WO2010026779A1 - ホイールの製造方法及びホイール - Google Patents

ホイールの製造方法及びホイール Download PDF

Info

Publication number
WO2010026779A1
WO2010026779A1 PCT/JP2009/004419 JP2009004419W WO2010026779A1 WO 2010026779 A1 WO2010026779 A1 WO 2010026779A1 JP 2009004419 W JP2009004419 W JP 2009004419W WO 2010026779 A1 WO2010026779 A1 WO 2010026779A1
Authority
WO
WIPO (PCT)
Prior art keywords
forging
wheel
billet
forged
pressure
Prior art date
Application number
PCT/JP2009/004419
Other languages
English (en)
French (fr)
Inventor
小野光太郎
餅川昭二
Original Assignee
ワシ興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ワシ興産株式会社 filed Critical ワシ興産株式会社
Publication of WO2010026779A1 publication Critical patent/WO2010026779A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/28Making machine elements wheels; discs
    • B21K1/34Making machine elements wheels; discs wheels with spokes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • B21J1/025Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough affecting grain orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/28Making machine elements wheels; discs
    • B21K1/38Making machine elements wheels; discs rims; tyres

Definitions

  • the present invention relates to a wheel manufacturing method and a wheel.
  • a method of manufacturing such a wheel for example, a method of manufacturing a light alloy wheel in which a wheel composed of a disk surface, an outer rim, and an inner rim is integrally formed by hot die forging using a light alloy material is known.
  • the aluminum alloy is forged in a road wheel having a hub portion to which an axle is mounted, a disc portion having a design surface located around the hub portion, and a rim portion formed integrally with the periphery of the disc portion.
  • An aluminum alloy forged road wheel is known (see, for example, Patent Document 3).
  • a structure control method for a magnesium alloy having a strain processing step for strain processing a magnesium alloy and a recrystallization step for heat recrystallization at a recrystallization temperature (see, for example, Patent Document 4). ).
  • an aluminum rim-like material close to the thickness of the center part of the wheel disk part is used, and the outer rim part and the inner rim part are molded between the upper and lower molds of the hammer forging equipment.
  • a method of using an aluminum wheel is known (see, for example, Patent Document 5).
  • a method of molding a cup-shaped product having irregularities at the bottom by a backward extrusion method for example, see Patent Document 6
  • a method of forming a forging material by casting and extrusion forging for example, see Patent Document 7. It has been known.
  • cast billet a cast billet
  • the hub portion has a particularly large crystal grain size of the metal composition in the conventional wheel manufacturing method.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a wheel manufacturing method and a wheel capable of manufacturing a wheel having excellent mechanical strength and uniform mechanical strength. .
  • the inventors of the present invention have intensively studied to solve the above-mentioned problem, but do not forge the conventional cast billet, but press and compress the forged billet once to a predetermined size to solve the above problem. The inventors have found that this can be solved, and have completed the present invention.
  • the present invention includes (1) a preparation step in which a light metal alloy is melted to be a molten raw material, a casting step in which the molten raw material is cast into a cast billet, and a forging ratio of the cast billet is 3.5 or more.
  • a pre-forging step in which the forged billet is pressure-compressed to form a forged billet a main forging step in which the forged billet is pressure-forged with a mold to form a pre-wheel, a heat treatment step for heat-treating the pre-wheel, And a molding process for machining the wheel.
  • the present invention provides the method for producing a wheel according to the above (1), wherein (2) the main forging step is a step of subjecting the forging billet to one to multiple (multiple times) pressure forging to form a pre-wheel. Exist.
  • the present invention resides in (3) the method for manufacturing a wheel according to (1) or (2) above, wherein the forged billet has a forged line.
  • the present invention resides in (4) the method of manufacturing a wheel according to any one of the above (1) to (3), wherein the pressure compression is performed by hermetic forging.
  • the present invention resides in (5) the method of manufacturing a wheel according to any one of (1) to (4), wherein the pressure forging is performed by rotary forging, closed forging, swing forging, or free forging. .
  • the cast billet is pressure-compressed in one direction to form a pre-forged billet, and the pre-forged billet is further pressure-compressed in a direction different from the pressure-compressed direction and forged.
  • the present invention resides in (7) the method of manufacturing a wheel according to any one of (1) to (6) above, wherein the machining includes a spinning process, and the spinning process is performed.
  • the pressure compression is performed under a temperature condition of 300 to 550 ° C. and a pressure condition of 9.8 ⁇ 10 3 kN to 88.2 ⁇ 10 3 kN. It exists in the manufacturing method of the wheel as described in any one.
  • the present invention resides in (9) the method for manufacturing a wheel according to any one of (1) to (8) above, wherein the light metal alloy contains 2 to 6 mass% of calcium.
  • the present invention resides in (10) the method for manufacturing a wheel according to any one of (1) to (9) above, wherein the wheel is for a vehicle.
  • the present invention resides in (11) the method for manufacturing a wheel according to any one of (1) to (9) above, wherein the wheel is for a flying object part.
  • the present invention provides (12) a wheel obtained by the method for manufacturing a wheel according to any one of (1) to (9) above, comprising a disk portion and an outer rim provided on the periphery of the disk portion. And the inner rim portion, and the disc portion, the outer rim portion, and the inner rim portion are in an integrated wheel.
  • the present invention provides (13) a wheel obtained by the method for manufacturing a wheel according to any one of (1) to (9) above, comprising a disk portion and an outer rim provided on the periphery of the disk portion. And a wheel having an inner rim portion attached to an integrated disc portion and an outer rim portion.
  • the present invention provides (14) a wheel obtained by the method for manufacturing a wheel according to any one of (1) to (9) above, comprising a disk portion and an outer rim provided on the periphery of the disk portion. And a wheel having an outer rim portion and an inner rim portion attached to the disk portion.
  • the present invention resides in the wheel according to any one of (12) to (15), wherein (16) the disk portion, the outer rim portion, and the inner rim portion all have a forged line.
  • the main feature is that it includes a preliminary forging step in which a cast billet is compressed and compressed to form a forged billet. Even if it is formed into a shape and only partially stretched, the metal crystal particles of the metal structure are refined at the stage of the forging billet, so that a wheel having a fine crystal grain size of the metal crystal particles can be obtained. For this reason, a wheel having a sufficiently uniform mechanical strength can be obtained.
  • the pressure / compression training ratio is 3.5 or more. With the value of the forging ratio as a boundary, the formation of fine particles of the light metal alloy is rapidly promoted.
  • a wheel having excellent mechanical strength and uniform mechanical strength can be manufactured. Moreover, since the mechanical strength of the wheel is excellent, it is possible to prevent a breakage accident due to a decrease in strength due to machining.
  • the main forging step is performed by applying multiple press forging (for example, first press forging, second press forging, and third press forging to the forged billet.
  • multiple press forging for example, first press forging, second press forging, and third press forging to the forged billet.
  • a wheel having more uniform mechanical strength can be manufactured.
  • a wheel with more uniform mechanical strength can be manufactured when this forging process is a process which gives the press forging of 1 step
  • the obtained wheel when the forged billet has a forged streamline on the metal structure, the obtained wheel also has the forged streamline, so that the mechanical strength is reliably improved. That is, in manufacturing a wheel having an uneven shape, there are a portion that is strongly pressure-forged and a portion that is not pressure-forged during the main forging step. For this reason, when a conventional cast billet is used, a portion that is not pressure-forged has no forging line, and the mechanical strength becomes insufficient. On the other hand, as described above, when a forged billet having a forged line is used, even a portion that is not pressure-forged has a forged line, so that the mechanical strength is further improved.
  • the pressure compression in the preliminary forging step is by sealed hermetic forging, it is ensured that the forged billet has a shape in which the periphery of the middle part is swollen (so-called drum shape). Can be suppressed.
  • the pressure compression is preferably performed at a temperature of 300 to 550 ° C. and a pressure condition of 9.8 ⁇ 10 3 kN to 88.2 ⁇ 10 3 kN.
  • the cast billet in the preliminary forging step, is pressure-compressed in one direction to form a pre-forged billet, and further compressed and compressed in a direction different from the direction in which the pre-forged billet is compressed.
  • the proportion of the structure having a small crystal grain size in the entire metal crystal particles of the forged billet increases. For this reason, it is possible to manufacture a wheel having higher mechanical strength and more uniform mechanical strength.
  • the mechanical processing includes spinning processing, and when the spinning processing is performed, fine metal crystal particles are maintained, so that a wheel with higher mechanical strength can be manufactured.
  • the heat resistance of the obtained wheel is improved.
  • the mechanical strength is excellent and the mechanical strength can be uniform.
  • the average particle diameter based on the cutting method of JIS H0542 of at least one metal crystal particle of the disk portion, the outer rim portion, and the inner rim portion is 30 ⁇ m or less. , Both preferably have forged lines.
  • FIG. 1 is a flowchart showing each step of the wheel manufacturing method according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing a cast billet and a forged billet in the wheel manufacturing method according to the first embodiment.
  • FIG. 3 is a graph showing the relationship between the forging ratio and the tensile strength, and the forging ratio and the elongation using an A2014-based light alloy.
  • FIG. 4 is an explanatory diagram showing a state when the cast billet before pressure compression is made into a forged billet by hermetic forging in the wheel manufacturing method according to the first embodiment.
  • FIG. 5A is a schematic view showing a main forging step in the method for manufacturing a wheel according to the first embodiment, and FIG.
  • FIG. 5B is a cross-sectional view showing a pre-wheel obtained by the step (a).
  • 6A is a cross-sectional view showing a first pre-wheel obtained by the wheel manufacturing method according to the first embodiment
  • FIG. 6B is a cross-section of a rim-equipped pre-wheel that has been subjected to spinning processing. It is a figure and (c) is sectional drawing of the wheel which gave the drilling process to it.
  • FIG. 7A is a front view showing the wheel according to this embodiment
  • FIG. 7B is a cross-sectional view taken along the line I-I ′ of FIG.
  • FIG. 8 is a schematic view showing a main forging step in the method for manufacturing a wheel according to the second embodiment.
  • FIGS. 10A to 10D are a top view and a side view showing the pre-forging process in the wheel manufacturing method according to the third embodiment.
  • 11 (a) to 11 (e) are schematic views for explaining the effect when the cast billet is compressed and compressed in one direction and further compressed and compressed in different directions.
  • FIG. 12 (a) to 12 (d) show in principle the method of pressure-compressing by die forging so that the cast billet having a high height does not buckle in the wheel manufacturing method according to another embodiment.
  • FIG. 13 is an explanatory diagram showing a state in which both the forged billet and the buckling prevention tool are rapidly cooled with cold water or the like in the wheel manufacturing method according to another embodiment, and both are separated.
  • FIG. 14A is a graph showing the relationship between the forging ratio of Examples 1 to 7 and the number of metal crystal particles
  • FIG. 14B is the graph of the forging ratio of Examples 8 to 14 and the number of metal crystal particles.
  • (C) is a graph showing the relationship between the forging ratio of Examples 16 to 23 and the number of metal crystal particles.
  • FIG. 15 is an electron micrograph obtained by enlarging the approximate center portion of the forged billet of Example 1 10 times.
  • FIG. 16 is an electron micrograph obtained by enlarging the approximate center portion of the forged billet of Example 2 10 times.
  • FIG. 17 is an electron micrograph of an approximately central portion of the forged billet of Example 3 magnified 10 times.
  • FIG. 18 is an electron micrograph of the substantially center portion of the forged billet of Example 4 enlarged 10 times.
  • FIG. 19 is an electron micrograph of an approximately center portion of the forged billet of Example 5 magnified 10 times.
  • FIG. 20 is an electron micrograph obtained by enlarging the approximate center portion of the forged billet of Example 6 10 times.
  • FIG. 21 is an electron micrograph obtained by enlarging the approximate center portion of the forged billet of Example 7 by 10 times.
  • FIG. 22 is an electron micrograph of the forged billet of Example 16 in which the approximate center portion is magnified 20 times.
  • FIG. 23 is an electron micrograph of the forged billet of Example 17 with the approximate center portion magnified 20 times.
  • FIG. 24 is an electron micrograph of the forged billet of Example 18 with the approximate center portion magnified 20 times.
  • FIG. 25 is an electron micrograph of the forged billet of Example 19 with the approximate center portion magnified 20 times.
  • FIG. 26 is an electron micrograph of the approximate center portion of the forged billet of Example 20 magnified 20 times.
  • FIG. 27 is an electron micrograph obtained by enlarging the approximate center portion of the forged billet of Example 21 by 20 times.
  • FIG. 28 is an electron micrograph of the approximate center portion of the forged billet of Example 22 magnified 20 times.
  • FIG. 29 is an electron micrograph of the forged billet of Example 23 enlarged at a magnification of 20 times.
  • FIG. 30 is an electron micrograph of the approximate center portion of the cast billet of Comparative Example 1 magnified 10 times.
  • FIG. 31 is an electron micrograph of the approximate bill portion of Comparative Example 2 enlarged 20 times.
  • FIG. 32 is an electron micrograph of the approximate center portion of the forged billet of Example 27 magnified 10 times.
  • FIG. 33 is an electron micrograph of the approximate center portion of the forged billet of Example 28 magnified 10 times.
  • FIG. 34 is an electron micrograph of the approximate center portion of the forged billet of Example 29 magnified 10 times.
  • FIG. 35 is an electron micrograph obtained by enlarging the approximate center portion of the forged billet of Example 30 by 10 times.
  • FIG. 36 is an electron micrograph of the approximate center portion of the forged billet of Example 31 magnified 10 times.
  • FIG. 37 is an electron micrograph of the approximate center portion of the forged billet of Example 32 magnified 10 times.
  • FIG. 38 is an electron micrograph of the approximate center portion of the hub portion of Example 33 magnified 10 times.
  • FIG. 39 is an electron micrograph obtained by enlarging the substantially central part of the spoke part of Example 33 by 10 times.
  • FIG. 40 is an electron micrograph of the approximate center portion of the outer rim portion of Example 33 magnified 10 times.
  • FIG. 41 is an electron micrograph of the approximate center portion of the inner rim portion of Example 33 magnified 10 times.
  • FIG. 42 is an electron micrograph of the approximate center portion of the hub portion of Example 34 magnified 20 times.
  • FIG. 43 is an electron micrograph of the approximate center portion of the spoke part of Example 34 enlarged 20 times.
  • FIG. 44 is an electron micrograph of the approximate center portion of the outer rim portion of Example 34 magnified 20 times.
  • FIG. 45 is an electron micrograph of the approximate center portion of the inner rim portion of Example 34 magnified 20 times.
  • FIG. 46 is an electron micrograph of the approximate center portion of the hub portion of Comparative Example 3 magnified 10 times.
  • FIG. 47 is an electron micrograph of the substantially central portion of the spoke portion of Comparative Example 3 magnified 10 times.
  • FIG. 48 is an electron micrograph of the approximate center portion of the outer rim portion of Comparative Example 3 magnified 10 times.
  • FIG. 49 is an electron micrograph of the approximate center portion of the inner rim portion of Comparative Example 3 magnified 10 times.
  • FIG. 50 is an electron micrograph of the approximate center portion of the hub portion of Comparative Example 4 magnified 10 times.
  • FIG. 51 is an electron micrograph of the approximate center portion of the spoke portion of Comparative Example 4 magnified 10 times.
  • FIG. 52 is an electron micrograph of the approximate center portion of the outer rim portion of Comparative Example 4 magnified 10 times.
  • FIG. 53 is an electron micrograph of the approximate center portion of the inner rim portion of Comparative Example 4 magnified 10 times.
  • FIG. 50 is an electron micrograph of the approximate center portion of the hub portion of Comparative Example 4 magnified 10 times.
  • FIG. 51 is an electron micrograph of the approximate center portion of the spoke portion of Comparative Example 4 magnified 10 times.
  • FIG. 52 is an electron micrograph of the approximate center portion of the outer rim portion of Comparative Example 4 magnified 10 times.
  • FIG. 53 is an electron micrograph of the approximate center portion of
  • FIG. 54 is a graph showing the results obtained by measuring the tensile strength when the spokes of the wheels obtained in Examples 35 to 40 were heated to 20 ° C., 100 ° C., 200 ° C., and 300 ° C.
  • FIG. 55 is a graph showing a result of measuring 0.2% proof stress when heated to 20 ° C., 100 ° C., 200 ° C., and 300 ° C. with respect to the spoke portions of the wheels obtained in Examples 35 to 40. is there.
  • 56 (a) to 56 (e) are diagrams for explaining a method of measuring the average particle diameter.
  • FIG. 1 is a flowchart showing each step of the wheel manufacturing method according to the first embodiment.
  • the wheel manufacturing method according to the first embodiment includes a preparation step S1 for melting a light metal alloy to form a molten raw material, a casting step S2 for casting the molten raw material to form a cast billet, A pre-forging step S3 in which the billet is pressure-compressed in the axial direction to form a forged billet, a main forging step S4 in which the forged billet is pressure-forged with a die to form a pre-wheel, and a heat treatment step S5 in which the pre-wheel is heat-treated And a molding step S6 for machining the pre-wheel.
  • the wheel manufacturing method according to the first embodiment can manufacture a wheel having excellent mechanical strength and uniform mechanical strength.
  • the preparation step S1 is a step of melting a light metal alloy to obtain a molten raw material.
  • the light metal alloy examples include aluminum (Al) and magnesium (Mg).
  • the hybrid alloy which consists of the aluminum part which consists of aluminum, and the magnesium part which consists of magnesium may be sufficient. In these cases, a lightweight wheel is obtained. Further, in order to improve the performance of such a light metal alloy, an additive metal can be added.
  • the additive metal is preferably at least one selected from the group consisting of Ca, Cr, Cu, Fe, Mg, Mn, Si, Sr, and Y.
  • the main metal is Mg, it is preferably at least one selected from the group consisting of Al, Ca, Cr, Cu, Fe, Mn, Si, Sr and Y.
  • the performance of the wheel itself can be improved based on the physical properties of the added metal.
  • the cast billet described later is a light alloy.
  • the additive metal is preferably calcium (Ca).
  • the added amount of calcium is 2 to 6% by mass, the heat resistance of the obtained wheel is improved.
  • the light metal alloy contains 2 to 6% by mass of calcium.
  • the content ratio of calcium is less than 2% by mass, recrystallization is difficult to proceed and fine crystals tend not to be obtained as compared with the case where the content ratio is in the above range, and the content ratio of calcium is 6 When it exceeds mass%, compared with the case where a content rate exists in the said range, it exists in the tendency for a homogeneous addition alloy of calcium not to be obtained.
  • the light metal alloy examples include aluminum (1000 series), magnesium, Al—Mn series (3000 series), Al—Si series (4000 series), Al—Mg series (5000 series), and Al—Mg—Si series. (6000 series), Al—Zn—Mg series (7000 series), Al—Cu—Mg series (2000 series), Al—Cu—Si series, Al—Cu—Mg—Si series and the like.
  • the Al—Mg—Si system is preferable from the viewpoint of versatility.
  • the light metal alloy is heated and melted at, for example, 800 ° C. or higher, and an additional metal is added to the light metal alloy, if necessary, to obtain a liquid molten raw material.
  • the casting step S2 is a step in which the above-described molten raw material is cast into a cylindrical cast billet under an inert gas atmosphere.
  • Examples of the inert gas include nitrogen and argon. That is, by removing oxygen, the molten raw material is prevented from being oxidized.
  • the casting method is not particularly limited, and examples include a sand mold casting method, a gypsum casting method, a precision casting method, a mold casting method, a centrifugal casting method, and a continuous casting method.
  • the casting method is preferably a continuous casting method. In this case, a forged billet having a more uniform crystal grain size of the metal crystal particles can be obtained in the preliminary forging step S3 described later.
  • the molten material is poured into a casting mold at a speed of 65 to 90 mm / min.
