JP2011179041A - Method for removing metal in converter - Google Patents

Method for removing metal in converter Download PDF

Info

Publication number
JP2011179041A
JP2011179041A JP2010042243A JP2010042243A JP2011179041A JP 2011179041 A JP2011179041 A JP 2011179041A JP 2010042243 A JP2010042243 A JP 2010042243A JP 2010042243 A JP2010042243 A JP 2010042243A JP 2011179041 A JP2011179041 A JP 2011179041A
Authority
JP
Japan
Prior art keywords
metal
blowing
melting
nozzle
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010042243A
Other languages
Japanese (ja)
Inventor
Masayuki Aizawa
正幸 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2010042243A priority Critical patent/JP2011179041A/en
Publication of JP2011179041A publication Critical patent/JP2011179041A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for restraining erosion of a refractory in a converter and also, efficiently removing the stuck metal in the converter, in preliminary dephosphorization for hot metal in which powdery refining agent consisting essentially of CaO such as lime, is blown into the hot metal together with oxygen by using the converter. <P>SOLUTION: The method for removing the stuck metal in the converter is characterized in that in the hot metal preliminary dephosphorization blowing, where after charging the hot metal into the converter-type refining furnace, a top-blowing lance having a nozzle for melting the metal installed on the sidewall is inserted into the refining furnace and the dephosphorization is performed by blowing the powdery refining agent together with the oxygen for blow-refining, from a nozzle for blow-refining installed at the tip-end of the top-blowing lance, the oxygen for melting the stuck metal is injected in the horizontal direction from the nozzle for melting the stuck metal installed on the sidewall during blowing period of the powdery refining agent, and from end of blowing of the powdery refining agent till end of blowing of the oxygen for blow-refining, purge-gas is continuously caused to flow from the nozzle for melting the stuck metal so that the nozzle for melting the stuck metal installed on the sidewall is not closed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、転炉において生石灰などCaOを主成分とする粉体精錬剤をランスから酸素とともに溶銑に吹き付けて溶銑予備脱燐処理を行う際に、その処理と同時に転炉内および炉口に堆積する地金を除去する方法に関する。   In the converter, when a powder refining agent mainly composed of CaO such as quick lime is sprayed from the lance to the hot metal together with oxygen in the converter to perform the hot metal preliminary dephosphorization process, it is deposited in the converter and at the furnace port at the same time. The present invention relates to a method for removing bullion.

転炉吹錬中に発生するスピッティングやスロッピングにより飛散した溶銑・溶鋼およびスラグの一部は、炉口や炉内側壁に地金として付着、堆積する。スピッティングは、特に生石灰などCaOを主成分とする粉体精錬剤を酸素と共に溶銑に吹き付けた場合に激しく発生する。スピッティングによって飛散した溶銑・溶鋼は、鉄歩留まりの低下を招くだけでなく、堆積した地金が大きくなると、溶銑やスクラップの装入の障害となり、また、転炉内の耐火物補修作業にも支障を来す。   Part of the hot metal / molten steel and slag scattered by spitting and slopping that occurs during converter blowing is deposited and deposited on the furnace port and the inner wall of the furnace as metal. Spitting occurs particularly when a powder refining agent mainly composed of CaO such as quick lime is sprayed on the molten iron together with oxygen. Hot metal and steel scattered by spitting not only lowers the iron yield, but also increases the amount of deposited metal, which may hinder the introduction of hot metal and scrap, and also repair refractories in the converter. Cause trouble.

転炉吹錬中の炉口に付着した地金の除去技術として、例えば特許文献1では、吹錬中に、吹錬用主ランスの側壁に設けた2次燃焼用酸素供給ノズルから湯面に向けて2次燃焼用酸素を吹き付け、転炉排ガスを炉内で燃焼させることで発生した熱で炉口に付着した地金を除去する方法が提案されている。しかし、この技術では、2次燃焼によって炉内が2000℃以上の高温になるため、転炉炉口金物および炉内耐火物の溶損が著しいという問題がある。   For example, in Patent Document 1, as a technique for removing metal attached to the furnace port during converter blowing, from the oxygen supply nozzle for secondary combustion provided on the side wall of the main lance for blowing, There has been proposed a method for removing metal adhering to the furnace port by heat generated by blowing oxygen for secondary combustion toward the furnace and burning converter exhaust gas in the furnace. However, this technique has a problem in that the furnace interior becomes a high temperature of 2000 ° C. or more due to the secondary combustion, so that the melting loss of the converter mouthpiece and the furnace refractory is remarkable.

また、特許文献2や特許文献3では、ランス下端から吹錬用酸素ガスを溶銑に吹き付けつつ、当該ランスの外周部から炉内側壁に向けて酸素ガスを噴射して炉内付着地金を除去する方法が提案されている。さらに、特許文献4では、ランス外周部から炉内側壁に向けて噴射する地金溶解用酸素を吹錬用酸素と独立して制御することで、吹錬前期と吹錬後期で地金溶解用酸素流量を制御し、炉内付着地金を効率的に除去する方法が提案されている。   Further, in Patent Document 2 and Patent Document 3, while blowing oxygen gas for blowing from the lower end of the lance to the hot metal, oxygen gas is injected from the outer periphery of the lance toward the inner wall of the furnace to remove the ingot in the furnace. A method has been proposed. Furthermore, in patent document 4, by controlling the metal melt | dissolution oxygen injected toward the furnace inner wall from the outer peripheral part of a lance independently from the oxygen for blowing, A method has been proposed in which the oxygen flow rate is controlled and the in-furnace metal in the furnace is efficiently removed.

特開平6−248323号公報JP-A-6-248323 特開平8−127812号公報JP-A-8-127812 特開平10−317045号公報Japanese Patent Laid-Open No. 10-317045 特開2000−96119号公報JP 2000-96119 A

粉体精錬剤を酸素と共に溶銑へ吹き付けて吹錬を実施した場合、酸素のみで吹錬を実施した場合と比較して炉内への地金付着が激しいため、粉体精錬剤の供給に合わせて地金溶解用酸素の供給方法を適切に定める必要がある。   When the powder refining agent is sprayed onto the hot metal together with oxygen, the metal is attached to the furnace more intensely than when only the oxygen is blown, so it matches the supply of the powder refining agent. Therefore, it is necessary to properly determine the supply method of oxygen for melting metal.

しかし、特許文献2〜4には、吹錬用酸素量と地金溶解用酸素量の比や吹錬期間による地金溶解用酸素量の規定は記載されているものの、生石灰などCaOを主成分とする粉体精錬剤を酸素と共に溶銑へ吹き付ける際の炉内付着地金を効率的に除去する方法に関する記載はない。   However, Patent Documents 2 to 4 describe the ratio of the amount of oxygen for blowing and the amount of dissolved oxygen for the bullion and the regulation of the amount of dissolved oxygen for the bullion depending on the blowing period. There is no description regarding a method for efficiently removing the ingot in the furnace when the powder refining agent is sprayed on the hot metal together with oxygen.

また、転炉の炉体形状は中腹部より炉口に向かうにつれてその内径が縮小する形状となっている。そのため、上吹きランス下端の吹錬用ノズルから鉛直方向に向かってランス側壁上部の高さの異なる複数箇所に地金溶解用ノズルを設置させた場合、当該地金溶解用ノズルから同量の酸素ガスを噴射すると、炉口に近づくほど耐火物の溶損が進行する。このような耐火物の溶損の不均一な進行を抑制するには、鉛直方向で上方の炉口方向に向かうにつれ地金溶解用酸素量を減少するように変化させる必要がある。しかし、特許文献1〜4にはこのような技術的事項の記載は見られない。   Further, the furnace body shape of the converter is such that the inner diameter thereof decreases from the middle part toward the furnace port. Therefore, when the bullion melting nozzles are installed at a plurality of locations at different heights in the upper portion of the lance side wall in the vertical direction from the blowing nozzle at the lower end of the upper lance, the same amount of oxygen is extracted from the bullion melting nozzle. When the gas is injected, the refractory melts away as it approaches the furnace port. In order to suppress such non-uniform progression of the refractory erosion, it is necessary to change the amount of oxygen for melting the metal as it decreases in the vertical direction toward the upper furnace port. However, Patent Documents 1 to 4 do not describe such technical matters.

本発明は、これらの問題に鑑みてなされたものであり、転炉を用いて生石灰などCaOを主成分とする粉体精錬剤を酸素と共に溶銑に吹き付ける溶銑予備脱燐吹錬(転炉吹錬)において、炉内耐火物の溶損を抑制すると共に、転炉内の付着地金を効率的に除去することを目的とする。   The present invention has been made in view of these problems, and hot metal preliminary dephosphorization blowing (converter blowing) in which a powder refining agent mainly composed of CaO such as quick lime is sprayed to hot metal together with oxygen using a converter. ), The melting loss of the refractory in the furnace is suppressed, and the purpose is to efficiently remove the adhered metal in the converter.

本発明者は、上記の課題を解決するために、炉内における地金の付着状況について定量的評価および解析を行い、さらに、耐火物の溶損を抑制しつつ付着地金を効果的に除去する方法について検討し、本発明を完成させた。   In order to solve the above-mentioned problems, the present inventor quantitatively evaluates and analyzes the adhesion state of the ingot in the furnace, and further effectively removes the adhering ingot while suppressing refractory melting. And the present invention was completed.

1.検討に用いた装置の構成
生石灰などCaOを主成分とする粉体精錬剤を酸素と共に溶銑に吹き付ける転炉吹錬において、上吹きランスの下端に設けられた吹錬用ノズルから粉体精錬剤と酸素を共に溶銑に吹き付けながら、当該上吹きランスの側壁上部の高さの異なる複数位置に設置された地金溶解用ノズルから、地金が付着した炉内壁面に向けて酸素ガスを噴射することによって、付着地金を溶解除去する。その際、地金付着の原因となる粉体精錬剤の供給に伴うスピッティングの発生との関係を考慮する。また、炉口付近は炉の内径が縮小しているため、上吹きランスの側壁の各高さに設置した地金溶解用ノズルの内径を、当該上吹きランスの吹錬用ノズルの鉛直方向上方に向けて、炉内壁面との距離に応じて異なるものとした上吹きランスを使用する。
1. Configuration of the equipment used for the examination In the converter blowing in which a powder refining agent mainly composed of CaO such as quick lime is sprayed on the molten iron together with oxygen, the powder refining agent and While oxygen is sprayed on the hot metal, oxygen gas is sprayed from the metal melting nozzles installed at different positions on the upper side wall of the upper blowing lance toward the inner wall of the furnace where the metal is attached. To dissolve and remove the adhered metal. At that time, the relationship with the occurrence of spitting associated with the supply of the powder refining agent causing the adhesion of the metal is considered. In addition, since the inner diameter of the furnace is reduced in the vicinity of the furnace mouth, the inner diameter of the metal melting nozzle installed at each height of the side wall of the upper blowing lance is set vertically above the blowing nozzle of the upper blowing lance. Toward this, use a top blow lance that varies according to the distance from the furnace inner wall.

