnace body, the upper furnace body may be maintained as a single unit. When the upper furnace body is also renewed, the upper furnace body is further divided into a plurality of ring blocks. It can be separated and carried out sequentially. In the dismantling method of the present invention, it is desirable to have an upper furnace body supporting step of supporting the upper furnace body separated from the furnace bottom block on the blast furnace pit in the operating position before the separating step. In the present invention as described above, the upper furnace body separated from the furnace bottom block can be maintained as a single unit by supporting it on the blast furnace.
  • the blast furnace is reconstructed by reconnecting the upper furnace body that has been maintained and the updated furnace block again. be able to. Further, by supporting the upper furnace body without moving it from the position at the time of operation, it is not necessary to remove piping around the furnace body at the time of separation, and it can be used as it is at the time of reconstruction.
  • an auxiliary support structure between the furnace body and the furnace body iron at the time of operation. Can be adopted. As such a support structure, a ring girder or the like installed in an existing furnace body can be used.
  • the separation step includes a cutting step for forming a cutting region over the entire circumference in the furnace body of the blast furnace, and the cutting region has an upper edge height of the annular tube of the blast furnace. It is desirable that the height of the upper joint of the staves immediately below is the upper joint height of another stave located at a position lower than the upper joint of the stave whose upper edge is the upper edge height.
  • the excision step forms an excision region over the entire circumference in the furnace body of the blast furnace, thereby separating the furnace bottom block and the upper furnace body thereon.
  • the upper edge height of the excision region is the height of the upper joint of the stave located immediately below the annular tube of the blast furnace.
  • the upper edge of the cutting area is separated and corresponds to the upper end of the furnace bottom block when being pulled out from the foundation in the horizontal direction by the drawing device. If the furnace bottom block is pulled out horizontally with the annular tube maintained in the upper furnace body or furnace body, the upper end of the furnace bottom block needs to be lower than the annular tube. Therefore, it is desirable that the upper edge height of the ablation region be lower than the blast furnace annular tube. On the other hand, in order to cut the furnace body, it is desirable to avoid the stave installed on the inner wall. Based on such conditions, in the present invention, the height of the upper edge of the excision region is set to the height of the upper joint of the stave located immediately below the annular pipe of the blast furnace.
  • the lower edge height of the excision region is set to the upper joint height of another stave located at a position lower than the upper joint of the stave, which is the above-described upper edge height.
  • the excision region may be one stave or may be an excision region extending over two or more stave heights.
  • a gap having a height of at least one stave is formed between the separated upper furnace body and the furnace bottom block. Therefore, even when the furnace bottom block is displaced vertically when the furnace bottom block is pulled out in the horizontal direction, it is possible to avoid contact or interference between the furnace bottom block and the upper furnace body.
  • the separation step includes a covering step of covering the surface of the red hot contents remaining in the furnace bottom block with a covering material and blocking the contents from the outside air. desirable.
  • the coating process by covering the surface of the red-hot contents of the furnace bottom block by the coating process, heat from the coke, hot metal, and hot metal, which are the red hot contents, can be shielded.
  • an inorganic material such as a so-called castable, cement, or mortar that can be solidified after being applied in a liquid form to form a coating film or a covering material layer can be used. Since the coating material is used in a high-temperature furnace, it is desirable that the coating material has high heat resistance, and it is also desirable that the gas shielding performance be high.
  • the separation step forms an opening in the furnace body of the furnace bottom block prior to the covering step, introduces a part of heavy equipment from the opening, and the furnace bottom block is introduced by the heavy equipment. It is desirable to have a leveling step of leveling the surface of the red hot contents remaining inside. In the present invention as described above, it is possible to easily and reliably form the covering material by performing the leveling step prior to the covering step. It is desirable that a heavy machine to be introduced into the furnace has a long work machine such as a power shovel so that the heavy machine main body and the operator can work without entering the furnace.
  • the opening to be formed in the furnace body only needs to be able to introduce the work machine portion of the excavator, and may be formed so as to overlap the above-described excision region, and may be used as the excision region thereafter.
  • the separation step induces combustible gas generated from the red-hot contents remaining in the furnace bottom block covered with the coating material to the outside, burns it, and then dissipates it to the atmosphere. It is desirable to have a combustible gas discharge process.
  • Safety inside and outside the block can be increased.
  • the covering step includes an inert gas filling step of filling the contents of the red hot state covered with the covering material with an inert gas.
  • the inert gas filling step fills the inside of the red-hot contents with an inert gas to cut off the oxygen supply to the coke and the like inside the red-hot contents. Combustion reaction can be suppressed.
  • an appropriate gas other than nitrogen gas can be used.
  • the present invention relates to a blast furnace bottom transfer device used for separating a furnace bottom block from a furnace body installed at an installation site, and carrying out the separated furnace bottom block from the installation site, It has a transfer stand having a mounting surface on which the block is placed, and a cooling device installed on the transfer stand to circulate the refrigerant with respect to the cooling stave in the furnace bottom block.
  • a blast furnace bottom transfer device used for separating a furnace bottom block from a furnace body installed at an installation site, and carrying out the separated furnace bottom block from the installation site, It has a transfer stand having a mounting surface on which the block is placed, and a cooling device installed on the transfer stand to circulate the refrigerant with respect to the cooling stave in the furnace bottom block.
  • the cooling device includes a refrigerant pipe connected to the cooling stave, a pump that circulates the refrigerant in the refrigerant pipe, and a radiator that radiates heat of the refrigerant circulating in the refrigerant pipe. It is desirable to have.
  • a reliable cooling function can be realized by using the stave of the furnace bottom block by the cooling device for circulating the refrigerant.
  • the opening opened to the atmosphere on the upper end side of the cooling stave, the refrigerant pipe connected to the lower end side of the cooling stave, the lower end side connected to the refrigerant pipe, and the upper end side opened to the atmosphere It is desirable to have a water supply pipe.
  • the refrigerant is evaporated by evaporating the refrigerant at the opening on the upper end side of the cooling staves, so that the cooling function of the staves of the furnace bottom block can be secured, and the refrigerant is reduced by evaporation. Since the minute amount is supplied through the supply pipe, the cooling function can be realized with a simple configuration without using a pump or the like.
  • FIG. 1 is a side view showing a blast furnace and a transfer apparatus according to an embodiment of the present invention.
  • FIG. 2 is a work block diagram showing a blast furnace refurbishment procedure in the embodiment of FIG.
  • FIG. 3 is an enlarged cross-sectional view showing a furnace body support and excision region in the embodiment of FIG.
  • FIG. 4 is a cross-sectional view showing a leveling process in the embodiment of FIG.
  • FIG. 5 is a cross-sectional view showing the unloading process in the embodiment of FIG.
  • FIG. 6 is a cross-sectional view showing the transfer platform and the cooling device in the embodiment of FIG.
  • FIG. 7 is a cross-sectional view showing a transfer platform and a cooling device according to another embodiment of the present invention.
  • a blast furnace 1 to which the present invention is applied is installed on the ground of an installation site 2.
  • the blast furnace 1 includes a foundation 3 installed on the ground, a furnace body 4 constructed on the foundation 3, and a furnace body cage 5 constructed around the furnace body 4.
  • the furnace body 4 is a cylindrical structure formed by extending a refractory material 42 such as a refractory brick and a cooling stave 43 inside an iron skin 41.
  • a charge 44 such as coke or iron ore is charged into the furnace body 4 from the top of the tower, and hot air is blown from the lower tuyere 45.
  • a cooling device is connected to the stave 43 of the furnace body 4 via a refrigerant pipe (not shown).
  • the cooling device includes a radiator and a pump installed outside the furnace body 4 and the furnace body shed 5, circulates a refrigerant (water is used in the present embodiment) through the stave 43, and the refrigerant that has absorbed heat at the stave 43 is Cool with a radiator.
  • a large number of staves 43 installed in the furnace body 4 are grouped into sections such as a furnace top, a furnace chest, a furnace belly, and a furnace bottom, and the cooling state can be finely adjusted for each group.
  • the furnace body 5 has, for example, four pillars surrounding the furnace body 4 as a basic structure, and holds an annular beam material and a scaffold (not shown) surrounding the furnace body 4 at each height.
  • An annular tube 51 that supplies air heated to the tuyere 45 is installed above the tuyere 45 near the tuyere 45, and is connected to the tuyere 45 by a connecting pipe 52.
  • the furnace body 5 is provided with a support portion 53 for supporting the furnace body 4.
  • a support member 4 A is formed on the furnace body 4 and connected to the support portion 53.
  • the upper furnace body 6 separated from the furnace bottom block 7 can be supported in a state of being floated on the foundation 3.
  • the furnace bottom portion of the furnace body 4 is divided from the upper furnace body 6 and carried out as a furnace bottom block 7.
  • the renewed furnace bottom block 7 ⁇ / b> A is carried in and connected to the upper furnace body 6 again. Thereby, only the furnace bottom block 7 is replaced, the upper furnace body 6 can be reused, and the furnace body 4 can be efficiently repaired.
  • a work site 8 is set in which the separated furnace bottom block 7 is disassembled or a renewed furnace bottom block 7A is manufactured in advance.
  • a transfer device 10 is installed between the work site 8 and the installation site 2 for repair work.
  • the transfer device 10 includes a transfer path 11 extending from the installation site 2 to the outer periphery of the foundation 3 of the work site 8, and a transfer platform 12 that can move on the transfer path 11 by placing the furnace bottom blocks 7 and 7 ⁇ / b> A.
  • a lower sliding means 13 that can slide on the transportation path 11 while supporting a high load is installed on the lower surface of the transportation platform 12.
  • an upper sliding means 14 (drawer) for horizontally pulling out the furnace bottom blocks 7 and 7A and transferring them to the upper surface of the carrier base 12 is installed.
  • the lower sliding means 13 is composed of metal plates that slide on each other, and a combination of a steel plate and a stainless steel plate can be used as a configuration that can reduce frictional resistance while receiving a high load.
  • a stainless steel plate is installed on the lower surface of the carrier 12 and the upper surface of the conveyance path 11 is a steel plate, and these are in sliding contact with each other.
  • a combination of steel plate and a stainless steel plate but also a combination of steel plates or a combination of other metal plates may be used.
  • the lower sliding means 13 is not limited to two metal plates that slide on each other, and one of them may be a rail-like long material. Further, the lower sliding means 13 may be one using wheels (existing chill tank) as long as the load burden can be tolerated.
  • the transport platform 12 that is in sliding contact with the transport path 11 via the lower sliding means 13 can be moved on the transport path 11 by being pulled by a driving device (such as a winch) (not shown).
  • the transport platform 12 is not limited to the pulling type as described above, and may be a self-propelled cart (such as an existing dolly) as long as the load burden can be tolerated.
  • the same configuration as that of the lower sliding means 13 described above can be used, and an existing floating conveying means (such as an air caster) may be used.
  • an air caster In the case of using such an air caster, it is desirable to form an air gap that can be introduced into the bottom surface of the furnace bottom blocks 7 and 7A and can be supported when the air caster is lifted. .
  • a technique for updating the furnace bottom blocks 7, 7A using the work site 8 and the transfer device 10 has already been proposed by the present applicant (Japanese Patent Application No. 2007-). 207734, Japanese Patent Application No. 2008-196528, etc.).
  • FIG. 2 shows a blast furnace repair procedure in the present embodiment.
  • the operation enters the reduced operation S1 from the normal operation state, undergoes the separation step S4 and the unloading step S5 without water injection cooling according to the present invention, through the preparation step S2 and the blow-stop S3, Further, through a reconstruction step S6, a trial operation S7 is performed, and the normal operation state is restored.
  • the reduction operation S1 is performed in order to reduce as much as possible the red hot contents 47 remaining in the blast furnace 1 in the normal operation state.
  • the blast furnace 1 In a normal operation state, the blast furnace 1 is charged with the entire charge 44, and its surface 44A is located near the top of the furnace.
  • the charged material 44 is reduced and the surface thereof is lowered to the surface 44B at a level below the annular pipe 51.
  • items necessary for separating the furnace bottom block are preceded by items that can be implemented before blowing off, thereby shortening the work period.
  • the preparatory process S2 includes an upper furnace body support process S21 performed in the furnace body 4 and a foundation cutting process S22 performed in the furnace bottom (the lower part of the furnace body 4 or the portion serving as the furnace bottom block 7 of the foundation 3). And a drawing device installation step S23, a transfer route setting step S24 and a transfer gantry setting step S25 performed in the transfer device 10, a furnace body cooling pipe refurbishing step S26 and a gantry cooling device setting step S27 performed in or around the furnace body 4. including.
  • the support member 4A is formed on the furnace body 4 and connected to the support portion 53, so that the furnace body 4 (the upper furnace body 6 other than the portion separated as the furnace bottom block 7 should be formed).
  • the upper furnace body support step S21 may be performed before the cutting of the furnace body 4 (furnace entire body cutting step S42 described later), but is suitable for the relaxation of the separation step S4 by being performed before the blowing stop S3. is there.
  • the basic cutting step S ⁇ b> 22 is a step of forming a horizontal cut surface on the base 3.
  • a method of setting a plurality of strip-like sections in the planar shape of the foundation 3 and sequentially performing horizontal cutting of each section using a wire saw can be employed.
  • a gap having a predetermined height is formed in the foundation 3 as a result of the horizontal cutting, and it is desirable that the gap is sequentially filled with a load supporting member such as a high pack anchor to temporarily fill the gap.
  • the bottom cut side of the furnace bottom block 7 is cut by such a basic cutting step S22, and the cut of the upper end side is similarly cut by the furnace body full circumference cutting step S44 described later, so that the furnace bottom block 7 has the furnace body 4 cut. It becomes separable from.
  • the drawer installation step S23 is performed following or in parallel with the basic cutting step S22.
  • the drawing device (upper sliding means 14) is arranged on the lower surface of the furnace bottom block 7 cut in the basic cutting step S22.
  • an air caster is used as the drawing device, it is necessary to form a gap portion that can be introduced into the bottom surface of the furnace bottom blocks 7 and 7A and can be supported when the air caster is lifted. It is desirable to construct such a void at the same time as the above-described void refilling in the basic cutting step S22.
  • the transfer route setting step S24 is a step of setting the transfer route 11 of the transfer device 10 described above.
  • the conveyance path 11 is continuously installed from the vicinity of the outer periphery of the foundation 3 of the installation site 2 to the work site 8. Prior to the installation of the transport path 11, depending on the ground to be installed, reinforcement or the like is also performed.
  • the transfer gantry installation step S25 the transfer gantry 12 is installed at any position on the transfer route 11 after or during the transfer route setting step S24.
  • the furnace body cooling pipe refurbishment step S26 is a process for preparing to switch a part of the cooling pipe connected to the stave 43 of the furnace body 4. Specifically, the stave 43 in the section other than the furnace bottom is kept connected to the cooling device of the blast furnace 1 as it is, and the cooling by the cooling device is maintained. On the other hand, the stave 43 at the bottom of the furnace will be refurbished so that a switching valve and a bypass path are sequentially added for each group so that the refrigerant can be circulated with another cooling device.
  • the gantry cooling device installation step S27 is a step of installing a dedicated cooling device on the transfer gantry 12.
  • the cooling device on the transportation platform 12 circulates the refrigerant to the stave 43 inside when the bottom block 7 is carried out, and the cooling capacity may be significantly smaller than the cooling device of the blast furnace 1.
  • FIG. 6 shows a specific example of the stave 43 and the cooling device 20 in the furnace bottom block 7 transported by the transport stand 12. In FIG. 6, a large number of staves 43 are arranged inside the furnace bottom block 7, and a group is constituted by a series of staves 43 that are continuous in the vertical direction.
  • the cooling device of the blast furnace 1 is connected to the lowermost refrigerant introduction portion 43B and the uppermost refrigerant extraction portion 43T of this group during normal operation, but when the furnace bottom block 7 is carried out, The cooling device 20 is switched.
  • the cooling device 20 includes a radiator 21, a refrigerant pipe 22 that connects the radiator 21 and the refrigerant introduction part 43 ⁇ / b> B, a refrigerant pipe 23 that connects the radiator 21 and the refrigerant take-out part 43 ⁇ / b> T, and a pump installed at any part of the refrigerant pipes 22 and 23. 24.
  • the furnace bottom block 7 is cooled from the cooling device 20 at the time of conveyance after the cooling system switching step S47 described later, and until that time, the cooling by the cooling device of the blast furnace 1 is maintained. .
  • the preparatory step S2 before the blow stop S3 is performed.
  • the upper furnace body support process S21, the furnace body cooling pipe refurbishment process S26, and the gantry cooling device installation process S27 can be performed in a relatively short period of time.
  • the basic cutting step S22, the drawing device installation step S23, the transfer route installation step S24, and the transfer gantry installation step S25 are relatively large-scale construction, it is necessary to start at a time substantially before the blow stop S3. There is.
  • the separation step S4 includes a furnace body opening step S41 and a furnace body full circumference cutting step S44 performed in the furnace body 4, a contents surface leveling process S42 performed in the furnace bottom (furnace bottom block 7 portion), and the contents surface It includes a covering step S43, a combustible gas discharging step S45 and an inert gas filling step S46, and a cooling system switching step S47 related to the cooling system.
  • the furnace body opening step S41 is a step of securing a work opening in the furnace body 4 in advance in order to enable in-furnace work from outside the furnace in the contents surface leveling step S42.
  • the contents surface leveling step S42 a part of heavy equipment is introduced from the opening for work previously formed in the furnace body opening step S41, and the surface of the red hot content remaining in the furnace bottom block 7 is removed by this heavy equipment. It is a leveling process.
  • the content surface coating step S43 is a step of coating the surface of the red hot content leveled in the content surface leveling step S42 previously with a coating material. Specific operations in the steps S41, S42, and S43 are as follows. In the furnace body opening step S41, a plurality of work openings 4C are formed in the furnace body 4 as shown in FIGS.
  • the work opening 4C is within the range of a resection area 4B (described in detail in the section of the furnace body full resection step S44) described later (between the upper end level L1 and the lower end level L2 shown in FIGS. 3 and 4). It is intermittently arranged in the circumferential direction of the body 4.
  • a resection area 4B described in detail in the section of the furnace body full resection step S44
  • It is intermittently arranged in the circumferential direction of the body 4.
  • one or a plurality of sections of the stave 43A corresponding to the cut region 4B are set, and the iron skin 41 corresponding to the section is cut over the entire circumference, and the inner stave 43A is cut. And the refractory material 42A is removed.
  • the content surface leveling step S42 as shown in FIG.
  • a heavy machine 61 such as a power shovel is disposed, and an excavator portion 62, which is a work machine portion thereof, is introduced into the furnace body 4 from the work opening 4C and reduced.
  • the surface 44B of the contents 47 in the red hot state descended in the shaku operation S1 is leveled to obtain a surface 44C.
  • a part of the red hot contents 47 may be carried out of the furnace, for example, when the surface 44B is high.
  • Such leveling work is limited to the surface 44B in a range that can be reached from the work opening 4C, but by sequentially performing each work opening 4C, the entire surface in the furnace is substantially leveled to form the surface 44C.
  • the surface 44C is desirably lower than the upper end level L1 over the entire surface.
  • a coating material is applied to the leveled surface 44C shown in FIG. 4 to form a coating of the coating material 44D as shown in FIG.
  • the coating material 44D an inorganic material such as so-called castable, cement, or mortar that can be applied in liquid form and solidified to form a coating or coating material layer can be used. Since it is used in a high-temperature furnace, it is desirable that the heat resistance is high, and it is desirable that the gas blocking performance is also high.
  • a method of introducing a hose or the like from the above-described working opening 4C, pumping from the outside, and spraying on the surface 44C can be used.
  • Furnace body whole circumference cutting process S44 is a process of dividing furnace bottom block 7 and upper furnace body 6 by cutting furnace body 4 over the whole circumference.
  • the furnace body full circumference cutting step S ⁇ b> 44 cuts the cut region 4 ⁇ / b> B (between the upper end level L ⁇ b> 1 and the lower end level L ⁇ b> 2) set over the entire circumference of the furnace body 4.
  • the work opening 4C is formed by the preceding furnace body opening step S41, the other portions are cut (cutting the iron skin 41, removing the stave 43A and the refractory material 42A).
  • the setting of the excision region 4B is performed as follows (see FIG. 3).
  • the lower end level L0 of the annular tube 51 is referred to, and the joint position of the stave 43 installed in the furnace body 4 is referred to, and the highest joint among the upper joints of the stave lower than the level L0.
  • the level of the upper joint of the stave at a high position is selected as the upper end level L1.
  • a portion above the height overlapping with the annular tube 51 of the furnace body 4 can be left as the upper furnace body 6, and when being carried out as the furnace bottom block 7, Interference can be avoided.
  • an upper joint of another stave located at a position lower than the level L1 is selected.
  • the excision region 4B is one sheet of the stave 43. It becomes the area of the height of minutes.
  • the excision region 4B can be a region having a height corresponding to two of the stave 43.
  • the combustible gas discharge step S45 combustible gas generated inside the red hot content 47 remaining in the furnace bottom block 7 previously coated with the coating material 44D is guided to the outside and burned. It is a process to disperse.
  • the tuyere 45 from which the connecting pipe 52 is removed remains in the furnace bottom block 7.
  • the tuyere 45 communicates with the red hot contents 47 covered with the covering material 44D inside the furnace bottom block 7.
  • combustible gas coke combustion reaction (C + CO ⁇ CO 2 ) Produced by carbon dioxide further reacts with coke (C + CO 2 ⁇ 2CO), carbon monoxide generated in the direct reduction reaction of iron ore and coke, etc.
  • C + CO ⁇ CO 2 coke combustion reaction
  • CO + CO 2 ⁇ 2CO coke combustion reaction
  • CO + CO 2 ⁇ 2CO carbon monoxide generated in the direct reduction reaction of iron ore and coke, etc.
  • a discharge pipe 45A having a pilot burner at the tip is connected to the tuyere portion 45 (including the internal cooling and external cooling portions) so that combustible gas is burned and diffused into the atmosphere.
  • the inert gas filling step S46 is a step of filling the inside of the red hot contents 47 previously covered with the coating material 44D with the inert gas.
  • the red-hot contents 47 of the furnace bottom block 7 covered with the coating material 44D are maintained at a high temperature, and the reduction reaction of the iron ore is continued. .
  • it is desirable that the reaction is deactivated toward the dismantling of the furnace bottom block 7. Therefore, it is desirable to inject an inert gas into the red hot contents 47 covered with the covering material 44D to block oxygen.
  • the inert gas is injected from the outside using the tuyere 45 as in the combustible gas discharging step S45.
  • the inert gas nitrogen gas is desirable because it is inexpensive. Carbon dioxide, argon, or other nonflammable gas may be used, or a gas used as a fire extinguisher may be used.
  • the inert gas filling step S46 may be performed following the above-described combustible gas discharge step S45. In this case, the inert gas injection tube is connected after removing the discharge pipe 45A used in the combustible gas discharge step S45. do it.
  • the inert gas filling step S46 and the combustible gas discharging step S45 may be performed in parallel. For example, an inert gas is injected from the right tuyere 45 of FIG. It is desirable to form a flow that takes gas in and out, such as exhaust.
  • the cooling system for the stave 43 installed in the furnace bottom block 7 is switched from the cooling device on the blast furnace 1 side to the cooling device 20 of the transportation platform 12. It is a process.
  • the refrigerant is circulated from the cooling device 20 of the carrier base 12 to the stave 43 of the furnace bottom block 7, and the furnace bottom block 7 is separated from the blast furnace 1 together with the carrier base 12.
  • the cooling device 20 is installed on the transportation platform 12, the transportation platform 12 is on the transportation path 11 adjacent to the foundation 3 (see FIG. 1 and the like), and until the unloading step S5 described later.
  • the furnace bottom block 7 connecting the cooling system and the cooling device 20 are separated. For this reason, when switching to the cooling device 20, the piping between the furnace bottom block 7 (refrigerant piping 22 and 23 in FIG. 6) is flexible and can be adapted to a long distance. It is desirable to keep it.
  • the order of performing the steps S41 to S47 in the separation step S4 has the following conditions.
  • the furnace body opening step S41, the content surface leveling step S42, and the content surface covering step S43 need to be performed in this order based on the work contents.
  • the combustible gas discharge step S45 and the inert gas filling step S46 may be performed simultaneously, and each is preferably performed after the content surface covering step S43 in relation to the outside air blocking.
  • the entire furnace body cutting step S44 can be performed at any stage as long as it is after the furnace body opening process S41.
  • the cooling system switching step S47 can also be performed at an arbitrary stage. However, in order to use the cooling device on the blast furnace 1 side as long as possible, it is preferable to carry out at the final stage of the separation step S4.
  • the unloading process S5 of the furnace bottom block 7 is performed. In the unloading step S5, the old furnace bottom block unloading step S51 and the gantry cooling device operating step S52 are performed in parallel. As shown in FIG.
  • the old furnace bottom block unloading step S ⁇ b> 51 is a step in which the furnace bottom block 7 is pulled out horizontally and transferred to the transfer platform 12, and the transfer platform 12 is moved to the work site 8.
  • the furnace bottom block 7 to be transported is separated from the furnace body 4 (furnace body whole-section cutting process S44, basic cutting process S22) in the process up to the separation process S4 described above, and switching of the cooling system ( A cooling system switching step S47) has been performed, and the system can be moved from the blast furnace 1 of the installation site 2 at any time.
  • the furnace bottom block 7 is pulled out horizontally and transferred from the blast furnace 1 to the upper surface (mounting surface) of the carrier 12; An operation of pulling the placed transfer platform 12 along the transfer path 11 and moving it to the work site 8 is performed.
  • the furnace bottom block 7 is continuously cooled by the cooling device 20 of the transfer platform 12 (frame cooling device operation step S ⁇ b> 52), and the furnace body of the furnace bottom block 7 is Suppresses deformation caused by overheating.
  • the furnace bottom block 7 that has been moved to the work site 8 by the transportation platform 12 enters the dismantling work as it is (refer to the old furnace bottom block dismantling process S9, FIG. 2).
  • the gantry cooling device operating process S52 may be continued.
  • water injection cooling S91 may be performed.
  • the water injection cooling S91 here is a limited range of the furnace bottom block 7 and heat generation from the red hot contents 47 has already been suppressed, so that compared to the conventional water injection cooling for the entire blast furnace 1 It can be small enough.
  • a rebuilding step S6 using the renewal furnace bottom block 7A is performed.
  • the renewal furnace bottom block 7A used in the reconstruction process S6 is manufactured in advance at another work site (see renewal furnace bottom block manufacturing process S8, FIG. 2).
  • the restructuring step S6 includes an update bottom block carrying-in / installing step S61 for carrying in the renewed bottom block 7A, and a bottom bottom block reconnecting step for reconnecting the carried bottom block 7A with the upper furnace body 6.
  • the renewal bottom block carrying-in / installation step S61 the renewal bottom block 7A is carried and installed on the site where the bottom 7 of the bottom of the blast furnace 1 has been unloaded. For this reason, the upper surface of the ruins to be installed is previously flattened so that the bottom surface of the renewal furnace bottom block 7A can be stably received.
  • the renewal furnace bottom block 7 ⁇ / b> A can use the same configuration as the old furnace bottom block 7.
  • the renewal furnace bottom block 7A can be larger or smaller than the old furnace bottom block 7, but since the upper furnace body 6 is shared, it is not suitable for significant changes.
  • the renewal furnace bottom block 7A is manufactured in advance in the renewal furnace bottom block manufacturing step S8.
  • the work site for manufacturing is the same as or adjacent to the work site 8 described above that performs the old furnace bottom block dismantling process S9. Thereby, when sharing the conveying apparatus 10 for carrying in, all or one part of the conveyance path
  • route 11 can be shared. If the work site for manufacturing is completely different, it is necessary to install a separate transfer device.
  • the work in the renewal furnace bottom block carrying-in / installing step S61 is the reverse of the old furnace bottom block carrying-out process S51 described above.
  • the furnace bottom block reconnection step S62 is performed by the upper furnace body 6 supported above the renewal furnace bottom block 7A carried into the furnace bottom portion of the blast furnace 1 by the renewal furnace bottom block carrying-in / installation step S61. It is a process of connecting. As described in the above-described separation step S4, when the upper furnace body 6 and the old furnace bottom block 7 are separated, the width of the cut region 4B corresponding to the stave 43A is given.
  • the furnace bottom block reconnection step S62 the renewed furnace bottom block 7A and the upper furnace body 6 are connected, and a series of furnace bodies 4 from the furnace top to the furnace bottom is restored.
  • the furnace body cooling pipe restoration step S63 is removed in the cooling system switching step S47 described above with respect to the renewal furnace bottom block 7A carried into the furnace bottom part of the blast furnace 1 in the renewal furnace bottom block carrying-in / installation step S61. This is a step of reconnecting the cooling device on the blast furnace 1 side.
  • furnace body cooling pipe restoration step S63 the cooling function by the cooling device on the blast furnace 1 side is restored for the entire series of furnace bodies 4 including the furnace bottom block 7A and the upper furnace body 6.
  • the furnace bottom block reconnection process S62 and the furnace body cooling pipe restoration process S63 can be performed at any time, and each is performed in parallel.
  • the furnace body cooling pipe restoration step S63 may be performed after the furnace bottom block reconnection step S62.
  • a trial operation step S7 is performed. When various adjustments are made in the trial operation step S7 and the prescribed inspection is completed, the operation returns to the normal operation.
  • FIG. 7 shows another embodiment of the present invention.
  • the furnace bottom block 7 and the transfer platform 12 are the same as those in the above-described embodiment shown in FIGS.
  • the cooling device 30 by evaporative cooling is used as one that is installed on the carrier 12 and provides the cooling function of the furnace bottom block 7.
  • a replenishment pipe 31 is installed vertically on a part of the carrier 12, and the upper end thereof is opened to the atmosphere by an opening 32.
  • the lower end of the replenishment pipe 31 is connected to the refrigerant introduction part 43 ⁇ / b> B on the lower end side of the series of stave 43 via the refrigerant pipe 33.
  • the refrigerant extraction portion 43T on the upper end side of the series of stave 43 is opened to the atmosphere through an opening.
  • a part of the refrigerant (water) that has absorbed heat in the stave 43 evaporates at the refrigerant outlet 43T and is dissipated to the atmosphere to dissipate heat.
  • the refrigerant decreases with evaporation, and this decrease is replenished from the replenishment pipe 31.
  • the structure is very simple and the power of the pump or the like can be omitted.
  • the present invention relates to a blast furnace bottom disassembly method and a conveying device, and can be used to carry out a bottom block at the time of renewal or dismantling of a blast furnace, particularly for carrying out a bottom block when reusing an upper furnace body.
  • Refrigerant introduction part 43T Refrigerant take-out part 44 ... Charge 44A, 44B, 44C ... Surface 44D ... Covering material 45 ... Tuyere 45A ... Discharge Pipe 46 ... Hot metal 47 ... Red-hot contents 51 ... Ring pipe 52 ... Connection pipe 53 ... Supporting part 61 ... Heavy machinery 62 ... Excavator part S1 ... Reduction operation S2 ... Preparatory process S21 ... Upper furnace body supporting process S3 ... Blowing Stop S4 ... Separation process S41 ... Furnace body opening process S42 ... Contents surface leveling process S43 ... Contents surface covering process S44 ... Furnace body whole circumference excision process S45 ...

