JP4979209B2 - How to adjust furnace profile - Google Patents

How to adjust furnace profile Download PDF

Info

Publication number
JP4979209B2
JP4979209B2 JP2005232465A JP2005232465A JP4979209B2 JP 4979209 B2 JP4979209 B2 JP 4979209B2 JP 2005232465 A JP2005232465 A JP 2005232465A JP 2005232465 A JP2005232465 A JP 2005232465A JP 4979209 B2 JP4979209 B2 JP 4979209B2
Authority
JP
Japan
Prior art keywords
furnace
furnace body
refractory
port
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005232465A
Other languages
Japanese (ja)
Other versions
JP2007046117A (en
Inventor
正信 中村
康一郎 瀬村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005232465A priority Critical patent/JP4979209B2/en
Publication of JP2007046117A publication Critical patent/JP2007046117A/en
Application granted granted Critical
Publication of JP4979209B2 publication Critical patent/JP4979209B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、例えば、転炉における炉体の内壁輪郭形状を耐火物によって調整するようにした炉体のプロフィール調整方法に関する。   The present invention relates to a furnace body profile adjusting method in which, for example, a contour shape of an inner wall of a furnace body in a converter is adjusted by a refractory.

従来より、特許文献1に示すように転炉の操業においては、炉体内に溶銑を装入し、炉体の炉口へ上吹き用のランスを挿入した後に、このランスから溶銑に向けて酸素ガスを吹き付けることによって吹錬を行っている。このとき、転炉の操業では、炉体の底部からガスを吹き込んで溶銑を攪拌しながら酸素ガスを吹き込むようにしている。
ランスから酸素ガスを吹き込む際、酸素ガスが溶銑の表面に衝突するため、溶銑の一部がスピッティング粒鉄となって炉口へと飛んでいき、このスピッティング粒鉄が炉口へ付着して地金(以降、炉口に付着した地金のことを付着地金という)となる。
Conventionally, as shown in Patent Document 1, in the operation of a converter, hot metal is charged into the furnace body, a lance for up-blowing is inserted into the furnace port of the furnace body, and then oxygen is directed from the lance toward the hot metal. Blowing is performed by blowing gas. At this time, in the operation of the converter, gas is blown from the bottom of the furnace body, and oxygen gas is blown while stirring the molten iron.
When oxygen gas is blown from the lance, the oxygen gas collides with the surface of the hot metal, so a part of the hot metal becomes spitting iron and flies to the furnace mouth, and the spitting iron particles adhere to the furnace mouth. The bullion (hereinafter, the bullion attached to the furnace port is called the attached bullion).

炉口周りに付着地金が付着して堆積すると炉口が小さくなってしまうことから、例えば、炉体内にスクラップを装入する際、スクラップを炉体内へ入れるスクラップシュートが炉口に詰まってしまってスクラップを炉体内へ入れられない問題が発生する。
また、溶銑(溶鋼)の温度[℃]の測定を行うサブランスを炉体内へ挿入する際、前記サブランスが付着地金に衝突してしまう危険性がある。また、チャージ数が多くなるにつれて炉体の底部(炉底部)の耐火物が溶損して減少する結果、次第に相対的に炉口近傍が重くなり、転炉が起きあがりにくくなる傾動トリップが発生する恐れがある。
For example, when charging scrap into the furnace body, the scrap chute that puts the scrap into the furnace body is clogged in the furnace mouth, because the adhering metal around the furnace mouth is deposited and deposited. This causes a problem that scrap cannot be put into the furnace.
Further, when a sub lance for measuring the temperature [° C.] of hot metal (molten steel) is inserted into the furnace body, there is a risk that the sub lance will collide with the adhered metal. Also, as the number of charges increases, the refractory at the bottom of the furnace body (furnace bottom) melts and decreases, and as a result, the vicinity of the furnace port gradually becomes heavier, and a tilting trip that makes it difficult for the converter to start up may occur. There is.

このように、炉口周りに付着地金が堆積すると様々な問題を引き起こすことから転炉の操業を行った際に、炉体には出来る限り、スピッティング粒鉄が炉口へ付着しないようにするのがよい。
特開2005−89839号公報
In this way, depositing ingots around the furnace mouth causes various problems, so when operating the converter, as much as possible to prevent spitting granulated iron from adhering to the furnace mouth. It is good to do.
JP 2005-89839 A

そこで、ランスチップの改善などを行うことで、スピッティング粒鉄が炉口へ付着しないようにする技術が考えられているが、十分な効果が得られていないのが実情である。
さて、スピッティング粒鉄が炉口へ付着しない他の方法として、転炉の操業の際に溶銑の湯面から炉口までの距離(炉内高さ)を確保し、酸素ガスを吹き込んだ際に、スピッティング粒鉄が炉口へ届かないようにすることが考えられる。
この方法では、前記炉内高さを高くし過ぎる、即ち、炉内に入れる溶銑の量を抑えると生産性が低くなる。また、炉内高さを低くし過ぎる、即ち、炉内に入れる溶銑の量を多くすると生産性は向上するがスピッティング粒鉄が炉口へ付着するという問題があり、炉内高さをどの程度にすればよいのか未解決である。
Therefore, a technique for preventing spitting granular iron from adhering to the furnace port by improving the lance tip has been considered, but the actual situation is that a sufficient effect has not been obtained.
As another method for preventing spitting granular iron from adhering to the furnace port, when the converter is operated, the distance from the hot metal surface to the furnace port (height in the furnace) is secured, and oxygen gas is blown in. In addition, it is conceivable to prevent spitting granular iron from reaching the furnace port.
In this method, if the height in the furnace is increased too much, that is, if the amount of hot metal put into the furnace is suppressed, the productivity is lowered. Moreover, if the furnace height is made too low, that is, if the amount of hot metal put into the furnace is increased, the productivity is improved, but there is a problem that spitting granular iron adheres to the furnace mouth. It is unresolved whether it should be made to the extent.