2.炉内地金付着状況の定量的評価(ダスト発生量調査)
生石灰などCaOを主成分とする粉体精錬剤を酸素と共に吹き付ける転炉吹錬(脱燐吹錬)における炉内地金付着状況を定量的に評価するため、先ず吹錬中のダスト発生量を調査した。
2. Quantitative evaluation of adhesion status of ingots in furnace (Dust generation survey)
In order to quantitatively evaluate the adhesion state of ingots in a furnace (dephosphorization blowing) in which a powder refining agent containing CaO as the main component, such as quick lime, is sprayed together with oxygen, the amount of dust generated during blowing is first investigated. did.

2−1.調査方法
この調査において、転炉吹錬の対象溶銑量は80tとした。吹錬開始前および吹錬終了後の溶銑成分は表1に示す通りであった。吹錬終了後のスラグの塩基度は、塊状生石灰(粒径:10〜50mm、CaO:90質量%、残部:CO2および不純物)と粉状生石灰(粒径:150μm以下、CaO:90質量%、残部:CO2および不純物)を併用して、スラグ分析による質量濃度比で、CaO/SiO2が2.2〜2.8の範囲になるように調整した。粉体精錬剤(粉状生石灰)は、供給する場合としない場合の両方について調査を行った。
2-1. Investigation Method In this investigation, the amount of hot metal subject to converter blowing was 80 t. The hot metal components before the start of blowing and after the end of blowing were as shown in Table 1. The basicity of the slag after the end of blowing is as follows: bulk quicklime (particle size: 10-50 mm, CaO: 90% by mass, balance: CO 2 and impurities) and powdered quicklime (particle size: 150 μm or less, CaO: 90% by mass) , The balance: CO 2 and impurities), and the mass concentration ratio by slag analysis was adjusted so that CaO / SiO 2 was in the range of 2.2 to 2.8. The powder refining agent (powder quicklime) was investigated both when it was supplied and when it was not supplied.

Figure 2011179041
Figure 2011179041

上吹きランスには、先端に吹錬用ノズルとして、直径が36mm、傾斜角が6°のラバールノズルを4個形成したものを使用した。吹錬用酸素流量は、粉体精錬剤の供給の有無に関わらず8000Nm3/hrで一定とした。吹錬時間は10分とした。 The top blowing lance used was a nozzle formed with four Laval nozzles having a diameter of 36 mm and an inclination angle of 6 ° as a nozzle for blowing. The oxygen flow rate for blowing was constant at 8000 Nm 3 / hr regardless of whether or not the powder refining agent was supplied. The blowing time was 10 minutes.

粉体精錬剤の供給条件は、前記粉状生石灰供給速度を300kg/分、粉状生石灰吹き込み時期を吹錬開始2.0分後から5.0分間とした。   The supply conditions of the powder refining agent were such that the powdered quicklime supply rate was 300 kg / min, and the powdered quicklime blowing time was 5.0 minutes after 2.0 minutes from the start of blowing.

ダスト発生量の評価は、吹錬中の集塵水を吹錬開始から1分間隔で回収し、測定した集塵水中のダスト(T.Fe)含有率を指標として行った。   The dust generation amount was evaluated by collecting dust collected during blowing at intervals of 1 minute from the start of blowing and measuring the dust (T.Fe) content in the collected dust as an index.

2−2.調査結果
(1)粉体精錬剤を供給しなかった場合(酸素のみを供給して転炉吹錬を実施した場合)
図1は、上吹きランスから酸素のみを供給して転炉吹錬を実施した場合の、吹錬経過時間と集塵水中のT.Fe含有率との関係を示す図である。
2-2. Survey results (1) When powder refining agent is not supplied (when converter is blown by supplying only oxygen)
FIG. 1 shows the elapsed time of blowing and the T.V. in the collected water when only the oxygen is supplied from the top blowing lance and the converter is blown. It is a figure which shows the relationship with Fe content rate.

先ず、酸素のみで転炉吹錬を実施した場合、図1に示すように、ダスト発生量は吹錬が進行するにしたがって減少する傾向が認められた。この結果は、酸素のみで吹錬を実施した場合は、精錬剤の滓化の進行と共に吹錬中のスピッティングが抑制されるため、吹錬前半における炉内付着地金の形成、成長速度が速いという、従来のスピッティングに関する知見と対応していると考えられる。   First, when the converter was blown only with oxygen, as shown in FIG. 1, the dust generation amount tended to decrease as the blowing progressed. This result shows that when blowing only with oxygen, spitting during blowing is suppressed as the refining agent hatches, so the formation and growth rate of ingots in the furnace during the first half of blowing is reduced. It is thought that it corresponds to the knowledge about conventional spitting that it is fast.

(2)粉体精錬剤を供給した場合
図2は、上吹きランスから生石灰などCaOを主成分とする粉体精錬剤を酸素と共に溶銑に吹き付けて転炉吹錬を実施した場合の、吹錬経過時間と集塵水中のT.Fe含有率との関係を示す図である。
(2) When a powder refining agent is supplied FIG. 2 shows a case where a powder refining agent mainly composed of CaO, such as quick lime, is sprayed onto hot metal together with oxygen from the top blowing lance to perform converter blowing. Elapsed time and T. It is a figure which shows the relationship with Fe content rate.

一方、粉体精錬剤を酸素と共に溶銑に吹き付ける吹錬を実施した場合、図2に示すように、粉体精錬剤の供給中は吹錬の進行状況に関わらずダスト発生量が多いことが認められた。このことは、上記の酸素のみで転炉吹錬を実施した場合との対応関係から類推して、粉体精錬剤を酸素と共に溶銑に吹き付ける吹錬の場合は、吹錬の進行状況に関わらず、粉体精錬剤の供給中にはスピッティングが多く発生していたことを示していると考えられる。スピッティングによる溶銑などの飛散が多いと炉内付着地金の形成、成長が激しくなるため、粉体精錬剤の供給中は地金溶解用酸素を供給(噴射)し続ける必要があるということになる。   On the other hand, when the powder refining agent is sprayed onto the hot metal together with oxygen, as shown in Fig. 2, it is recognized that the amount of dust generated is large during the supply of the powder refining agent regardless of the progress of the blowing. It was. This is inferred from the correspondence with the case where the converter blowing is performed only with oxygen, and in the case of the blowing where the powder refining agent is sprayed on the hot metal together with oxygen, regardless of the progress of the blowing. It is considered that a lot of spitting occurred during the supply of the powder refining agent. If there is a lot of spattering of hot metal, etc. due to spitting, formation and growth of ingots in the furnace will become intense, so it is necessary to continue supplying (injecting) oxygen for melting metal during the supply of powder refining agents. Become.

しかし、図2に示すように、粉体精錬剤の供給終了後はダスト発生量が低下していた。これは、粉体精錬剤は、溶銑への吹き付け後速やかに滓化が進行するためである。そのため、粉体精錬剤の供給終了後は、地金溶解用酸素を噴射する必要はない。粉体精錬剤の供給終了後も地金溶解用酸素を噴射し続けた場合、炉壁耐火物の溶損を進行させる恐れがあると考えられる。   However, as shown in FIG. 2, the amount of dust generated decreased after the supply of the powder refining agent was completed. This is because the powder refining agent rapidly hatches after spraying on the hot metal. Therefore, it is not necessary to inject oxygen for melting the metal after the supply of the powder refining agent is completed. If the metal melting oxygen continues to be injected even after the supply of the powder refining agent, it is considered that the melting of the furnace wall refractory may progress.

2−3.考察
以上の結果から、生石灰などCaOを主成分とする粉体精錬剤を酸素と共に吹き付ける溶銑予備脱燐吹錬において、炉壁耐火物の溶損を抑制しつつ効果的に炉内付着地金を除去する方法として、粉体精錬剤の供給中には上吹きランスの側壁上部に設置した地金溶解用ノズルから地金溶解用酸素を適正量噴射させるとともに、粉体精錬剤の供給終了から吹錬終了までは、当該地金溶解用ノズルが閉塞しないように窒素や空気等のパージガスを流し続ける、または炉壁耐火物が溶損しない程度まで酸素ガス流量を低下させる方法を着想し、調査、検討を経て本発明(下記(1)参照)を完成させた。
2-3. Consideration From the above results, in the hot metal preliminary dephosphorization blowing in which a powder refining agent mainly composed of CaO such as quick lime is blown together with oxygen, the ingot in the furnace is effectively suppressed while suppressing the melting of the furnace wall refractory. As a method of removal, during the supply of the powder refining agent, an appropriate amount of metal for dissolving the metal ingot is injected from the nozzle for dissolving the metal in the upper portion of the side wall of the top blowing lance, and after the supply of the powder refining agent is blown. Until the end of smelting, the idea is to continue the flow of a purge gas such as nitrogen or air so that the metal melting nozzle does not block, or to reduce the oxygen gas flow rate to the extent that the furnace wall refractory does not melt, The present invention (see (1) below) was completed through examination.

なお、吹錬用酸素の吹付け開始から粉体精錬剤の供給開始までの間は、地金溶解用ノズルから地金溶解用酸素を適当量噴射させても良いし、パージガスを流し続けても良い。   It should be noted that during the period from the start of spraying of oxygen for blowing to the start of supplying the powder refining agent, an appropriate amount of metal for dissolving the metal can be injected from the nozzle for dissolving the metal, or the purge gas can be kept flowing. good.

3.付着地金を効果的に除去する方法についての検討
3−1.実験方法
図3は、上吹きランス下端の吹錬用ノズルから鉛直方向に向かってランス側壁上部の高さの異なる複数箇所に地金溶解用ノズルを設置させた場合の吹錬装置の概念図である。図3に示すように、転炉吹錬は、上吹きランス4aを転炉3aに挿入して、溶銑1aに酸素を吹き付けて実施する。図3に示す吹錬装置の基本構成は後述の図6に示す吹錬装置と同様であり、実質的に同一の部分には図6に記載の符号にaを付した。
3. 3. Examination of methods for effectively removing adhered metal 3-1. Experimental Method FIG. 3 is a conceptual diagram of the blowing device when the metal melting nozzles are installed at a plurality of locations having different heights on the upper portion of the lance side wall in the vertical direction from the blowing nozzle at the lower end of the upper blowing lance. is there. As shown in FIG. 3, converter blowing is performed by inserting the top blowing lance 4a into the converter 3a and spraying oxygen on the molten iron 1a. The basic configuration of the blowing device shown in FIG. 3 is the same as that of the blowing device shown in FIG. 6 described later, and a substantially the same part is denoted by a in FIG.