  • the pouring speed is less than 65 mm / min, compared to the case where the speed is within the above range, in the preliminary forging step S3 described later, the crystal grain size of the metal crystal particles tends to be non-uniform.
  • the pouring speed exceeds 90 mm / min, there is a risk of breakage during casting billet production in the pre-forging step S3 described later, compared to the case where the speed is within the above range.
  • the molten raw material poured into the casting mold is homogenized, for example, by being heated at 550 ° C. or higher for 6 hours or longer. And after that, a cylindrical cast billet is obtained by cooling.
  • the cooling is preferably rapid cooling. In this case, there is an advantage that crystal grains become fine.
  • the size of the cast billet obtained is preferably such that the length / diameter ratio is 2.0 to 2.5. In this case, it is possible to suppress the occurrence of a buckling phenomenon in which the cast billet is bent suddenly when the cylindrical cast billet is pressed in the axial direction.
  • the preliminary forging step S3 is a step of compressing and compressing the cast billet in the axial direction to obtain a cylindrical forged billet. That is, it is a step of reducing the height while pressing and compressing the cast billet from above and below to keep the cylindrical shape.
  • FIG. 2 is a cross-sectional view showing a cast billet and a forged billet in the wheel manufacturing method according to the first embodiment.
  • the forged billet 2 is manufactured from the cast billet 1 shown in FIG.
  • the forged billet 2 includes a forged extruded product and a pultruded product.
  • the forging ratio in the pressure compression in the preliminary forging step S3 is 3.5 or more.
  • the forging ratio means a value represented by “height H1 of casting billet 1” ⁇ “height H2 of forging billet 2” shown in FIG. That is, a value represented by “height H1 in the direction in which the cast billet is compressed under pressure (before pressure compression)” ⁇ “height H2 in the direction in which the forged billet is compressed under pressure (after pressure compression)”. Means.
  • the particle size of the metal crystal particles becomes extremely fine as the forging ratio by pressure compression increases from 3.5. Since the forged billet 2 is an intermediate product, the forging ratio is expected to further increase when the forged product is forged using the forged billet 2.
  • the forging ratio when the light metal alloy is an aluminum alloy is more preferably 4.0 or more. Since the forging ratio is 4.0, the tendency to refine the particle size of the metal crystal particles is reduced.
  • the forging line described above can be sufficiently confirmed when the forging ratio is 3.4 or more.
  • the particle size of the metal crystal particles is extremely refined as the forging ratio by pressure compression increases from 3.5. Since the forged billet 2 is an intermediate product, the forging ratio is expected to further increase when the forged product is forged using the forged billet 2.
  • the forging ratio when the light metal alloy is a magnesium alloy is preferably 4.0 or more, more preferably 4.5 or more, and particularly preferably 5.5 or more.
  • the forging line described above can be sufficiently confirmed when the forging ratio is 4.0 or more.
  • the forging ratio is particularly preferably 4.0 or more.
  • FIG. 3 shows a graph of the forging ratio and tensile strength, and the relationship between the forging ratio and elongation, using an A2014-based light alloy cited from the Aluminum Casting Forging Technology Handbook (edited by the Light Metal Association).
  • the L direction is the longitudinal direction of the slab
  • ST is the thickness direction of the slab.
  • the L direction corresponds to the length (axis) direction of the forged billet 2
  • the ST direction corresponds to the diameter direction of the forged billet 2.
  • the training ratio is increased, the training effect is improved, and a product that is homogeneous and excellent in mechanical properties and soundness is obtained.
  • examples of the pressure compression method include free forging, die forging, swing forging, extrusion forging, rotary forging, and closed forging (including closed forging).
  • die forging includes press forging and hammer forging.
  • partial forging can be used in which the casting billet 1 is rotated by a certain angle and the operation of partially pressing the billet 1 is repeated.
  • pressure compression is based on closed forging.
  • FIG. 4 is an explanatory diagram showing a state when the cast billet before pressure compression is made into a forged billet by hermetic forging in the wheel manufacturing method according to the first embodiment.
  • the metal structure in the closed forging, when the cast billet 1 is pressed and compressed in the axial direction, the metal structure can be prevented from spreading in the lateral direction. That is, by adding the lateral restraint force P, the forged billet 2 can be prevented from becoming a drum shape swelled in the middle part, and the crystal grain size of the metal crystal particles can be refined.
  • the processing conditions at this time may be any of hot forging, warm forging, cold forging, and isothermal forging.
  • the processing conditions are preferably hot forging.
  • the pressure compression is preferably performed at a pressure of 9.8 ⁇ 10 3 kN to 88.2 ⁇ 10 3 kN under a temperature condition of 300 to 550 ° C.
  • the pressure condition corresponds to 1000 to 9000 tons in terms of the thrust scale of a forging machine (press machine).
  • the cast billet 1 is pressure-compressed and then cooled to obtain a cylindrical forged billet 2.
  • the cooling is preferably rapid cooling.
  • the forged billet 2 preferably has forged lines.
  • the forging line means a state of a flow of metal crystal particles generated in a forged product in a metal structure and having a crystal grain size of at least 15 ⁇ m.
  • the flow of the metal structure becomes clearer when the crystal grain size of the metal crystal particles becomes finer than 9 ⁇ m by pressure compression.
  • the resulting wheel When the forged billet 2 has a forged streamline, the resulting wheel also has a forged streamline. As a result, the wheel has a uniform mechanical strength. That is, even if the wheel is a portion where the forged billet 2 is not compression-forged, it has forged lines, so that the mechanical strength is reliably improved.
  • the average particle size of the metal crystal particles of the forged billet 2 is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 15 ⁇ m or less.
  • average particle diameter is a value measured based on the cutting method of JIS H0542. Specifically, in the definition of the evaluation method by the cutting method of JIS H0542, the magnification is determined so that the vertical line, the horizontal line, and the two diagonal lines of the test line intersect at least 50 crystal grains.
  • the field of view of the microscope 1 is set to 660 ⁇ m ⁇ 860 ⁇ m
  • the vertical and horizontal line segments are set to 494.237 ⁇ m
  • the diagonal line segment is set to 741.355 ⁇ m, so that at least 50 or more. It is a value measured so as to intersect with the crystal grains (see FIG. 56).
  • (a) of FIG. 56 is an electron micrograph given as an example of average particle size measurement
  • (b) is a graph showing the relationship between the test line of (a) and the number of capture intersections
  • (c) These are figures which show the example of 1 visual field (660 micrometers x 860 micrometers),
  • (d) and (e) are the measurement examples of the average particle diameter which used (a).
  • the measurement method for one field of view is measurement by the number of supplemental intersection points (the number of grain boundaries on a straight line is manually counted, and the crystal grain size and average grain size are calculated based on the number of grain boundaries). Further, the measurement site is the forged billet and each part of the wheel, both near the center.
  • the forged billet 2 preferably has a tensile strength of 250 MPa or more.
  • the tensile strength is a value measured according to JIS Z 2241.
  • the yield strength of the forged billet 2 is preferably 150 MPa or more.
  • the proof stress is a value measured according to JIS Z 2241.
  • the elongation of the forged billet 2 is preferably 8% or more.
  • the elongation is a value measured according to JIS Z 2241.
  • the forged billet 2 preferably has a Brinell hardness of 65 HB or more.
  • the Brinell hardness is a value measured according to JIS Z 2243.
  • the pre-forging step S3 is performed by pressing and compressing the casting billet 1 in the axial direction to form the columnar forging billet 2, it will be described later. Even if the forging step S4 is performed, a wheel having sufficiently excellent mechanical strength can be obtained.
  • the main forging step S4 is a step in which the forging billet 2 is pressure-forged with a mold to form a wheel. That is, the main forging step S4 is a step of imparting a specific shape such as irregularities to the forged billet 2. By this main forging step S4, the cylindrical forged billet 2 becomes a wheel shape.
  • FIG. 5 is a schematic view showing a main forging step in the method for manufacturing a wheel according to the first embodiment.
  • the main forging step S ⁇ b> 4 includes three stages of pressure forging including a first pressure forging 11, a second pressure forging 12, and a third pressure forging 13.
  • a pre-wheel hereinafter referred to as “first pre-wheel” for convenience
  • first pre-wheel becomes the wheel 3 through a molding process described later.
  • first pressure forging 11, the second pressure forging 12, and the third pressure forging 13 include free forging, die forging, swing forging, extrusion forging, rotary forging, closed forging (closed forging). Are included).
  • die forging includes press forging and hammer forging.
  • partial forging can be used in which the forging billet 2 is rotated by a certain angle and a part of the forging billet 2 is repeatedly pressed.
  • the first pressure forging 11, the second pressure forging 12, and the third pressure forging 13 are preferably rotary forging, closed forging, swing forging, or free forging, and are closed forging. It is more preferable. In this case, it is possible to manufacture the wheel 3 having a more uniform mechanical strength.
  • the first pressure forging 11 is preferably rough die forging
  • the second pressure forging 12 is wasteland forging
  • the third pressure forging 13 is preferably finish forging.
  • the rough die forging is forging in which the entire amount of the forged billet 2 is distributed to the respective required amounts of a hub portion, a spoke portion, and a preliminary member that serves as a rim precursor. Thereby, the outline of the spoke part is formed into a convex shape with a gentle curved surface.
  • the pressing pressure can be reduced.
  • Wasteland molding forging is forging that raises the spoke part more clearly and presses the material of the part that becomes the empty part of the disk part. As a result, the spokes are raised as ribs, and the portions that become empty portions gradually become thinner as webs.
  • the finish molding forging is forging that presses the rising portion of the spoke portion to bring the spoke portion to a predetermined height. In addition, if the spoke part is brought to the height of the completed state at a stretch by wasteland forging, there is a possibility that a sink may occur on the lower side of the rib and a defect may occur in the spoke.
  • the processing conditions at this time may be any of hot forging, warm forging, cold forging, and isothermal forging.
  • the first pressure forging 11, the second pressure forging 12, and the third pressure forging 13 are temperatures of 300 ° C. or higher, preferably 300 to 550 ° C., 9.8 ⁇ 10 3 kN to 88.2 ⁇ 10. It is preferable to apply at a pressure of 3 kN.
  • the forging billet 2 is pressure-forged and then cooled to obtain the pre-wheel 3a.
  • the cooling is preferably rapid cooling.
  • the machine is sufficiently uniform.
  • the wheel 3 having the appropriate strength can be obtained.
  • the heat treatment step S5 is a step of heat treating the third pre-wheel 3c on which the outer rim portion is formed.
  • the heat treatment is performed under T6 conditions based on JIS H0001. Specifically, solution treatment is performed at 500 to 580 ° C. for 3 to 5 hours, quenching is performed for 3 to 7 minutes, and artificial aging treatment is performed at 150 to 200 ° C. for 7 to 9 hours.
  • a light metal alloy is a magnesium alloy, it carries out on T5 conditions based on JISH0001. Specifically, an artificial aging treatment is performed at 300 to 380 ° C. for 1 to 3 hours.
  • the molding step S6 is a step of machining the prewheel 3a.
  • Examples of the machining include spinning, drilling, cutting, and milling.
  • the spinning process is performed by sandwiching the first pre-wheel 3a with a lathe mold, rotating the first pre-wheel 3a, and pressing the roller against the preliminary member 5 to extend the preliminary member 5.
  • an outer rim portion (outer rim) 7 extending in the surface direction of the first pre-wheel 3a and an inner rim portion (inner rim) 8 erected in the direction perpendicular to the periphery of the first pre-wheel 3a. And are formed.
  • FIG. 6A is a cross-sectional view showing a first pre-wheel obtained by the wheel manufacturing method according to the first embodiment
  • FIG. 6B is a cross-section of a rim-equipped pre-wheel that has been subjected to spinning processing. It is a figure and (c) is sectional drawing of the wheel which gave the drilling process to it.
  • the 1st prewheel 3a obtained by main forging process S4 mentioned above is provided with the preliminary
  • the first pre-wheel 3a is sandwiched by a lathe mold and the first pre-wheel 3a is rotated.
  • the outer rim portion extended in the surface direction of the first pre-wheel 3a as shown in FIG. (Outer rim) 7 and an inner rim portion (inner rim) 8 erected in the vertical direction on the periphery of the first pre-wheel 3a are formed.
  • a finishing margin may be formed at the same time.
  • the finishing margin is a portion to be scraped later in order to adjust the dimensions.
  • the above-mentioned spinning processing is given at heating or normal temperature.
  • spinning is applied to the outer rim portion 7 and the inner rim portion 8, fine metal crystal particles are maintained during spinning, so that a wheel with higher mechanical strength can be manufactured.
  • the rim-equipped prewheel 3a ′ in which the outer rim portion 7 and the inner rim portion 8 are formed is drilled at a machining center to form a spoke portion and a pattern. Then, by cutting, the periphery of the rim-equipped prewheel 3a ′ is cut with a lathe, a rim portion is formed, and the entire wheel is cut out and molded by milling, thereby forming (c) in FIG. As shown in FIG. 3, the wheel 3 in which the hollow portion 9 is formed is obtained.
  • the wheel 3 is lighter and has excellent design by forming irregularities and voids. If necessary, chemical surface treatment, plating, shots, painting, and the like may be performed.
  • a hub part described later is formed on the disk part 6 using a multi-axis lathe or the like.
  • the pressing force due to forging can be reduced.
  • the press pressure can be greatly reduced, so even a 22-inch diameter disk can be forged with a 6000-ton class press. In addition, you may give coating etc. as needed.
  • the wheel 3 thus obtained is suitably used, for example, for vehicles, flying object parts such as aircraft.
  • the automobile when it is used for a vehicle, the automobile can be reduced in weight, so that the environmental load caused by gasoline or the like can be reduced and the cost can be reduced.
  • FIG. 7A is a front view showing the wheel according to this embodiment
  • FIG. 7B is a cross-sectional view taken along the line II ′ of FIG.
  • the wheel 3 (multi-piece) according to the present embodiment includes a disk portion 6, and an outer rim portion 7 and an inner rim portion 8 provided on the periphery of the disk portion 6.
  • the wheel 3 is connected to the disk portion 6, the outer rim portion 7 connected to the periphery of the disk portion 6 and extending in the surface direction of the disk portion 6, and the wheel 3 to the periphery of the disk portion 6.
  • an inner rim portion 8 erected vertically with respect to the surface.
  • the disk part 6 is provided with the disk-shaped hub part 6a and the spoke part 10 extended in radial Y shape from this hub part 6a. That is, in the wheel 3, the outer rim portion 7 and the inner rim portion 8 are connected to the tip of the spoke portion 10.
  • the hub portion 6a is preferably a gently curved surface. In this case, since the flow of the raw material at the time of pressing becomes uniform, the training ratio is more equalized.
  • the hub portion 6a has a disk shape having a curved surface whose surface is gently curved, and is provided with a bolt insertion hole 6b for inserting a bolt when the wheel 3 is fixed to the axle with a bolt.
  • an empty portion 9 is provided between the adjacent spoke portions 10.
  • the forging ratio of the wheel 3 to the cast billet 2 is preferably 4.0 or more, and the light metal alloy is a magnesium alloy. In this case, it is preferably 5.5 or more.
  • the total forging ratio is obtained by multiplying the forging ratio of the forged billet 2 with respect to the above-described casting billet 1 by the forging ratio of the wheel 3 with respect to the forged billet 2. That is, the total training ratio is a value represented by “the height H1 of the cast billet 1” ⁇ “the height H3 of the wheel 3”.
  • the height H3 of the wheel 3 is shown in FIG.
  • the wheel height H3 is calculated as an average of the wheel heights in the forged direction.
  • the average particle diameter of the metal crystal particles in at least one portion selected from the disk portion 6, the outer rim portion 7, and the inner rim portion 8 is preferably 30 ⁇ m or less, and preferably 20 ⁇ m or less. More preferably, it is 15 ⁇ m or less. Further, the average particle diameter of the metal crystal particles of the disk portion 6, the outer rim portion 7 and the inner rim portion 8 is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and further preferably 15 ⁇ m or less. preferable.
  • the disk part 6, the outer rim part 7 and the inner rim part 8 preferably all have forged lines. In this case, the mechanical strength is further improved. In addition, as mentioned above, when the forge billet 2 has a forged line, the disk part 6, the outer rim part 7, and the inner rim part 8 also have a forged line.
  • the wheel 3 according to the present embodiment is produced by forging the above-described forged billet 2 to produce the disk portion 6, the outer rim portion 7, and the inner rim portion 8. Therefore, the mechanical strength is excellent and the mechanical strength is uniform. It will be a thing. Further, since the disk portion 6, the outer rim portion 7 and the inner rim portion 8 are integrated (one piece), the wheel 3 has better mechanical strength and more uniform mechanical strength.
  • the wheel manufacturing method according to the second embodiment is the same as the wheel manufacturing method according to the first embodiment, except that the shape of the pre-wheel obtained in the main forging step S4 and the molding method in the molding step S6 are different. .
  • the heat treatment step is the same as the heat treatment step in the wheel manufacturing method according to the first embodiment.
  • the main forging step is a step in which the forging billet 2 is subjected to one-stage pressure forging with a die to form a pre-wheel.
  • the main forging step is a step of imparting a specific shape such as irregularities to the forged billet 2 in one step.
  • FIG. 8A is a schematic view showing a main forging step in the wheel manufacturing method according to the second embodiment
  • FIG. 8B is a cross-sectional view showing a pre-wheel obtained by the step (a).
  • the main forging step includes a first pressure forging 11 ′. That is, the pre-wheel (hereinafter referred to as “second pre-wheel” for convenience) 3b is obtained only through the first pressure forging 11 ′. And the 2nd pre-wheel 3b turns into the wheel 3 by passing through the molding process mentioned later.
  • Specific methods of the first pressure forging 11 ′ include free forging, die forging, swing forging, extrusion forging, rotary forging, and closed forging (including closed forging).
  • die forging includes press forging and hammer forging.
  • partial forging can be used in which the forging billet 2 is rotated by a certain angle and the operation of pressing a part is repeated.
  • 1st press forging 11 ' is closed forging. In this case, it is possible to manufacture the wheel 3 having a more uniform mechanical strength.
  • the first pressure forging 11 ' is a rough die forging.
  • the rough die forging is forging in which the entire amount of the forged billet 2 is distributed to the respective required amounts of the hub portion, the spoke portion, and the preliminary member 5 that serves as the rim precursor.
  • the processing conditions at this time may be any of hot forging, warm forging, cold forging, and isothermal forging. These forging processes are preferably performed at a temperature of 300 ° C. or higher, preferably 300 to 550 ° C. and a pressure of 9.8 ⁇ 10 3 kN to 88.2 ⁇ 10 3 kN.
  • the forging billet 2 is forged by performing forging as described above, and then the wheel 3 is obtained by cooling.
  • the cooling is preferably performed with a fan or the like.
  • the molding process is a process of machining the second pre-wheel 3b.
  • Examples of the machining include spinning, drilling, cutting, and milling.
  • the spinning process is performed by holding the second pre-wheel 3b with a lathe mold, rotating the second pre-wheel 3b, and pressing the roller against the preliminary member 5 to extend the preliminary member 5.
  • an outer rim portion (outer rim) 7 extending in the surface direction of the second pre-wheel 3b and an inner rim portion (inner rim) 8 erected in the vertical direction on the periphery of the second pre-wheel 3b And are formed.
  • a finishing margin may be formed at the same time.
  • FIG. 9A is a cross-sectional view showing a second pre-wheel obtained by the wheel manufacturing method according to the second embodiment
  • FIG. 9B is a cross-section of a rim-equipped pre-wheel that has been subjected to spinning processing. It is a figure and (c) is sectional drawing of the wheel which gave the drilling process to it.
  • the 2nd pre wheel 3b (wheel) is obtained by the main forging process mentioned above.
  • This 2nd prewheel 3b is provided with the preliminary
  • the second pre-wheel 3b is sandwiched between the lathe molds, the second pre-wheel 3b is rotated, the roller is pressed against the preliminary member 5, and the preliminary member 5 is extended, whereby FIG.