また、前記炉内高さは、チャージ数が増加するにつれて炉体内に積み上げた耐火物の溶損や剥離が進行して炉体の内径や深さが大きくなるために、チャージ数の増加に伴って変化(増加)する傾向があるので、当該炉体内高さを決めるには、炉体内高さの変化を考慮する必要がある。
そこで、本発明は、上記問題点に鑑み、付着地金となるスピッティング粒鉄が炉口へ付着し難くすることができるプロフィール調整方法を提供することを目的とする。
In addition, the furnace height increases as the number of charges increases because the refractory accumulated in the furnace body melts and peels and the inner diameter and depth of the furnace body increase as the number of charges increases. Therefore, in order to determine the height of the furnace body, it is necessary to consider the change in the height of the furnace body.
Then, an object of this invention is to provide the profile adjustment method which makes it difficult to adhere the spitting granular iron used as adhesion metal to a furnace port in view of the said problem.

前記目的を達成するために、本発明は、次の手段を講じた。即ち、本発明における課題解決のための技術的手段は、上底吹き機能を有する転炉の炉体に80〜250tonの主原料を装入した際に、式(1)〜式(3)を満たすべく、当該炉体の内壁輪郭形状を調整する点にある。 In order to achieve the above object, the present invention has taken the following measures. That is, the technical means for solving the problem in the present invention is that, when 80 to 250 tons of main raw material is charged into the furnace body of the converter having the top bottom blowing function, the equations (1) to (3) are expressed. In order to satisfy, the inner wall contour shape of the furnace body is adjusted.

Figure 0004979209
Figure 0004979209

このようにすることで、付着地金となるスピッティング粒鉄が炉口へ付着し難くなり、炉口付近における付着地金の堆積速度(成長速度)を低下させることができ、付着地金の除去作業を少なくすることができる。
前記炉体の内壁輪郭形状の調整は、炉体内に設けられた耐火物の厚みを変更することで行うことが好ましい。
式(1)〜式(3)の導出する考え方について図1〜3を用いて説明する。
By doing in this way, it becomes difficult for spitting granular iron used as adhesion metal to adhere to a furnace mouth, the deposition rate (growth rate) of adhesion metal near the furnace mouth can be reduced, and adhesion metal Removal work can be reduced.
The inner wall contour shape of the furnace body is preferably adjusted by changing the thickness of the refractory provided in the furnace body.
The way of deriving equations (1) to (3) will be described with reference to FIGS.

まず、使用する変数について説明する。図1に示すように、転炉の炉体における炉内高さHiを炉口から湯面までの距離とする。詳しくは、炉内高さHiは、炉体内に溶銑,冷銑,故銑,鉄屑などの主原料を装入した際の湯面から炉口までの距離である。炉体の直胴部内径Dを炉体の直胴部内に耐火物を設けたときの耐火物間の距離(内径)とする。また、炉体高さHを炉体の底部に設けた耐火物の上面から炉口までの距離とし、炉口内径Rを炉体の絞り部の端部内径、即ち、絞り部の最端部(炉口縁)に設けた耐火物間の(距離)内径とする。   First, the variables used will be described. As shown in FIG. 1, the furnace height Hi in the furnace body of the converter is defined as the distance from the furnace port to the molten metal surface. Specifically, the furnace height Hi is the distance from the molten metal surface to the furnace opening when the main raw materials such as hot metal, cold iron, waste, and iron scrap are charged into the furnace body. The straight body portion inner diameter D of the furnace body is defined as a distance (inner diameter) between the refractories when the refractory is provided in the straight body portion of the furnace body. Further, the furnace body height H is a distance from the upper surface of the refractory provided at the bottom of the furnace body to the furnace mouth, and the furnace mouth inner diameter R is the inner diameter of the end of the throttle part of the furnace body, that is, the endmost part of the throttle part ( The inner diameter (distance) between the refractories provided at the furnace port edge.

図2に示すように、炉内保持容積Viを、炉体を出鋼側へ90°傾けた際に炉体が保持可能な溶鋼容積(言い換えれば、溶銑容積)、即ち、炉体を出鋼側へ90°傾けた際に炉口からスラグ、さらには、溶鋼が出ないようにできる容積とする。炉内容積Voを炉体内の全容積とする。
以下、具体的な導出方法について説明する。
発明者は、過去の操業において炉口へ付着した付着地金を採取し、その断面積や組成分析などを行った結果、スピッティング粒鉄の粒径が1mm程度のものが付着地金となることが分かった。
As shown in FIG. 2, the in-furnace holding volume Vi is a molten steel volume (in other words, hot metal volume) that can be held by the furnace body when the furnace body is tilted by 90 ° toward the steel output side, that is, the furnace body is turned out. When tilted 90 ° to the side, the volume should be such that slag and molten steel are not emitted from the furnace port. The furnace volume Vo is the total volume in the furnace body.
Hereinafter, a specific derivation method will be described.
The inventor collected adhering metal adhering to the furnace port in the past operation, and as a result of performing cross-sectional area and composition analysis, the one having a particle diameter of spitting granular iron of about 1 mm becomes the adhering metal. I understood that.

そこで、発明者は前記粒径が1mm程度のスピッティング粒鉄が炉口に付着しない炉内高さHiと炉体の炉口内径Rとについて検討した。具体的には、図3に示すように、炉口内径Rを横軸にとり、炉内高さHiを縦軸にとり、粒径が1mmのスピッティング粒鉄が炉口に付着しない各炉内高さHiと炉口内径Rとを複数の実験や物理的な計算により算出し、図3にプロットした。
前記物理的な計算は、図7に示すように、酸素を炉体内に吹き込んだ状態でのスピッティング粒鉄の速度vと、酸素を吹き込んだ際に発生する上昇気流(COガス)の速度V(空塔速度)と、抗力と、重力とに着目し、これらを用いて、スピッティング粒鉄が炉口に付着しない運動方程式をたてて、これを解くこととしている。なお、スピッティング粒鉄を球状とした。
Therefore, the inventor examined the furnace height Hi and the furnace port inner diameter R of the furnace body at which the spitting granular iron having a particle size of about 1 mm does not adhere to the furnace port. Specifically, as shown in FIG. 3, the inner diameter R of the furnace port is taken on the horizontal axis, the height Hi in the furnace is taken on the vertical axis, and each of the furnace heights in which spitting granular iron having a particle diameter of 1 mm does not adhere to the furnace mouth. The height Hi and the furnace port inner diameter R were calculated by a plurality of experiments and physical calculations and plotted in FIG.
As shown in FIG. 7, the physical calculation is based on the speed v of spitting granular iron in a state where oxygen is blown into the furnace body, and the velocity V of the updraft (CO gas) generated when oxygen is blown. Focusing on (superficial velocity), drag, and gravity, we use these to establish an equation of motion in which spitting granular iron does not adhere to the furnace port and solve it. In addition, spitting grain iron was made spherical.