転炉3aは、底部から中腹部まではその内径が一定の炉体直胴部12aと、中腹部より炉口側に向かうにつれてその内径が縮小する炉体傾斜部13aとからなる。一般的に転炉吹錬中のスピッティングにより飛散した溶銑などは、炉内壁面7aのうち、炉体傾斜部13に付着地金8aとして堆積しやすい。炉体傾斜部13に形成された付着地金8aを溶解除去するには、上吹きランス4aの側壁上部に設置する地金溶解用ノズル6aの位置を、吹錬中において炉体傾斜部の高さとなるようにすることが望ましい。   The converter 3a includes a furnace body straight body part 12a having a constant inner diameter from the bottom part to the middle abdomen, and a furnace body inclined part 13a whose inner diameter decreases from the middle part toward the furnace port side. In general, hot metal or the like scattered by spitting during converter blowing is likely to deposit on the furnace body inclined portion 13 of the furnace inner wall surface 7a as the adhesion metal 8a. In order to dissolve and remove the adhering metal 8a formed on the furnace body inclined portion 13, the position of the metal melting nozzle 6a installed on the upper side wall of the upper blowing lance 4a is set to the height of the furnace body inclined portion during blowing. It is desirable to be

そこで、図3に示すように、転炉吹錬中の上吹きランス4aの側壁上部の、炉体傾斜部下端9a付近、炉体傾斜部中央部10a付近および炉口部11aの高さ位置のそれぞれに、吹錬用ノズル5aの鉛直方向に、地金溶解用ノズル6aを12個ずつ設置した。全ての地金溶解用ノズル6aの内径は4.4mmとし、各地金溶解用ノズル6aから同量の酸素ガスを炉体傾斜部13の炉内壁面7aに向け噴射した。   Therefore, as shown in FIG. 3, the height of the furnace body inclined part lower end 9 a, furnace body inclined part central part 10 a and the furnace mouth part 11 a at the upper part of the side wall of the upper blowing lance 4 a during converter blowing. In each case, 12 metal melting nozzles 6a were installed in the vertical direction of the blowing nozzle 5a. The inner diameters of all the metal melting nozzles 6 a were 4.4 mm, and the same amount of oxygen gas was injected from the various metal melting nozzles 6 a toward the furnace inner wall surface 7 a of the furnace body inclined portion 13.

3−2.実験結果
先ず、各地金溶解用ノズル6aの酸素流量を変化させて、炉体傾斜部下端9a付近、炉体傾斜部中央部10a付近および炉口部11aのそれぞれにおける付着地金8aの溶解量および炉壁耐火物の溶損量の評価を行った。
3-2. Experimental Results First, by changing the oxygen flow rate of the gold melting nozzle 6a in each place, the dissolved amount of the adhering metal 8a in the vicinity of the furnace body inclined part lower end 9a, the furnace body inclined part central part 10a, and the furnace port part 11a, and The amount of erosion loss of the furnace wall refractory was evaluated.

付着地金の溶解量の評価指標としては「地金溶解指数」を用い、炉壁耐火物の溶損量の評価指標としては「炉壁耐火物溶損速度指数」を用いた。   The “bulb melting index” was used as an evaluation index for the amount of adhesion metal dissolution, and the “furnace wall refractory melting rate index” was used as an evaluation index for the melting loss of furnace wall refractories.

「地金溶解指数」とは、溶解除去前のレベルを0、完全に溶解できたレベルを10.0とし、炉内の目視観察およびプロフィール測定計を用いた厚さ測定により、付着地金の溶解量を指数化したものである。   The “metal dissolution index” means that the level before dissolution removal is 0, the level at which complete dissolution is possible is 10.0, and the thickness of the adhesion metal is measured by visual observation in the furnace and thickness measurement using a profile meter. The amount of dissolution is indexed.

「炉壁耐火物溶損速度指数」とは、炉内の目視確認で炉壁耐火物表面が確認できた際の炉壁耐火物の厚さを、プロフィール測定計を用いて測定し、地金溶解用ノズル6aの酸素流量が40Nm3/hrの場合の炉体傾斜部下端付近における炉壁耐火物の溶損速度(mm/ch)(炉壁耐火物の厚さの吹錬1回あたりの変化量)を基準値「1」としたものである。 `` Furnace wall refractory erosion rate index '' refers to the thickness of the furnace wall refractory when the surface of the furnace wall refractory can be confirmed by visual confirmation inside the furnace, using a profile meter. When the oxygen flow rate of the melting nozzle 6a is 40 Nm 3 / hr, the melting rate (mm / ch) of the furnace wall refractory in the vicinity of the lower end of the inclined section of the furnace body (per thickness of the furnace wall refractory thickness per blowing Change amount) is a reference value “1”.

図4は、地金溶解用ノズル1孔あたりの酸素流量と地金溶解指数の関係を示す図である。図4から、例えば炉口部、炉体傾斜部中間付近および炉体傾斜部下端付近の全面において炉内壁面の付着地金を除去するには、地金溶解用ノズル1孔あたりの酸素流量を40Nm3/hr以上とする必要があることがわかる。 FIG. 4 is a diagram showing the relationship between the oxygen flow rate per one hole for dissolving a metal bar and the metal dissolution index. From FIG. 4, for example, in order to remove the adhering metal on the inner wall surface of the furnace in the whole area near the furnace port part, the middle part of the furnace body inclined part, and the lower end of the furnace body inclined part, the oxygen flow rate per nozzle for melting the metal bar is changed. It turns out that it is necessary to set it as 40 Nm < 3 > / hr or more.

図5は、地金溶解用ノズル1孔あたりの酸素流量と炉壁耐火物溶損速度指数の関係を示す図である。図5から、地金溶解用ノズル1孔あたりの酸素流量を40Nm3/hr以上の場合、炉口付近の炉壁耐火物の溶損が、炉体傾斜部中間付近および炉体傾斜部下端付近よりも速く進行することがわかる。これは、炉体傾斜部の炉内壁面と地金溶解用ノズルとの距離が、炉口に向かうにつれて縮小するためである。 FIG. 5 is a diagram showing the relationship between the oxygen flow rate per one hole for melting a metal bar and the furnace wall refractory melt rate index. From FIG. 5, when the oxygen flow rate per nozzle for melting the metal is 40 Nm 3 / hr or more, the melting loss of the furnace wall refractory near the furnace port is near the middle of the furnace body slope and near the lower end of the furnace body slope. It turns out that it progresses faster than. This is because the distance between the furnace inner wall surface of the furnace body inclined portion and the metal melt melting nozzle is reduced toward the furnace port.

3−3.考察
図4および図5に示す結果から、転炉の炉体傾斜部の炉内壁面の付着地金を効率的に除去するには限界があることがわかった。
3-3. Discussion From the results shown in FIG. 4 and FIG. 5, it was found that there is a limit to efficiently removing the adhering metal on the inner wall surface of the furnace inclined portion of the converter.

また、これらの結果に基づいて、上吹きランス下端の吹錬用ノズルから鉛直方向に向かってランス側壁上部の高さの異なる複数箇所に地金溶解用ノズルを設置させる場合、吹錬中の地金溶解用ノズルと炉内壁面との距離に応じて内径を異なるものとすることで、炉口付近の炉壁耐火物の溶損を抑制しつつ、炉体傾斜部の全面において炉内壁面の付着地金を効果的に除去する方法を着想し、調査、検討を経て本発明(下記(2)参照)を完成させた。   In addition, based on these results, when installing the metal melting nozzles at different locations on the lance side wall in the vertical direction from the blowing nozzle at the lower end of the upper blowing lance toward the vertical direction, By varying the inner diameter according to the distance between the gold melting nozzle and the inner wall surface of the furnace, the melting of the furnace wall refractory in the vicinity of the furnace port is suppressed, while the inner wall surface of the furnace body inclined surface is suppressed. The present invention (see (2) below) was completed through an investigation and examination, conceived of a method for effectively removing the adhered metal.

4.本発明の要旨
本発明は、以上の知見に基づいてなされたものであり、その要旨は下記(1)および(2)に示す転炉内付着地金の除去方法にある。
4). SUMMARY OF THE INVENTION The present invention has been made on the basis of the above findings, and the gist of the present invention resides in the method for removing in-converter ingots shown in the following (1) and (2).

(1)溶銑を転炉型精錬炉に装入後、側壁に地金溶解用ノズルを設置した上吹きランスを該精錬炉に挿入して、該上吹きランスの先端に設置した吹錬用ノズルより粉体精錬剤を吹錬用酸素と共に溶銑に吹き付けて脱燐する溶銑予備脱燐吹錬において、前記粉体精錬剤の吹付け期間中には前記側壁に設置した地金溶解用ノズルから地金溶解用酸素を水平方向に噴射させ、前記粉体精錬剤の吹付け終了から前記吹錬用酸素の吹付け終了までは、前記側壁に設置した地金溶解用ノズルが閉塞しないように該地金溶解用ノズルからパージガスを流し続けることを特徴とする転炉内付着地金の除去方法。 (1) After charging the hot metal into the converter type refining furnace, insert the top blowing lance with the metal melting nozzle on the side wall into the refining furnace and install it at the tip of the top blowing lance In hot metal preliminary dephosphorization blowing, in which a powder refining agent is sprayed on hot metal together with blowing oxygen to remove phosphorus, during the spraying period of the powder refining agent, a ground metal melting nozzle installed on the side wall From the end of spraying of the powder refining agent to the end of spraying of the oxygen for melting, gold melting oxygen is injected in the horizontal direction so that the metal melting nozzle installed on the side wall is not blocked. A method for removing metal deposits in a converter, characterized in that a purge gas continues to flow from a gold melting nozzle.

(2)前記転炉型精錬炉が上部に炉体傾斜部を有し、前記上吹きランスの側壁には地金溶解用ノズルを高さの異なる複数の位置に設置させ、該地金溶解用ノズルの出口と転炉壁面との距離が最も大きい位置における地金溶解用ノズルの内径をRo(mm)、該地金溶解用ノズルの出口と転炉壁面との距離をDo(mm)とし、地金溶解用ノズルの出口と転炉壁面との距離が最も大きい位置における地金溶解用ノズルの上方の、前記炉体傾斜部の高さ位置における地金溶解用ノズルの内径をRi(mm)、該地金溶解用ノズルの出口と転炉壁面との距離をDi(mm)とした場合、Ro、DoとRi、Diとの関係が下記(1)式を満たす範囲になるように地金溶解用ノズルが設置されている上吹きランスを用いて前記溶銑予備脱燐吹錬を行うことを特徴とする請求項1に記載した転炉内付着地金の除去方法
Ro・(Di/Do)≦Ri≦Ro …(1)
(2) The converter type refining furnace has a furnace body inclined portion at the upper part, and a metal melting nozzle is installed at a plurality of positions having different heights on the side wall of the upper blowing lance, The inner diameter of the metal melting nozzle at the position where the distance between the nozzle outlet and the converter wall surface is the largest is Ro (mm), and the distance between the outlet of the metal melting nozzle and the converter wall surface is Do (mm), Ri (mm) is the inner diameter of the nozzle for melting the bullion at the height position of the inclined section of the furnace body above the nozzle for melting the bullion at the position where the distance between the outlet of the nozzle for melting the bullion and the wall surface of the converter is the largest. When the distance between the outlet of the nozzle for melting the metal bar and the converter wall surface is Di (mm), the metal bar so that the relationship between Ro, Do and Ri, Di satisfies the following formula (1). The hot metal preliminary dephosphorization blowing is performed using an upper blowing lance provided with a melting nozzle. Preparative feature to claim 1 converter in adhesion bullion removal method Ro · of which are listed at (Di / Do) ≦ Ri ≦ Ro ... (1)

本発明の転炉内付着地金の除去方法によれば、生石灰などCaOを主成分とする粉体精錬剤を酸素と共に溶銑に吹き付ける転炉吹錬において、炉壁耐火物の損耗を抑制しつつ、効果的に炉内付着地金を除去することが可能であり、かつ、地金溶解用ノズルの閉塞を抑制することができるため、転炉の生産性を大幅に向上させることができる。   According to the method for removing metal in the converter of the present invention, in the converter blowing in which a powder refining agent mainly composed of CaO such as quick lime is sprayed on the hot metal together with oxygen, the wear of the furnace wall refractory is suppressed. The ingot in the furnace can be effectively removed, and the blockage of the nozzle for melting the ingot can be suppressed, so that the productivity of the converter can be greatly improved.

上吹きランスから酸素のみを供給して転炉吹錬を実施した場合の、吹錬経過時間と集塵水中のT.Fe含有率との関係を示す図である。Blowing elapsed time and T. in the dust collection water when only the oxygen is supplied from the top blowing lance and the converter is blown. It is a figure which shows the relationship with Fe content rate. 上吹きランスから生石灰などCaOを主成分とする粉体精錬剤を酸素と共に溶銑に吹き付けて転炉吹錬を実施した場合の、吹錬経過時間と集塵水中のT.Fe含有率との関係を示す図である。When the powder refining agent mainly composed of CaO, such as quick lime, is sprayed on the hot metal together with oxygen from the top blowing lance, the elapsed time of the blowing and the T.V. It is a figure which shows the relationship with Fe content rate. 上吹きランス下端の吹錬用ノズルから鉛直方向に向かってランス側壁上部の高さの異なる複数箇所に地金溶解用ノズルを設置させた場合の吹錬装置の概念図である。It is a conceptual diagram of the blowing apparatus at the time of installing the nozzle for metal melt | dissolution in the several location from which the height of the lance side wall upper part differs in the perpendicular direction from the nozzle for blow blowing of an upper blowing lance lower end. 地金溶解用ノズル1孔あたりの酸素流量と地金溶解指数の関係を示す図である。It is a figure which shows the relationship between the oxygen flow rate per nozzle | hole for metal melt | dissolution, and a metal melt | dissolution index. 地金溶解用ノズル1孔あたりの酸素流量と炉壁耐火物溶損速度指数の関係を示す図である。It is a figure which shows the relationship between the oxygen flow rate per nozzle hole for metal | molten metal melt | dissolution, and a furnace wall refractory material erosion rate index | exponent. 本発明を実施するために用いる装置例の概念図である。It is a conceptual diagram of the example of an apparatus used in order to implement this invention. 炉内壁面各位置における地金溶解速度指数を示す図である。It is a figure which shows the metal dissolution rate index | exponent in each position in a furnace inner wall surface. 炉体傾斜部中央部および炉口部における、地金溶解用ノズルの内径と地金溶解速度指数との関係を示す図である。It is a figure which shows the relationship between the internal diameter of a nozzle for melt | dissolving a metal bar, and a metal melt | dissolution rate index | exponent in a furnace body inclination part center part and a furnace port part. 炉内壁面各位置における炉壁耐火物溶損速度指数を示す図である。It is a figure which shows the furnace wall refractory melting rate index | exponent in each position in a furnace inner wall surface. 炉体傾斜部中央部および炉口部における、地金溶解用ノズルの内径と炉壁耐火物溶損速度指数との関係を示す図である。It is a figure which shows the relationship between the internal diameter of the nozzle for melt | dissolving a metal bar, and a furnace wall refractory melting rate index | exponent in a furnace body inclination part center part and a furnace port part.

以下に、本発明の方法を上述の通り規定した理由および本発明の好ましい態様について説明する。   The reason why the method of the present invention is defined as described above and preferred embodiments of the present invention will be described below.

1.本発明を実施するための装置
図6は、本発明を実施するために用いる装置例の概念図である。転炉3は、内径が一定の炉体直胴部12と、炉体直胴部12の上部に配置され、上方に向かうにつれてその内径が縮小する炉体傾斜部13とからなり、炉体傾斜部13の上端には炉口が設けられている。吹錬の実施時には、溶銑1および精錬剤2が装入された転炉3の炉口から炉内に上吹きランス4を挿入する。
1. Apparatus for Implementing the Present Invention FIG. 6 is a conceptual diagram of an example apparatus used to implement the present invention. The converter 3 comprises a furnace body straight body portion 12 having a constant inner diameter, and a furnace body inclined portion 13 which is disposed on the upper portion of the furnace body straight body portion 12 and whose inner diameter decreases toward the upper side. A furnace port is provided at the upper end of the portion 13. At the time of carrying out the blowing, an upper blowing lance 4 is inserted into the furnace from the furnace port of the converter 3 in which the hot metal 1 and the refining agent 2 are charged.

上吹きランス4は、下端に吹錬用酸素と生石灰などCaOを主成分とする粉体精錬剤を溶銑に吹き付ける吹錬用ノズル5を備える。また、上吹きランス4の側壁の、下端から上方の高さの異なる複数の所定位置に、炉内壁面7に向かって酸素ガスを噴射可能な地金溶解用ノズル6を備える。   The upper blowing lance 4 is provided with a blowing nozzle 5 at the lower end for blowing a powder refining agent mainly composed of CaO, such as blowing oxygen and quick lime, to the hot metal. Moreover, the metal melt | dissolution nozzle 6 which can inject oxygen gas toward the furnace inner wall surface 7 in the several predetermined position from which the height differs from the lower end of the side wall of the upper blowing lance 4 is provided.

上吹きランス4の構造は、吹錬用ノズル5に酸素ガスおよび粉体精錬剤を供給する配管を接続し、地金溶解用ノズル6に酸素ガスおよびパージガスを供給する配管を接続し、ならびに上吹きランス4の冷却用給水管および排水管を内部に配置した、四重管構造とする。このように、上吹きランス4は、地金溶解用酸素の供給経路を吹錬用酸素の供給経路から独立して制御し得る構造とする。   The structure of the top blowing lance 4 is such that piping for supplying oxygen gas and a powder refining agent is connected to the nozzle 5 for blowing, piping for supplying oxygen gas and purge gas is connected to the nozzle 6 for melting metal, and A quadruple pipe structure in which a cooling water supply pipe and a drain pipe for the blow lance 4 are arranged inside is adopted. As described above, the top blowing lance 4 has a structure that can control the supply path of the metal for dissolving the base metal independently from the supply path of the blowing oxygen.

本発明の方法は、上吹きランス4を用いて、転炉3の炉内壁面7に堆積した付着地金8の除去を行うことが目的である。そのため、転炉3内に上吹きランス4を挿入した後に、吹錬用ノズル5から溶銑1に酸素と生石灰などCaOを主成分とする粉体精錬剤を吹き付けて吹錬を実施すると同時に、地金溶解用ノズル6から炉内壁面7に酸素を噴射する。このとき、炉内壁面7に堆積した付着地金8の表面温度は高温の状態にあるので、付着地金8は、地金溶解用ノズル6から吹き付けられた酸素と反応して溶解・溶断される。   The object of the method of the present invention is to remove the adhered metal 8 deposited on the inner wall surface 7 of the converter 3 by using the top blowing lance 4. Therefore, after inserting the top blowing lance 4 into the converter 3, the powder refining agent mainly composed of CaO such as oxygen and quick lime is blown from the blowing nozzle 5 to the molten iron 1, and at the same time, Oxygen is injected from the gold melting nozzle 6 onto the furnace inner wall surface 7. At this time, since the surface temperature of the adhesion metal 8 deposited on the inner wall surface 7 of the furnace is in a high temperature state, the adhesion metal 8 reacts with the oxygen blown from the metal melting nozzle 6 and is melted and melted. The

本発明において、上吹きランス4から酸素と共に溶銑1に吹き付けられる粉体精錬剤は、脱燐剤としての役割を果たすことができるものであれば何でも良い。具体的にはCaOを40質量%以上含有している生石灰、石灰石、転炉スラグなどであって、粒径が1mm以下の粉体が例示される。   In the present invention, the powder refining agent sprayed onto the hot metal 1 together with oxygen from the top blowing lance 4 may be anything as long as it can serve as a dephosphorizing agent. Specifically, examples thereof include quick lime, limestone, converter slag, and the like containing 40 mass% or more of CaO and having a particle size of 1 mm or less.

2.地金溶解用ノズルの内径
2−1.仮説
ここで、先に前記図1および前記図2を対比して説明したように、スピッティングは粉体精錬剤の吹き付け中に多く発生することがわかっている。このことから、付着地金の成長も粉体精錬剤の吹き付け中に大きいと推測できる。そのため、付着地金を溶解するための、地金溶解用ノズルからの酸素の噴射もその期間(粉体精錬剤の吹付け中)に限ることが効果的であると予測できる。
2. Inner diameter of metal melting nozzle 2-1. Hypothesis Here, as described above with reference to FIG. 1 and FIG. 2, it is known that spitting frequently occurs during the spraying of the powder refining agent. From this, it can be estimated that the growth of the adhesion metal is large during the spraying of the powder refining agent. Therefore, it can be predicted that it is effective to limit the injection of oxygen from the metal melting nozzle for melting the adhered metal only during that period (while the powder refining agent is being sprayed).

また、上吹きランス下端の吹錬用ノズルから鉛直方向に向かってランス側壁上部に設置する地金溶解用ノズルの内径を、地金溶解用ノズルの出口と炉内壁面との距離に応じて調整することで、地金溶解用ノズルとの距離が一定ではない炉体傾斜部の炉内壁面の全体を同時に、炉壁耐火物の溶損を抑制しつつ効果的に付着地金の除去が可能となると考えられる。   Also, adjust the inner diameter of the metal melting nozzle installed on the top of the lance side wall in the vertical direction from the blowing nozzle at the lower end of the upper blowing lance according to the distance between the outlet of the metal melting nozzle and the inner wall of the furnace. By doing this, it is possible to remove the adhering metal effectively while suppressing the melting of the furnace wall refractory at the same time on the entire inner wall surface of the furnace slope part where the distance from the metal melting nozzle is not constant. It is thought that it becomes.

2−2.調査方法
そこで、上吹きランスの吹錬用ノズルから鉛直方向に向かってランス側壁上部の高さの異なる複数箇所に地金溶解用ノズルを設置した場合の、吹錬中における地金溶解用ノズルの出口と炉内壁面との距離が最も大きい位置における地金溶解用ノズル(図6では3段に配置された地金溶解用ノズル6のうち最下段のもの)の内径をRo(mm)、その地金溶解用ノズルの出口と炉内壁面との距離をDo(mm)とし、吹錬中における地金溶解用ノズルの出口と炉内壁面との距離が最も大きい位置における地金溶解用ノズルの上部に配置された、炉体傾斜部の高さの地金溶解用ノズル(図6では3段に配置された地金溶解用ノズル6のうち上2段のもの)の内径をRi(mm)、その地金溶解用ノズルの出口と炉体傾斜部の炉内壁面との距離をDi(mm)とした場合に、各高さの地金溶解用ノズル6の内径を変更して地金溶解用酸素を所定の一定流量噴射し、Ro、Do、RiおよびDiの適正な関係を調査した。
2-2. Survey method Therefore, when the nozzles for melting the metal bullion are installed at multiple locations with different heights on the top of the lance side wall in the vertical direction from the nozzle for blasting the top blowing lance, The inner diameter of the nozzle for melting the metal bar at the position where the distance between the outlet and the inner wall surface of the furnace is the greatest (in FIG. 6, the lowest one of the nozzles for melting the metal bar 6 arranged in three stages) is Ro (mm), The distance between the outlet of the metal melting nozzle and the inner wall of the furnace is Do (mm), and the metal melting nozzle at the position where the distance between the outlet of the metal melting nozzle and the inner wall of the furnace during blowing is the largest. Ri (mm) is the inner diameter of the nozzle for melting the ingot at the height of the inclined section of the furnace body (in FIG. 6, the upper two of the nozzles for melting the ingot 6 arranged in three stages in FIG. 6). , The outlet of the nozzle for melting the metal and the inner wall surface of the furnace sloped part When the distance is Di (mm), the inner diameter of the metal melting nozzle 6 at each height is changed, and the oxygen for melting the metal is injected at a predetermined constant flow rate so that appropriate values of Ro, Do, Ri and Di are obtained. The relationship was investigated.

(1)溶銑条件
この調査において、転炉吹錬(脱燐吹錬)の対象溶銑量は80tとした。吹錬開始前および吹錬終了後の溶銑成分は表2に示す通りであった。吹錬終了後のスラグの塩基度は、塊状生石灰(粒径:10〜50mm、CaO:90質量%、残部:CO2および不純物)と粉状生石灰(粒径:150μm以下、CaO:90質量%、残部:CO2および不純物)を併用して、スラグ分析による質量濃度比で、CaO/SiO2が2.2〜2.8の範囲になるように調整した。
(1) Hot metal conditions In this investigation, the amount of hot metal subject to converter blowing (dephosphorization blowing) was 80 t. The hot metal components before the start of blowing and after the end of blowing were as shown in Table 2. The basicity of the slag after the end of blowing is as follows: bulk quicklime (particle size: 10-50 mm, CaO: 90% by mass, balance: CO 2 and impurities) and powdered quicklime (particle size: 150 μm or less, CaO: 90% by mass) , The balance: CO 2 and impurities), and the mass concentration ratio by slag analysis was adjusted so that CaO / SiO 2 was in the range of 2.2 to 2.8.

Figure 2011179041
Figure 2011179041

(2)吹錬条件
上吹きランスには、先端に吹錬用ノズルとして、直径が36mm、傾斜角が6°のラバールノズルを4個形成したものを使用した。吹錬用酸素流量は、表3に示す通り、いずれの実施例とも粉体精錬剤の吹付け期間中であるか否かに関わらず8000Nm3/hrで一定とした。吹錬時間は10分とした。
(2) Blowing conditions For the top blowing lance, a nozzle having four Laval nozzles having a diameter of 36 mm and an inclination angle of 6 ° was used at the tip as a nozzle for blowing. As shown in Table 3, the oxygen flow rate for blowing was constant at 8000 Nm 3 / hr regardless of whether or not the powder refining agent was being sprayed in any of the examples. The blowing time was 10 minutes.

粉体精錬剤(前記粉状生石灰)の供給条件は、吹込み速度を300kg/分、吹込み時期を吹錬開始2.0分後から5分間とした。また、吹錬用ノズルは、内径を36mm、個数を4個とした。   The conditions for supplying the powder refining agent (the powdered quicklime) were a blowing rate of 300 kg / min and a blowing timing of 5 minutes after 2.0 minutes from the start of blowing. Moreover, the nozzle for blowing was 36 mm in inner diameter, and the number was four.

Figure 2011179041
Figure 2011179041

(3)地金溶解条件
地金溶解用ノズルは、吹錬中における炉体との位置関係が、前記図6中の炉体傾斜部下端9、炉体傾斜部中央部10、炉口部(炉体傾斜部最上部)11の高さの3箇所となるように設置した。各設置箇所における吹錬中の地金溶解用ノズルの個数、形状、内径およびノズル出口と転炉内壁との距離は、表3に示す通りである。
(3) Metal Melting Conditions The metal melting nozzle has a positional relationship with the furnace body during blowing, the furnace sloped lower end 9 in FIG. 6, the furnace sloped central part 10, the furnace port ( It was installed so that it might become three places of the height of the furnace body inclination part top part) 11. Table 3 shows the number, shape, inner diameter, and distance between the nozzle outlet and the converter inner wall of the nozzle for melting the metal during blowing at each installation location.

地金溶解用酸素は、地金溶解用ノズルから炉内壁面に形成された付着地金に向けてほぼ水平に噴射した。地金溶解用酸素の噴射時期は粉体精錬剤(粉状生石灰)の供給期間に一致させるとともに、粉体精錬剤の供給終了から地金溶解用酸素の供給終了までパージガスを地金溶解用ノズルから流すことを実施例の基本的な実施態様とした。パージガスを流すことによって、粉体精錬剤の供給終了から地金溶解用酸素の供給終了までの期間における地金溶解用ノズルの閉塞を抑制することができる。ただし、一部の実施例では、上吹きランスからの吹錬用酸素の吹付け開始(吹錬開始)からその終了(吹錬終了)までとした(表3に示す「比較法」)。脱燐精錬による溶銑成分の変化には、その一部の実施例(比較法)とその他の基本的実施態様の実施例との間で実用上有意な差異が現れなかったことを確認した。   The oxygen for melting the bullion was injected almost horizontally from the nozzle for melting the bullion toward the adhering bullion formed on the inner wall surface of the furnace. The injection timing of the metal melting oxygen is set to coincide with the supply period of the powder refining agent (powder quicklime), and the purge gas is supplied from the end of the supply of the powder refining agent to the end of the supply of the metal for melting the metal. It was made into the basic embodiment of the Example. By flowing the purge gas, blockage of the metal melting nozzle during the period from the end of supplying the powder refining agent to the end of supplying oxygen for dissolving the metal can be suppressed. However, in some examples, the period was from the start of blowing (starting of blowing) to the end of blowing (end of blowing) from the top blowing lance (“comparison method” shown in Table 3). It was confirmed that there was no practically significant difference between some examples (comparative method) and other basic embodiments in the change of the hot metal component due to dephosphorization.

地金溶解用酸素の流量については、吹錬中における吹錬中における地金溶解用ノズルの出口と炉内壁面との距離が最も大きい位置における地金溶解用ノズル(炉体傾斜部下端の高さ)での流量を40Nm3/hrに固定した。これは、先に図4で炉口部、炉体傾斜部中間付近および炉体傾斜部下端付近の全面において炉内壁面の付着地金を除去するのに必要であることを確認した地金溶解用ノズル1孔あたりの酸素流量である40Nm3/hr以上の最小の値であり、炉壁耐火物の溶損抑制を考慮した値である。 Regarding the flow rate of the metal melting oxygen, the metal melting nozzle at the position where the distance between the outlet of the metal melting nozzle and the inner wall of the furnace during blowing is the largest (the height of the lower end of the inclined section of the furnace body). ) Was fixed at 40 Nm 3 / hr. This was previously confirmed in FIG. 4 that it was necessary to remove the adhering metal on the inner wall surface of the furnace in the whole area near the furnace mouth, the middle of the furnace slope, and the lower end of the furnace slope. This is the minimum value of 40 Nm 3 / hr or more, which is the oxygen flow rate per nozzle hole, and is a value considering suppression of melting damage of the furnace wall refractory.

その上で、炉体傾斜部中央部および炉口部の高さに位置する、地金溶解用ノズルの内径Ri(mm)を変化させた場合の付着地金の溶解量および炉壁耐火物の溶損量の評価を行った。表3には、「従来法」、「比較法」および「本発明例1〜6」それぞれの実施例の吹錬条件および地金溶解条件を示す。   In addition, the amount of dissolved ingot metal and the furnace wall refractory when the inner diameter Ri (mm) of the ingot nozzle for melting is located at the center of the furnace body inclined portion and the height of the furnace mouth portion. The amount of erosion loss was evaluated. Table 3 shows the blowing conditions and the metal melting conditions for the examples of the “conventional method”, “comparative method”, and “present invention examples 1 to 6”.

いずれの実施例とも、吹錬用酸素の供給条件および粉状生石灰の供給条件は同一として脱燐吹錬を行った。   In all the examples, the dephosphorization blowing was performed with the same supply conditions for blowing oxygen and powdery quicklime.

「従来法」とは、地金溶解用ノズルを有しない上吹きランスを用いた実施例である。   The “conventional method” is an example using an upper blowing lance that does not have a metal melting nozzle.

「比較法」とは、地金溶解用ノズルを有する上吹きランスを用いた実施例であり、吹錬中の地金溶解用ノズルの出口から炉内壁面までの距離は1010mm(炉口部の高さ)、1340mm(炉体傾斜部中央部の高さ)、1680mm(炉体傾斜部下端(転炉内壁の直胴部と傾斜部の継ぎ目部)の高さ)とした。地金溶解用ノズルは内径が全て4.4mmとし、それぞれの高さにおいて12個ずつ設置した。地金溶解用酸素の噴射速度(送酸速度)は、合計で40Nm3/hr×12個×3箇所=1440Nm3/hrとし、噴射時期は吹錬用酸素供給の開始から終了までとした。 The “comparative method” is an example using an upper blowing lance having a nozzle for melting a metal, and the distance from the outlet of the nozzle for melting a metal during blowing to the inner wall surface of the furnace is 1010 mm (of the furnace port Height), 1340 mm (height of the central part of the furnace body inclined part), and 1680 mm (height of the lower end of the furnace body inclined part (the height of the straight body part of the converter inner wall and the joint part of the inclined part)). The metal melting nozzles all had an inner diameter of 4.4 mm, and 12 nozzles were installed at each height. Injection velocity bullion dissolved oxygen (oxygen-flow-rate) is set to 40Nm 3 / hr × 12 pieces × 3 points = 1440Nm 3 / hr in total, the injection timing was from the beginning to the end of blowing oxygen supply.

「本発明例1」は、「比較法」と同一の地金溶解用ノズルを有する上吹きランスを用いた実施例であり、地金溶解用酸素の供給条件が異なる。「本発明例1」では、地金溶解用酸素の供給速度を合計で1440Nm3/hrとし、供給期間を粉状生石灰(粉体精錬剤)供給の開始から終了までとした。また、地金溶解用ノズルからのパージガスには窒素を用い、その供給期間を粉体精錬剤の供給終了から地金溶解用酸素の供給終了までの期間とした。 “Invention Example 1” is an example using an upper blowing lance having the same metal melting nozzle as the “comparative method”, and the supply conditions of the metal melting oxygen are different. In “Invention Example 1”, the supply rate of the base metal dissolving oxygen was 1440 Nm 3 / hr in total, and the supply period was from the start to the end of the supply of powdered quicklime (powder refining agent). Nitrogen was used as the purge gas from the metal melting nozzle, and the supply period was the period from the end of supplying the powder refining agent to the end of supplying oxygen for dissolving the metal.

なお、吹錬用酸素供給の開始から粉状生石灰の供給開始までは、地金溶解用ノズルから窒素を流した。   In addition, nitrogen was poured from the nozzle for melt | dissolving ingots from the start of the supply of oxygen for blowing to the start of supply of powdered quicklime.

「本発明例2」〜「本発明例6」は、「本発明例1」の条件のうち上吹きランスだけ変更した実施例である。「本発明例2」〜「本発明例6」で用いた上吹きランスは、地金溶解用ノズルの内径を、炉体傾斜部中央部の高さおよび炉口部の高さで、「本発明例1」で使用したものよりも小さくした。ただし、炉体傾斜部下端付近(転炉内壁の直胴部と傾斜部の継ぎ目部)の高さの地金溶解用ノズル1孔あたりの地金溶解用酸素の流量は40Nm3/hrで一定とした。 “Invention Example 2” to “Invention Example 6” are examples in which only the top blowing lance was changed among the conditions of “Invention Example 1”. The top blow lance used in “Invention Example 2” to “Invention Example 6” has an inner diameter of the nozzle for melting the metal bar at the height of the central portion of the furnace body inclined portion and the height of the furnace mouth portion. It was smaller than that used in Invention Example 1 ”. However, the flow rate of the metal melting oxygen per hole of the metal melting nozzle at the height near the lower end of the furnace body sloping part (the straight part of the inner wall of the converter and the joint of the sloping part) is constant at 40 Nm 3 / hr. It was.

2−3.調査結果
(1)付着地金の溶解
図7は、炉内壁面各位置における地金溶解速度指数を示す図である。
図8は、炉体傾斜部中央部および炉口部における、地金溶解用ノズルの内径と地金溶解速度指数との関係を示す図である。
2-3. Investigation Result (1) Dissolution of Adhesive Metal FIG. 7 is a diagram showing a metal dissolution rate index at each position on the inner wall surface of the furnace.
FIG. 8 is a diagram showing the relationship between the inner diameter of the metal melting nozzle and the metal melting rate index at the central part of the furnace body inclined portion and the furnace port.

図7および図8では、縦軸は地金溶解速度指数であり、地金溶解速度指数の尺度は、或る1点を定めて付着地金の厚さの変化を測定した場合の吹錬1回あたりの変化量「mm/ch」とした。炉内壁面の付着地金は、炉口部から垂れ下がるようにして側壁の全周に形成されるが、その付着地金の厚さは必ずしも均等ではなくトラニオン側が厚い傾向があって、付着地金の厚さの変化の正確な測定平均値を算出することは困難かつ無意味であるからである。   In FIG. 7 and FIG. 8, the vertical axis is the ingot dissolution rate index, and the scale of the ingot dissolution rate index is blown 1 when the change in the thickness of the attached ingot is measured by setting a certain point. The amount of change per rotation was “mm / ch”. The adhesion metal on the inner wall of the furnace is formed on the entire circumference of the side wall so as to hang down from the furnace mouth, but the thickness of the adhesion metal is not necessarily uniform and tends to be thick on the trunnion side. This is because it is difficult and meaningless to calculate an accurate measurement average value of the change in thickness of the film.

この付着地金の厚さはレーザー距離計などを用いて測定することができ、ここでは表3に示したように、上記比較法における炉体傾斜部下端の高さの地金溶解速度指数を基準値「1」とした。また、「厚さ不変」の場合を「0」とした。   The thickness of the adhesion metal can be measured by using a laser distance meter or the like. Here, as shown in Table 3, the metal dissolution rate index at the height of the lower end of the inclined portion of the furnace body in the above comparative method is calculated. The reference value was “1”. The case of “invariant thickness” was set to “0”.

従来法では、付着地金の厚さは厚くなる方向に変化するため指数は「負」である。比較法および本発明例1〜本発明例6では、付着地金の厚さは薄くなる方向に変化するため指数は「正」である。   In the conventional method, the index is “negative” because the thickness of the attached metal changes in the direction of increasing thickness. In the comparative method and Examples 1 to 6 of the present invention, the index is “positive” because the thickness of the adhesion metal changes in the direction of thinning.

図7から、従来法では、転炉内の各位置での付着地金の厚さは増加方向に変化しており、中でも炉口部での地金付着が多いことがわかる。これは、溶銑への粉体精錬剤の吹き付けに伴ってスピッティングの発生が激しく、これにより飛散した溶銑などが炉口部に向けて跳ね上がっていることを表していると考えられる。   From FIG. 7, it can be seen that in the conventional method, the thickness of the deposited metal at each position in the converter changes in an increasing direction, and in particular, the adhesion of the metal at the furnace port is large. This is considered to indicate that spitting is intense as the powder refining agent is sprayed onto the hot metal, and the hot metal and the like scattered thereby jumps toward the furnace port.

一方、地金溶解用酸素を炉内壁面に向けて噴射(供給)する比較法および本発明例1〜本発明例6では、付着地金を溶解できていることが明らかであり、中でも比較法の溶解効果が大きかった。比較法では、炉内の上部ほど溶解速度が高い傾向が認められた。   On the other hand, in the comparative method of injecting (supplying) oxygen for melting the metal bar toward the inner wall surface of the furnace and the present invention example 1 to the present invention example 6, it is clear that the adhering metal can be dissolved. The dissolution effect of was great. In the comparative method, a tendency that the dissolution rate was higher in the upper part of the furnace was recognized.

本発明例1は、地金溶解用酸素の噴射を粉状生石灰の供給停止後には止めていたにもかかわらず、比較法とほぼ同等の地金溶解効果を有していたことがわかる。   It can be seen that Example 1 of the present invention had a metal dissolution effect almost equivalent to that of the comparative method, although the injection of oxygen for melting the metal was stopped after the supply of powdered quicklime was stopped.

図8から、本発明例2〜本発明例6においては、地金溶解用ノズルの内径Ri(mm)を小さくするにしたがって、地金溶解速度が低下し、Ri=Ro・(Di/Do)を満たす条件よりもRiを小さくした場合、地金溶解速度が極端に低下する傾向が認められた。   From FIG. 8, in Invention Example 2 to Invention Example 6, as the inner diameter Ri (mm) of the metal melting nozzle is decreased, the metal melting speed decreases, and Ri = Ro · (Di / Do). When Ri was made smaller than the conditions satisfying the condition, the metal dissolution rate tended to be extremely reduced.

各地金溶解用ノズルから噴射した酸素ガスの、炉内壁面の各位置における中心線流速は、ノズルの内径(R)に比例し、ノズルの出口と炉内壁面との距離(D)に反比例する。   The centerline flow velocity of the oxygen gas injected from the various gold melting nozzles at each position on the inner wall surface of the furnace is proportional to the inner diameter (R) of the nozzle and inversely proportional to the distance (D) between the nozzle outlet and the inner wall surface of the furnace. .

そのため、以下の(a)〜(c)に示す条件を満たすことが望ましいと考えられる。
(a)地金溶解用ノズル出口と炉内壁面との距離が最も大きい位置に設置された地金溶解用ノズルから供給される地金溶解用酸素のノズル1孔あたりの流量を、炉内壁面の付着地金を除去可能であって、かつ炉壁耐火物溶損の抑制を考慮して最小流量条件に固定した場合において、
(b)地金溶解用ノズル出口と炉内壁面との距離が縮小する炉体傾斜部上部の高さに配置された地金溶解用ノズルの内径Ri(mm)を縮小する場合には、
(c)少なくとも炉内壁面の各位置における地金溶解用酸素の中心線流速が、地金溶解用ノズル出口と炉内壁面との距離が最も大きい位置に設置された地金溶解用ノズルから供給される地金溶解用酸素の炉内壁面における中心線流速と、同等以上としておくこと。
Therefore, it is considered desirable to satisfy the conditions shown in the following (a) to (c).
(A) The flow rate per unit hole of oxygen for melting ingots supplied from a nozzle for melting ingots installed at the position where the distance between the outlet of the nozzle for melting ingots and the inner wall surface of the furnace is the largest. In the case where the attached metal can be removed and the flow rate is fixed at the minimum flow rate in consideration of the suppression of furnace wall refractory melting,
(B) In the case of reducing the inner diameter Ri (mm) of the metal melting nozzle arranged at the height of the upper part of the furnace inclined portion where the distance between the nozzle outlet for the metal melting and the wall surface of the furnace is reduced,
(C) Supply from a metal melting nozzle installed at a position where the distance between the outlet of the metal melting nozzle and the wall of the furnace inner wall is at least the centerline flow velocity of the metal melting oxygen at each position of the furnace wall. It should be equal to or higher than the centerline flow velocity on the inner wall of the furnace melting wall.

すなわち、以下の(d)〜(g)に示す条件を満たすことが望ましい。
(d)上吹きランス下端の吹錬用ノズルから鉛直方向に向かってランス側壁上部の高さの異なる複数箇所に地金溶解用ノズルを設置した場合の、
(e)吹錬中における地金溶解用ノズル出口と炉内壁面との距離が最も大きい位置における地金溶解用ノズルの内径をRo(mm)、その地金溶解用ノズルの出口と炉内壁面との距離をDo(mm)とし、
(f)吹錬中における地金溶解用ノズル出口と炉内壁面との距離が最も大きい位置における地金溶解用ノズルの上部に配置された、炉体傾斜部の高さの地金溶解用ノズルの内径をRi(mm)、その地金溶解用ノズルの出口と炉体傾斜部の炉内壁面との距離をDi(mm)とした場合には、
(g)炉内壁面に形成された付着地金の溶解速度の観点から、Riに関しては下記(1)式を満たすこと。
Ro・(Di/Do)≦Ri≦Ro …(1)
That is, it is desirable to satisfy the following conditions (d) to (g).
(D) In the case where nozzles for melting metal are installed at a plurality of locations having different heights on the upper portion of the lance side wall in the vertical direction from the nozzle for blowing at the lower end of the upper blowing lance,
(E) The inner diameter of the metal melting nozzle at the position where the distance between the metal outlet nozzle outlet and the furnace inner wall surface during blowing is the largest is Ro (mm), the outlet of the metal melting nozzle outlet and the furnace inner wall surface And the distance to Do (mm)
(F) Nozzle melting nozzle at the height of the furnace body inclined portion, which is disposed above the bullion melting nozzle at the position where the distance between the bulge melting nozzle outlet and the furnace inner wall surface is the largest during blowing When the inner diameter of Ri is (mm) and the distance between the outlet of the metal melting nozzle and the furnace inner wall surface of the furnace body inclined portion is Di (mm),
(G) From the viewpoint of the dissolution rate of the adherent metal formed on the inner wall surface of the furnace, Ri must satisfy the following formula (1).
Ro · (Di / Do) ≦ Ri ≦ Ro (1)

(2)炉壁耐火物の溶解
図9は、炉内壁面各位置における炉壁耐火物溶損速度指数を示す図である。図9は、前記図7との対応関係が分かるようにして示した図である。各凡例の意味は図7と同一である。
図10は、炉体傾斜部中央部および炉口部における、地金溶解用ノズルの内径と炉壁耐火物溶損速度指数との関係を示す図である。
(2) Melting of furnace wall refractory FIG. 9 is a diagram showing the furnace wall refractory erosion rate index at each position on the inner wall surface of the furnace. FIG. 9 is a diagram showing the correspondence with FIG. The meaning of each legend is the same as in FIG.
FIG. 10 is a diagram showing the relationship between the inner diameter of the metal melting nozzle and the furnace wall refractory erosion rate index at the central part of the furnace body and the furnace port part.

図9および図10では、縦軸は炉壁耐火物溶損速度指数であり、ここでは上記比較法における炉体傾斜部最下部の高さの平均的な炉壁耐火物溶損速度を指数の基準値「1」とした。炉壁耐火物の厚さ測定時において、炉壁耐火物の厚さが地金付着前の状態と比較して増加しており、かつ目視で炉内壁面を観察して付着地金が残存していた場合には、炉壁耐火物の溶損量は0mmとみなし、指数を「0」として評価した。   In FIGS. 9 and 10, the vertical axis represents the furnace wall refractory erosion rate index. Here, the average furnace wall refractory erosion rate at the lowest part of the sloped portion of the furnace body in the above comparative method is expressed as an index. The reference value was “1”. When measuring the thickness of the furnace wall refractory, the thickness of the furnace wall refractory has increased compared to the state before adhesion of the bare metal, and the adhered inner metal remains by visually observing the inner wall of the furnace. In such a case, the amount of erosion of the furnace wall refractory was regarded as 0 mm, and the index was evaluated as “0”.

図9から、従来法では、基本的に地金の付着が進行する傾向にあるため、炉壁耐火物の溶損は全体に認められない。   From FIG. 9, in the conventional method, since the adhesion of the base metal basically tends to progress, the melting loss of the furnace wall refractory is not recognized as a whole.

一方、地金溶解用酸素を炉内壁面に向けて噴射する比較法および本発明例1〜本発明例6では、いずれも従来法よりも炉壁耐火物が溶損しやすい傾向にあることがわかる。中でも、地金溶解用酸素を吹錬用酸素の供給中に終始噴射し続ける比較法では、炉壁耐火物の溶損が顕著であった。   On the other hand, it can be seen that in the comparative method of injecting oxygen for melting the metal bar toward the inner wall surface of the furnace and Examples 1 to 6 of the present invention, the furnace wall refractories tend to be more easily damaged than in the conventional method. . Among them, in the comparative method in which the oxygen for melting the metal is continuously injected throughout the supply of the oxygen for blowing, the melting loss of the furnace wall refractory was remarkable.

しかし、地金溶解用酸素の噴射を粉状生石灰の供給停止後に止めた本発明例1では、炉壁耐火物溶損速度は減少した。ただし、炉体傾斜部中央部および炉口付近の炉壁耐火物溶損速度は、炉体傾斜部下端付近と比較して大きかった。   However, in Example 1 of the present invention in which the injection of oxygen for melting the bullion was stopped after the supply of powdered quicklime was stopped, the furnace wall refractory erosion rate decreased. However, the furnace wall refractory erosion rate near the central part of the furnace body and near the furnace port was larger than that near the lower end of the furnace body slope.

図10から、本発明例2〜本発明例6においては、地金溶解用ノズルの内径Ri(mm)を小さくするにしたがって、炉壁耐火物溶損速度が減少する傾向が認められた。この効果は、地金溶解用ノズルの内径Ri(mm)が、上記(1)式を満たす範囲で全般的に認められた。   From FIG. 10, in the present invention example 2 to the present invention example 6, it was recognized that the furnace wall refractory erosion rate tends to decrease as the inner diameter Ri (mm) of the metal melting nozzle is reduced. This effect was generally recognized as long as the inner diameter Ri (mm) of the metal melting nozzle satisfies the above formula (1).

理想的には、地金溶解用ノズルの内径Ri(mm)をRo・(Di/Do)として設定すれば、炉壁耐火物の溶損を最も抑制しつつ、効果的に付着地金の溶解除去が可能であると考えられる。しかし、炉体の部位によって付着地金の量が異なるため、炉内の付着地金の量によって、地金溶解用ノズルの内径Ri(mm)を、上記(1)式を満足する範囲で適宜選択すれば良い。   Ideally, if the inner diameter Ri (mm) of the metal melting nozzle is set as Ro · (Di / Do), the melting of the refractory of the furnace wall is most suppressed and the molten metal is effectively dissolved. Removal is considered possible. However, since the amount of attached metal differs depending on the location of the furnace body, the inner diameter Ri (mm) of the metal melting nozzle is appropriately set within the range satisfying the above expression (1) depending on the amount of attached metal in the furnace. Just choose.

2−4.考察
以上のことから、今回の調査結果を総合的に考えると、次のような操業方法が適当であると考えられる。
1)先ず、地金溶解用酸素を全く使わないと、炉内付着地金が徐々に成長してしまい、操業に支障をきたすようになるが、そのようになっても、地金溶解用酸素を噴射させれば、前記図7のように付着地金を溶解することができる。
2)但し、地金溶解用酸素は耐火物の溶損を促進してしまう悪影響を伴う。そこで、付着地金の溶解を促進したい場合でも、上記本発明例1の方法(地金溶解用酸素の供給期間を粉体精錬剤供給の開始から終了までとし、粉体精錬剤の供給終了から地金溶解用酸素の供給終了までパージガスを地金溶解用ノズルから流す方法)を適用することによって、比較的に耐火物溶損を抑制することができる。
3)一方、付着地金の溶解を格別急ぐ必要がない場合には、上記本発明例2〜本発明例6の方法を適用することによって、付着地金を溶解しつつ、炉壁耐火物の溶損を、地金溶解用酸素を使わない場合の程度に近づけることができる。ここで、最下段の地金溶解用ノズルの内径Roの酸素ガス流量を、炉壁耐火物の溶損を抑制しつつ付着地金を溶解除去可能な量に設定した場合、炉体傾斜部中央部や炉口部の高さの地金溶解用ノズルの内径Ri(mm)を、下記(1)式を満足する範囲で適宜選択すれば良い。
Ro・(Di/Do)≦Ri≦Ro …(1)
4)さらに、上記の調査例では、本発明例1〜本発明例6において、地金溶解用酸素の噴射を粉状生石灰の供給中ずっと継続していた。しかし、その酸素供給時間を粉状生石灰の供給期間中に適宜短縮することによって、地金溶解速度と炉壁耐火物溶損速度のいずれも低下させることが可能なことは自明である。
2-4. Consideration From the above, considering the results of this survey in general, the following operation method is considered appropriate.
1) First, if no oxygen for melting metal is used at all, the metal in the furnace will gradually grow and hinder the operation. Can be dissolved as shown in FIG.
2) However, the oxygen for melting the metal is accompanied by an adverse effect that promotes the melting of the refractory. Therefore, even when it is desired to promote the dissolution of the adhered metal, the method of the present invention example 1 (the supply period of the metal for dissolving the metal is set from the start to the end of the supply of the powder refining agent, and from the end of the supply of the powder refining agent. By applying a method in which the purge gas is supplied from the metal melting nozzle until the supply of the metal melting oxygen is completed, refractory material melting can be relatively suppressed.
3) On the other hand, in the case where it is not necessary to rush the dissolution of the adhering metal, the method of the present invention example 2 to 6 of the present invention is applied to dissolve the adhering metal and the furnace wall refractory. The erosion loss can be brought close to the level when not using oxygen for dissolving the metal. Here, when the oxygen gas flow rate of the inner diameter Ro of the lowermost metal melting nozzle is set to an amount capable of dissolving and removing the adhered metal while suppressing the melting of the furnace wall refractory, The inner diameter Ri (mm) of the nozzle for melting the metal at the height of the part or the furnace port may be appropriately selected within the range satisfying the following expression (1).
Ro · (Di / Do) ≦ Ri ≦ Ro (1)
4) Further, in the above investigation examples, in the inventive examples 1 to 6, the injection of the metal for dissolving the metal bar was continued throughout the supply of the powdered quicklime. However, it is obvious that both the metal melting rate and the furnace wall refractory melting rate can be reduced by appropriately shortening the oxygen supply time during the supply period of powdered quicklime.

本発明の方法の効果を確認するため、下記の転炉吹錬試験を行うとともに、炉内壁面への付着地金の形成状況および炉壁耐火物の溶損状況の評価を行った。   In order to confirm the effect of the method of the present invention, the following converter blowing test was performed, and the formation status of the adhesion metal on the inner wall surface of the furnace and the erosion status of the furnace wall refractory were evaluated.

1.試験条件
(1)溶銑条件
転炉吹錬(脱燐吹錬)の対象溶銑量は80tとした。吹錬開始前および吹錬終了後の溶銑成分は表4に示す通りであった。吹錬終了後のスラグの塩基度は、塊状生石灰(粒径:10〜50mm、CaO:90質量%、残部:CO2および不純物)と粉状生石灰(粒径:150μm以下、CaO:90質量%、残部:CO2および不純物)を併用して、スラグ分析による質量濃度比で、CaO/SiO2が2.2〜2.8の範囲になるように調整した。
1. Test conditions (1) Hot metal conditions The amount of hot metal subject to converter blowing (dephosphorization blowing) was 80 t. The hot metal components before the start of blowing and after the end of blowing were as shown in Table 4. The basicity of the slag after the end of blowing is as follows: bulk quicklime (particle size: 10-50 mm, CaO: 90% by mass, balance: CO 2 and impurities) and powdered quicklime (particle size: 150 μm or less, CaO: 90% by mass) , The balance: CO 2 and impurities), and the mass concentration ratio by slag analysis was adjusted so that CaO / SiO 2 was in the range of 2.2 to 2.8.

Figure 2011179041
Figure 2011179041

(2)吹錬条件
上吹きランスとして、先端に吹錬用ノズルとして、直径が36mm、傾斜角が6°のラバールノズルを4個形成したものを使用した。吹錬用酸素流量は、前記表3に示す通り、8000Nm3/hrで一定とした。吹錬時間は8〜11分とした。粉体精錬剤の供給条件は、粉状生石灰(粉体精錬剤)供給速度を300kg/分、粉状生石灰吹き込み時期を吹錬開始1.5分後から5分間とした。また、吹錬用ノズルは、内径を36mm、個数を4個とした。
(2) Blowing conditions As the top blowing lance, one having four Laval nozzles having a diameter of 36 mm and an inclination angle of 6 ° was used as a nozzle for blowing at the tip. As shown in Table 3, the oxygen flow rate for blowing was constant at 8000 Nm 3 / hr. The blowing time was 8 to 11 minutes. The powder refining agent was supplied under the conditions of a powdered quicklime (powder refining agent) supply speed of 300 kg / min and a powdery quicklime blowing time of 5 minutes from 1.5 minutes after the start of blowing. Moreover, the nozzle for blowing was 36 mm in inner diameter, and the number was four.

(3)地金溶解条件
また、上吹きランスには、吹錬用ノズルから鉛直方向に向かってランス側壁上部の高さの異なる複数箇所に地金溶解用ノズルを設置した。吹錬中の地金溶解用ノズルは、炉体との位置関係が、前記図6中の炉体傾斜部下端9、炉体傾斜部中央部10、炉口部(炉体傾斜部最上部)11の高さの3箇所となるように設置した。各設置箇所における吹錬中の地金溶解用ノズルの個数、形状、内径およびノズル出口と転炉内壁との距離は、前記表3の本発明例3に示す通りとした。そして、地金溶解用ノズルから、炉内壁面に付着した地金に向けて地金溶解用酸素をほぼ水平に噴射し、付着地金を除去する吹錬を行った。
(3) Metal Melting Conditions In the top blowing lance, metal melting nozzles were installed at a plurality of locations having different heights at the upper part of the lance side wall in the vertical direction from the nozzle for blowing. The nozzle for melting the metal during blowing is in a positional relationship with the furnace body, the furnace body inclined part lower end 9 in FIG. 6, the furnace body inclined part central part 10, the furnace port part (furnace body inclined part uppermost part). It was installed to be 3 places at 11 height. The number, shape, inner diameter, and the distance between the nozzle outlet and the converter inner wall of the nozzle for melting metal during blowing at each installation location were as shown in Example 3 of the present invention in Table 3. And from the nozzle for melt | dissolving a bullion, oxygen for melt | dissolving a bullion was injected almost horizontally toward the bullion adhering to the inner wall surface of the furnace, and blowing was performed to remove the deposited bullion.

地金溶解用酸素の噴射期間は、粉状生石灰(粉体精錬剤)の供給期間に一致させることを基本的な実施態様とした。また、その前後の期間には、窒素を流しておいた。   The basic embodiment is that the injection period of the metal melting oxygen is set to coincide with the supply period of powdered quicklime (powder refining agent). Further, nitrogen was allowed to flow during the period before and after that.

2.試験結果
この吹錬操業を100ch(チャージ)行って、20ch程度毎に炉内壁面への地金の付着状況を測定した。その結果、付着地金の厚さには有意な変化が見られなかった。同時に、炉壁耐火物の溶損状況も測定したところ、従来の操業と同様に、100ch程度の吹錬では実質的に溶損はほとんどない状態であることが確認できた。
2. Test result This blowing operation was performed for 100 ch (charge), and the adhesion state of the metal on the inner wall surface of the furnace was measured every 20 ch. As a result, there was no significant change in the thickness of the adhered metal. At the same time, when the erosion status of the furnace wall refractory was also measured, it was confirmed that there was virtually no erosion in about 100 ch blowing as in the conventional operation.

本発明の転炉内付着地金の除去方法によれば、生石灰などCaOを主成分とする粉体精錬剤を酸素と共に溶銑に吹き付ける転炉吹錬において、炉壁耐火物の損耗を抑制しつつ、効果的に炉内付着地金を除去することが可能であり、転炉の生産性を大幅に向上させることができる。   According to the method for removing metal in the converter of the present invention, in the converter blowing in which a powder refining agent mainly composed of CaO such as quick lime is sprayed on the hot metal together with oxygen, the wear of the furnace wall refractory is suppressed. Therefore, it is possible to effectively remove the ingot in the furnace, and the productivity of the converter can be greatly improved.

1、1a:溶銑、 2:精錬剤、 3、3a:転炉、 4、4a:上吹きランス、
5、5a:吹錬用ノズル、 6、6a:地金溶解用ノズル、 7、7a:炉内壁面、
8、8a:付着地金、 9、9a:炉体傾斜部下端、
10、10a:炉体傾斜部中央部、 11、11a:炉口部、
12、12a:炉体直胴部、 13、13a:炉体傾斜部
1, 1a: hot metal, 2: refining agent, 3, 3a: converter, 4, 4a: top blowing lance,
5, 5a: Nozzle for blowing, 6, 6a: Nozzle for melting metal, 7, 7a: Wall surface of furnace
8, 8a: Adhesion metal, 9, 9a: Lower end of furnace body inclined portion,
10, 10a: furnace body inclined part central part, 11, 11a: furnace port part,
12, 12a: furnace body straight body part, 13, 13a: furnace body inclined part

Claims (2)

溶銑を転炉型精錬炉に装入後、側壁に地金溶解用ノズルを設置した上吹きランスを該精錬炉に挿入して、該上吹きランスの先端に設置した吹錬用ノズルより粉体精錬剤を吹錬用酸素と共に溶銑に吹き付けて脱燐する溶銑予備脱燐吹錬において、
前記粉体精錬剤の吹付け期間中には前記側壁に設置した地金溶解用ノズルから地金溶解用酸素を水平方向に噴射させ、
前記粉体精錬剤の吹付け終了から前記吹錬用酸素の吹付け終了までは、前記側壁に設置した地金溶解用ノズルが閉塞しないように該地金溶解用ノズルからパージガスを流し続けること
を特徴とする転炉内付着地金の除去方法。
After charging the hot metal into the converter type refining furnace, insert the upper blowing lance with the metal melting nozzle on the side wall into the refining furnace, and the powder from the blowing nozzle installed at the tip of the upper blowing lance In hot metal preliminary dephosphorization blowing in which a refining agent is sprayed on hot metal together with oxygen for blowing to dephosphorize,
During the spraying period of the powder refining agent, the metal melting oxygen is sprayed horizontally from the metal melting nozzle installed on the side wall,
From the end of the spraying of the powder refining agent to the end of the spraying of the oxygen for blowing, the purge gas continues to flow from the metal melting nozzle so as not to block the metal melting nozzle installed on the side wall. A feature of the method for removing metal adhering to the converter.
前記転炉型精錬炉が上部に炉体傾斜部を有し、
前記上吹きランスの側壁には地金溶解用ノズルを高さの異なる複数の位置に設置させ、
該地金溶解用ノズルの出口と転炉壁面との距離が最も大きい位置における地金溶解用ノズルの内径をRo(mm)、該地金溶解用ノズルの出口と転炉壁面との距離をDo(mm)とし、
地金溶解用ノズルの出口と転炉壁面との距離が最も大きい位置における地金溶解用ノズルの上方の、前記炉体傾斜部の高さ位置における地金溶解用ノズルの内径をRi(mm)、該地金溶解用ノズルの出口と転炉壁面との距離をDi(mm)とした場合、
Ro、DoとRi、Diとの関係が下記(1)式を満たす範囲になるように地金溶解用ノズルが設置されている上吹きランスを用いて前記溶銑予備脱燐吹錬を行うこと
を特徴とする請求項1に記載した転炉内付着地金の除去方法
Ro・(Di/Do)≦Ri≦Ro …(1)
The converter type refining furnace has a furnace body inclined part at the top,
On the side wall of the top blowing lance, nozzles for melting the metal are installed at a plurality of positions having different heights,
The inner diameter of the metal melting nozzle at the position where the distance between the outlet of the metal melting nozzle and the converter wall is the largest is Ro (mm), and the distance between the outlet of the metal melting nozzle and the converter wall is Do. (Mm)
Ri (mm) is the inner diameter of the nozzle for melting the bullion at the height position of the inclined section of the furnace body above the nozzle for melting the bullion at the position where the distance between the outlet of the nozzle for melting the bullion and the wall surface of the converter is the largest. When the distance between the outlet of the metal melting nozzle and the converter wall surface is Di (mm),
The hot metal preliminary dephosphorization blowing is performed using an upper blowing lance in which a metal melting nozzle is installed so that the relationship between Ro, Do and Ri, Di satisfies the following formula (1): The removal method of the adhesion metal in the converter according to claim 1, wherein Ro · (Di / Do) ≦ Ri ≦ Ro (1)
JP2010042243A 2010-02-26 2010-02-26 Method for removing metal in converter Pending JP2011179041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010042243A JP2011179041A (en) 2010-02-26 2010-02-26 Method for removing metal in converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010042243A JP2011179041A (en) 2010-02-26 2010-02-26 Method for removing metal in converter

Publications (1)

Publication Number Publication Date
JP2011179041A true JP2011179041A (en) 2011-09-15

Family

ID=44690870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010042243A Pending JP2011179041A (en) 2010-02-26 2010-02-26 Method for removing metal in converter

Country Status (1)

Country Link
JP (1) JP2011179041A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209746A (en) * 2012-03-01 2013-10-10 Jfe Steel Corp Method for refining molten iron in converter type refining furnace
CN108251596A (en) * 2018-04-11 2018-07-06 北京科技大学 A kind of fixed converter tapping hole dual-nozzle configuration
CN108870991A (en) * 2018-05-21 2018-11-23 苏州洋紫瑞信息科技有限公司 A kind of waste gas of industrial kiln and furnace environment protection treating device based on water leaching purification techniques

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140525A (en) * 1997-11-10 1999-05-25 Nkk Corp Converter blowing method restraining deposition of metal of furnace opening hole part and side wall in furnace and lance device for converter
JP2000096119A (en) * 1998-09-18 2000-04-04 Nkk Corp Blow-refining method for restraining sticking of metal in converter type refining furnace
JP2003213318A (en) * 2002-01-28 2003-07-30 Sumitomo Metal Ind Ltd Lance for refining
JP2007224388A (en) * 2006-02-24 2007-09-06 Sumitomo Metal Ind Ltd Method for treating molten iron
JP2008138271A (en) * 2006-12-05 2008-06-19 Jfe Steel Kk Refining method in converter-type refining furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140525A (en) * 1997-11-10 1999-05-25 Nkk Corp Converter blowing method restraining deposition of metal of furnace opening hole part and side wall in furnace and lance device for converter
JP2000096119A (en) * 1998-09-18 2000-04-04 Nkk Corp Blow-refining method for restraining sticking of metal in converter type refining furnace
JP2003213318A (en) * 2002-01-28 2003-07-30 Sumitomo Metal Ind Ltd Lance for refining
JP2007224388A (en) * 2006-02-24 2007-09-06 Sumitomo Metal Ind Ltd Method for treating molten iron
JP2008138271A (en) * 2006-12-05 2008-06-19 Jfe Steel Kk Refining method in converter-type refining furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209746A (en) * 2012-03-01 2013-10-10 Jfe Steel Corp Method for refining molten iron in converter type refining furnace
CN108251596A (en) * 2018-04-11 2018-07-06 北京科技大学 A kind of fixed converter tapping hole dual-nozzle configuration
CN108251596B (en) * 2018-04-11 2023-08-25 北京科技大学 Fixed converter tapping hole double-nozzle structure
CN108870991A (en) * 2018-05-21 2018-11-23 苏州洋紫瑞信息科技有限公司 A kind of waste gas of industrial kiln and furnace environment protection treating device based on water leaching purification techniques

Similar Documents

Publication Publication Date Title
JP6421732B2 (en) Converter operation method
JP2011179041A (en) Method for removing metal in converter
JP2018184645A (en) Slag outflow prevention apparatus
JP5239596B2 (en) Converter operation method
JP6421731B2 (en) Converter operation method
JP4737176B2 (en) Method for controlling adhesion of metal in the refining furnace
JP5915568B2 (en) Method of refining hot metal in converter type refining furnace
JP6604460B2 (en) Converter operation method
JP5929632B2 (en) Converter refining method
JP4979514B2 (en) Hot metal dephosphorization method
JP4016500B2 (en) Blasting method for suppressing metal adhesion in converter refining furnace
JP2018024911A (en) Method for melting bullion adhered in ladle in molten iron preliminary treatment
JP2000096121A (en) Blow-refining method for restraining sticking of metal in converter type refining furnace
JP2009174029A (en) Method for operating converter
JP2007046116A (en) Furnace body of converter
JP2000096122A (en) Operation method for restraining sticking of metal in refining furnace
TWI700373B (en) Blowing method in converter
JP5729120B2 (en) Operation method of bottom blow converter
JP2002115007A (en) Structure for inner wall surface at lower part in blast furnace
JPH11140525A (en) Converter blowing method restraining deposition of metal of furnace opening hole part and side wall in furnace and lance device for converter
JP4016501B2 (en) Blasting method for suppressing metal adhesion in converter refining furnace
JP5488025B2 (en) Melting method of converter furnace deposit metal
JP5282539B2 (en) Hot phosphorus dephosphorization method
JP2016180142A (en) Molten iron preliminary treatment method
JP3733013B2 (en) Hot metal dephosphorization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140422