Abstract

Disclosed are a blast furnace bottom dismantlement method and a transport device with which furnace bottom blocks can be transported after furnace blow-out without water injection cooling. The method is a furnace bottom dismantlement method whereby the furnace bottom blocks are separated from a furnace that is installed at the installation site and the separated furnace bottom blocks are transported from the installation site, and which includes a separation step wherein the furnace bottom blocks are separated from the furnace body without injecting cooling water into the furnace body, and a removal step wherein the separated furnace bottom blocks are removed from the installation site while being cooled.

Description

高炉炉底部の解体方法および搬送装置Method of dismantling blast furnace bottom and conveying device
 本発明は、高炉炉底部の解体方法および搬送装置に関し、高炉の更新時または解体時の炉底ブロックの搬出、特に炉底ブロックのみを更新し、上部炉体を再利用する際の炉底ブロックの搬出に好適な方法および装置に関する。 The present invention relates to a blast furnace bottom disassembly method and a transport device, and relates to the removal of a bottom block at the time of renewal or dismantling of a blast furnace, in particular, only the bottom block is renewed and the bottom block when reusing an upper furnace body The present invention relates to a method and apparatus suitable for unloading.
 高炉の改修は、炉体の解体、炉内耐火物の築炉などの多くの工事を伴い、そのために工期が長期化する。高炉の改修工期中は、当該高炉による銑鉄生産が減少ないし停止するため、改修工期の短縮化が強く求められている。
 このような工期短縮のための技術として、大ブロック工法が開発されている(特許文献1参照)。特許文献1では、改修すべき高炉の炉体を複数のリングブロックに分割し、各ブロックを順次解体用の作業現場へと搬出して解体する。一方、別の組立用の作業現場において、予め炉体の各ブロックを組み立てておき、各ブロックを順次高炉の設置位置に搬入する。そして、例えばリフトアップ工法などによって、各ブロックを設置現場上に吊り下げ、基礎上の炉底ブロックの上に順次接合してゆき、全体を一体化して高炉炉体を構築するようにしている。
 特許文献1では、炉体各部を構成する複数のリングブロックの搬出・搬入にあたっては、専用の炉体用輸送台車(ドーリー)を用いていた。
 従来の高炉の改修においては、高炉の炉体全てを一体として新たなものに交換していた。このため、改修すべき高炉炉体の分割・搬出、環状管などの高炉附属設備の解体・撤去、さらには新たな高炉炉体の各ブロックおよび附属設備の搬入・据付が大がかりになっていた。
 ここで、高炉のシャフト部については、冷却用のステーブや耐火物などの改善、減尺操業による補修技術の進歩などにより、その寿命は15年以上まで延長できるようになった。しかし、炉底部については、その寿命は依然として15年程度が技術的限界である。
 これに対し、高炉の寿命延長を目的として、高炉の炉底部のみを中間改修する技術が提案されている(特許文献2参照)。
 特許文献2では、改修すべき高炉炉体のうち、少なくとも炉底部を炉体から分離し、分離した旧炉底ブロックを高炉設置現場から移動・撤去するとともに、別の作業現場で組み立てておいた新炉底ブロックを設置現場に搬入し、旧炉底ブロックと交換することで炉体の更新を行う。
 特許文献2では、炉底ブロックを搬出あるいは搬入する際に、設置現場の高炉基礎から外部へと移動軌道を設置し、その上に流体膜を形成して浮上する流体浮上装置(エアキャスタ)を配置し、この流体浮上装置により炉底ブロックを浮上搬送する方式が用いられている。
Renovation of the blast furnace involves a lot of construction work such as dismantling the furnace body and building a refractory inside the furnace, which increases the construction period. During the blast furnace renovation period, pig iron production by the blast furnace is reduced or stopped, so there is a strong demand for shortening the refurbishment period.
As a technique for shortening the construction period, a large block construction method has been developed (see Patent Document 1). In Patent Document 1, a furnace body of a blast furnace to be repaired is divided into a plurality of ring blocks, and each block is sequentially taken out to a work site for dismantling and disassembled. On the other hand, each block of the furnace body is assembled in advance at another assembly work site, and each block is sequentially carried to the installation position of the blast furnace. Then, each block is suspended on the installation site by, for example, a lift-up method, and sequentially joined onto the furnace bottom block on the foundation, and the whole is integrated to construct a blast furnace body.
In Patent Literature 1, a dedicated furnace body transport carriage (dolly) is used for carrying out and carrying in a plurality of ring blocks constituting each part of the furnace body.
In the renovation of the conventional blast furnace, all the furnace bodies of the blast furnace were replaced with new ones. For this reason, the division and removal of the blast furnace body to be refurbished, the dismantling / removal of the blast furnace ancillary equipment such as the annular pipe, and the import / installation of each block of the blast furnace body and the ancillary equipment have become major.
Here, the shaft life of the blast furnace can be extended to more than 15 years due to improvements in cooling staves, refractories, etc., and advances in repair technology through reduced scale operation. However, the lifetime of the bottom of the furnace is still technically limited to about 15 years.
On the other hand, for the purpose of extending the life of the blast furnace, a technique has been proposed in which only the bottom of the blast furnace is refurbished (see Patent Document 2).
In Patent Document 2, among the blast furnace bodies to be refurbished, at least the furnace bottom portion is separated from the furnace body, and the separated old furnace bottom block is moved and removed from the blast furnace installation site and assembled at another work site. The new furnace bottom block is carried into the installation site, and the furnace body is updated by replacing the old furnace bottom block.
In Patent Document 2, when a furnace bottom block is carried out or carried in, a fluid orbiting device (air caster) that floats by forming a moving film from the blast furnace foundation at the installation site to the outside and forming a fluid film thereon. A system in which the furnace bottom block is levitated and conveyed by the fluid levitation apparatus is used.
特開平9−143521号公報JP-A-9-143521 特開平5−222420号公報JP-A-5-222420
 ところで、前述したドーリーによる搬送あるいは流体浮上装置による浮上搬送では、構造上搬送可能なリングブロックが4000トンまでに制限される。
 ところが、炉体を分割したリングブロックの中でも、炉体解体時の炉底ブロックはとりわけ重量が大きく、4000トンを超えることがある。これは、解体の際には吹き止め時に炉内にあった溶銑が冷却固化して残銑やその他の残滓(銑滓やコークス)として炉底に堆積することによる。
 このような炉底ブロックの重量超過に対して、積載する前に、炉底に残留した残銑や銑滓やコークス等、あるいは炉内に装着されていたステーブクーラーや耐火レンガ等を除去する作業を行って重量軽減を図ることがなされている。
 このような重量軽減作業は、高炉の設置現場において搬出前に実施することになるため、設置現場での作業工程を低減しようとする炉体リング大ブロック工法の趣旨にそぐわないものであり、全体の工期の短縮を図る上で障害となっている。
 このような問題に対して、本出願人により4000トン以上の炉底ブロックを搬送できる搬送装置および搬送方法の提案がなされている(特願2007−207734、特願2008−196528など)。
 この提案の技術は、高炉の設置現場と各リングブロックの組立・解体を行う作業現場との間に鋼板等を用いた搬送経路を設置し、その上に高耐荷重の摺動手段を介して搬送用架台を設置し、これにより8000トン程度の炉底ブロックの搬送までが可能となった。この技術による搬送重量限界の拡張により、炉底ブロックの事前組立を拡充できるとともに、解体時の炉底残銑の除去等を大幅に簡略化し、改修工期の短縮が図られるに至っている。
 このような搬送技術の改善に伴い、炉体解体時の炉底部の処理が簡略化されている。しかし、高炉改修技術においては、前述した工期短縮に向けて更なる改善が望まれているとともに、炉体解体時の炉底部処理にあたって別の問題も顕在化している。
 すなわち、前述した大ブロック工法による炉体解体にあたっては、炉内装入物を徐々に減らす減尺操業を行い、炉内装入物が羽口レベルまで下がった段階で炉体内への注水冷却を行い、この注水冷却により炉内温度を低下させてから炉体の切断等を行っている。
 注水冷却は、高炉の吹き止めの後に炉内に注水することで、炉底部内に残留したコークスおよび溶銑滓に冷却水を散布し、赤熱コークスの燃焼を抑制し、生成ガスの発生量を低減するとともに、残コークスおよび溶銑滓の温度を炉外排出作業が可能な程度に下げるものである。
 このような注水冷却を行うために、吹き止め時の高炉には、炉底部に大量の水を注入可能な注水設備が必要になるとともに、炉内のコークスおよび溶銑滓から発生するガス成分を除去するガス処理設備、炉内の冷却水を排水する際に濾過処理などを行う排水処理設備が必要になる。このような設備コストに加え、注水ないし冷却のために作業時間が必要になり、改修工期の短縮の妨げとなっていた。
 さらに、高温のコークスおよび溶銑滓に注水冷却を行う際に水蒸気爆発の可能性があり、安全管理が必要であるとともに、前述したガス成分の発生、熱湯や上記などによる作業環境対策を十分に講じる必要があり、注水冷却の解消が望まれていた。
 このような要請に基づいて、注水冷却の解消が検討されているが、吹き止め後の炉内は非常な高温のままであり、そのまま炉底部を搬出することは困難とされてきた。特に、高炉の通常操業時には、炉内に設置された冷却用ステーブにより炉体の冷却が継続されており、この冷却によって炉体が維持されている。
 しかし、炉体の切断に伴って冷媒配管が除去され、ステーブによる冷却が停止されると、注水冷却されずに炉内に残留する高温の残滓により炉体の温度が上昇し、鉄皮の変形などの好ましくない影響がでることが懸念されていた。
 本発明の主な目的は、吹き止め後に注水冷却を行うことなしに炉底ブロックの搬出が可能な高炉炉底部の解体方法および搬送装置を提供することにある。
By the way, in the above-described conveyance by the dolly or the levitation conveyance by the fluid levitation apparatus, the ring blocks that can be conveyed structurally are limited to 4000 tons.
However, among the ring blocks obtained by dividing the furnace body, the furnace bottom block when the furnace body is dismantled is particularly heavy and may exceed 4000 tons. This is because, when dismantling, the hot metal that was in the furnace at the time of blowing was cooled and solidified and deposited on the furnace bottom as residue and other residues (slag and coke).
Work to remove residues, firewood, coke, etc. remaining in the furnace bottom, stave coolers, refractory bricks, etc. installed in the furnace before loading, in response to such an excess weight of the furnace bottom block To reduce the weight.
Such weight reduction work is carried out before carrying out at the blast furnace installation site, so it is not suitable for the purpose of the furnace ring large block method to reduce the work process at the installation site. This is an obstacle to shortening the construction period.
In response to such a problem, the present applicant has proposed a transport apparatus and a transport method capable of transporting a furnace bottom block of 4000 tons or more (Japanese Patent Application No. 2007-207734, Japanese Patent Application No. 2008-196528, etc.).
This proposed technology installs a transport path using steel plates between the blast furnace installation site and the work site where each ring block is assembled and disassembled, and then uses a high load bearing sliding means on it. A transfer stand was installed, which enabled the transfer of furnace bottom blocks of about 8000 tons. By extending the transport weight limit by this technology, it is possible to expand the pre-assembly of the bottom of the furnace block, greatly simplify the removal of the bottom of the furnace bottom at the time of dismantling, and shorten the repair period.
With the improvement of such transport technology, the processing of the furnace bottom at the time of furnace body dismantling is simplified. However, in the blast furnace refurbishment technology, further improvement is desired for shortening the above-mentioned construction period, and another problem has become apparent in the treatment of the bottom of the furnace when dismantling the furnace body.
That is, in the dismantling of the furnace body by the large block method described above, the scaled-down operation that gradually reduces the furnace interior entry is performed, and when the furnace interior entry is lowered to the tuyere level, water injection cooling into the furnace body is performed, The furnace body is cut after the furnace temperature is lowered by this water injection cooling.
Water injection cooling is performed by spraying water into the furnace after blowing off the blast furnace, spraying cooling water on the coke and hot metal remaining in the bottom of the furnace, suppressing combustion of red hot coke, and reducing the amount of generated gas generated. At the same time, the temperature of the remaining coke and hot metal is lowered to such an extent that it can be discharged outside the furnace.
In order to perform such water injection cooling, the blast furnace at the time of blow-off requires water injection equipment that can inject a large amount of water into the bottom of the furnace and remove gas components generated from coke and hot metal in the furnace. Gas treatment equipment that performs the filtration treatment when draining the cooling water in the furnace is required. In addition to such equipment costs, work time is required for water injection or cooling, which hinders shortening of the repair period.
Furthermore, there is a possibility of a steam explosion when water injection cooling is performed on high-temperature coke and hot metal, and safety management is necessary. In addition, sufficient countermeasures are taken for the generation of gas components, hot water, and the above. It was necessary to eliminate the cooling of the water injection.
On the basis of such a request, elimination of water injection cooling has been studied, but the inside of the furnace after the blow-off remains at a very high temperature, and it has been difficult to carry out the furnace bottom as it is. In particular, during normal operation of the blast furnace, the cooling of the furnace body is continued by a cooling stave installed in the furnace, and the furnace body is maintained by this cooling.
However, when the refrigerant pipe is removed along with the cutting of the furnace body and the cooling by the stave is stopped, the temperature of the furnace body rises due to the high temperature residue remaining in the furnace without being injected and cooled, and the deformation of the iron skin There was concern about undesirable effects such as
A main object of the present invention is to provide a method for dismantling a blast furnace furnace bottom portion and a transfer device that can carry out a furnace bottom block without performing water injection cooling after blowing.
 本発明は、設置現場に設置された炉体から炉底ブロックを分離し、分離された前記炉底ブロックを設置現場から搬出する高炉炉底部の解体方法であって、前記炉体内へ注水冷却しない状態で前記炉底ブロックを前記炉体から分離する分離工程と、分離された前記炉底ブロックを冷却しつつ前記設置現場から搬出する搬出工程と、を含むことを特徴とする。このような本発明では、分離工程で炉体内へ注水冷却しないことで注水冷却に起因する従来の問題を解消できるとともに、搬出工程では炉底ブロックを冷却しつつ搬出するため、注水冷却なしでも炉底ブロックの温度上昇を抑制することができ、不必要な影響を回避することができる。
 本発明の解体方法において、前記搬出工程では前記炉底ブロックを載置する搬送用架台を用いることが望ましい。このような本発明では、搬送用架台を用いることで、高炉基礎上から炉底ブロックを搬送用架台へと移載し、搬送用架台を牽引等により解体用作業現場へと搬出することができる。
 この際、搬送用架台の搬送経路を高耐荷重の鋼板製レール等とし、同搬送経路と搬送用架台との間に高耐荷重で摩擦係数の低減が図れる摺動手段(例えばステンレス板と鋼板との組み合わせなど)を介在させることで、例えば8000トン程度に及ぶ炉体ブロックの搬送が可能となる(前述した本出願人による特願2007−207734、特願2008−196528参照)。あるいは、同程度の荷重に耐えるものであれば、既存のドーリーやエアキャスタなどを用いてもよい。
 本発明の解体方法において、前記搬出工程では前記搬送用架台に設置された冷却装置を用いて前記炉底ブロックの冷却を行うことが望ましい。このような本発明では、搬送に伴って搬送用架台が移動しても冷却装置も一体的に移動させることができ、冷却装置の煩雑化を回避できる。特に、同じ搬送用架台に冷却装置と炉底ブロックとが同居するため、冷媒配管等を最短にすることができる。
 本発明の解体方法において、前記分離工程は、前記炉底ブロックの冷却用ステーブに接続される配管を、前記設置現場に設置された冷却装置から前記搬送用架台に設置された冷却装置に切替える冷却系統切替工程を有し、通常操業時には、前記設置現場に設置された冷却装置から前記ステーブへと冷媒を循環させ、前記搬出工程では、前記搬送用架台に設置された冷却装置から前記ステーブへと冷媒を循環させることが望ましい。このような本発明では、分離工程において冷却系統切替工程を実施することにより、炉底ブロックの冷却用ステーブに接続される配管を、設置現場に設置された冷却装置から搬送用架台に設置された冷却装置に切替える。
 これにより、通常操業時ないし吹き止め迄の期間においては、前記設置現場に設置された冷却装置からステーブへと冷媒を循環させ、分離前の炉底ブロック相当部分に所期の冷却機能が得られる。
 また、吹き止め後の炉底ブロックの分離ないし搬出にあたっては、搬送用架台に設置された冷却装置からステーブへと冷媒を循環させ、分離される炉底ブロックに所期の冷却機能が得られる。
 従って、分離工程ないし搬出工程において、炉底ブロックの分離前か分離後かに拘わらず、炉底ブロックに要求される冷却性能を確保することができる。
 また、分離前および分離後の何れの状態においても、炉底ブロック内の吸熱手段として炉底ブロックに予め設置されているステーブを共用できるので、搬出用に別途の吸熱手段を設置する必要がなく、設備コストの軽減および作業期間の短縮が図れる。
 なお、搬送用架台に設置される冷却装置の冷却能力は、設置現場に設置される冷却装置に対して小さくてよい。これは、搬出される炉底ブロックの冷却に限られることに加え、搬出される炉底ブロックにおいては、通常操業時に比べて燃焼状態が大幅に抑制され、発熱量が抑制されていることによる。
 炉底ブロックから分離される上部炉体については、これを一体のまま維持してもよく、更に複数のリングブロックに分離してもよい。炉底ブロックだけ更新して上部炉体を再利用する場合には、上部炉体を一体のまま維持すればよく、上部炉体も更新する場合には、上部炉体を更に複数のリングブロックに分離し、順次搬出することができる。
 本発明の解体方法において、前記分離工程の前に、前記炉底ブロックから分離される上部炉体を操業時の位置のまま高炉櫓に支持する上部炉体支持工程を有することが望ましい。このような本発明では、炉底ブロックから分離された上部炉体を高炉櫓に支持することで一体のまま維持することができる。このため、炉底ブロックだけ更新して上部炉体を再利用する際には、一体のまま維持しておいた上部炉体と更新した炉底ブロックとを再度接続することで高炉を再構築することができる。また、上部炉体を操業時の位置から動かすことなく支持することで、分離の際に炉体の周辺の配管等を外す必要がなく、再構築の際にそのまま利用することができる。
 なお、炉底ブロックから分離される上部炉体を操業時の位置のまま高炉櫓に支持するために、操業時の炉体と炉体櫓との間に補助的な支持構造を形成する手法が採用できる。このような支持構造としては、既存の炉体に設置されるリングガーダー等を流用することができる。
 本発明の解体方法において、前記分離工程は、前記高炉の炉体にその全周にわたる切除領域を形成する切除工程を有し、前記切除領域は、その上縁高さが前記高炉の環状管の直下にあるステーブの上部目地の高さであり、その下縁高さが前記上縁高さとされたステーブの上部目地よりも低い位置にある別のステーブの上部目地高さであることが望ましい。このような本発明では、切除工程により、高炉の炉体にその全周にわたる切除領域を形成し、これにより炉底ブロックとその上の上部炉体とが分離される。
 ここで、切除領域の上縁高さは、高炉の環状管の直下にあるステーブの上部目地の高さとする。切除領域の上縁は分離され、基礎上から引出装置により水平方向に引き出す際の炉底ブロックの上端にあたる。環状管を上部炉体又は炉体櫓に維持した状態で炉底ブロックを水平に引き出すならば、炉底ブロックの上端は環状管よりも低いことが必要である。従って、切除領域の上縁高さは高炉の環状管よりも下であることが望ましい。一方、炉体を切断するためには、内壁に設置されたステーブを避けて施工することが望ましい。このような条件に基づいて、本発明では、切除領域の上縁高さを高炉の環状管の直下にあるステーブの上部目地の高さとする。
 また、切除領域の下縁高さは、前述した上縁高さとされたステーブの上部目地よりも低い位置にある別のステーブの上部目地高さとする。これは、前述した炉体の切断に準じた施工上の条件であり、例えば切除領域はステーブ一枚分であってもよく、二枚以上のステーブ高さにわたる切除領域としてもよい。
 このような切除領域により、分離された上部炉体と炉底ブロックとの間には少なくともステーブ一枚分の高さの間隔が形成される。従って、炉底ブロックの水平方向への引き出しにあたって、炉底ブロックが上下に変位することがあっても、炉底ブロックと上部炉体とが接触あるいは干渉することが避けられる。
 また、上部炉体においては、切除領域がステーブの目地での切断であるため、残されたステーブはそのまま再利用が可能である。従って、炉底ブロックのみを更新し、上部炉体を再利用する手順を採用する場合に有効である。
 本発明の解体方法において、前記分離工程は、前記炉底ブロック内に残留する赤熱状態の内容物の表面を被覆材で被覆して前記内容物と外気とを遮断する被覆工程を有する、ことが望ましい。このような本発明では、被覆工程により炉底ブロックの赤熱状態の内容物の表面を被覆することで、赤熱状態の内容物であるコークスおよび溶銑、溶滓からの熱を遮蔽できるとともに、内容物から発生する可燃性ガスがそのまま大気に放散されることを防止し、かつ酸素を含む外気の進入による過剰な炉内燃焼を防止することができる。
 このような被覆材としては、いわゆるキャスタブルやセメントあるいはモルタルなど、液状で適用したのち固化して被膜あるいは被覆材層を形成できる無機材料が利用できる。被覆材は、高温の炉内で用いることから耐熱性が高いことが望ましく、併せてガス遮断性能が高いことが望ましい。
 本発明の解体方法において、前記分離工程は、前記被覆工程に先立って、前記炉底ブロックの炉体に開口を形成し、前記開口から重機の一部を導入し、前記重機により前記炉底ブロック内に残留する赤熱状態の内容物の表面を均す均し工程を有することが望ましい。
 このような本発明では、被覆工程に先立って均し工程を実施することで、被覆材の形成を容易かつ確実にすることができる。炉内に導入する重機として、パワーショベル等の作業機械部分が長いものを用い、重機本体および操縦者が炉内に立ち入ることなく作業ができることが望ましい。
 炉体に形成する開口としては、パワーショベルの作業機械部分が導入できればよく、前述した切除領域と重複するように形成してもよく、その後、切除領域として流用してもよい。
 本発明の解体方法において、前記分離工程は、前記被覆材で被覆された前記炉底ブロック内に残留する赤熱状態の内容物から発生する可燃ガスを外部に誘導し、燃焼させてから大気に放散させる可燃ガス排出工程を有することが望ましい。このような本発明では、可燃ガス排出工程により、前記炉底ブロック内に残留する赤熱状態の内容物から発生する可燃ガスを外部に誘導し、燃焼させてから大気に放散させるため、前記炉底ブロックの内部および外部での安全性を高めることができる。
 本発明の解体方法において、前記被覆工程は、前記被覆材で被覆された前記赤熱状態の内容物の内部に不活性ガスを充満させる不活性ガス充填工程を有することが望ましい。
 このような本発明では、不活性ガス充填工程により、前記赤熱状態の内容物の内部に不活性ガスを充填させることで、前記赤熱状態の内容物の内部のコークス等に対する酸素供給を遮断して燃焼反応を抑制することができる。不活性ガスとしては、窒素ガスほか、適宜なガスを用いることができる。