図3に示すように、例えば、ランスの送酸速度が700Nm3/分であるとき、粒径が1mmのスピッティング粒鉄が炉口に付着しない炉内高さHiと炉口内径Rとは、ラインK1(以降、未付着ラインK1とする)になった。この場合は、炉内高さHiと炉口内径Rとを未付着ラインK1上になるように決定することで、スピッティング粒鉄が付着し難い炉体を構成できることが分かった。
ここで、前記炉口内径Rは炉体直胴部内径Dで示すことも可能であって、炉内高さHiを炉体高さHで示すことも可能であるため、図3で炉口内径Rを炉体直胴部内径Dに置き換えると共に、炉内高さHiを炉体高さHに置き換えたとして、炉体高さHと炉体直胴部内径Dとの関係について考える。
As shown in FIG. 3, for example, when the lance feed rate is 700 Nm 3 / min, the furnace height Hi and the furnace port inner diameter R at which the spitting particle iron having a particle size of 1 mm does not adhere to the furnace port are , Line K1 (hereinafter referred to as non-attached line K1). In this case, it was found that by determining the furnace height Hi and the furnace port inner diameter R so as to be on the non-attachment line K1, it is possible to configure a furnace body in which spitting granular iron is difficult to adhere.
Here, the inner diameter R of the furnace port can be indicated by the inner diameter D of the straight body of the furnace body, and the furnace height Hi can also be indicated by the furnace body height H. Considering the relationship between the furnace body height H and the furnace body straight body inner diameter D, R is replaced with the furnace body straight body inner diameter D and the furnace height Hi is replaced with the furnace body height H.

ラインK1によって、炉体高さHと炉体直胴部内径Dとを決定すると様々な内容積の炉体を構成することができる。そこで、発明者は図3に炉内容積が一定の炉内容積一定ラインV1を描き、当該炉内容積一定ラインV1と前記未付着ラインk1との接点P1を求めた。
炉口内径R(炉体直胴部内径D)と炉内高さHi(炉体高さH)との関係が点P1になるとき、炉内容積が一定の炉体では最もスピッティング粒鉄が付着し難い炉体となることが分かる。
When the furnace body height H and the furnace body straight body inner diameter D are determined by the line K1, furnace bodies having various internal volumes can be configured. Therefore, the inventor drawn a constant furnace volume line V1 having a constant furnace volume in FIG. 3, and obtained a contact point P1 between the constant furnace volume line V1 and the non-attached line k1.
When the relationship between the furnace port inner diameter R (furnace body barrel inner diameter D) and the furnace height Hi (furnace body height H) is point P1, the most spitting granulated iron in the furnace body with a constant furnace volume. It turns out that it becomes a furnace body which is hard to adhere.

ここで、前記点P1付近を見てみるとその付近で前記未付着ラインK1と炉内容積一定ラインV1とは近接又は重なっており、未付着ラインK1と炉内容積一定ラインVとの近接点P2,P3においても前記点P1と同等の効果を得ることができる。
したがって、未付着ラインK1において点P2〜P3の範囲で、炉口内径Rと炉内高さHiとを決定することが好ましい。
上記と同じように、操業条件などを考慮して複数の未付着ラインと、複数の炉内容積一定ラインとの近接点を複数求め、これらの近接点に対する近似曲線を求めると、図3に示すように、曲線L1,L2になった。
Here, when the vicinity of the point P1 is seen, the non-adhered line K1 and the constant furnace volume line V1 are close or overlapped with each other, and the adjacent point between the non-adhered line K1 and the constant furnace volume line V In P2 and P3, the same effect as the point P1 can be obtained.
Therefore, it is preferable to determine the furnace port inner diameter R and the furnace height Hi within the range of points P2 to P3 in the non-attached line K1.
In the same manner as described above, a plurality of adjacent points between a plurality of non-adhered lines and a plurality of constant-in-furnace volume lines are obtained in consideration of operating conditions, and an approximate curve for these adjacent points is obtained, as shown in FIG. Thus, the curves L1 and L2 were obtained.

この曲線の近似式を求めると、曲線L1は2.2624ln(R)+6.2856となり、曲線L2は2.2624ln(R)+4.4642となった。
したがって、炉内高さHiと炉口内径Rとの関係が曲線L1及び曲線L2で囲まれる領域(最適な領域)にあるとき、即ち、前記式(1)を満たすようにすれば付着地金の堆積速度(成長速度)を低下させることができる。
さて、炉体の炉内容積は、実際に操業を行う溶銑の量、即ち、炉体に入れる主原料の合計量Wに応じて決定するのが好ましい。例えば、炉体に入れる主原料の合計量Wに対して炉体が小さすぎると付着地金が炉口に付着し易くなり、前記合計量に対して炉体が大きすぎると放熱ロスが大きくなる。そこで、炉体内に入れる溶銑の主原料の合計量Wに対して、付着地金の成長速度が遅く且つ、放熱ロスや小さな炉口内径Rと炉内高さHiとの関係について、様々な実験やシュミレーションや物理的な計算により調べた。これによれば、主原料の合計量Wに対して炉口内径R,炉内高さHiとがW/2.25R2≦Hi≦W/1.50R2を満たすようにすると、付着地金の成長速度が遅いと共に放熱ロスを小さくできることが分かった。
When an approximate expression of this curve is obtained, the curve L1 is 2.2624ln (R) +6.2856, and the curve L2 is 2.2624ln (R) +4.4642.
Accordingly, when the relationship between the furnace height Hi and the furnace port inner diameter R is in the region (optimal region) surrounded by the curves L1 and L2, that is, if the equation (1) is satisfied, the attached metal The deposition rate (growth rate) can be reduced.
The furnace volume of the furnace body is preferably determined in accordance with the amount of hot metal that is actually operated, that is, the total amount W of main raw materials to be put into the furnace body. For example, if the furnace body is too small with respect to the total amount W of the main raw materials to be put into the furnace body, the adherence metal tends to adhere to the furnace port, and if the furnace body is too large with respect to the total amount, the heat dissipation loss increases. . Therefore, various experiments were conducted on the relation between the growth rate of the adhering metal and the heat dissipation loss, the small inner diameter R of the furnace port, and the height Hi in the furnace with respect to the total amount W of the hot metal main material to be put into the furnace. And by simulation and physical calculation. According to this, when the inner diameter R of the furnace port and the height Hi in the furnace satisfy W / 2.25R 2 ≦ Hi ≦ W / 1.50R 2 with respect to the total amount W of the main raw material, the adhesion metal It was found that the heat dissipation loss can be reduced with the slow growth rate of.

