WO2010026681A1 - 差動増幅器及びその構成方法 - Google Patents

差動増幅器及びその構成方法 Download PDF

Info

Publication number
WO2010026681A1
WO2010026681A1 PCT/JP2009/002795 JP2009002795W WO2010026681A1 WO 2010026681 A1 WO2010026681 A1 WO 2010026681A1 JP 2009002795 W JP2009002795 W JP 2009002795W WO 2010026681 A1 WO2010026681 A1 WO 2010026681A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
output
drain
transistor
differential amplifier
Prior art date
Application number
PCT/JP2009/002795
Other languages
English (en)
French (fr)
Inventor
沼田圭市
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010527653A priority Critical patent/JP5445458B2/ja
Publication of WO2010026681A1 publication Critical patent/WO2010026681A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • H03F3/45188Non-folded cascode stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45134Indexing scheme relating to differential amplifiers the whole differential amplifier together with other coupled stages being fully differential realised
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45318Indexing scheme relating to differential amplifiers the AAC comprising a cross coupling circuit, e.g. two extra transistors cross coupled

Definitions

  • the present invention relates to a semiconductor amplifier circuit, and more particularly to a wideband differential amplifier circuit.
  • FIG. 22 is a diagram showing a differential amplifier 700 having the simplest circuit configuration generally known.
  • One method of widening the differential amplifier 700 is to adopt a cascode configuration (see, for example, the description in FIG. 7 and paragraphs 17 to 18 of Patent Document 1).
  • FIG. 23 is a circuit diagram showing a differential amplifier 800 having a cascode configuration.
  • the differential amplifier 800 can reduce the mirror effect by adopting the cascode configuration, and can widen the frequency band that can be amplified.
  • FIG. 24 is a circuit diagram showing a differential level shift circuit disclosed in Patent Document 2.
  • an input signal supplied to the input terminals IN and IN_B (the gates of the transistors J1 and J3 constituting the source follower) is supplied into the circuit (current source) via the capacitive elements C G1 and C G2. Feed forward to the transistors J4 and J2).
  • the high-frequency component of the input signal having the opposite phase is supplied to the bases of the current source transistors J2 and J4.
  • the transistors J2 and J4 are actively driven so as to increase or decrease the current of the circuit, and the reduction in the driving capability of the transistors J1 and J3 is compensated, thereby realizing a wide band of the level shift circuit 900.
  • Patent Document 3 discloses a multistage amplifying device in which a plurality of amplifiers including differential amplifiers are cascade-connected.
  • the multistage amplifying device disclosed in Patent Document 3 feeds an input signal supplied to an input terminal of a differential amplifier of an input stage (first stage) to an input terminal of a second stage voltage amplifier via a high-pass filter. To do.
  • Patent Document 4 two outputs of a differential amplifier are respectively connected to opposite-phase side input terminals (that is, capacitive elements connected to gate terminals of a pair of transistors having a source commonly connected to a current source and constituting a differential pair).
  • opposite-phase side input terminals that is, capacitive elements connected to gate terminals of a pair of transistors having a source commonly connected to a current source and constituting a differential pair.
  • JP 2007-6484 (FIG. 7, paragraphs 17 and 18) Japanese Unexamined Patent Publication No. 5-67933 (FIG. 1, 11th paragraph) JP-A-9-148850 JP 2006-191350 A
  • the differential amplifier 700 shown in FIG. 22 has a problem that high-frequency characteristics cannot be sufficiently obtained due to the mirror effect (see FIG. 19A).
  • a cascode configuration is adopted.
  • the cascode transistors 13 and 14 are connected to the input transistors 11 and 12 as shown in FIG.
  • the capacitance that the input terminals 1 and 2 are affected by the cascode transistors 13 and 14 through the gate capacitance is the capacitance of the cascode transistors 13 and 14. Therefore, high-frequency performance can be enhanced by designing the cascode transistors 13 and 14 so that the capacitance of the cascode transistors 13 and 14 is smaller than the load capacitance.
  • the cascode transistors 13 and 14 a transistor having a size as small as possible is desired in order to reduce the influence on the input terminals 1 and 2, while a current necessary for the differential amplifier 800 can flow. It needs to be big. Because of this trade-off relationship, the cascode transistor cannot be reduced freely. Therefore, even with the differential amplifier 800 having the cascode configuration, the band can be expanded only to about 1.5 to 2 times that of the differential amplifier 700.
  • the multistage amplifier disclosed in Patent Document 3 feeds an input signal applied to an input stage to a second stage amplifier via a high-pass filter. That is, it does not improve the operating band of the input stage differential amplifier itself, and it is essential to provide an amplifier for amplifying high frequency separately from the input stage differential amplifier.
  • the amplifying device disclosed in Patent Document 4 since a capacitive element is added to the input terminal of the differential amplifier, the input terminal is more easily affected by the output load C L (see FIG. 19A). Depending on the situation, the operating band of the amplifying device may be conversely narrowed. In addition, in order to compensate for this, it is necessary to improve the driving capability of the amplifier arranged in the previous stage of the amplifying device of Patent Document 4, which leads to an increase in the size of the entire circuit and an increase in current consumption.
  • the present invention has been made on the basis of the above-mentioned knowledge by the inventor of the present application, and an object of the present invention is to provide a wideband differential amplifier with a simple circuit configuration.
  • the differential amplifier circuit includes a first and second drive transistors that form a differential pair, and a first differential output signal that is amplified by the differential pair. And a second output terminal, first and second circuits, and first and second high-pass filters. One of the differential input signals is supplied to the gates of the first and second drive transistors.
  • the first circuit is disposed on a wiring connected to the source / drain path of the first driving transistor and the first output terminal, and is capable of adjusting a drain current flowing through the first driving transistor. 1 control terminal.
  • the second circuit is disposed on a wiring connected to the source / drain path of the second driving transistor and the second output terminal, and adjusts the drain current flowing through the second driving transistor. It has a possible second control terminal.
  • the first high-pass filter is connected between the second output terminal and the first control terminal, and inputs one of the differential output signals to selectively transmit a high-frequency component and transmit the same.
  • the later signal is fed back as the control potential of the first control terminal.
  • the second high-pass filter is connected between the first output terminal and the second control terminal, and inputs the other of the differential output signals to selectively transmit high-frequency components.
  • the transmitted signal is fed back as the control potential of the second control terminal.
  • the second aspect of the present invention is a method for configuring a differential amplifier.
  • the method includes the following steps (a) to (f).
  • (E) One of differential output signals after being amplified by the differential pair is input to selectively transmit high-frequency components, and the transmitted signal is fed back as the control potential of the first
  • a first high-pass filter between the second output terminal of the first and second output terminals from which the differential output signal is output and the first control terminal; and (f A second high-pass filter that inputs the other of the differential output signals and selectively transmits a high-frequency component, and feeds back the transmitted signal as a control potential of the second control terminal. Connecting between the output terminal and the second control terminal.
  • the above-described differential amplifier according to the first aspect of the present invention and the differential amplifier obtained by the method according to the second aspect can suppress a decrease in gain and extend an operating frequency band with a simple circuit configuration.
  • FIG. 1 is a block diagram showing a differential amplifier according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a specific configuration example (cascode differential amplifier) of the differential amplifier according to the first embodiment of the present invention. It is a block diagram which shows the differential amplifier which concerns on the 2nd Embodiment of this invention. It is a circuit diagram which shows the specific structural example of the differential amplifier which concerns on the 2nd Embodiment of this invention. It is a block diagram which shows the differential amplifier which concerns on the 3rd Embodiment of this invention.
