JP2006137985A - Operation method while blast furnace is repaired - Google Patents

Operation method while blast furnace is repaired Download PDF

Info

Publication number
JP2006137985A
JP2006137985A JP2004327851A JP2004327851A JP2006137985A JP 2006137985 A JP2006137985 A JP 2006137985A JP 2004327851 A JP2004327851 A JP 2004327851A JP 2004327851 A JP2004327851 A JP 2004327851A JP 2006137985 A JP2006137985 A JP 2006137985A
Authority
JP
Japan
Prior art keywords
furnace
temperature
furnace bottom
solidified
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004327851A
Other languages
Japanese (ja)
Inventor
Takushi Kawamura
拓史 川村
Keiji Azuma
敬二 東
Mamoru Kita
守 北
Hiroki Takeshita
博喜 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004327851A priority Critical patent/JP2006137985A/en
Publication of JP2006137985A publication Critical patent/JP2006137985A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation method while a blast furnace is repaired, which keeps a tapping ratio at a high level so as not to reduce a production quantity, at the same time, reduces an amount of a solidified deposit such as solidified molten pig iron on a bottom part to reduce a demolition cost, and shortens a repairing period of time. <P>SOLUTION: This operation method comprises the steps of: keeping a monthly mean minimum tapping ratio to 2.1, a monthly mean lowest molten pig iron temperature to 1,520°C, a temperature in a blast furnace bottom to a similar range to the highest temperature in the past, for at least four months before blowing-down; thereby keeping the molten pig iron 2 on the bottom part 1i to a molten state with low viscosity until the blowing-down time to stably keep the thickness of a solidified deposit 3 on the furnace bottom part to 100 mm or thinner; and tapping the molten pig iron on the furnace bottom part from a tap hole 12 at the furnace bottom, which is provided in a furnace wall of a lower part than a normal tap hole 10, in blowing-down. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高炉を吹き卸して改修を行う際に、炉底部の付着物量を減少させる高炉改修時の操業方法に関するものである。   The present invention relates to an operation method at the time of blast furnace repair that reduces the amount of deposits on the bottom of the furnace when the blast furnace is blown over and repaired.

高炉においては、長期の操業に伴い内張耐火物や炉体冷却設備などが劣化・破損するため、定期的にこれらを補修、交換する改修が行われる。
この高炉改修に際して特に問題になるのは、吹き卸し操業後に炉内に残留した溶銑が炉底部で凝固し残銑塊として多量に残留することである。この残銑塊の除去作業は非常に困難を伴うため、改修工期が長期化し、改修費用の増大などの問題がある。
In blast furnaces, lining refractories and furnace cooling equipment are deteriorated and damaged with long-term operation, so repairs are periodically made and replaced.
A particular problem in this blast furnace refurbishment is that the hot metal remaining in the furnace after blow-off operation solidifies at the bottom of the furnace and remains in large quantities as a residue lump. Since the removal of the residual lump is very difficult, there is a problem that the repair period is prolonged and the repair cost is increased.

この対策として、例えば通常出銑口よりも下方に残銑抜用出銑口を設け、この残銑抜用出銑口から溶銑を炉外に排出する炉底出銑が行われることがある。
この方法で排出した溶銑は樋を介してトーピードカーに受けて搬送する方法が採用されているが、設備レイアウト上、残銑抜用出銑口の位置が、トーピードカーに受けられない位置にある場合には、トーピードカーを使用できないため、排出した溶銑をスラグピット等に放流して破砕処理してスクラップ化することも行われている。
しかし、吹き卸しまでの炉代末期操業期間においては、炉底耐火物保護の面から、通常操業時より出銑比を下げるのに起因して炉底部の温度が低下する。このため、炉底での溶銑の凝固付着量が成長し残銑厚の低減効果が十分ではないという問題もあることから、炉底出銑によらない残銑除去方法や残銑低減操業方法などの提案がある。
As a countermeasure against this, for example, there is a case in which a bottom extraction outlet is provided below the normal outlet and the bottom discharge is performed to discharge the hot metal out of the furnace from the residual extraction outlet.
The hot metal discharged by this method is received by a torpedo car via a slag and transported, but when the position of the outlet for removing residue is in a position where it cannot be received by the torpedo car on the equipment layout. Since a torpedo car cannot be used, the discharged hot metal is discharged into a slag pit or the like and crushed to scrape.
However, in the operation period at the end of the furnace cost until the blow-off, the temperature at the bottom of the furnace is lowered due to the lowering of the output ratio from the normal operation in terms of protecting the bottom refractory. For this reason, there is a problem that the amount of solidified adhesion of hot metal at the bottom of the furnace grows and the effect of reducing the thickness of the residue is not sufficient. There are suggestions.

例えば特許文献1には、炉底に滞留した未凝固状態のサラマンダー(残留溶銑)中に、出銑口より装入した抽出パイプの先端部を浸漬し、この抽出パイプの外端をエジェクター内蔵の輸送パイプに接続し、エジェクター効果を利用して炉底のサラマンダーを吸引して炉外に排出する高炉炉底のサラマンダー除去方法が開示されている。
しかしこの方法では、サラマンダーの比重が大きく、かなり大きい吸引力を確保できる大型のエジェクターを必要とする。また、抽出パイプは耐熱構造と抽出パイプから排出するまで凝固の進行を押さえる加熱構造も装備する必要があることから、抽出パイプ径をかなり大きくする必要があり、かなり大径の出銑口を設置する必要もある。
また、吸引したサラマンダーの排出処理のための設備レイアウト制約の問題や炉底付着物の推定誤差を考慮すると、上記のような大径の出銑口を溶融物最下面レベル近傍に設置することは困難である。
For example, in Patent Document 1, the tip of the extraction pipe charged from the outlet is immersed in an unsolidified salamander (residual molten iron) retained in the furnace bottom, and the outer end of the extraction pipe is provided with a built-in ejector. A blast furnace bottom salamander removal method is disclosed that connects to a transport pipe, sucks the bottom salamander using the ejector effect, and discharges it to the outside of the furnace.
However, this method requires a large ejector that can ensure a large suction force because the salamander has a large specific gravity. In addition, the extraction pipe needs to be equipped with a heat-resistant structure and a heating structure that suppresses the progress of solidification until it is discharged from the extraction pipe. There is also a need to do.
In addition, considering the problem of equipment layout restrictions for the discharge treatment of the suctioned salamander and the estimation error of furnace bottom deposits, it is not possible to install a large diameter outlet as described above near the bottom surface of the melt. Have difficulty.

特許文献2には、高炉を吹き止めて改修する際に、装入物の減尺操業を行い、羽口上部までストックレベルが低下した時点で追加用のコークスを装入し、続けて珪石、鉄鉱石等比重の重い高い荷重用充填物を装入することにより、珪石、鉄鉱石の溶融を防止しつつ、炉芯コークスを溶銑中に沈降させて溶銑を排出し、残銑塊量を低減させることが開示されている。
しかしこの方法では、高炉吹き卸し操業時に珪石や鉄鉱石を相当量追加装入しなければならず、また追加装入物を吹き卸し後に掻き出す必要があり作業負担が増加するという問題がある。
In Patent Document 2, when the blast furnace is blown off and renovated, the charge is reduced, and when the stock level drops to the top of the tuyere, additional coke is charged, followed by silica, By loading high load packing with high specific gravity, such as iron ore, the core coke is allowed to settle in the hot metal and the molten iron is discharged while preventing melting of the silica and iron ore, reducing the amount of residue Is disclosed.
However, this method has a problem in that a considerable amount of silica or iron ore must be additionally charged at the time of blast furnace blow-off operation, and the additional charge must be scraped out after blow-off, resulting in an increase in work load.

特許文献3には、炉底出銑を行わず、減尺操業を実施して高炉を吹き止めて改修する際に、高炉吹き止めの少なくとも1カ月前からコークス比350kg/t以下、低出銑比1.8以下の操業を継続して炉芯コークスを溶銑中に沈下させ、吹き止め時の残銑塊量を減少させることが開示されている。
しかし、炉芯コークスを溶銑中に沈下させるために、高炉吹き卸し前に低出銑比操業を実施すると、生産性が低下するのみならず、溶銑の凝固容積が大きくなりやすいという問題があり、場合によっては炉内で凝固残留した残銑を発破により解体して除去するなど困難な作業を強いられる。
Patent Document 3 discloses that when a refining operation is carried out and a blast furnace is blown off and repaired without reducing the bottom of the blast furnace, a coke ratio of 350 kg / t or less has been reduced since at least one month before the blast furnace is blown off. It is disclosed that the operation at a ratio of 1.8 or less is continued to sink the core coke into the molten iron to reduce the amount of residual lump at the time of blowing.
However, in order to sink the core coke into the hot metal, when the low iron ratio operation is performed before the blast furnace is blown off, there is a problem that not only the productivity is lowered, but the solidification volume of the hot metal is likely to increase. In some cases, it is forced to carry out difficult operations such as dismantling and removing the residue remaining solidified in the furnace.

このような問題を解消するために、改修に先立って、炉底部の残銑や凝固付着物を極力炉外に排出して炉底部を極力軽量化する要請も高まってきている。
特開昭63−243216号公報 特開2003−301208号公報 特開2001−355011号公報
In order to solve such a problem, prior to refurbishment, there is an increasing demand for reducing the bottom of the furnace as much as possible by discharging residues and solidified deposits outside the furnace as much as possible.
JP 63-243216 A JP 2003-301208 A JP 2001-355011 A

本発明は、高炉改修に際して、出銑比を高位に維持して生産量の低下を抑えながら、炉底部の凝固溶銑はもとより炉底に付着または凝固している付着物(銑鉄とスラグの混合物(以下「凝固付着物」という。)を低減して解体工事費用を削減し、かつ改修工期を短縮可能にする方法を提供するものである。   In the present invention, when the blast furnace is refurbished, while maintaining the output ratio at a high level and suppressing the decrease in the production amount, not only the solidified molten iron at the bottom of the furnace but also the adhering material that adheres to or solidifies at the bottom of the furnace (Hereinafter referred to as “solidified deposits”) to reduce the cost of dismantling work, and to provide a method that enables the repair period to be shortened.

本発明は、上記課題を有利に解決するために、以下の(1)〜(2)を要旨とする。
(1)少なくとも吹き卸し4ケ月前から、月平均最低出銑比2.1、月平均最低溶銑温度1520℃を維持する操業を実施し、吹き卸し時まで炉底部の溶銑を粘性の低い溶融状態に保持して、該炉底部の溶銑を、吹き卸し時に通常出銑口より下方の炉壁部に設けた炉底出銑口から炉底出銑することを特徴とする高炉改修時の操業方法。
(2)炉底冷却水を、連続通水/間欠通水/溜め置き蒸発冷却の3段階に調整して、炉底温度を過去最大温度と同等の範囲内に維持することを特徴とする請求項1に記載の高炉改修時の操業方法。
In order to solve the above-mentioned problems advantageously, the present invention has the following (1) to (2).
(1) At least 4 months ago, operation has been carried out to maintain a monthly average minimum hot metal ratio of 2.1 and a monthly average minimum hot metal temperature of 1520 ° C. And operating the molten steel at the bottom of the furnace from the furnace bottom outlet provided on the furnace wall below the normal outlet at the time of blowout. .
(2) The furnace bottom cooling water is adjusted to three stages of continuous water flow / intermittent water flow / reservoir evaporative cooling to maintain the furnace bottom temperature within a range equivalent to the past maximum temperature. Item 2. An operation method at the time of blast furnace repair described in Item 1.

本発明では、従来方法による場合に比較して、
(1)炉底の凝固付着物量を大幅に減少させ、解体工事費を削減できる。
(2)改修工期を短縮できる。
(3)溶銑の回収・製品化率を高めることもできる。
などの改善効果がある。
In the present invention, compared to the case of the conventional method,
(1) The amount of solidified deposits at the furnace bottom can be greatly reduced, and the cost of dismantling work can be reduced.
(2) The repair period can be shortened.
(3) The rate of hot metal recovery and commercialization can be increased.
There is an improvement effect.

本発明について、図に基づいて具体的に説明する。
高炉の改修は、一般には通常操業から減尺操業に移行後、炉内の溶銑を排出し、高炉への熱風の供給を停止し注水冷却する工程後に行なうものである。
本発明では、この高炉改修を行う場合に、少なくとも吹き卸し前4カ月から操業条件を制御して、出銑比を高位レベルに維持して生産量の低下を抑えながら、炉底部での凝固付着物の成長を抑制した後、残留した溶銑を吹き卸し時において炉底出銑して炉底部での凝固付着物量を低減可能にするものである。
The present invention will be specifically described with reference to the drawings.
Renovation of the blast furnace is generally performed after the process of shifting from normal operation to reduced scale operation, discharging the hot metal in the furnace, stopping the supply of hot air to the blast furnace, and cooling by pouring water.
In the present invention, when this blast furnace refurbishment is performed, the operating conditions are controlled from at least 4 months before the blow-off, and the output ratio is maintained at a high level to suppress the decrease in the production amount, and the solidification at the bottom of the furnace is suppressed. After suppressing the growth of the kimono, the molten iron remaining at the bottom of the furnace is discharged at the time of blowing out the remaining hot metal so that the amount of solidified deposits at the bottom of the furnace can be reduced.

より具体的には、少なくとも吹き卸し前4カ月から月平均出銑比を2.1(t/d/m3 )以上、月平均最低溶銑温度を1520℃以上に維持し、炉底温度を過去最大温度と同等領域(例えば400℃程度)に維持して、炉底部の凝固付着物厚を100mm以下に抑制する状態を安定保持し、吹き卸し時に、凝固付着物を除く残留溶銑を通常出銑口の下方に設けた炉底出銑口から炉底出銑するものであり、これにより、炉底部に凝固残留する凝固付着物量を従来の50〜60%程度まで低減可能にするものである。 More specifically, at least 4 months before the blowout, the monthly average iron ratio is maintained at 2.1 (t / d / m 3 ) or higher, the monthly average minimum hot metal temperature is maintained at 1520 ° C or higher, and the furnace bottom temperature has been kept in the past. Maintaining the same temperature range as the maximum temperature (for example, about 400 ° C), keeping the solidified deposit thickness at the bottom of the furnace to 100mm or less, and normally discharging residual hot metal excluding the solidified deposit when blowing up The bottom of the furnace is discharged from the bottom of the furnace provided at the bottom of the opening, thereby making it possible to reduce the amount of solidified deposits remaining on the bottom of the furnace to about 50 to 60% of the conventional amount.

ここで、月平均(休風、操業変動を考慮)最低出銑比2.1t/d/m3 、月平均最低溶銑温度1520℃を確保する操業を実施するのは、溶銑の生産性を維持するとともに、吹き卸し時までに炉底冷却などの影響で炉底内表面に凝固付着物が徐々に成長していくのを安定的に抑止するためで、この操業を少なくとも4カ月以上継続し、凝固付着物の成長を安定的に、かつ確実に凝固付着物厚を100mm以下に抑止して、
・凝固付着物の成長による炉底隆起で出銑量が低下するのを抑制する。
・解体工事費を削減して解体工期を短縮する。
・炉底出銑による溶銑の排出量を高め、炉底部での凝固付着物量を大幅に減少させる。などを実現可能にするものである。
Here, the operation to ensure the monthly average (considering off-wind and fluctuations in operation) minimum output ratio of 2.1 t / d / m 3 and monthly average minimum hot metal temperature of 1520 ° C is to maintain hot metal productivity. In addition, this operation is continued for at least 4 months in order to stably prevent the solidified deposits from gradually growing on the inner surface of the bottom of the furnace bottom due to the effect of cooling the bottom of the furnace. Suppress the growth of solidified deposits stably and reliably to less than 100 mm,
・ Suppresses the decrease in the amount of brewing due to the rise of the furnace bottom due to the growth of solidified deposits.
・ Reduce the cost of dismantling work and shorten the dismantling period.
-Increase the amount of hot metal discharged from the bottom of the furnace and greatly reduce the amount of solidified deposits at the bottom of the furnace. Etc. can be realized.

なお、炉底温度を高く維持することは付着物の層厚増加を抑止するために有効であるが、吹き卸しまで炉壁、炉底の損傷を許容範囲内でかつ安定した操業を確保することを前提としているため、実績で安全確認ができている過去最大温度と同等領域、例えば過去の最大温度が400℃とすれば、300〜400℃程度の範囲内で選択することが好ましい。 この温度領域は、炉底温度に応じて、炉底冷却水を連続通水/間欠通水/溜め置き蒸発冷却の中から選択して冷却能力を調整することによって、容易に実現することができる。   Keeping the furnace bottom temperature high is effective to suppress the increase in the layer thickness of the deposits, but ensure that the furnace wall and the furnace bottom are damaged within the allowable range and stable operation until blowout. Therefore, if the past maximum temperature is 400 ° C., for example, if the past maximum temperature is 400 ° C., it is preferable to select within a range of about 300 to 400 ° C. This temperature region can be easily realized by selecting the bottom cooling water from continuous water / intermittent water / reservoir evaporative cooling and adjusting the cooling capacity in accordance with the bottom temperature. .

本発明について、図に基づいてより具体的に説明する。
図1は、5000m3 級の高炉において、本発明を実施し、少なくとも吹き卸し前4カ月から月平均出銑比を2.1t/d/m3 、月平均最低溶銑温度を1520℃以上に維持し、炉底温度を過去最大温度と同等の領域、例えば360〜400℃の範囲に維持して、炉底部の凝固付着物厚を100mm以下に抑制する操業をしてから、減尺操業後、つまり、吹き卸し前の炉底部内1iの状態例を模式的に示したものである。
この状態では、概念的には、炉底から上方に向かって、凝固付着物3、残銑(溶銑)2、グラファイト主体銑層4、コークス・グラファイト・滓層5、コークス・滓層6、コークス層7の順に残留している。
The present invention will be described more specifically with reference to the drawings.
Fig. 1 shows the implementation of the present invention in a 5,000 m 3 class blast furnace, maintaining a monthly average hot metal ratio of 2.1 t / d / m 3 and a monthly average minimum hot metal temperature of 1520 ° C or higher from at least 4 months before blowing up. Then, after maintaining the furnace bottom temperature in a region equivalent to the past maximum temperature, for example, in the range of 360 to 400 ° C., and suppressing the solidified deposit thickness of the furnace bottom to 100 mm or less, That is, an example of the state of the inside 1i of the furnace bottom before blowing up is schematically shown.
In this state, conceptually, from the bottom of the furnace, solidified deposit 3, residue (molten metal) 2, graphite-based soot layer 4, coke / graphite / soot layer 5, coke / soot layer 6, coke It remains in the order of layer 7.

これら炉底部1iの残留物中の残銑総量は1700t程度(この内、残銑2が1500t程度)あり、この状態で吹き卸しをした場合、残銑2が炉底部で、そのまま凝固残留することになり、凝固付着物3とともに、その破砕・排出などの解体工事が困難を極め、改修工期が長くなり改修コストの増大に加え、高炉の生産性が大幅に低下することになる。 そこで、吹き卸し時まで凝固付着物3の成長を抑制し、残銑2を溶融状態に保持する操業を実施して、吹き卸し時に、通常出銑口10より3〜4m程度下方の側壁部11に設けた、内径が100mmφ程度の炉底出銑口12から、炉底出銑を実施し、残銑2を炉外に排出するものである。   The total amount of residue in the residue at the bottom 1i of the furnace is about 1700t (of which the residue 2 is about 1500t). When the residue is blown up in this state, the residue 2 is solidified and remains at the bottom of the furnace. Therefore, along with the solidified deposit 3, dismantling work such as crushing / discharging is extremely difficult, the repair period is prolonged, the repair cost is increased, and the productivity of the blast furnace is greatly reduced. Therefore, the side wall portion 11 that is about 3 to 4 m below the normal spout 10 is used to suppress the growth of the solidified adhering matter 3 until the time of blowout and to maintain the residue 2 in a molten state. The furnace bottom taping is performed from the furnace bottom tapping port 12 having an inner diameter of about 100 mmφ, and the residue 2 is discharged out of the furnace.

本発明者等の調査によれば、溶銑温度を1520℃以上に維持して炉底の凝固付着物量を低位に安定させるためには、月平均出銑量が11000t/dレベル(月平均出銑比2.1程度)の操業を、少なくとも4ケ月程度継続することが有効であることが判明した。 したがって本発明では、このような状態を安定確保するために、吹き卸し前4ケ月前から月平均出銑量が11000t/dレベル(月平均出銑比2.1程度)の操業を実施するものである。このような操業を実現のために、コークスの粒径や強度を増加させ、溶銑の通液性をよくすることも考慮する。   According to the inventors' investigation, in order to maintain the hot metal temperature at 1520 ° C. or more and stabilize the amount of solidified deposits at the furnace bottom at a low level, the monthly average output is 11000 t / d level (monthly average output) It has been found that it is effective to continue the operation at a ratio of about 2.1) for at least about 4 months. Therefore, in the present invention, in order to ensure such a state stably, an operation is performed in which the monthly average output is 11000 t / d level (about 2.1% per month average) from 4 months before the blowout. It is. In order to realize such operations, it is also considered to increase the particle size and strength of coke and improve the liquid permeability of hot metal.

減尺操業に移行する前の吹き卸し事前休風や、炉底出銑前の休風の際に、炉底温度が一時的に低下するため、残銑温度も低下して粘性が上昇して炉底表面の溶銑凝固層が成長しやすくなる懸念もあるので、この懸念を解消するために、この間、炉底冷却装置13による冷却を緩和して炉底温度を過去最大温度領域である例えば400℃程度に維持することが有効である。
このようにして、吹き卸し前操業を実施して炉底部の凝固付着物3の層厚を100mm以下に抑制することができ、吹き卸し時に炉底出銑口12を開孔して炉底出銑を実施することにより、凝固付着物3を除く残銑2を炉外に効率的に排出・回収し、吹き卸し後に炉底部に凝固残留する残銑量を殆どなくすことができる。
The temperature at the bottom of the furnace temporarily decreases when the wind blows off before the shift to scaled down operation or before the bottom of the furnace is discharged. There is also a concern that the molten iron solidified layer on the surface of the furnace bottom is likely to grow. In order to eliminate this concern, during this time, the cooling by the furnace bottom cooling device 13 is eased and the furnace bottom temperature is set to the past maximum temperature region, for example 400 It is effective to maintain the temperature at about ° C.
In this way, the pre-blow-out operation can be performed to suppress the layer thickness of the solidified deposit 3 at the bottom of the furnace to 100 mm or less. By carrying out dredging, the residue 2 excluding the solidified deposit 3 can be efficiently discharged and collected outside the furnace, and the amount of residue remaining solidified on the bottom of the furnace after being blown up can be almost eliminated.

図2は、この炉底出銑を実施するための炉底出銑口12と、樋16の設置およびトーピードカー17への残銑2の受銑構造(炉底出銑構造)例を模式的に示したものである。
炉底出銑口12は、残銑2の残留をより少なくするために、極力、縦レンガ11uの上面に近接する位置にあることが望ましいが、残銑2領域(炉底に設置した温度センサ14や炉底残銑高さセンサ15により検知)に応じて、樋16の設置およびトーピードカー17への残銑2の受銑可能な範囲の最適位置を選択設置(原則的には1か所設置であるが、複数箇所に設置することも考慮)するものである。
FIG. 2 schematically shows an example of a furnace bottom outlet 12 for carrying out the furnace bottom extraction, an installation structure of the furnace 16, and a receiving structure (furnace bottom extraction structure) of the residue 2 on the torpedo car 17. It is shown.
The furnace bottom outlet 12 is preferably located as close to the upper surface of the vertical brick 11u as possible in order to reduce the residue 2 residue, but the residue 2 region (temperature sensor installed at the furnace bottom) 14 and the bottom bottom residue height sensor 15), and the optimum position within the range where the residue 2 can be received on the torpedo car 17 is selected and installed (in principle, one location is installed). However, it is also considered to install in multiple places.

この炉底出銑口12を設置する場合には、まず吹き卸し事前休風時に鉄皮1aに孔をあけ、減尺操業終了時(吹き卸し時)に開孔する。
まず減尺操業終了前に、錐で側壁部11の途中まで掘削しておき、減尺操業終了時(吹き卸し時)に、貫通させることにより炉底出銑口12を開孔して炉底出銑を実施する。
なお、炉底出銑口12の設置位置は固定ではなく、残銑2領域の形成状況に応じて、残銑2を効率的に排出するために最適な位置を選択することができる。図4中13oは炉壁冷却装置である。
When the furnace bottom outlet 12 is installed, first, a hole is made in the iron skin 1a at the time of pre-breathing, and at the end of the scale-down operation (at the time of blow-off).
First, before the reduction operation is completed, a drill is drilled to the middle of the side wall portion 11 and, at the end of the reduction operation (at the time of blowout), the furnace bottom outlet 12 is opened to open the furnace bottom. Carry out tapping.
In addition, the installation position of the furnace bottom outlet 12 is not fixed, and an optimal position for efficiently discharging the residue 2 can be selected according to the formation status of the residue 2 region. In FIG. 4, 13o is a furnace wall cooling device.

炉底出銑口12から排出した残銑2を受け、トーピードカー17に移送する樋16は、ここでは仮設式であり、その設置は炉底出銑口12の設置の際に行うことができる。
ここでは、トーピードカー17は、2系列の軌道18に切替えて移動可能に配置しているため、樋16は切替えダンパー19を備え、炉底出銑口12からの残銑2を2系列の軌道18上のトーピードカー17に切替え移送でき、転炉や鋳銑機などに溶銑として搬送できるように配置される。
The trough 16 that receives the residue 2 discharged from the furnace bottom outlet 12 and transfers it to the torpedo car 17 is a temporary type here, and can be installed when the furnace bottom outlet 12 is installed.
Here, the torpedo car 17 is arranged so as to be movable by switching to the two series of tracks 18, so that the kite 16 is provided with a switching damper 19, and the residue 2 from the furnace bottom outlet 12 is arranged in two series of tracks 18. It can be switched and transferred to the upper torpedo car 17 and is arranged so as to be conveyed as hot metal to a converter or a casting machine.

この実施例は、5000m3 級の高炉において、吹き卸し前4カ月から月平均出銑比を2.1以上にして月平均最低溶銑温度を1520℃以上に維持し、炉底冷却装置13(および炉壁冷却装置13o)を制御して炉底温度を過去最大温度と同等領域である360〜400℃に維持して、炉底部の凝固付着物3厚を100mm以下に抑制する操業を実施し、減尺操業後の吹き卸し時に、通常出銑口10より3.5m下方に設けた炉底出銑口12を開孔して炉底出銑を実施した場合のものである。 In this example, in a 5,000 m 3 class blast furnace, the average monthly hot metal ratio is 2.1 or higher and the monthly average lowest hot metal temperature is maintained at 1520 ° C. or higher from 4 months before the blowout. The furnace wall cooling device 13o) is controlled to maintain the furnace bottom temperature at 360 to 400 ° C., which is equivalent to the past maximum temperature, and the operation of suppressing the solidified deposit 3 thickness of the furnace bottom to 100 mm or less, This is a case where the furnace bottom outlet 12 is opened by opening the furnace bottom outlet 12 provided 3.5 m below the normal outlet 10 at the time of blow-off after the reduced scale operation.

炉底出銑口12は、減尺操業(休風時)時に、温度センサ14や炉底残銑高さセンサ15により検知した残銑2領域に応じて位置を選択し、側壁部11の途中まで錐で掘削して設置(未開孔状態)しておいたもので、吹き卸し時に貫通・開孔した。
炉底出銑の実施後において、炉底部の凝固付着物3の平均厚は概ね100mmであった。そしてこの凝固付着物の上層は掻出可能なグラファイト主体銑層4、コークス・グラファイト・滓層5、コークス・滓層6、コークス層7であった。この凝固付着物3とその上層の残留物の量は、約9日の除去作業で除去できる量である。
The position of the furnace bottom outlet 12 is selected according to the residue 2 area detected by the temperature sensor 14 and the furnace bottom residue height sensor 15 during the scale-down operation (when the wind is off), and the middle of the side wall portion 11 is selected. It was drilled with a cone until it was installed (unopened state), and penetrated and opened at the time of blowout.
After the furnace bottom extraction, the average thickness of the solidified deposit 3 at the bottom of the furnace was approximately 100 mm. The upper layer of the solidified deposit was a graphite-based soot layer 4 that could be scraped, a coke / graphite / soot layer 5, a coke / soot layer 6, and a coke layer 7. The amount of the solidified deposit 3 and the residue in the upper layer is an amount that can be removed by the removing operation for about 9 days.

(比較例)
(1)本発明で規定する操業条件(月平均最低出銑比2.1、月平均最低溶銑温度1520℃を維持)を、2カ月継続して操業した場合の炉底内の凝固付着物3の平均厚みは300mm程度であり、この凝固付着物3とその上層の残留物の除去作業は12日を要すると想定される。
(2)月平均最低出銑比を本発明で規定する2.1以上以下である、1.8〜1.9、月平均最低溶銑温度1500℃で4カ月継続して操業した場合の炉底内の凝固付着物3の平均厚みは600mm程度と推定され、この凝固付着物3とその上層の残留物の除去作業は14日を要すると想定される。
(Comparative example)
(1) Solidified deposits 3 in the furnace bottom when the operation conditions specified in the present invention (maintaining the monthly average minimum heating ratio 2.1 and the monthly average minimum hot metal temperature 1520 ° C.) are continuously operated for 2 months The average thickness is about 300 mm, and it is assumed that the removal work of the solidified deposit 3 and the upper layer residue takes 12 days.
(2) Furnace bottom when operated continuously for 4 months at a monthly average minimum hot metal temperature of 1500 ° C., wherein the monthly average minimum output ratio is 2.1 or more and specified in the present invention. The average thickness of the solidified deposit 3 is estimated to be about 600 mm, and it is assumed that the removal work of the solidified deposit 3 and the upper layer residue takes 14 days.

本発明は、上記の実施例の内容に限定されるものではない。炉底部構造、炉底出銑口、樋、トーピードカーの配置、構造、炉底出銑操業などは、対象高炉の炉容積、出銑量、基本操業条件、操業スケジュール、装入原料、熱風、微粉炭(重油)の吹き込み条件などに応じて請求項の範囲を満足する範囲内で変更のあるものである。   The present invention is not limited to the contents of the above embodiments. Furnace bottom structure, furnace bottom outlet, dredger, torpedo car arrangement, structure, furnace bottom extraction operation, etc. are the furnace volume, output, basic operating conditions, operation schedule, charging raw material, hot air, fine powder of the target blast furnace There is a change within a range that satisfies the scope of the claims according to the blowing conditions of charcoal (heavy oil).

本発明を実施した高炉の炉底部における残銑・滓・コークスなどの残留状態例を示す側断面概念説明図。Side sectional conceptual explanatory drawing which shows the example of residual states, such as residue, soot, and coke, in the furnace bottom part of the blast furnace which implemented this invention. 本発明による炉底出銑のための炉底出銑口、樋、トーピードカー等の配置と構造例を示す側断面概念説明図。The side cross-section conceptual explanatory drawing which shows arrangement | positioning and structural examples, such as a furnace bottom tap outlet, a soot, and a torpedo car for the furnace bottom tap according to this invention.

符号の説明Explanation of symbols

1 :高炉 1a:鉄皮
1i:炉底部内 2 :残銑(層)
3 :凝固付着物 4 :グラファイト主体銑層
5 :コークス・グラファイト・滓層
6 :コークス・滓層 7 :コークス層
10 :通常出銑口 11 :側壁部
11u:縦レンガ 12 :炉底出銑口
13 :炉底冷却装置 13o:炉壁冷却装置
14 :温度センサ 15 :残銑高さセンサ
16 :樋 17 :トーピードカー
18 :軌道 19 :ダンパー
1: Blast furnace 1a: Iron skin 1i: Inside the furnace bottom 2: Residue (layer)
3: Solidified deposit 4: Graphite main layer 5: Coke / graphite / saddle layer 6: Coke / saddle layer 7: Coke layer 10: Normal outlet 11: Side wall 11u: Vertical brick 12: Furnace bottom outlet 13: Furnace bottom cooling device 13o: Furnace wall cooling device 14: Temperature sensor 15: Residual height sensor 16: 17 17: Torpedo car 18: Orbit 19: Damper

Claims (2)

少なくとも吹き卸し4ケ月前から、月平均最低出銑比2.1、月平均最低溶銑温度1520℃を維持する操業を実施し、吹き卸し時まで炉底部の溶銑を粘性の低い溶融状態に保持して、該炉底部の溶銑を、吹き卸し時に通常出銑口より下方の炉壁部に設けた炉底出銑口から炉底出銑することを特徴とする高炉改修時の操業方法。   At least 4 months ago, the operation that maintains the monthly average minimum iron ratio of 2.1 and the monthly average minimum hot metal temperature of 1520 ° C will be carried out, and the hot metal at the bottom of the furnace will be kept in a low-viscosity molten state until the time of blowout. Then, the operation method at the time of blast furnace refurbishment, characterized in that the molten iron at the bottom of the furnace is discharged from the bottom of the furnace bottom provided on the furnace wall part below the normal outlet at the time of blowout. 炉底冷却水を、連続通水/間欠通水/溜め置き蒸発冷却の3段階に調整して、炉底温度を過去最大温度と同等の範囲内に維持することを特徴とする請求項1に記載の高炉改修時の操業方法。
The furnace bottom cooling water is adjusted in three stages of continuous water flow / intermittent water flow / reservoir evaporative cooling to maintain the furnace bottom temperature within a range equivalent to the past maximum temperature. Operation method at the time of blast furnace refurbishment described.
JP2004327851A 2004-11-11 2004-11-11 Operation method while blast furnace is repaired Withdrawn JP2006137985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004327851A JP2006137985A (en) 2004-11-11 2004-11-11 Operation method while blast furnace is repaired

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004327851A JP2006137985A (en) 2004-11-11 2004-11-11 Operation method while blast furnace is repaired

Publications (1)

Publication Number Publication Date
JP2006137985A true JP2006137985A (en) 2006-06-01

Family

ID=36618992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004327851A Withdrawn JP2006137985A (en) 2004-11-11 2004-11-11 Operation method while blast furnace is repaired

Country Status (1)

Country Link
JP (1) JP2006137985A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010027066A1 (en) * 2008-09-03 2010-03-11 新日本製鐵株式会社 Blast furnace bottom dismantlement method and transport device
JP2019014952A (en) * 2017-07-10 2019-01-31 株式会社神戸製鋼所 Treatment method of molten iron tapped from blast furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010027066A1 (en) * 2008-09-03 2010-03-11 新日本製鐵株式会社 Blast furnace bottom dismantlement method and transport device
JP2010059482A (en) * 2008-09-03 2010-03-18 Nippon Steel Corp Method for dismantling furnace bottom part of blast furnace, and carrying device
KR101212247B1 (en) 2008-09-03 2012-12-13 신닛떼쯔 수미킨 엔지니어링 가부시끼가이샤 Blast furnace bottom dismantlement method and transport device
CN102224262B (en) * 2008-09-03 2013-06-26 新日铁住金株式会社 Blast furnace bottom dismantlement method and transport device
JP2019014952A (en) * 2017-07-10 2019-01-31 株式会社神戸製鋼所 Treatment method of molten iron tapped from blast furnace

Similar Documents

Publication Publication Date Title
JP5696814B2 (en) Raw material charging method for bell-less blast furnace
US6419724B1 (en) Method for reducing iron oxides and for melting iron and installations therefor
JP5166805B2 (en) Method for producing molten iron by arc heating
JP5166804B2 (en) Molten iron manufacturing method
EP3237131B1 (en) Method of sealing and repairing a refractory tap hole
JP5862519B2 (en) Blast furnace operation method
CN107636412B (en) Slag notch
JP2006137985A (en) Operation method while blast furnace is repaired
KR101242575B1 (en) The melting furnace which comprises a cooling equipment for slag discharging hole
JP2007270190A (en) Operation method of blast furnace after having lowered stock level and stopped blasting
JP3832451B2 (en) Blast furnace operation method
JP3682267B2 (en) Residue reduction method during blast furnace renovation
JP5723342B2 (en) Bullet collection method
JP3615673B2 (en) Blast furnace operation method
JPH059528A (en) Device and method for producing molten iron
JP2002146415A (en) Method for operating blast furnace
JP2001355011A (en) Operational method for reducing residual iron when blast furnace is repaired
JPH06346120A (en) Operation of blast furnace
JP2005200665A (en) Tapping method in starting operation of blast furnace after having lowered stock level and stopped blasting
JP2001348603A (en) Method for decreasing residual iron at repair of blast furnace
JP4979209B2 (en) How to adjust furnace profile
JP2008231511A (en) Method for protecting furnace bottom refractory in blast furnace
JP2001064706A (en) Operation of blast furnace
JP2000008106A (en) Blast furnace and its operation
JPH0931511A (en) Smelting reduction method of iron

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205