さて、通常、炉体内の溶鋼(溶銑)を炉体から出鋼(出湯)するとき、炉体を出鋼側に傾けて炉体の出鋼口(出湯口)から出鋼する。溶鋼を出鋼する際、スラグが炉口から出ると、溶鋼を受ける溶鋼鍋内のスラグ量が多くなり溶鋼の品質低下を招く、さらに炉口から流出したスラグが溶鋼鍋に入らず溶鋼鍋を搬送する受鋼台車を焼損する恐れがあるため、スラグが炉口から出ないようにする必要がある。
溶鋼を出鋼する際、即ち、炉体を出鋼側に傾けたとき、スラグが炉口から出ないようにする炉内保持容積Viと炉体内に入れる溶鋼の主原料の合計量Wとについて様々な実験やシュミレーションや物理的な計算によりを実験により調べた。これらの関係がVi/(W×0.94/6.9)≧0.35にすると、出鋼の際に炉口からスラグが出ることはなく、スムーズに出鋼作業を行うことができた。なお、上記式での「0.94」は脱炭処理の際の歩留係数(%)を示したもので、上記式での「0.69」は溶銑(主原料)の比重を示したものである。
Now, normally, when the molten steel (hot metal) in the furnace body is discharged from the furnace body (tapping water), the furnace body is tilted toward the outgoing steel side and is discharged from the outlet port (outlet opening) of the furnace body. When slag comes out from the furnace opening when the molten steel is discharged, the amount of slag in the molten steel pan that receives the molten steel increases and the quality of the molten steel deteriorates.In addition, the slag that has flowed out of the furnace opening does not enter the molten steel ladle. It is necessary to prevent the slag from coming out of the furnace port because there is a risk of burning the steel receiving cart.
When the molten steel is discharged, that is, when the furnace body is tilted toward the steel outlet side, the furnace holding volume Vi that prevents the slag from exiting from the furnace port and the total amount W of the main raw material of the molten steel to be put into the furnace body Various experiments, simulations, and physical calculations were used for experiments. When these relationships are Vi / (W × 0.94 / 6.9) ≧ 0.35, slag did not come out from the furnace port during steel output, and the steel output work could be performed smoothly. . Note that “0.94” in the above formula represents the yield coefficient (%) in the decarburization process, and “0.69” in the above formula represents the specific gravity of the hot metal (main raw material). Is.

本発明によれば、付着地金となるスピッティング粒鉄が炉口へ付着しにくくなる。   According to this invention, it becomes difficult for spitting granular iron used as adhesion metal to adhere to a furnace mouth.

以下、本発明の実施の形態を、図面に基づき説明する。
本発明の炉体のプロフィール調整方法における転炉の炉体について説明する。図1に示すように本発明の転炉は、転炉の上側から酸素をつけ且つ、転炉の底部からガスを吹き込むことができる上底吹き転炉であり、転炉の炉体1内に溶銑(溶鋼)やスクラップ等が収容可能となっている。
前記炉体1は有底で筒状に形成された鉄皮2と、この鉄皮2の内部に設けられた複数の耐火物3(例えば、耐火レンガ)から構成されている。炉体1の底部4にはガスを吹き込むための底吹き羽口5が設けられ、この底吹き羽口5(炉体の底部4)に対向する側に炉口6が形成されている。炉口6に酸素などを吹くための上吹きランス7が挿入可能になっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The furnace body of the converter in the method for adjusting the profile of the furnace body of the present invention will be described. As shown in FIG. 1, the converter of the present invention is an upper-bottom blown converter in which oxygen can be supplied from the upper side of the converter and gas can be blown from the bottom of the converter. Hot metal (molten steel), scrap, etc. can be accommodated.
The furnace body 1 is composed of an iron skin 2 formed in a cylindrical shape with a bottom, and a plurality of refractories 3 (for example, refractory bricks) provided inside the iron shell 2. A bottom blowing tuyere 5 for blowing gas is provided at the bottom 4 of the furnace body 1, and a furnace mouth 6 is formed on the side facing the bottom blowing tuyere 5 (bottom 4 of the furnace body). An upper blowing lance 7 for blowing oxygen or the like into the furnace port 6 can be inserted.

鉄皮2は、底部10と、この底部10から炉口6側にいくにしたがって徐々に内径及び外径が大きくなる拡大部11と、この拡大部11から連続していて内径及び外径が略一定の直胴部12と、この直胴部12から炉口6側にいくにしたがって徐々に内径及び外径が小さくなる絞り部13とを備えたものとなっている。
前記耐火物3は、鉄皮2の底部10,拡大部11,直胴部12及び絞り部13に沿うように順番に鉄皮2内に貼り付けられ、貼り付けられた耐火物3の内面が鉄皮2の内面に略沿ったものとなっている。鉄皮2の直胴部12に溶銑8(溶鋼)を出湯(出鋼)するための出湯口9(出鋼口)が形成されている。
The iron skin 2 has a bottom portion 10, an enlarged portion 11 whose inner diameter and outer diameter gradually increase from the bottom portion 10 toward the furnace port 6, and a continuous inner diameter and outer diameter from the enlarged portion 11. It has a constant straight body 12 and a throttle part 13 whose inner and outer diameters gradually decrease from the straight body 12 toward the furnace port 6 side.
The refractory 3 is affixed in order in the iron shell 2 along the bottom part 10, the enlarged part 11, the straight body part 12, and the throttle part 13 of the iron skin 2, and the inner surface of the affixed refractory 3 is It is substantially along the inner surface of the iron skin 2. A hot water outlet 9 (outgoing steel outlet) is formed in the straight body portion 12 of the iron skin 2 for hot metal 8 (molten steel).