 本発明は、設置現場に設置された炉体から炉底ブロックを分離し、分離された前記炉底ブロックを設置現場から搬出する際に用いられる高炉炉底部の搬送装置であって、前記炉底ブロックを載置する載置面を有する搬送用架台と、前記搬送用架台に設置されて前記炉底ブロック内の冷却用ステーブに対して冷媒を循環させる冷却装置とを有することを特徴とする。このような本発明では、前述した本発明の解体方法と同様な作用効果を得ることができる。すなわち、分離工程で炉体内へ注水冷却しないことで注水冷却に起因する従来の問題を解消できるとともに、搬出工程では炉底ブロックを冷却しつつ搬出するため、注水冷却なしでも炉底ブロックの温度上昇を抑制することができ、不必要な影響を回避することができる。
 本発明の搬送装置において、前記冷却装置は、前記冷却用ステーブに接続される冷媒配管と、前記冷媒配管に前記冷媒を循環させるポンプと、前記冷媒配管を循環する前記冷媒の放熱を行う放熱器と、を有することが望ましい。このような本発明では、冷媒を循環させる冷却装置により、炉底ブロックのステーブを利用して確実な冷却機能を実現することができる。
 本発明の搬送装置において、前記冷却用ステーブの上端側で大気開放された開口と、前記冷却用ステーブの下端側に接続される冷媒配管と、前記冷媒配管に下端側が接続されかつ上端側が大気開放された給水管と、を有することが望ましい。このような本発明では、冷却用ステーブの上端側の開口において冷媒を蒸発させることで気化熱による冷却が行われ、炉底ブロックのステーブにおける冷却機能を確保することができ、蒸発による冷媒の減少分は補給管で補給されるため、ポンプ等を用いない簡単な構成で冷却機能を実現することができる。
The present invention is a method for disassembling a blast furnace furnace bottom part in which a furnace bottom block is separated from a furnace body installed at an installation site, and the separated furnace bottom block is carried out from the installation site, and does not cool by pouring water into the furnace body A separation step of separating the furnace bottom block from the furnace body in a state; and a carrying-out step of carrying out the separation from the installation site while cooling the separated furnace bottom block. In the present invention as described above, the conventional problem caused by the water injection cooling can be solved by not performing the water injection cooling into the furnace body in the separation process, and the furnace bottom block is carried out while cooling in the carrying out process. An increase in the temperature of the bottom block can be suppressed, and unnecessary effects can be avoided.
In the disassembling method according to the present invention, it is desirable to use a carrier for placing the furnace bottom block in the carrying-out process. In the present invention, by using the transportation platform, the bottom block can be transferred from the blast furnace foundation to the transportation platform, and the transportation platform can be transported to the dismantling work site by towing or the like. .
At this time, the conveyance path of the conveyance platform is made of a steel plate with high load resistance, etc., and sliding means (for example, stainless steel plate and steel plate) that can reduce the friction coefficient with high load resistance between the conveyance path and the conveyance platform. Etc.), for example, the furnace block can reach about 8000 tons (see Japanese Patent Application Nos. 2007-207734 and 2008-196528 by the applicant mentioned above). Alternatively, an existing dolly or an air caster may be used as long as it can withstand a similar load.
In the disassembling method of the present invention, it is desirable that the furnace bottom block is cooled in the unloading step by using a cooling device installed on the transportation platform. In the present invention as described above, the cooling device can be moved integrally even if the transportation platform moves along with the transportation, and the complication of the cooling device can be avoided. In particular, since the cooling device and the furnace bottom block coexist on the same transportation platform, the refrigerant piping and the like can be minimized.
In the disassembling method of the present invention, the separation step is a cooling in which piping connected to the cooling stave of the furnace bottom block is switched from a cooling device installed at the installation site to a cooling device installed on the transportation platform. A system switching step, and during normal operation, the refrigerant is circulated from the cooling device installed at the installation site to the stave, and in the unloading step, the cooling device installed on the transportation platform is transferred to the stave. It is desirable to circulate the refrigerant. In the present invention, by performing the cooling system switching step in the separation step, the pipe connected to the cooling stave of the furnace bottom block is installed on the transportation platform from the cooling device installed on the installation site. Switch to cooling device.
As a result, during normal operation or until the blow-off, the refrigerant is circulated from the cooling device installed at the installation site to the stave, and an expected cooling function is obtained in the portion corresponding to the furnace bottom block before separation. .
In addition, when separating or carrying out the bottom block after blowing, the coolant is circulated from the cooling device installed on the carrier to the stave, and the desired cooling function is obtained in the separated bottom block.
Therefore, in the separation process or the unloading process, it is possible to ensure the cooling performance required for the furnace bottom block regardless of whether the furnace bottom block is separated or after the separation.
Further, in any state before and after separation, the stave pre-installed in the furnace bottom block can be shared as the heat absorption means in the furnace bottom block, so there is no need to install a separate heat absorption means for carrying out. The equipment cost can be reduced and the work period can be shortened.
It should be noted that the cooling capacity of the cooling device installed on the transportation platform may be smaller than that of the cooling device installed at the installation site. This is because, in addition to cooling of the bottom block to be carried out, in the bottom block to be carried out, the combustion state is greatly suppressed and the calorific value is suppressed as compared with the normal operation.
About the upper furnace body isolate | separated from a furnace bottom block, this may be maintained as integral and may be further isolate | separated into a some ring block. When renewing only the furnace bottom block and reusing the upper furnace body, the upper furnace body may be maintained as a single unit. When the upper furnace body is also renewed, the upper furnace body is further divided into a plurality of ring blocks. It can be separated and carried out sequentially.
In the dismantling method of the present invention, it is desirable to have an upper furnace body supporting step of supporting the upper furnace body separated from the furnace bottom block on the blast furnace pit in the operating position before the separating step. In the present invention as described above, the upper furnace body separated from the furnace bottom block can be maintained as a single unit by supporting it on the blast furnace. For this reason, when only the furnace bottom block is updated and the upper furnace body is reused, the blast furnace is reconstructed by reconnecting the upper furnace body that has been maintained and the updated furnace block again. be able to. Further, by supporting the upper furnace body without moving it from the position at the time of operation, it is not necessary to remove piping around the furnace body at the time of separation, and it can be used as it is at the time of reconstruction.
In order to support the upper furnace body separated from the furnace bottom block to the blast furnace furnace while maintaining the position at the time of operation, there is a method of forming an auxiliary support structure between the furnace body and the furnace body iron at the time of operation. Can be adopted. As such a support structure, a ring girder or the like installed in an existing furnace body can be used.
In the disassembling method of the present invention, the separation step includes a cutting step for forming a cutting region over the entire circumference in the furnace body of the blast furnace, and the cutting region has an upper edge height of the annular tube of the blast furnace. It is desirable that the height of the upper joint of the staves immediately below is the upper joint height of another stave located at a position lower than the upper joint of the stave whose upper edge is the upper edge height. In the present invention, the excision step forms an excision region over the entire circumference in the furnace body of the blast furnace, thereby separating the furnace bottom block and the upper furnace body thereon.
Here, the upper edge height of the excision region is the height of the upper joint of the stave located immediately below the annular tube of the blast furnace. The upper edge of the cutting area is separated and corresponds to the upper end of the furnace bottom block when being pulled out from the foundation in the horizontal direction by the drawing device. If the furnace bottom block is pulled out horizontally with the annular tube maintained in the upper furnace body or furnace body, the upper end of the furnace bottom block needs to be lower than the annular tube. Therefore, it is desirable that the upper edge height of the ablation region be lower than the blast furnace annular tube. On the other hand, in order to cut the furnace body, it is desirable to avoid the stave installed on the inner wall. Based on such conditions, in the present invention, the height of the upper edge of the excision region is set to the height of the upper joint of the stave located immediately below the annular pipe of the blast furnace.
Further, the lower edge height of the excision region is set to the upper joint height of another stave located at a position lower than the upper joint of the stave, which is the above-described upper edge height. This is a construction condition in accordance with the above-described cutting of the furnace body. For example, the excision region may be one stave or may be an excision region extending over two or more stave heights.
By such a cutting region, a gap having a height of at least one stave is formed between the separated upper furnace body and the furnace bottom block. Therefore, even when the furnace bottom block is displaced vertically when the furnace bottom block is pulled out in the horizontal direction, it is possible to avoid contact or interference between the furnace bottom block and the upper furnace body.
Further, in the upper furnace body, since the excision area is cutting at the joints of the stave, the remaining stave can be reused as it is. Therefore, it is effective when adopting a procedure in which only the furnace bottom block is updated and the upper furnace body is reused.
In the dismantling method of the present invention, the separation step includes a covering step of covering the surface of the red hot contents remaining in the furnace bottom block with a covering material and blocking the contents from the outside air. desirable. In the present invention, by covering the surface of the red-hot contents of the furnace bottom block by the coating process, heat from the coke, hot metal, and hot metal, which are the red hot contents, can be shielded. It is possible to prevent the combustible gas generated from the gas from being released to the atmosphere as it is, and to prevent excessive combustion in the furnace due to the entry of outside air containing oxygen.
As such a covering material, an inorganic material such as a so-called castable, cement, or mortar that can be solidified after being applied in a liquid form to form a coating film or a covering material layer can be used. Since the coating material is used in a high-temperature furnace, it is desirable that the coating material has high heat resistance, and it is also desirable that the gas shielding performance be high.
In the dismantling method of the present invention, the separation step forms an opening in the furnace body of the furnace bottom block prior to the covering step, introduces a part of heavy equipment from the opening, and the furnace bottom block is introduced by the heavy equipment. It is desirable to have a leveling step of leveling the surface of the red hot contents remaining inside.
In the present invention as described above, it is possible to easily and reliably form the covering material by performing the leveling step prior to the covering step. It is desirable that a heavy machine to be introduced into the furnace has a long work machine such as a power shovel so that the heavy machine main body and the operator can work without entering the furnace.
The opening to be formed in the furnace body only needs to be able to introduce the work machine portion of the excavator, and may be formed so as to overlap the above-described excision region, and may be used as the excision region thereafter.
In the disassembling method of the present invention, the separation step induces combustible gas generated from the red-hot contents remaining in the furnace bottom block covered with the coating material to the outside, burns it, and then dissipates it to the atmosphere. It is desirable to have a combustible gas discharge process. In the present invention, in order to dissipate the combustible gas generated from the red hot contents remaining in the furnace bottom block to the outside through the combustible gas discharge step, Safety inside and outside the block can be increased.
In the disassembling method of the present invention, it is desirable that the covering step includes an inert gas filling step of filling the contents of the red hot state covered with the covering material with an inert gas.
In the present invention, the inert gas filling step fills the inside of the red-hot contents with an inert gas to cut off the oxygen supply to the coke and the like inside the red-hot contents. Combustion reaction can be suppressed. As the inert gas, an appropriate gas other than nitrogen gas can be used.
The present invention relates to a blast furnace bottom transfer device used for separating a furnace bottom block from a furnace body installed at an installation site, and carrying out the separated furnace bottom block from the installation site, It has a transfer stand having a mounting surface on which the block is placed, and a cooling device installed on the transfer stand to circulate the refrigerant with respect to the cooling stave in the furnace bottom block. In the present invention as described above, it is possible to obtain the same effects as those of the dismantling method of the present invention described above. In other words, the conventional problem caused by the water injection cooling can be solved by not cooling the water into the furnace body in the separation process, and the furnace bottom block temperature is increased even without the water injection cooling because the furnace bottom block is carried out while cooling in the carrying out process. Can be suppressed, and unnecessary influences can be avoided.
In the transport apparatus according to the present invention, the cooling device includes a refrigerant pipe connected to the cooling stave, a pump that circulates the refrigerant in the refrigerant pipe, and a radiator that radiates heat of the refrigerant circulating in the refrigerant pipe. It is desirable to have. In the present invention, a reliable cooling function can be realized by using the stave of the furnace bottom block by the cooling device for circulating the refrigerant.
In the transfer device of the present invention, the opening opened to the atmosphere on the upper end side of the cooling stave, the refrigerant pipe connected to the lower end side of the cooling stave, the lower end side connected to the refrigerant pipe, and the upper end side opened to the atmosphere It is desirable to have a water supply pipe. In the present invention as described above, the refrigerant is evaporated by evaporating the refrigerant at the opening on the upper end side of the cooling staves, so that the cooling function of the staves of the furnace bottom block can be secured, and the refrigerant is reduced by evaporation. Since the minute amount is supplied through the supply pipe, the cooling function can be realized with a simple configuration without using a pump or the like.
 図1は、本発明の一実施形態の高炉および搬送装置を示す側面図である。
 図2は、図1の実施形態における高炉改修手順を示す作業ブロック図である。
 図3は、図1の実施形態における炉体支持および切除領域を示す拡大断面図である。
 図4は、図1の実施形態における均し工程を示す断面図である。
 図5は、図1の実施形態における搬出工程を示す断面図である。
 図6は、図1の実施形態における搬送用架台および冷却装置を示す断面図である。
 図7は、本発明の他の実施形態の搬送用架台および冷却装置を示す断面図である。
FIG. 1 is a side view showing a blast furnace and a transfer apparatus according to an embodiment of the present invention.
FIG. 2 is a work block diagram showing a blast furnace refurbishment procedure in the embodiment of FIG.
FIG. 3 is an enlarged cross-sectional view showing a furnace body support and excision region in the embodiment of FIG.
FIG. 4 is a cross-sectional view showing a leveling process in the embodiment of FIG.
FIG. 5 is a cross-sectional view showing the unloading process in the embodiment of FIG.
FIG. 6 is a cross-sectional view showing the transfer platform and the cooling device in the embodiment of FIG.
FIG. 7 is a cross-sectional view showing a transfer platform and a cooling device according to another embodiment of the present invention.
 以下、本発明の実施形態を図面に基づいて説明する。
 図1において、本発明が適用される高炉1は、設置現場2の地盤上に設置されている。高炉1は、地盤上に設置された基礎3と、基礎3上に構築された炉体4と、炉体4の周囲に構築された炉体櫓5とを備えている。炉体4は、鉄皮41の内側に耐火レンガ等の耐火材42および冷却用のステーブ43を張って形成された円筒状の構造物である。炉体4の内部には、コークスや鉄鉱石などの装入物44が塔頂部から装入され、下部の羽口45から熱風が吹き込まれる。これにより、炉体4内ではコークスが燃焼、発熱し、さらに還元ガスCOが生じ、鉄鉱石が加熱されつつ上記還元ガスにより還元溶融され、炉底部には溶銑46が生成される。これらの溶銑46および装入物44は、後述する炉底ブロック7の搬出時にも赤熱状態の内容物47として残留することになる。
 炉体4のステーブ43には、冷媒配管を介して冷却装置が接続される(図示省略)。冷却装置は、炉体4および炉体櫓5の外部に設置された放熱器およびポンプを含み、ステーブ43に冷媒(本実施形態では水を用いる)を循環させるとともに、ステーブ43で吸熱した冷媒は放熱器で冷却する。炉体4に設置された多数のステーブ43は、炉頂部、炉胸部、炉腹部、炉底部などの区画毎にグループ化され、各グループのそれぞれに冷却状態を細かく調整可能である。
 炉体櫓5は、例えば炉体4を取り囲む4本の柱を基本構造とし、炉体4を取り囲む環状の梁材および足場(図示省略)を各高さに保持している。炉体4の羽口45近傍上方には、羽口45に加熱された空気を供給する環状管51が設置され、羽口45との間を連結管52で接続されている。
 なお、炉体櫓5には、炉体4を支持するための支持部53が形成され、後述する通り、炉底ブロック搬出時には、炉体4に支持部材4Aを形成して支持部53に接続することで、炉底ブロック7と分離された上部炉体6を基礎3上に浮かせた状態で支持可能である。
 本実施形態において、炉体4の炉底部は、上部炉体6と分割されて炉底ブロック7として搬出される。炉底ブロック7の搬出の後には、更新用の炉底ブロック7Aを搬入し、上部炉体6と再度接続する。これにより、炉底ブロック7のみを交換し、上部炉体6は再利用することができ、炉体4の効率的な改修が行える。
 設置現場2から離れた地盤上には、分離した炉底ブロック7を解体し、あるいは更新用の炉底ブロック7Aを事前に製造しておく作業現場8が設定される。
 作業現場8と設置現場2との間には、改修作業のために搬送装置10が設置される。
 搬送装置10は、設置現場2から作業現場8の基礎3外周に至る搬送経路11と、炉底ブロック7,7Aを載置して搬送経路11上を移動可能な搬送用架台12とを備える。搬送用架台12の下面には、高荷重を支持しつつ搬送経路11上を摺動可能な下部摺動手段13が設置される。搬送用架台12の上面には、炉底ブロック7,7Aを水平に引出して搬送用架台12の上面へと移載するための上部摺動手段14(引出装置)が設置される。
 下部摺動手段13は、互いに摺動する金属製板材で構成され、高荷重を受けつつ摩擦抵抗を低減できる構成として、鋼板とステンレス板の組み合わせが利用できる。具体的には、搬送用架台12の下面にステンレス板を設置し、搬送経路11の上面を鋼板とし、これらを互いに摺接させる構成が利用できる。鋼板とステンレス板の組み合わせに限らず、鋼板どうしの組み合わせあるいは他の金属板の組み合わせを利用してもよい。下部摺動手段13は互いに摺動する二枚の金属板に限らず、一方をレール状の長尺材としてもよい。さらに下部摺動手段13は、荷重負担が許容しうるものであれば車輪を利用したもの(既存のチルタンク)であってもよい。このような下部摺動手段13を介して搬送経路11と摺接する搬送用架台12は、図示しない駆動装置(ウインチ等)で牽引されることで搬送経路11上を移動可能である。なお、搬送用架台12は、前述のような牽引式のものに限らず、荷重負担が許容しうるものであれば自走式の台車(既存のドーリー等)であってもよい。
 上部摺動手段14(引出装置)についても、前述した下部摺動手段13と同様な構成が利用できるほか、既存の浮上搬送手段(エアキャスタ等)を利用してもよい。このようなエアキャスタを用いる場合、炉底ブロック7,7Aの下面にはエアキャスタを導入可能かつエアキャスタをリフトさせた際に支持状態にできる高さの空隙部を形成しておくことが望ましい。
 前述のような高炉1の改修を行うために、作業現場8および搬送装置10を用いて炉底ブロック7,7Aの更新を行う技術は、既に本出願人により提案されている(特願2007−207734、特願2008−196528など)。
 ここで、従来の高炉改修技術においては、炉底ブロック7の分離に先立って炉体4内への注水冷却を行っていた。これに対し、本実施形態においては、炉体4内への注水冷却は行わず、熱間状態での炉底部搬出を実施する。
 図2には、本実施形態における高炉改修手順が示されている。
 本実施形態の高炉改修手順では、通常の操業状態から減尺操業S1に入り、準備工程S2および吹き止めS3を経て、本発明に基づく注水冷却なしの分離工程S4および搬出工程S5を実施し、更に再構築工程S6を経て試運転S7を実施し、通常の操業状態に復帰する。
 減尺操業S1は、通常の操業状態にある高炉1内に残留する赤熱状態の内容物47をなるべく減らすために実施される。通常の操業状態においては、高炉1には装入物44が全体に装入され、その表面44Aは炉頂近くに位置している。これに対し、装入量を減らした状態での操業を続けることで、装入物44を減少させ、その表面を環状管51より下のレベルの表面44Bまで下げる。
 準備工程S2では、炉底ブロックの分離に必要な事項のうち、吹き止め前に実施可能なものを先行させ、これにより工期短縮を図る。このために、準備工程S2は、炉体4において実施される上部炉体支持工程S21、炉底(炉体4下部ないし基礎3の炉底ブロック7となる部分)において実施される基礎切断工程S22および引出装置設置工程S23、搬送装置10において実施される搬送経路設置工程S24および搬送用架台設置工程S25、炉体4ないし周辺で実施される炉体冷却配管改装工程S26および架台冷却装置設置工程S27を含む。
 上部炉体支持工程S21は、炉体4に支持部材4Aを形成し、支持部53に接続することで、炉体4(炉底ブロック7として分離される部分以外の上部炉体6となるべき部分)を、炉体櫓5に支持する工程である(図1および図3参照)。このような上部炉体支持工程S21により、上部炉体6は、炉底ブロック7,7Aの入れ替え作業の間も操業状態の位置を維持することができ、周辺機器などの接続を解除する必要がない。
 上部炉体支持工程S21は、炉体4の切断(後述する炉体全周切除工程S42)の前であればよいが、吹き止めS3の前に行うことで分離工程S4の工程緩和に好適である。
 基礎切断工程S22は、基礎3に水平方向の切断面を形成する工程である。基礎3の切断にあたっては、例えば基礎3の平面形状に複数の短冊状区画を設定し、ワイヤーソーを利用して各区画の水平切断を順次実施する手法が採用できる。基礎3には水平切断の結果として所定高さの空隙が形成されるが、この空隙には順次、ハイパックアンカー等の荷重支持部材を充填して空隙を暫定的に埋め戻すことが望ましい。このような基礎切断工程S22により炉底ブロック7の下端側の切断が行われ、後述する炉体全周切除工程S44により同じく上端側の切断が行われることで、炉底ブロック7は炉体4から分離可能となる。
 基礎切断工程S22は、炉体4における操業に直接影響を及ぼさないため、吹き止めS3の前に実施しておく。
 引出装置設置工程S23は、基礎切断工程S22に続いて、もしくは並行して実施する。引出装置設置工程S23では、基礎切断工程S22で切断された炉底ブロック7の下面に引出装置(上部摺動手段14)を配置する工程である。引出装置としてエアキャスタを用いる場合、炉底ブロック7,7Aの下面にエアキャスタを導入可能かつエアキャスタをリフトさせた際に支持状態にできる高さの空隙部を形成する必要があるが、このような空隙部は基礎切断工程S22における前述した空隙の埋め戻し時に同時に施工することが望ましい。このような空隙部が形成されていれば、あとは搬送用架台12上にエアキャスタを配置し、前述した空隙部へと進入できるように整列させればよい。
 搬送経路設置工程S24は、前述した搬送装置10の搬送経路11を設置する工程である。搬送経路11は、設置現場2の基礎3の外周近傍から作業現場8まで連続して設置する。搬送経路11の設置に先立ち、設置する地盤によっては補強などを併せて実施する。
 搬送用架台設置工程S25は、搬送経路設置工程S24の後あるいはその途中において、搬送経路11上の何れかの位置に搬送用架台12を設置する。この際、作業現場8まで延びる搬送経路11上で搬送用架台12を構築してもよく、別の場所で搬送用架台12を構築しておき搬送経路11上に移載してもよい。
 炉体冷却配管改装工程S26は、炉体4のステーブ43に接続されている冷却配管の一部を切り替える準備を行う工程である。具体的には、炉底部以外の区画のステーブ43は、そのまま高炉1の冷却装置に接続されたままとし、同冷却装置による冷却を維持する。一方、炉底部のステーブ43については、グループ毎に順次切り替え弁およびバイパス経路を増設し、別の冷却装置との間で冷媒循環が行えるように改装してゆく。
 架台冷却装置設置工程S27は、搬送用架台12に専用の冷却装置を設置する工程である。搬送用架台12上の冷却装置は、炉底ブロック7を搬出する際に、その内部のステーブ43に冷媒を循環させるものであり、高炉1の冷却装置に比べて冷却能力は大幅に小さくてよい。
 図6には、搬送用架台12で搬送される炉底ブロック7におけるステーブ43および冷却装置20の具体例が示されている。
 図6おいて、炉底ブロック7の内側には多数のステーブ43が配置され、縦方向に連続する一連のステーブ43によりグループが構成される。このグループの最下段の冷媒導入部43Bおよび最上段の冷媒取出部43Tには、通常操業時であれば高炉1の冷却装置が接続されるが、炉底ブロック7の搬出時には搬送用架台12上の冷却装置20に切り替えられる。
 冷却装置20は、放熱器21、放熱器21と冷媒導入部43Bを結ぶ冷媒配管22、放熱器21と冷媒取出部43Tを結ぶ冷媒配管23、冷媒配管22,23の任意部位に設置されたポンプ24で構成される。このような冷却装置20を用いることで、炉底ブロック7は搬送用架台12により搬送されるとともに、搬送の間も冷却機能を維持することができる。
 なお、炉底ブロック7に対して冷却装置20からの冷却が行われるのは、後述する冷却系統切替工程S47の後の搬送時であり、それまでは高炉1の冷却装置による冷却が維持される。
 以上の各工程により、吹き止めS3前の準備工程S2が実施される。
 これらの各工程のうち、上部炉体支持工程S21、炉体冷却配管改装工程S26および架台冷却装置設置工程S27については、比較的短期間での施工が可能である。しかし、基礎切断工程S22および引出装置設置工程S23、搬送経路設置工程S24および搬送用架台設置工程S25については、比較的大規模な施工となるため、吹き止めS3の相当前の時点で開始する必要がある。このような場合、前述した減尺操業S1は準備工程S2と並行して実施し、各々の完了時期が吹き止めS3の開始予定時期に一致するように調整することが望ましい。
 以上のような準備工程S2の後、吹き止めS3を実施する。そして、吹き止めS3の後、注水冷却なしに分離工程S4を実施する。
 分離工程S4は、炉体4において実施される炉体開口工程S41および炉体全周切除工程S44、炉底(炉底ブロック7部分)において実施される内容物表面均し工程S42、内容物表面被覆工程S43、可燃ガス排出工程S45および不活性ガス充填工程S46、冷却系統に関する冷却系統切替工程S47を含む。
 炉体開口工程S41は、内容物表面均し工程S42での炉外からの炉内作業を可能とするために、先行して炉体4に作業用開口を確保する工程である。
 内容物表面均し工程S42は、先に炉体開口工程S41で形成した作業用開口から重機の一部を導入し、この重機により炉底ブロック7内に残留する赤熱状態の内容物の表面を均す工程である。
 内容物表面被覆工程S43は、先に内容物表面均し工程S42で均された赤熱状態の内容物の表面を被覆材で被覆する工程である。
 各工程S41,S42,S43における具体的な操作は次の通りである。
 炉体開口工程S41では、図3および図4に示すように、炉体4に複数の作業用開口4Cを形成する。
 作業用開口4Cは、後述する切除領域4B(炉体全周切除工程S44の部分で詳述する)の範囲内(図3,図4に示す上端レベルL1~下端レベルL2の間)において、炉体4の周方向に間欠的に配置される。作業用開口4Cの加工にあたっては、切除領域4Bに該当するステーブ43Aの一枚分または複数枚分の区画を設定し、その区画に対応する鉄皮41を全周にわたって切断し、内側のステーブ43Aおよび耐火材42Aを除去する。
 内容物表面均し工程S42では、図4に示すように、パワーショベル等の重機61を配置し、その作業機械部分であるショベル部分62を作業用開口4Cから炉体4内に導入し、減尺操業S1で下降した赤熱状態の内容物47の表面44Bを平坦に均し、表面44Cとする。表面44Bが高い場合など、赤熱状態の内容物47の一部を炉外へ搬出してもよい。このような均し作業は、作業用開口4Cから到達可能な範囲の表面44Bに限られるが、各作業用開口4Cから順次行うことで実質的に炉内の全面が均されて表面44Cとされる。表面44Cは全面にわたって上端レベルL1より低いことが望ましい。
 内容物表面被覆工程S43では、図4に示す均された表面44Cに被覆材を適用し、図6に示すような被覆材44Dの被膜を形成する。被覆材44Dとしては、いわゆるキャスタブルやセメントあるいはモルタルなど、液状で適用したのち固化して被膜あるいは被覆材層を形成できる無機材料が利用できる。高温の炉内で用いることから耐熱性が高いことが望ましく、併せてガス遮断性能が高いことが望ましい。
 このような被覆材44Dの形成にあたっては、前述した作業用開口4Cからホース等を導入し、外部から圧送して表面44C上に散布する手法が利用できる。
 このような被覆材44Dにより赤熱状態の内容物47の表面を被覆することにより、赤熱状態の内容物47自体の飛散が避けられるとともに、赤熱状態の内容物47から発生するガスの大気中への放散を防止でき、高温の赤熱状態の内容物47から発生する熱の放散も抑制することができる。さらに、酸素を含む外気の進入を遮断することで、炉底ブロック7内に残留する装入物44の酸化反応を抑えることができる。
 炉体全周切除工程S44は、炉体4を全周にわたって切除することにより、炉底ブロック7と上部炉体6とを分割する工程である。
 図3および図4において、炉体全周切除工程S44は、炉体4の全周にわたって設定される切除領域4B(上端レベルL1~下端レベルL2の間)の切除を行う。先行する炉体開口工程S41により作業用開口4Cが形成されている場合、それ以外の部分についての切除(鉄皮41の切断、ステーブ43A,耐火材42Aの除去)を行う。
 切除領域4Bの設定については下記の通り行う(図3参照)。
 切除領域4Bの上端レベルL1については、環状管51の下端レベルL0を参照するとともに、炉体4に設置されたステーブ43の目地位置を参照し、レベルL0よりも低いステーブの上部目地のうち最も高い位置にあるステーブの上部目地のレベルを上端レベルL1として選択する。このような上端レベルL1の設定により、炉体4の環状管51と重複する高さより上の部分を上部炉体6として残すことができ、かつ炉底ブロック7として搬出する際に環状管51との干渉を回避することができる。
 切除領域4Bの下端レベルL2については、レベルL1よりも低い位置にある別のステーブの上部目地を選択する。通常、レベルL1よりも低い位置にある別のステーブの上部目地のなかで最も高い位置にある別のステーブの上部目地のレベルを下端レベルL2として選択すれば、切除領域4Bはステーブ43の一枚分の高さの領域となる。例えば、二番目に高い位置にある別のステーブの上部目地のレベルを下端レベルL2として選択すれば、切除領域4Bはステーブ43の二枚分の高さの広い領域とすることができる。このような下端レベルL2の設定により、上部炉体6の下端と搬出される炉底ブロック7(あるいは改めて搬入される更新用の炉底ブロック7A)の上端との間には十分な間隔が確保され、搬出および搬入の際に上下の変位等が生じたり、炉体ブロック7あるいは上部炉体6の切断端縁高さが上下に変動したりしても、相互の干渉を回避することができる。
 可燃ガス排出工程S45は、先に被覆材44Dで被覆された炉底ブロック7に残留する赤熱状態の内容物47に対し、その内部で発生する可燃ガスを外部に誘導し、燃焼させてから大気に放散させる工程である。
 図6において、炉底ブロック7には、連結管52を外された羽口45が残っている。この羽口45は炉底ブロック7の内部の、被覆材44Dで被覆された赤熱状態の内容物47に通じている。従って、赤熱状態の内容物47内部から発生する可燃ガス(コークスの燃焼反応(C+CO→CO)で生成した二酸化炭素がさらにコークスと反応(C+CO→2CO)して生じる一酸化炭素、鉄鉱石とコークスの直接還元反応の際に生じる一酸化炭素など)は、羽口45から排出可能である。
 ここで、可燃ガスをそのまま大気中に放散させることは安全上問題がある。このため、先端にパイロットバーナーを有する排出管45Aを羽口部45(内冷、外冷部分も含む)に接続し、可燃ガスを燃焼させたうえで大気中に放散させるようにしている。
 不活性ガス充填工程S46は、先に被覆材44Dで被覆された赤熱状態の内容物47の内部に不活性ガスを充満させる工程である。
 先に可燃ガス排出工程S45の説明で述べた通り、被覆材44Dで被覆された炉底ブロック7の赤熱状態の内容物47においては、高温が維持され、鉄鉱石の還元反応が継続されている。しかし、炉底ブロック7の解体に向けて同反応は不活発化することが望ましい。そのために、被覆材44Dで被覆された赤熱状態の内容物47の内部に不活性ガスを注入し、酸素を遮断することが望ましい。
 図6において、可燃ガス排出工程S45と同様に羽口45を用い、外部から不活性ガスを注入する。不活性ガスとしては、窒素ガスが安価で望ましい。二酸化炭素やアルゴンその他の不燃性ガスを用いてもよく、消火剤として用いられるガスを用いてもよい。
 不活性ガス充填工程S46は、前述した可燃ガス排出工程S45に続けて実施してもよく、この場合、可燃ガス排出工程S45で用いた排出管45Aを外した後に不活性ガスの注入管を接続すればよい。不活性ガス充填工程S46と可燃ガス排出工程S45とを並行して実施してもよく、例えば図6の右側の羽口45から不活性ガスを注入し、同左側の羽口45から可燃ガスを排出する等、ガスの出入りを考慮した流れを形成することが望ましい。
 冷却系統切替工程S47は、炉底ブロック7を搬出するために、炉底ブロック7に設置されたステーブ43への冷却系統を、高炉1側の冷却装置から搬送用架台12の冷却装置20に切り替える工程である。このような冷却系統の切替により、炉底ブロック7のステーブ43には搬送用架台12の冷却装置20から冷媒が循環されるようになり、炉底ブロック7は搬送用架台12とともに高炉1から分離され、設置現場2の外へと搬出が可能となる。
 ここで、冷却装置20は搬送用架台12上に設置されているが、この搬送用架台12は基礎3に隣接した搬送経路11上にあり(図1など参照)、後述する搬出工程S5までは冷却系統を接続する炉底ブロック7と冷却装置20とが離れている。このため、冷却装置20への切り替えにあたっては、炉底ブロック7との間の配管(図6の冷媒配管22,23)は可撓性を有し、かつ長距離に対応できるように構成しておくことが望ましい。
 なお、分離工程S4における各工程S41~S47の実施順序については、下記の条件がある。
 炉体開口工程S41、内容物表面均し工程S42、内容物表面被覆工程S43は、その作業内容に基づいて、この順番で行う必要がある。
 可燃ガス排出工程S45および不活性ガス充填工程S46は同時進行させてもよく、各々は外気遮断との関係で内容物表面被覆工程S43より後に実施することが望ましい。
 炉体全周切除工程S44は炉体開口工程S41の後であれば任意の段階で実施することができる。
 冷却系統切替工程S47も任意の段階で実施することができる。但し、なるべく高炉1側の冷却装置を長く使うために、分離工程S4の最終段階で実施することが好ましい。
 以上のような分離工程S4により、炉底ブロック7が分離され、冷却装置20への切り替えが行われた後、炉底ブロック7の搬出工程S5を実施する。
 搬出工程S5では、旧炉底ブロック搬出工程S51および架台冷却装置稼働工程S52が並行して実施される。
 旧炉底ブロック搬出工程S51は、図5に示すように、炉底ブロック7を水平に引き出して搬送用架台12に移載し、搬送用架台12を作業現場8へと移動させる工程である。搬送すべき炉底ブロック7は、前述した分離工程S4までの工程において、炉体4からの分離(炉体全周切除工程S44、基礎切断工程S22)がなされているとともに、冷却系統の切り替え(冷却系統切替工程S47)がなされており、設置現場2の高炉1内から随時移動できる状態である。
 図5において、旧炉底ブロック搬出工程S51では、炉底ブロック7を水平に引き出して高炉1内から搬送用架台12の上面(載置面)へと移載する作業と、炉底ブロック7を載置した搬送用架台12を搬送経路11に沿って牽引して作業現場8へと移動させる作業とを行う。このような炉底ブロック7の搬出作業の間、炉底ブロック7は搬送用架台12の冷却装置20によって冷却を継続されており(架台冷却装置稼働工程S52)、炉底ブロック7の炉体が過熱等による変形を抑制する。
 搬送用架台12により作業現場8へと移動された炉底ブロック7は、そのまま解体作業に入る(旧炉底ブロック解体工程S9、図2参照)。この旧炉底ブロック解体工程S9の工程においても、架台冷却装置稼働工程S52を継続してもよい。旧炉底ブロック解体工程S9においては、解体時の作業で内部の熱が問題になる場合、注水冷却S91を実施してもよい。ここでの注水冷却S91は、炉底ブロック7という限られた範囲であること、赤熱状態の内容物47からの発熱が既に抑制されていることから、従来の高炉1全体に対する注水冷却に比べて十分に小規模とすることができる。
 以上のような搬出工程S5の後、更新用の炉底ブロック7Aを用いた再構築工程S6が実施される。なお、再構築工程S6で用いる更新用の炉底ブロック7Aは、予め他の作業現場において製造しておく(更新用炉底ブロック製造工程S8、図2参照)。
 再構築工程S6は、更新用の炉底ブロック7Aを搬入する更新用炉底ブロック搬入・設置工程S61と、搬入された炉底ブロック7Aを上部炉体6と再接続する炉底ブロック再接続工程S62と、同炉底ブロック7Aに高炉1側の冷却装置を接続する炉体冷却配管復元工程S63とを含む。
 更新用炉底ブロック搬入・設置工程S61では、高炉1の炉底部の炉底ブロック7を搬出した跡地に、更新用の炉底ブロック7Aを搬入し、設置する。なお、このため、設置する跡地の上面は、更新用炉底ブロック7Aの底面が安定して受け入れられるように予め平坦にしておく。
 更新用の炉底ブロック7Aは、旧い炉底ブロック7と同様の構成が利用できる。更新用の炉底ブロック7Aは、旧い炉底ブロック7よりも大きい、あるいは小さい規模のものとすることもできるが、上部炉体6を共用することから、大幅な変更には適さない。
 更新用の炉底ブロック7Aの製造は、更新用炉底ブロック製造工程S8で予め行われる。製造のための作業現場は、旧炉底ブロック解体工程S9を行う前述した作業現場8と同じまたは隣接する場所とする。これにより、搬入に搬送装置10を共用する場合、搬送経路11の全部または一部を共用することができる。製造のための作業現場を全く別の場所とする場合、別個の搬送装置を設置する必要がある。
 何れの場合も、更新用炉底ブロック搬入・設置工程S61における作業は、前述した旧炉底ブロック搬出工程S51と逆の作業となる。
 炉底ブロック再接続工程S62は、更新用炉底ブロック搬入・設置工程S61により高炉1の炉底部に搬入された更新用の炉底ブロック7Aに対し、上方に支持されていた上部炉体6の接続を行う工程である。
 前述の分離工程S4で述べた通り、上部炉体6と旧い炉底ブロック7との分離にあたっては、ステーブ43Aに対応した切除領域4Bの幅を持たせていた。従って、更新用の炉底ブロック7Aと上部炉体6との接続にあたっては、互いの間隔部分(切除領域4Bに相当)に鉄皮41、ステーブ43、耐火材42を補充することになる。
 この炉底ブロック再接続工程S62により、更新用の炉底ブロック7Aと上部炉体6とが接続され、炉頂から炉底に至る一連の炉体4が復元される。
 炉体冷却配管復元工程S63は、更新用炉底ブロック搬入・設置工程S61により高炉1の炉底部に搬入された更新用の炉底ブロック7Aに対し、前述した冷却系統切替工程S47で外されていた高炉1側の冷却装置を再度接続する工程である。この炉体冷却配管復元工程S63により、炉底ブロック7Aと上部炉体6とを含む一連の炉体4の全体について、高炉1側の冷却装置による冷却機能が復元される。
 なお、更新用炉底ブロック搬入工程S61が実施された後であれば、炉底ブロック再接続工程S62と炉体冷却配管復元工程S63とは随時実施することができ、各々を並列的に実施してもよく、あるいは炉底ブロック再接続工程S62の後に炉体冷却配管復元工程S63を実施してもよい。
 以上のような再構築工程S6の後、試運転工程S7を実施する。
 この試運転工程S7において各種調整を行い、規定の検査が完了したならば、通常の操業に復帰する。
 図7には本発明の他の実施形態が示されている。
 本実施形態において、炉底ブロック7および搬送用架台12については前述した図1~図6の実施形態と同様であるため、重複する説明は省略する。
 本実施形態では、搬送用架台12に設置されて炉底ブロック7の冷却機能を提供するものとして蒸発冷却による冷却装置30を用いる。
 図7において、搬送用架台12の一部には、補給管31が垂直に設置され、その上端は開口32により大気開放されている。補給管31の下端は冷媒配管33を介して一連のステーブ43の下端側の冷媒導入部43Bに接続されている。一連のステーブ43の上端側の冷媒取出部43Tは開口により大気開放されている。
 このような冷却装置30においては、ステーブ43内で吸熱した冷媒(水)は一部が冷媒取出部43Tで蒸発し、大気放散されることで放熱する。蒸発に伴って冷媒が減少するが、この減少分は補給管31から補給される。
 このような蒸発冷却による冷却装置30を用いた場合、構造がきわめて簡略であるうえ、ポンプ等の動力を省略することができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In FIG. 1, a blast furnace 1 to which the present invention is applied is installed on the ground of an installation site 2. The blast furnace 1 includes a foundation 3 installed on the ground, a furnace body 4 constructed on the foundation 3, and a furnace body cage 5 constructed around the furnace body 4. The furnace body 4 is a cylindrical structure formed by extending a refractory material 42 such as a refractory brick and a cooling stave 43 inside an iron skin 41. A charge 44 such as coke or iron ore is charged into the furnace body 4 from the top of the tower, and hot air is blown from the lower tuyere 45. As a result, coke burns and generates heat in the furnace body 4, and a reducing gas CO is generated. The iron ore is reduced and melted by the reducing gas while being heated, and hot metal 46 is generated at the bottom of the furnace. The hot metal 46 and the charged material 44 remain as red hot contents 47 when the furnace bottom block 7 described later is carried out.
A cooling device is connected to the stave 43 of the furnace body 4 via a refrigerant pipe (not shown). The cooling device includes a radiator and a pump installed outside the furnace body 4 and the furnace body shed 5, circulates a refrigerant (water is used in the present embodiment) through the stave 43, and the refrigerant that has absorbed heat at the stave 43 is Cool with a radiator. A large number of staves 43 installed in the furnace body 4 are grouped into sections such as a furnace top, a furnace chest, a furnace belly, and a furnace bottom, and the cooling state can be finely adjusted for each group.
The furnace body 5 has, for example, four pillars surrounding the furnace body 4 as a basic structure, and holds an annular beam material and a scaffold (not shown) surrounding the furnace body 4 at each height. An annular tube 51 that supplies air heated to the tuyere 45 is installed above the tuyere 45 near the tuyere 45, and is connected to the tuyere 45 by a connecting pipe 52.
The furnace body 5 is provided with a support portion 53 for supporting the furnace body 4. As will be described later, when the furnace bottom block is carried out, a support member 4 A is formed on the furnace body 4 and connected to the support portion 53. By doing so, the upper furnace body 6 separated from the furnace bottom block 7 can be supported in a state of being floated on the foundation 3.
In the present embodiment, the furnace bottom portion of the furnace body 4 is divided from the upper furnace body 6 and carried out as a furnace bottom block 7. After carrying out the furnace bottom block 7, the renewed furnace bottom block 7 </ b> A is carried in and connected to the upper furnace body 6 again. Thereby, only the furnace bottom block 7 is replaced, the upper furnace body 6 can be reused, and the furnace body 4 can be efficiently repaired.
On the ground away from the installation site 2, a work site 8 is set in which the separated furnace bottom block 7 is disassembled or a renewed furnace bottom block 7A is manufactured in advance.
A transfer device 10 is installed between the work site 8 and the installation site 2 for repair work.
The transfer device 10 includes a transfer path 11 extending from the installation site 2 to the outer periphery of the foundation 3 of the work site 8, and a transfer platform 12 that can move on the transfer path 11 by placing the furnace bottom blocks 7 and 7 </ b> A. A lower sliding means 13 that can slide on the transportation path 11 while supporting a high load is installed on the lower surface of the transportation platform 12. On the upper surface of the carrier base 12, an upper sliding means 14 (drawer) for horizontally pulling out the furnace bottom blocks 7 and 7A and transferring them to the upper surface of the carrier base 12 is installed.
The lower sliding means 13 is composed of metal plates that slide on each other, and a combination of a steel plate and a stainless steel plate can be used as a configuration that can reduce frictional resistance while receiving a high load. Specifically, it is possible to use a configuration in which a stainless steel plate is installed on the lower surface of the carrier 12 and the upper surface of the conveyance path 11 is a steel plate, and these are in sliding contact with each other. Not only the combination of a steel plate and a stainless steel plate, but also a combination of steel plates or a combination of other metal plates may be used. The lower sliding means 13 is not limited to two metal plates that slide on each other, and one of them may be a rail-like long material. Further, the lower sliding means 13 may be one using wheels (existing chill tank) as long as the load burden can be tolerated. The transport platform 12 that is in sliding contact with the transport path 11 via the lower sliding means 13 can be moved on the transport path 11 by being pulled by a driving device (such as a winch) (not shown). The transport platform 12 is not limited to the pulling type as described above, and may be a self-propelled cart (such as an existing dolly) as long as the load burden can be tolerated.
As for the upper sliding means 14 (drawing device), the same configuration as that of the lower sliding means 13 described above can be used, and an existing floating conveying means (such as an air caster) may be used. In the case of using such an air caster, it is desirable to form an air gap that can be introduced into the bottom surface of the furnace bottom blocks 7 and 7A and can be supported when the air caster is lifted. .
In order to repair the blast furnace 1 as described above, a technique for updating the furnace bottom blocks 7, 7A using the work site 8 and the transfer device 10 has already been proposed by the present applicant (Japanese Patent Application No. 2007-). 207734, Japanese Patent Application No. 2008-196528, etc.).
Here, in the conventional blast furnace refurbishment technique, water injection and cooling into the furnace body 4 is performed prior to the separation of the furnace bottom block 7. On the other hand, in this embodiment, the water injection cooling into the furnace body 4 is not performed, and the furnace bottom portion is carried out in a hot state.
FIG. 2 shows a blast furnace repair procedure in the present embodiment.
In the blast furnace refurbishment procedure of the present embodiment, the operation enters the reduced operation S1 from the normal operation state, undergoes the separation step S4 and the unloading step S5 without water injection cooling according to the present invention, through the preparation step S2 and the blow-stop S3, Further, through a reconstruction step S6, a trial operation S7 is performed, and the normal operation state is restored.
The reduction operation S1 is performed in order to reduce as much as possible the red hot contents 47 remaining in the blast furnace 1 in the normal operation state. In a normal operation state, the blast furnace 1 is charged with the entire charge 44, and its surface 44A is located near the top of the furnace. On the other hand, by continuing the operation in a state where the charging amount is reduced, the charged material 44 is reduced and the surface thereof is lowered to the surface 44B at a level below the annular pipe 51.
In the preparation step S2, items necessary for separating the furnace bottom block are preceded by items that can be implemented before blowing off, thereby shortening the work period. For this purpose, the preparatory process S2 includes an upper furnace body support process S21 performed in the furnace body 4 and a foundation cutting process S22 performed in the furnace bottom (the lower part of the furnace body 4 or the portion serving as the furnace bottom block 7 of the foundation 3). And a drawing device installation step S23, a transfer route setting step S24 and a transfer gantry setting step S25 performed in the transfer device 10, a furnace body cooling pipe refurbishing step S26 and a gantry cooling device setting step S27 performed in or around the furnace body 4. including.
In the upper furnace body support step S21, the support member 4A is formed on the furnace body 4 and connected to the support portion 53, so that the furnace body 4 (the upper furnace body 6 other than the portion separated as the furnace bottom block 7 should be formed). Part) is supported on the furnace body 5 (see FIGS. 1 and 3). By such an upper furnace body support step S21, the upper furnace body 6 can maintain the position of the operation state even during the replacement work of the furnace bottom blocks 7 and 7A, and it is necessary to release the connection of peripheral devices and the like. Absent.
The upper furnace body support step S21 may be performed before the cutting of the furnace body 4 (furnace entire body cutting step S42 described later), but is suitable for the relaxation of the separation step S4 by being performed before the blowing stop S3. is there.
The basic cutting step S <b> 22 is a step of forming a horizontal cut surface on the base 3. In cutting the foundation 3, for example, a method of setting a plurality of strip-like sections in the planar shape of the foundation 3 and sequentially performing horizontal cutting of each section using a wire saw can be employed. A gap having a predetermined height is formed in the foundation 3 as a result of the horizontal cutting, and it is desirable that the gap is sequentially filled with a load supporting member such as a high pack anchor to temporarily fill the gap. The bottom cut side of the furnace bottom block 7 is cut by such a basic cutting step S22, and the cut of the upper end side is similarly cut by the furnace body full circumference cutting step S44 described later, so that the furnace bottom block 7 has the furnace body 4 cut. It becomes separable from.
Since the basic cutting step S22 does not directly affect the operation in the furnace body 4, it is carried out before the blowing stop S3.
The drawer installation step S23 is performed following or in parallel with the basic cutting step S22. In the drawing device installation step S23, the drawing device (upper sliding means 14) is arranged on the lower surface of the furnace bottom block 7 cut in the basic cutting step S22. When an air caster is used as the drawing device, it is necessary to form a gap portion that can be introduced into the bottom surface of the furnace bottom blocks 7 and 7A and can be supported when the air caster is lifted. It is desirable to construct such a void at the same time as the above-described void refilling in the basic cutting step S22. If such a gap portion is formed, an air caster may be disposed on the transportation platform 12 and aligned so as to enter the aforementioned gap portion.
The transfer route setting step S24 is a step of setting the transfer route 11 of the transfer device 10 described above. The conveyance path 11 is continuously installed from the vicinity of the outer periphery of the foundation 3 of the installation site 2 to the work site 8. Prior to the installation of the transport path 11, depending on the ground to be installed, reinforcement or the like is also performed.
In the transfer gantry installation step S25, the transfer gantry 12 is installed at any position on the transfer route 11 after or during the transfer route setting step S24. At this time, the transportation platform 12 may be constructed on the transportation route 11 extending to the work site 8, or the transportation platform 12 may be constructed at another place and transferred onto the transportation route 11.
The furnace body cooling pipe refurbishment step S26 is a process for preparing to switch a part of the cooling pipe connected to the stave 43 of the furnace body 4. Specifically, the stave 43 in the section other than the furnace bottom is kept connected to the cooling device of the blast furnace 1 as it is, and the cooling by the cooling device is maintained. On the other hand, the stave 43 at the bottom of the furnace will be refurbished so that a switching valve and a bypass path are sequentially added for each group so that the refrigerant can be circulated with another cooling device.
The gantry cooling device installation step S27 is a step of installing a dedicated cooling device on the transfer gantry 12. The cooling device on the transportation platform 12 circulates the refrigerant to the stave 43 inside when the bottom block 7 is carried out, and the cooling capacity may be significantly smaller than the cooling device of the blast furnace 1. .
FIG. 6 shows a specific example of the stave 43 and the cooling device 20 in the furnace bottom block 7 transported by the transport stand 12.
In FIG. 6, a large number of staves 43 are arranged inside the furnace bottom block 7, and a group is constituted by a series of staves 43 that are continuous in the vertical direction. The cooling device of the blast furnace 1 is connected to the lowermost refrigerant introduction portion 43B and the uppermost refrigerant extraction portion 43T of this group during normal operation, but when the furnace bottom block 7 is carried out, The cooling device 20 is switched.
The cooling device 20 includes a radiator 21, a refrigerant pipe 22 that connects the radiator 21 and the refrigerant introduction part 43 </ b> B, a refrigerant pipe 23 that connects the radiator 21 and the refrigerant take-out part 43 </ b> T, and a pump installed at any part of the refrigerant pipes 22 and 23. 24. By using such a cooling device 20, the furnace bottom block 7 is transported by the transport stand 12 and can maintain a cooling function during transport.
The furnace bottom block 7 is cooled from the cooling device 20 at the time of conveyance after the cooling system switching step S47 described later, and until that time, the cooling by the cooling device of the blast furnace 1 is maintained. .
Through the above steps, the preparatory step S2 before the blow stop S3 is performed.
Among these processes, the upper furnace body support process S21, the furnace body cooling pipe refurbishment process S26, and the gantry cooling device installation process S27 can be performed in a relatively short period of time. However, since the basic cutting step S22, the drawing device installation step S23, the transfer route installation step S24, and the transfer gantry installation step S25 are relatively large-scale construction, it is necessary to start at a time substantially before the blow stop S3. There is. In such a case, it is desirable that the above-described reduction operation S1 is performed in parallel with the preparation step S2, and is adjusted so that each completion time coincides with the scheduled start time of the blow-stop S3.
After the preparatory step S2 as described above, the blowing stop S3 is performed. And after blowing stop S3, separation process S4 is implemented without water injection cooling.
The separation step S4 includes a furnace body opening step S41 and a furnace body full circumference cutting step S44 performed in the furnace body 4, a contents surface leveling process S42 performed in the furnace bottom (furnace bottom block 7 portion), and the contents surface It includes a covering step S43, a combustible gas discharging step S45 and an inert gas filling step S46, and a cooling system switching step S47 related to the cooling system.
The furnace body opening step S41 is a step of securing a work opening in the furnace body 4 in advance in order to enable in-furnace work from outside the furnace in the contents surface leveling step S42.
In the contents surface leveling step S42, a part of heavy equipment is introduced from the opening for work previously formed in the furnace body opening step S41, and the surface of the red hot content remaining in the furnace bottom block 7 is removed by this heavy equipment. It is a leveling process.
The content surface coating step S43 is a step of coating the surface of the red hot content leveled in the content surface leveling step S42 previously with a coating material.
Specific operations in the steps S41, S42, and S43 are as follows.
In the furnace body opening step S41, a plurality of work openings 4C are formed in the furnace body 4 as shown in FIGS.
The work opening 4C is within the range of a resection area 4B (described in detail in the section of the furnace body full resection step S44) described later (between the upper end level L1 and the lower end level L2 shown in FIGS. 3 and 4). It is intermittently arranged in the circumferential direction of the body 4. In processing the working opening 4C, one or a plurality of sections of the stave 43A corresponding to the cut region 4B are set, and the iron skin 41 corresponding to the section is cut over the entire circumference, and the inner stave 43A is cut. And the refractory material 42A is removed.
In the content surface leveling step S42, as shown in FIG. 4, a heavy machine 61 such as a power shovel is disposed, and an excavator portion 62, which is a work machine portion thereof, is introduced into the furnace body 4 from the work opening 4C and reduced. The surface 44B of the contents 47 in the red hot state descended in the shaku operation S1 is leveled to obtain a surface 44C. A part of the red hot contents 47 may be carried out of the furnace, for example, when the surface 44B is high. Such leveling work is limited to the surface 44B in a range that can be reached from the work opening 4C, but by sequentially performing each work opening 4C, the entire surface in the furnace is substantially leveled to form the surface 44C. The The surface 44C is desirably lower than the upper end level L1 over the entire surface.
In the content surface coating step S43, a coating material is applied to the leveled surface 44C shown in FIG. 4 to form a coating of the coating material 44D as shown in FIG. As the coating material 44D, an inorganic material such as so-called castable, cement, or mortar that can be applied in liquid form and solidified to form a coating or coating material layer can be used. Since it is used in a high-temperature furnace, it is desirable that the heat resistance is high, and it is desirable that the gas blocking performance is also high.
In forming such a covering material 44D, a method of introducing a hose or the like from the above-described working opening 4C, pumping from the outside, and spraying on the surface 44C can be used.
By covering the surface of the red hot content 47 with such a coating material 44D, the red hot content 47 itself can be prevented from scattering and the gas generated from the red hot content 47 into the atmosphere can be avoided. The dissipation can be prevented, and the dissipation of heat generated from the hot red contents 47 can also be suppressed. Furthermore, the oxidation reaction of the charge 44 remaining in the furnace bottom block 7 can be suppressed by blocking the entry of outside air containing oxygen.
Furnace body whole circumference cutting process S44 is a process of dividing furnace bottom block 7 and upper furnace body 6 by cutting furnace body 4 over the whole circumference.
3 and 4, the furnace body full circumference cutting step S <b> 44 cuts the cut region 4 </ b> B (between the upper end level L <b> 1 and the lower end level L <b> 2) set over the entire circumference of the furnace body 4. When the work opening 4C is formed by the preceding furnace body opening step S41, the other portions are cut (cutting the iron skin 41, removing the stave 43A and the refractory material 42A).
The setting of the excision region 4B is performed as follows (see FIG. 3).
For the upper end level L1 of the cut region 4B, the lower end level L0 of the annular tube 51 is referred to, and the joint position of the stave 43 installed in the furnace body 4 is referred to, and the highest joint among the upper joints of the stave lower than the level L0. The level of the upper joint of the stave at a high position is selected as the upper end level L1. By such setting of the upper end level L1, a portion above the height overlapping with the annular tube 51 of the furnace body 4 can be left as the upper furnace body 6, and when being carried out as the furnace bottom block 7, Interference can be avoided.
For the lower end level L2 of the cut region 4B, an upper joint of another stave located at a position lower than the level L1 is selected. Usually, if the level of the upper joint of another stave at the highest position among the upper joints of another stave located at a position lower than the level L1 is selected as the lower end level L2, the excision region 4B is one sheet of the stave 43. It becomes the area of the height of minutes. For example, if the level of the upper joint of another stave at the second highest position is selected as the lower end level L2, the excision region 4B can be a region having a height corresponding to two of the stave 43. By setting the lower end level L2, a sufficient space is ensured between the lower end of the upper furnace body 6 and the upper end of the furnace bottom block 7 to be carried out (or the renewed furnace bottom block 7A to be carried in again). Thus, even when vertical displacement or the like occurs during unloading and loading, or when the cutting edge height of the furnace block 7 or the upper furnace body 6 varies vertically, mutual interference can be avoided. .
In the combustible gas discharge step S45, combustible gas generated inside the red hot content 47 remaining in the furnace bottom block 7 previously coated with the coating material 44D is guided to the outside and burned. It is a process to disperse.
In FIG. 6, the tuyere 45 from which the connecting pipe 52 is removed remains in the furnace bottom block 7. The tuyere 45 communicates with the red hot contents 47 covered with the covering material 44D inside the furnace bottom block 7. Therefore, combustible gas (coke combustion reaction (C + CO → CO 2 ) Produced by carbon dioxide further reacts with coke (C + CO 2 → 2CO), carbon monoxide generated in the direct reduction reaction of iron ore and coke, etc.) can be discharged from the tuyere 45.
Here, it is a safety problem to disperse the combustible gas as it is in the atmosphere. For this reason, a discharge pipe 45A having a pilot burner at the tip is connected to the tuyere portion 45 (including the internal cooling and external cooling portions) so that combustible gas is burned and diffused into the atmosphere.
The inert gas filling step S46 is a step of filling the inside of the red hot contents 47 previously covered with the coating material 44D with the inert gas.
As described above in the description of the combustible gas discharge step S45, the red-hot contents 47 of the furnace bottom block 7 covered with the coating material 44D are maintained at a high temperature, and the reduction reaction of the iron ore is continued. . However, it is desirable that the reaction is deactivated toward the dismantling of the furnace bottom block 7. Therefore, it is desirable to inject an inert gas into the red hot contents 47 covered with the covering material 44D to block oxygen.
In FIG. 6, the inert gas is injected from the outside using the tuyere 45 as in the combustible gas discharging step S45. As the inert gas, nitrogen gas is desirable because it is inexpensive. Carbon dioxide, argon, or other nonflammable gas may be used, or a gas used as a fire extinguisher may be used.
The inert gas filling step S46 may be performed following the above-described combustible gas discharge step S45. In this case, the inert gas injection tube is connected after removing the discharge pipe 45A used in the combustible gas discharge step S45. do it. The inert gas filling step S46 and the combustible gas discharging step S45 may be performed in parallel. For example, an inert gas is injected from the right tuyere 45 of FIG. It is desirable to form a flow that takes gas in and out, such as exhaust.
In the cooling system switching step S47, in order to carry out the furnace bottom block 7, the cooling system for the stave 43 installed in the furnace bottom block 7 is switched from the cooling device on the blast furnace 1 side to the cooling device 20 of the transportation platform 12. It is a process. By such switching of the cooling system, the refrigerant is circulated from the cooling device 20 of the carrier base 12 to the stave 43 of the furnace bottom block 7, and the furnace bottom block 7 is separated from the blast furnace 1 together with the carrier base 12. Thus, it can be carried out of the installation site 2.
Here, although the cooling device 20 is installed on the transportation platform 12, the transportation platform 12 is on the transportation path 11 adjacent to the foundation 3 (see FIG. 1 and the like), and until the unloading step S5 described later. The furnace bottom block 7 connecting the cooling system and the cooling device 20 are separated. For this reason, when switching to the cooling device 20, the piping between the furnace bottom block 7 (refrigerant piping 22 and 23 in FIG. 6) is flexible and can be adapted to a long distance. It is desirable to keep it.
Note that the order of performing the steps S41 to S47 in the separation step S4 has the following conditions.
The furnace body opening step S41, the content surface leveling step S42, and the content surface covering step S43 need to be performed in this order based on the work contents.
The combustible gas discharge step S45 and the inert gas filling step S46 may be performed simultaneously, and each is preferably performed after the content surface covering step S43 in relation to the outside air blocking.
The entire furnace body cutting step S44 can be performed at any stage as long as it is after the furnace body opening process S41.
The cooling system switching step S47 can also be performed at an arbitrary stage. However, in order to use the cooling device on the blast furnace 1 side as long as possible, it is preferable to carry out at the final stage of the separation step S4.
After the furnace bottom block 7 is separated by the separation process S4 as described above and switched to the cooling device 20, the unloading process S5 of the furnace bottom block 7 is performed.
In the unloading step S5, the old furnace bottom block unloading step S51 and the gantry cooling device operating step S52 are performed in parallel.
As shown in FIG. 5, the old furnace bottom block unloading step S <b> 51 is a step in which the furnace bottom block 7 is pulled out horizontally and transferred to the transfer platform 12, and the transfer platform 12 is moved to the work site 8. The furnace bottom block 7 to be transported is separated from the furnace body 4 (furnace body whole-section cutting process S44, basic cutting process S22) in the process up to the separation process S4 described above, and switching of the cooling system ( A cooling system switching step S47) has been performed, and the system can be moved from the blast furnace 1 of the installation site 2 at any time.
In FIG. 5, in the old furnace bottom block unloading step S51, the furnace bottom block 7 is pulled out horizontally and transferred from the blast furnace 1 to the upper surface (mounting surface) of the carrier 12; An operation of pulling the placed transfer platform 12 along the transfer path 11 and moving it to the work site 8 is performed. During the operation of carrying out the furnace bottom block 7, the furnace bottom block 7 is continuously cooled by the cooling device 20 of the transfer platform 12 (frame cooling device operation step S <b> 52), and the furnace body of the furnace bottom block 7 is Suppresses deformation caused by overheating.
The furnace bottom block 7 that has been moved to the work site 8 by the transportation platform 12 enters the dismantling work as it is (refer to the old furnace bottom block dismantling process S9, FIG. 2). In the process of the old furnace bottom block dismantling process S9, the gantry cooling device operating process S52 may be continued. In the old furnace bottom block dismantling step S9, when the internal heat becomes a problem in the dismantling operation, water injection cooling S91 may be performed. The water injection cooling S91 here is a limited range of the furnace bottom block 7 and heat generation from the red hot contents 47 has already been suppressed, so that compared to the conventional water injection cooling for the entire blast furnace 1 It can be small enough.
After the unloading step S5 as described above, a rebuilding step S6 using the renewal furnace bottom block 7A is performed. The renewal furnace bottom block 7A used in the reconstruction process S6 is manufactured in advance at another work site (see renewal furnace bottom block manufacturing process S8, FIG. 2).
The restructuring step S6 includes an update bottom block carrying-in / installing step S61 for carrying in the renewed bottom block 7A, and a bottom bottom block reconnecting step for reconnecting the carried bottom block 7A with the upper furnace body 6. S62 and a furnace body cooling pipe restoring step S63 for connecting a cooling device on the blast furnace 1 side to the furnace bottom block 7A.
In the renewal furnace bottom block carrying-in / installation step S61, the renewal bottom block 7A is carried and installed on the site where the bottom 7 of the bottom of the blast furnace 1 has been unloaded. For this reason, the upper surface of the ruins to be installed is previously flattened so that the bottom surface of the renewal furnace bottom block 7A can be stably received.
The renewal furnace bottom block 7 </ b> A can use the same configuration as the old furnace bottom block 7. The renewal furnace bottom block 7A can be larger or smaller than the old furnace bottom block 7, but since the upper furnace body 6 is shared, it is not suitable for significant changes.
The renewal furnace bottom block 7A is manufactured in advance in the renewal furnace bottom block manufacturing step S8. The work site for manufacturing is the same as or adjacent to the work site 8 described above that performs the old furnace bottom block dismantling process S9. Thereby, when sharing the conveying apparatus 10 for carrying in, all or one part of the conveyance path | route 11 can be shared. If the work site for manufacturing is completely different, it is necessary to install a separate transfer device.
In any case, the work in the renewal furnace bottom block carrying-in / installing step S61 is the reverse of the old furnace bottom block carrying-out process S51 described above.
The furnace bottom block reconnection step S62 is performed by the upper furnace body 6 supported above the renewal furnace bottom block 7A carried into the furnace bottom portion of the blast furnace 1 by the renewal furnace bottom block carrying-in / installation step S61. It is a process of connecting.
As described in the above-described separation step S4, when the upper furnace body 6 and the old furnace bottom block 7 are separated, the width of the cut region 4B corresponding to the stave 43A is given. Therefore, when the renewal furnace bottom block 7A and the upper furnace body 6 are connected, the iron shell 41, the stave 43, and the refractory material 42 are replenished to the mutually spaced portions (corresponding to the cut region 4B).
Through the furnace bottom block reconnection step S62, the renewed furnace bottom block 7A and the upper furnace body 6 are connected, and a series of furnace bodies 4 from the furnace top to the furnace bottom is restored.
The furnace body cooling pipe restoration step S63 is removed in the cooling system switching step S47 described above with respect to the renewal furnace bottom block 7A carried into the furnace bottom part of the blast furnace 1 in the renewal furnace bottom block carrying-in / installation step S61. This is a step of reconnecting the cooling device on the blast furnace 1 side. By this furnace body cooling pipe restoration step S63, the cooling function by the cooling device on the blast furnace 1 side is restored for the entire series of furnace bodies 4 including the furnace bottom block 7A and the upper furnace body 6.
Note that after the renewal furnace bottom block carrying-in process S61 is performed, the furnace bottom block reconnection process S62 and the furnace body cooling pipe restoration process S63 can be performed at any time, and each is performed in parallel. Alternatively, the furnace body cooling pipe restoration step S63 may be performed after the furnace bottom block reconnection step S62.
After the restructuring step S6 as described above, a trial operation step S7 is performed.
When various adjustments are made in the trial operation step S7 and the prescribed inspection is completed, the operation returns to the normal operation.
FIG. 7 shows another embodiment of the present invention.
In the present embodiment, the furnace bottom block 7 and the transfer platform 12 are the same as those in the above-described embodiment shown in FIGS.
In the present embodiment, the cooling device 30 by evaporative cooling is used as one that is installed on the carrier 12 and provides the cooling function of the furnace bottom block 7.
In FIG. 7, a replenishment pipe 31 is installed vertically on a part of the carrier 12, and the upper end thereof is opened to the atmosphere by an opening 32. The lower end of the replenishment pipe 31 is connected to the refrigerant introduction part 43 </ b> B on the lower end side of the series of stave 43 via the refrigerant pipe 33. The refrigerant extraction portion 43T on the upper end side of the series of stave 43 is opened to the atmosphere through an opening.
In such a cooling device 30, a part of the refrigerant (water) that has absorbed heat in the stave 43 evaporates at the refrigerant outlet 43T and is dissipated to the atmosphere to dissipate heat. The refrigerant decreases with evaporation, and this decrease is replenished from the replenishment pipe 31.
When such a cooling device 30 by evaporative cooling is used, the structure is very simple and the power of the pump or the like can be omitted.
 本発明は、高炉炉底部の解体方法および搬送装置に関し、高炉の更新時または解体時の炉底ブロックの搬出、特に上部炉体を再利用する際の炉底ブロックの搬出に利用できる。 The present invention relates to a blast furnace bottom disassembly method and a conveying device, and can be used to carry out a bottom block at the time of renewal or dismantling of a blast furnace, particularly for carrying out a bottom block when reusing an upper furnace body.
 1…高炉
 2…設置現場
 3…基礎
 4…炉体
 4A…支持部材
 4B…切除領域
 4C…作業用開口
 5…炉体櫓
 6…上部炉体
 7,7A…炉底ブロック
 8…作業現場
 10…搬送装置
 11…搬送経路
 12…搬送用架台
 13…下部摺動手段
 14…上部摺動手段
 20…冷却装置
 21…放熱器
 22,23…冷媒配管
 24…ポンプ
 30…冷却装置
 31…補給管
 33…冷媒配管
 41…鉄皮
 42,42A…耐火材
 43,43A…ステーブ
 43B…冷媒導入部
 43T…冷媒取出部
 44…装入物
 44A,44B,44C…表面
 44D…被覆材
 45…羽口
 45A…排出管
 46…溶銑
 47…赤熱状態の内容物
 51…環状管
 52…連結管
 53…支持部
 61…重機
 62…ショベル部分
 S1…減尺操業
 S2…準備工程
 S21…上部炉体支持工程
 S3…吹き止め
 S4…分離工程
 S41…炉体開口工程
 S42…内容物表面均し工程
 S43…内容物表面被覆工程
 S44…炉体全周切除工程
 S45…可燃ガス排出工程
 S46…不活性ガス充填工程
 S47…冷却系統切替工程
 S5…搬出工程
 S51…旧炉底ブロック搬出工程
 S52…架台冷却装置稼働工程
 S6…再構築工程
DESCRIPTION OF SYMBOLS 1 ... Blast furnace 2 ... Installation site 3 ... Foundation 4 ... Furnace body 4A ... Supporting member 4B ... Excision area 4C ... Work opening 5 ... Furnace body cage 6 ... Upper furnace body 7, 7A ... Furnace bottom block 8 ... Work site 10 ... Conveying device 11 ... Conveying path 12 ... Conveying platform 13 ... Lower sliding means 14 ... Upper sliding means 20 ... Cooling device 21 ... Radiator 22,23 ... Refrigerant pipe 24 ... Pump 30 ... Cooling device 31 ... Supply pipe 33 ... Refrigerant piping 41 ... Iron skin 42, 42A ... Refractory material 43, 43A ... Stave 43B ... Refrigerant introduction part 43T ... Refrigerant take-out part 44 ... Charge 44A, 44B, 44C ... Surface 44D ... Covering material 45 ... Tuyere 45A ... Discharge Pipe 46 ... Hot metal 47 ... Red-hot contents 51 ... Ring pipe 52 ... Connection pipe 53 ... Supporting part 61 ... Heavy machinery 62 ... Excavator part S1 ... Reduction operation S2 ... Preparatory process S21 ... Upper furnace body supporting process S3 ... Blowing Stop S4 ... Separation process S41 ... Furnace body opening process S42 ... Contents surface leveling process S43 ... Contents surface covering process S44 ... Furnace body whole circumference excision process S45 ... Combustible gas discharge process S46 ... Inert gas filling process S47 ... Cooling System switching step S5 ... Unloading step S51 ... Old furnace bottom block unloading step S52 ... Mounting frame cooling device operation step S6 ... Reconstruction step

Claims (13)

  1.  設置現場に設置された炉体から炉底ブロックを分離し、分離された前記炉底ブロックを設置現場から搬出する高炉炉底部の解体方法であって、
    前記炉体内へ注水冷却しない状態で前記炉底ブロックを前記炉体から分離する分離工程と、分離された前記炉底ブロックを冷却しつつ前記設置現場から搬出する搬出工程と、を含むことを特徴とする高炉炉底部の解体方法。
    A method for disassembling a blast furnace bottom part that separates a furnace bottom block from a furnace body installed at an installation site, and carries out the separated furnace bottom block from the installation site,
    A separation step of separating the furnace bottom block from the furnace body in a state in which water is not cooled to the furnace body, and a carrying-out step of carrying out the separation from the installation site while cooling the separated furnace bottom block. A method for dismantling the bottom of the blast furnace.
  2.  請求項1に記載した高炉炉底部の解体方法において、
    前記搬出工程では前記炉底ブロックを載置する搬送用架台を用いることを特徴とする高炉炉底部の解体方法。
    In the dismantling method of the blast furnace bottom part according to claim 1,
    A method for disassembling a blast furnace bottom portion using a carrier for placing the furnace bottom block in the unloading step.
  3.  請求項2に記載した高炉炉底部の解体方法において、
    前記搬出工程では前記搬送用架台に設置された冷却装置を用いて前記炉底ブロックの冷却を行うことを特徴とする高炉炉底部の解体方法。
    In the dismantling method of the blast furnace bottom part according to claim 2,
    In the unloading step, the furnace bottom block dismantling method is characterized in that the furnace bottom block is cooled using a cooling device installed on the carrier.
  4.  請求項3に記載した高炉炉底部の解体方法において、
    前記分離工程は、前記炉底ブロックの冷却用ステーブに接続される配管を、前記設置現場に設置された冷却装置から前記搬送用架台に設置された冷却装置に切替える冷却系統切替工程を有し、通常操業時には、前記設置現場に設置された冷却装置から前記ステーブへと冷媒を循環させ、前記搬出工程では、前記搬送用架台に設置された冷却装置から前記ステーブへと冷媒を循環させることを特徴とする高炉炉底部の解体方法。
    In the method of disassembling the blast furnace bottom part according to claim 3,
    The separation step includes a cooling system switching step of switching a pipe connected to a cooling stave of the furnace bottom block from a cooling device installed on the installation site to a cooling device installed on the transportation platform, During normal operation, the refrigerant is circulated from the cooling device installed at the installation site to the stave, and in the unloading step, the refrigerant is circulated from the cooling device installed on the transfer stand to the stave. A method for dismantling the bottom of the blast furnace.
  5.  請求項1~請求項4の何れかに記載した高炉炉底部の解体方法において、前記分離工程の前に、前記炉底ブロックから分離される上部炉体を操業時の位置のまま高炉櫓に支持する上部炉体支持工程を有することを特徴とする高炉炉底部の解体方法。 5. The method for disassembling a blast furnace bottom according to any one of claims 1 to 4, wherein the upper furnace body separated from the furnace bottom block is supported on a blast furnace pit in an operating state before the separation step. A method for disassembling a bottom portion of a blast furnace furnace, comprising an upper furnace body supporting step.
  6.  請求項5に記載した高炉炉底部の解体方法において、
    前記分離工程は、前記高炉の炉体にその全周にわたる切除領域を形成する切除工程を有し、前記切除領域は、その上縁高さが前記高炉の環状管の直下にあるステーブの上部目地の高さであり、その下縁高さが前記上縁高さとされたステーブの上部目地よりも低い位置にある別のステーブの上部目地高さであることを特徴とする高炉炉底部の解体方法。
    In the dismantling method of the blast furnace bottom part according to claim 5,
    The separation step includes a cutting step for forming a cutting region over the entire circumference of the furnace body of the blast furnace, and the cutting region has an upper joint of a stave whose upper edge is directly below the annular tube of the blast furnace. And disassembling the bottom of the blast furnace, characterized in that the lower edge height is the upper joint height of another stave located at a position lower than the upper joint of the stave having the upper edge height. .
  7.  請求項1~請求項6の何れかに記載した高炉炉底部の解体方法において、前記分離工程は、前記炉底ブロック内に残留する赤熱状態の内容物の表面を被覆材で被覆して前記内容物と外気とを遮断する被覆工程を有することを特徴とする高炉炉底部の解体方法。 The method for disassembling a blast furnace bottom according to any one of claims 1 to 6, wherein the separation step includes covering the surface of the red hot contents remaining in the furnace bottom block with a covering material. A method for disassembling a bottom portion of a blast furnace furnace, comprising a covering step for blocking an object from outside air.
  8.  請求項7に記載した高炉炉底部の解体方法において、
    前記分離工程は、前記被覆工程に先立って、前記炉底ブロックの炉体に開口を形成し、前記開口から重機の一部を導入し、前記重機により前記炉底ブロック内に残留する赤熱状態の内容物の表面を均す均し工程を有することを特徴とする高炉炉底部の解体方法。
    In the dismantling method of the blast furnace bottom part according to claim 7,
    Prior to the coating step, the separation step forms an opening in the furnace body of the furnace bottom block, introduces a part of heavy equipment from the opening, and the red hot state remaining in the furnace bottom block by the heavy equipment. A method for disassembling a bottom portion of a blast furnace, comprising a leveling step of leveling the surface of the contents.
  9.  請求項7または請求項8に記載した高炉炉底部の解体方法において、前記分離工程は、前記被覆材で被覆された前記炉底ブロック内に残留する赤熱状態の内容物から発生する可燃ガスを外部に誘導し、燃焼させてから大気に放散させる可燃ガス排出工程を有することを特徴とする高炉炉底部の解体方法。 9. The method for disassembling a blast furnace bottom according to claim 7 or claim 8, wherein the separation step generates a combustible gas generated from red-hot contents remaining in the furnace bottom block covered with the coating material. A method for disassembling the bottom of a blast furnace furnace, characterized by having a combustible gas discharge step that induces the gas to burn and then burns it to the atmosphere.
  10.  請求項7~請求項9の何れかに記載した高炉炉底部の解体方法において、前記被覆工程は、前記被覆材で被覆された前記赤熱状態の内容物内部に不活性ガスを充満させる不活性ガス充填工程を有することを特徴とする高炉炉底部の解体方法。 10. The method of disassembling a blast furnace bottom according to claim 7, wherein the covering step fills the red hot contents covered with the covering material with an inert gas. A method for disassembling a blast furnace bottom, comprising a filling step.
  11.  設置現場に設置された炉体から炉底ブロックを分離し、分離された前記炉底ブロックを設置現場から搬出する際に用いられる高炉炉底部の搬送装置であって、前記炉底ブロックを載置する載置面を有する搬送用架台と、前記搬送用架台に設置されて前記炉底ブロック内の冷却用ステーブに対して冷媒を循環させる冷却装置とを有することを特徴とする高炉炉底部の搬送装置。 A blast furnace bottom transport device used to separate a bottom block from a furnace body installed at an installation site, and to carry out the separated furnace bottom block from the installation site. A bottom of the blast furnace having a mounting surface, and a cooling device that is installed on the transport base and circulates a coolant to a cooling stave in the bottom block. apparatus.
  12.  請求項11に記載した高炉炉底部の搬送装置において、
    前記冷却装置は、前記冷却用ステーブに接続される冷媒配管と、前記冷媒配管に前記冷媒を循環させるポンプと、前記冷媒配管を循環する前記冷媒の放熱を行う放熱器とを有することを特徴とする高炉炉底部の搬送装置。
    In the blast furnace bottom transfer device according to claim 11,
    The cooling device includes a refrigerant pipe connected to the cooling stave, a pump that circulates the refrigerant in the refrigerant pipe, and a radiator that radiates heat of the refrigerant that circulates through the refrigerant pipe. A transfer device for the bottom of the blast furnace.
  13.  請求項11に記載した高炉炉底部の搬送装置において、前記冷却装置は、前記冷却用ステーブの上端側で大気開放された開口と、前記冷却用ステーブの下端側に接続される冷媒配管と、前記冷媒配管に下端側が接続されかつ上端側が大気開放された給水管とを有することを特徴とする高炉炉底部の搬送装置。 The blast furnace bottom transfer apparatus according to claim 11, wherein the cooling device includes an opening opened to the atmosphere on the upper end side of the cooling stave, a refrigerant pipe connected to the lower end side of the cooling stave, A conveying device for a bottom portion of a blast furnace furnace, having a water supply pipe having a lower end connected to a refrigerant pipe and an upper end opened to the atmosphere.
PCT/JP2009/065554 2008-09-03 2009-09-01 Blast furnace bottom dismantlement method and transport device WO2010027066A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BRPI0915183A BRPI0915183B1 (en) 2008-09-03 2009-09-01 disassembly method and blast furnace sill conveyor
CN200980122846.XA CN102224262B (en) 2008-09-03 2009-09-01 Blast furnace bottom dismantlement method and transport device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-226316 2008-09-03
JP2008226316A JP5216491B2 (en) 2008-09-03 2008-09-03 Method of dismantling blast furnace bottom and conveying device

Publications (1)

Publication Number Publication Date
WO2010027066A1 true WO2010027066A1 (en) 2010-03-11

Family

ID=41797229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065554 WO2010027066A1 (en) 2008-09-03 2009-09-01 Blast furnace bottom dismantlement method and transport device

Country Status (5)

Country Link
JP (1) JP5216491B2 (en)
KR (1) KR101212247B1 (en)
CN (1) CN102224262B (en)
BR (1) BRPI0915183B1 (en)
WO (1) WO2010027066A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101967888A (en) * 2010-10-20 2011-02-09 江苏江中集团有限公司 Multidirectional multi-fold blasting method for high-rise building with frame-shear structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103103303B (en) * 2011-11-15 2016-02-03 上海宝冶集团有限公司 The residual iron disassembling method of large blast furnace
JP6052907B2 (en) * 2014-12-12 2016-12-27 K2システム有限会社 Operation method of electric resistance furnace
CN109648143A (en) * 2019-01-25 2019-04-19 福州天石源超硬材料工具有限公司 A kind of diamond-wire saw cutting process of blast furnace residual iron
JP7471596B2 (en) 2020-08-06 2024-04-22 アスザック株式会社 How to lay concrete blocks for revetments

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005344154A (en) * 2004-06-02 2005-12-15 Jfe Steel Kk Method for dismantling furnace bottom part of blast furnace
JP2006137985A (en) * 2004-11-11 2006-06-01 Nippon Steel Corp Operation method while blast furnace is repaired

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183105A (en) * 2004-12-28 2006-07-13 Nippon Steel Corp Method for removing furnace body of blast furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005344154A (en) * 2004-06-02 2005-12-15 Jfe Steel Kk Method for dismantling furnace bottom part of blast furnace
JP2006137985A (en) * 2004-11-11 2006-06-01 Nippon Steel Corp Operation method while blast furnace is repaired

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101967888A (en) * 2010-10-20 2011-02-09 江苏江中集团有限公司 Multidirectional multi-fold blasting method for high-rise building with frame-shear structure

Also Published As

Publication number Publication date
KR101212247B1 (en) 2012-12-13
BRPI0915183B1 (en) 2020-02-04
KR20100135902A (en) 2010-12-27
JP5216491B2 (en) 2013-06-19
CN102224262B (en) 2013-06-26
BRPI0915183A2 (en) 2019-01-15
CN102224262A (en) 2011-10-19
JP2010059482A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
JP5216491B2 (en) Method of dismantling blast furnace bottom and conveying device
KR101349124B1 (en) Direct smelting plant
RU2274659C2 (en) Method of the furnace relining and the furnace for realization of the direct smelting
KR101253729B1 (en) Smelting apparatus
WO1986002436A1 (en) Furnace cooling system and method
JP4300249B2 (en) Method of dismantling the bottom of the blast furnace furnace
KR101174678B1 (en) Metallurgical Processing Installation
JPH05222420A (en) Method for intermediate reconstruction of blast furnace
JP2010215985A (en) Method for replacing furnace bottom block of blast furnace
BRPI0409281B1 (en) DIRECT REDUCTION INSTALLATION TO PRODUCE CAST METAL FROM METAL FEED MATERIAL
JP4802457B2 (en) Method of dismantling the bottom of the blast furnace furnace
JP2005314735A (en) Method for constructing blast furnace
WO2003095685A1 (en) Scrap charger
JP2000087123A (en) Method for repairing and constructing blast furnace body
JPH09287010A (en) Method for scraping out contents in blast furnace
JP3591431B2 (en) Dismantling method of blast furnace bottom
JP3084168B2 (en) Maintenance method for continuously charged high temperature reactor
JP3591432B2 (en) Dismantling method of blast furnace bottom
RU2171849C1 (en) Method of repairing blast furnace
JP5193535B2 (en) Method of dismantling the bottom of the blast furnace furnace
RU2055902C1 (en) Method for repairing blast furnace
JP3682267B2 (en) Residue reduction method during blast furnace renovation
JP4505355B2 (en) Blast furnace repair method
KR101105910B1 (en) Stopper apparatus
JPH08152125A (en) Ash hopper

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980122846.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811590

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 7371/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107025511

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0915183

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101216