  • FIG. 5 is a conceptual diagram illustrating an operation of the differential amplifier according to the first embodiment. It is a graph which shows an example of the numerical calculation result regarding the high frequency characteristic of the differential amplifier which concerns on 1st Embodiment in contrast with the thing of background art. It is a graph which shows an example of the numerical calculation result regarding the high frequency characteristic of the differential amplifier which concerns on 2nd Embodiment in contrast with the thing of background art. It is a figure which shows the differential amplifier circuit concerning background art. It is a figure which shows the cascode type
  • FIG. 1 is a block diagram showing a schematic configuration of a differential amplifier 100 according to the first embodiment of the present invention.
  • the differential amplifier 100 includes a basic element 120 for differential amplification.
  • the basic element 120 has two input terminals 1 and 2 and two output terminals 3 and 4.
  • the basic element 120 has a differential pair, amplifies the differential signal supplied to the input terminals 1 and 2 by the differential pair, and supplies the amplified differential signal to the output terminals 3 and 4.
  • the input terminal 1 is a positive phase input terminal IN
  • the input terminal 2 is a negative phase input terminal IN_B
  • the output terminal 3 is a positive phase output terminal OUT
  • the output terminal 4 is a negative phase output terminal OUT_B.
  • the differential amplifier 100 includes high pass filters (HPFs) 111 and 112. One end of the HPF 111 is connected to the output terminal 4, and the other end is connected to the circuit of the basic element 120 excluding the input terminals 1 and 2. Similar to the HPF 111, the HPF 112 is connected between the output terminal 3 and the circuit of the basic element 120. That is, the HPFs 11 and 112 feed back the two output signals (differential output signals S OUT and S OUTB ) of the differential amplifier 100 to the potential in the basic element 120 of the differential amplifier 100 excluding the differential input signal.
  • HPFs high pass filters
  • FIG. 2 is a circuit diagram showing an example of a specific configuration of the differential amplifier 100.
  • the other components excluding the input terminals 1 and 2, the output terminals 3 and 4, and the HPFs 111 and 112 correspond to the basic element 120 described above.
  • the differential amplifier 100 of FIG. 2 has a cascode configuration. Below, each component shown by FIG. 2 is demonstrated in order.
  • the drive transistors 11 and 12 constitute a differential pair for amplification. Specifically, the gate of the drive transistor 11 is connected to the input terminal 1, and the gate of the drive transistor 12 is connected to the input terminal 2. The sources of the commonly connected transistors 11 and 12 are grounded via the constant current source 10. The drain of the drive transistor 11 is connected to the power supply terminal 5 (drain potential V DD ) via the cascode transistor 13 and the output load 101. Similarly, the drain of the drive transistor 12 is connected to the power supply terminal 5 (drain potential V DD ) via the cascode transistor 14 and the output load 102.
  • the source of the cascode transistor 13 is connected to the drain of the drive transistor 11, and the drain is connected to the output load 101.
  • the source of the cascode transistor 14 is connected to the drain of the drive transistor 12, and the drain is connected to the output load 102.
  • One end of the output load 101 is connected to the source of the cascode transistor 13 and the other end is connected to the power supply terminal 5.
  • a common connection point between the output load 101 and the cascode transistor 13 is connected to the output terminal 4.
  • one end of the output load 102 is connected to the source of the cascode transistor 14, and the other end is connected to the power supply terminal 5.
  • a common connection point between the output load 102 and the cascode transistor 14 is connected to the output terminal 3.
  • the HPF 111 is disposed between the output terminal 4, that is, the drain of the cascode transistor 13 and the gate of the other cascode transistor 14. That is, the HPF 111 supplies the high-frequency component of the negative phase output signal S OUTB appearing at the output terminal 4 to the cascode transistor 14 on the negative phase input IN_B side as a bias voltage.
  • the HPF 112 is disposed between the output terminal 3, that is, the drain of the cascode transistor 14 and the gate of the other cascode transistor 13.
  • the HPF 112 supplies a high frequency component of the positive phase output signal S OUT appearing at the output terminal 3 as a bias voltage to the cascode transistor 13 on the positive phase input IN side.
  • the differential input signals input to the gates of the drive transistors 11 and 12 constituting the differential pair are amplified by the drive transistors 11 and 12, the cascode transistors 13 and 14, and the output loads 101 and 102.
  • a differential output signal is obtained from the terminals 4 and 3 which are the drains of the cascode transistors 13 and 14.
  • FIG. 3 is a circuit diagram of the differential amplifier 100 including specific circuit configurations of the constant current source 10, the HPFs 111 and 112, and the output loads 101 and 102.
  • the constant current source 10 includes a current source transistor 15.
  • the gate of the current source transistor 15 is connected to a bias terminal 7 to which a constant current source bias voltage is input, and the source of the current source transistor is grounded.
  • the drain of the transistor 15 is commonly connected to the sources of the drive transistors 11 and 12.
  • the output load 101 includes a resistance element 21.
  • the output load 102 includes a resistance element 22.
  • the HPF 111 includes a resistance element 23 and a capacitance element 41.
  • the resistive element 23 and the capacitive element 41 are connected in series, the other terminal of the capacitive element 41 is connected to the output terminal 4, and the other terminal of the resistive element 23 is connected to the bias terminal 6.
  • the contact point between the resistance element 23 and the capacitive element 41 is connected to the gate of the cascode transistor 14 as an output of the HPF 111.
  • the HPF 112 includes a resistance element 24 and a capacitance element 42.
  • the resistive element 24 and the capacitive element 42 are connected in series, the other terminal of the capacitive element 42 is connected to the output terminal 3, and the other terminal of the resistive element 24 is connected to the bias terminal 6.
  • the contact point between the resistance element 24 and the capacitive element 42 is connected to the gate of the cascode transistor 13 as an output of the HPF 112.
  • the pass frequencies of the HPFs 111 and 112 are determined by the capacitance values of the capacitive elements 41 and 42 and the resistance values of the resistive elements 23 and 24. For example, this passing frequency may be set so that the gain of the basic element 120 of the differential amplifier 100 begins to decrease and the gain fluctuation range is within about 3 dB.
  • FIGS. 19A to 19C are schematic diagrams showing one transistor 11 of a differential pair and its peripheral circuit elements.
  • 19C is a diagram related to the differential amplifier 100
  • FIGS. 19A and 19B are diagrams related to the background art shown for comparison.
  • FIG. 19A shows the case of the differential amplifier 700 shown in FIG.
  • the load capacitance C L connected to the output terminal 4 through the gate capacitance C GD of the drive transistor 11 is affected. For this reason, the transistor 11 cannot be driven at a high frequency, the gain is reduced, and the frequency band that can be amplified by the differential amplifier 700 is narrowed.
  • FIG. 19B shows the case of the differential amplifier 800 having the cascode configuration shown in FIG.
  • the influence of the load capacitance C L is blocked by the cascode transistor 13. Therefore, from the input terminal 1 does not receive only the influence of the C GS of the cascode transistor 13 through C GD of the driving transistor 11. Since C GS of the cascode transistor 13 is smaller than the load capacitance C L , the differential amplifier 800 can be driven to a higher frequency than the differential amplifier 700, and the frequency band that can be amplified is expanded.
  • FIG. 19C is a schematic diagram of the differential amplifier 100 according to the present embodiment.
  • the positive-phase output signal S OUT is fed back to the gate of the cascode transistor 13, whereby a signal in phase with the gate of the drive transistor 11 that is the signal input terminal 1 is supplied to the gate of the cascode transistor 13.
  • the differential amplifier 100 eliminates the effects of the C GD of the drive transistor 11 and the C GS of the cascode transistor 13 as viewed from the input terminal 1 as much as possible. Can be approached.
  • This effect is produced by the HPF 112 from the vicinity of the frequency at which the gain of the cascode-configured amplifier 700 starts to decrease, so that the gain starting to decrease can be increased to obtain a gain up to a higher frequency.
  • the feedback effect starts to occur after the gain starts to decrease, there is also an effect of suppressing oscillation.
  • the differential amplifier 100 can expand the operating band to a higher frequency.
  • the differential amplifier 100 does not require a new current to flow in order to obtain an effect of suppressing a gain reduction in a high frequency band, and the added elements (HPFs 111 and 112) are also small. For this reason, high frequency characteristics can be improved while suppressing an increase in power consumption and a significant increase in area.
  • FIG. 20 is a graph showing an example of the calculation result of the frequency characteristics of the gain of the differential amplifier 100.
  • the 1 dB gain reduction frequency is about 200 MHz (graph L11 in FIG. 20).
  • a band of 400 MHz or more which is about twice that of the amplifier 700, is obtained (graph L21 in FIG. 20).
  • the output load 101 is not limited to the resistance element 21 (FIG. 11), but includes an inductor element 31 (FIG. 12), a parallel circuit of the resistance element 21 and the inductor element 31 (FIG. 13), and a series of the resistance element 21 and the inductor element 31.
  • the same effect can be obtained even with a circuit (FIG. 14), or a series circuit of the resistive element 21 and the inductor element 31 and a parallel circuit of the capacitive element 45.
  • the HPF 111 is not limited to a circuit (FIG. 17) configured by the resistance element 24 and the capacitive element 41, but is a circuit configured by the capacitive element 41 and the inductor element 32, or a series of the resistive element 23 and the inductor element 32. The same effect can be obtained even in a circuit (FIG. 18) in which the capacitive element 41 is connected to the connection.
  • FIG. 4 is a circuit diagram showing a configuration of the differential amplifier 200 according to the present embodiment.
  • the other components excluding the input terminals 1 and 2, the output terminals 3 and 4, and the HPFs 113 and 114 correspond to the basic element 120 of the differential amplifier 200. 4 is compared with FIG. 2 described above, (a) the differential amplifier 200 of FIG. 4 does not have a cascode configuration, and (b) the differential output signal S OUT in which the HPFs 113 and 114 appear at the output terminals 3 and 4. And S OUTB are fed back to the output loads 101 and 103 in two points.
  • FIG. 5 is a circuit diagram of the differential amplifier 200 including specific circuit configurations of the output loads 101 and 102 and the HPFs 113 and 114.
  • the output load 101 includes a resistance element 21 and a load transistor 16 connected in parallel thereto.
  • the drain of the load transistor 16 which is a P-channel transistor is connected to the drain of the driving transistor 11 together with one end of the resistance element 21.
  • the source of the load transistor 16 is connected to the power supply terminal 5.
  • the output load 102 includes a resistance element 22 and a load transistor 17 connected in parallel thereto.
  • the drain of the load transistor 17 which is a P-channel transistor is connected to the drain of the driving transistor 12 together with one end of the resistance element 22.
  • the source of the load transistor 17 is connected to the power supply terminal 5.
  • the HPF 113 includes a resistance element 25 and a capacitance element 43.
  • the resistive element 25 and the capacitive element 43 are connected in series, the other terminal of the capacitive element 43 is connected to the output terminal 3, and the other terminal of the resistive element 25 is connected to the bias terminal 8.
  • the contact point between the resistance element 25 and the capacitive element 43 is connected to the gate of the load transistor 16 as an output of the HPF 113.
  • the HPF 114 includes the resistance element 26 and the capacitance element 44.
  • the resistive element 26 and the capacitive element 44 are connected in series, the other terminal of the capacitive element 44 is connected to the output terminal 4, and the other terminal of the resistive element 26 is connected to the bias terminal 8.
  • the contact point between the resistor element 26 and the capacitor element 44 is connected to the gate of the load transistor 17 as an output of the HPF 114.
  • the pass frequencies of the HPFs 113 and 114 are determined by the capacitance values of the capacitive elements 43 and 44 and the resistance values of the resistive elements 25 and 26.
  • the passing frequency may be set to be around the frequency at which the gain reduction of the basic element 120 of the differential amplifier 200 starts and the gain fluctuation range is within about 3 dB.
  • the output load 101 in the present embodiment has the load transistor 16 as an active element, and functions as an active load when a signal fed back via the HPF 113 is supplied to the gate of the load transistor 16.
  • the other circuit elements shown in FIGS. 4 and 5 and their connection relations are the same as those of the differential amplifier 100 described above, and therefore, redundant description is omitted here.
  • the differential amplifier 200 can expand the operating band to a higher frequency.
  • the differential amplifier 200 does not require a new current to flow in order to obtain an effect of suppressing a gain reduction in a high frequency band, and the added elements (HPFs 113 and 114) are small. For this reason, high frequency characteristics can be improved while suppressing an increase in power consumption and a significant increase in area.
  • FIG. 21 is a graph showing an example of the calculation result of the frequency characteristics of the gain of the differential amplifier 200.
  • a graph L12 in FIG. 21 shows frequency characteristics of the gain of the amplifier 700 shown in FIG.
  • the graph 32 in FIG. 21 is an example of the frequency characteristic of the gain of the differential amplifier 200. Calculations also show that the differential amplifier 200 according to the present embodiment can greatly expand the operating band from the differential amplifier 700.
  • the output load 102 is not limited to the parallel connection circuit (FIG. 9) of the resistance element 21 and the load transistor 16, but includes the load transistor 16 (FIG. 8) or the parallel circuit of the inductor element 31 and the load transistor 16 (FIG. 10). Even when used, the same effect can be obtained.
  • FIG. 6 is a circuit diagram of a cascode differential amplifier 300 according to this embodiment.
  • FIG. 7 is a circuit diagram of the differential amplifier 300 including specific circuit configurations of the output loads 101 and 102 and the HPFs 111, 112, 113, and 114.
  • the differential amplifier 300 is a combination of the feedback configurations of the differential amplifiers 100 and 200 described above. That is, the HPFs 111 and 112 feed back the differential output signal to the gates of the cascode transistors 13 and 14.
  • the HPFs 113 and 114 feed back the differential output signals to control terminals (gates of the load transistors 16 and 17) for controlling the impedances of the output loads 101 and 102.
  • the circuit elements shown in FIGS. 6 and 7 and their connection relations are as already described with respect to the first and second embodiments.
  • the differential amplifier 300 improves the driving force at a high frequency by feedback to the control terminals of the output loads 101 and 102, and mirrors the input terminals by feedback to the control terminals of the output loads 101 and 102. The effect is reduced. Therefore, the differential amplifier 300 can expand the operation band to a higher frequency.
  • the differential output signal passes through the first and second high-pass filters (eg, HPFs 111 and 112). To pass. That is, as the operating frequency of the differential amplifier increases, the gains of the first and second drive transistors (for example, the transistors 11 and 12) constituting the differential pair begin to decrease, and at the same time, the operating frequency increases.
  • the high-frequency component of the differential output signal that has passed through the second high-pass filter is ford-backed into the differential amplifier.
  • the differential amplifier acts to increase the output in the high frequency band. As a result, the differential amplifier can suppress the decrease in gain and extend the operating frequency band with a simple circuit configuration.
  • the output of a single-ended amplifier is generally in the opposite phase to the input, but a signal in phase with the input signal is required for feedback via the HPF 111, 113, etc. Therefore, a circuit that generates an in-phase signal from the output signal of the single-ended amplifier may be arranged, and the output of the circuit may be fed back into the single-ended amplifier via the HPFs 111 and 113.
  • two single-ended amplifiers are arranged in parallel, two signals having a phase difference of ⁇ radians are input to the two single-ended amplifiers, and the two output signals are respectively supplied to the HPF 111 or 113 in the other single-ended amplifier. You can feed back through.
  • the feedback destination into the single-ended amplifier may be the control terminal of the cascode transistor or the control terminal of the output load that can control the drain current of the driving transistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

 広帯域な差動増幅器を簡易な回路構成で提供する。第1のハイパスフィルタ(112又は114)は、駆動トランジスタ11のソース・ドレイン経路を含む配線上に設けられた第1の回路(トランジスタ13又は出力負荷101など)の制御端子と出力端子3との間に接続され、差動出力信号のうちの一方を入力して高周波成分を選択的に透過させるとともに、駆動トランジスタ11のドレイン電流を調整するための第1の回路の制御端子の制御電位としてフィードバックする。また、第2のハイパスフィルタ(111又は113)は、駆動トランジスタ12のソース・ドレイン経路を含む配線上に設けられた第2の回路(トランジスタ14又は出力負荷102など)の制御端子と出力端子4との間に接続され、差動出力信号のうち他方を入力して高周波成分を選択的に透過させるとともに、透過後の信号を第2の回路の制御端子の制御電位としてフィードバックする。

Description

差動増幅器及びその構成方法
 本発明は、半導体増幅回路に関し、特に広帯域な差動増幅回路に関する。
 近年、無線通信技術の進歩と普及は目覚しく、より高速通な通信速度を低消費電力かつ低価格に実現するために、最新CMOSプロセスを用いた無線LSI開発が進んでいる。より高速な通信速度を実現するために、通信に用いられる周波数帯域も広がってきている。このため、広帯域な差動増幅器の実現は、CMOS無線LSIの分野におけるキーテクノロジーの1つである。
 図22は、一般的に知られている最も単純な回路構成を有する差動増幅器700を示す図である。この差動増幅器700の広帯域化の手法の1つには、カスコード構成の採用がある(例えば特許文献1の図7及び第17~18段落の記載を参照)。図23は、カスコード構成を有する差動増幅器800を示す回路図である。差動増幅器700では、出力負荷容量のミラー効果がゲート容量を介して入力端子に生じるため、高周波ゲインが十分に得られない。しかしながら、差動増幅器800は、カスコード構成の採用によってミラー効果を軽減でき、増幅可能な周波数帯域を広げることができる。
 また、図24は、特許文献2に開示された差動構成のレベルシフト回路を示す回路図である。図24のレベルシフト回路900では、入力端子IN及びIN_B(ソースフォロワを構成するトランジスタJ1及びJ3のゲート)に供給される入力信号が、容量素子CG1及びCG2を介して回路内部(電流源用のトランジスタJ4及びJ2のゲート)へフィードフォワードされている。つまり、電流源用のトランジスタJ2及びJ4のベースに対して、直流バイアスに加えて、逆相の入力信号の高周波成分が供給される。これにより、トランジスタJ2及びJ4が積極的に回路の電流の増減が生じるように駆動し、トランジスタJ1及びJ3の駆動能力低下を補償することで、レベルシフト回路900の広帯域化を実現している。
 また、特許文献3は、差動増幅器を含む複数の増幅器が従属接続された多段増幅装置を開示している。特許文献3に開示された多段増幅装置は、入力段(第1段)の差動増幅器の入力端子に供給される入力信号をハイパスフィルタを介して第2段の電圧増幅器の入力端子にフィードフォワードする。
 また、特許文献4は、差動増幅器の2つの出力をそれぞれ逆相側の入力端子(つまり、ソースが電流源に共通接続され、差動対を構成する一対のトランジスタのゲート端子)に容量素子を介して帰還する構成を開示している。
特開2007-6484号公報(図7、第17及び18段落) 特開平5-67933号公報(図1、第11段落) 特開平9-148850号公報 特開2006-191350号公報
 上述したように、図22に示す差動増幅器700では、ミラー効果のために高周波特性を十分に引き出せない問題がある(図19Aを参照)。この問題の軽減方法には、カスコード構成の採用がある。カスコード構成では、図23に示したように、カスコードトランジスタ13及び14が入力トランジスタ11及び12に接続される。カスコードトランジスタ13及び14によって、ゲート容量を介して入力端子1及び2が影響を受ける容量はカスコードトランジスタ13及び14の容量となる。よって、カスコードトランジスタ13及び14の容量が負荷容量より小さくなるように設計することで、高周波性能を引きすことができる。しかしながら、カスコードトランジスタ13及び14としては、入力端子1及び2への影響を小さくするためにできる限り小さいサイズのトランジスタが望まれる一方で、差動増幅器800に必要な電流を流すことができる程度の大さである必要がある。このトレードオフの関係が存在するために、カスコードトランジスタを自由に小さくすることは出来ない。よって、カスコード構成を有する差動増幅器800でも、差動増幅器700の1.5~2倍程度までしか帯域を広げることはできない。
 また、図24のレベルシフト回路900のように、入力信号そのものを容量素子(CG1及びCG2)を介して入力トランジスタ(J1及びJ3)以外の回路内部へフィードフォワードする手法もある。しかしながら、前段のトランジスタJ1及びJ3から見ると駆動する負荷が増えたこととなるため、トランジスタJ1及びJ3の駆動力向上や帯域拡張などの対策が必要になる。しかしながら、一般的に、差動増幅器は、弱い信号を増幅するために多段増幅回路の前段に配置される回路であるため、入力信号の駆動力や帯域はすでに決まっているものであることが多く、より大きな駆動力が新たに必要となるフィードフォワード構成は、回路全体を縮小化して、さらに増幅器を多段化するなどの対策が必要となるため、設計の難しさや面積の増大を招く問題がある。
 ところで特許文献3に開示された多段増幅装置は、入力段に与えられる入力信号をハイパスフィルタを介して第2段の増幅器にフィードフォワードするものである。つまり、入力段の差動増幅器自体の動作帯域を向上させるものではなく、高周波を増幅するための増幅器を入力段の差動増幅器とは別途に設けることが必須である。
 また、特許文献4に開示された増幅装置は、差動増幅器の入力端子に容量素子が追加されるため、入力端子が出力負荷C(図19Aを参照)の影響をより受けやすくなるという問題があり、状況によっては増幅装置の動作帯域を逆に狭くしてしまうおそれがある。また、これを補おうとする場合、特許文献4の増幅装置の前段に配置される増幅器の駆動能力の向上が必要となり、回路全体の大型化、消費電流の増加を招いてしまう。
 本発明は本願の発明者による上述した知見に基づいてなされたものであって、本発明の目的は、広帯域な差動増幅器を簡易な回路構成で提供することである。
 本発明の第1の態様にかかる差動増幅回路は、差動対を構成する第1及び第2の駆動トランジスタ、前記差動対によって増幅された後の差動出力信号が出力される第1及び第2の出力端子、第1及び第2の回路、並びに第1及び第2のハイパスフィルタを備える。前記第1及び第2の駆動トランジスタの各々のゲートには、差動入力信号のそれぞれ一方が供給される。
 前記第1の回路は、前記第1の駆動トランジスタのソース・ドレイン経路及び前記第1の出力端子が接続された配線上に配置され、前記第1の駆動トランジスタを流れるドレイン電流を調整可能な第1の制御端子を有する。同様に、前記第2の回路は、前記第2の駆動トランジスタのソース・ドレイン経路及び前記第2の出力端子が接続された配線上に配置され、前記第2の駆動トランジスタを流れるドレイン電流を調整可能な第2の制御端子を有する。
 前記第1のハイパスフィルタは、前記第2の出力端子と前記第1の制御端子の間に接続され、前記差動出力信号のうち一方を入力して高周波成分を選択的に透過させるとともに、透過後の信号を前記第1の制御端子の制御電位としてフィードバックする。同様に、前記第2のハイパスフィルタは、前記第1の出力端子と前記第2の制御端子の間に接続され、前記差動出力信号のうち他方を入力して高周波成分を選択的に透過させるとともに、透過後の信号を前記第2の制御端子の制御電位としてフィードバックする。
 本発明の第2の態様は、差動増幅器の構成方法である。当該方法は、以下の工程(a)~(f)を含む。
(a)差動入力信号のうち一方が供給されるゲートを有する第1の駆動トランジスタを配置する工程;
(b)前記差動入力信号のうち他方が供給されるゲートを有し、前記第1の駆動トランジスタと共に差動対を構成する第2の駆動トランジスタを配置する工程;
(c)前記第1の駆動トランジスタを流れるドレイン電流を調整するための第1の制御端子を有する第1の回路を、前記第1の駆動トランジスタのソース・ドレイン経路及び前記第1の出力端子が接続された配線上に配置する工程;
(d)前記第2の駆動トランジスタを流れるドレイン電流を調整するための第2の制御端子を有する第2の回路を、前記第2の駆動トランジスタのソース・ドレイン経路及び前記第2の出力端子が接続された配線上に配置する工程;
(e)前記差動対によって増幅された後の差動出力信号のうち一方を入力して高周波成分を選択的に透過させるとともに、透過後の信号を前記第1の制御端子の制御電位としてフィードバックする第1のハイパスフィルタを、前記差動出力信号が出力される第1及び第2の出力端子のうち前記第2の出力端子と前記第1の制御端子の間に接続する工程;及び
(f)前記差動出力信号のうち他方を入力して高周波成分を選択的に透過させるとともに、透過後の信号を前記第2の制御端子の制御電位としてフィードバックする第2のハイパスフィルタを、前記第1の出力端子と前記第2の制御端子の間に接続する工程。
 上述した本発明の第1の態様にかかる差動増幅器および第2態様にかかる方法によって得られる差動増幅器は、簡易な回路構成によって、利得の低下を抑制し、動作周波数帯域を拡張できる。
本発明の第1の実施形態に係る差動増幅器のフィードバックの概念を示すブロック図である。 本発明の第1の実施形態に係る差動増幅器を示すブロック図である。 本発明の第1の実施形態に係る差動増幅器の具体的な構成例(カスコード型差動増幅器)を示す回路図である。 本発明の第2の実施形態に係る差動増幅器を示すブロック図である。 本発明の第2の実施形態に係る差動増幅器の具体的な構成例を示す回路図である。 本発明の第3の実施形態に係る差動増幅器を示すブロック図である。 本発明の第3の実施形態に係る差動増幅器の具体的な構成例(カスコード型差動増幅器)を示す回路図である。 本発明の各実施形態に係る差動増幅器に用いる三端子出力負荷の一例を示す回路図である。 本発明の各実施形態に係る差動増幅器に用いる三端子出力負荷の一例を示す回路図である。 本発明の各実施形態に係る差動増幅器に用いる三端子出力負荷の一例を示す回路図である。 本発明の各実施形態に係る差動増幅器に用いる二端子出力負荷の一例を示す回路図である。 本発明の各実施形態に係る差動増幅器に用いる二端子出力負荷の一例を示す回路図である。 本発明の各実施形態に係る差動増幅器に用いる二端子出力負荷の一例を示す回路図である。 本発明の各実施形態に係る差動増幅器に用いる二端子出力負荷の一例を示す回路図である。 本発明の各実施形態に係る差動増幅器に用いる二端子出力負荷の一例を示す回路図である。 本発明の各実施形態に係る差動増幅器に用いるハイパスフィルタの一例を示す回路図である。 本発明の各実施形態に係る差動増幅器に用いるハイパスフィルタの一例を示す回路図である。 本発明の各実施形態に係る差動増幅器に用いるハイパスフィルタの一例を示す回路図である。 背景技術に係る差動増幅器の動作を示す概念図である。 背景技術に係る差動増幅器の動作を示す概念図である。 第1の実施形態に係る差動増幅器の動作を示す概念図である。 第1の実施形態に係る差動増幅器の高周波特性に関する数値計算結果の一例を背景技術のものと対比して示すグラフである。 第2の実施形態に係る差動増幅器の高周波特性に関する数値計算結果の一例を背景技術のものと対比して示すグラフである。 背景技術にかかる差動増幅回路を示す図である。 背景技術にかかるカスコード型の差動増幅回路を示す図である。 背景技術にかかるフィードフォワードを用いたレベルシフト回路を示す図である。
 以下では、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。各図面において、同一要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
<第1の実施形態>
 図1は、本発明の第1の実施形態に係る差動増幅器100の概略構成を示すブロック図である。差動増幅器100は、差動増幅の基本要素120を有する。基本要素120は、2つの入力端子1及び2と、2つの出力端子3及び4を有する。基本要素120は、差動対を有しており、入力端子1及び2に供給される差動信号を差動対によって増幅し、増幅後の差動信号を出力端子3及び4に供給する。なお、ここでは、入力端子1を正相入力端子IN、入力端子2を逆相入力端子IN_B、出力端子3を正相出力端子OUT、出力端子4を逆相出力端子OUT_Bとする。
 また、差動増幅器100は、ハイパスフィルタ(HPF:High Pass Filter)111及び112を有する。HPF111は、一端が出力端子4に接続され、多端が入力端子1及び2を除く基本要素120の回路内に接続されている。HPF111と同様に、HPF112は、出力端子3と基本要素120の回路内との間に接続されている。つまり、HPF11及び112は、差動増幅器100の2つの出力信号(差動出力信号SOUT及びSOUTB)を、差動入力信号を除く差動増幅器100の基本要素120内の電位にフィードバックする。
 図2は、差動増幅器100の具体的構成の一例を示す回路図である。図2において、入力端子1及び2、出力端子3及び4並びにHPF111及び112を除くその他の構成要素が、上述した基本要素120に対応する。図2の差動増幅器100は、カスコード構成を有している。以下では、図2に示された各構成要素について順に説明する。
 駆動トランジスタ11及び12は増幅用の差動対を構成する。具体的に述べると、駆動トランジスタ11のゲートは入力端子1に接続され、駆動トランジスタ12のゲートは入力端子2に接続されている。また、共通接続されたトランジスタ11及び12のソースは、定電流源10を介して接地されている。また、駆動トランジスタ11のドレインは、カスコードトランジスタ13及び出力負荷101を介して電源端子5(ドレイン電位VDD)に接続されている。同様に、駆動トランジスタ12のドレインは、カスコードトランジスタ14及び出力負荷102を介して電源端子5(ドレイン電位VDD)に接続されている。
 カスコードトランジスタ13のソースは駆動トランジスタ11のドレインに接続され、ドレインは出力負荷101に接続されている。また、カスコードトランジスタ14のソースは駆動トランジスタ12のドレインに接続され、ドレインは出力負荷102に接続されている。
 出力負荷101の一端はカスコードトランジスタ13のソースに接続され、他端は電源端子5に接続されている。出力負荷101とカスコードトランジスタ13の共通接続点は出力端子4に接続されている。同様に、出力負荷102の一端はカスコードトランジスタ14のソースに接続され、他端は電源端子5に接続されている。出力負荷102とカスコードトランジスタ14の共通接続点は出力端子3に接続されている。
 HPF111は、出力端子4つまりカスコードトランジスタ13のドレインと、もう一方のカスコードトランジスタ14のゲートの間に配置されている。つまり、HPF111は、出力端子4に現れる逆相出力信号SOUTBの高周波成分を、逆相入力IN_B側のカスコードトランジスタ14にバイアス電圧として供給する。
 同様に、HPF112は、出力端子3つまりカスコードトランジスタ14のドレインと、もう一方のカスコードトランジスタ13のゲートの間に配置されている。HPF112は、出力端子3に現れる正相出力信号SOUTの高周波成分を、正相入力IN側のカスコードトランジスタ13にバイアス電圧として供給する。
 差動対を構成する駆動トランジスタ11及び12のゲートに入力された差動入力信号は、駆動トランジスタ11及び12、カスコードトランジスタ13及び14、並びに出力負荷101及び102によって増幅される。そして、カスコードトランジスタ13及び14のドレインである端子4及び3から差動出力信号が得られる。
 続いて以下では、定電流源10、HPF111及び112、並びに出力負荷101及び102の具体的な構成例について図3を参照して説明する。図3は、定電流源10、HPF111及び112並びに出力負荷101及び102の具体的な回路構成を含む差動増幅器100の回路図である。
 図3の構成例では、定電流源10は電流源トランジスタ15を含む。電流源トランジスタ15のゲートは定電流源用バイアス電圧が入力されるバイアス端子7に接続され、電流源トランジスタのソースはグランドに接地される。また、トランジスタ15のドレインは駆動トランジスタ11及び12のソースに共通接続されている。
 また、図3の構成例では、出力負荷101は抵抗素子21を含む。同様に、出力負荷102は抵抗素子22を含む。
 また、図3の構成例では、HPF111は抵抗素子23及び容量素子41を含む。抵抗素子23と容量素子41は直列に接続され、容量素子41の他方の端子は出力端子4に接続され、抵抗素子23の他方の端子はバイアス端子6に接続される。また、抵抗素子23と容量素子41の接点はHPF111の出力としてカスコードトランジスタ14のゲートに接続される。同様に、図3の構成例では、HPF112は抵抗素子24及び容量素子42を含む。抵抗素子24と容量素子42は直列に接続され、容量素子42の他方の端子は出力端子3に接続され、抵抗素子24の他方の端子はバイアス端子6に接続される。また、抵抗素子24と容量素子42の接点はHPF112の出力としてカスコードトランジスタ13のゲートに接続される。このときHPF111及び112の通過周波数は容量素子41及び42の容量値と抵抗素子23及び24の抵抗値によって決まる。例えば、この通過周波数は、差動増幅器100の基本要素120の利得低下の始まる周波数付近であり、かつ利得変動幅が3dB程度に収まるように設定するとよい。
[動作の説明]
 次に図19A~19Cを用いて、差動増幅器100の動作について説明する。図19A~19Cは、差動対の一方のトランジスタ11とその周辺の回路要素を抜き出して示す模式図である。なお、図19Cは、差動増幅器100に関する図であり、図19A及び19Bは対比のために示す背景技術に関する図である。
 図19Aは、図22に示した差動増幅器700の場合を示している。この場合、信号入力端子1から見ると、駆動トランジスタ11のゲート容量CGDを介して出力端子4につながる負荷容量Cの影響を受けてしまう。このため、高い周波数ではトランジスタ11を駆動できなくなり利得が低下し、差動増幅器700の増幅可能な周波数帯域は狭くなってしまう。
 また、図19Bは、図23に示したカスコード構成の差動増幅器800の場合を示している。この場合、負荷容量Cの影響はカスコードトランジスタ13で遮られている。したがって、入力端子1からは駆動トランジスタ11のCGDを介してカスコードトランジスタ13のCGSの影響しか受けない。カスコードトランジスタ13のCGSは負荷容量Cに比べて小さいので、差動増幅器800は差動増幅器700に比べて高い周波数まで駆動でき、増幅可能な周波数帯域が広がる。
 図19Cは、本実施形態にかかる差動増幅器100の模式図である。図19Cに示すように、カスコードトランジスタ13のゲートに正相出力信号SOUTがフィードバックされることにより、信号入力端子1である駆動トランジスタ11のゲートと同相の信号がカスコードトランジスタ13のゲートに供給される。よって、差動増幅器100は、カスコードトランジスタ13及び14を配置したことによる上記の効果に加えて、入力端子1から見た駆動トランジスタ11のCGDとカスコードトランジスタ13のCGSの影響を限りなくゼロに近づけることができる。
 この作用は、HPF112によって、カスコード構成の増幅器700の利得が落ち始める周波数付近から効果が発生するので、低下し始める利得を押し上げてより高い周波数まで利得を得ることができる。また、利得が落ち始めてからフィードバックの効果が生じ始めるので、発振の抑制効果もある。以上のような理由から、差動増幅器100は、より高い周波数まで動作帯域を広げることができる。
 また、差動増幅器100は、高周波帯域での利得低下を抑制する効果を得るために新たに電流を流す必要がなく、また加えられる素子(HPF111及び112)も小さいものである。このため、消費電力の増大や著しい面積の増加を抑制しながら高周波特性を向上させることができる。
 図20は、差動増幅器100の利得の周波数特性の計算結果の一例を示すグラフである。差動増幅器700では、1dB利得低下周波数が200MHz程度である(図20のグラフL11)。また、カスコード構成の差動増幅器800では、増幅器700に比べて2倍程度の400MHz以上の帯域が得られている(図20のグラフL21)。これらに対して、本実施形態に係る差動増幅器100では、増幅器700に比べて5倍以上の1GHzを越える帯域が得られる(図20のグラフL31)。
 ところで、図3に示した回路構成が一例にすぎないことは勿論である。例えば、出力負荷101は、抵抗素子21(図11)に限られず、インダクタ素子31(図12)、抵抗素子21とインダクタ素子31の並列回路(図13)、抵抗素子21とインダクタ素子31の直列回路(図14)、又は抵抗素子21とインダクタ素子31の直列回路と容量素子45の並列回路であっても同様の効果を得ることができる。
 また、例えば、HPF111は、抵抗素子24と容量素子41で構成される回路(図17)に限られず、容量素子41とインダクタ素子32で構成される回路、又は抵抗素子23とインダクタ素子32の直列接続に容量素子41を接続した回路(図18)であっても同様の効果を得ることができる。
<第2の実施形態>
 図4は本実施形態に係る差動増幅器200の構成を示す回路図である。図4において、入力端子1及び2、出力端子3及び4並びにHPF113及び114を除くその他の構成要素は、差動増幅器200の基本要素120に対応する。図4の構成と上述した図2を比べると、(a)図4の差動増幅器200がカスコード構成出ない点、(b)HPF113及び114が出力端子3及び4に現れる差動出力信号SOUT及びSOUTBを出力負荷101及び103にフィードバックしている点の2点が相違している。
 図5は、出力負荷101及び102並びにHPF113及び114の具体的な回路構成を含む差動増幅器200の回路図である。
 図5の例では、出力負荷101は、抵抗素子21とこれに並列接続された負荷トランジスタ16を含む。Pチャネル・トランジスタである負荷トランジスタ16のドレインは、抵抗素子21の一端と共に駆動トランジスタ11のドレインに接続されている。負荷トランジスタ16のソースは、電源端子5に接続されている。同様に、出力負荷102は、抵抗素子22とこれに並列接続された負荷トランジスタ17を含む。Pチャネル・トランジスタである負荷トランジスタ17のドレインは、抵抗素子22の一端と共に駆動トランジスタ12のドレインに接続されている。負荷トランジスタ17のソースは、電源端子5に接続されている。
 図5の例では、HPF113は、抵抗素子25及び容量素子43を含む。抵抗素子25と容量素子43は直列に接続され、容量素子43の他方の端子は出力端子3に接続され、抵抗素子25の他方の端子はバイアス端子8に接続される。また、抵抗素子25と容量素子43の接点はHPF113の出力として負荷トランジスタ16のゲートに接続される。同様に、図5の構成例では、HPF114は抵抗素子26及び容量素子44を含む。抵抗素子26と容量素子44は直列に接続され、容量素子44の他方の端子は出力端子4に接続され、抵抗素子26の他方の端子はバイアス端子8に接続される。また、抵抗素子26と容量素子44の接点はHPF114の出力として負荷トランジスタ17のゲートに接続される。このときHPF113及び114の通過周波数は容量素子43及び44の容量値と抵抗素子25及び26の抵抗値によって決まる。例えば、この通過周波数は、差動増幅器200の基本要素120の利得低下の始まる周波数付近であり、かつ利得変動幅が3dB程度に収まるように設定するとよい。
 つまり、本実施形態における出力負荷101は、能動素子としての負荷トランジスタ16を有しており、HPF113を介してフィードバックされた信号が負荷トランジスタ16のゲートに供給されることで能動負荷として機能する。なお、図4及び5に示した他の回路要素及びこれらの接続関係は、上述した差動増幅器100と同様であるため、ここでは重複説明を省略する。
[動作の説明]
 以下では、差動増幅器200の動作について説明する。差動増幅器200の信号入力端子1及び2に差動信号が入力されると、出力端子3及び4から増幅された信号が出力される。このとき、差動入力信号の周波数が低い状態では、負荷トランジスタ16及び17のゲートにはバイアス端子8から直流バイアスがかかっているだけある。つまり、HPF113及び114の遮断特性が働くために、出力端子4及び3からのフィードバック信号は負荷トランジスタ16及び17のゲートに入力されない。
 次に、差動入力信号の周波数が上がった場合を説明する。図19Aに示すように、信号入力端子1及び2から見ると、駆動トランジスタ11及び12のゲート容量CGDを介して増幅器出力につながる負荷容量Cの影響を受けてしまい、高い周波数では駆動できなくなり利得が低下する。しかしながら、本実施の形態では、信号周波数が上がったことにより、差動出力信号がHPF113及び114を通過し、通過後の信号が負荷トランジスタ16及び17のゲートに入力される。これによって出力信号と同相でトランジスタ11及び12を流れるドレイン電流が増減するため、増幅器200の利得が上がる。また、この作用は、HPF113及び114によって、駆動トランジスタ11及び12による利得が落ち始める周波数付近から効果が発生するので、低下し始める利得を押し上げてより高い周波数まで利得を得ることができる。また、利得が落ち始めてからフィードバックの効果が生じ始めるので、発振の抑制効果もある。以上のような理由から、差動増幅器200は、より高い周波数まで動作帯域を広げることができる。
 また、差動増幅器200は、高周波帯域での利得低下を抑制する効果を得るために新たに電流を流す必要がなく、また加えられる素子(HPF113及び114)も小さいものである。このため、消費電力の増大や著しい面積の増加を抑制しながら高周波特性を向上させることができる。
 図21は、差動増幅器200の利得の周波数特性の計算結果の一例を示すグラフである。図21のグラフL12は図22に示した増幅器700の利得の周波数特性を示している。一方、図21のグラフ32は、差動増幅器200の利得の周波数特性の一例である。本実施形態にかかる差動増幅器200は、差動増幅器700から動作帯域を大きく広げられることが計算でも示されている。
 ところで、図5に示した回路構成が一例にすぎないことは勿論である。例えば、出力負荷102は、抵抗素子21と負荷トランジスタ16の並列接続回路(図9)に限られず、負荷トランジスタ16(図8)、又はインダクタ素子31と負荷トランジスタ16の並列回路(図10)を用いた場合でも同様の効果を得ることができる。
<第3の実施形態>
 図6は本実施形態にかかるカスコード型の差動増幅器300の回路図である。また、図7は、出力負荷101及び102並びにHPF111、112、113及び114の具体的な回路構成を含む差動増幅器300の回路図である。図6及び図7から明らかであるように、差動増幅器300は、上述した差動増幅器100及び200が有するフィードバック構成を組み合わせたものである。つまり、HPF111及び112は、差動出力信号をカスコードトランジスタ13及び14のゲートにフィードバックする。また、HPF113及び114は、差動出力信号を出力負荷101及び102のインピーダンスを制御するための制御端子(負荷トランジスタ16及び17のゲート)にフィードバックする。なお、図6及び7に示す各回路要素およびこれらの接続関係は、発明の実施形態1及び2に関して既に説明した通りである。
 本実施の形態にかかる差動増幅器300は、出力負荷101及び102の制御端子へのフィードバックによって高周波での駆動力を向上させるとともに、出力負荷101及び102の制御端子へのフィードバックにより入力端子に対するミラー効果が軽減される。よって、差動増幅器300は、より高い周波数まで動作帯域を広げることができる。
 上述した本発明の各実施の形態によれば、以下に述べる効果が得られる。すなわち、差動入力信号の周波数が差動増幅器(例えば増幅器100)の利得低下が生じ始めるような高い周波数になると、差動出力信号が第1及び第2のハイパスフィルタ(例えばHPF111及び112)を通過するようになる。つまり、差動増幅器の動作周波数の上昇によって差動対を構成する第1及び第2の駆動トランジスタ(例えばトランジスタ11及び12)の利得が低下し始めると同時に、動作周波数が上がったことで第1及び第2のハイパスフィルタを通過した差動出力信号の高周波成分が差動増幅器内にフォードバックされる。このフィードバックによって、当該差動増幅器は高周波帯域での出力を上昇させるように作用する。これにより、当該差動増幅器は、簡易な回路構成によって、利得の低下を抑制し、動作周波数帯域を拡張できる。
 上述した第1~第3の実施形態では、単純な差動増幅器に関する例を述べたが、折り返し型差動増幅器やシングルエンド増幅器でも同様にハイパスフィルタを用いたフィードバックで動作帯域を広げることができる。
 シングルエンド増幅器に適用する場合以下のように構成すればよい。シングルエンド増幅器の出力は一般的に入力と反対位相になるが、HPF111、113等を介したフィードバックには入力信号と同相の信号が必要である。よって、シングルエンド増幅器の出力信号から同相信号を生成する回路を配置し、当該回路の出力をHPF111、113等を介してシングルエンド増幅器内にフィードバックすればよい。例えば、2つのシングルエンド増幅器を並列配置し、位相差がπラジアンである2つの信号を2つのシングルエンド増幅器に入力し、2つの出力信号をそれぞれ他の一方のシングルエンド増幅器内にHPF111又は113を介してフィードバックすればよい。シングルエンド増幅器内へのフィードバック先は、駆動トランジスタのドレイン電流を制御することが可能なカスコードトランジスタの制御端子又は出力負荷の制御端子とすればよい。
 さらに、本発明は上述した実施の形態のみに限定されるものではなく、既に述べた本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。
 この出願は、2008年9月2日に出願された日本出願 特願2008-225087を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1、2 入力端子
3、4 出力端子
5、6、7、8 バイアス端子
10 電流源
11~17 トランジスタ
21~26 抵抗素子
31、32 インダクタ素子
41~44 容量素子
100、200、300 差動増幅器
101、102 出力負荷
111~114 ハイパスフィルタ(HPF)

Claims (18)

  1.  差動入力信号のうち一方が供給されるゲートを有する第1の駆動トランジスタと、
     前記差動入力信号のうち他方が供給されるゲートを有し、前記第1の駆動トランジスタと共に差動対を構成する第2の駆動トランジスタと、
     前記差動対によって増幅された後の差動出力信号が出力される第1及び第2の出力端子と、
     前記第1の駆動トランジスタのソース・ドレイン経路及び前記第1の出力端子が接続された配線上に配置され、前記第1の駆動トランジスタを流れるドレイン電流を調整可能な第1の制御端子を有する第1の回路と、
     前記第2の駆動トランジスタのソース・ドレイン経路及び前記第2の出力端子が接続された配線上に配置され、前記第2の駆動トランジスタを流れるドレイン電流を調整可能な第2の制御端子を有する第2の回路と、
     前記第2の出力端子と前記第1の制御端子の間に接続され、前記差動出力信号のうち一方を入力して高周波成分を選択的に透過させるとともに、透過後の信号を前記第1の制御端子の制御電位としてフィードバックする第1のハイパスフィルタと、
     前記第1の出力端子と前記第2の制御端子の間に接続され、前記差動出力信号のうち他方を入力して高周波成分を選択的に透過させるとともに、透過後の信号を前記第2の制御端子の制御電位としてフィードバックする第2のハイパスフィルタと、
    を備える差動増幅器。
  2.  前記第1の回路は、前記第1の駆動トランジスタのドレイン及び電源電位の間に接続される一対の端子と、前記第1の制御端子とを有する三端子の第1の出力負荷を含み、
     前記第2の回路は、前記第2の駆動トランジスタのドレイン及び前記電源電位の間に接続される一対の端子と、前記第2の制御端子とを有する三端子の第2の出力負荷を含む、請求項1記載の差動増幅器。
  3.  前記第1の回路は、
     ドレインが前記第1の制御端子であり、ソースが前記第1の駆動トランジスタのドレインに接続され、ドレインが前記第1の出力端子に接続される第1のカスコードトランジスタと、
     一方の端子が前記第1のカスコードトランジスタのドレインに接続され、他方の端子が電源電位に接続される二端子の出力負荷とを備え、
     前記第2の回路は、
     ドレインが前記第2の制御端子であり、ソースが前記第2の駆動トランジスタのドレインに接続され、ドレインが前記第2の出力端子に接続される第2のカスコードトランジスタと、
     一方の端子が前記第2のカスコードトランジスタのドレインに接続され、他方の端子が前記電源電位に接続される二端子の出力負荷とを備える、請求項1記載の差動増幅器。
  4.  ソースが前記第1の駆動トランジスタのドレインに接続され、ドレインが前記第1の出力端子及び前記第1の出力負荷に接続される第1のカスコードトランジスタと、
     ソースが前記第2の駆動トランジスタのドレインに接続され、ドレインが前記第2の出力端子及び前記第2の出力負荷に接続される第2のカスコードトランジスタと、
     前記第1のカスコードトランジスタのゲートと前記第2の出力端子との間に接続され、前記差動出力信号のうち一方を入力して高周波成分を選択的に透過させるとともに、透過後の信号を前記第1のカスコードトランジスタのゲートの制御電位としてフィードバックする第3のハイパスフィルタと、
     前記第2のカスコードトランジスタのゲートと前記第1の出力端子との間に接続され、前記差動出力信号のうち一方を入力して高周波成分を選択的に透過させるとともに、透過後の信号を前記第2のカスコードトランジスタのゲートの制御電位としてフィードバックする第4のハイパスフィルタと、
    をさらに備える、請求項2記載の差動増幅器。
  5.  前記第1の出力負荷は、前記一対の端子の一方に接続されたドレインと、前記一対の端子の他方に接続されたソースと、前記第1の制御端子に接続されたゲートを有する第1の負荷トランジスタを含み、
     前記第2の出力負荷は、前記一対の端子の一方に接続されたドレインと、前記一対の端子の他方に接続されたソースと、前記第2の制御端子に接続されたゲートを有する第2の負荷トランジスタを含む、請求項2又は4記載の差動増幅器。
  6.  前記第1の出力負荷は、前記第1の負荷トランジスタのソース・ドレイン間に並列に接続された抵抗素子をさらに含み、
     前記第2の出力負荷は、前記第2の負荷トランジスタのソース・ドレイン間に並列に接続された抵抗素子をさらに含む、請求項5記載の差動増幅器。
  7.  前記第1の出力負荷は、前記第1の負荷トランジスタのソース・ドレイン間に並列に接続されたインダクタ素子をさらに含み、
     前記第2の出力負荷は、前記第2の負荷トランジスタのソース・ドレイン間に並列に接続されたインダクタ素子をさらに含む、請求項5記載の差動増幅器。
  8.  前記第1及び第2の出力負荷の各々は抵抗素子である、請求項3記載の差動増幅器。
  9.  前記第1及び第2の出力負荷の各々はインダクタ素子である、請求項3記載の差動増幅器。
  10.  前記第1及び第2の出力負荷の各々は、抵抗素子とインダクタ素子の並列接続回路である、請求項3記載の差動増幅器。
  11.  前記第1及び第2の出力負荷の各々は、抵抗素子とインダクタ素子の直列接続回路である、請求項3記載の差動増幅器。
  12.  前記第1及び第2の出力負荷の各々は、抵抗素子とインダクタ素子の直列接続回路とそれに並列接続された容量素子からなる回路である、請求項3記載の差動増幅器。
  13.  前記第1のハイパスフィルタは、
     一方の端子が前記第2の出力端子に接続され、他方の端子が第1の制御端子に接続される第1の容量素子と、
     前記第1の容量素子の前記他方の端子と前記第1の制御端子に供給されるバイアス電圧の供給端子との間に接続される抵抗素子を含み、
     前記第2のハイパスフィルタは、
     一方の端子が前記第1の出力端子に接続され、他方の端子が第2の制御端子に接続される第2の容量素子と、
     前記第2の容量素子の前記他方の端子と前記第2の制御端子に供給されるバイアス電圧の供給端子との間に接続される抵抗素子を含む、請求項1乃至12のいずれか1項に記載の差動増幅器。
  14.  前記第1のハイパスフィルタは、
     一方の端子が前記第2の出力端子に接続され、他方の端子が第1の制御端子に接続される第1の容量素子と、
     前記第1の容量素子の前記他方の端子と前記第1の制御端子に供給されるバイアス電圧の供給端子との間に接続されるインダクタ素子を含み、
     前記第2のハイパスフィルタは、
     一方の端子が前記第1の出力端子に接続され、他方の端子が第2の制御端子に接続される第2の容量素子と、
     前記第2の容量素子の前記他方の端子と前記第2の制御端子に供給されるバイアス電圧の供給端子との間に接続されるインダクタ素子を含む、請求項1乃至12のいずれか1項に記載の差動増幅器。
  15.  前記第1のハイパスフィルタは、
     一方の端子が前記第2の出力端子に接続され、他方の端子が第1の制御端子に接続される第1の容量素子と、
     前記第1の容量素子の前記他方の端子と前記第1の制御端子に供給されるバイアス電圧の供給端子との間に直列に接続された抵抗素子及びインダクタ素子を含み、
     前記第2のハイパスフィルタは、
     一方の端子が前記第1の出力端子に接続され、他方の端子が第2の制御端子に接続される第2の容量素子と、
     前記第2の容量素子の前記他方の端子と前記第2の制御端子に供給されるバイアス電圧の供給端子との間に直列に接続された抵抗素子及びインダクタ素子を含む、請求項1乃至12のいずれか1項に記載の差動増幅器。
  16.  差動入力信号のうち一方が供給されるゲートを有する第1の駆動トランジスタを配置し、
     前記差動入力信号のうち他方が供給されるゲートを有し、前記第1の駆動トランジスタと共に差動対を構成する第2の駆動トランジスタを配置し、
     前記第1の駆動トランジスタを流れるドレイン電流を調整するための第1の制御端子を有する第1の回路を、前記第1の駆動トランジスタのソース・ドレイン経路及び前記第1の出力端子が接続された配線上に配置し、
     前記第2の駆動トランジスタを流れるドレイン電流を調整するための第2の制御端子を有する第2の回路を、前記第2の駆動トランジスタのソース・ドレイン経路及び前記第2の出力端子が接続された配線上に配置し、
     前記差動対によって増幅された後の差動出力信号のうち一方を入力して高周波成分を選択的に透過させるとともに、透過後の信号を前記第1の制御端子の制御電位としてフィードバックする第1のハイパスフィルタを、前記差動出力信号が出力される第1及び第2の出力端子のうち前記第2の出力端子と前記第1の制御端子の間に接続し、
     前記差動出力信号のうち他方を入力して高周波成分を選択的に透過させるとともに、透過後の信号を前記第2の制御端子の制御電位としてフィードバックする第2のハイパスフィルタを、前記第1の出力端子と前記第2の制御端子の間に接続する、
    差動増幅器の構成方法。
  17.  前記第1の回路は、前記第1の駆動トランジスタのドレイン及び電源電位の間に接続される一対の端子と、前記第1の制御端子とを有する三端子の第1の出力負荷を含み、
     前記第2の回路は、前記第2の駆動トランジスタのドレイン及び前記電源電位の間に接続される一対の端子と、前記第2の制御端子とを有する三端子の第2の出力負荷を含む、請求項16記載の差動増幅器の構成方法。
  18.  前記第1の回路は、
     ドレインが前記第1の制御端子であり、ソースが前記第1の駆動トランジスタのドレインに接続され、ドレインが前記第1の出力端子に接続される第1のカスコードトランジスタと、
     一方の端子が前記第1のカスコードトランジスタのドレインに接続され、他方の端子が電源電位に接続される二端子の出力負荷とを備え、
     前記第2の回路は、
     ドレインが前記第2の制御端子であり、ソースが前記第2の駆動トランジスタのドレインに接続され、ドレインが前記第2の出力端子に接続される第2のカスコードトランジスタと、
     一方の端子が前記第2のカスコードトランジスタのドレインに接続され、他方の端子が前記電源電位に接続される二端子の出力負荷とを備える、請求項16記載の差動増幅器の構成方法。
PCT/JP2009/002795 2008-09-02 2009-06-19 差動増幅器及びその構成方法 WO2010026681A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010527653A JP5445458B2 (ja) 2008-09-02 2009-06-19 差動増幅器及びその構成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-225087 2008-09-02
JP2008225087 2008-09-02

Publications (1)

Publication Number Publication Date
WO2010026681A1 true WO2010026681A1 (ja) 2010-03-11

Family

ID=41796867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002795 WO2010026681A1 (ja) 2008-09-02 2009-06-19 差動増幅器及びその構成方法

Country Status (2)

Country Link
JP (1) JP5445458B2 (ja)
WO (1) WO2010026681A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109716647A (zh) * 2016-08-22 2019-05-03 帝瓦雷公司 包括补偿电路的放大装置
EP3170257B1 (en) * 2014-07-18 2019-12-04 Qualcomm Incorporated Wideband low-power amplifier
JPWO2020031016A1 (ja) * 2018-08-10 2021-08-26 株式会社半導体エネルギー研究所 アンプ回路、ラッチ回路、及び検知装置
CN113489462A (zh) * 2021-07-29 2021-10-08 北京京东方传感技术有限公司 一种电压放大电路、传感器以及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07154168A (ja) * 1993-11-30 1995-06-16 Toshiba Corp バッファ回路
JPH07321572A (ja) * 1994-05-24 1995-12-08 Nec Ic Microcomput Syst Ltd 差動増幅回路
JP2006254419A (ja) * 2005-02-08 2006-09-21 Sony Corp 差動増幅器、2段増幅器、及びアナログ/ディジタル変換器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07154168A (ja) * 1993-11-30 1995-06-16 Toshiba Corp バッファ回路
JPH07321572A (ja) * 1994-05-24 1995-12-08 Nec Ic Microcomput Syst Ltd 差動増幅回路
JP2006254419A (ja) * 2005-02-08 2006-09-21 Sony Corp 差動増幅器、2段増幅器、及びアナログ/ディジタル変換器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3170257B1 (en) * 2014-07-18 2019-12-04 Qualcomm Incorporated Wideband low-power amplifier
CN109716647A (zh) * 2016-08-22 2019-05-03 帝瓦雷公司 包括补偿电路的放大装置
CN109716647B (zh) * 2016-08-22 2023-07-07 帝瓦雷公司 包括补偿电路的放大装置
JPWO2020031016A1 (ja) * 2018-08-10 2021-08-26 株式会社半導体エネルギー研究所 アンプ回路、ラッチ回路、及び検知装置
JP7273043B2 (ja) 2018-08-10 2023-05-12 株式会社半導体エネルギー研究所 アンプ回路
CN113489462A (zh) * 2021-07-29 2021-10-08 北京京东方传感技术有限公司 一种电压放大电路、传感器以及电子设备

Also Published As

Publication number Publication date
JP5445458B2 (ja) 2014-03-19
JPWO2010026681A1 (ja) 2012-01-26

Similar Documents

Publication Publication Date Title
US7292098B2 (en) Operational amplifier
US7420423B2 (en) Active balun device
KR100631973B1 (ko) 가변이득 광대역 증폭기
US7884671B2 (en) Low power operational amplifier
US8890611B2 (en) Operational amplifier circuits
US7312660B2 (en) Differential amplifier and active load for the same
US8279004B2 (en) System for driver amplifier
US7271653B2 (en) Amplifier with a voltage-controlled quiescent current and output current
JP2007282157A (ja) 可変利得増幅器
JP5445458B2 (ja) 差動増幅器及びその構成方法
JP2011097638A (ja) 可変利得増幅器
JP2007243949A (ja) 適応的線形増幅器
US9577593B2 (en) Implicit feed-forward compensated op-amp with split pairs
JP2007221402A (ja) 可変利得増幅器及びその半導体集積装置
US9136806B2 (en) Amplifier circuit
US7646241B2 (en) Low-voltage operational amplifier and operational amplifying method
JP4907395B2 (ja) 可変利得増幅回路
US7449951B2 (en) Low voltage operational amplifier
US20070273442A1 (en) High-efficiency class-AB amplifier
JPWO2008149517A1 (ja) バイアス回路及びこれを備えた半導体集積回路
US7538617B2 (en) Class AB amplifier circuit with combined quiescent current and common mode control
JP2007243830A (ja) 利得可変型増幅器
JP2008072424A (ja) 可変利得増幅回路
WO2014167882A1 (ja) 可変利得回路
US7405621B2 (en) Apparatus for amplifying differential signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811211

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010527653

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811211

Country of ref document: EP

Kind code of ref document: A1