以上のことから、炉体1には、鉄皮2及び耐火物3によって、外径又は内径が徐々に大きくなる炉拡大部15が形成され、この炉拡大部15に連続して形成され外径又は内径が略一定となる炉直胴部16と、この炉直胴部16から炉口6にいくにしたがって外径又は内径が小さくなる炉絞り部17とがそれぞれ形成されている。
次に炉体のプロフィール調整方法について説明する。
本発明のプロフィール調整方法は、上底吹き機能を有する転炉の炉体1に主原料を装入した際に、式(1)〜式(3)を満たすべく、当該炉体1の内壁輪郭形状を調整するものである。
From the above, the furnace body 1 is formed with the furnace shell 15 and the refractory 3 so as to form the furnace expansion portion 15 whose outer diameter or inner diameter gradually increases, and is formed continuously from the furnace expansion portion 15. Alternatively, a furnace straight body portion 16 having a substantially constant inner diameter and a furnace throttle portion 17 having an outer diameter or an inner diameter that decreases from the furnace straight body portion 16 toward the furnace port 6 are formed.
Next, a method for adjusting the profile of the furnace body will be described.
In the profile adjusting method of the present invention, when the main raw material is charged into the furnace body 1 of the converter having an upper bottom blowing function, the inner wall contour of the furnace body 1 is satisfied so as to satisfy the expressions (1) to (3). The shape is adjusted.

Figure 0004979209
Figure 0004979209

式(1)〜式(3)において、炉内高さHiは主原料を炉体1内に装入した際の炉口6から湯面までの距離である。炉口内径Rは炉絞り部17(鉄皮2の絞り部13)の最端部に設けた耐火物3の内径、詳しくは、左側の最端部耐火物3aの内面から右側の最端部耐火物3bの内面までの距離である。前記炉内保持容積Viは、炉体1を出鋼側に90°傾けた際に炉体1が溶鋼を保持できる容積である。炉内容積Voは炉体内の全容積(耐火物3で取り囲まれた容積)である。主原料の合計量Wは、プロフィール調整を完了した後に行う、1チャージ当たりの予定量であり、プロフィール調整する際に次の精錬予定に基づいて定めたものである。   In the formulas (1) to (3), the furnace height Hi is the distance from the furnace port 6 to the molten metal surface when the main raw material is charged into the furnace body 1. The inner diameter R of the furnace port is the inner diameter of the refractory 3 provided at the outermost end of the furnace restricting portion 17 (the restricting portion 13 of the iron shell 2). It is the distance to the inner surface of the refractory 3b. The in-furnace holding volume Vi is a volume in which the furnace body 1 can hold molten steel when the furnace body 1 is tilted by 90 ° toward the steel output side. The furnace volume Vo is the total volume in the furnace (the volume surrounded by the refractory 3). The total amount W of the main raw material is a scheduled amount per charge performed after completing the profile adjustment, and is determined based on the next refining schedule when the profile is adjusted.

次に、プロフィール調整方法の具体例について説明する。
炉体1の内壁輪郭形状の調整は、炉体1内に設けられた耐火物3の厚みを変更することで行うことが好ましい。例えば、既存の炉体1に対してプロフィール調整を行う場合、炉体1の補修や炉修を行う際にプロフィール調整を行うと良い。炉体1の補修や炉修の際に、炉体1に主原料を装入したと仮定したとして、式(1)〜式(3)を満たすように、耐火物3の厚みT1を変更する。耐火物3の厚みT1を変更することで、炉体1の厚みTが変わる。なお、図1に示すように、耐火物3の厚みT1は鉄皮2の内面に対向する対向部から径内側までの距離とする。
Next, a specific example of the profile adjustment method will be described.
The inner wall contour shape of the furnace body 1 is preferably adjusted by changing the thickness of the refractory 3 provided in the furnace body 1. For example, when profile adjustment is performed on an existing furnace body 1, profile adjustment may be performed when the furnace body 1 is repaired or repaired. Assuming that the main raw material is charged into the furnace body 1 when repairing or repairing the furnace body 1, the thickness T1 of the refractory 3 is changed so as to satisfy the expressions (1) to (3). . By changing the thickness T1 of the refractory 3, the thickness T of the furnace body 1 changes. As shown in FIG. 1, the thickness T <b> 1 of the refractory 3 is a distance from the facing portion facing the inner surface of the iron skin 2 to the inside of the diameter.