  • an outer rim portion (outer rim) 7 extending in the surface direction of the second pre-wheel 3b, and an inner rim portion erected vertically in the peripheral edge of the second pre-wheel 3b (Inner rim) 8 is formed.
  • a finishing margin may be formed at the same time. The finishing margin is a portion to be scraped later in order to adjust the dimensions.
  • the above-mentioned spinning processing is given at heating or normal temperature. For this reason, since the fine metal crystal particles of the outer rim portion 7 and the inner rim portion 8 are maintained during spinning, a wheel with better mechanical strength can be manufactured.
  • 3b ′ a hole is made in the machining center to form a pattern.
  • the periphery of the rim-equipped prewheel 3b ′ and the back side of the disk portion are cut by a lathe to form a spoke portion and a rim portion, and the entire wheel is cut and molded by milling.
  • FIG. 9C the wheel 3 in which the empty portion 9 is formed is obtained.
  • the wheel 3 is the same as the wheel 3 obtained by the wheel manufacturing method according to the first embodiment described above.
  • the wheel manufacturing method according to the third embodiment is the same as the wheel manufacturing method according to the first embodiment except that the preliminary forging process is different.
  • the preliminary forging step is a step in which the cast billet is pressure-compressed in one direction to obtain a pre-forged billet, and the pre-forged billet is further pressure-compressed in a direction different from the direction in which the pre-forged billet is compressed to obtain a forged billet.
  • FIGS. 10A to 10D are a top view and a side view showing the pre-forging process in the wheel manufacturing method according to the third embodiment.
  • a light metal alloy is cast into a cylindrical cast billet 1.
  • This cast billet 1 is pressure-compressed in the axial direction P1 by hermetic forging using a hexagonal column mold to obtain a pre-forged billet 2b shown in FIG.
  • FIG. 10C the obtained pre-forged billet 2b is erected with the side face down.
  • the pre-forged billet 2b is pressure-compressed from the direction P2 different from the axis, that is, the vertical direction, by hermetic forging using a hexagonal column die to obtain a forged billet 2a shown in FIG.
  • the pre-forged billet 2b since the pre-forged billet 2b has a polygonal column shape, the pre-forged billet 2b can be easily positioned with the side surface of the pre-forged billet 2b facing down. That is, it is easy to press and compress in a direction different from the direction in which the pressure is compressed.
  • the forged billet 2a has a history of pressurizing and compressing the cast billet 1 in one direction to form a pre-forged billet 2b and further compressing and compressing the pre-forged billet 2b in a direction different from the direction in which the pre-forged billet 2b is compressed. If it is obtained, the proportion of the structure having a small crystal grain size in the entire metal crystal particles of the forged billet 2a increases. That is, the forged billet obtained by pressure-compressing the cast billet has a smaller crystal grain size due to the flow of the metal structure. In addition, in the forged billet 2a, since it is compressed and compressed a plurality of times in different directions, the metal structure moves in different directions, and the crystal grain size becomes smaller. For this reason, it is possible to manufacture a wheel having higher mechanical strength and more uniform mechanical strength.
  • the metal crystal particles in the middle part are refined (hereinafter referred to as “fine areas”) and the upper and lower ends are made finer.
  • a region that is difficult to be generated (hereinafter referred to as “NG region”) occurs.
  • NG region a region that is difficult to be generated
  • a forge line is generated in the finely divided region in the middle part.
  • FIG. 11A when the cast billet 1 is compressed and compressed, the middle part (so-called central part) becomes a fine region A of crystal grains, and both upper and lower ends become NG regions B. And if it positions in the state which stood down this side, if it compresses and compresses from the upper side again, as shown in FIG.11 (b), a middle part will become the micro area
  • the processing conditions for the closed forging may be any of hot forging, warm forging, cold forging, and isothermal forging. Among these, the processing conditions are preferably hot forging.
  • the pressure compression is preferably performed under a temperature condition of 300 to 550 ° C. and a pressure condition of 9.8 ⁇ 10 3 kN to 88.2 ⁇ 10 3 kN.
  • the forging line is preferably generated by either pressure compression from the casting billet 1 to the pre-forged billet 2b or pressure compression from the pre-forged billet 2b to the forged billet 2a.
  • the forging line is preferably generated by either pressure compression from the casting billet 1 to the pre-forged billet 2b or pressure compression from the pre-forged billet 2b to the forged billet 2a.
  • H1 / H2 forging ratio in pressure compression from the casting billet 1 to the pre-forged billet 2b
  • H1 / H2 forging ratio in pressure compression from the pre-forged billet 2b to the forged billet 2a.
  • it is preferable that any H1 / H2 (forging ratio) is in the same range as the forged billet 2a according to the first embodiment described above.
  • the forged billet 2a is obtained through a main forging process and a molding process in the same manner as the wheel manufacturing method according to the first embodiment described above.
  • the cast billet before pressure compression is formed as a forged billet by hermetic forging.
  • a method of forming a forged billet by free forging without using such closed forging if the forging ratio is increased, the cast billet may buckle, and in order to prevent this buckling, a special buckling prevention tool is used for die forging.
  • the buckling prevention tool for example, a cylindrical shape (that is, a sleeve shape) surrounding the cast billet is employed. This buckling prevention tool is also useful in other high forging ratio forging methods.
  • hermetic forging buckling is prevented by the wall surface of the lower mold.
  • FIGS. 12 (a) to 12 (d) show in principle the method of pressure-compressing by die forging so that the cast billet having a high height does not buckle in the wheel manufacturing method according to another embodiment. It is explanatory drawing.
  • the cylindrical buckling prevention tool 14 is removed from the cast billet 1 as shown in FIG. 12 (b). Insert.
  • a buckling prevention tool 14 having a diameter larger than that of the cast billet 1 is used.
  • the casting billet 1 is pressed and compressed by a certain distance in the vertical direction, a gap is provided in advance between the side surface of the casting billet 1 and the inner surface of the buckling prevention device 14 in consideration of the lateral expansion.
  • the casting billet 1 is arrange
  • the casting billet 1 is pressurized and compressed to a position in contact with the upper end of the buckling prevention tool 14 using the upper mold. For this reason, although the part which protruded from the upper end of the buckling prevention tool 14 is pressurized and compressed, the buckling prevention tool itself is not pressurized and compressed. Thereby, the casting billet 1 is pressure-compressed and becomes the forged billet 2 (see (d) of FIG. 12).
  • both the forging billet 2 and the buckling prevention tool 14 are rapidly cooled with cold water or the like at a separate location to separate them (see FIG. 13).
  • the forged billet 2 and the buckling prevention tool 14 integrated with each other can be separated by cooling from the difference in expansion coefficient between them.
  • the forged billet 2 is obtained.
  • the forging billet 2 can be formed by repeating the pressure compression by die forging using the buckling prevention tool 14 a plurality of times.
  • the casting billet 1 is accurately buckled. Can be prevented. Further, as a further advantage, it is possible to prevent the forged billet 2 from becoming a drum shape bulging in the middle part during die forging. Therefore, the crystal grain size of the metal crystal particles can be further refined.
  • the cast billet is manufactured by pressing and compressing in the axial direction, but the pressing and compressing is not limited to the axial direction.
  • the horizontal direction may be used. That is, H1 / H2 (forging ratio) indicates the length in the direction in which the cast billet is pressed (lateral direction), and H2 indicates the length in the direction in which the forged billet is pressed (lateral direction). It will be.
  • the cast billet is compressed and compressed into a hexagonal column-shaped pre-forged billet, and then compressed from the lateral direction to form a hexagonal column-shaped forged billet.
  • a forged billet may be used in which a cast billet is compressed and compressed into a hexagonal column shape.
  • the forged billet and the pre-forged billet may have a polygonal column shape with many corners such as a hexagonal column shape, an octagonal column shape, or a dodecagon column shape. Moreover, it is good also as a multi-arc surface column shape instead of a square column, or it is good also as a column shape or atypical shape combining a corner
  • the cast billet is pressure-compressed to form a pre-forged billet, which is further pressure-compressed in a vertical direction different from the direction in which the pre-forged billet is compressed,
  • the number of times of pressure compression is not limited to 2 times, and may be performed 3 times or more.
  • the shape of the spoke portion 10 is Y-shaped, but is not limited thereto. It may be fan-shaped or X-shaped.
  • the main forging step S4 includes three stages of the first pressure forging 11, the second pressure forging 12, and the third pressure forging 13.
  • the number of times of pressure forging is 2 There may be stages, and more than three stages may be provided.
  • the above three-stage pressure forging is performed with a super-large forging machine (forging press) of 10,000 to 30,000 tons class with a smaller number of times of pressure forging.
  • a preliminary member 5 standing on the periphery of the wheel 3 is provided and processed into an outer rim portion 7 and an inner rim portion 8. That is, in the above wheel manufacturing method, a disc unit 6 and a spare member 5 are integrated, but a rim is separately produced for a two-piece or three-piece wheel other than a one-piece wheel, An attachment seat may be provided at the peripheral edge, and the outer rim and / or the inner rim may be attached to the attachment portion by screwing, friction welding, caulking means such as rivets.
  • the light metal alloy in each part may be the same or different.
  • the forging pressure can be reduced.
  • the average height after forging becomes small. For this reason, there is also an advantage that the training ratio can be increased.
  • the disk part is made by itself, and the rim part in which the outer rim part and the inner rim part are integrally formed is made alone, and an annular mounting seat is provided for each of them, and a plurality of bolts and nuts are used. Join.
  • the disk part is made alone, the outer rim part and the inner rim part are made separately and integrated in the same manner as described above.
  • the inner rim part is integrally formed, and the separately prepared outer rim part is joined with a plurality of bolts and nuts.
  • E When forming the disk portion, the outer rim portion and the inner rim portion are integrally formed as a spare member.
  • outer rim portion and the inner rim portion may be made via a forged billet.
  • a hack bolt or the like provided with friction welding, screwing, riveting, or a caulking member can be used as a coupling method.
  • a conventional wheel manufacturing method there is a method in which most of the light metal forgings are processed by machine machining until final molding, mainly for small-lot, high-variety market demands.
  • Conveniently shaped pre-wheels are produced mainly by rocking forging, rotary forging, etc. (light metal alloy is preheated and rotated while being rotated by preheating to 100-300 tons and made into forged material), and most of this is machined
  • the forging method is different using a cast billet, the metal particle size is large and non-uniform. Therefore, when the prewheel obtained from the forged billet of the present invention is used as the prewheel of the machined wheel, the strength of each part is made uniform, and an excellent machined wheel can be produced.
  • Example 1 An aluminum alloy having a weight of 19.8 kg was prepared as a light metal alloy. This was melted to obtain a molten raw material.
  • the cast billet was subjected to pressure compression by hermetic forging. That is, a cast billet was placed on a press machine, and hot forging was performed under a temperature condition of 350 to 400 ° C. and a pressure of 63700 kN. And the cylindrical forge billet of height 72.5mm was obtained by cooling with a fan.
  • the forging billet has a forging ratio of 2.0.
  • Example 2 A forged billet was obtained in the same manner as in Example 1 except that the cast billet was compressed under pressure to obtain a forged billet having a height of 58.0 mm.
  • the forging billet has a training ratio of 2.5.
  • Example 3 A forged billet was obtained in the same manner as in Example 1 except that the cast billet was compressed under pressure to obtain a forged billet having a height of 48.3 mm. Note that the forging ratio of the forged billet is 3.0.
  • Example 4 A forged billet was obtained in the same manner as in Example 1 except that the cast billet was compressed under pressure to obtain a forged billet having a height of 41.4 mm. Note that the forging ratio of the forged billet is 3.5.
  • Example 5 A forged billet was obtained in the same manner as in Example 1 except that the cast billet was compressed under pressure to obtain a forged billet having a height of 36.2 mm. Note that the forging ratio of the forged billet is 4.0.
  • Example 6 A forged billet was obtained in the same manner as in Example 1 except that the cast billet was compressed under pressure to obtain a forged billet having a height of 32.2 mm.
  • the forging billet has a forging ratio of 4.5.
  • Example 7 A forged billet was obtained in the same manner as in Example 1 except that the cast billet was compressed under pressure to obtain a forged billet having a height of 29.0 mm.
  • the forging billet has a forging ratio of 5.0.
  • Example 8 to 14 A forged billet was obtained in the same manner as in Examples 1 to 7, except that a cast billet of standard number A6151 was used instead of the cast billet of standard number A6082.
  • Example 15 A magnesium alloy weighing 13.2 kg was prepared as a light metal alloy. This was melted to obtain a molten raw material.
  • the cast billet was subjected to pressure compression by hermetic forging. That is, a cast billet was placed on a press machine, and hot forging was performed at a pressure of 7840 kN to 63700 kN under a temperature condition of 330 to 380 ° C. Then, by cooling with a fan, a cylindrical forged billet having a height of 72.3 mm was obtained.
  • the forging billet has a forging ratio of 2.0.
  • Example 16 A forged billet was obtained in the same manner as in Example 8 except that the cast billet was a forged billet having a height of 58.0 mm.
  • the forging billet has a training ratio of 2.5.
  • Example 17 A forged billet was obtained in the same manner as in Example 8 except that the cast billet was a forged billet having a height of 48.3 mm. Note that the forging ratio of the forged billet is 3.0.
  • Example 18 A forged billet was obtained in the same manner as in Example 8 except that the cast billet was a forged billet having a height of 41.4 mm. Note that the forging ratio of the forged billet is 3.5.
  • Example 19 A forged billet was obtained in the same manner as in Example 5 except that the cast billet was a forged billet having a height of 36.2 mm. Note that the forging ratio of the forged billet is 4.0.
  • Example 20 A forged billet was obtained in the same manner as in Example 5 except that the cast billet was a forged billet having a height of 32.2 mm.
  • the forging billet has a forging ratio of 4.5.
  • Example 21 A forged billet was obtained in the same manner as in Example 5 except that the cast billet was a forged billet having a height of 28.9 mm.
  • the forging billet has a forging ratio of 5.0.
  • Example 22 A forged billet was obtained in the same manner as in Example 5 except that the cast billet was a forged billet having a height of 26.3 mm.
  • the forging billet has a forging ratio of 5.5.
  • Example 23 A forged billet was obtained in the same manner as in Example 5 except that the cast billet was a forged billet having a height of 24.1 mm.
  • the forging billet has a forging ratio of 6.0.
  • Example 24 A forged billet was obtained in the same manner as in Example 5 except that the cast billet was a forged billet having a height of 22.3 mm.
  • the forging billet has a forging ratio of 6.5.
  • Example 25 A forged billet was obtained in the same manner as in Example 5 except that the cast billet was a forged billet having a height of 20.7 mm. Note that the forging ratio of the forged billet is 7.0.
  • Example 26 An aluminum alloy having a weight of 19.8 kg was prepared as a light metal alloy. This was melted to obtain a molten raw material.
  • the cast billet was subjected to pressure compression by hermetic forging. That is, a cast billet was placed on a press machine, subjected to hot forging, and cooled with a fan to obtain a hexagonal columnar pre-forged billet having a length of 327 mm and a height of 119 mm. Next, the pre-forged billet was raised 90 degrees so that the side faces were down, and was vertically set, and was subjected to pressure compression by hermetic forging. And the forge billet of 117 mm in height hexagonal column was obtained by cooling with a fan. In addition, the average particle diameter of the metal crystal particles of the forged billet is 13.5 ⁇ m, and the forging ratio is 4.1.
  • Comparative Examples 1 and 2 A cast billet (standard number: A6082) made of an aluminum alloy was set as Comparative Example 1, and a cast billet (standard number: AZ80) made of a magnesium alloy was set as Comparative Example 2.
  • FIG. 14 (b) the graph showing the relationship between the forging ratio of Examples 16 to 23 and the number of metal crystal particles is shown in FIG. 14 (c).
  • 15 to 21 and 22 to 29 are enlarged micrographs of the forged billets of Examples 1 to 7 and 16 to 23, and the substantially center portions of the cast billets of Comparative Examples 1 and 2 are shown. Enlarged micrographs are shown in FIGS. 30 and 31, respectively. In the table, “-” means not measured.
  • the number of metal crystal particles was clearly increased in the forged billet shown in the example as compared with the cast billet shown in the comparative example. This has shown that the wheel using the forge billet shown in an Example is fully refined
  • Example 27 to 32 In accordance with the method of Example 1, as shown in Table 3, forged billets having different forging ratios were prepared.
  • FIGS. 32 to 37 show enlarged micrographs of the substantially central portions of the forged billets obtained in Examples 27 to 32, respectively.
  • Example 33 As shown in FIG. 6, the forged billet obtained in Example 5 was subjected to first forging, second forging, and third forging (all were closed forging).
  • the first forging process conditions are hot forging at a temperature of 350 to 400 ° C. and a pressure of 68600 kN
  • the second and third forging process conditions are a temperature of 350 to 400 ° C. and a pressure of 80360 kN. Hot forging was used.
  • the spoke part was formed in convex shape by cooling with a fan, and the prewheel was obtained.
  • Example 34 As shown in FIG. 6, the forged billet obtained in Example 19 was subjected to first forging, second forging, and third forging (all were closed forging).
  • the processing conditions for the first forging are hot forging at a temperature of 340 to 390 ° C. and a pressure of 29400 kN, the processing conditions for the second forging are 44100 kN, and the processing conditions for the third forging are 39200 kN. This was hot forging.
  • the spoke part was formed in convex shape by cooling with a fan, and the prewheel was obtained.
  • Comparative Example 3 A wheel was obtained in the same manner as in Example 33 except that the cast billet of Comparative Example 1 was used instead of the forged billet obtained in Example 5.
  • Example 33 and Comparative Example 3 As is clear from a comparison between Example 33 and Comparative Example 3, and Example 34 and Comparative Example 4, the wheel according to the present invention has a relatively uniform crystal grain size and a fine flow line. It was also found that
  • Example 35 A magnesium alloy weighing 13.2 kg was prepared as a light metal alloy. This was melted to obtain a molten raw material.
  • the cast billet was subjected to pressure compression by hermetic forging. That is, a cast billet was placed on a press machine, and hot forging was performed at a pressure of 7840 kN to 63700 kN under a temperature condition of 330 to 380 ° C. Then, by cooling with a fan, a cylindrical forged billet having a height of 32.2 mm was obtained. The forging billet has a forging ratio of 4.5. A wheel was obtained in the same manner as in Example 34 except that the obtained forged billet was used.
  • Example 36 A wheel was obtained in the same manner as in Example 35, except that a magnesium alloy containing 2% by mass of calcium was used as the light metal alloy instead of the magnesium alloy.
  • Example 37 A wheel was obtained in the same manner as in Example 35 except that a magnesium alloy containing 4% by mass of calcium was used as the light metal alloy instead of the magnesium alloy.
  • Example 38 A wheel was obtained in the same manner as in Example 35 except that a magnesium alloy containing 8% by mass of calcium was used as the light metal alloy instead of the magnesium alloy.
  • Example 39 A wheel was obtained in the same manner as in Example 35, except that a magnesium alloy containing 15% by mass of calcium was used as the light metal alloy instead of the magnesium alloy.
  • Example 40 A wheel was obtained in the same manner as in Example 35 except that a magnesium alloy containing yttrium (trade name: WE43) was used as the light metal alloy instead of the magnesium alloy.
  • a wheel having excellent mechanical strength and uniform mechanical strength can be manufactured.
  • the obtained wheel is suitably used for applications such as vehicles and aircraft wheels.
  • the weight of the automobile can be reduced, so that the environmental load caused by gasoline or the like can be reduced and the cost can be reduced.
  • the obtained wheel is suitably used for applications such as vehicles and aircraft wheels.
  • the weight of the automobile can be reduced, so that the environmental load caused by gasoline or the like can be reduced and the cost can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

【課題】機械的強度が優れ、しかも、機械的強度が均一なホイールを製造することができるホイールの製造方法及びホイールを提供すること。 【解決手段】本発明は、軽金属合金を溶融し、溶融原料とする準備工程S1と、溶融原料を鋳造し、鋳造ビレットとする鋳造工程S2と、鋳造ビレット1を鍛錬比が3.5以上となるように加圧圧縮し、鍛造ビレット2とする予備鍛造工程S3と、鍛造ビレット2を金型で加圧鍛造し、プレホイール3a,3bとする本鍛造工程S4と、該プレホイールを熱処理する熱処理工程S5と、プレホイール3a,3bに対し機械加工を施す成型工程S6と、を備えるホイールの製造方法である。

Description

ホイールの製造方法及びホイール
 本発明は、ホイールの製造方法及びホイールに関する。
 一般に、自動車用タイヤには、枠体としての金属製のホイールが備わっている。
 近年、かかるホイールにおいては、極力、軽量でデザイン性の高いものが望まれている。
 このようなホイールの製造方法としては、例えば、軽合金素材を用いて熱間型鍛造によりディスク面、外側リム、及び内側リムからなるホイールを一体に成形する軽合金製ホイールの製造方法が知られている(例えば、特許文献1又は2参照)。
 また、車軸が装着されるハブ部と、ハブ部の周囲に位置するデザイン面を有するディスク部と、このディスク部の周縁に一体で形成されたリム部を備えたロードホイールにおいて、アルミニウム合金を鍛造して成るアルミニウム合金製鍛造ロードホイールが知られている(例えば、特許文献3参照)。
 さらに、マグネシウム合金を歪加工する歪加工工程と、再結晶温度で熱処理して再結晶化する再結晶化工程と、を有するマグネシウム合金の組織制御方法が知られている(例えば、特許文献4参照)。
 さらにまた、押出し法を用いた方法で、ホイールディスク部中央部分の厚さに近いアルミニウム質円盤状素材を用い、ハンマー鍛造装備の上下型間において外側リム部及び内側リム部を成型し、車両用アルミニウムホイールとする方法が知られている(例えば、特許文献5参照)。
 またさらに、底部に凹凸を有するカップ状品を後方押出法により成型する方法(例えば、特許文献6参照)や、鋳造により鍛造用素材を成型し、押出し鍛造する方法(例えば、特許文献7参照)が知られている。
 これらのホイールは、いずれも鋳造されたビレット(以下「鋳造ビレット」という。)から、直接、加圧鍛造することによって、得られるものである。
特公平03-002573号公報 特公平03-002574号公報 特開2007-210017号公報 特開2007-308780号公報 特開昭62-279047号公報 特許第3319891号公報 特許第3435906号公報
 しかしながら、上記特許文献1~7に記載のホイールの製造方法は、いずれも、鋳造ビレットが鍛造や押出しにより複雑な形状に成形されるので、全体的にではなく、部分的にしか引き延ばされない結果、金属組織的にみて、機械的強度が弱い部分が生じることになる。すなわち、得られるホイールの機械的強度が不均一となる。
 具体的には、従来のホイールにおいて、円柱状の鋳造ビレットを、鍛造用のプレス機に設置し、一対の金型で軸方向に押圧すると、鋳造ビレットは、半径方向へ延展することになる。このとき、ハブ部分を成形する原材料は、大きな変位を受けないので、従来のホイールの製造方法では金属組成の結晶粒径は、ハブ部分が特に大きくなる。
 本発明は、上記事情に鑑みてなされたものであり、機械的強度が優れ、しかも、機械的強度が均一なホイールを製造することができるホイールの製造方法及びホイールを提供することを目的とする。
 本発明者等は、上記課題を解決するため鋭意検討したところ、従来の鋳造ビレットを鍛造成形するのではなく、一旦、鍛造したビレットを所定の大きさに加圧圧縮することにより、上記課題を解決できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、(1)軽金属合金を溶融し、溶融原料とする準備工程と、該溶融原料を鋳造し、鋳造ビレットとする鋳造工程と、該鋳造ビレットを鍛錬比が3.5以上となるように加圧圧縮し、鍛造ビレットとする予備鍛造工程と、該鍛造ビレットを金型で加圧鍛造し、プレホイールとする本鍛造工程と、該プレホイールを熱処理する熱処理工程と、該プレホイールに対し機械加工を施す成型工程と、を備えるホイールの製造方法に存する。
 本発明は、(2)本鍛造工程が、鍛造ビレットに対して、1乃至複次(複数回)の加圧鍛造を施し、プレホイールとする工程である上記(1)記載のホイールの製造方法に存する。
 本発明は、(3)鍛造ビレットが鍛流線を有する上記(1)又は(2)に記載のホイールの製造方法に存する。
 本発明は、(4)加圧圧縮が、密閉鍛造によるものである上記(1)~(3)のいずれか一つに記載のホイールの製造方法に存する。
 本発明は、(5)加圧鍛造が、回転鍛造、密閉鍛造、揺動鍛造又は自由鍛造によるものである上記(1)~(4)のいずれか一つに記載のホイールの製造方法に存する。
 本発明は、(6)予備鍛造工程において、鋳造ビレットを一方向に加圧圧縮してプレ鍛造ビレットとし、該プレ鍛造ビレットを加圧圧縮した方向とは異なる方向に更に加圧圧縮して鍛造ビレットとする上記(1)~(5)のいずれか一つに記載のホイールの製造方法に存する。
 本発明は、(7)機械加工が、スピニング加工を含み、該スピニング加工が施される上記(1)~(6)のいずれか一つに記載のホイールの製造方法に存する。
 本発明は、(8)加圧圧縮が300~550℃の温度、9.8×10kN~88.2×10kNの圧力条件下で施される上記(1)~(7)のいずれか一つに記載のホイールの製造方法に存する。
 本発明は、(9)軽金属合金が、カルシウムを2~6質量%含む上記(1)~(8)のいずれか一項に記載のホイールの製造方法に存する。
 本発明は、(10)ホイールが車両用である上記(1)~(9)のいずれか一つに記載のホイールの製造方法に存する。
 本発明は、(11)ホイールが飛翔体部品用である上記(1)~(9)のいずれか一つに記載のホイールの製造方法に存する。
 本発明は、(12)上記(1)~(9)のいずれか一つに記載のホイールの製造方法により得られるホイールであって、ディスク部と、該ディスク部の周縁に設けられた外リム部及び内リム部と、を備え、ディスク部、外リム部及び内リム部が、一体となっているホイールに存する。
 本発明は、(13)上記(1)~(9)のいずれか一つに記載のホイールの製造方法により得られるホイールであって、ディスク部と、該ディスク部の周縁に設けられた外リム部及び内リム部と、を備え、一体となったディスク部及び外リム部に、内リム部が取り付けられたホイールに存する。
 本発明は、(14)上記(1)~(9)のいずれか一つに記載のホイールの製造方法により得られるホイールであって、ディスク部と、該ディスク部の周縁に設けられた外リム部及び内リム部と、を備え、ディスク部に、外リム部及び内リム部が取り付けられたホイールに存する。
 本発明は、(15)ディスク部、外リム部及び内リム部の少なくとも1つの金属結晶粒子のJIS H0542の切断法に基づく平均粒径が20μm以下である上記(12)~(14)のいずれか一つに記載のホイールに存する。
 本発明は、(16)ディスク部、外リム部及び内リム部が、いずれも鍛流線を有する上記(12)~(15)のいずれか一つに記載のホイールに存する。
 本発明のホイールの製造方法によれば、鋳造ビレットを加圧圧縮し、鍛造ビレットとする予備鍛造工程を備える点に主なる特徴を有するので、その後、本鍛造工程を施すことにより、たとえ複雑な形状に成形され、部分的にしか引き延ばされないとしても、鍛造ビレットの段階で、金属組織の金属結晶粒子が微細化されるので、金属結晶粒子の結晶粒径が微細なホイールが得られる。このため、十分に均一な機械的強度を有するホイールを得ることができる。
 上記ホイールの製造方法においては、加圧圧縮の鍛錬比は3.5以上である。かかる鍛錬比の値を境にして、急激に軽金属合金の微粒子化が促進される。
 よって、上記ホイールの製造方法によれば、機械的強度が優れ、しかも、機械的強度が均一なホイールを製造することができる。
 また、ホイールの機械的強度が優れるので、機械加工による強度低下に基づく破損事故も防止できる。
 上記ホイールの製造方法においては、本鍛造工程が、鍛造ビレットに対して、複次の加圧鍛造(例えば、第1加圧鍛造、第2加圧鍛造及び第3加圧鍛造の3段の加圧鍛造)を施し、プレホイールとする工程であると、機械的強度がより均一なホイールを製造することができる。
 また、本鍛造工程が、鍛造ビレットに対して、1段の加圧鍛造を施し、プレホイールとする工程であると、機械的強度がより均一なホイールを製造することができる。
 上記ホイールの製造方法においては、鍛造ビレットが金属組織上の鍛流線を有する場合、得られるホイールも鍛流線を有するものとなるので、機械的強度が確実に向上する。すなわち、凹凸形状を有するホイールの製造においては、本鍛造工程の際に、強く加圧鍛造される部分と、加圧鍛造されない部分とが存在する。このため、従来の鋳造ビレットを用いると、加圧鍛造されない部分は、鍛流線を有さないものとなり、機械的強度が不十分となる。一方、上述したように、鍛流線を有する鍛造ビレットを用いると、加圧鍛造されない部分であっても、鍛流線を有することになるので、機械的強度がより一層向上することになる。
 上記ホイールの製造方法においては、予備鍛造工程における加圧圧縮が、密封された密閉鍛造によるものであると、鍛造ビレットが中腹部の周囲が膨らんだ形状(いわゆる太鼓形状)になるのを確実に抑制できる。なお、加圧圧縮は、300~550℃の温度、9.8×10kN~88.2×10kNの圧力条件下で施されることが好ましい。
 上記ホイールの製造方法においては、加圧鍛造が、回転鍛造、密閉鍛造、揺動鍛造又は自由鍛造であると、機械的強度がより均一なホイールを製造することができる。
 上記ホイールの製造方法においては、予備鍛造工程において、鋳造ビレットを一方向に加圧圧縮してプレ鍛造ビレットとし、該プレ鍛造ビレットを加圧圧縮した方向とは異なる方向に更に加圧圧縮して鍛造ビレットとするものであると、鍛造ビレットの金属結晶粒子全体における結晶粒径の小さい組織の占める割合が大きくなる。このため、機械的強度がより優れ、しかも、機械的強度がより均一なホイールを製造することができる。
 上記ホイールの製造方法においては、機械加工が、スピニング加工を含み、スピニング加工が施されると、微細な金属結晶粒子が維持されるので、機械的強度がより優れるホイールを製造することができる。
 上記ホイールの製造方法においては、軽金属合金が、カルシウムを2~6質量%含むものであると、得られるホイールの耐熱性が向上する。
 本発明のホイールは、上述した製造方法によって得られるので、機械的強度が優れ、且つ機械的強度が均一なものとすることができる。特に、ディスク部、外リム部及び内リム部の少なくとも1つの金属結晶粒子のJIS H0542の切断法に基づく平均粒径が30μm以下であることが好ましく、ディスク部、外リム部及び内リム部が、いずれも鍛流線を有することが好ましい。
図1は、第1実施形態に係るホイールの製造方法の各工程を示すフローチャートである。 図2は、第1実施形態に係るホイールの製造方法における鋳造ビレットと鍛造ビレットとを示す断面図である。 図3は、A2014系の軽合金を用いた鍛錬比と引張強さ、及び、鍛錬比と延びの関係を示すグラフである。 図4は、第1実施形態に係るホイールの製造方法において、加圧圧縮前における鋳造ビレットを密閉鍛造により鍛造ビレットとしたときの状態を示す説明図である。 図5の(a)は、第1実施形態に係るホイールの製造方法における本鍛造工程を示す概略図であり、(b)は(a)の工程により得られるプレホイールを示す断面図である。 図6の(a)は、第1実施形態に係るホイールの製造方法により得られた第1プレホイールを示す断面図であり、(b)は、それにスピニング加工を施したリム付きプレホイールの断面図であり、(c)は、それに穴開け加工を施したホイールの断面図である。 図7の(a)は、本実施形態に係るホイールを示す正面図であり、(b)は、(a)のI-I’断面図である。 図8は、第2実施形態に係るホイールの製造方法における本鍛造工程を示す概略図である。 図9の(a)は、第2実施形態に係るホイールの製造方法により得られた第2プレホイールを示す断面図であり、(b)は、それにスピニング加工を施したリム付きプレホイールの断面図であり、(c)は、それに穴開け加工を施したホイールの断面図である。 図10の(a)~(d)は、第3実施形態に係るホイールの製造方法における予備鍛造工程の過程を示す上面図及び側面図である。 図11の(a)~(e)は、鋳造ビレットを一方向に加圧圧縮した後、異なる方向に更に加圧圧縮した場合の効果を説明するための概略図である。 図12の(a)~(d)は、他の実施形態に係るホイールの製造方法において、高さの高い鋳造ビレットを座屈しないように型鍛造によって加圧圧縮する方法を原理的に示した説明図である。 図13は、他の実施形態に係るホイールの製造方法において、鍛造ビレット及び座屈防止具の両方を冷水等で急冷することにより、両者を分離した状態を示す説明図である。 図14の(a)は、実施例1~7の鍛錬比と金属結晶粒子の数との関係を示すグラフであり、(b)は、実施例8~14の鍛錬比と金属結晶粒子の数との関係を示すグラフであり、(c)は、実施例16~23の鍛錬比と金属結晶粒子の数との関係を示すグラフである。 図15は、実施例1の鍛造ビレットの略中心部分を10倍に拡大した電子顕微鏡写真である。 図16は、実施例2の鍛造ビレットの略中心部分を10倍に拡大した電子顕微鏡写真である。 図17は、実施例3の鍛造ビレットの略中心部分を10倍に拡大した電子顕微鏡写真である。 図18は、実施例4の鍛造ビレットの略中心部分を10倍に拡大した電子顕微鏡写真である。 図19は、実施例5の鍛造ビレットの略中心部分を10倍に拡大した電子顕微鏡写真である。 図20は、実施例6の鍛造ビレットの略中心部分を10倍に拡大した電子顕微鏡写真である。 図21は、実施例7の鍛造ビレットの略中心部分を10倍に拡大した電子顕微鏡写真である。 図22は、実施例16の鍛造ビレットの略中心部分を20倍に拡大した電子顕微鏡写真である。 図23は、実施例17の鍛造ビレットの略中心部分を20倍に拡大した電子顕微鏡写真である。 図24は、実施例18の鍛造ビレットの略中心部分を20倍に拡大した電子顕微鏡写真である。 図25は、実施例19の鍛造ビレットの略中心部分を20倍に拡大した電子顕微鏡写真である。 図26は、実施例20の鍛造ビレットの略中心部分を20倍に拡大した電子顕微鏡写真である。 図27は、実施例21の鍛造ビレットの略中心部分を20倍に拡大した電子顕微鏡写真である。 図28は、実施例22の鍛造ビレットの略中心部分を20倍に拡大した電子顕微鏡写真である。 図29は、実施例23の鍛造ビレットの略中心部分を20倍に拡大した電子顕微鏡写真である。 図30は、比較例1の鋳造ビレットの略中心部分を10倍に拡大した電子顕微鏡写真である。 図31は、比較例2の鋳造ビレットの略中心部分を20倍に拡大した電子顕微鏡写真である。 図32は、実施例27の鍛造ビレットの略中心部分を10倍に拡大した電子顕微鏡写真である。 図33は、実施例28の鍛造ビレットの略中心部分を10倍に拡大した電子顕微鏡写真である。 図34は、実施例29の鍛造ビレットの略中心部分を10倍に拡大した電子顕微鏡写真である。 図35は、実施例30の鍛造ビレットの略中心部分を10倍に拡大した電子顕微鏡写真である。 図36は、実施例31の鍛造ビレットの略中心部分を10倍に拡大した電子顕微鏡写真である。 図37は、実施例32の鍛造ビレットの略中心部分を10倍に拡大した電子顕微鏡写真である。 図38は、実施例33のハブ部の略中心部分を10倍に拡大した電子顕微鏡写真である。 図39は、実施例33のスポーク部の略中心部分を10倍に拡大した電子顕微鏡写真である。 図40は、実施例33の外リム部の略中心部分を10倍に拡大した電子顕微鏡写真である。 図41は、実施例33の内リム部の略中心部分を10倍に拡大した電子顕微鏡写真である。 図42は、実施例34のハブ部の略中心部分を20倍に拡大した電子顕微鏡写真である。 図43は、実施例34のスポーク部の略中心部分を20倍に拡大した電子顕微鏡写真である。 図44は、実施例34の外リム部の略中心部分を20倍に拡大した電子顕微鏡写真である。 図45は、実施例34の内リム部の略中心部分を20倍に拡大した電子顕微鏡写真である。 図46は、比較例3のハブ部の略中心部分を10倍に拡大した電子顕微鏡写真である。 図47は、比較例3のスポーク部の略中心部分を10倍に拡大した電子顕微鏡写真である。 図48は、比較例3の外リム部の略中心部分を10倍に拡大した電子顕微鏡写真である。 図49は、比較例3の内リム部の略中心部分を10倍に拡大した電子顕微鏡写真である。 図50は、比較例4のハブ部の略中心部分を10倍に拡大した電子顕微鏡写真である。 図51は、比較例4のスポーク部の略中心部分を10倍に拡大した電子顕微鏡写真である。 図52は、比較例4の外リム部の略中心部分を10倍に拡大した電子顕微鏡写真である。 図53は、比較例4の内リム部の略中心部分を10倍に拡大した電子顕微鏡写真である。 図54は、実施例35~40で得られたホイールのスポーク部に対して、20℃、100℃、200℃、300℃に加温した場合における引張り強度を測定した結果のグラフである。 図55は、実施例35~40で得られたホイールのスポーク部に対して、20℃、100℃、200℃、300℃に加温した場合における0.2%耐力を測定した結果のグラフである。 図56の(a)~(e)は、平均粒径の測定方法を説明するための図である。
 以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
[第1実施形態]
 図1は、第1実施形態に係るホイール製造方法の各工程を示すフローチャートである。
 図1に示すように、第1実施形態に係るホイールの製造方法は、軽金属合金を溶融し、溶融原料とする準備工程S1と、溶融原料を鋳造し、鋳造ビレットとする鋳造工程S2と、鋳造ビレットを軸方向に加圧圧縮し、鍛造ビレットとする予備鍛造工程S3と、鍛造ビレットを金型で加圧鍛造し、プレホイールとする本鍛造工程S4と、プレホイールを熱処理する熱処理工程S5と、プレホイールに対し機械加工を施す成型工程S6と、を備える。
 第1実施形態に係るホイールの製造方法によれば、機械的強度が優れ、且つ機械的強度が均一なホイールを製造することができる。
 以下、各工程について更に詳細に説明する。
(準備工程)
 準備工程S1は、軽金属合金を溶融し、溶融原料とする工程である。
 上記軽金属合金としては、アルミニウム(Al)又はマグネシウム(Mg)が挙げられる。また、アルミニウムからなるアルミニウム部とマグネシウムからなるマグネシウム部とからなるハイブリット合金であってもよい。
 これらの場合、軽量なホイールが得られる。また、かかる軽金属合金の性能を向上させるため、添加金属を添加することも可能である。
 かかる添加金属としては、主金属がAlである場合、Ca、Cr、Cu、Fe、Mg、Mn、Si、Sr及びYからなる群より選ばれる少なくとも1種であることが好ましい。また、主金属がMgである場合、Al、Ca、Cr、Cu、Fe、Mn、Si、Sr及びYからなる群より選ばれる少なくとも1種であることが好ましい。この場合、添加される添加金属の物性に基づいて、ホイール自体の性能を向上させることができる。なお、この場合、後述する鋳造ビレットは、軽合金となる。
 例えば、添加金属は、カルシウム(Ca)であることが好ましい。特に、カルシウムの添加量が2~6質量%であると、得られるホイールの耐熱性が向上する。なお、カルシウムを2~6質量%含む場合、Srを0.5質量%、Mnを0.5質量%更に含むことが好ましい。
 したがって、上記軽金属合金が、カルシウムを2~6質量%含むことが好ましいということになる。
 カルシウムの含有割合が2質量%未満であると、含有割合が上記範囲にある場合と比較して、再結晶化が進み難く、微細な結晶が得られない傾向にあり、カルシウムの含有割合が6質量%を超えると、含有割合が上記範囲にある場合と比較して、均質なカルシウムの添加合金が得られない傾向にある。
 上記軽金属合金の具体例としては、アルミニウム(1000系)、マグネシウム、Al-Mn系(3000系)、Al-Si系(4000系)、Al-Mg系(5000系)、Al-Mg-Si系(6000系)、Al-Zn-Mg系(7000系)、Al-Cu-Mg系(2000系)、Al-Cu-Si系、Al-Cu-Mg-Si系等が挙げられる。
 これらの中でも汎用性の観点から、Al-Mg-Si系が好ましい。
 上記準備工程S1においては、軽金属合金を、例えば、800℃以上で加熱溶融し、必要に応じて、これに添加金属を添加することにより、液状の溶融原料が得られる。
(鋳造工程)
 鋳造工程S2は、不活性ガス雰囲気下、上述した溶融原料を鋳造し、円柱状の鋳造ビレットとする工程である。
 不活性ガスとしては、窒素、アルゴン等が挙げられる。すなわち、酸素を取り除くことにより、溶融原料が酸化するのが防止される。
 上記鋳造工程S2において、鋳造法は、特に限定されないが、砂型鋳造法、石膏鋳造法、精密鋳造法、金型鋳造法、遠心鋳造法、連続鋳造法等が挙げられる。
 これらの中でも、鋳造法は、連続鋳造法を用いることが好ましい。この場合、後述する予備鍛造工程S3において、金属結晶粒子の結晶粒径がより均一な鍛造ビレットが得られるようになる。
 まず、上記鋳造工程S2においては、上記溶融原料を65~90mm/minの速度で鋳造金型に流し込む。
 流し込む速さが65mm/min未満であると、速さが上記範囲内にある場合と比較して、後述する予備鍛造工程S3において、金属結晶粒子の結晶粒径が不均一となる傾向にあり、流し込む速さが90mm/minを超えると、速さが上記範囲内にある場合と比較して、後述する予備鍛造工程S3において、鋳造ビレット製造時に破損する虞がある。
 鋳造金型に流し込まれた溶融原料は、例えば、550℃以上で6時間以上加熱されることにより、均質化される。
 そして、その後、冷却されることにより、円柱状の鋳造ビレットが得られる。
 ここで、上記冷却は、急冷することが好ましい。この場合、結晶粒が細かくなるメリットがある。なお、得られた円柱状の鋳造ビレットは必要に応じて、軸方向に対して垂直方向に切断してもよい。
 得られる鋳造ビレットのサイズは、長さ/直径の比が2.0~2.5であることが好ましい。この場合、円柱状の鋳造ビレットを軸方向に押圧した際に、鋳造ビレットが急に曲がるという座屈現象が生じるのを抑制できる。
(予備鍛造工程)
 予備鍛造工程S3は、鋳造ビレットを軸方向に加圧圧縮し、円柱状の鍛造ビレットとする工程である。すなわち、鋳造ビレットを上下から加圧圧縮し、円柱状の形態を留めつつ、高さを低くする工程である。
 図2は、第1実施形態に係るホイールの製造方法における鋳造ビレットと鍛造ビレットとを示す断面図である。
 上記予備鍛造工程S3においては、図2に示す鋳造ビレット1から鍛造ビレット2が製造される。なお、本発明において、鍛造ビレット2には、鍛造された押出し成形品、引抜き成形品も含まれる。
 上記予備鍛造工程S3の加圧圧縮における鍛錬比は、3.5以上である。
 ここで、鍛錬比とは、図2に示す「鋳造ビレット1の高さH1」÷「鍛造ビレット2の高さH2」で表される値を意味する。すなわち、「鋳造ビレットの加圧圧縮される方向の高さH1(加圧圧縮前)」÷「鍛造ビレットの加圧圧縮された方向の高さH2(加圧圧縮後)」で表される値を意味する。
 軽金属合金がアルミニウム合金である場合、加圧圧縮による鍛錬比が3.5から大きくなるに従って、金属結晶粒子の粒径が極端に微細化される。なお、鍛造ビレット2が中間品であることから、該鍛造ビレット2を用いて鍛造製品を鍛造成形するとき更に鍛錬比が上昇することが見込まれる。
 また、軽金属合金がアルミニウム合金である場合の鍛錬比は、4.0以上であることがより好ましい。鍛錬比が4.0から金属結晶粒子の粒径の微細化の傾向が小さくなる。
 上記鍛造ビレット2において、軽金属合金がアルミニウム合金である場合、鍛錬比が3.4以上であると、上述した鍛流線が十分に確認できる。
 軽金属合金がマグネシウム合金である場合、加圧圧縮による鍛錬比が3.5から大きくなるに従って、金属結晶粒子の粒径が極端に微細化される。なお、鍛造ビレット2が中間品であることから、該鍛造ビレット2を用いて鍛造製品を鍛造成形するとき更に鍛錬比が上昇することが見込まれる。
 また、軽金属合金がマグネシウム合金である場合の鍛錬比は、4.0以上であることが好ましく、4.5以上であることがより好ましく、5.5以上であることが特に好ましい。
 上記鍛造ビレット2において、軽金属合金がマグネシウム合金である場合、鍛錬比が4.0以上であると、上述した鍛流線が十分に確認できる。
 したがって、上記鍛錬比は、軽金属合金がアルミニウム合金又はマグネシウム合金の場合、4.0以上であることが特に好ましい。
 参考までに、図3にアルミニウム鋳鍛造技術便覧(軽金属協会編)から引用したA2014系の軽合金を用いた鍛錬比と引張強さ、及び、鍛錬比と延びの関係のグラフを示す。
 図3中、L方向とは、スラブの長手方向、STとは、スラブの厚さ方向である。なお、第1実施形態に係るホイールの製造方法の鍛造ビレット2に当てはめると、L方向が、鍛造ビレット2の長さ(軸)方向に相当し、ST方向が、鍛造ビレット2の直径方向に相当する。
 図3に示すように、鍛錬比を大きくするほど鍛錬効果は向上し、均質で機械的性質や健全性に優れた製品が得られる。
 ここで、加圧圧縮する方法としては、自由鍛造、型鍛造、揺動鍛造、押出し鍛造、回転鍛造、密閉鍛造(閉塞鍛造を含む)等が挙げられる。なお、型鍛造にはプレス鍛造、ハンマー鍛造が含まれる。また、鋳造ビレット1を一定角度回転させ一部を加圧する操作を繰り返す部分鍛造も利用できる。
 これらの中でも、加圧圧縮は、密閉鍛造によるものであることが好ましい。
 図4は、第1実施形態に係るホイールの製造方法において、加圧圧縮前における鋳造ビレットを密閉鍛造により鍛造ビレットとしたときの状態を示す説明図である。
 図4に示すように、密閉鍛造においては、鋳造ビレット1が軸方向に加圧圧縮される際、金属組織が横方向に広がるのを抑制できる。すなわち、横方向の拘束力Pも加わることにより、鍛造ビレット2が中腹部で膨らんだ太鼓形状になるのを抑制し、金属結晶粒子の結晶粒径も微細化できる。
 このときの加工条件は、熱間鍛造、温間鍛造、冷間鍛造、等温鍛造のいずれであってもよい。
 これらの中でも、加工条件は、熱間鍛造であることが好ましい。この場合、効率よく鍛造ができるという利点がある。
 具体的には、上記加圧圧縮は、300~550℃の温度条件下、9.8×10kN~88.2×10kNの圧力で行うことが好ましい。ちなみに、該加圧条件は鍛造機(プレス機)の推力規模で示すと1000~9000トンに相当する。
 こうして、鋳造ビレット1が加圧圧縮され、その後、冷却されることにより、円柱状の鍛造ビレット2が得られる。なお、上記冷却は、急冷することが好ましい。
 鍛造ビレット2は、鍛流線を有することが好ましい。
 ここで、鍛流線とは、金属組織において鍛造製品に生じる、結晶粒径が少なくとも15μmより小さい金属結晶粒子の流れの状態を意味する。なお、かかる鍛流線は、加圧圧縮により金属結晶粒子の結晶粒径が9μmより微細になると金属組織の流れがより明確になる。
 上記鍛造ビレット2においては、円柱の中心部から放射状に鍛流線が延びていることが好ましい。
 上記鍛造ビレット2は、鍛流線を有すると、得られるホイールも鍛流線を有するものとなる。これにより、ホイールは、機械的強度が均一なものとなる。すなわち、ホイールは、鍛造ビレット2が圧縮鍛造されない部分であっても、鍛流線を有することになるので、機械的強度が確実に向上する。
 上記鍛造ビレット2の金属結晶粒子の平均粒径は30μm以下であることが好ましく、20μm以下であることがより好ましく、15μm以下であることがより一層好ましい。
 平均粒径が30μmを超えると、平均粒径が上記範囲内にある場合と比較して、機械的強度が不十分となる場合がある。
 ここで、本明細書において、「平均粒径」は、JIS H0542の切断法に基づいて測定した値である。具体的には、JIS H0542の切断法による評価方法の規定においては、試験線の縦線、横線及び2本の対角線の線分が少なくとも50個の結晶粒と交差するように倍率を決定するとしているが、本発明においては、顕微鏡1視野を660μm×860μmと設定し、縦線及び横線の線分を494.237μmとし、対角線の線分を741.355μmと設定して、少なくとも50個以上の結晶粒と交差するようにして測定した値である(図56参照)。なお、図56の(a)は、平均粒径測定例として挙げた電子顕微鏡写真であり、(b)は、(a)の試験線と捕捉交点数の関係を示すグラフであり、(c)は、1視野(660μm×860μm)の例を示す図であり、(d)及び(e)は、(a)を用いた平均粒径の測定例である。ここで、1視野の計測方法は、補足交点数による測定である(直線上にある粒界の数を手動で数え、粒界の数により、結晶粒度、平均粒径を算出する。)。
 また、測定部位は、鍛造ビレット、ホイールの各部分、いずれも中央付近とする。
 上記鍛造ビレット2の引張り強度は、250MPa以上であることが好ましい。なお、引張り強度は、JIS Z 2241に準じて測定した値である。
 上記鍛造ビレット2の耐力は、150MPa以上であることが好ましい。なお、耐力は、JIS Z 2241に準じて測定した値である。
 上記鍛造ビレット2の伸度は、8%以上であることが好ましい。なお、伸度は、JIS Z 2241に準じて測定した値である。
 上記鍛造ビレット2のブリネル硬度は、65HB以上であることが好ましい。なお、ブリネル硬度は、JIS Z 2243に準じて測定した値である。
 第1実施形態に係るホイールの製造方法においては、上述したように、鋳造ビレット1を軸方向に加圧圧縮し、円柱状の鍛造ビレット2とする予備鍛造工程S3を備えるので、その後、後述する本鍛造工程S4を施しても、十分に優れた機械的強度を有するホイールを得ることができる。
(本鍛造工程)
 本鍛造工程S4は、鍛造ビレット2を金型で加圧鍛造し、ホイールとする工程である。すなわち、本鍛造工程S4は、鍛造ビレット2に凹凸等の具体的な形状を付与する工程である。かかる本鍛造工程S4により、円柱状の鍛造ビレット2がホイールの形状になる。
 図5は、第1実施形態に係るホイールの製造方法における本鍛造工程を示す概略図である。
 図5に示すように、本鍛造工程S4は、第1加圧鍛造11、第2加圧鍛造12、第3加圧鍛造13の3段の加圧鍛造を備える。
 第1加圧鍛造11、第2加圧鍛造12、第3加圧鍛造13を経ることにより、鍛造ビレット2からプレホイール(以下便宜的に「第1プレホイール」という。)3aが得られる。そして、後述する成型工程を経ることにより、第1プレホイール3aがホイール3となる。
 上記第1加圧鍛造11、第2加圧鍛造12及び第3加圧鍛造13の具体的な方法としては、自由鍛造、型鍛造、揺動鍛造、押出し鍛造、回転鍛造、密閉鍛造(閉塞鍛造を含む)が挙げられる。なお、型鍛造にはプレス鍛造、ハンマー鍛造が含まれる。また、鍛造ビレット2を一定角度回転させ一部を加圧する操作を繰り返す部分鍛造も利用できる。
 これらの中でも、第1加圧鍛造11、第2加圧鍛造12及び第3加圧鍛造13は、いずれも回転鍛造、密閉鍛造、揺動鍛造又は自由鍛造であることが好ましく、密閉鍛造であることがより好ましい。この場合、機械的強度がより均一なホイール3を製造することが可能となる。
 また、密閉鍛造の中でも、第1加圧鍛造11を粗型成型鍛造とし、第2加圧鍛造12を荒地成型鍛造とし、第3加圧鍛造13を仕上成形鍛造とすることが好ましい。この場合、かぶり現象を防止できると共に、鍛流線に乱れを生じさせずに、金属結晶粒子の結晶粒径を更に小さくできるという利点がある。
 ここで、粗型成型鍛造は、鍛造ビレット2の全量を後述するハブ部、スポーク部及びリムの前躯体となる予備部材、の各所要量に分配する鍛造である。これにより、スポーク部の輪郭が緩やかな曲面で凸状に成形される。また、材料の流れに抵抗が少なくプレスする面積が最小限となるので、プレス圧を軽減できる。なお、ディスク部は大略円盤状となる。
 荒地成型鍛造は、スポーク部をより鮮明に隆起させる鍛造であり、ディスク部の空部となる部分の材料を押圧する鍛造である。これにより、スポークがリブとして隆起され、空部になる部分はウエブとして漸次厚みが薄くなる。
 仕上成型鍛造とは、スポーク部の立ち上がり部分を押圧してスポーク部を所定の高さにする鍛造である。なお、荒地成型鍛造で一気にスポーク部を完成状態の高さにするとリブの下側にひけが生じてスポークに欠陥が生じる虞がある。
 また、このときの加工条件は、熱間鍛造、温間鍛造、冷間鍛造、等温鍛造のいずれであってもよい。
 第1加圧鍛造11、第2加圧鍛造12、第3加圧鍛造13は、300℃以上の温度、好ましくは300~550℃の温度、9.8×10kN~88.2×10kNの圧力で施すことが好ましい。
 上述したような鍛造を施すことにより、鍛造ビレット2が加圧鍛造され、その後、冷却されることにより、プレホイール3aが得られる。なお、上記冷却は、急冷することが好ましい。
 第1実施形態に係るホイールの製造方法においては、鍛造ビレット2が、本鍛造工程S4において、複雑な形状に成形され、部分的に引き延ばされた場合であっても、十分に均一な機械的強度を有するホイール3を得ることができる。
(熱処理工程)
 熱処理工程S5は、外リム部が形成された第3プレホイール3cを熱処理する工程である。
 熱処理は、軽金属合金がアルミニウム合金である場合、JIS H0001に基づくT6条件で行われる。具体的には、500~580℃で3~5時間溶体化処理がされ、3~7分間焼入れがされ、150~200℃で7~9時間人工時効処理がなされる。
 また、軽金属合金がマグネシウム合金である場合、JIS H0001に基づくT5条件で行われる。具体的には、300~380℃で1~3時間人工時効処理がなされる。
(成型工程)
 成型工程S6は、プレホイール3aに機械加工を施す工程である。
 上記機械加工としては、スピニング加工、穴開け加工、切削加工、ミーリング加工等が挙げられる。
 第1プレホイール3aにおいて、スピニング加工は、第1プレホイール3aを旋盤の金型で挟持し、第1プレホイール3aを回転させ、予備部材5に対してローラーを押し当てて予備部材5を延展することにより、第1プレホイール3aの面方向に延設された外リム部(アウターリム)7と、第1プレホイール3aの周縁に垂直方向に立設された内リム部(インナーリム)8と、が形成される。
 図6の(a)は、第1実施形態に係るホイールの製造方法により得られた第1プレホイールを示す断面図であり、(b)は、それにスピニング加工を施したリム付きプレホイールの断面図であり、(c)は、それに穴開け加工を施したホイールの断面図である。
 まず、図6の(a)に示すように、上述した本鍛造工程S4により得られる第1プレホイール3aは、周縁に立設された予備部材5を備える。
 上記スピニング加工においては、第1プレホイール3aを旋盤の金型で挟持し、第1プレホイール3aを回転させる。この状態で予備部材5に対してローラーを押し当てて予備部材5を延展することにより、図6の(b)に示すように、第1プレホイール3aの面方向に延設された外リム部(アウターリム)7と、第1プレホイール3aの周縁に垂直方向に立設された内リム部(インナーリム)8と、が形成される。このとき、仕上げしろを同時に形成してもよい。なお、仕上げしろとは、寸法を調整するために、後に削り取る部分である。
 第1実施形態に係るホイールの製造方法において、上記スピニング加工は、加熱又は常温で施される。
 外リム部7及び内リム部8へのスピニングを施すと、スピニングの際に、微細な金属結晶粒子が維持されるので、機械的強度がより優れるホイールを製造することができる。
 次に、穴開け加工においては、外リム部7と内リム部8とが形成されたリム付きプレホイール3a’に対して、マシニングセンターで、穴を開け、スポーク部や模様を形成する。
 そして、切削加工により、旋盤で、リム付きプレホイール3a’の周囲を削り、リム部を形成し、ミーリング加工により、ホイールの略全体を削り出して成型を行うことにより、図6の(c)に示すように、空部9が形成されたホイール3が得られる。
 ホイール3は、軽量化されており、また、凹凸や空部等を形成することにより、デザイン性にも優れる。なお、必要に応じて、化学的表面処理、鍍金、ショット、塗装等を施してもよい。
 ここで、上記穴開け加工においては、多軸旋盤等を用い、ディスク部6に対して、後述するハブ部が形成される。このとき、ディスク部6を緩やかに湾曲した円盤状とすると、鍛造による押圧力を軽減できる。
 また、ディスク部6を緩やかに湾曲した円盤状に鍛造成形した場合、プレス圧が大幅に削減できるので、22インチ径のディスクでも6000トン級のプレス機で鍛造成形できる。なお、必要に応じて、塗装等を施してもよい。
 こうして得られるホイール3は、例えば、車両用、航空機等の飛翔体部品用等に好適に用いられる。特に、車両用に用いると、自動車を軽量化できるので、ガソリン等による環境負荷を低減でき、低コスト化も可能である。
 次に、本発明に係るホイール3について説明する。
 図7の(a)は、本実施形態に係るホイールを示す正面図であり、(b)は、(a)のI-I’断面図である。
 図7の(a)に示すように、本実施形態に係るホイール3(マルチピース)は、ディスク部6と、ディスク部6の周縁に設けられる外リム部7及び内リム部8と、を備える。すなわち、上記ホイール3は、ディスク部6と、該ディスク部6の周縁に連結しディスク部6の面方向に延設された外リム部7と、ディスク部6の周縁に連結しディスク部6の面とは垂直方向に立設された内リム部8と、を備える。
 また、ディスク部6は、円盤状のハブ部6aと、該ハブ部6aから放射Y字状に延びるスポーク部10と、を備える。すなわち、上記ホイール3においては、スポーク部10の先端に外リム部7と内リム部8とが連結されている。なお、ハブ部6aは、緩やかに湾曲した曲面となっていることが好ましい。この場合、押圧時の原材料の流れが一様となるので、鍛錬比がより均等化される。
 ハブ部6aは、表面が緩やかに湾曲した曲面を有する円盤状になっており、ホイール3をボルトで車軸に固定する際のボルトを挿入するためのボルト挿通穴6bが設けられている。
 また、隣合うスポーク部10同士の間は、空部9が設けられている。
 鋳造ビレット2に対するホイール3の鍛錬比(以下便宜的に「全鍛錬比」という。)は、軽金属合金がアルミニウム合金である場合、4.0以上であることが好ましく、軽金属合金がマグネシウム合金である場合、5.5以上であることが好ましい。
 ここで、全鍛錬比とは、上述した鋳造ビレット1に対する鍛造ビレット2の鍛錬比に、鍛造ビレット2に対するホイール3の鍛錬比を乗じたものである。すなわち、全鍛錬比は、「鋳造ビレット1の高さH1」÷「ホイール3の高さH3」で表される値である。なお、ホイール3の高さH3は、図7の(b)に示す。なお、ホイールの高さH3は、鍛造成形された方向のホイールの高さの平均で算出される。
 上記ホイール3においては、ディスク部6、外リム部7及び内リム部8から選ばれる少なくとも1つの部分の金属結晶粒子の平均粒径が30以下μmであることが好ましく、20μm以下であることがより好ましく、15μm以下であることが更に好ましい。また、ディスク部6、外リム部7及び内リム部8の金属結晶粒子の平均粒径がいずれも30μm以下であることが好ましく、20μm以下であることがより好ましく、15μm以下であることが更に好ましい。
 ディスク部6、外リム部7及び内リム部8は、いずれも鍛流線を有することが好ましい。この場合、機械的強度がより一層向上する。なお、上述したように、鍛造ビレット2が鍛流線を有するものである場合、ディスク部6、外リム部7及び内リム部8も鍛流線を有するものとなる。
 本実施形態に係るホイール3は、上述した鍛造ビレット2を鍛造成形してディスク部6、外リム部7及び内リム部8を製造するので、機械的強度が優れ、且つ機械的強度が均一なものとなる。
 また、ディスク部6、外リム部7及び内リム部8は、一体となっている(ワンピース)ので、ホイール3は、機械的強度がより優れ、且つ機械的強度がより均一なものとなる。
[第2実施形態]
 第2実施形態に係るホイールの製造方法は、本鍛造工程S4で得られるプレホイールの形状及び成型工程S6における成型方法が異なること以外は、第1実施形態に係るホイールの製造方法と同じである。
 以下、本実施形態に係る本鍛造工程及び成型工程について更に詳細に説明する。なお、熱処理工程については、第1実施形態に係るホイールの製造方法における熱処理工程と同様である。
(本鍛造工程)
 本鍛造工程は、鍛造ビレット2を金型で1段の加圧鍛造を行い、プレホイールとする工程である。すなわち、本鍛造工程は、鍛造ビレット2に1段で凹凸等の具体的な形状を付与する工程である。
 図8の(a)は、第2実施形態に係るホイールの製造方法における本鍛造工程を示す概略図であり、(b)は(a)の工程により得られるプレホイールを示す断面図である。
 図8に示すように、本鍛造工程は、第1加圧鍛造11’を備える。すなわち、第1加圧鍛造11’のみを経て、プレホイール(以下便宜的に「第2プレホイール」という。)3bが得られる。そして、後述する成型工程を経ることにより、第2プレホイール3bがホイール3となる。
 上記第1加圧鍛造11’の具体的な方法としては、自由鍛造、型鍛造、揺動鍛造、押出し鍛造、回転鍛造、密閉鍛造(閉塞鍛造を含む)が挙げられる。なお、型鍛造にはプレス鍛造、ハンマー鍛造が含まれる。また、鍛造ビレット2を一定角度回転させ一部を加圧する操作を繰り返す部分鍛造も利用できる。
 これらの中でも、第1加圧鍛造11’は、密閉鍛造であることが好ましい。この場合、機械的強度がより均一なホイール3を製造することが可能となる。
 また、密閉鍛造の中でも、第1加圧鍛造11’を粗型成型鍛造とする。ここで、粗型成型鍛造は、鍛造ビレット2の全量を後述するハブ部、スポーク部及びリムの前躯体となる予備部材5、の各所要量に分配する鍛造である。
 このときの加工条件は、熱間鍛造、温間鍛造、冷間鍛造、等温鍛造のいずれであってもよい。
 これらの鍛造成形は、300℃以上の温度、好ましくは300~550℃の温度、9.8×10kN~88.2×10kNの圧力で施すことが好ましい。
 上述したような鍛造を施すことにより、鍛造ビレット2が鍛造成形され、その後、冷却されることにより、ホイール3が得られる。なお、上記冷却は、ファン等で急冷することが好ましい。
(成型工程)
 成型工程は、第2プレホイール3bに機械加工を施す工程である。
 上記機械加工としては、スピニング加工、穴開け加工、切削加工、ミーリング加工等が挙げられる。
 第2プレホイール3bにおいて、スピニング加工は、第2プレホイール3bを旋盤の金型で挟持し、第2プレホイール3bを回転させ、予備部材5に対してローラーを押し当てて予備部材5を延展することにより、第2プレホイール3bの面方向に延設された外リム部(アウターリム)7と、第2プレホイール3bの周縁に垂直方向に立設された内リム部(インナーリム)8と、が形成される。このとき、仕上げしろを同時に形成してもよい。
 図9の(a)は、第2実施形態に係るホイールの製造方法により得られた第2プレホイールを示す断面図であり、(b)は、それにスピニング加工を施したリム付きプレホイールの断面図であり、(c)は、それに穴開け加工を施したホイールの断面図である。
 図9の(a)に示すように、上述した本鍛造工程により第2プレホイール3b(ホイール)が得られる。かかる第2プレホイール3bは、周縁に立設された予備部材5を備える。
 スピニング加工においては、第2プレホイール3bを旋盤の金型で挟持し、第2プレホイール3bを回転させ、予備部材5に対してローラーを押し当てて予備部材5を延展することにより、図9の(b)に示すように、第2プレホイール3bの面方向に延設された外リム部(アウターリム)7と、第2プレホイール3bの周縁に垂直方向に立設された内リム部(インナーリム)8と、が形成される。このとき、仕上げしろを同時に形成してもよい。なお、仕上げしろとは、寸法を調整するために、後に削り取る部分である。
 第1実施形態に係るホイールの製造方法において、上記スピニング加工は、加熱又は常温で施される。
 このため、スピニングの際に、外リム部7及び内リム部8の微細な金属結晶粒子が維持されるので、機械的強度がより優れるホイールを製造することができる。
 次に、外リム部7と内リム部8とが形成されたリム付きプレホイール3b’に対して、穴開け加工により、外リム部7と内リム部8とが形成されたリム付きプレホイール3b’に対して、マシニングセンターで、穴を開け、模様を形成する。
 そして、切削加工により、旋盤で、リム付きプレホイール3b’の周囲及びディスク部裏面側を切削し、スポーク部やリム部を形成し、ミーリング加工により、ホイールの略全体を削り出して成型を行うことにより、図9の(c)に示すように、空部9が形成されたホイール3が得られる。なお、ホイール3は、上述した第1実施形態に係るホイールの製造方法により得られたホイール3と同じである。
[第3実施形態]
 第3実施形態に係るホイールの製造方法は、予備鍛造工程が異なること以外は、第1実施形態に係るホイールの製造方法と同じである。
 以下、本実施形態に係る本鍛造工程及び成型工程について更に詳細に説明する。
(予備鍛造工程)
 予備鍛造工程は、鋳造ビレットを一方向に加圧圧縮してプレ鍛造ビレットとし、プレ鍛造ビレットを加圧圧縮した方向とは異なる方向に更に加圧圧縮して鍛造ビレットとする工程である。
 図10の(a)~(d)は、第3実施形態に係るホイールの製造方法における予備鍛造工程の過程を示す上面図及び側面図である。
 図10の(a)に示すように、鍛造ビレット2aを形成するには、まず、軽金属合金を鋳造して円柱状の鋳造ビレット1とする。この鋳造ビレット1を六角柱の型を用いた密閉鍛造により、軸方向P1に加圧圧縮して図10の(b)に示すプレ鍛造ビレット2bとする。
 次いで、図10の(c)に示すように、得られたプレ鍛造ビレット2bを、側面を下にして立てる。そして、再びプレ鍛造ビレット2bを六角柱の型を用いた密閉鍛造により、軸とは異なる方向P2、すなわち垂直方向から加圧圧縮して図10の(d)に示す鍛造ビレット2aとする。なお、このときプレ鍛造ビレット2bは、多角柱状であるので、プレ鍛造ビレット2bの側面を下にして位置決めし易い。すなわち、加圧圧縮した方向とは異なる方向に加圧圧縮し易い。
 このように、鍛造ビレット2aが、鋳造ビレット1を一方向に加圧圧縮してプレ鍛造ビレット2bとし、該プレ鍛造ビレット2bを加圧圧縮した方向とは異なる方向に更に加圧圧縮する履歴で得られるものであると、鍛造ビレット2aの金属結晶粒子全体における結晶粒径の小さい組織の占める割合が大きくなる。すなわち、鋳造ビレットに対して加圧圧縮を施して得た鍛造ビレットは、金属組織が流れることにより、結晶粒径が小さくなる。これに加え、上記鍛造ビレット2aにおいては、異なる方向に複数回加圧圧縮するので、金属組織が異なる方向にも動くことになり、結晶粒径がより小さくなる。このため、機械的強度がより優れ、しかも、機械的強度がより均一なホイールを製造することができる。
 また、一方向に加圧圧縮した場合、中腹部分(いわゆる中央部分)の金属結晶粒子が微細化された領域(以下「微細領域」という。)と、上下両端部は金属結晶粒子の微粒子化がされにくい領域(以下「NG領域」という。)とが生じる。なお、中腹部分の微粒子化された領域には、鍛流線が生じる。
 これに対し、上述したように、プレ鍛造ビレットを加圧圧縮した方向とは異なる方向に更に加圧圧縮することにより、NG領域の一部が更に微細化されるので、全体としてNG領域を減らすことができる。
 図11の(a)~(e)は、鋳造ビレットを一方向に加圧圧縮した後、異なる方向に更に加圧圧縮した場合の効果を説明するための概略図である。
 まず、図11の(a)に示すように、鋳造ビレット1を加圧圧縮すると、中腹部分(いわゆる中央部分)が結晶粒子の微細領域Aとなり、上下両端部がNG領域Bとなる。
 そして、これの側面を下にして立てた状態で位置決めすると、再び上方から加圧圧縮すると、図11の(b)に示すように、中腹部分が微細領域Aとなり、図11の(a)の微細領域Aは残る。すなわち、四方向の角の部分がNG領域Bとなる。
 更に、これの側面を下にして立てて、再び上方から加圧圧縮すると、図11の(c)に示すように、中腹部分が微細領域Aとなり、図11の(a)及び図11の(b)の微細領域Aは残る。すなわち、八方向の角の部分がNG領域Bとなる。
 更に、これの側面を下にして立てて、再び上方から加圧圧縮すると、図11の(d)に示すようになり、また更に、これの側面を下にして立てて、再び上方から加圧圧縮すると、図11の(e)に示すようになる。
 すなわち、異なる方向からの加圧圧縮を繰り返すことにより、段階的にNG領域Bを段階的に少なくすることができる。
 このように、鋳造ビレットを一方向に加圧圧縮した後、異なる方向に加圧圧縮すると、微細領域Aの占める割合が増加し、これを繰り返すことにより段階的に微細領域Aの占める割合が増えていく。この現象を利用して鍛造ビレットの有効利用領域を増やし、材料の歩留まりを大きく向上させることができる。実際では、少なくとも5回の加圧圧縮で95%が微細領域Aとなり、5%がNG領域となる。
 上記密閉鍛造の加工条件は、熱間鍛造、温間鍛造、冷間鍛造、等温鍛造のいずれであってもよい。
 これらの中でも、加工条件は、熱間鍛造であることが好ましい。
 具体的には、上記加圧圧縮は、300~550℃の温度、9.8×10kN~88.2×10kNの圧力条件下で行うことが好ましい。
 鍛造ビレット2aにおいて、鍛流線は、鋳造ビレット1からプレ鍛造ビレット2bとする加圧圧縮、又は、プレ鍛造ビレット2bから鍛造ビレット2aとする加圧圧縮、のいずれかで生じていることが好ましい。なお、一度生じた鍛流線が消えることはない。
 鍛造ビレット2aにおいては、鋳造ビレット1からプレ鍛造ビレット2bとする加圧圧縮におけるH1/H2(鍛錬比)と、プレ鍛造ビレット2bから鍛造ビレット2aとする加圧圧縮におけるH1/H2(鍛錬比)とがある。
 このうち、いずれかのH1/H2(鍛錬比)が、上述した第1実施形態に係る鍛造ビレット2aと同じ範囲であることが好ましい。なお、加圧圧縮により金属結晶粒子が微粒子化された場合、後の加圧圧縮の鍛錬比が小さい場合であっても、金属結晶粒子が大きくなることはない。
 鍛造ビレット2aは、上述した第1実施形態に係るホイールの製造方法と同様に、本鍛造工程と成型工程とを経ることによりホイールが得られる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 例えば、第1実施形態に係るホイールの製造方法における予備鍛造工程では、図4に示すように、加圧圧縮前における鋳造ビレットを密閉鍛造により鍛造ビレットとしている。しかし、このような密閉鍛造によらないで、自由鍛造により鍛造ビレットを成形する方法もある。この場合、鍛錬比を大きくすると鋳造ビレットが座屈することがあり、この座屈を防止するために特殊な座屈防止具を使い型鍛造とする。座屈防止具としては、例えば、鋳造ビレットを囲むような円筒状(すなわちスリーブ状)のものが採用される。この座屈防止具は他の高鍛錬比鍛造方法に於いても有用である。
 ちなみに、密閉鍛造の場合は、下金型の壁面によって、座屈が防止されることとなる。
 図12の(a)~(d)は、他の実施形態に係るホイールの製造方法において、高さの高い鋳造ビレットを座屈しないように型鍛造によって加圧圧縮する方法を原理的に示した説明図である。
 まず、図12の(a)に示すように、下金型に鋳造ビレットを載置した後、図12の(b)に示すように、鋳造ビレット1に円筒状の座屈防止具14を外挿する。
 ここで、座屈防止具14は、鋳造ビレット1より径の大きいものを使用する。鋳造ビレット1が上下方向に一定距離加圧圧縮された際、横に膨らむのを考慮して、予め鋳造ビレット1の側面と座屈防止具14の内側の面との間に間隔を設けるのである。なお、この間隔が均等となるように、鋳造ビレット1は、座屈防止具14の内部の中央に配置されることが好ましい。また、座屈が起き易い部位を厚くしておく等予め強化しておく事も良い。
 そして、図12の(c)に示すように、上金型を使って、鋳造ビレット1を座屈防止具14の上端に接する位置まで加圧圧縮する。このため、座屈防止具14の上端から突出した部分は加圧圧縮されるが座屈防止具自体は加圧圧縮されない。
 これにより、鋳造ビレット1が加圧圧縮され鍛造ビレット2となる(図12の(d)参照)。
 加圧圧縮後、別所にて、鍛造ビレット2及び座屈防止具14の両方を冷水等で急冷することにより、両者を分離する(図13参照)。
 ちなみに、一体となった鍛造ビレット2及び座屈防止具14は、それぞれの膨張率の差から冷却により分離可能となる。
 こうして、鍛造ビレット2が得られる。なお、座屈防止具14を用いた型鍛造による加圧圧縮を複数回繰り返して鍛造ビレット2とすることも当然可能である。
 このように、加圧圧縮が型鍛造であっても、座屈防止具14を用いることにより、鋳造ビレット1を軸方向に加圧圧縮する際、鋳造ビレット1に座屈が生じることを的確に防止できる。
 また、更なる利点としては、型鍛造において鍛造ビレット2が中腹部で膨らんだ太鼓形状になるのを防止することが可能となる。よって、金属結晶粒子の結晶粒径もより微細化できることとなる。
 第1実施形態に係るホイールの製造方法においては、鋳造ビレットを軸方向に加圧圧縮して製造しているが、加圧圧縮は、軸方向に限定されるものではない。例えば、横方向であってもよい。すなわち、H1/H2(鍛錬比)は、H1が鋳造ビレットの加圧される方向(横方向)の長さを示し、H2が鍛造ビレットの加圧された方向(横方向)の長さを示すことになる。
 第3実施形態に係るホイールの製造方法においては、鋳造ビレットを加圧圧縮して、六角柱状のプレ鍛造ビレットとした後、横方向から加圧圧縮して、六角柱状の鍛造ビレットとしているが、鋳造ビレットを加圧圧縮して、六角柱状にしたものを鍛造ビレットとして用いてもよい。
 また、鍛造ビレット及びプレ鍛造ビレットは、六角柱状、八角柱状、十二角柱状等の角の多い多角柱状としてもよい。また、角柱の代わりに多弧面柱状とするか、角と弧を組み合わせ柱状或いは異型状としても良い。さらに、鋳造ビレットは、上部及び/又は下部を錐状としてもよい。
 第3実施形態に係るホイールの製造方法において、鋳造ビレットを加圧圧縮してプレ鍛造ビレットとし、該プレ鍛造ビレットを加圧圧縮した方向とは異なる垂直方向に更に加圧圧縮しているが、加圧圧縮の回数は、2回に限定されず、3回以上行ってもよい。
 本発明に係るホイールの実施形態において、スポーク部10の形状はY字状となっているが、これに限定されるものではない。扇状やX字状であってもよい。
 上記ホイールの製造方法において、本鍛造工程S4は、第1加圧鍛造11、第2加圧鍛造12及び第3加圧鍛造13の3段を備えているが、加圧鍛造の回数は、2段でもよく、3段より多く備えていてもよい。併せて、上記3段の加圧鍛造を1万~3万トンクラスの超大型鍛造機(鍛造プレス)でより少ない加圧鍛造回数で行うことも本発明に含まれる。
 上記ホイールの製造方法においては、ホイール3の周縁に立設された予備部材5を設け、これを外リム部7、内リム部8に加工している。すなわち、上記ホイールの製造方法においては、ディスク部6と予備部材5とが一体化したものを用いているが、1ピースホイール以外の2ピース、3ピースホイールではリムを別途制作し、ディスク部に周縁部に取着座を設けて該取着部に外リム及び/又は内リムを螺着、摩擦圧接、リベットなどによるかしめ手段で装着してもよい。なお、2ピース、3ピースホイールの場合、それぞれの部分の軽金属合金は、同一であっても異なっていてもよい。
 予備部材を別途製造する場合、鍛造圧を軽減することができる。また、この場合は、ディスク部のみかディスク部と外リム部を鍛造成形するから鍛造後の平均高さが小さくなる。このため、鍛錬比を大きくできるという利点もある。
 具体的には、以下の製造方法が挙げられる。
(a)ディスク部を単体で作り、更に外リム部と内リム部を一体に形成したリム部を単体で作成してこれらのそれぞれに円環状の取着座を設けておき複数のボルトとナットで結合する。
(b)ディスク部を単体で作り、外リム部と内リム部を別々に作り上記と同じ要領で一体化する。
(c)ディスク部を作るとき外リム部を一体に成形し、別途作成された内リム部を複数のボルトとナットで結合する。
(d)ディスク部を作るとき内リム部を一体に成形し、別途作成された外リム部を複数のボルトとナットで結合する。
(e)ディスク部を作るとき外リム部と内リム部を予備部材として一体に成形する。
 なお、外リム部、内リム部は、鍛造ビレットを経由して作ってもよい。また、結合方法は、ボルトとナット以外にも、摩擦圧接、螺着、リベット締め又はカシメ部材を備えたハックボルト等が利用できる。
 従来のホイール製造方法として、主として少量多品種の市場要望用に軽金属製鍛造材の大部分を機械による削り出し加工により最終成型まで行う方法があるが、この場合、プレホイールとは異なる削り出しに便利な形状のプレホイールを主として揺動鍛造、回転鍛造等(100~300トンの加圧により軽金属合金を予熱後回転させながら揉み、鍛造材とする)により製造し、これの大部分を機械加工により最終成型まで行うが、鋳造ビレットを用い鍛造方法も異なるので金属粒径が大きく且つ不均一である。
 したがって、削り出しのホイールのプレホイールとして、本発明の鍛造ビレットから得られるプレホイールを用いられると、各部の強度が均一化され優れた削り出しホイールの生産が可能である。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
 軽金属合金として重さ19.8kgのアルミニウム合金を準備した。これを溶融して溶融原料とした。
 アルゴンガス雰囲気下、連続鋳造法により、鋳造機に流し込み、加熱し、その後、冷却して、直径254mm、高さ145mmの円柱状の鋳造ビレット(規格番号:A6082)とした。
 上記鋳造ビレットに対して、密閉鍛造により加圧圧縮を施した。すなわち、プレス機に鋳造ビレットを載置し、350~400℃の温度条件下、63700kNの圧力で熱間鍛造を施した。
 そして、ファンで冷却することにより、高さ72.5mmの円柱状の鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は2.0である。
(実施例2)
 鋳造ビレットを、加圧圧縮し、高さ58.0mmの鍛造ビレットとしたこと以外は実施例1と同様にして、鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は2.5である。
(実施例3)
 鋳造ビレットを、加圧圧縮し、高さ48.3mmの鍛造ビレットとしたこと以外は実施例1と同様にして、鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は3.0である。
(実施例4)
 鋳造ビレットを、加圧圧縮し、高さ41.4mmの鍛造ビレットとしたこと以外は実施例1と同様にして、鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は3.5である。
(実施例5)
 鋳造ビレットを、加圧圧縮し、高さ36.2mmの鍛造ビレットとしたこと以外は実施例1と同様にして、鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は4.0である。
(実施例6)
 鋳造ビレットを、加圧圧縮し、高さ32.2mmの鍛造ビレットとしたこと以外は実施例1と同様にして、鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は4.5である。
(実施例7)
 鋳造ビレットを、加圧圧縮し、高さ29.0mmの鍛造ビレットとしたこと以外は実施例1と同様にして、鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は5.0である。
(実施例8~14)
 規格番号A6082の鋳造ビレットの代わりに、規格番号A6151の鋳造ビレットを用いたこと以外は、実施例1~7と同様にして、鍛造ビレットを得た。
(実施例15)
 軽金属合金として重さ13.2kgのマグネシウム合金を準備した。これを溶融して溶融原料とした。
 アルゴンガス雰囲気下、連続鋳造法により、鋳造機に流し込み、加熱し、その後、冷却して、直径254mm、高さ144.7mmの円柱状の鋳造ビレット(規格番号:AZ80)とした。
 上記鋳造ビレットに対して、密閉鍛造により加圧圧縮を施した。すなわち、プレス機に鋳造ビレットを載置し、330~380℃の温度条件下、7840kN~63700kNの圧力で熱間鍛造を施した。
 そして、ファンで冷却することにより、高さ72.3mmの円柱状の鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は2.0である。
(実施例16)
 鋳造ビレットを、高さ58.0mmの鍛造ビレットとしたこと以外は実施例8と同様にして、鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は2.5である。
(実施例17)
 鋳造ビレットを、高さ48.3mmの鍛造ビレットとしたこと以外は実施例8と同様にして、鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は3.0である。
(実施例18)
 鋳造ビレットを、高さ41.4mmの鍛造ビレットとしたこと以外は実施例8と同様にして、鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は3.5である。
(実施例19)
 鋳造ビレットを、高さ36.2mmの鍛造ビレットとしたこと以外は実施例5と同様にして、鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は4.0である。
(実施例20)
 鋳造ビレットを、高さ32.2mmの鍛造ビレットとしたこと以外は実施例5と同様にして、鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は4.5である。
(実施例21)
 鋳造ビレットを、高さ28.9mmの鍛造ビレットとしたこと以外は実施例5と同様にして、鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は5.0である。
(実施例22)
 鋳造ビレットを、高さ26.3mmの鍛造ビレットとしたこと以外は実施例5と同様にして、鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は5.5である。
(実施例23)
 鋳造ビレットを、高さ24.1mmの鍛造ビレットとしたこと以外は実施例5と同様にして、鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は6.0である。
(実施例24)
 鋳造ビレットを、高さ22.3mmの鍛造ビレットとしたこと以外は実施例5と同様にして、鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は6.5である。
(実施例25)
 鋳造ビレットを、高さ20.7mmの鍛造ビレットとしたこと以外は実施例5と同様にして、鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は7.0である。
(実施例26)
 軽金属合金として重さ19.8kgのアルミニウム合金を準備した。これを溶融して溶融原料とした。
 アルゴンガス雰囲気下、連続鋳造法により、鋳造機に流し込み、加熱し、その後、冷却して、直径176mm、高さ476mmの円柱状の鋳造ビレット(規格番号:A6082)とした。
 上記鋳造ビレットに対して、密閉鍛造により加圧圧縮を施した。すなわち、プレス機に鋳造ビレットを載置し、熱間鍛造を施し、ファンで冷却することにより、長さ327mm高さ119mmの六角柱状のプレ鍛造ビレットを得た。
 次いで、かかるプレ鍛造ビレットを側面が下になるように90度起こして垂直に立て、密閉鍛造により加圧圧縮を施した。
 そして、ファンで冷却することにより、高さ117mmの六角柱の鍛造ビレットを得た。なお、鍛造ビレットの金属結晶粒子の平均粒径は13.5μmであり、鍛錬比は4.1である。
(比較例1及び2)
 アルミニウム合金からなる鋳造ビレット(規格番号:A6082)を比較例1とし、マグネシウム合金からなる鋳造ビレット(規格番号:AZ80)を比較例2とした。
[評価1]
 実施例1~14,16~23,26及び比較例1,2で得られた鍛造ビレット及び鋳造ビレットをJIS H0542の切断法に準じて観察し、金属結晶粒子の数及び金属結晶粒子の平均粒径を測定した。なお、金属結晶粒子の数は、1.75mm×1.3mm(2.275mm)辺りの数を測定した。得られた結果を表1に示す。
 また、実施例1~7の鍛錬比と金属結晶粒子の数との関係を示すグラフを図14の(a)に、実施例8~14の鍛錬比と金属結晶粒子の数との関係を示すグラフを図14の(b)に、及び実施例16~23の鍛錬比と金属結晶粒子の数との関係を示すグラフを図14の(c)にそれぞれ示す。
 さらに、実施例1~7及び16~23の鍛造ビレットの略中心部分を拡大した顕微鏡写真を図15~図21及び図22~図29に、比較例1及び2の鋳造ビレットの略中心部分を拡大した顕微鏡写真を図30及び図31にそれぞれ示す。なお、表中「-」は、未測定を意味する。
〔表1〕
Figure JPOXMLDOC01-appb-I000001
 表1の結果より、実施例に示す鍛造ビレットは、比較例に示す鋳造ビレットと比較して、金属結晶粒子の数が明らかに多くなった。このことは、実施例に示す鍛造ビレットを用いたホイールが、十分に微細化されていることを示している。
 また、軽金属がアルミニウム合金の場合、鍛錬比が3.5から結晶粒径が急激に細かくなり始め、4.5で安定化することがわかった。一方、軽金属がマグネシウム合金の場合、鍛錬比が3.5から結晶粒径が急激に細かくなり始め、鍛錬比が4.5からそれが顕著になり、5.5で安定化することがわかった。
 さらに、実施例26における鍛造ビレットは、実施例5の鍛造ビレットの結晶粒子数、平均粒径、共に同等であったが、微粒子化された領域が大きくなっていた。
[評価2]
 実施例1~25で得られた鍛造ビレットに対して、JIS Z 2241に準じて引張り強度を測定した。得られた結果を表2に示す。
[評価3]
 実施例1~25で得られた鍛造ビレットに対して、JIS Z 2241に準じて耐力を測定した。得られた結果を表2に示す。
[評価4]
 実施例1~25で得られた鍛造ビレットに対して、JIS Z 2241に準じて伸度を測定した。得られた結果を表2に示す。
[評価5]
 実施例1~25で得られた鍛造ビレットに対して、JIS Z 2243に準じてブリネル硬度を測定した。得られた結果を表2に示す。
[評価6]
 実施例20~25で得られた鍛造ビレットに対して、JIS Z 2242に準じてシャルピー衝撃値を測定した。得られた結果を表2に示す。
〔表2〕
Figure JPOXMLDOC01-appb-I000002
 表2の結果より、実施例に示す鍛造ビレットは、引張り強度、耐力、伸度、ブリネル硬度のいずれにおいても、優れていることが確認された。
(実施例27~32)
 実施例1の方法に準じて、表3に示すように、鍛錬比の異なる鍛造ビレットを作成した。
〔表3〕
Figure JPOXMLDOC01-appb-I000003
[評価6]
 実施例27~32で得られた鍛造ビレットの略中央部分を拡大した顕微鏡写真を図32~図37に、それぞれ示す。
 図32~図37の電子顕微鏡写真より、鍛錬比が3.4以上であると、金属結晶粒子がつぶれ、鍛流線が生じることが確認された。なお、マグネシウム合金を用いた鍛造ビレットにおいても、同様試験を行ったところ、鍛錬比が4.0以上であると、金属結晶粒子がつぶれ、鍛流線が生じることが確認された。
(実施例33)
 実施例5で得られた鍛造ビレットに対して、図6に示すように、第1鍛造成形、第2鍛造成形、第3鍛造成形を施した(いずれも密閉鍛造)。なお、第1鍛造成形の加工条件は、350~400℃の温度、68600kNの圧力の熱間鍛造とし、第2及び第3鍛造成形の加工条件は、350~400℃の温度、80360kNの圧力の熱間鍛造とした。
 そして、ファンで冷却することにより、スポーク部を凸状に形成しプレホイールを得た。
 次に、得られたプレホイールに対し、熱処理を施し、次いで、スピニング加工を施して、外リム部と内リム部とを形成し、外リム部、内リム部及びディスク部裏面を切削加工し空部を形成することにより、図5の(a)及び(b)に示すようなリム幅8.5インチ、リム径が19インチのホイールを得た。
(実施例34)
 実施例19で得られた鍛造ビレットに対して、図6に示すように、第1鍛造成形、第2鍛造成形、第3鍛造成形を施した(いずれも密閉鍛造)。なお、第1鍛造成形の加工条件は、340~390℃の温度、29400kNの圧力の熱間鍛造とし、第2鍛造成形の加工条件は、44100kN、第3鍛造成形の加工条件は、39200kNの圧力の熱間鍛造とした。
 そして、ファンで冷却することにより、スポーク部を凸状に形成しプレホイールを得た。
 次に、得られたプレホイールに対し、熱処理を施し、次いで、スピニング加工を施して、外リム部と内リム部とを形成し、外リム部、内リム部及びディスク部裏面を切削加工し空部を形成することにより、図5の(a)及び(b)に示すようなリム幅8.5インチ、リム径が19インチのホイールを得た。
(比較例3)
 実施例5で得られた鍛造ビレットの代わりに、比較例1の鋳造ビレットを用いたこと以外は、実施例33と同様にして、ホイールを得た。
(比較例4)
 実施例19で得られた鍛造ビレットの代わりに、比較例2の鋳造ビレットを用いたこと以外は、実施例34と同様にして、ホイールを得た。
[評価7]
 実施例33,34及び比較例3及び4で得られたホイールの各部分の結晶粒径(μm)を測定した。得られた結果を表4に示す。また、表5に示すように、各部分の略中央を拡大した顕微鏡写真を図38~図53に、それぞれ示す。
〔表4〕
Figure JPOXMLDOC01-appb-I000004
〔表5〕
Figure JPOXMLDOC01-appb-I000005
 実施例33と比較例3、及び、実施例34と比較例4、とを比較すれば明らかなように、本発明によるホイールは、結晶粒径が比較的均一で且つ微小であり、鍛流線も生じていることがわかった。
(実施例35)
 軽金属合金として重さ13.2kgのマグネシウム合金を準備した。これを溶融して溶融原料とした。
 アルゴンガス雰囲気下、連続鋳造法により、鋳造機に流し込み、加熱し、その後、冷却して、直径254mm、高さ144.7mmの円柱状の鋳造ビレット(規格番号:AZ80)とした。
 上記鋳造ビレットに対して、密閉鍛造により加圧圧縮を施した。すなわち、プレス機に鋳造ビレットを載置し、330~380℃の温度条件下、7840kN~63700kNの圧力で熱間鍛造を施した。
 そして、ファンで冷却することにより、高さ32.2mmの円柱状の鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は4.5である。
 得られた鍛造ビレットを用いたこと以外は、実施例34と同様にして、ホイールを得た。
(実施例36)
 マグネシウム合金の代わりに、軽金属合金としてカルシウム2質量%を含むマグネシウム合金を用いたこと以外は、実施例35と同様にして、ホイールを得た。
(実施例37)
 マグネシウム合金の代わりに、軽金属合金としてカルシウム4質量%を含むマグネシウム合金を用いたこと以外は、実施例35と同様にして、ホイールを得た。
(実施例38)
 マグネシウム合金の代わりに、軽金属合金としてカルシウム8質量%を含むマグネシウム合金を用いたこと以外は、実施例35と同様にして、ホイールを得た。
(実施例39)
 マグネシウム合金の代わりに、軽金属合金としてカルシウム15質量%を含むマグネシウム合金を用いたこと以外は、実施例35と同様にして、ホイールを得た。
(実施例40)
 マグネシウム合金の代わりに、軽金属合金としてイットリウムを含むマグネシウム合金(商品名:WE43)を用いたこと以外は、実施例35と同様にして、ホイールを得た。
[評価8]
 実施例35~40で得られたホイールのスポーク部に対して、20℃、100℃、200℃、300℃に加温した場合におけるJIS Z 2241に準じた引張り強度を測定した。得られた結果を表6及び図54に示す。
〔表6〕
Figure JPOXMLDOC01-appb-I000006
[評価9]
 実施例35~40で得られたホイールのスポーク部に対して、20℃、100℃、200℃、300℃に加温した場合におけるJIS Z 2241に準じた0.2%耐力を測定した。得られた結果を表7及び図55に示す。なお、表7中「-」は、延びが少なく測定できなかったものである。
〔表7〕
Figure JPOXMLDOC01-appb-I000007
[評価10]
 実施例35~40で得られたホイールのスポーク部に対して、20℃、100℃、200℃、300℃に加温した場合におけるJIS Z 2241に準じた伸度を測定した。得られた結果を表8に示す。なお、表8中「-」は、延びが少なく測定できなかったものである。
〔表8〕
Figure JPOXMLDOC01-appb-I000008
[評価11]
 実施例35~40で得られたホイールのスポーク部に対して、JIS Z 2243に準じてブリネル硬度、及び、シャルピー衝撃値(J/cm)を測定した。得られた結果を表9に示す。
〔表9〕
Figure JPOXMLDOC01-appb-I000009
 表6~9の結果より、実施例に示すホイールは、イットリウム又はカルシウムを加えると、高温時における引張り強度、耐力、伸度が優れていることがわかった。なお、イットリウムは高価であることから、安価なカルシウムを用いたホイールが、F1等のホイールが高温になる用途に好適であるといえる。
 本発明のホイールの製造方法によれば、機械的強度が優れ、且つ機械的強度が均一なホイールを製造することができる。
 得られるホイールは、車両用、航空機用車輪等の用途に好適に用いられる。特に、車両用に用いると、自動車を軽量化できるので、ガソリン等による環境負荷を低減でき、低コスト化も可能となる。
 得られるホイールは、車両用、航空機用車輪等の用途の用途に好適に用いられる。特に、車両用に用いると、自動車を軽量化できるので、ガソリン等による環境負荷を低減でき、低コスト化も可能となる。
 1・・・鋳造ビレット
 2,2a・・・鍛造ビレット
 2b・・・プレ鍛造ビレット
 3・・・ホイール
 3a・・・第1プレホイール(プレホイール)
 3b・・・第2プレホイール(プレホイール)
 3a’,3b’・・・リム付きプレホイール
 5・・・予備部材
 6・・・ディスク部
 6a・・・ハブ部
 6b・・・ボルト挿通穴
 7・・・外リム部
 8・・・内リム部
 9・・・空部
 10・・・スポーク部
 11,11’・・・第1加圧鍛造
 12・・・第2加圧鍛造
 13・・・第3加圧鍛造
 14・・・座屈防止具
 A・・・微細領域
 B・・・NG領域
 H1,H2・・・高さ
 P1,P2・・・方向
 S1・・・準備工程
 S2・・・鋳造工程
 S3・・・予備鍛造工程
 S4・・・本鍛造工程
 S5・・・熱処理工程
 S6・・・成型工程

Claims (16)

  1.  軽金属合金を溶融し、溶融原料とする準備工程と、
     該溶融原料を鋳造し、鋳造ビレットとする鋳造工程と、
     該鋳造ビレットを鍛錬比が3.5以上となるように加圧圧縮し、鍛造ビレットとする予備鍛造工程と、
     該鍛造ビレットを金型で加圧鍛造し、プレホイールとする本鍛造工程と、
     該プレホイールを熱処理する熱処理工程と、
     該プレホイールに対し機械加工を施す成型工程と、
    を備えるホイールの製造方法。
  2.  前記本鍛造工程が、前記鍛造ビレットに対して、1乃至複次の加圧鍛造を施し、プレホイールとする工程である請求項1記載のホイールの製造方法。
  3.  前記鍛造ビレットが鍛流線を有する請求項1又は2に記載のホイールの製造方法。
  4.  前記加圧圧縮が、密閉鍛造によるものである請求項1~3のいずれか一項に記載のホイールの製造方法。
  5.  前記加圧鍛造が、回転鍛造、密閉鍛造、揺動鍛造又は自由鍛造によるものである請求項1~4のいずれか一項に記載のホイールの製造方法。
  6.  前記予備鍛造工程において、鋳造ビレットを一方向に加圧圧縮してプレ鍛造ビレットとし、該プレ鍛造ビレットを加圧圧縮した方向とは異なる方向に更に加圧圧縮して鍛造ビレットとする請求項1~5のいずれか一項に記載のホイールの製造方法。
  7.  前記機械加工が、スピニング加工を含み、該スピニング加工が施される請求項1~6のいずれか一項に記載のホイールの製造方法。
  8.  前記加圧圧縮が300~550℃の温度、9.8×10kN~88.2×10kNの圧力条件下で施される請求項1~7のいずれか一項に記載のホイールの製造方法。
  9.  前記軽金属合金が、カルシウムを2~6質量%含む請求項1~8のいずれか一項に記載のホイールの製造方法。
  10.  前記ホイールが車両用である請求項1~9のいずれか一項に記載のホイールの製造方法。
  11.  前記ホイールが飛翔体部品用である請求項1~9のいずれか一項に記載のホイールの製造方法。
  12.  請求項1~9のいずれか一項に記載のホイールの製造方法により得られるホイールであって、
     ディスク部と、該ディスク部の周縁に設けられた外リム部及び内リム部と、
    を備え、
     前記ディスク部、前記外リム部及び前記内リム部が、一体となっているホイール。
  13.  請求項1~9のいずれか一項に記載のホイールの製造方法により得られるホイールであって、
     ディスク部と、該ディスク部の周縁に設けられた外リム部及び内リム部と、
    を備え、
     一体となった前記ディスク部及び前記外リム部に、前記内リム部が取り付けられたホイール。
  14.  請求項1~9のいずれか一項に記載のホイールの製造方法により得られるホイールであって、
     ディスク部と、該ディスク部の周縁に設けられた外リム部及び内リム部と、
    を備え、
     前記ディスク部に、前記外リム部及び前記内リム部が取り付けられたホイール。
  15.  前記ディスク部、前記外リム部及び前記内リム部の少なくとも1つの金属結晶粒子のJIS H0542の切断法に基づく平均粒径が20μm以下である請求項12~14のいずれか一項に記載のホイール。
  16.  前記ディスク部、前記外リム部及び前記内リム部が、いずれも鍛流線を有する請求項12~15のいずれか一項に記載のホイール。
PCT/JP2009/004419 2008-09-05 2009-09-07 ホイールの製造方法及びホイール WO2010026779A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008227994 2008-09-05
JP2008-227994 2008-09-05

Publications (1)

Publication Number Publication Date
WO2010026779A1 true WO2010026779A1 (ja) 2010-03-11

Family

ID=41796957

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2009/004419 WO2010026779A1 (ja) 2008-09-05 2009-09-07 ホイールの製造方法及びホイール
PCT/JP2009/004420 WO2010026780A1 (ja) 2008-09-05 2009-09-07 押出しによるホイールの製造方法及びホイール
PCT/JP2009/004418 WO2010026778A1 (ja) 2008-09-05 2009-09-07 鍛造ビレット及びホイール

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/004420 WO2010026780A1 (ja) 2008-09-05 2009-09-07 押出しによるホイールの製造方法及びホイール
PCT/JP2009/004418 WO2010026778A1 (ja) 2008-09-05 2009-09-07 鍛造ビレット及びホイール

Country Status (2)

Country Link
JP (3) JP5085612B2 (ja)
WO (3) WO2010026779A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103084559A (zh) * 2013-02-18 2013-05-08 天津那诺机械制造有限公司 二次加压熔汤锻造车轮的锻造方法与锻造设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5588884B2 (ja) * 2010-05-27 2014-09-10 株式会社神戸製鋼所 マグネシウム合金鍛造ピストンの製造方法およびマグネシウム合金鍛造ピストン
WO2012095940A1 (ja) * 2011-01-10 2012-07-19 ワシ興産株式会社 ホイールとその製造方法
CN103619506B (zh) * 2011-06-28 2016-01-20 国立大学法人电气通信大学 镁合金材料制造方法及镁合金制棒材
KR101345031B1 (ko) * 2012-02-20 2013-12-26 명화공업주식회사 중력주조 및 가압성형을 이용한 마그네슘합금 너클의 제조방법 및 그 너클
CN103567338B (zh) * 2012-08-06 2016-04-06 富泰华工业(深圳)有限公司 金属件制造方法
JP6048216B2 (ja) 2013-02-28 2016-12-21 セイコーエプソン株式会社 マグネシウム基合金粉末およびマグネシウム基合金成形体
JP6027586B2 (ja) * 2014-09-30 2016-11-16 ヤマハ発動機株式会社 マグネシウム合金製のダイカストホイール
JP7003676B2 (ja) * 2018-01-16 2022-02-04 トヨタ自動車株式会社 アルミニウム合金熱間鍛造品の製造方法
CN111745122A (zh) * 2020-07-21 2020-10-09 郎溪友良锻造铝合金轮毂股份有限公司 一种汽车轮毂一步锻造成型装置及方法
TWI752740B (zh) * 2020-11-26 2022-01-11 財團法人工業技術研究院 鋁合金輪圈與其製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144351A (en) * 1979-04-28 1980-11-11 Hayashi Lacing:Kk Production of flanged integral rim made of aluminum alloy for automobile
JPH09249951A (ja) * 1996-03-12 1997-09-22 Nippon Light Metal Co Ltd 微細組織を有するアルミ鍛造製品の製造方法
JP2838593B2 (ja) * 1993-09-16 1998-12-16 ワシ興産株式会社 軽合金製車輛用ホイール
JP2007210017A (ja) * 2006-02-10 2007-08-23 Nissan Motor Co Ltd アルミニウム合金製鍛造ロードホイール及びその製造方法
JP2007319895A (ja) * 2006-05-31 2007-12-13 Mitsui Mining & Smelting Co Ltd 耐熱性マグネシウム合金押出し材及び鍛造品並びにそれらの製造方法
JP2008087066A (ja) * 2006-10-05 2008-04-17 Gooshuu:Kk 高強度加工素材およびその製造方法ならびにその製造装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033366U (ja) * 1989-06-01 1991-01-14
JP2596687B2 (ja) * 1993-01-08 1997-04-02 株式会社神戸製鋼所 軽合金ホイールの製造方法
JP4575645B2 (ja) * 2003-01-31 2010-11-04 株式会社豊田自動織機 鋳造用耐熱マグネシウム合金および耐熱マグネシウム合金鋳物
JP5187713B2 (ja) * 2006-06-09 2013-04-24 国立大学法人電気通信大学 金属材料の微細化加工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144351A (en) * 1979-04-28 1980-11-11 Hayashi Lacing:Kk Production of flanged integral rim made of aluminum alloy for automobile
JP2838593B2 (ja) * 1993-09-16 1998-12-16 ワシ興産株式会社 軽合金製車輛用ホイール
JPH09249951A (ja) * 1996-03-12 1997-09-22 Nippon Light Metal Co Ltd 微細組織を有するアルミ鍛造製品の製造方法
JP2007210017A (ja) * 2006-02-10 2007-08-23 Nissan Motor Co Ltd アルミニウム合金製鍛造ロードホイール及びその製造方法
JP2007319895A (ja) * 2006-05-31 2007-12-13 Mitsui Mining & Smelting Co Ltd 耐熱性マグネシウム合金押出し材及び鍛造品並びにそれらの製造方法
JP2008087066A (ja) * 2006-10-05 2008-04-17 Gooshuu:Kk 高強度加工素材およびその製造方法ならびにその製造装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103084559A (zh) * 2013-02-18 2013-05-08 天津那诺机械制造有限公司 二次加压熔汤锻造车轮的锻造方法与锻造设备

Also Published As

Publication number Publication date
JP2010082693A (ja) 2010-04-15
JP5085612B2 (ja) 2012-11-28
WO2010026780A1 (ja) 2010-03-11
JP2010083473A (ja) 2010-04-15
JP2010082694A (ja) 2010-04-15
WO2010026778A1 (ja) 2010-03-11

Similar Documents

Publication Publication Date Title
WO2010026779A1 (ja) ホイールの製造方法及びホイール
WO2011096178A1 (ja) 鍛造ビレット、軽金属製ホイール及びそれらの製造方法
WO2011096212A1 (ja) 鍛造ビレット、鍛造ビレットの製造方法及びホイールの製造方法
JPH06172949A (ja) マグネシウム合金製部材およびその製造方法
JP4562810B2 (ja) ホイール及びその製造方法
Qiang et al. New extrusion process of Mg alloy automobile wheels
EP1610914B1 (en) Method for producing a metal forged product
EP1946863A1 (en) Forged product and method of making the product
JP6412496B2 (ja) 切削用素材の製造方法
US10442241B2 (en) Methods and apparatus to produce high performance axisymmetric components
JP4822324B2 (ja) アルミニウム合金製鍛造ロードホイール及びその製造方法
WO2012095940A1 (ja) ホイールとその製造方法
JP2009274135A (ja) 軽合金製鍛造ホイールとその製造方法
JP2009285671A (ja) 軽合金製鍛造ホイールとその製造方法
WO2010067465A1 (ja) 鍛造ビレット及びホイール
JP5483292B2 (ja) 金属鍛造製品の製造方法
JP4703961B2 (ja) 金属鍛造製品の製造方法
CN112549846A (zh) 一种应用于液态模锻轮毂产品的轮辐性能提升方法
US11504763B2 (en) Aluminum alloy wheel and method for manufacturing the same
JP3281004B2 (ja) Mg合金製部材の製造方法
CN114619213A (zh) 一种低应力组合式轻合金轮毂加工方法
JP2004034115A (ja) アルミニウム合金鍛造材の製造方法
JPS6372443A (ja) 車輪の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09811309

Country of ref document: EP

Kind code of ref document: A1