前記炉体1の補修は、簡易的に炉体1の寿命を向上させるためにする修理であって、製鋼工場では約10チャージ毎に炉体1に貼り付けた耐火物3に、補修用の耐火物を吹き付けることによって行うものである。このような炉体1の補修の際、補修する炉体1に主原料を装入したと仮定したとして、式(1)〜式(3)を満たすように、炉直胴部16や炉絞り部17及び炉拡大部15に貼り付けた耐火物3に補修用の耐火物を吹き付けることによってそれぞれの耐火物3の厚みT1を変更することで内壁輪郭形状を調整する。
前記炉体1の炉修は、耐火物3の溶損がさらに進行し、耐火物自体の劣化することによって炉体1の機能が失われて寿命を迎えた炉体1を新しく再生するために行われるものである。製鋼工場では例えば、約5000チャージ毎又は150日前後毎に、炉体1の温度を常温まで低下させて転炉の操業を停止した状態で、炉体1内の耐火物3を張り替えることによって行う。このような炉体1の炉修の際、式(1)〜式(3)を満たすように、炉直胴部16や炉絞り部17及び炉拡大部15に新しい耐火物3を貼り付けることによって炉体1の各部分の厚みTを変更して内壁輪郭形状の調整を行う。
The repair of the furnace body 1 is a repair for simply improving the life of the furnace body 1, and in the steelmaking factory, the refractory 3 attached to the furnace body 1 is repaired for every 10 charges. This is done by spraying refractories. When repairing the furnace body 1, assuming that the main raw material is charged in the furnace body 1 to be repaired, the furnace body 16 and the furnace throttle are satisfied so as to satisfy the expressions (1) to (3). The inner wall contour shape is adjusted by changing the thickness T1 of each refractory 3 by spraying a refractory for repair to the refractory 3 attached to the part 17 and the furnace expansion part 15.
The furnace repair of the furnace body 1 is for the purpose of renewing the furnace body 1 that has reached the end of its life due to the loss of the function of the furnace body 1 due to further erosion of the refractory 3 and the deterioration of the refractory itself. Is to be done. In a steelmaking factory, for example, by replacing the refractory 3 in the furnace body 1 with the temperature of the furnace body 1 lowered to room temperature and stopping the operation of the converter about every 5000 charges or about every 150 days. Do. When the furnace body 1 is repaired, a new refractory 3 is attached to the furnace body 16, the furnace throttle part 17, and the furnace expansion part 15 so as to satisfy the expressions (1) to (3). Thus, the thickness T of each part of the furnace body 1 is changed to adjust the inner wall contour shape.

上記では、炉体1の補修や炉修に合わせて、プロフィール調整を行っているがこれに限定されない。例えば、精錬する量(炉体1内に入れる主原料の合計量W)が大幅に変化する予定がある場合、主原料の合計量Wが大幅に変化する前に、主原料の合計量Wを考慮して炉体1のプロフィール調整を行っても良い。
また、製鋼工場において炉体1を新しく製造する(炉体を新設する)場合にも適用可能である。この場合、新設する炉体1に主原料を装入したとして、式(1)〜(3)を満たすように、鉄皮2に貼り付ける耐火物3の厚みT1や枚数や貼り付ける向きなどを考慮して、内壁輪郭形状の調整を行う。
In the above, the profile adjustment is performed in accordance with the repair of the furnace body 1 or the furnace repair, but the present invention is not limited to this. For example, if the amount to be refined (the total amount W of main raw materials to be put into the furnace body 1) is scheduled to change significantly, the total amount W of the main raw materials is changed before the total amount W of main raw materials changes significantly. The profile adjustment of the furnace body 1 may be performed in consideration.
Moreover, it is applicable also when manufacturing the furnace body 1 newly in a steelmaking factory (installing a furnace body newly). In this case, assuming that the main raw material is charged into the newly established furnace body 1, the thickness T1 and the number of refractories 3 to be attached to the iron shell 2 and the direction of attachment are attached so as to satisfy the expressions (1) to (3). Considering this, the inner wall contour shape is adjusted.

前記式(2)は、様々な実験やシュミレーションや物理的な計算によりを実験により調べた。図4は実験結果をまとめたもので、図3に主原料の合計量Wに応じた装入量一定の曲線L3,L4を引いたものである。図4から分かるように、曲線L1〜L4で囲まれた境域が最も好ましい領域であり、主原料の合計量Wに応じて炉内高さHiと炉口内径Rとの関係をW/2.25R2≦Hi≦W/1.50R2にすることによって付着地金の成長速度が遅いと共に放熱ロスを小さくできることが分かった。
前記式(3)は、様々な実験などにより求めたもので、実験炉等で炉内保持容積Viと主原料の合計量Wとを変化させながら複数の脱炭処理を行った結果から求めた。
The above equation (2) was examined by various experiments, simulations, and physical calculations. FIG. 4 summarizes the experimental results. FIG. 3 is obtained by subtracting curves L3 and L4 having a constant charging amount according to the total amount W of the main raw material. As can be seen from FIG. 4, the boundary region surrounded by the curves L1 to L4 is the most preferable region, and the relationship between the furnace height Hi and the furnace port inner diameter R according to the total amount W of the main raw material is W / 2. It was found that by setting 25R 2 ≦ Hi ≦ W / 1.50R 2 , the growth rate of the adhered metal is slow and the heat dissipation loss can be reduced.
The expression (3) is obtained by various experiments and is obtained from the result of performing a plurality of decarburization processes while changing the in-furnace holding volume Vi and the total amount W of the main raw material in an experimental furnace or the like. .

図5は実験結果をまとめたもので、式(3)での「W×0.94/6.9」は出鋼する溶鋼の体積(以降、出鋼体積)を示している。図5から分かるように、炉内保持容積Viを出鋼体積で割った出鋼比率が0.35未満であると、出鋼の際にスラグSが炉口6から流出してその影響で出鋼時間が6分以上かかってしまい、出鋼比率が0.35以上であるとスラグSが炉口6から流出することもなく、出鋼時間は殆どのチャージで6分以内にすることができる。
なお、上記では、出鋼比率を0.35以上にする、即ち、Vi/(W×0.94/6.9)≧0.35にすると良いことを出鋼の観点(脱炭処理を行った後に溶鋼を出鋼するという観点)から説明したが、脱りん処理の際にも脱炭処理と同じように湯面上にスラグSが形成される。
FIG. 5 summarizes the experimental results, and “W × 0.94 / 6.9” in Equation (3) indicates the volume of the molten steel to be produced (hereinafter referred to as the output steel volume). As can be seen from FIG. 5, when the steel output ratio obtained by dividing the in-furnace holding volume Vi by the steel output volume is less than 0.35, the slag S flows out of the furnace port 6 during the steel output, and the effect is generated. The steel time takes 6 minutes or more, and when the steel output ratio is 0.35 or more, the slag S does not flow out of the furnace port 6 and the steel output time can be made within 6 minutes for most charges. .
In addition, in the above, it is preferable to set the steel output ratio to 0.35 or more, that is, Vi / (W × 0.94 / 6.9) ≧ 0.35. However, the slag S is formed on the molten metal surface in the same manner as the decarburization process in the dephosphorization process.

したがって、脱りん処理を行った後の出湯の際にもスラグSが炉口6からでないようにする必要があるので、Vi/(W×0.94/6.9)≧0.35の関係は脱炭処理の際に限定されず、脱りん処理を行って溶銑を出湯する際に出鋼比率(出湯比率)を0.35以上にするとよい。言い換えれば、Vi/(W×0.94/6.9)≧0.35にするということは、脱りん処理又は脱炭処理のどちらにでも適用することができる。
図6は、炉体の形状を変えて(プロフィール調整して)操業を行った結果をまとめたものである。図6の実施例1〜4は主原料の合計量Wを変化させながら式(1)〜式(3)のすべてを満たすように炉体1のプロフィールを調整して脱りん処理を伴いつつ脱炭処理を行ったもので、比較例1〜15は、少なくとも式(1)〜式(3)の一つを満たさないように炉体1のプロフィール調整して脱りん処理を伴いつつ脱炭処理を行った。
Therefore, since it is necessary to prevent the slag S from coming out of the furnace port 6 even in the hot water after the dephosphorization treatment, the relationship of Vi / (W × 0.94 / 6.9) ≧ 0.35 Is not limited to the decarburization treatment, and it is preferable to set the outgoing steel ratio (the outgoing hot water ratio) to 0.35 or more when performing the dephosphorization treatment and discharging the molten iron. In other words, Vi / (W × 0.94 / 6.9) ≧ 0.35 can be applied to either dephosphorization or decarburization.
FIG. 6 summarizes the results of operation with the shape of the furnace body changed (profile adjustment). In Examples 1 to 4 of FIG. 6, the profile of the furnace body 1 is adjusted so as to satisfy all of the expressions (1) to (3) while changing the total amount W of the main raw material, and the dephosphorization process is performed with dephosphorization. The charcoal treatment was performed. In Comparative Examples 1 to 15, the profile of the furnace body 1 was adjusted so that at least one of the formulas (1) to (3) was not satisfied, and the decarburization treatment was performed with the dephosphorization treatment. Went.

なお、実施例及び比較例において、転炉へ装入した溶銑の[P]濃度は、0.030〜0.040% と、P規格の上限である0.020%より高いものを使用し、脱りん処理が必要な条件で行った。また、酸素を吹き込むランスは、その孔数が6個、その孔径が42mm、送酸の吐出角度15°、酸素を送り出す送酸素速度は3.0Nm3/分・t、ランスの高さ2.8m(湯面からランスの先端までの高さ),底吹きガスの流量(速度)を0.06Nm3/分・tとして、各実験例及び比較例の操業条件を同じにした。
各実施例及び比較例では、溶鋼1ton当たりのダスト発生量(kg/t),地金取り間隔(ch/回),即ち、付着地金の除去を終了してから再度除去作業を開始するまでに操業できる総チャージ数、放熱ロス(Mcal/t),溶鋼1ton当たりの溶製によって耐火物3が溶損する量を示す耐火物原単位(kg/t)、出鋼時間(分/ch)等を調べた。
In the examples and comparative examples, the [P] concentration of the hot metal charged into the converter is 0.030 to 0.040%, which is higher than the upper limit of 0.020% of the P standard, The dephosphorization treatment was performed under the necessary conditions. Further, the lance for blowing oxygen has 6 holes, its hole diameter is 42 mm, the acid delivery angle is 15 °, the oxygen delivery speed for delivering oxygen is 3.0 Nm 3 / min · t, and the lance height is 2. The operating conditions of each experimental example and comparative example were the same, with 8 m (height from the hot water surface to the tip of the lance) and the flow rate (velocity) of the bottom blowing gas set to 0.06 Nm 3 / min · t.
In each of the examples and comparative examples, the amount of dust generated per ton of molten steel (kg / t), the interval of collecting the metal (ch / time), that is, from the completion of the removal of the adhering metal to the start of the removal operation again Total number of charges that can be operated, heat dissipation loss (Mcal / t), refractory basic unit (kg / t) indicating the amount of refractory 3 melted by melting per ton of molten steel, steel output time (min / ch), etc. I investigated.

図6に示すように、主原料の合計量Wが同じ場合での本発明の実施例と比較例とを比べると、式(1)〜(3)を満たす実施例では、操業上良い結果が得られた。
例えば、主原料の合計量Wが200t/chである実施例2と比較例3〜6を比べると、実施例2では地金取り間隔が20ch/回で比較例3,5,6に比べ大きく、実施例2ではダスト発生量でも14kg/tで比較例3,5,6に比べ少なくなっている。また、実施例2での放熱ロスが10Mcal/tで比較例4に比べ少なく、出鋼時間が6分以内となった。
したがって、主原料の合計量Wに応じて式(1)〜(3)を満たすように、炉体1の厚みを調整することによって主原料の合計量Wに適した操業を行うことができるようになった。
As shown in FIG. 6, when the example of the present invention and the comparative example in the case where the total amount W of the main raw material is the same, in the example satisfying the formulas (1) to (3), a good operational result is obtained. Obtained.
For example, comparing Example 2 in which the total amount W of the main raw material is 200 t / ch and Comparative Examples 3 to 6, in Example 2, the bullion collecting interval is 20 ch / time, which is larger than Comparative Examples 3, 5, and 6. In Example 2, the amount of dust generated is 14 kg / t, which is less than those in Comparative Examples 3, 5, and 6. Moreover, the heat dissipation loss in Example 2 was 10 Mcal / t, which was less than that in Comparative Example 4, and the steel output time was within 6 minutes.
Therefore, the operation suitable for the total amount W of the main raw material can be performed by adjusting the thickness of the furnace body 1 so as to satisfy the expressions (1) to (3) according to the total amount W of the main raw material. Became.

本発明の炉体のプロフィール調整方法は、上記実施の形態に限定されるものではない。即ち、上記の実施の形態では、主に耐火物3の厚みT1を変更することで、内壁輪郭形状を調整するとしているが、鉄皮2に貼り付ける耐火物3の枚数や貼り付ける向きを変えたり、鉄皮2等に貼り付ける耐火物3(耐火レンガ)の形状を変更することで内壁輪郭形状を調整してもよい。また、上記の実施の形態では、耐火物3に補修用の耐火物を吹き付けることで耐火物3の厚みT1を変更しているが、当然の如く、耐火物3を削ることで当該耐火物3の厚みT1を変更しても良い。   The furnace body profile adjustment method of the present invention is not limited to the above-described embodiment. In other words, in the above embodiment, the inner wall contour shape is adjusted mainly by changing the thickness T1 of the refractory 3. However, the number of refractories 3 to be affixed to the iron shell 2 and the affixing direction are changed. Alternatively, the inner wall contour shape may be adjusted by changing the shape of the refractory 3 (refractory brick) to be attached to the iron skin 2 or the like. In the above-described embodiment, the thickness T1 of the refractory 3 is changed by spraying a refractory for repair on the refractory 3. However, as a matter of course, the refractory 3 is scraped off. The thickness T1 may be changed.

また、本発明のプロフィール調整方法が適用される炉体は限定されない。即ち、脱りん処理を行う脱りん炉や脱炭処理を行う脱炭炉に適用できるし,操業を行う転炉の炉体であればすべてのものに適用可能である。   Moreover, the furnace body to which the profile adjusting method of the present invention is applied is not limited. That is, the present invention can be applied to a dephosphorization furnace for performing a dephosphorization process and a decarburization furnace for performing a decarburization process, and can be applied to all converter bodies that operate.

転炉の炉体の全体側面図である。It is a whole side view of the furnace body of a converter. 炉体を90°傾けたときの全体側面図である。It is a whole side view when a furnace body is inclined 90 degrees. 炉口内径と炉内高さとの関係を示す図である。It is a figure which shows the relationship between a furnace port internal diameter and furnace height. 炉口内径と炉内高さとの関係図に主原料の合計量が200t/chの場合の最適領域を示した図である。It is the figure which showed the optimal area | region in case the total amount of a main raw material is 200 t / ch in the related figure of a furnace port internal diameter and furnace height. 出鋼比率と出鋼時間との関係をプロットした図である。It is the figure which plotted the relationship between the steel output ratio and the steel output time. 実施例及び比較例をまとめたものである。Examples and comparative examples are summarized. 酸素を吹きつけた際のスピッティング粒鉄の飛翔状態でのモデル図である。It is a model figure in the flight state of spitting granular iron at the time of blowing oxygen.

符号の説明Explanation of symbols

1 炉体
2 鉄皮
3 耐火物(耐火レンガ)
1 Furnace 2 Iron skin 3 Refractory (Refractory brick)

Claims (2)

上底吹き機能を有する転炉の炉体に80〜250tonの主原料を装入した際に、式(1)〜式(3)を満たすべく、当該炉体の内壁輪郭形状を調整することを特徴とする炉体のプロフィール調整方法。
Figure 0004979209
When the main raw material of 80 to 250 tons is charged into the furnace body of the converter having the top bottom blowing function, the inner wall contour shape of the furnace body is adjusted so as to satisfy the expressions (1) to (3). A furnace body profile adjustment method.
Figure 0004979209
前記炉体の内壁輪郭形状の調整は、炉体内に設けられた耐火物の厚みを変更することで行うことを特徴とする請求項1に記載の炉体のプロフィール調整方法。   2. The furnace body profile adjustment method according to claim 1, wherein the inner wall contour shape of the furnace body is adjusted by changing a thickness of a refractory provided in the furnace body.
JP2005232465A 2005-08-10 2005-08-10 How to adjust furnace profile Expired - Fee Related JP4979209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005232465A JP4979209B2 (en) 2005-08-10 2005-08-10 How to adjust furnace profile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005232465A JP4979209B2 (en) 2005-08-10 2005-08-10 How to adjust furnace profile

Publications (2)

Publication Number Publication Date
JP2007046117A JP2007046117A (en) 2007-02-22
JP4979209B2 true JP4979209B2 (en) 2012-07-18

Family

ID=37849194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005232465A Expired - Fee Related JP4979209B2 (en) 2005-08-10 2005-08-10 How to adjust furnace profile

Country Status (1)

Country Link
JP (1) JP4979209B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184616A (en) * 1992-12-21 1994-07-05 Sumitomo Metal Ind Ltd Refining apparatus

Also Published As

Publication number Publication date
JP2007046117A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
MXPA01012291A (en) Method of producing metallic iron and raw material feed device.
CN113930574B (en) Slag splashing fettling method beneficial to furnace bottom maintenance
EP0881304B1 (en) Method of vacuum decarburization/refining of molten steel and apparatus therefor
JP4979209B2 (en) How to adjust furnace profile
JP4761937B2 (en) Blowing method for converter
JP2011179041A (en) Method for removing metal in converter
JP4689782B2 (en) Method for coating slag on converter furnace wall and method for managing converter furnace bottom during slag coating
JP4761938B2 (en) Blowing method for converter
JP2007046116A (en) Furnace body of converter
JP4422305B2 (en) Operation method of copper smelting furnace and blower lance used therefor
JP5929632B2 (en) Converter refining method
JP4979514B2 (en) Hot metal dephosphorization method
JP2017057468A (en) Top blown lance of converter and operation method of converter
JP2003193123A (en) Method for repairing converter lining refractory
JP2000273510A (en) Operation of blast furnace at repairing of inner wall of blast furnace
JP2002115007A (en) Structure for inner wall surface at lower part in blast furnace
JP2000096119A (en) Blow-refining method for restraining sticking of metal in converter type refining furnace
JP2000096122A (en) Operation method for restraining sticking of metal in refining furnace
JP2917848B2 (en) Converter blasting and furnace mouth metal melting lance
JP2018024911A (en) Method for melting bullion adhered in ladle in molten iron preliminary treatment
JPH11140525A (en) Converter blowing method restraining deposition of metal of furnace opening hole part and side wall in furnace and lance device for converter
JP2021028409A (en) Converter-type refining vessel
JPH0518669A (en) Terminal brick for hearth tap hole of electric furnace
JPH08246018A (en) Slag coating method for melting vessel or refining vessel
JPH09279217A (en) Slag coating method into molten metal vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4979209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees