WO2010026621A1 - ポリカチオン化リン脂質誘導体 - Google Patents

ポリカチオン化リン脂質誘導体 Download PDF

Info

Publication number
WO2010026621A1
WO2010026621A1 PCT/JP2008/065744 JP2008065744W WO2010026621A1 WO 2010026621 A1 WO2010026621 A1 WO 2010026621A1 JP 2008065744 W JP2008065744 W JP 2008065744W WO 2010026621 A1 WO2010026621 A1 WO 2010026621A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
liposome
solution
gene
Prior art date
Application number
PCT/JP2008/065744
Other languages
English (en)
French (fr)
Inventor
毅久 出羽
知浩 浅井
守 南後
直人 奥
Original Assignee
エーザイ・アール・アンド・ディー・マネジメント株式会社
国立大学法人名古屋工業大学
静岡県公立大学法人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エーザイ・アール・アンド・ディー・マネジメント株式会社, 国立大学法人名古屋工業大学, 静岡県公立大学法人 filed Critical エーザイ・アール・アンド・ディー・マネジメント株式会社
Priority to PCT/JP2008/065744 priority Critical patent/WO2010026621A1/ja
Publication of WO2010026621A1 publication Critical patent/WO2010026621A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/10Phosphatides, e.g. lecithin
    • C07F9/103Extraction or purification by physical or chemical treatment of natural phosphatides; Preparation of compositions containing phosphatides of unknown structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/22Amides of acids of phosphorus
    • C07F9/24Esteramides
    • C07F9/2454Esteramides the amide moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/2458Esteramides the amide moiety containing a substituent or a structure which is considered as characteristic of aliphatic amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/572Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/576Six-membered rings
    • C07F9/58Pyridine rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Definitions

  • the present invention relates to a novel phospholipid derivative, and particularly to a phospholipid derivative useful for the production of a lipid membrane structure (liposome, emulsion, micelle, etc.) encapsulating medicinal components such as genes and nucleic acids.
  • the present invention also relates to a lipid membrane structure useful as a therapeutic carrier and a research reagent capable of introducing into a cell a gene, nucleic acid, or the like that exhibits high gene expression efficiency and high gene expression suppression effect.
  • a carrier for introducing useful substances such as drugs and physiologically active substances (hormones, lymphokines, etc.) into the cells of the target tissue is required.
  • useful substances such as drugs and physiologically active substances (hormones, lymphokines, etc.)
  • a carrier for efficiently introducing a specific gene or nucleic acid into cells of a target tissue has been actively developed.
  • a viral vector method using a virus As a method for introducing a gene or nucleic acid, (1) a viral vector method using a virus and (2) a method using a non-viral vector such as a lipid membrane structure typified by a liposome are known.
  • RNA virus such as adenovirus, herpes virus, vaccinia, retrovirus
  • viral vectors are difficult to mass-produce, and antigenicity, host toxicity, and the like are also problematic.
  • a gene / nucleic acid introduction reagent in which lipofectamine, lipofect ace, lipofectin, transfectam, gene transfer, etc. used in the latter method are cationized liposomes is commercially available.
  • genes and nucleic acids can be introduced into cultured cells.
  • these gene / nucleic acid introduction reagents are (a) poor stability of lipids contained in the reagent, (b) instability in the presence of serum, (c) strong cytotoxicity, (d)
  • lipid membrane structure liposome, emulsion, micelle, etc.
  • a novel phospholipid useful as a main component in the lipid membrane structure It is to provide a derivative.
  • the present inventors have succeeded in synthesizing a novel phospholipid derivative, and a lipid membrane structure (liposome, emulsion) produced using the novel phospholipid derivative. , Micelles, etc.) were found to be excellent in the efficiency of introducing genes and nucleic acids into cells, and the present invention was completed.
  • R 1 is an aliphatic hydrocarbon group having 10 to 22 carbon atoms
  • R 2 is an aliphatic hydrocarbon group having 10 to 22 carbon atoms
  • Z 1 is a C2-4 alkylene group
  • Z 2 is a C2-3 alkylene group
  • Z 3 is at least one selected from the group consisting of a hydrogen atom, —Z 4 —NH 2 , —Z 4 —NH—Z 5 —NH 2 and — ((CH 2 ) 2 —NH) q —H.
  • Z 4 is a C2-4 alkylene group
  • Z 5 is a C2-4 alkylene group
  • q is an integer of 3 to 5.
  • the compound represented by the general formula (1) is not limited to a free form in which no salt is formed, but may be in a form in which the compound forms a salt with other molecules. However, in the case of an amphoteric compound having both basic and acidic groups, even if the compound forms a salt between molecules, the compound forms a salt in the molecule.
  • the Z 1 is any one of the above [1] to [3], wherein Z 3 is — ((CH 2 ) 2 —NH) r —H (wherein r is an integer of 0 to 4).
  • R 1 is at least one selected from the group consisting of a dodecyl group, a tetradecyl group, a hexadecyl group, an octadecyl group, and an octadecenyl group.
  • R 3 is an aliphatic hydrocarbon group having 10 to 22 carbon atoms
  • R 4 is an aliphatic hydrocarbon group having 10 to 22 carbon atoms
  • Y 3 is a methylene group or a carbonyl group
  • Y 4 is a methylene group or a carbonyl group
  • X 1 and X 2 are differently a hydrogen atom or a group represented by — (CH 2 ) 3 —NHC ( ⁇ NH) NH 2
  • T 1 is a group represented by the following general formula (T2) or general formula (T2)
  • T3 In formula (T2) and formula (T3), X 3 and X 4 are differently a hydrogen atom or a carboxyl group, n is an integer selected from 4 to 12.
  • R 4 is at least one selected from the group consisting of an undecyl group, a tridecyl group, a pentadecyl group, a heptadecyl group, and a heptadecenyl group.
  • R 4 is at least one selected from the group consisting of an undecyl group, a tridecyl group, a pentadecyl group, a heptadecyl group, and a heptadecenyl group.
  • R 3 is an aliphatic hydrocarbon group having 10 to 22 carbon atoms
  • R 4 means an aliphatic hydrocarbon group having 10 to 22 carbon atoms
  • Y 3 is a methylene group or a carbonyl group
  • Y 4 is a methylene group or a carbonyl group
  • Z 1 is a C2-4 alkylene group
  • Z 2 is a C2-3 alkylene group
  • Z 3 is one selected from the group consisting of a hydrogen atom, —Z 4 —NH 2 , —Z 4 —NH—Z 5 —NH 2 and — ((CH 2 ) 2 —NH) q —H
  • Z 4 is a C2-4 alkylene group
  • Z 5 is a C2-4 alkylene group
  • q is an integer of 3 to 5.
  • R 1 is an aliphatic hydrocarbon group having 10 to 22 carbon atoms
  • R 2 is an aliphatic hydrocarbon group having 10 to 22 carbon atoms
  • T 1 is a group represented by the following general formula (T2) or general formula (T2)
  • X 1 and X 2 are each independently a hydrogen atom or — (CH 2 ) 3 —NHC ( ⁇ NH) NH 2
  • X 3 and X 4 are differently a hydrogen atom or a carboxyl group
  • n is an integer of 4 to 12.
  • composition containing the lipid membrane structure according to any one of the above [12] to [16] is applied to cells in vivo (excluding humans) or in vitro. Gene introduction method.
  • a pharmaceutical composition for treating a malignant tumor comprising the lipid membrane structure according to any one of [12] to [16].
  • a liposome comprising the compound according to any one of [1] to [11] as a constituent lipid.
  • Test Example B1 The result of the gene transfection evaluation in Test Example B1 is shown.
  • the result of the gene knockdown evaluation in Test Example B2 is shown.
  • the distribution of siRNA 24 hours after administration in Test Example B3 is shown.
  • the result of the gene knockdown evaluation in Test Example B4 is shown.
  • the result of the gene knockdown evaluation in Test Example B5 is shown.
  • the result of the gene knockdown evaluation in Test Example B6 is shown.
  • a compound represented by the general formula (1), (1-2), (2-2) or (2) (hereinafter referred to as “phospholipid derivative (A)” or “polycationized phospholipid derivative (A)”)
  • the structural formula of a compound may represent a certain isomer, but in the present invention, all geometrical isomers and optical isomers occurring in the structure of the compound are included in the present invention. And isomers such as stereoisomers and tautomers and mixtures of isomers, and are not limited to the description of the general formula, and any one isomer or a mixture of these isomers may be used.
  • the compound of the present invention may exist in an optically active form and a racemic form, but is not limited in the present invention and includes both.
  • Crystal polymorphs may exist but are not limited to the same, and may be a single substance or a mixture of any of the crystal forms, and the compounds of the present invention include anhydrides and water. Japanese products are included.
  • the “aliphatic hydrocarbon group having 10 to 22 carbon atoms” means a linear or branched hydrocarbon group having 10 to 22 carbon atoms.
  • Examples of the aliphatic hydrocarbon group having 10 to 22 carbon atoms include, for example, an alkyl group having 10 to 22 carbon atoms and an unsaturated carbon atom having 10 to 22 carbon atoms having 1 to 3 double bonds or triple bonds in total.
  • a hydrogen group etc. can be mention
  • linear aliphatic hydrocarbon group having 10 to 22 carbon atoms means a linear hydrocarbon group having 10 to 22 carbon atoms.
  • linear aliphatic hydrocarbon group having 10 to 22 carbon atoms include a linear alkyl group having 10 to 22 carbon atoms and a carbon number of 10 to 22 having 1 to 3 double bonds or triple bonds in total.
  • Unsaturated hydrocarbon groups such as decyl group (— (CH 2 ) 9 CH 3 ), undecyl group (— (CH 2 ) 10 CH 3 ), dodecyl group (— (CH 2 ) 11 CH 3 ), tridecyl group (— (CH 2 ) 12 CH 3 ), tetradecyl group (— (CH 2 ) 13 CH 3 ), pentadecyl group (— (CH 2 ) 14 CH 3 ), hexadecyl group (— (CH 2) ) 15 CH 3 ), heptadecyl group (— (CH 2 ) 16 CH 3 ), octadecyl group (— (CH 2 ) 17 CH 3 ), nonadecyl group (— (CH 2 ) 18 CH 3 ), icosyl group (— ( CH 2 ) 19 CH 3 ), heicosyl group (— (CH 2 ) 20 CH 3 ), docosyl group (— (CH 2 ) 21 CH 3 ),
  • the “linear saturated hydrocarbon group having 14 to 18 carbon atoms” means a linear alkyl group having 14 to 18 carbon atoms.
  • the linear saturated hydrocarbon group having 14 to 18 carbon atoms is specifically a group represented by — (CH 2 ) m —CH 3 (wherein m represents an integer of 13 to 17).
  • Examples thereof include a linear alktritrienyl group and a linear alkynyl group having 14 to 18 carbon atoms, such as a hexadecenyl group, an octadecenyl group, an octadecadienyl group, and an octadecatrienyl group. I can give you.
  • C2-4 alkylene group means “C2-4 alkyl group” (ethyl group, 1-propyl group (n-propyl group), 2-propyl group (i-propyl group), 2-methyl-1-propyl group).
  • Examples of the C2-4 alkylene group include a 1,2-ethylene group, a 1,3-propylene group, a tetramethylene group (— (CH 2 ) 4 —), and the like.
  • C2-3 alkylene group refers to any hydrogen atom from “C2-3 alkyl group” (ethyl group, 1-propyl group (n-propyl group), and 2-propyl group (i-propyl group)). Means a divalent group derived by removing one. Examples of the C2-3 alkylene group include a 1,2-ethylene group and a 1,3-propylene group.
  • the “lipid membrane structure” means a particle having a membrane structure in which polar groups of amphiphilic lipids are arranged toward the aqueous phase side of the interface.
  • Examples of the lipid membrane structure include forms such as liposomes, emulsions, micelles, and irregular layered structures.
  • Emmulsion means a liquid mixture containing droplets of a certain liquid (discontinuous phase) dispersed in another immiscible liquid (continuous phase).
  • examples of the emulsion form include an oil-in-water emulsion (O / W type), a water-in-oil emulsion (W / O type), and a composite emulsion (W / O / W type).
  • the phospholipid component can be contained in either liquid phase or both liquid phases.
  • “Micelle” means an aggregate of amphiphilic molecules.
  • the micelle takes a form in which the lipophilic part of the amphiphilic molecule is oriented toward the center side of the micelle and the hydrophilic part is oriented toward the outside side in the aqueous medium, and in this case, the center part of the sphere is It is oleophilic and the periphery has the property of being hydrophilic.
  • the micelle structure include a sphere, a lamina, a cylinder, an ellipse, a vesicle, a lamellar, and a liquid crystal.
  • Examples of micelles include polymer micelles in which water-soluble polymers such as polyethylene glycol (PEG) are arranged as hydrophilic domains as amphiphilic molecules that have recently been attracting attention.
  • PEG polyethylene glycol
  • the presence form of the lipid membrane structure is not particularly limited, and examples thereof include a dried lipid mixture form, a dispersed form in an aqueous solvent, a dried form, a frozen form, and the like.
  • the particle size of the lipid membrane structure is not particularly limited.
  • the particle diameter is, for example, 50 nm to several ⁇ m, and when it is a spherical micelle, the particle diameter is, for example, 5 nm to 50 nm.
  • the thickness per layer may be 5 nm to 10 nm, and one layered structure may further form a plurality of layers.
  • the lipid membrane structure of the present invention contains the phospholipid derivative (A) in the membrane structure, other components are not particularly limited.
  • the lipid membrane structure may constitute a liposome only with the phospholipid derivative (A), and may contain other components such as other phospholipids and cholesterol.
  • phospholipids other than the phospholipid derivative (A) As other components in the lipid membrane structure, in the membrane structure, phospholipids other than the phospholipid derivative (A); sterols such as cholesterol, cholesterol ester, and cholestanol; glucuronic acid derivatives; saturation having 8 to 22 carbon atoms Or fatty acids having an unsaturated acyl group; polyethylene glycol derivatives (described in Biochim. Biophys. Acta, 1029, 91 (1990), FEBS Lett. 268, 235 (1990)); antioxidants such as ⁇ -tocopherol One or more molecules selected from the group consisting of:
  • Examples of the “phospholipid other than the phospholipid derivative (A)” include phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, cardiolipin, sphingomyelin, ceramide phosphorylethanolamine, ceramide phosphorylglycerol, ceramide Phosphorylglycerol phosphate, 1,2-dimyristoyl-1,2-deoxyphosphatidylcholine, plasmalogen, phosphatidic acid, L-dioleoylphosphatidylethanolamine (DOPE), egg yolk lecithin, and other naturally occurring phospholipids (soybean Lecithin, etc.). These can be used alone or in combination of two or more.
  • the fatty acid residue of the phospholipid other than the phospholipid derivative (A) is not particularly limited, and examples thereof include a fatty acid residue having 12 to 18 carbon atoms.
  • the fatty acid residue having 12 to 18 carbon atoms means a linear or branched fatty acid residue having 12 to 18 carbon atoms.
  • Examples of the fatty acid residue having 12 to 18 carbon atoms include an alkyl fatty acid residue having 12 to 18 carbon atoms and an unsaturated carbonization having 12 to 18 carbon atoms having 1 to 3 double bonds or triple bonds in total.
  • Examples thereof include a hydrogen fatty acid residue, such as a palmitoyl group, an oleoyl group, a stearoyl group, and a linoleyl group.
  • phosphatidylethanolamine and phosphatidylcholine are preferably used alone or in combination of two or more, and phosphatidylethanolamine is more preferably used.
  • aqueous solvent in the “dispersed form in an aqueous solvent” is not particularly limited, but in addition to water, sugar aqueous solutions such as glucose, lactose and sucrose; polyhydric alcohol aqueous solutions such as glycerin and propylene glycol; physiological saline
  • sugar aqueous solutions such as glucose, lactose and sucrose
  • polyhydric alcohol aqueous solutions such as glycerin and propylene glycol
  • physiological saline examples of the buffer include buffer solutions such as a phosphate buffer solution, a citrate buffer solution, and a phosphate buffered physiological saline solution; and a medium for cell culture.
  • R 1 means an aliphatic hydrocarbon group having 10 to 22 carbon atoms.
  • R 1 is preferably a straight chain aliphatic hydrocarbon group having 10 to 22 carbon atoms, more preferably a straight chain saturated hydrocarbon group having 14 to 18 carbon atoms, and 14 to 14 carbon atoms.
  • 18 linear unsaturated hydrocarbon groups and more preferably, for example, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group (cetyl group), heptadecyl group, octadecyl group, hexadecenyl group, An octadecenyl group, an octadecadienyl group, an octadecatrienyl group, and the like, and more preferably a tetradecyl group, a hexadecyl group, an octadecyl group, and an octadecenyl group (for example, Or a straight-chain alkenyl group having 18 carbon atoms (not limited to either cis- or trans-form, and the position of the double bond is also not limited). And most preferably a hexadecyl group.
  • R 2 means an aliphatic hydrocarbon group having 10 to 22 carbon atoms.
  • R 2 is preferably a straight-chain aliphatic hydrocarbon group having 10 to 22 carbon atoms, more preferably a straight-chain saturated hydrocarbon group having 14 to 18 carbon atoms, and 14 to 14 carbon atoms.
  • 18 linear unsaturated hydrocarbon groups and more preferably, for example, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group (cetyl group), heptadecyl group, octadecyl group, hexadecenyl group, An octadecenyl group, an octadecadienyl group, an octadecatrienyl group, and the like, and more preferably a tetradecyl group, a hexadecyl group, an octadecyl group, and an octadecenyl group (for example, Or a straight-chain alkenyl group having 18 carbon atoms (not limited to either cis- or trans-form, and the position of the double bond is also not limited). And most preferably a hexadecyl group.
  • R 3 means an aliphatic hydrocarbon group having 10 to 22 carbon atoms.
  • R 3 is preferably a linear aliphatic hydrocarbon group having 10 to 22 carbon atoms, and more preferably, for example, an undecyl group, a tridecyl group, a pentadecyl group, a heptadecyl group, and a heptadecenyl group.
  • Etc is aliphatic hydrocarbon group having 10 to 22 carbon atoms.
  • Z 1 represents a C2-4 alkylene group.
  • the Z 1, preferably, for example, -CH 2 -CH 2 -, - CH 2 -CH 2 -CH 2 -, and -CH 2 -CH 2 -CH 2 -CH 2 - , etc. may be mentioned. More preferably, —CH 2 —CH 2 — and —CH 2 —CH 2 —CH 2 — can be mentioned, and more preferred —CH 2 —CH 2 — can be mentioned.
  • Z 3 is a hydrogen atom, —Z 4 —NH 2 , —Z 4 —NH—Z 5 —NH 2 , and — ((CH 2 ) 2 —NH) q —H)
  • Z 4 is a C2-4 alkylene group
  • Z 5 represents a C2-4 alkylene group, and q represents an integer of 3 to 5.
  • Z 3 represents a group that is at least one selected from the group consisting of: As Z 3 , for example, a hydrogen atom, and —CH 2 —CH 2 —CH 2 —NH 2 , — ((CH 2 ) 2 —NH) r —H) (r is an integer of 0 to 4) Can be used.
  • X 1 and X 2 are different from each other and represent a hydrogen atom and — (CH 2 ) 3 —NHC ( ⁇ NH) NH 2 .
  • Preferable examples of X 1 and X 2 include a case where X 1 is — (CH 2 ) 3 —NHC ( ⁇ NH) NH 2 , and X 2 is a hydrogen atom.
  • X 3 and X 4 are different from each other and represent a hydrogen atom or a carboxyl group.
  • Preferable examples of X 3 and X 4 include a case where X 3 is a hydrogen atom and X 4 is a carboxyl group.
  • Y 3 means a methylene group or a carbonyl group. Y 3 is preferably a carbonyl group.
  • Y 4 represents a methylene group or a carbonyl group. Y 4 is preferably a carbonyl group.
  • n means an integer selected from 4 to 12.
  • n is preferably an integer selected from 4 to 9, more preferably an integer selected from 5 to 8, more preferably 5 or 8. I can give you.
  • the “salt” is not particularly limited as long as it forms a salt with the phospholipid derivative (A) of the present invention and is pharmacologically acceptable, and forms a salt between other molecules.
  • the phospholipid derivative (A) itself may form a salt in the molecule.
  • examples of other molecules that form the salt include inorganic acids, organic acids, inorganic bases, organic bases, and acidic or basic amino acids.
  • the salt include inorganic acid salts, organic acid salts, inorganic base salts, organic base salts, and acidic or basic amino acid salts.
  • Examples of the inorganic acid salt include hydrochloride, hydrobromide, sulfate, nitrate, phosphate, and the like.
  • Examples of organic acid salts include acetate, succinate, fumarate, maleate, tartrate, citrate, lactate, stearate, benzoate, methanesulfonate, ethanesulfonate , P-toluenesulfonate, and benzenesulfonate.
  • Examples of the inorganic base salt include alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as calcium salt and magnesium salt; aluminum salt: ammonium salt and the like.
  • Examples of the organic base salt include diethylamine salt, diethanolamine salt, meglumine salt, and N, N′-dibenzylethylenediamine salt.
  • acidic amino acid salts include aspartate and glutamate.
  • basic amino acid salts include arginine salts, lysine salts, ornithine salts, and the like.
  • the phospholipid derivative (A) of the present invention is a compound represented by the following general formula (1), (2), (1-2), or (2-2).
  • R 1 is an aliphatic hydrocarbon group having 10 to 22 carbon atoms
  • R 2 is an aliphatic hydrocarbon group having 10 to 22 carbon atoms
  • Z 1 is a C2-4 alkylene group
  • Z 2 is a C2-3 alkylene group
  • Z 3 is at least one selected from the group consisting of a hydrogen atom, —Z 4 —NH 2 , —Z 4 —NH—Z 5 —NH 2 and — ((CH 2 ) 2 —NH) q —H.
  • Z 4 is a C2-4 alkylene group
  • Z 5 is a C2-4 alkylene group
  • q is an integer of 3 to 5.
  • R 3 is an aliphatic hydrocarbon group having 10 to 22 carbon atoms
  • R 4 is an aliphatic hydrocarbon group having 10 to 22 carbon atoms
  • Y 3 is a methylene group or a carbonyl group
  • Y 4 is a methylene group or a carbonyl group
  • X 1 and X 2 are differently a hydrogen atom or a group represented by the formula — (CH 2 ) 3 —NHC ( ⁇ NH) NH 2
  • T 1 is a group represented by the following general formula (T2) or general formula (T2)
  • T3 In formula (T2) and formula (T3), X 3 and X 4 are differently a hydrogen atom or a carboxyl group, n is an integer selected from 4 to 12.
  • R 3 is an aliphatic hydrocarbon group having 10 to 22 carbon atoms
  • R 4 means an aliphatic hydrocarbon group having 10 to 22 carbon atoms
  • Y 3 is a methylene group or a carbonyl group
  • Y 4 is a methylene group or a carbonyl group
  • Z 1 is a C2-4 alkylene group
  • Z 2 is a C2-3 alkylene group
  • Z 3 is one selected from the group consisting of a hydrogen atom, —Z 4 —NH 2 , —Z 4 —NH—Z 5 —NH 2 and — ((CH 2 ) 2 —NH) q —H
  • Z 4 is a C2-4 alkylene group
  • Z 5 is a C2-4 alkylene group
  • q is an integer of 3 to 5.
  • R 1 is an aliphatic hydrocarbon group having 10 to 22 carbon atoms
  • R 2 is an aliphatic hydrocarbon group having 10 to 22 carbon atoms
  • T 1 is a group represented by the following general formula (T2) or general formula (T2)
  • X 1 and X 2 are each independently a hydrogen atom or — (CH 2 ) 3 —NHC ( ⁇ NH) NH 2
  • X 3 and X 4 are differently a hydrogen atom or a carboxyl group
  • n is an integer of 4 to 12.
  • the compound represented by the general formula (1), (1-2), (2-2), or (2) of the present invention (the phospholipid derivative (A) can be produced by the method described below.
  • the production method of the compound of the present invention is not limited thereto.
  • Production method A is a method for producing the compound represented by formula (1), and production method A is as described in the following scheme. (In each formula in the above scheme, R 1 , R 2 , Z 1 , Z 2 and Z 3 have the same meaning as described above for the general formula (1).)
  • Step A1 is a step of producing compound (a-2) by reacting compound (a-1) in the presence of a base and a condensing agent in a solvent.
  • Step A1 can be performed by a commonly used method described in Chemistry and Industry (London, United Kingdom) 367-377 (1960), Japanese Patent Application Laid-Open No. 2005-247751, and the like. More specifically, step A1 can be performed with reference to reaction conditions, post-reaction operations, purification methods and the like described in Production Examples 2, 4, and 6 described later. Step A1 can also be performed under a stream or atmosphere of an inert gas such as nitrogen or argon.
  • the compound (a-1) a known compound, a commercially available compound, or a compound that can be easily produced from a commercially available compound by a method usually performed by those skilled in the art, described in JP-A-2005-247751, etc.
  • combined by the manufactured method, the compound which can be manufactured by the following manufacturing method B and manufacture example 1, 3, 5 can be used.
  • Trier Basic organic compounds that are liquid at normal temperature and pressure, such as luamine, tripropylamine, 1-methylimidazole, 1,2-dimethylimidazole, and more preferably pyridine (anhydrous pyridine) having a water content of 50 ppm or less It is.
  • Examples of the base in Step A1 include pyridine, triethylamine, tripropylamine, 1-methylimidazole, 1,2-dimethylimidazole, and the like, preferably pyridine, and more preferably a water content of 50 ppm or less. Pyridine (anhydrous pyridine).
  • the base can be used in an amount of 2 to 10 moles compared to Compound (a-1).
  • Examples of the condensing agent in Step A1 include 1,3,5-triisopropylbenzene sulfonyl chloride, 2,4,6-triisopropylbenzene sulfonyl chloride, 2,4,6-trimethylbenzene sulfonyl chloride, nitrosyl chloride, and the like. Preferred is 1,3,5-triisopropylbenzenesulfonyl chloride.
  • the condensing agent can be used in an amount of 3 to 15-fold mol relative to compound (a-1).
  • the reaction temperature in step A1 is usually 10 ° C. to 30 ° C. (internal temperature in the reaction vessel) although it varies depending on the starting material, solvent and other reagents used in the reaction.
  • the reaction time usually varies depending on the starting material, solvent, other reagents used in the reaction, and the reaction temperature.
  • the reagent is added and then stirred at the above reaction temperature for 30 minutes to 3 hours. .
  • Step A2 is a step for producing a compound represented by the general formula (1) of the present invention by reacting compound (a-2) with compound (a-3) in a solvent. More specifically, Step A2 can be performed with reference to the reaction conditions, post-reaction operations, purification methods, and the like described in Example 1 described later. This reaction can also be performed under a stream or atmosphere of an inert gas such as nitrogen or argon.
  • an inert gas such as nitrogen or argon.
  • Compound (a-3) is represented by the formula The compound etc. which can be easily manufactured by the method normally performed by those skilled in the art from the well-known compound represented by these, a commercially available compound, or a commercially available compound can be used.
  • Compound (a-3) can be used in an amount of 1 to 6 moles compared to Compound (a-2).
  • the solvent used in Step A2 is not particularly limited as long as it dissolves the starting materials to some extent and does not inhibit the reaction.
  • pyridine triethylamine, tripropylamine, 1-methylimidazole, 1,2-dimethylimidazole and the like can be mentioned, and pyridine is preferable, and pyridine (anhydrous pyridine) having a water content of 50 ppm or less is more preferable.
  • the reaction temperature in step A2 usually varies depending on starting materials, solvents, and other reagents used in the reaction, and is preferably 0 ° C. to 40 ° C. (internal temperature in the reaction vessel), more preferably 20 ° C. to 30 ° C. (internal temperature in the reaction vessel).
  • the reaction time usually varies depending on the starting material, solvent, other reagents used in the reaction, and the reaction temperature.
  • the reagent is added and then stirred at the above reaction temperature for 1 hour to 2 days. It is more preferred to stir for about 6 hours.
  • Step B1 is a step of producing compound (b-3) by reacting compound (b-1) with compound (b-2) (phosphorus oxychloride) in the presence of a base in a solvent.
  • Step B1 is generally used as described in Biochemistry, 13, 2754 (1974), Biochim. Biophys. Acta, 553, 476 (1979), 4th edition, Experimental Chemistry Course 22 Organic Synthesis IV p.313-368, etc. It can be done by the method.
  • Step B1 can also be performed under a stream or atmosphere of an inert gas such as nitrogen or argon.
  • the compound (b-1) is a known compound such as lauryl alcohol, myristyl alcohol, cetyl alcohol, 1-octadecanol, 1-eicosanol, oleyl alcohol (Oleyl alcohol), a commercially available compound, or a commercially available compound.
  • a compound that can be easily produced by a method commonly used by those skilled in the art can be used.
  • the solvent used in Step B1 is not particularly limited as long as it dissolves the starting materials to some extent and does not inhibit the reaction.
  • the base in Step B1 means triethylamine, pyridine and the like.
  • the reaction temperature in Step B1 usually varies depending on the starting material, solvent, and other reagents used in the reaction, but is preferably ⁇ 10 ° C. to 40 ° C. (internal temperature in the reaction vessel).
  • the reaction time usually varies depending on the starting material, solvent, other reagents used in the reaction, and the reaction temperature.
  • the reagent is added and then stirred at the above reaction temperature for 10 minutes to 6 hours. It is more preferred to stir for about 30 minutes.
  • Step B2 is a step of producing compound (a-1) by reacting compound (b-3) with compound (b-4) in the presence of a condensing agent (b-5) in a solvent.
  • a condensing agent b-5
  • This process is described in Biochemistry, 8, 3067 (1969), Chem. Ber., 94, 996 (1961), Chem. Ber., 98, 3286 (1965), J. Chem. Soc., Chem. Commun., 1974. , 997, Tetrahedron Lett., 1973, 1353, Ann., 692, 22 (1966), Angew. Chem., 73, 220 (1961), 4th edition Experimental Chemistry Course 22 Organic Synthesis IV p.368-446 It can be performed by a commonly used method.
  • the compound that can be used as the compound (b-4) is the same as the compound (b-1).
  • the solvent used in Step B2 is not particularly limited as long as it dissolves the starting materials to some extent and does not inhibit the reaction, but is appropriately selected depending on the condensing agent (b-5).
  • a mixed solvent of pyridine and dimethylformamide, or the like can be used.
  • the condensing agent (b-5) in step B2 is 1,3,5-triisopropylbenzenesulfonyl chloride, 2,4,6-triisopropylbenzenesulfonyl chloride, 2,4,6-trimethylbenzenesulfonyl chloride, dicyclohexylcarbodiimide , Trichloroacetonitrile, p-tolyl cyanate, cyclohexyl isocyanate, p-toluenesulfonic acid imidazolide, mesitylenesulfonic acid imidazolide, 2,4,6-triisopropylbenzenesulfonic acid imidazolide, ⁇ -bromo- ⁇ -cyanoacetamide and triphenyl Examples thereof include phosphonium salts produced from phosphine, cyanuric chloride and the like.
  • the reaction temperature in Step B2 is usually 0 ° C. to 100 ° C. (internal temperature in the reaction vessel), although it varies depending on the starting material, solvent and other reagents used in the reaction.
  • the reaction time usually varies depending on the starting material, solvent, other reagents used in the reaction, and the reaction temperature.
  • the reagent is added and then stirred at the above reaction temperature for 30 minutes to 24 hours. .
  • step B3 compound (a-1) (R 1 and R 2 are the same group by reacting compound (b-1) and compound (b-2) (phosphorus oxychloride) in a solvent. In this case is a step of producing the compound).
  • reaction conditions of the step B3 referring to the reaction conditions described in the step B1 of the production method B, and more specifically, this step is the same reaction conditions and reactions as those of Production Examples 1, 3, and 5 described later. Post-operation, purification method conditions, and operation methods can be applied.
  • Manufacturing method X is a manufacturing method of the compound represented by General formula (2), and manufacturing method X is as showing to the following scheme.
  • R 3 , R 4 , Y 3 , Y 4 , T 1 , X 1 , X 2 , X 3 , X 4 and n are as defined above for general formula (2).
  • T 4 is a group represented by the following formulas (T5) and (T6).)
  • step X1 compound (x-1) and compound (x-2) (N-succinimidyl-3- (2-pyridyldithio) propionate (SPDP) or N- (4-maleimidobutyrate) are present in a solvent in the presence of a base.
  • compound (x-3) is produced by reacting with (roxy) succinimide). More specifically, the step X1 can be performed with reference to reaction conditions, post-reaction operations, purification methods and the like described in Production Examples 7 and 8 to be described later.
  • Process X1 can also be performed under a stream or atmosphere of an inert gas such as nitrogen or argon.
  • Compound (x-1) is a known compound described in JP-A-2005-247751, a commercially available compound, or a compound that can be easily produced from a commercially available compound by a method commonly used by those skilled in the art.
  • a compound that can be produced by the following production method Y can be used.
  • Triethylamine, diisopropylethylamine, etc. can be used as the base in Step X1.
  • the reaction temperature in the step X1 usually varies depending on starting materials, solvents and other reagents used in the reaction, and is preferably 20 ° C. to 50 ° C. (internal temperature in the reaction vessel).
  • the reaction time usually varies depending on the starting material, solvent, other reagents used in the reaction, and the reaction temperature. In general, after the reagent is added, the mixture is stirred at the above reaction temperature for 1 to 40 hours.
  • Step X2 is a step of producing a compound represented by general formula (2) by reacting compound (x-3) with compound (x-4) in a solvent. More specifically, the step X2 can be performed with reference to reaction conditions, post-reaction operations, purification methods and the like described in Examples 5 and 6 described later.
  • Process X2 can also be performed under a stream or atmosphere of an inert gas such as nitrogen or argon.
  • the compound (x-4) is a commercially available peptide such as Arg-Arg-Arg-Arg-Arg-Arg-Cys (the left side represents the N-terminus), or a method commonly used by those skilled in the art from commercially available compounds. A compound that can be easily produced can be used.
  • the solvent used in the step X2 is not particularly limited as long as it dissolves the starting materials to some extent and does not inhibit the reaction.
  • alcohol solvents such as methanol, ethanol, propanol and the like
  • Halogenated hydrocarbon solvents such as chloroform and methylene chloride, water or a mixed solvent thereof can be used, and preferably a mixed solution of chloroform, methanol and water, preferably chloroform, methanol and water. (About 13/6/1 (volume ratio)) mixed solvent.
  • the reaction temperature in step X2 usually varies depending on the starting material, solvent, and other reagents used in the reaction, and is preferably 0 ° C. to 40 ° C. (internal temperature in the reaction vessel).
  • the reaction time usually varies depending on the starting materials, the solvent, other reagents used in the reaction, and the reaction temperature.
  • the reagent is added and then stirred at the reaction temperature for 1 to 24 hours.
  • Production method Y is a production method of compound (x-1), which is a raw material in production method X, and production method Y is as shown in the following scheme. (In each formula in the above scheme, R 3 , R 4 , Y 3, and Y 4 have the same meaning as described above in general formula (2).)
  • Step Y1 is a step of producing compound (y-3) by reacting compound (y-1) with compound (y-2) (phosphorus oxychloride) in a solvent.
  • the compound (y-1) a known compound, a commercially available compound, or a compound that can be easily produced from a commercially available compound by a method commonly used by those skilled in the art can be used.
  • reaction conditions in the step Y1 the same conditions and operation methods as those in the step B1 of the production method B can be applied.
  • step Y2 As the reaction conditions in step Y2, the same conditions and operation methods as in step B2 of production method B can be applied.
  • the compound represented by the general formula (1-2) or the compound represented by the general formula (2-2) can be produced by appropriately combining the reaction steps, reaction conditions, and materials described in the above production method. Furthermore, reaction conditions and the like may be changed as appropriate.
  • the raw material compounds and various reagents may form salts, hydrates or solvates, and all are starting materials. It varies depending on the solvent used and is not particularly limited as long as it does not inhibit the reaction. It goes without saying that the solvent to be used is not particularly limited as long as it varies depending on starting materials, reagents and the like, and can dissolve the starting material to some extent without inhibiting the reaction.
  • the compound according to the present invention is obtained as a free form, it can be converted into a salt which may be formed by the compound or a hydrate thereof according to a conventional method.
  • the reaction mixture can be used in the next step as it is without isolating the target compound.
  • the target compound in each step can be collected from the reaction mixture according to a conventional method.
  • the reaction mixture may be allowed to warm to room temperature if desired, or ice-cooled, neutralizing acid, alkali, oxidizing agent or reducing agent as appropriate, and immiscible with water and ethyl acetate.
  • An organic solvent that does not react with the target compound is added, and the layer containing the target compound is separated.
  • a solvent that is not miscible with the obtained layer and does not react with the target compound is added, the layer containing the target compound is washed, and the layer is separated.
  • the layer is an organic layer
  • the target compound can be collected by drying using a drying agent such as anhydrous magnesium sulfate or anhydrous sodium sulfate and distilling off the solvent.
  • the said layer is an aqueous layer, after desalting electrically, it can extract
  • Method for preparing lipid membrane structure is not specifically limited, For example, it can manufacture as follows.
  • Such liposomes may contain sterols such as cholesterol and cholestanol as membrane stabilizers, charged substances such as dialkyl phosphates, diacyl phosphatidic acids, and stearylamine, and antioxidants such as ⁇ -tocopherol.
  • sterols such as cholesterol and cholestanol as membrane stabilizers
  • charged substances such as dialkyl phosphates, diacyl phosphatidic acids, and stearylamine
  • antioxidants such as ⁇ -tocopherol.
  • the liposome of the present invention can be prepared by applying the general methods and conditions described below.
  • “Liposome” by Shonan Nojima et al. Nanedo (1988) p.26 (2) “Biomembrane experiment method (bottom)” Kyoritsu (1974) p.185, (3) "4th edition Experimental Chemistry Course 27 Bioorganic” p.92-104, (4) “4th edition Experimental Chemistry Course 13 Surface / Interface” p.92-104, (5) F. Szoka and D. Papahadjopoulos, “Liposomes: from physical structure to therapeutic applications”, ed. By CG Knight, Elsevier / North-Holland (1981), Chap.
  • the liposomes of the present invention can be produced, for example, by ultrasonic dispersion (direct dispersion, cast thinning), thermal dispersion, injection, or call. Acid (surfactant) method (Proc. Natl. Acad. Sci. USA, 76, 145 (1979), freeze-thaw method (Arch. Biochim. Biophys., 212, 186 (1981)), reverse phase evaporation method (Proc. Natl. Acad. Sci. USA, 75, 4195 (1978)), giant liposome preparation method (Biochim. Biophys.
  • Examples of a method for preparing a lipid membrane structure that further holds a gene or nucleic acid include the following methods. (I) An empty cationic liposome is first prepared, and the “complex method” in which this is simply mixed with an aqueous gene solution or an aqueous nucleic acid solution; and (ii) various genes, nucleic acids, etc. Encapsulated in the inner aqueous phase, leaving a free cationic group outside the liposome
  • the liposome of the present invention can be prepared, for example, by the following method in addition to the method described in Examples below.
  • the obtained lipid membrane (10 ⁇ mol) is hydrated with 1 mL of phosphate buffered physiological saline previously warmed to 50 ° C. and stirred for 5 seconds.
  • the lipid dispersion can be passed 11 times each through a membrane filter having a pore size of 400 nm, 200 nm or 100 nm to prepare a liposome having a polycation site (5 mol% of the total lipid) on the surface of the liposome.
  • empty cationic liposomes for the above (a) [complex method] can be prepared.
  • Example of liposome production method About 8 ⁇ g of the plasmid gene and about 16 ⁇ g of the cationic molecule (phospholipid derivative (A), polylysine or protamine sulfate) were stirred and mixed in 10 mM HEPES buffer, and the plasmid gene and the phospholipid derivative (A), polylysine or protamine sulfate were mixed. Prepare the complex. Separately, 125 ⁇ L of a solution obtained by dissolving about 0.672 mg of dioleoylphosphatidylethanolamine and about 0.096 mg of cholesterol succinic acid in about 1 mL of chloroform was dispensed into a glass test tube and sprayed with nitrogen gas.
  • microemulsion containing phospholipid derivative (A) By adding fats such as soybean oil to micelles containing the phospholipid derivative (A) produced according to the above II), the inside of the micelles is saturated, and the oil phase is increased to such an extent that irreversible oil layer separation does not occur.
  • a microemulsion containing the phospholipid derivative (A) can be produced.
  • the target microemulsion can also be produced by adding an aqueous solution of the phospholipid derivative (A) to a microemulsion prepared according to a known method, allowing to stand for a certain period of time, preferably heating to 40 ° C. or higher, and then allowing to cool. be able to.
  • the type of the lipid membrane structure produced can be changed by changing the ratio of the phospholipid derivative (A) of the present invention to the total lipid component.
  • Oral dosage forms may be those conventionally known, and examples thereof include tablets, powders, granules and the like.
  • the dosage form those known in the art may be used, and examples thereof include injections, eye drops, ointments, suppositories and the like.
  • parenteral administration Preferably, it is parenteral administration.
  • an injection is preferable, and as an administration method, systemic injection such as intravenous injection or local injection to a target cell or organ is preferable.
  • transduce into cells such as a drug with very low fat solubility, bioactive peptides with large molecular weight, proteins, etc.
  • This gene may be either DNA or RNA, in particular a gene for introduction in vitro such as transformation, a gene that acts by expression in vivo, such as a gene therapy gene such as plasmid DNA, an experimental animal, etc.
  • Genes used for the production of iPS cells (induced pluripotent stem cells) for use in breeding of industrial animals such as livestock and livestock, and regenerative medicine are preferred.
  • a substance that exerts a pharmacological action by the action of the enzyme can be used in combination.
  • a thymidine kinase gene can be expressed in advance in a living body (tumor) and then ganacyclovir can be administered to treat the tumor.
  • nucleic acids examples include antisense drugs such as antisense DNA and antisense RNA, decoy oligo drugs such as decoy oligonucleic acid, RNAi drugs such as miRNA, shRNA, and siRNA, Antagomir, RNAa (homologous sequences in the promoter site of a gene on the genome) A double-stranded RNA molecule having antisense drugs such as antisense DNA and antisense RNA, decoy oligo drugs such as decoy oligonucleic acid, RNAi drugs such as miRNA, shRNA, and siRNA, Antagomir, RNAa (homologous sequences in the promoter site of a gene on the genome) A double-stranded RNA molecule having
  • the amount used of the lipid membrane structure of the present invention is not particularly limited, and may be an amount sufficient to introduce a gene / nucleic acid or the like into a cell.
  • the amount is preferably 0.1 to 100 parts by weight, and more preferably 0.5 to 50 parts by weight.
  • the solvent in the reaction solution was distilled off under reduced pressure.
  • the solvent in the eluate was distilled off under reduced pressure, and the solvent was further distilled off with a vacuum pump to obtain the title compound (white solid, 21.3 mg, yield: 86%).
  • Example 2 Synthesis of Phospholipid Derivative (P-2)
  • R 1 and R 2 are hexadecyl groups
  • Z 1 and Z 2 are 1,3-propylene groups
  • Z Phospholipid derivative in which 3 is a hydrogen atom To a mixture of 11.2 mg (0.0854 mmol) of dipropylenetriamine and anhydrous pyridine (0.5 ml) was added a mixture of anhydrous dicetyl phosphate (16.5 mg, 0.0153 mmol) and anhydrous pyridine (0.5 ml). It was. The inside of the reaction vessel was purged with nitrogen, and the mixture was stirred at room temperature for 3 hours to be reacted.
  • Example 5 Synthesis of Phospholipid Derivative (P-5)
  • Y 3 and Y 4 are carbonyl groups
  • R 3 and R 4 are pentadecyl groups
  • T 1 is the above formula.
  • a phospholipid derivative (a compound represented by the following formula) which is a group represented by T2 and n is 5.
  • G 1 has the formula It is group represented by these. (Wherein, X 1 ⁇ X 4 is as defined above.)
  • chloroform was added, and this chloroform solution (chloroform layer) was washed with an aqueous sodium hydrogen carbonate solution.
  • the chloroform layer was dried, and then the solvent in the chloroform layer was distilled under reduced pressure. The solvent was distilled off with a vacuum pump to obtain the title compound (white solid, 1.1 mg, yield: 10%).
  • the inside of the reaction vessel was purged with nitrogen, and the mixture was stirred at room temperature for 29 hours to be reacted.
  • a mixture of ammonium acetate (32.7 mg, 0.424 mmol) and methanol (1.5 ml) was added to the mixture.
  • the solvent in the mixture was distilled off under reduced pressure. 10 ⁇ l of methanol was added to the residue, chloroform was further added, and this chloroform solution (chloroform layer) was washed with an aqueous ammonium acetate solution. After the chloroform layer was dried, the solvent was distilled off under reduced pressure, and the solvent was further distilled off with a vacuum pump to obtain the title compound (white solid, 8.8 mg, yield: 74%).
  • Test example B1 Liposomes containing phospholipid derivative (P-1) (introduction of plasmid DNA) Preparation of liposome containing phospholipid derivative (P-1), and evaluation of gene transfer efficiency (fluorescence intensity) of the liposome
  • COS-1 cells were stored in Dulbecco's modified Eagle's medium solution [solution containing 10% fetal bovine serum (FBS), kanamycin 60 ⁇ g / mL] at 37 ° C. in the presence of 5% carbon dioxide. did. When confluent, cells were detached with 0.175% trypsin / EDTA-PBS ( ⁇ ) solution.
  • Dulbecco's modified Eagle's medium solution solution containing 10% fetal bovine serum (FBS), kanamycin 60 ⁇ g / mL] at 37 ° C. in the presence of 5% carbon dioxide. did.
  • FBS fetal bovine serum
  • kanamycin 60 ⁇ g / mL kanamycin 60 ⁇ g / mL
  • the culture solution was removed from the culture dish, the cells were washed twice with PBS solution, and the cells were lysed by adding 200 ⁇ L of lysis buffer solution (LC ⁇ ).
  • LC ⁇ lysis buffer solution
  • the cell lysate was collected in a 1.5 mL Eppendorf tube, freeze-thawed, centrifuged at 21,500 g for 10 minutes, and the supernatant was collected.
  • the supernatant was transferred to a test tube, a luminescent substrate was added, and luciferase activity was measured with a luminophotometer (Lumensecens-PSN AB 2200, Ato Co.). The luminescence intensity of each sample was corrected by the amount of protein.
  • Liposomes containing the phospholipid derivative (P-1) (above (B1-1)) showed higher gene transfer efficiency compared to DCP-spermidine® PCL and the commercially available nucleic acid transfer reagent Lipofectamine 2000 (Invitrogen Corporation).
  • Test example B2 Liposomes containing phospholipid derivative (P-1) (siRNA) Preparation of liposome containing phospholipid derivative (P-1) and evaluation of gene transfer efficiency (gene knockdown efficiency) of the liposome
  • isopropanol was added to make a total volume of 1 mL.
  • 150 pmol of siRNA capable of knocking down GAPDH was dissolved in DEPC-treated water to make a total volume of 0.5 mL.
  • siRNA solution was added to the mixed lipid solution and incubated for 20 minutes.
  • the cell culture cells were obtained from human umbilical vein endothelial cells (HUVEC), 5% carbon dioxide at 37 ° C. in endothelial basal medium-2 (EGM-2, Bio Whittaker Inc.) medium solution. Stored in the presence. At the time of confluence, the cells were detached with a 0.025 mg / mL trypsin / EDTA-PBS ( ⁇ ) solution.
  • ECL Western blotting detection reagents (GE Healthcare Co., Ltd.) were used as the coloring reagent, and they were measured with LAS3000 (Fuji Film Co., Ltd.) and digitized.
  • isopropanol was added to make a total volume of 1 mL.
  • 0.5 mL of Alexa750 labeled siRNA solution was added to the mixed lipid solution and incubated for 20 minutes.
  • 5 mL of DEPC-treated water was added dropwise little by little while stirring at 60 ° C. while maintaining the temperature. This solution was transferred to an ultrafiltration device (Amicon Ultra (100k)), solvent substitution and concentration were performed, and liposomes containing siRNA were obtained.
  • colon 26 NL-17 carcinoma cells which are mouse colon cancer cells
  • DME / HamF12 medium solution 10% fetal bovine serum (FBS), penicillin G 60 ⁇ g / mL, streptomycin 100 ⁇ g / mL.
  • FBS fetal bovine serum
  • penicillin G 60 ⁇ g / mL penicillin G 60 ⁇ g / mL
  • the cells were removed with a 0.25% Tripsin / EDTA-PBS ( ⁇ ) solution and subcultured.
  • the liposome prepared in (B3-1) above was administered to the tumor-bearing mouse in the tail vein so that the amount of siRNA was 30 ⁇ g, and the in vivo kinetics of siRNA was measured with IVIS Lumina Imaging System (Xenogen). Visualized.
  • siRNA was transferred to cancer cells with high selectivity by using liposomes containing phospholipid derivative (P-1) (above (B3-1)).
  • B4-2 Cell culture cells consist of HT1080 human fibroblastoma cells (EGFP / HT1080 cells) that constantly express green fluorescent protein (EGFP), DME / HamF12 medium solution [10% fetal bovine serum (FBS). ), A solution containing penicillin G 60 ⁇ g / mL and streptomycin 100 ⁇ g / mL] at 37 ° C. in the presence of 5% carbon dioxide. When confluent, the cells were detached with a 0.25 mg / mL trypsin / EDTA-PBS ( ⁇ ) solution.
  • the medium was changed 4 or 24 hours after addition of the complex, and gene knockdown evaluation was performed 48 or 72 hours after addition of the complex.
  • the culture solution is removed from each well of the plate, and the cells are washed once with PBS solution, and 200 ⁇ L of lysis buffer solution [2 mM phenylmethylsulfonyl fluoride (PMSF), 0.2 mM leupeptin, 0.05 mg / mL aprotinin, 0.1 mM]
  • the cells were lysed by adding 1% reduced Triton X-100 solution containing pepstatin A].
  • the cell lysate was collected in a 1.5 mL Eppendorf tube, centrifuged at 1,000 g for 10 minutes, and the supernatant was collected.
  • the fluorescence intensity of the sample was measured with a fluorometer (1420 MULTILABEL COUNTER, WALLAC, ARVO TM SX). The fluorescence intensity of each sample was corrected by the amount of protein.
  • 72h 24h means that the time when the gene knockdown evaluation is performed is 72 hours, and the time when the medium is changed is 24 hours.
  • siRNA means that the same amount of siRNA as in other tests was administered without using liposomes.
  • (B4-1 DETA) is a liposome prepared in the above (B4-1) using the phospholipid derivative (P-1), and “(B4-1 TEPA) “)” Is a liposome prepared using the phospholipid derivative (P-4) and prepared in the above (B4-1).
  • Phospholipid derivative (P-1) or liposome containing phospholipid derivative (P-4) (above (B4-1)) showed a high gene knockdown effect in cancer cells.
  • Test Example B5 Phospholipid derivative (P-1) or liposome (siRNA) containing phospholipid derivative (P-4) Evaluation of gene transfer efficiency (protein expression (decrease in GAPDH)) of liposomes containing phospholipid derivative (P-1) or phospholipid derivative (P-4)
  • the medium was changed 24 hours after the addition of the complex, and gene knockdown evaluation was performed 48 or 72 hours after the addition of the complex.
  • the culture medium is removed from the culture dish, the cells are washed once with PBS solution, and 200 ⁇ L of lysis buffer solution [2 mM phenylmethylsulfonyl fluoride (PMSF), 0.2 mM leupeptin, 0.05 mg / mL aprotinin, 0.1 mM pepstatin A]
  • the cells were lysed by adding 1% reduced Triton X-100 solution containing
  • the cell lysate was collected in a 0.5 mL Eppendorf tube and stored at ⁇ 20 ° C.
  • Test Example B6 Phospholipid derivative (P-1) or liposome (siRNA) containing phospholipid derivative (P-4) Evaluation of gene transfer efficiency (reduction of protein (mTOR) expression) of liposomes containing phospholipid derivative (P-1) or lipid derivative (P-4)
  • B6-2 Cell culture cells were B16BL6 melanoma cells stored in DME / HamF12 medium solution [solution containing 10% fetal bovine serum (FBS), kanamycin 60 ⁇ g / mL] at 37 ° C. in the presence of 5% carbon dioxide. . When confluent, the cells were detached with a 0.25 mg / mL trypsin / EDTA-PBS ( ⁇ ) solution.
  • DME / HamF12 medium solution solution containing 10% fetal bovine serum (FBS), kanamycin 60 ⁇ g / mL] at 37 ° C. in the presence of 5% carbon dioxide.
  • FBS fetal bovine serum
  • kanamycin 60 ⁇ g / mL kanamycin 60 ⁇ g / mL
  • Each sample was separated by SDS-PAGE, and the amount of mTOR was detected by Western blotting.
  • ECL Western blotting detection reagents (GE Healthcare Co., Ltd.) were used, and measurement was performed with LAS3000 (Fuji Film Co., Ltd.).
  • Phospholipid derivative (P-1) or liposome containing phospholipid derivative (P-4) (above (B4-1) (the expression level of Actin is almost unchanged), both of which significantly suppress only the expression of GAPDH And showed a high gene knockdown effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

 本発明は、下記一般式(1)又は一般式(2)で表される新規なリン脂質誘導体(式中の記号は請求の範囲に記載される通りのものである)を提供する。 また本発明は、細胞内への遺伝子・核酸導入効率に優れる脂質膜構造体を提供する。

Description

ポリカチオン化リン脂質誘導体
 本発明は、新規なリン脂質誘導体に関し、特に、遺伝子や核酸などの薬効成分を封入する脂質膜構造体(リポソーム、エマルション、ミセル等)の製造のために有用なリン脂質誘導体に関する。また、本発明は、高い遺伝子発現効率や高い遺伝子発現抑制効果を示す遺伝子や核酸等を細胞内に導入することのできる、治療用キャリアおよび研究用試薬として有用な脂質膜構造体に関する。
 疾病の治療に際しては、薬剤、生理活性物質(ホルモン、リンホカイン等)等の有用物質を標的組織の細胞内に導入するための運搬体(キャリア)が必要となる。近年、遺伝子治療やアンチセンス医薬等の技術の進歩に伴って、特定の遺伝子や核酸を標的組織の細胞内に効率良く導入するための運搬体の開発が盛んに行われており、特に、がんの治療等では、化学療法に代わる新しい治療法として注目されている。
 遺伝子や核酸を導入する方法として(1)ウイルスを用いるウイルスベクター法と、(2)リポソームに代表される脂質膜構造体等の非ウイルス性ベクターを用いる方法が知られている。
 前者の方法では、導入効率は高いものの、ウイルス(アデノウイルス、ヘルペスウイルス、ワクシニア、レトロウイルスなどのRNAウイルス)による発ガン性の危険が指摘されており問題となっている。また、ウイルスベクターは大量生産が困難であり、抗原性、宿主に対する毒性等も問題となっている。これらの問題が、ウイルスベクター法による遺伝子治療等の実用化が遅れている原因の一つとなっている。
 後者の方法に用いられる、リポフェクトアミン、リポフェクトエース、リポフェクチン、トランスフェクタム、ジーントランスファー等がカチオン化リポソームである、遺伝子・核酸導入試薬が市販されている。これらの遺伝子・核酸導入試薬を用いることにより、培養細胞に対して遺伝子や核酸を導入することができる。しかしながら、これらの遺伝子・核酸導入試薬は、(a)試薬中に含まれる脂質の安定性の悪さ、(b)血清存在下での不安定さ、(c)細胞毒性の強さ、(d)細胞内へのさらに高い遺伝子・核酸導入効率の必要性等のため、ヒトでの遺伝子治療または核酸医薬治療のための治療薬、あるいは直接投与による動物への遺伝子・核酸導入のための試薬等として満足できるものではない。
 in vivoにおける遺伝子・核酸導入の適用のためには、血中成分との相互作用が少なく、優れた安定性、毒性および体内動態などを有するとともに、細胞内への遺伝子や核酸のより優れた導入効率を有する、非ウイルス性ベクターである遺伝子・核酸導入試薬が求められている。
 本発明が解決しようとする課題は、さらに優れた遺伝子・核酸導入効率を有する脂質膜構造体(リポソーム、エマルション、ミセル等)、およびその脂質膜構造体における主要な構成成分として有用な新規リン脂質誘導体を提供することにある。
 本発明者らは上記事情に鑑みて鋭意研究を行った結果、新規なリン脂質誘導体を合成することに成功し、該新規なリン脂質誘導体を用いて製造される脂質膜構造体(リポソーム、エマルション、ミセル等)が、細胞内への遺伝子や核酸の導入効率に優れることを見出し、本発明を完成した。
 すなわち、本発明は、以下の新規なリン脂質誘導体および該リン脂質誘導体を含有するリポソームを提供する。
[1]
 下記一般式(1)で表される化合物:
Figure JPOXMLDOC01-appb-C000004

 式(1)中、
 Rは炭素数10~22の脂肪族炭化水素基であり、
 Rは炭素数10~22の脂肪族炭化水素基であり、
 ZはC2~4アルキレン基であり、
 ZはC2~3アルキレン基であり、
 Zは水素原子、-Z-NH、-Z-NH-Z-NHおよび-((CH-NH)-Hからなる群から選択される少なくとも1種であり、
  ZはC2~4アルキレン基であり、
  ZはC2~4アルキレン基であり、
  qは3~5の整数である。
(一般式(1)で表される化合物とは、塩を形成していないフリー体である形態だけでなく、当該化合物が、他の分子と塩を形成している形態でもよく、当該化合物自体が、塩基性及び酸性の両方の性質の基を持つ両性化合物の場合には、当該化合物同士が分子間にて塩を形成している形態でも、当該化合物が分子内にて塩を形成塩を形成している形態でも、またこれらが混合した状態でもよい。また固体状態だけでなく、溶液(種々のアニオン分子、カチオン分子を含んでいる溶液、pHを調整された溶液も含む)に溶解、けん濁した状態、リポソームなど脂質膜構造体を形成している状態でもよい。以下の一般式(1-2)、(2-2)または(2)で表される化合物においても同様である。)。
[2]
 Zが-CH-CH-である、前記[1]に記載の化合物。
[3]
 Zが-CH-CH-である、前記[1]または[2]に記載の化合物。
[4]
 Zが-((CH-NH)-H(式中、rは0~4の整数である。)である、前記[1]~[3]のいずれか1項に記載の化合物。
[5]
 Rがドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基およびオクタデセニル基からなる群から選択される少なくとも1種である、前記[1]~[4]のいずれか1項に記載の化合物。
[6]
 Rがドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基およびオクタデセニル基からなる群から選択される少なくとも1種である、前記[1]~[5]のいずれか1項に記載の化合物。
[7]
 下記一般式(2)で表される化合物:
Figure JPOXMLDOC01-appb-C000005

 式(2)中、
 Rは炭素数10~22の脂肪族炭化水素基であり、
 Rは炭素数10~22の脂肪族炭化水素基であり、
 Yはメチレン基またはカルボニル基であり、
 Yはメチレン基またはカルボニル基であり、
 XおよびXは、相異なって、水素原子または-(CH-NHC(=NH)NHで表される基であり、
 Tは、下記一般式(T2)または一般式(T2)で表される基であり、
Figure JPOXMLDOC01-appb-C000006

  式(T2)および式(T3)中、
  XおよびXは、相異なって、水素原子またはカルボキシル基であり、
 nは4~12から選ばれる整数である。
(一般式(2)で表される化合物中の*印がついた結合が、T2またはT3における*印がついた結合であり、該化合物中の**印がついた結合が、T2またはT3における**印がついた結合であることを意味する。以下の一般式(2-2)で表される化合物においても同様である。)
[8]
 Rが、ウンデシル基、トリデシル基、ペンタデシル基、ヘプタデシル基およびヘプタデセニル基からなる群から選択される少なくとも1種である、前記[7]に記載の化合物。
[9]
 Rが、ウンデシル基、トリデシル基、ペンタデシル基、ヘプタデシル基およびヘプタデセニル基からなる群から選択される少なくとも1種である、前記[7]または[8]に記載の化合物。
[10]
 下記一般式(1-2)で表される化合物。
Figure JPOXMLDOC01-appb-C000007

 式(1-2)中、
 Rは炭素数10~22の脂肪族炭化水素基であり、
 Rは炭素数10~22の脂肪族炭化水素基を意味し、
 Yはメチレン基またはカルボニル基であり、
 Yはメチレン基またはカルボニル基であり、
 ZはC2~4アルキレン基であり、
 ZはC2~3アルキレン基であり、
 Zは水素原子、-Z-NH、-Z-NH-Z-NHおよび-((CH-NH)-Hからなる群から選択される1種であり、
  ZはC2~4アルキレン基であり、
  ZはC2~4アルキレン基であり、
  qは3~5の整数である。
[11]
 下記一般式(2-2)で表わされる化合物。
Figure JPOXMLDOC01-appb-C000008

 式(2-2)中、
 Rは炭素数10~22の脂肪族炭化水素基であり、
 Rは炭素数10~22の脂肪族炭化水素基であり、
 Tは、下記一般式(T2)または一般式(T2)で表される基であり、
Figure JPOXMLDOC01-appb-C000009

  式(T2)および式(T3)中、
  XおよびXは、相異なって、水素原子または-(CH-NHC(=NH)NHであり、
  XおよびXは、相異なって、水素原子またはカルボキシル基であり、
  nは4~12の整数である。
[13]
 前記[1]~[11]のいずれか1項に記載の化合物を構成脂質として含有する脂質膜構造体。
[14]
 リポソームである、前記[12]に記載の脂質膜構造体。
[15]
 抗腫瘍剤又は悪性腫瘍の遺伝子治療のための遺伝子を保持した前記[12]または[13]に記載の脂質膜構造体。
[16]
 前記遺伝子が、悪性腫瘍における血管新生又は細胞増殖に関わるアンチセンスオリゴヌクレオチド、アンチセンスDNA、アンチセンスRNA、shRNA、及びsiRNA、並びに酵素及びサイトカインを含む生理活性物質、アンチセンスRNA、shRNA、及びsiRNAをコードする遺伝子からなる群から選ばれる遺伝子である請求項7または8記載の脂質膜構造体。
[17]
 前記[12]~[16]のいずれか1項に記載の脂質膜構造体を含有する組成物。
[18]
 前記[12]~[16]のいずれか1項に記載の脂質膜構造体を含有する組成物を、イン・ビボ(但しヒトは除く)、またはイン・ビトロで細胞に適用することを特徴とする遺伝子の導入方法。
[19]
 前記[12]~[16]のいずれか1項に記載の脂質膜構造体を含有してなる、悪性腫瘍の治療のための医薬組成物。
[20]
 前記[1]~[11]のいずれか1項に記載の化合物を構成脂質として含むリポソーム。
[21]
 前記[1]~[11]のいずれか1項に記載の化合物を、膜二重層に含有してなるリポソーム。
[22]
 前記[1]~[11]のいずれか1項に記載の化合物を構成成分として形成されるリポソーム。
 本発明によれば、優れた細胞内への遺伝子・核酸導入効率を有する脂質膜構造体(リポソーム、エマルション、ミセル等)の製造のために、有用なリン脂質誘導体を提供することができる。
 また、本発明の脂質膜構造体(リポソーム、エマルション、ミセル等)は、優れた遺伝子・核酸導入効率を有する、治療用キャリアおよびその研究用試薬として有用である。
試験例B1における遺伝子トランスフェクション評価の結果を示す。 試験例B2における遺伝子ノックダウン評価の結果を示す。 試験例B3における投与から24時間後のsiRNAの分布を示す。 試験例B4における遺伝子ノックダウン評価の結果を示す。 試験例B5における遺伝子ノックダウン評価の結果を示す。 試験例B6における遺伝子ノックダウン評価の結果を示す。
 以下に、本明細書において記載する用語、記号等の意義を説明し、本発明を実施するための最良の形態について詳細に説明する。なお、本発明は、以下の本発明を実施するための最良の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 一般式(1)、(1-2)、(2-2)または(2)で表される化合物(以下、「リン脂質誘導体(A)」または「ポリカチオン化リン脂質誘導体(A)」と記載する場合がある。)について、本明細書中においては、化合物の構造式が一定の異性体を表すことがあるが、本発明には化合物の構造上生ずる全ての幾何異性体、光学異性体、立体異性体および互変異性体等の異性体および異性体混合物を含み、一般式の記載に限定されるものではなく、いずれか一方の異性体でも、それらの異性体の混合物でもよい。また、互変異性体の場合には、化合物によっては、各異性体混合物やそれらの異性体の遷移状態(各異性体の中間的な状態)でもよい。
 従って、本発明の化合物には、光学活性体およびラセミ体が存在することがありえるが、本発明においては限定されず、いずれもが含まれる。また、結晶多形が存在することもあるが同様に限定されず、いずれかの結晶形の単一物であっても混合物であってもよく、そして、本発明の化合物には無水物と水和物とが包含される。
 本明細書において、「炭素数10~22の脂肪族炭化水素基」とは、炭素数10~22の直鎖状または分枝鎖状の炭化水素基を意味する。炭素数10~22の脂肪族炭化水素基としては、例えば、炭素数10~22のアルキル基、および二重結合または三重結合を合わせて1個~3個有する炭素数10~22の不飽和炭化水素基等をあげることができる。
 「炭素数10~22の直鎖脂肪族炭化水素基」とは、炭素数10~22の直鎖状の炭化水素基を意味する。炭素数10~22の直鎖脂肪族炭化水素基としては、炭素数10~22の直鎖状のアルキル基、および二重結合または三重結合を合わせて1個~3個有する炭素数10~22の不飽和炭化水素基等をあげることができ、例えば、デシル基(-(CHCH)、ウンデシル基(-(CH10CH)、ドデシル基(-(CH11CH)、トリデシル基(-(CH12CH)、テトラデシル基(-(CH13CH)、ペンタデシル基(-(CH14CH)、ヘキサデシル基(-(CH15CH)、ヘプタデシル基(-(CH16CH)、オクタデシル基(-(CH17CH)、ノナデシル基(-(CH18CH)、イコシル基(-(CH19CH)、ヘンイコシル基(-(CH20CH)、ドコシル基(-(CH21CH)、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、オクタデカジエニル基、およびオクタデカトリエニル基等をあげることができる。
 「炭素数14~18の直鎖飽和炭化水素基」とは、炭素数14~18の直鎖状のアルキル基を意味する。炭素数14~18の直鎖飽和炭化水素基としては、具体的には、-(CH-CH(式中、mは13~17の整数を意味する。)で表される基等をあげることができ、テトラデシル基(-(CH13CH)、ペンタデシル基(-(CH14CH)、ヘキサデシル基(-(CH15CH)、ヘプタデシル基(-(CH16CH)、およびオクタデシル基(-(CH17CH)等をあげることができる。
 「炭素数14~18の直鎖不飽和炭化水素基」とは、二重結合または三重結合を合わせて1個~3個有する炭素数14~18の不飽和炭化水素基を意味する。炭素数14~18の直鎖不飽和炭化水素基としては、例えば炭素数14~18の直鎖状のアルケニル基、炭素数14~18の直鎖状のアルケジエニル基、炭素数14~18の直鎖状のアルケトリエニル基、および炭素数14~18の直鎖状のアルキニル基等をあげることができ、例えば、ヘキサデセニル基、オクタデセニル基、オクタデカジエニル基、およびオクタデカトリエニル基等をあげることができる。
 「C2~4アルキレン基」とは、「C2~4アルキル基」(エチル基、1-プロピル基(n-プロピル基)、2-プロピル基(i-プロピル基)、2-メチル-1-プロピル基(i-ブチル基)、2-メチル-2-プロピル基(t-ブチル基)、1-ブチル基(n-ブチル基)、および2-ブチル基(s-ブチル基))からさらに任意の水素原子を1個除いて誘導される二価の基を意味する。C2~4アルキレン基としては、例えば、1,2-エチレン基、1,3-プロピレン基、およびテトラメチレン基(-(CH-)等をあげることができる。
 「C2~3アルキレン基」とは、「C2~3アルキル基」(エチル基、1-プロピル基(n-プロピル基)、および2-プロピル基(i-プロピル基))からさらに任意の水素原子を1個除いて誘導される二価の基を意味する。C2~3アルキレン基としては、例えば、1,2-エチレン基、および1,3-プロピレン基等をあげることができる。
 「脂質膜構造体」とは、両親媒性脂質の極性基が界面の水相側に向かって配列した膜構造を有する粒子を意味する。脂質膜構造体としては、例えば、リポソーム、エマルション、ミセル、および不定形の層状構造物などの形態等をあげることができる。
 「リポソーム」とは、リン脂質が水中で疎水性部分を内側に向け、親水性部分を外側に向けて二分子膜を形成し、その末端が閉じて形成される閉鎖小胞体を意味する。リポソームとしては、例えば、リン脂質の二分子膜が一重層である小胞体と、リン脂質の二分子膜が複数ある多重層である小胞体等をあげることができる。このような構造を持つため、リポソームは、リポソームの内側と外側の両方が水溶液であり、脂質の二重層がしきりになっている構造体である。
 「エマルション」とは、ある液体(不連続相)の液滴を別の非混和性の液(連続相)中に分散して含む液体混合物を意味する。エマルションの形態としては、例えば、水中油型エマルション(O/W型)、油中水型エマルション(W/O型)または複合エマルション(W/O/W型)の形態等をあげることができる。リン脂質成分は、どちらかの液相または両方の液相の中に含有され得る。
 「ミセル」とは、両親媒性分子の凝集体を意味する。ミセルは、水性媒質中でこの両親媒性分子の親油性部位はミセルの中心側に向かって配向し、親水性部位は外部側に向かって配向した形態をとり、この場合、球の中心部は親油性であり、周辺部は親水性という特性を持つ。ミセル構造としては、球、層(laminar)、円柱、楕円、小胞、層(lamellar)、および液晶等をあげることができる。ミセルとして、最近注目されている両親媒性分子としてポリエチレングリコール(PEG)等の水溶性高分子を親水性ドメインとして配する高分子ミセルもあげることができる。
 脂質膜構造体の存在形態は特に限定されないが、例えば、乾燥した脂質混合物形態、水系溶媒に分散した形態、さらにこれを乾燥させた形態や凍結させた形態等をあげることができる。
 脂質膜構造体の存在形態が水系溶媒に分散した形態である場合、脂質膜構造体の粒子径は特に限定されない。脂質膜構造体がリポソームやエマルションの場合、粒子径は例えば50nmから数μmであり、球状ミセルの場合、粒子径は例えば5nmから50nmである。
 ヒモ状ミセルや不定形の層状構造物の場合には、その1層あたりの厚みが5nmから10nmで、1層の層状構造物が更に複数の層を形成していてもよい。
 本発明の脂質膜構造体は、膜構造中にリン脂質誘導体(A)を含んでいれば、その他に含まれる成分は特に限定されない。
 脂質膜構造体は、リン脂質誘導体(A)のみでリポソームを構成していてもよく、その他のリン脂質、コレステロール等の他の成分を含んでいていてもよい。
 脂質膜構造体における他の成分として、膜構造中に、リン脂質誘導体(A)以外のリン脂質;コレステロール、コレステロールエステル、およびコレスタノール等のステロール類;グルクロン酸誘導体;炭素数8~22の飽和または不飽和のアシル基を有する脂肪酸類;ポリエチレングリコール誘導体(Biochim. Biophys. Acta, 1029, 91 (1990)、FEBS Lett. 268, 235 (1990)等に記載);α-トコフェロール等の酸化防止剤;からなる群から選ばれる分子を1種類以上含んでいてもよい。
 「リン脂質誘導体(A)以外のリン脂質」としては、例えば、ホスファチジルエタノールアミン、ホスファリジルコリン、ホスファチジルセリン、ホスファチジルイノシトール、ホスファチジルグリセロール、カルジオリピン、スフィンゴミエリン、セラミドホスホリルエタノールアミン、セラミドホスホリルグリセロール、セラミドホスホリルグリセロールホスファート、1,2-ジミリストイル-1,2-デオキシホスファチジルコリン、プラスマロゲン、ホスファチジン酸、L-ジオレオイルホスファチジルエタノールアミン(DOPE)、卵黄レシチン、および、その他天然物由来のリン脂質(大豆レシチン等)等をあげることができる。これらは1種または2種以上を組み合せて用いることができる。

 リン脂質誘導体(A)以外のリン脂質の脂肪酸残基としては、特に限定されるものではないが、炭素数12~18の脂肪酸残基等をあげることができる。炭素数12~18の脂肪酸残基とは、炭素数12~18の直鎖状または分枝鎖状の脂肪酸残基を意味する。炭素数12~18の脂肪酸残基としては、例えば、炭素数12~18のアルキル脂肪酸残基、および二重結合または三重結合を合わせて1個~3個有する炭素数12~18の不飽和炭化水素脂肪酸残基をあげることができ、例えば、パルミトイル基、オレオイル基、ステアロイル基、リノレイル基等をあげることができる。
 リン脂質誘導体(A)以外のリン脂質として、ホスファチジルエタノールアミンおよびホスファチジルコリンを1種でまたは2種以上組み合せて用いるのが好ましく、ホスファチジルエタノールアミンを用いるのがより好ましい。
 脂質膜構造体が、リン脂質誘導体(A)と他の成分とを含んでいる場合、リン脂質誘導体(A):他の成分は、モル比で、1:9~9:1が好ましく、2:8~8:2がより好ましく、3:7~7:3がさらに好ましい。
 他の成分としてのコレステロールの配合量は、モル分率で0~70%が好ましく、10~60%がより好ましく、20~50%が特に好ましい。
 「水系溶媒に分散した形態」における「水系溶媒」としては、特に限定はされないが、水のほか、グルコース、乳糖、ショ糖などの糖水溶液;グリセリン、プロピレングリコールなどの多価アルコール水溶液;生理食塩液;リン酸緩衝液、クエン酸緩衝液、リン酸緩衝化生理食塩液等の緩衝液;細胞培養用の培地などをあげることができる。
[Rの意義]
 Rは、炭素数10~22の脂肪族炭化水素基を意味する。
 Rとして、好適には、炭素数10~22の直鎖脂肪族炭化水素基をあげることができ、より好適には、炭素数14~18の直鎖飽和炭化水素基、および炭素数14~18の直鎖不飽和炭化水素基をあげることができ、さらに好適には、例えば、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基(セチル基)、ヘプタデシル基、オクタデシル基、ヘキサデセニル基、オクタデセニル基、オクタデカジエニル基、およびオクタデカトリエニル基等をあげることができ、よりさらに好適には、テトラデシル基、ヘキサデシル基、オクタデシル基、およびオクタデセニル基(例えば、
Figure JPOXMLDOC01-appb-C000010

で表されるオレイル基等の、炭素数18の直鎖アルケニル基(シス体、トランス体いずれにも限定されず、二重結合の位置も限定されない)を意味する。)等をあげることができ、最も好適には、ヘキサデシル基をあげることができる。
[Rの意義]
 Rは、炭素数10~22の脂肪族炭化水素基を意味する。
 Rとして、好適には、炭素数10~22の直鎖脂肪族炭化水素基をあげることができ、より好適には、炭素数14~18の直鎖飽和炭化水素基、および炭素数14~18の直鎖不飽和炭化水素基をあげることができ、さらに好適には、例えば、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基(セチル基)、ヘプタデシル基、オクタデシル基、ヘキサデセニル基、オクタデセニル基、オクタデカジエニル基、およびオクタデカトリエニル基等をあげることができ、よりさらに好適には、テトラデシル基、ヘキサデシル基、オクタデシル基、およびオクタデセニル基(例えば、
Figure JPOXMLDOC01-appb-C000011

で表されるオレイル基等の、炭素数18の直鎖アルケニル基(シス体、トランス体いずれにも限定されず、二重結合の位置も限定されない)を意味する。)等をあげることができ、最も好適には、ヘキサデシル基をあげることができる。
[Rの意義]
 Rは、炭素数10~22の脂肪族炭化水素基を意味する。
 Rとしては、好適には、炭素数10~22の直鎖脂肪族炭化水素基をあげることができ、より好適には、例えば、ウンデシル基、トリデシル基、ペンタデシル基、ヘプタデシル基、およびヘプタデセニル基等をあげることができる。
[Rの意義]
 Rは、炭素数10~22の脂肪族炭化水素基を意味する。
 Rとしては、好適には、炭素数10~22の直鎖脂肪族炭化水素基をあげることができ、より好適には、例えば、ウンデシル基、トリデシル基、ペンタデシル基、ヘプタデシル基、およびヘプタデセニル基等をあげることができる。
[Zの意義]
 Zは、C2~4アルキレン基を意味する。
 Zとしては、好適には、例えば、-CH-CH-、-CH-CH-CH-、および-CH-CH-CH-CH-等をあげることができ、より好適には、-CH-CH-、および-CH-CH-CH-をあげることができ、さらに好適には、-CH-CH-をあげることができる。
[Zの意義]
 Zは、C2~3アルキレン基を意味する。
 Zとしては、好適には、例えば、-CH-CH-、および-CH-CH-CH-等をあげることができ、より好適には、-CH-CH-をあげることができる。
[Zの意義]
 Zは、水素原子、-Z-NH、-Z-NH-Z-NH、および-((CH-NH)-H)(ZはC2~4アルキレン基を意味し、ZはC2~4アルキレン基を意味し、qは3~5の整数を意味する。)からなる群から選択される少なくとも1種である基を意味する。
 Zとしては、好適には、例えば、水素原子、および-CH-CH-CH-NH、-((CH-NH)-H)(rは0~4の整数を意味する。)で表される基をあげることができる。
[XおよびXの意義]
 XおよびXは、相異なって、水素原子、および-(CH-NHC(=NH)NHを意味する。
 XおよびXとしては、好適には、Xが、-(CH-NHC(=NH)NH、かつXが水素原子である場合をあげることができる。
[XおよびXの意義]
 XおよびXは、相異なって、水素原子、およびカルボキシル基を意味する。
 XおよびXとしては、好適には、Xが水素原子、かつXがカルボキシル基である場合をあげることができる。
[Yの意義]
 Yは、メチレン基またはカルボニル基を意味する。
 Yとしては、好適には、カルボニル基をあげることできる。
[Yの意義]
 Yは、メチレン基またはカルボニル基を意味する。
 Yとしては、好適には、カルボニル基をあげることができる。
[nの意義]
 nは、4~12から選ばれる整数を意味する。
 nとしては、好適には、例えば、4~9から選ばれる整数をあげることができ、より好適には、5~8から選ばれる整数をあげることができ、さらに好適には、5または8をあげることができる。
 「塩」とは、本発明のリン脂質誘導体(A)との塩を形成し、かつ薬理学的に許容されるものであれば特に限定されず、他の分子と分子間で塩を形成していてもよく、リン脂質誘導体(A)自体が、塩基性および酸性の両方の性質の基を持つ両性化合物の場合には分子内で塩を形成していてもより。他の分子と塩を形成する場合には、その塩を形成する他の分子として、例えば、無機酸、有機酸、無機塩基、有機塩基、および酸性または塩基性アミノ酸等をあげることができる。
 塩としては、例えば、無機酸塩、有機酸塩、無機塩基塩、有機塩基塩、および酸性または塩基性アミノ酸塩等をあげることができる。
 無機酸塩としては、例えば、塩酸塩、臭化水素酸塩、硫酸塩、硝酸塩、およびリン酸塩等をあげることができる。
 有機酸塩としては、例えば、酢酸塩、コハク酸塩、フマル酸塩、マレイン酸塩、酒石酸塩、クエン酸塩、乳酸塩、ステアリン酸塩、安息香酸塩、メタンスルホン酸塩、エタンスルホン酸塩、p-トルエンスルホン酸塩、およびベンゼンスルホン酸塩等をあげることができる。
 無機塩基塩としては、例えば、ナトリウム塩、およびカリウム塩等のアルカリ金属塩;カルシウム塩、およびマグネシウム塩等のアルカリ土類金属塩;アルミニウム塩:アンモニウム塩等をあげることができる。
 有機塩基塩としては、例えば、ジエチルアミン塩、ジエタノールアミン塩、メグルミン塩、およびN,N’-ジベンジルエチレンジアミン塩等をあげることができる。
 酸性アミノ酸塩としては、例えば、アスパラギン酸塩、およびグルタミン酸塩等をあげることができる。
 塩基性アミノ酸塩としては、例えば、アルギニン塩、リジン塩、およびオルニチン塩等をあげることができる。
 本発明のリン脂質誘導体(A)は、下記一般式(1)、(2)、(1-2)、または(2-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000012

 式(1)中、
 Rは炭素数10~22の脂肪族炭化水素基であり、
 Rは炭素数10~22の脂肪族炭化水素基であり、
 ZはC2~4アルキレン基であり、
 ZはC2~3アルキレン基であり、
 Zは水素原子、-Z-NH、-Z-NH-Z-NHおよび-((CH-NH)-Hからなる群から選択される少なくとも1種であり、
  ZはC2~4アルキレン基であり、
  ZはC2~4アルキレン基であり、
  qは3~5の整数である。
Figure JPOXMLDOC01-appb-C000013

 式(2)中、
 Rは炭素数10~22の脂肪族炭化水素基であり、
 Rは炭素数10~22の脂肪族炭化水素基であり、
 Yはメチレン基またはカルボニル基であり、
 Yはメチレン基またはカルボニル基であり、
 XおよびXは、相異なって、水素原子または式-(CH-NHC(=NH)NHで表される基であり、
 Tは、下記一般式(T2)または一般式(T2)で表される基であり、
Figure JPOXMLDOC01-appb-C000014

  式(T2)および式(T3)中、
  XおよびXは、相異なって、水素原子またはカルボキシル基であり、
 nは4~12から選ばれる整数である。
Figure JPOXMLDOC01-appb-C000015

 式(1-2)中、
 Rは炭素数10~22の脂肪族炭化水素基であり、
 Rは炭素数10~22の脂肪族炭化水素基を意味し、
 Yはメチレン基またはカルボニル基であり、
 Yはメチレン基またはカルボニル基であり、
 ZはC2~4アルキレン基であり、
 ZはC2~3アルキレン基であり、
 Zは水素原子、-Z-NH、-Z-NH-Z-NHおよび-((CH-NH)-Hからなる群から選択される1種であり、
  ZはC2~4アルキレン基であり、
  ZはC2~4アルキレン基であり、
  qは3~5の整数である。
Figure JPOXMLDOC01-appb-C000016

 式(2-2)中、
 Rは炭素数10~22の脂肪族炭化水素基であり、
 Rは炭素数10~22の脂肪族炭化水素基であり、
 Tは、下記一般式(T2)または一般式(T2)で表される基であり、
Figure JPOXMLDOC01-appb-C000017

  式(T2)および式(T3)中、
  XおよびXは、相異なって、水素原子または-(CH-NHC(=NH)NHであり、
  XおよびXは、相異なって、水素原子またはカルボキシル基であり、
  nは4~12の整数である。
 本発明の一般式(1)、(1-2)、(2-2)、または(2)で表される化合物(リン脂質誘導体(A)は、以下に記載する方法により製造することができる。但し、本発明の化合物の製造方法は、これらに限定されるものではない。
製造方法A
 製造方法Aは、一般式(1)で表される化合物の製造方法であり、製造方法Aは以下のスキームに記載するとおりである。
Figure JPOXMLDOC01-appb-C000018

(上記スキームにおける各式中、R、R、Z、ZおよびZは一般式(1)について上述したものと同義である。)
[工程A1]
 工程A1は、溶剤中、化合物(a-1)を塩基、および縮合剤存在下にて反応することにより、化合物(a-2)を製造する工程である。
 工程A1は、Chemistry and Industry (London, United Kingdom) 367-377 (1960)、特開2005-247751号公報などに記載された、一般に用いられている方法により行うことができる。また、工程A1は、より具体的には、後述の製造例2、4、6に記載された反応条件、反応後操作、精製方法などを参考にして行うことができる。
 工程A1は、窒素、アルゴンなどの不活性気体の気流下または雰囲気下でも行うことができる。
 化合物(a-1)としては、公知の化合物、購入可能な化合物、または購入可能な化合物から当業者が通常行う方法により容易に製造することができる化合物、特開2005-247751号公報などに記載された方法により合成できる化合物、下記製造方法B、製造例1、3、5により製造することができる化合物を用いることができる。
 工程A1に用いる溶剤としては、出発原料をある程度溶解するものであり、かつ、反応を阻害しないものであれば、特に制限はないが、例えば、クロロホルム、ジクロロエタンなどのハロゲン化炭化水素系溶剤、テトラハイドロフラン、1,2-ジメトキシエタン、メチル-t-ブチルエーテル、シクロペンチルメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジシクロペンチルエーテルなどのエーテル系溶剤、ベンゼン、トルエンなどの芳香族炭化水素系溶剤、ピリジン、トリエチルアミン、トリプロピルアミン、1-メチルイミダゾール、1,2-ジメチルイミダゾールなどの常温、常圧下で液状である塩基性有機化合物またはこれらの混合溶剤等を用いることができ、好適には、ピリジン、トリエチルアミン、トリプロピルアミン、1-メチルイミダゾール、1,2-ジメチルイミダゾールなどの常温、常圧下で液状である塩基性有機化合物であり、より好適には、水分含量が50ppm以下のピリジン(無水ピリジン)である。
 工程A1における塩基とは、ピリジン、トリエチルアミン、トリプロピルアミン、1-メチルイミダゾール、1,2-ジメチルイミダゾールなどがあげられ、好適には、ピリジンであり、より好適には、水分含量が50ppm以下のピリジン(無水ピリジン)である。塩基は、化合物(a-1)に対して2~10倍モルの量を用いることができる。
 工程A1における縮合剤とは、1,3,5-トリイソプロピルベンゼンスルフォニルクロライド、2,4,6-トリイソプロピルベンゼンスルフォニルクロライド、2,4,6-トリメチルベンゼンスルフォニルクロライド、塩化ニトロシルなどがあげられ、好適には、1,3,5-トリイソプロピルベンゼンスルフォニルクロライドである。縮合剤は、化合物(a-1)に対して3~15倍モルの量を用いることができる。
 工程A1における反応温度は、通常、出発原料、溶剤、その他反応に用いる試薬によって異なるが、好適には、10℃~30℃(反応容器中の内温)である。
 反応時間は、通常、出発原料、溶剤、その他反応に用いる試薬、反応温度によって異なるが、好適には、試薬を加えた後、上記反応温度にて30分~3時間撹拌するのが好適である。
[工程A2]
 工程A2は、溶剤中、化合物(a-2)と化合物(a-3)とを反応することにより、本発明の一般式(1)で表される化合物を製造する工程である。
 工程A2は、より具体的には、後述の実施例1等に記載された反応条件、反応後操作、精製方法などを参考にして行うことができる。本反応は、窒素、アルゴンなどの不活性気体の気流下または雰囲気下でも行うことができる。
 化合物(a-3)としては式
Figure JPOXMLDOC01-appb-C000019

で表される公知の化合物、購入可能な化合物、または購入可能な化合物から当業者が通常行う方法により容易に製造することができる化合物等を用いることができる。
 化合物(a-3)は、化合物(a-2)に対して1~6倍モルの量を用いることができる。
 工程A2に用いる溶剤としては、出発原料をある程度溶解するものであり、かつ、反応を阻害しないものであれば、特に制限はないが、例えば、ピリジン、トリエチルアミン、トリプロピルアミン、1-メチルイミダゾール、1,2-ジメチルイミダゾールなどがあげられ、好適には、ピリジンであり、より好適には、水分含量が50ppm以下のピリジン(無水ピリジン)である。
 工程A2における反応温度は、通常、出発原料、溶剤、その他反応に用いる試薬によって異なり、好適には、0℃~40℃(反応容器中の内温)であり、より好適には、20℃~30℃(反応容器中の内温)である。
 反応時間は、通常、出発原料、溶剤、その他反応に用いる試薬、反応温度によって異なり、好適には、試薬を加えた後、上記反応温度にて1時間~2日間撹拌するのが好適であり、約6時間撹拌するのがより好適である。
製造方法B
 製造方法Bは、化合物(a-1)の製造方法例であり、製造方法Bは下記のスキームに示すとおりである。
Figure JPOXMLDOC01-appb-C000020

(上記スキームにおける各式中、RおよびRは一般式(1)について上述したものと同義である。)
[工程B1]
 工程B1は、溶剤中、塩基存在下、化合物(b-1)と化合物(b-2)(オキシ塩化リン)とを反応することにより、化合物(b-3)を製造する工程である。
 工程B1は、Biochemistry, 13, 2754 (1974) 、Biochim. Biophys. Acta, 553, 476 (1979)、第4版 実験化学講座 22 有機合成IV p.313-368などに記載された、一般に用いられている方法により行うことができる。
 工程B1は、窒素、アルゴンなどの不活性気体の気流下または雰囲気下でも行うことができる。
 化合物(b-1)としてはラウリルアルコール、ミリスチルアルコール、セチルアルコール、1-オクタデカノール、1-エイコサノール、オレイルアルコール(Oleyl alcohol)などの公知の化合物、購入可能な化合物、または購入可能な化合物から当業者が通常行う方法により容易に製造することができる化合物を用いることができる。
 工程B1に用いる溶剤としては、出発原料をある程度溶解するものであり、かつ、反応を阻害しないものであれば、特に制限はないが、例えば、テトラハイドロフラン、ジオキサン、アセトニトリル、ピリジン、ニトロメタン、ジクロロメタン、アセトン、クロロホルム、ジメチルホルムアミド、トリメチルリン酸((MeO)P=O))、トリエチルリン酸((EtO)P=O))、またはこれら溶剤に水、メタノール、エタノールまたはt-ブタノールを加えた混合溶剤等を用いることができる。
 工程B1における塩基とは、トリエチルアミン、ピリジンなどを意味する。
 工程B1における反応温度は、通常、出発原料、溶剤、その他反応に用いる試薬によって異なるが、好適には、-10℃~40℃(反応容器中の内温)である。
 反応時間は、通常、出発原料、溶剤、その他反応に用いる試薬、反応温度によって異なり、好適には、試薬を加えた後、上記反応温度にて10分~6時間撹拌するのが好適であり、約30分間撹拌するのがより好適である。
 上記のように、化合物(b-1)と化合物(b-2)(オキシ塩化リン)との反応後、反応液中に氷水、または冷却した塩基性水溶液(炭酸水素ナトリウム水溶液、エチレンジアミン四酢酸水溶液など)を滴下、もしくは氷水、または冷却した塩基性水溶液(炭酸水素ナトリウム水溶液、エチレンジアミン四酢酸水溶液など)中へ反応液を滴下し、適宜撹拌する。さらにこの反応液は必要に応じて、適切なpH調整溶液を加える。
[工程B2]
 工程B2は、溶剤中、縮合剤(b-5)存在下、化合物(b-3)と化合物(b-4)とを反応することにより、化合物(a-1)を製造する工程である。
 本工程は、Biochemistry, 8, 3067 (1969)、Chem. Ber., 94, 996 (1961)、Chem. Ber., 98, 3286 (1965)、J. Chem. Soc., Chem. Commun., 1974, 997、Tetrahedron Lett., 1973, 1353、Ann., 692, 22 (1966)、Angew. Chem., 73, 220 (1961)、第4版 実験化学講座 22 有機合成IV p.368-446に記載された、一般に用いられている方法により行うことができる。
 工程B2は、窒素、アルゴンなどの不活性気体の気流下または雰囲気下でも行うことができる。
 化合物(b-4)として使用できる化合物は、上記化合物(b-1)と同様である。
 工程B2に用いる溶剤としては、出発原料をある程度溶解するものであり、かつ、反応を阻害しないものであれば、特に制限はないが、縮合剤(b-5)によって適宜選択するが例えば、ピリジン、ピリジンとジメチルホルムアミドの混合溶媒などを用いることができる。
 工程B2における縮合剤(b-5)とは、1,3,5-トリイソプロピルベンゼンスルフォニルクロライド、2,4,6-トリイソプロピルベンゼンスルフォニルクロライド、2,4,6-トリメチルベンゼンスルフォニルクロライド、ジシクロヘキシルカルボジイミド、トリクロロアセトニトリル、シアン酸p-トリル、イソシアン化シクロヘキシル、p-トルエンスルホン酸イミダゾリド、メシチレンスルホン酸イミダゾリド、2,4,6-トリイソプロピルベンゼンスルホン酸イミダゾリド、α-ブロモ-α-シアノアセトアミドとトリフェニルホスフィンから生成するホスホニウム塩、塩化シアヌルなどがあげられる。
 工程B2における反応温度は、通常、出発原料、溶剤、その他反応に用いる試薬によって異なるが、0℃~100℃(反応容器中の内温)である。
 反応時間は、通常、出発原料、溶剤、その他反応に用いる試薬、反応温度によって異なるが、好適には、試薬を加えた後、上記反応温度にて30分~24時間撹拌するのが好適である。
[工程B3]
 工程B3は、溶剤中、化合物(b-1)と化合物(b-2)(オキシ塩化リン)とを反応することにより、化合物(a-1)(RとRが同一の基である場合の化合物)を製造する工程である。
 工程B3の反応条件としては、製造方法Bの工程B1記載の反応条件を参考に、また、本工程は、より具体的には、後述の製造例1,3,5と同様な反応条件、反応後操作、精製方法条件、操作方法を適用することができる。
製造方法X
 製造方法Xは、一般式(2)で表される化合物の製造方法であり、製造方法Xは下記のスキームに示すとおりである。
Figure JPOXMLDOC01-appb-C000021
(上記スキームにおける各式中、R、R、Y、Y、T、X、X、X、Xおよびnは一般式(2)について上述したものと同義であり、Tは下記式(T5)および(T6)で表される基である。)
Figure JPOXMLDOC01-appb-C000022
[工程X1]
 工程X1は、溶剤中、塩基存在下、化合物(x-1)と化合物(x-2)(N-スクシニミジル-3-(2-ピリジルジチオ)プロピオネート(SPDP)または、N-(4-マレイミドブチロキシ)スクシンイミド)とを反応することにより、化合物(x-3)を製造する工程である。
 工程X1は、より具体的には、後述の製造例7,8に記載された反応条件、反応後操作、精製方法などを参考にして行うことができる。
 工程X1は、窒素、アルゴンなどの不活性気体の気流下または雰囲気下でも行うことができる。
 化合物(x-1)としては、特開2005-247751号公報などに記載の公知の化合物、購入可能な化合物、または購入可能な化合物から当業者が通常行う方法により容易に製造することができる化合物、下記製造方法Yにより製造することができる化合物を用いることができる。
 工程X1に用いる溶剤としては、出発原料をある程度溶解するものであり、かつ、反応を阻害しないものであれば、特に制限はないが、例えば、クロロホルム、塩化メチレンなどのハロゲン化炭化水素系溶剤等を用いることができる。
 工程X1における塩基とは、トリエチルアミン、ジイソプロピルエチルアミンなどを使用することができる。
 工程X1における反応温度は、通常、出発原料、溶剤、その他反応に用いる試薬によって異なり、好適には、20℃~50℃(反応容器中の内温)である。
 反応時間は、通常、出発原料、溶剤、その他反応に用いる試薬、反応温度によって異なり、一般的には、試薬を加えた後、上記反応温度にて1~40時間撹拌する。
[工程X2]
 工程X2は、溶剤中、化合物(x-3)と化合物(x-4)とを反応することにより、一般式(2)で表される化合物を製造する工程である。
 工程X2は、より具体的には、後述の実施例5,6に記載された反応条件、反応後操作、精製方法などを参考にして行うことができる。
 工程X2は、窒素、アルゴンなどの不活性気体の気流下または雰囲気下でも行うことができる。
 化合物(x-4)としては、Arg-Arg-Arg-Arg-Arg-Cys(左側がN末端を表す。)などの、購入可能なペプチド、または購入可能な化合物から当業者が通常行う方法により容易に製造することができる化合物を用いることができる。
 工程X2に用いる溶剤としては、出発原料をある程度溶解するものであり、かつ、反応を阻害しないものであれば、特に制限はないが、例えば、メタノール、エタノール、プロパノールなどのなどのアルコール系溶剤、クロロホルム、塩化メチレンなどのハロゲン化炭化水素系溶剤等、水またはこれらの混合溶剤等を用いることができ、好適には、クロロホルム、メタノールおよび水の混合溶液であり、好適にはクロロホルム、メタノールおよび水(約13/6/1(容積比))の混合溶媒である。
 工程X2における反応温度は、通常、出発原料、溶剤、その他反応に用いる試薬によって異なり、好適には、0℃~40℃(反応容器中の内温)である。
 反応時間は、通常、出発原料、溶剤、その他反応に用いる試薬、反応温度によって異なり、好適には、試薬を加えた後、上記反応温度にて1~24時間撹拌するのが一般的である。
製造方法Y
 製造方法Yは、上記製造方法Xにおける原料である、化合物(x-1)の製造方法であり、製造方法Yは下記のスキームに示すとおりである。
Figure JPOXMLDOC01-appb-C000023

(上記スキームにおける各式中、R、R、YおよびYは一般式(2)で上述したものと同義である。)
[工程Y1]
 工程Y1は、溶剤中、化合物(y-1)と化合物(y-2)(オキシ塩化リン)とを反応することにより、化合物(y-3)を製造する工程である。
 化合物(y-1)としては公知の化合物、購入可能な化合物、または購入可能な化合物から当業者が通常行う方法により容易に製造することができる化合物を用いることができる。
 工程Y1の反応条件としては、前記製造方法Bの工程B1と同様な条件、操作方法を適用することができる。
[工程Y2]
 工程Y2は、溶剤中、縮合剤(y-5)存在下、化合物(y-3)と化合物(y-4)とを反応することにより、化合物(x-1)を製造する工程である。
 工程Y2の反応条件としては、前記製造方法Bの工程B2と同様な条件、操作方法を適用することができる。
 一般式(1-2)で表される化合物または一般式(2-2)で表される化合物は上記製造方法記載の反応工程、反応条件、原料を適宜組み合わせ実施することにより製造することができ、さらに反応条件等は適宜変更してもよい。
 以上が本発明にかかるリン脂質化合物(A)の製造方法の代表例であるが、原料化合物・各種試薬は、塩や水和物あるいは溶媒和物を形成していてもよく、いずれも出発原料、使用する溶剤等により異なり、また反応を阻害しない限りにおいて特に限定されない。用いる溶剤についても、出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないことは言うまでもない。本発明に係る化合物がフリー体として得られる場合、前記の化合物が形成していてもよい塩またはそれらの水和物の状態に常法に従って変換することができる。
 特に、反応混合物に含まれる目的化合物以外のものが次工程の反応を阻害しない場合、特に目的化合物を単離することなく、反応混合物のまま、次の工程に使用することもできる。
 上記各方法において、各工程の反応終了後、各工程の目的化合物は常法に従い、反応混合物から採取することができる。
 例えば、反応混合物全体が液体の場合、反応混合物を所望により室温に戻すか、氷冷し、適宜、酸、アルカリ、酸化剤または還元剤を中和し、水と酢酸エチルのような混和せずかつ目的化合物と反応しない有機溶剤を加え、目的化合物を含む層を分離する。次に、得られた層と混和せず目的化合物と反応しない溶剤を加え、目的化合物を含む層を洗浄し、当該層を分離する。加えて、当該層が有機層であれば、無水硫酸マグネシウムまたは無水硫酸ナトリウム等の乾燥剤を用いて乾燥し、溶剤を留去することにより、目的化合物を採取することができる。また、当該層が水層であれば、電気的に脱塩した後、凍結乾燥することにより、目的化合物を採取することができる。
 上記方法で採取した目的化合物の純度を向上させるため、適宜、再結晶法、各種クロマトグラフィー法(順相カラムクロマトグラフィー、逆相カラムクロマトグラフィー、薄層クロマトグラフィーなどを含む)、蒸留法を実施することができる。
 上記製造方法および下記実施例記載の条件、操作方法に基づき、R、Rを導入するための原料(上記製造方法中の化合物化合物(b-1)、化合物(b-4)、化合物(c-1)、化合物(c-4)など)として、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、1-オクタデカノール、1-エイコサノール、オレイルアルコール(Oleyl alcohol)を用い、ポリアミン部位を導入するための原料(上記製造方法中の化合物(a-3)など)として下記式(amine-1~amine-8)等を用い、以下の表1に記載の化合物を合成することができる。
Figure JPOXMLDOC01-appb-C000024
Amine-1
[Chemical Name] Dipropylenetriamine、[CAS.No.]56-18-8  
Amine-2
[Chemical Name] Diethylenetriamine、[CAS.No.]111-40-40
Amine-3
[Chemical Name] Triethylenetetramine、[CAS.No.]112-24-3
Amine-4
[Chemical Name] Tetraethylenepentamine、[CAS.No.]112-57-2  
Amine-5
[Chemical Name] Pentaethylenehexamine、[CAS.No.]4067-16-7  
Amine-6
[Chemical Name] N,N'-Bis(3-aminopropyl)-1,2-ethylenediamine、[CAS.No.]10563-26-5  
Amine-7
[Chemical Name] N,N'-Bis(2-aminoethyl)-1,3-propanediamine、[CAS.No.]:4741-99-5  
Amine-8
[Chemical Name] 3,6,9,12,15-Pentaazaheptadecane-1,17-Diamine、[CAS.No.]4403-32-1  
Figure JPOXMLDOC01-appb-T000025

Figure JPOXMLDOC01-appb-T000026
[脂質膜構造体の調製方法]
 リン脂質誘導体(A)を含有する脂質膜構造体の製造方法は特に限定されないが、例えば以下のように製造することができる。
I)リン脂質誘導体(A)を含有するリポソームの製造法 
 リン脂質誘導体(A)、ホスファチジルコリン、スフィンゴミエリン、ホスファチジルエタノールアミン等のリン脂質誘導体(A)以外のリン脂質、糖脂質、およびジアルキル型合成界面活性剤等の膜成分物質を用いて公知の方法[アニュアル,レビュー,オブ,バイオフィジックス,アンド,バイオエンジニアリング 9,467~508(1980)]に従いリポソームの水分散液を調製する。かかるリポソームは膜安定化剤としてコレステロールおよびコレスタノール等のステロール類、ジアルキルホスフェート、ジアシルホスファチジン酸、およびステアリルアミン等の荷電物質、ならびにα-トコフェロール等の酸化防止剤等を含んでいてもよい。調製したリポソームの水分散液に、リン脂質誘導体(A)の水溶液を加えて一定時間放置,好ましくは膜の相転移温度以上もしくは40℃以上に加温し,次いで放冷することにより目的とするリン脂質誘導体(A)を含有するリポソームを製造することができる。
 前記膜成分物質とリン脂質誘導体(A)をあらかじめ混合し,これを公知のリポソームの製造法に従って処理することによっても目的のリポソームを製造することができる。
 本発明のリポソームは、以下に記載の一般的な方法、条件を適用し、調製することができる。
(1)「リポソーム」野島庄七ほか編 南江堂(1988) p.26 
(2)「生体膜実験法(下)」共立(1974) p.185、
(3)「第4版 実験化学講座 27 生物有機」p.92-104、
(4)「第4版 実験化学講座 13 表面・界面」p.92-104、
(5)F. Szoka and D.Papahadjopoulos, “Liposomes: from physical structure to therapeutic applications” ,ed. By C.G. Knight, Elsevier/ North-Holland (1981), Chap. 3)、
(6)ライフサイエンスにおけるリポソーム 寺田 弘ら編著、シュプリンガー・フェアラーク東京
 また、本発明のリポソームは、例えば、超音波分散法(直接分散法、キャスト薄膜化法)、熱分散法、注入法、コール酸(界面活性化剤)法(Proc. Natl. Acad. Sci. U.S.A., 76, 145 (1979)、凍結-融解法(Arch. Biochim. Biophys., 212, 186 (1981))、逆相蒸発法(Proc. Natl. Acad. Sci. U.S.A., 75, 4195 (1978))、巨大リポソーム調製法(Biochim. Biophys. Acta, 443,629 (1976))、垂直浸漬法(LB法)(「表面」、26 295 (1988) 下村 政嗣、「油化学」, 39, 141 (1990))、水平付着法、ポリイオンコンプレックス化法、DNAのリポソーム内水相への封入方法(Gene Ther 6, 271-281, 1999)などを用いてリポソームを調製することができる。
 遺伝子または核酸をさらに保持する脂質膜構造体の調製方法としては、以下の方法をあげることができる。
(i)空のカチオニックリポソームをまず調製し、これと遺伝子水溶液あるいは核酸水溶液とを単純に混合する「コンプレックス法」、および
(ii)種々の工夫により、より多くの遺伝子や核酸等をリポソームの内水相に封入し、リポソーム外にはフリーのカチオン基を残しておく「封入タイプ」による方法
 後者の方法としては以下の方法が例示される(例えば、WO2005-032593(実施例1,2)、特開2007-166946(実施例1)、Journal of Biological Chemistry 281. 6. (2006) 3544-3551で開示されている方法)。
(ii-1)凍結乾燥した空カチオニックリポソームに直接、遺伝子水溶液や核酸水溶液を添加する方法
(ii-2)ポリリジンやプロタミンなどのポリカチオニックペプチド、あるいは遺伝子・核酸導入用のカチオニック脂質(リン脂質誘導体(A)を含む)などのカチオニック分子を用いて遺伝子や核酸との複合体を形成させたのち,カチオニック脂質を含まないリポソーム膜で遺伝子または核酸封入リポソームを調製し、最後にカチオニック脂質水溶液を添加して、リポソーム粒子の外側だけにカチオニック基を露出させる方法
(ii-3)遺伝子や核酸の封入効率は無視してカチオニック脂質を含まないリポソーム膜で遺伝子あるいは核酸封入リポソームをまず調製し、未封入の遺伝子や核酸を常法により除去したのち最後にカチオニック脂質水溶液を添加して、リポソーム粒子の外側だけにカチオニック基を露出させる方法
 本発明のリポソームは、具体的には、例えば後述の実施例記載の方法のほかに、以下の方法により調製することができる。
リポソームの作製手法例(1)
 ポリカチオン部位を表面に有するリポソームを水和法により調製する。
 リン脂質誘導体(A) 約0.75mgをエタノール 約9.0mLに溶解させる。
 卵黄ホスファチジルコリン 約5.02mg及びコレステロール 約1.1mgをクロロホルム 約21mLに溶解させる。次に両溶解液を混合し、丸底フラスコに収容する(最終クロロホルム:エタノール比=7:3)。引き続き回転エバポレーターにより溶媒を除去した後、デシケーター内に2時間収納して乾燥させる。
 得られた脂質膜(10μモル)を、予め50℃まで温めておいた1mL リン酸緩衝化生理食塩水を用いて水和させ、5秒間攪拌する。脂質分散液を、孔径400nm、200nm又は100nmのメンブレンフィルターにそれぞれ11回ずつ通過させ、リポソームの表面にポリカチオン部位(総脂質の5モル%)を有するリポソームを調製することができる。これにより、上記(a)〔コンプレックス法〕のための空のカチオニックリポソームが調製できる。
リポソームの作製手法例(2)
 プラスミド遺伝子約8μg及びカチオン分子(リン脂質誘導体(A)、ポリリジンまたは硫酸プロタミン) 約16μgを10mM HEPESバッファー中で攪拌して混合し、プラスミド遺伝子とリン脂質誘導体(A)、ポリリジンまたは硫酸プロタミンとの複合体を調製する。
 別に、ジオレオイルホスファチジルエタノールアミン 約0.672mg及びコレステロールコハク酸 約0.096mgをクロロホルム 約1mLに溶解させて得られた溶解液のうち125μLをガラス試験管に分取し、窒素ガスを吹き付けて蒸発乾固させ、脂質膜を形成させる。
 上記複合体含有液250μLを脂質膜に添加し、室温で10分間放置することによって水和させる。水和後、超音波槽で超音波処理(数秒間)し、上記複合体が封入されたリポソームを調製する。
 このリポソームの外液に1mg/mL リン脂質誘導体(A)溶液 約12μLを添加し、室温で30分間放置することにより、リポソームの表面にポリカチオン部位(総脂質の5モル%)を有するリポソームを調製することができる。これにより、上記(ii)〔封入タイプ〕(ii-2)のリポソームが調製できる。
II)リン脂質誘導体(A)を含有するミセルの製造法 
 ポリオキシエチレンソルビタン脂肪酸エステル(Tween)、脂肪酸ナトリウムおよびポリオキシエチレン等のミセル形成界面物質を、ミセル形成臨界濃度以上の濃度で水に加え,ミセルの水分散液を調製する。調製したミセルの水分散液にリン脂質誘導体(A)の水溶液を加え一定時間放置、好ましくは40℃以上に加温し、次いで放冷することにより目的とするリン脂質誘導体(A)を含有するミセルを製造することができる。
 また、ミセル形成物質とリン脂質誘導体(A)をあらかじめ混合し、次いで公知のミセルの製造法に従って処理することによっても目的のミセルを製造することができる。
III)リン脂質誘導体(A)を含有するマイクロエマルションの製造法 
 前記II)に従って製造したリン脂質誘導体(A)を含有するミセルに大豆油等の油脂を加えてミセル内を飽和させ、不可逆的な油層分離が生じない程度まで油相を増加させることにより目的とするリン脂質誘導体(A)を含有するマイクロエマルションを製造することができる。
 また、公知の方法に従って調製したマイクロエマルションにリン脂質誘導体(A)の水溶液を加え、一定時間放置,好ましくは40℃以上に加温し、次いで放冷することによっても目的のマイクロエマルションを製造することができる。
 以上のような脂質膜構造体の製造法において全脂質成分に対する、本発明のリン脂質誘導体(A)の割合を変化させることにより生成する脂質膜構造体の種類を変化させることができる。
 遺伝子や核酸等を含む脂質膜構造体(以下、本発明組成物と記載する場合がある。)を用いれば、イン・ビトロ及びイン・ビボのいずれにおいても細胞内に遺伝子または核酸を効率良く導入することができる。すなわち、イン・ビトロの場合には、標的細胞を含む懸濁液に本発明組成物を添加したり、本発明組成物を含有する培地で標的細胞を培養する等の手段により、当該標的細胞に遺伝子や核酸を導入できる。また、イン・ビボの場合には、本発明組成物を宿主に投与すればよい。投与手段としては、経口投与でも、非経口投与でもよく、経口投与の剤形としては、通常知られているものでよく、例えば、錠剤、散剤、顆粒剤等を挙げることができ、非経口投与の剤形としては、通常知られているものでよく、例えば、注射剤、点眼剤、軟膏剤、坐剤等を挙げることができる。好ましくは、非経口投与である。中でも、注射剤が好ましく、投与方法としては、静脈注射などの全身注射、あるいは標的とする細胞や臓器に対しての局所注射が好ましい。
 本発明の脂質膜構造体に適用される化合物としては特に限定されないが、脂溶性の非常に低い薬物、分子量の大きい生理活性ペプチド類、蛋白質類などの細胞内に導入されにくい薬物、遺伝子・核酸等に適用できるが、特に遺伝子・核酸への適用が考えられる。
 この遺伝子としては、DNA及びRNAのいずれでもよく、特に形質転換等のイン・ビトロにおける導入用遺伝子、イン・ビボで発現することにより作用する遺伝子、例えばプラスミドDNAなどの遺伝子治療用遺伝子、実験動物や家畜等の産業用動物の品種改良、再生医療に用いるためのiPS細胞(induced pluripotent stem cells、人工多能性幹細胞)の作成のために用いられる遺伝子等が好ましい。ここで、ある種の酵素等をコードする遺伝子を用いた場合には、さらに該酵素の作用により薬理作用を発揮する物質を併用することもできる。例えば、本願発明組成物を用いて、チミジンキナーゼ遺伝子をあらかじめ、生体(腫瘍)内で発現させ、次いでガンアシクロビルを投与することで、腫瘍の治療を行うことができる。
 核酸としては、アンチセンスDNAやアンチセンスRNAなどのアンチセンス医薬、デコイオリゴ核酸などのデコイオリゴ医薬、あるいはmiRNA、shRNA、siRNAなどのRNAi医薬、Antagomir、RNAa(ゲノム上にある遺伝子のプロモータ部位に相同配列を持つ2重鎖RNA分子)などをあげることができる。
 本発明の脂質膜構造体の使用量は特に制限されず、遺伝子・核酸等を細胞内に導入するに充分な量であればよいが、かかる使用量としては、遺伝子等1重量部に対し、0.1~100重量部とするのが好ましく、0.5~50重量部とするのがより好ましい。
 以下、本発明をより具体的にするため、実施例等を挙げるが、本発明がこれらの実施例に限定されるというものではない。
 本発明のリン脂質誘導体(A)は、例えば、以下の実施例に記載した方法により製造することができ、また、リン脂質誘導体(A)の効果は、以下の試験例に記載した方法により確認することができる。ただし、これらは例示的なものであって、本発明は、如何なる場合も以下の具体例に制限されるものではなく、また本発明の範囲を逸脱しない範囲で変化させてもよい。
 文献名等が記載されている化合物は、その文献等に従って製造したことを示す。
 H-NMR測定スペクトルの以下の略号は下記の意味で用いた。
s : シングレット(singlet)
d : ダブレット(doublet)
t : トリプレット(triplet)
q : クァルテット(quartet)
m : マルチプレット(multiplet)
br : ブロード(broad)
br,s : ブロード シングレット(broad singlet)
製造例1
ジラウリルホスフェートの合成
Figure JPOXMLDOC01-appb-C000027

 ラウリルアルコール(15.227g、81.7mmol)とベンゼン(50ml)の混合物に、80℃(溶媒還流温度)にて、オキシ塩化リン(2.5ml、26.8mmol)を滴下し、さらに21時間攪拌した。反応溶液中の溶媒を減圧下で留去し、得られた残渣にヘキサン(10ml)を加え一晩冷却した。生じた析出物を濾過し、標記化合物を得た(白色粉末、4.12g、9.5mmol、収率:35%)。
H-NMR(ppm)δ:0.87-0.89(t,6H),1.26-1.37(br,s,36H),1.65-1.70(m,4H),4.00-4.06(m,4H),6.73(br,s,1H)
13C-NMR(ppm)δ:14.11,22.69,25.43,29.17,29.35,29.53,29.59,29.64,29.66,30.15,31.92,67.68,67.72
31P-NMR(ppm)δ:2.13
SIMS質量分析:
 実測値;435.6
 理論値;435.6(C24H52O4P)+に対して
製造例2
ジラウリルホスフェート無水物の合成
Figure JPOXMLDOC01-appb-C000028

 ジラウリルホスフェート101mg(0.23mmol)と無水ピリジン(0.8ml)の混合物に、1,3,5-トリイソプロピルベンゼンスルホニルクロライド(345mg、1.15mmol)を加えた。反応容器内を窒素置換し、混合物を室温で3時間撹拌した。混合物中の溶媒を減圧下で留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:クロロホルム)により精製し、標記化合物を得た(77.2mg、0.09mmol、収率:78%)。
H-NMR(ppm)δ:0.88(t,12H),1.26(br,64H),1.37(m,8H),1.70(m,8H),4.0-4.2(m,8H)
13C-NMR(ppm)δ:14.11,22.68,25.36,29.15,29.35,29.53,29.59,29.64,29.66,30.14,31.91,69.12
31P-NMR(ppm)δ:-12.22,-12.20
MALDI-TOF質量分析:
 実測値;852.03
 理論値;852.23(C48H101O7P2)+に対して
製造例3
ジミリスチルホスフェートの合成
Figure JPOXMLDOC01-appb-C000029

 ミリスチルアルコール(17.25g、80.46mmol)とベンゼン(50ml)の混合物に、80℃(溶媒還流温度)にて、オキシ塩化リン(2.5ml、26.8mmol)を滴下し、さらに20時間攪拌した。反応溶液中の溶媒を減圧下で留去し、得られた残渣にヘキサン(10ml)を加え一晩冷却した。生じた析出物を濾過して、標記化合物を得た(白色粉末、1.56g、3.2mmol、収率:12%)
H-NMR(ppm)δ:0.87-0.89(t,6H),1.25-1.37(br,s,44H),1.63-1.72(m,4H),4.00-4.06(m,4H),7.09(br,s,1H)
13C-NMR(ppm)δ:14.12,22.69,25.43,29.18,29.37,29.54,29.60,29.67,29.69,29.70,30.14,30.19,31.92,67.75,67.79
31P-NMR(ppm)δ:1.98
SIMS質量分析:
 実測値;491.80
 理論値;491.73(C28H60O4P)+に対して
製造例4
ジミリスチルホスフェート無水物の合成
Figure JPOXMLDOC01-appb-C000030

 ジミリスチルホスフェート(100mg、0.204mmol)と無水ピリジン(0.7ml)の混合物に、1,3,5-トリイソプロピルベンゼンスルフォニルクロライド(309mg、1.02mmol)を加えた。反応容器内を窒素置換し、混合物を室温で2.5時間撹拌した。混合物中の溶媒を減圧下で留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:クロロホルム)により精製し、標記化合物を得た(73mg、0.09mmol、収率:75%)。
H-NMR(ppm)δ:0.88(t,12H),1.25(br,80H),1.37(m,8H),1.70(m,8H),4.00-4.20(m,8H)
13C-NMR(ppm)δ:14.11,22.68,25.36,29.15,29.36,29.54,29.60,29.67,29.69,29.70,30.14,31.92,69.12
31P-NMR(ppm)δ:-12.22
MALDI-TOF質量分析:
 実測値;986.12
 理論値;986.42(C56H116O7P2Na)+に対して
製造例5
ジセチルホスフェートの合成
Figure JPOXMLDOC01-appb-C000031

 セチルアルコール(19.50g、80.4mmol)とベンゼン(100ml)の混合物に、80℃(溶媒還流温度)にて、オキシ塩化リン(2.5ml、26.8mmol)を滴下し、さらに12時間攪拌した。反応溶液中の溶媒を減圧下で留去し、得られた残渣にベンゼン(50ml)を加え一晩冷却した。生じた析出物を濾過して、標記化合物を得た(白色粉末、1.64g、3.0mmol、収率:11%)。
H-NMR(ppm)δ:0.87-0.89(t,6H),1.25-1.37(br,s,52H),1.65-1.72(m,4H),4.00-4.06(m4H),7.05(br,s,1H)
13C-NMR(ppm)δ:14.11,22.69,25.44,29.18,29.36,29.54,29.61,29.66,29.67,29.70,29.71,30.16,30.21,31.93,67.69,67.73
31P-NMR(ppm)δ:2.15
SIMS質量分析:
 実測値;547.85
 理論値;547.83(C32H68O4P)+に対して
製造例6
ジセチルホスフェート無水物の合成
Figure JPOXMLDOC01-appb-C000032

 ジセチルホスフェート50mg(90μmol)と無水ピリジン(1ml)の混合物に1,3,5-トリイソプロピルベンゼンスルフォニルクロライド277mg(0.91mmol)を加えた。反応容器内を窒素置換し、混合物を室温で3時間撹拌した。混合物中の溶媒を減圧下で留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:クロロホルム)により精製し、標記化合物を得た(44.3mg、41μmol、収率:90%)。
元素分析:
 実測値;C71.49,H12.32
 理論値;C71.46,H12.37(C64H132O7P2)
H-NMR(ppm)δ:0.88(t,12H),1.25(br,96H),1.37(m,8H),1.70(m,8H),4.00-4.20(m,8H)
13C-NMR(ppm)δ:14.01,22.68,25.36,25.45,29.16,29.36,29.54,29.60,29.66,29.71,30.31,31.92,67.67,69.12
31P-NMR(ppm)δ:-12.27,-0.13
SIMS質量分析:
 実測値;1075.4
 理論値;1075.9(C64H133O7P2)+に対して
製造例7
N-[3-(2-ピリジルチオ)プロピオニル]-1,2-ジパルミトイル-sn-グリセロ-ホスホエタノールアミンの合成
Figure JPOXMLDOC01-appb-C000033

 N-スクシニミジル-3-(2-ピリジルジチオ)プロピオネート(SPDP:N-succinimidyl 3-(2-pyridyldithio)propionate、21.9mg,0.0701mmol)とクロロホルム(0.5ml)の混合物を、フラスコ内をアルゴン置換した後、クロロホルム(2ml)と1,2-ジパルミトイル-sn-グリセロ-ホスホエタノールアミン(DPPE:40.7mg,0.0588mmol)の混合物、およびトリエチルアミン(0.01ml)を添加した。混合物を、アルゴン雰囲気下40℃で21時間撹拌した。反応溶液中の溶媒を減圧下で留去した。得られた残渣を分取用薄層クロマトグラフィー(溶離液:クロロホルム/メタノール/水=13/6/1、Rf=約0.6-0.7の区分を単離)にて精製し、標記化合物を得た(46mg、0.052mmol、収率:88%)。
H-NMR(ppm)δ:0.85-0.90(t,6H),1.08-1.32(br,48H),1.52-1.55(m,4H),2.23-2.30(m,4H),2.63-2.67(br,2H),3.01-3.08(br,2H),3.46(s,2H),3.88-3.92(br,s,4H),4.11-4.17(m,1H),4.36(d,1H),5.22(s,1H),7.05(m,1H),7.62(m,2H),7.81(br,s,1H),8.42(m,1H)
MALDI-TOF質量分析:
 実測値;933.5
 理論値;933.5(C45H80O9N2PS2Na2)+に対して
製造例8
N-(4-マレイミドブチロキシ)-1,2-ジパルミトイル-sn-グリセロ-ホスホエタノールアミンの合成
Figure JPOXMLDOC01-appb-C000034

 N-(4-マレイミドブチロキシ)スクシンイミド(9.7mg,0.0347mmol)とクロロホルム(0.5ml)の混合物に、フラスコ内をアルゴン置換した後、クロロホルム(2ml)と1,2-ジパルミトイル-sn-グリセロ-ホスホエタノールアミン(DPPE:20mg,0.0289mmol)の混合物、およびトリエチルアミン(0.01ml)を添加した。混合物を、窒素雰囲気下、室温で4時間撹拌し反応させた。反応溶液中の溶媒を減圧下で留去した。残渣をシリカゲルクロマトグラフィー(溶離液:(1)クロロホルム(副生成物および未反応物の溶出)、(2)クロロホルム/メタノール/水=13/6/1(目的物の溶出))にて精製した。溶出物中の溶媒を減圧下で留去し、さらに真空ポンプにて溶媒留去し、標記化合物を得た(白色固体、21.3mg、収率:86%)。
H-NMR(ppm)δ:0.85-0.90(t,6H),1.19-1.41(m,48H),1.47-1.63(m,4H),1.83-2.02(m,2H),2.20-2.39(m,6H),3.39-3.49(m,2H),3.49-3.62(m,2H),3.82-4.02(m,4H),4.09-4.18(m,1H),4.36-4.42(d,1H),5.18-5.22(s,1H),6.65-6.80(s,2H).
MALDI-TOF質量分析:
 実測値;858.3
 理論値;858.1、(C45H82O11N2P)+に対して
実施例1
リン脂質誘導体(P-1)の合成
 上記一般式(1)で表される化合物において、RおよびRがヘキサデシル基であり、ZおよびZが1,2-エチレン基(-CH-CH-)であり、Zが水素原子であるリン脂質誘導体
Figure JPOXMLDOC01-appb-C000035

 ジエチレントリアミン19.17mg(0.186mmol)と無水ピリジン(0.5ml)の混合物に、ジセチルホスフェート無水物40mg(0.037mmol)と無水ピリジン(0.4ml)の混合物を加えた。反応容器内を窒素置換し、混合物を室温で2時間撹拌して反応させた。混合物中の溶媒を留去した後、シリカゲルカラムクロマトグラフィー(溶離液:(1)クロロホルム/メタノール/トリエチルアミン=10/1/0.1(容量比)の混合物、副生成物を溶出、(2)クロロホルム/メタノール/トリエチルアミン=10/1/0.1(容量比)の混合物、目的物を溶出)にて精製した。溶出物中の溶媒を減圧下で留去した後、さらに真空ポンプにて溶媒留去し、標記化合物(白色固体、15.3mg、収率:65%)。
H-NMR(ppm)δ:0.88(t,6H),1.26(s,48H),1.35(m,4H),1.66(m,4H),1.81(br,4H),2.68-2.83(m,5H),3.00(m,2H),3.25(br,1H),3.98(m,4H)
13C-NMR(ppm)δ:14.11,22.68,
25.61,29.23,29.36,29.56,29.60,29.65,29.70,30.38,30.43,31.92,41.01,41.53,50.13,66.41,66.44
31P-NMR(ppm)δ:9.78,9.81
MALDI?TOF質量分析:
 実測値;632.59
 理論値;632.99(C36H79N3O3P)+に対して
実施例2
リン脂質誘導体(P-2)の合成
 上記一般式(1)で表される化合物において、RおよびRがヘキサデシル基であり、ZおよびZが1,3-プロピレン基であり、Zが水素原子であるリン脂質誘導体
Figure JPOXMLDOC01-appb-C000036

 ジプロピレントリアミン11.2mg(0.0854mmol)と無水ピリジン(0.5ml)の混合物中に、ジセチルホスフェート無水物(16.5mg、0.0153mmol)と無水ピリジン(0.5ml)の混合物を加えた。反応容器内を窒素置換し、混合物を室温で3時間撹拌して反応させた。混合物中の溶媒を留去した後、シリカゲルカラムクロマトグラフィー(溶離液:(1)クロロホルム/メタノール/トリエチルアミン=10/1/0.1(容量比)の混合物、副生成物を溶出、(2)クロロホルム/メタノール/トリエチルアミン=1/1/0.15(容量比)の混合物、目的物を溶出)にて精製した。溶出物中の溶媒を減圧下で留去した後、さらに真空ポンプにて溶媒留去し、標記化合物を得た(白色固体、7.7mg、収率:78%)。
H-NMR(ppm)δ:0.88(t,6H),1.26(s,48H),1.33(bm,4H),1.65(br,m,4H),1.85?2.02(m,4H),2.83?3.08(br,m,12H),3.91?4.01(m,4H)
MALDI-TOF質量分析:
 実測値;661.0
 理論値;661.0、(C38H83N3O3P)+に対して
実施例3
リン脂質誘導体(P-3)の合成
 上記一般式(1)で表される化合物において、RおよびRがヘキサデシル基であり、ZおよびZが1,2-エチレン基であり、Zが-CHCH-NHであるリン脂質誘導体
Figure JPOXMLDOC01-appb-C000037

 トリエチレンテトラアミン343.9mg(2.35mmol)と無水ピリジン(1.0ml)の混合物に、ジセチルホスフェート無水物474.9mg(0.441mmol)を無水ピリジン(2ml)を加えた。反応容器内を窒素置換し、混合物を室温で4時間撹拌して反応させた。混合物中の溶媒を留去した後、蒸留水で洗浄した。洗浄した残渣をシリカゲルカラムクロマトグラフィー(アミノ化シリカゲル、溶離液:(1)クロロホルム/メタノール=39/1(容量比)の混合物、目的物を溶出)にて精製した。溶出物中の溶媒を減圧下で留去した後、さらに真空ポンプにて溶媒留去し、標記化合物を得た(白色固体、197.7mg、収率:67%)。
H-NMR(ppm)δ:0.88(t,6H),1.26(s,48H),1.36(m,4H),1.66(m,4H),1.80(br,s,5H),2.65?3.24(m,12H),3.97(m,4H)
31P-NMR(ppm)δ:9.79
FAB質量分析:
 実測値;697.5
 理論値;698.0(C38H83N4O3PNa)+に対して
実施例4
リン脂質誘導体(P-4)の合成
 上記一般式(1)で表される化合物において、RおよびRがヘキサデシル基であり、ZおよびZが1,2-エチレン基であり、Zが-CHCH-NH-CHCH-NHであるリン脂質誘導体
Figure JPOXMLDOC01-appb-C000038

 テトラエチレンペンタアミン351.0mg(1.85mmol)と無水ピリジン(2ml)の混合物中に、ジセチルホスフェート無水物(322.4mg、0.299mmol)と無水ピリジン(3ml)の混合物を加えた。反応容器内を窒素置換し、混合物を室温で4時間撹拌した。混合物中の溶媒を留去した後、蒸留水で洗浄した。洗浄した残渣をシリカゲルカラムクロマトグラフィー(アミノ化シリカゲル、溶離液:(1)クロロホルム/メタノール=39/1(容量比)の混合物、目的物を溶出)にて精製した。溶出物中の溶媒を減圧下で留去した後、さらに真空ポンプにて溶媒留去し、標記化合物を得た(白色固体、77.3mg、収率:36%)。
H-NMR(ppm)δ:0.88(t,6H),1.25(s,48H),1.36(m,4H),1.66(m,4H),1.75(br、s、6H),2.35?3.35(br,m,16H),3.97(m,4H)
MALDI-TOF質量分析:
 実測値;718.2
 理論値;718.7(C40H89N5O3P)+に対して
実施例5
リン脂質誘導体(P-5)の合成
 上記一般式(2)で表される化合物において、YおよびYがカルボニル基であり、RおよびRがペンタデシル基であり、Tが上記式T2で表される基であり、nが5であるリン脂質誘導体(下記式で表される化合物である)
Figure JPOXMLDOC01-appb-C000039

は式
Figure JPOXMLDOC01-appb-C000040

で表される基である。(式中、X~Xは上記と同義である。)
 N-[3-(2-ピリジルチオ)プロピオニル]-1,2-ジパルミトイル-sn-グリセロ-ホスホエタノールアミン8.1mg(9.1μmol)と、クロロホルム、メタノールおよび水の混合溶液(クロロホルム/メタノール/水=13/6/1(容量比)、0.4ml)の混合物に、ペプチド(Arg-Arg-Arg-Arg-Arg-Cys(左側がN末端であり、ペプチド中、Arg、CysともにL体を表す。)であるペプチドであり、以下、RRRRRCと記載する場合がある。)(6.83mg、7.37μmol)と、クロロホルム/メタノール/水の混合溶液(クロロホルム/メタノール/水=13/6/1(容量比)、0.2ml)の混合物を加えた。反応容器内をアルゴン置換し、混合物を室温で3時間撹拌して反応させ、混合物中の溶媒を減圧下で留去した後、シリカゲルクロマトグラフィー(アミノ化シリカ、溶離液:(1)クロロホルム/メタノール/水=13/6/1(容量比)の混合物、副生成物および未反応物を除去、(2)クロロホルム/メタノール/酢酸の混合物、目的物を溶出)にて精製した。溶出物中の溶媒を減圧下で留去後、クロロホルムを加え、このクロロホルム溶液(クロロホルム層)を炭酸水素ナトリウム水溶液で洗浄し、クロロホルム層を乾燥した後、クロロホルム層中の溶媒を減圧下で留去し、さらに真空ポンプにて溶媒留去し、標記化合物を得た(白色固体、1.1mg、収率:10%)。
MALDI?TOF質量分析:
 実測値;1680.83
 理論値;1680.03(C73H144N22O16PS2)+に対して
実施例6
リン脂質誘導体(P-6)の合成
 上記一般式(2)で表される化合物において、YおよびYがカルボニル基であり、RおよびRがペンタデシル基であり、Tが上記式T3で表される基であり、nが5であるリン脂質誘導体(下記式で表される化合物である)
Figure JPOXMLDOC01-appb-C000041

(上記式中、Gは実施例5におけるGと同義である。)
 N-(4-マレイミドブチロキシ)-1,2-ジパルミトイル-sn-グリセロ-ホスホエタノールアミン5.0mg(0.00584mmol)と、クロロホルムメタノールおよび水の混合溶液(クロロホルム/メタノール/水=13/6/1(容量比)、0.5ml)の混合物を、ペプチド(RRRRRC)7.3mg(0.00813mmol)とクロロホルム/メタノール/水の混合溶液(クロロホルム/メタノール/水=13/6/1(容量比)、2ml)の混合物に滴下した。反応容器内を窒素置換し、混合物を室温で29時間撹拌して反応させた。混合物に、酢酸アンモニウム(32.7mg、0.424mmol)とメタノール(1.5ml)の混合物を加え、室温で12時間攪拌した。混合物中の溶媒を減圧下で留去した。残渣にメタノール10μl添加し、さらにクロロホルムを加え、このクロロホルム溶液(クロロホルム層)を酢酸アンモニウム水溶液で洗浄した。クロロホルム層を乾燥後、減圧下で溶媒を留去し、さらに真空ポンプにて溶媒留去し、標記化合物を得た(白色固体、8.8mg、収率:74%)。
FAB質量分析:
 実測値;1759.88
 理論値;1760.20(C78H149N23O18PS)+に対して
試験例B1
リン脂質誘導体(P-1)を含有するリポソーム(plasmid DNAの導入)
 リン脂質誘導体(P-1)を含有するリポソームの調製、およびそのリポソームの遺伝子導入効率能(蛍光強度)の評価
B1-1.リポソームの調製
 マイクロシリンジで脂質(リン脂質誘導体(P-1)/ジオレオイルホスファチジルエタノールアミン/コレステロール=1/1/1(モル比))を分取し、tert-ブタノールを適量加えた。よく攪拌した後、一晩凍結乾燥した。凍結乾燥脂質粉末に60℃に温めたTris-HCl溶液を加え、ボルテックスミキサーを用いながら完全に復水した。エクストルーダーにセットした孔径100nmのポリカーボネート膜フィルターを10回通過させ、リポソームの粒子径を調整した。
B1-2.細胞培養
 細胞は、COS-1細胞を、ダルベッコ変法イーグル培地溶液[10%ウシ胎仔血清(FBS)、カナマイシン60μg/mLを含有する溶液]中にて37℃で5%二酸化炭素存在下に保存した。コンフルエント時には、0.175%トリプシン/EDTA-PBS(-)溶液で細胞をはがした。
B1-3.トランスフェクションの評価
 トランスフェクションの24時間前に直径35mmの培養皿中に前記で培養した細胞を入れた。ルシフェラーゼプラスミドDNA(pCAG-luc3)溶液と、上記(B1-1)にて調製されたリポソームを含有する溶液を混合し、(B1-1)リポソーム中の窒素/プラスミドDNA中のリン=24/1(電荷比)からなる複合体とした。この複合体を20分間室温でインキュベーションした後、プラスミドDNA1μg分の複合体を細胞培地に添加した。複合体添加3時間に培地を交換し、複合体添加48時間後にトランスフェクション評価試験を実施した。培養皿から培養液を取り除き、細胞をPBS溶液で二度洗い、200μLの溶解用緩衝溶液(LCβ)を加えることにより細胞を溶解した。細胞溶解液は1.5mLのエッペンドルフチューブに回収し、凍結融解後、21,500gで10分間遠心し、その上清を回収した。上清を測定用試験管に移し、発光基質を加え、ルシフェラーゼ活性をルミノフォトメーター(Luminescencer-PSN AB 2200、アトー株式会社)で測定した。各サンプルの発光強度はタンパク質量で補正した。
B1-4.結果
 結果を図1と表2に示す。トランスフェクション効率は発光強度を指標にして評価した。発光量が大きいほどトランスフェクション効率が高いことを意味する。
 図1中、縦軸は、タンパク質1mgあたりの発光量を意味し、単位は、relative light unit(RLU)/mgである。
 図1および表2中、「(B1-1)」とは、上記(B1-1)にて調製されたリポソームであり、「LFK2K」とは、リポフェクタミン2000と、上記(B1-1)におけるplasmidDNAとを混和し調製されたリポソームであり、「DCP-spermidine PCL」とは、スペルミジンを含む化合物(CAS.No.730979-01-8)を用いて、上記(B1-1)と同様の方法にて調製されたリポソームである。
表2:
Figure JPOXMLDOC01-appb-T000042
 リン脂質誘導体(P-1)を含むリポソーム(上記(B1-1))は、DCP-spermidine PCLならびに市販の核酸導入試薬リポフェクタミン2000(インビトロジェン株式会社)と比較して高い遺伝子導入効率を示した。
試験例B2
リン脂質誘導体(P-1)を含有するリポソーム(siRNA)
リン脂質誘導体(P-1)を含有するリポソームの調製、およびそのリポソームの遺伝子導入効率能(遺伝子ノックダウン効率)の評価
B2-1.リポソームの調製
 マイクロシリンジで脂質(リン脂質誘導体(P-1)/ジオレオイルホスファチジルエタノールアミン/コレステロール/ジステアロイルホスファチジルエタノールアミン-ポリエチレングリコール2000-ペプチド(アラニン-プロリン-アルギニン-プロリン-グリシン)=1/1/1/0.75(モル比))を分取し、イソプロパノールを加えて全量1mLとした。一方で、GAPDHをノックダウン可能なsiRNA150pmolをDEPC処理水に溶かし全量0.5mLとした。siRNA溶液を混合脂質溶液に添加し、20分間インキュベーションした。次に60℃保温条件下、撹拌しながらDEPC処理水5mLを少しずつ滴下した。この溶液を限外濾過器具(Amicon Ultra (100k))に移し、溶媒置換と濃縮操作を行い、siRNAを含有するリポソームを得た。
B2-2.細胞培養
 細胞は、ヒト臍帯静脈血管内皮細胞であるHuman umbilical vein endothelial cell(HUVEC)を、endothelial basal medium-2(EGM-2、Bio Whittaker Inc.)培地溶液中にて37℃で5%二酸化炭素存在下に保存した。コンフルエント時には、0.025mg/mLトリプシン/EDTA-PBS(-)溶液で細胞をはがした。
B2-3.遺伝子ノックダウンの評価
 トランスフェクションの16時間前に直径35mmの培養皿中に前記で培養した細胞を入れた。GAPDHをノックダウン可能なsiRNA溶液(北海道システム・サイエンス株式会社)と、上記(B2-1)にて調製されたリポソームを含有する溶液をそれぞれDEPC処理水で希釈し、5分間室温でインキュベーションした。siRNA溶液と同体積の、上記(B2-1)にて調製されたリポソームを含有する溶液を混合し、(B2-1)リポソーム中の窒素/siRNA中のリン=24/1(電荷比)からなる複合体とした。この複合体を20分間室温でインキュベーションした後、siRNAの最終濃度が50nMとなるように細胞培地に添加した。複合体添加24時間に培地を交換し、複合体添加48あるいは72時間後に遺伝子ノックダウン評価を実施した。培養皿から培養液を取り除き、細胞をPBS溶液で一度洗い、200μLの溶解用緩衝溶液[2mM フェニルメチルスルフォニルフルオライド(PMSF)、0.2mM ロイペプチン、0.05mg/mL アプロチニン、0.1mM ペプスタチンAを含む1%還元トリトンX-100溶液]を加えることにより細胞を溶解した。細胞溶解液は0.5mLのエッペンドルフチューブに回収して、-20℃で保存した。各サンプルをSDS-PAGEで分離し、Western blotting法でGAPDH量を検出した。発色試薬にはECL Western blotting detection regents(GEヘルスケア株式会社)を用い、LAS3000(富士フィルム株式会社)で測定し、数値化した。
B2-4.結果
 結果を図2と表3に示す。遺伝子ノックダウンはタンパク質発現の減少を指標にして評価した。グラフの値が小さいほど遺伝子ノックダウン効率が高い、すなわち遺伝子導入効率が高いことを意味する。
 図2中、縦軸は、コントロールにおけるタンパク質発現量を100とした場合の、タンパク質発現量を意味する。
 図2および表3中、「(B2-1)」とは、上記(B2-1)にて調製されたリポソームである。
表3:
Figure JPOXMLDOC01-appb-T000043
 リン脂質誘導体(P-1)を含むリポソーム(上記(B2-1))を用いてGAPDHをノックダウンしたところ、約94%の発現抑制効果が得られた。
試験例B3
リン脂質誘導体(P-1)を含有するリポソーム(siRNAの生体内動態)
 リン脂質誘導体(P-1)を含有するリポソームの調製、およびそのリポソームを用いたsiRNAのガン組織への移行性の評価
B3-1.リポソームの調製
 マイクロシリンジで脂質(リン脂質誘導体(P-1)/ジオレオイルホスファチジルエタノールアミン/コレステロール/ジステアロイルホスファチジルエタノールアミン-ポリエチレングリコール2000-ペプチド(アラニン-プロリン-アルギニン-プロリン-グリシン)=1/1/1/0.75(モル比))を分取し、イソプロパノールを加えて全量1mLとした。次に0.5mLのAlexa750標識siRNA溶液を混合脂質溶液に添加し、20分間インキュベーションした。次に60℃保温条件下、撹拌しながらDEPC処理水5mLを少しずつ滴下した。この溶液を限外濾過器具(Amicon Ultra(100k))に移し、溶媒置換と濃縮操作を行い、siRNAを含有するリポソームを得た。
B3-2.細胞培養
 細胞は、マウス結腸がん細胞であるColon 26 NL-17 carcinoma細胞を、DME/HamF12培地溶液[10%ウシ胎仔血清(FBS)、ペニシリンG 60μg/mL、ストレプトマイシン 100μg/mLを含有する溶液]中にて37℃で5%二酸化炭素存在下に保存した。コンフルエント時には、0.25% Tripsin/EDTA-PBS(-)溶液で剥がし、継代を行った。
B3-3.担がん動物の作成
 1×10個のColon 26 NL-17 carcinoma細胞を、マウス左脚外側部皮下に移植した。移植から10日後に生体内動態の評価に用いた。
 上記(B3-1)にて調製したリポソームを、siRNA量で30μgとなるように担がんマウスに尾静脈内投与し、IVIS Lumina Imaging System(Xenogen社)にてsiRNAの生体内動態を測定、可視化した。
B3-4.結果
 投与から24時間後のsiRNAの分布を図3に示す。
 リン脂質誘導体(P-1)を含むリポソーム(上記(B3-1))を用いることにより、siRNAが、がん細胞に選択性高く移行されていることが分かる。
試験例B4
リン脂質誘導体(P-1)またはリン脂質誘導体(P-4)を含有するリポソーム(siRNA)
 リン脂質誘導体(P-1)またはン脂質誘導体(P-4)を含有するリポソームの調製、およびそのリポソームの遺伝子導入効率能(ノックダウンによる蛍光強度の減少)の評価
B4-1.リポソームの調製
 マイクロシリンジで脂質(リン脂質誘導体(P-1)/ジオレオイルホスファチジルエタノールアミン/コレステロール=1/1/1(モル比)、または(リン脂質誘導体(P-4)/ジオレオイルホスファチジルエタノールアミン/コレステロール = 1/1/1(モル比))を分取し、tert-ブタノールを適量加えた。よく攪拌した後、一晩凍結乾燥した。凍結乾燥脂質粉末に60℃に温めたDEPC処理水を加え、ボルテックスミキサーを用いながら完全に復水した。エクストルーダーにセットした孔径100nmのポリカーボネート膜フィルターを10回通過させ、リポソームの粒子径を調整した。
B4-2.細胞培養
 細胞は、緑色蛍光タンパク質(enhanced green fluorescent protein(EGFP))を恒常的に発現するHT1080ヒト繊維芽肉腫細胞(EGFP/HT1080細胞)を、DME/HamF12培地溶液[10%ウシ胎仔血清(FBS)、ペニシリンG 60μg/mL、ストレプトマイシン100μg/mLを含有する溶液]中にて37℃で5%二酸化炭素存在下に保存した。コンフルエント時には、0.25mg/mLトリプシン/EDTA-PBS(-)溶液で細胞をはがした。
B4-3.遺伝子ノックダウンの評価
 トランスフェクションの16時間前に24個のWellを持つプレート中に前記で培養した細胞を入れた。EGFPをノックダウン可能なsiRNA溶液(北海道システム・サイエンス株式会社)と、上記(B4-1)にて調製されたリポソーム溶液をそれぞれDEPC処理水で希釈し、5分間室温でインキュベーションした。siRNA溶液と同体積の、上記(B4-1)にて調製されたリポソーム溶液を混合し、上記(B4-1)にて調製されたリポソーム溶液中の窒素/siRNA中のリン=24/1(電荷比)からなる複合体とした。この複合体を20分間室温でインキュベーションした後、siRNAの最終濃度が50nMとなるように細胞培地に添加した。複合体添加4あるいは24時間に培地を交換し、複合体添加48あるいは72時間後に遺伝子ノックダウン評価を実施した。プレートのそれぞれくぼみから培養液を取り除き、細胞をPBS溶液で一度洗い、200μLの溶解用緩衝溶液[2mM フェニルメチルスルフォニルフルオライド(PMSF)、0.2mM ロイペプチン、0.05mg/mL アプロチニン、0.1mM ペプスタチンAを含む1%還元トリトンX-100溶液]を加えることにより細胞を溶解した。細胞溶解液は1.5mLのエッペンドルフチューブに回収して、1,000gで10分間遠心し、その上清を回収した。そのサンプルの蛍光強度を蛍光光度計(1420 MULTILABEL COUNTER,WALLAC,ARVOTMSX)で測定した。各サンプルの蛍光強度はタンパク質量で補正した。
B4-4.結果
 結果を図4と表3に示す。
 遺伝子ノックダウンは蛍光強度の減少を指標にして評価した。蛍光強度が小さいほど遺伝子ノックダウン効率が高いことを意味する。
 図4中、縦軸は、コントロールで評価した場合の蛍光強度を100とした場合の数値を意味する。4つのグラフは、左から48h(4h)、48h(24h)、72h(4h)、72h(24h)の評価結果を示す。
 図4および表4中、「()なしの数値」は、遺伝子ノックダウン評価を実施した時間を意味し、「()ありの数値」は培地交換をした時間を意味する。いずれも複合体添加時を0時間としてあらわしている。したがって、例えば72h(24h)とは、遺伝子ノックダウン評価を実施した時間が72時間であり、培地交換をした時間が24時間であることを意味する。
 図4および表4中、「siRNA」とは、リポソームを用いず、他の試験と同量のsiRNAを投与したことを意味する。
 図4および表4中、「(B4-1 DETA)」とは、リン脂質誘導体(P-1)を用い、上記(B4-1)にて調製されたリポソームであり、「(B4-1 TEPA)」とは、リン脂質誘導体(P-4)を用い、上記(B4-1)にて調製されたリポソームである。
表4:
Figure JPOXMLDOC01-appb-T000044
 リン脂質誘導体(P-1)あるいはリン脂質誘導体(P-4)を含むリポソーム(上記(B4-1)はがん細胞において、いずれも高い遺伝子ノックダウン効果を示した。
試験例B5
リン脂質誘導体(P-1)またはリン脂質誘導体(P-4)を含有するリポソーム(siRNA)
 リン脂質誘導体(P-1)またはリン脂質誘導体(P-4)を含有するリポソームの遺伝子導入効率能(タンパク質発現(GAPDHの減少)の評価
B5-1.リポソームの調製
 上記(B4-1)にて調製できるリポソームを使用した。
B5-2.細胞培養
 細胞は、ヒト臍帯静脈血管内皮細胞であるHuman umbilical vein endothelial cell(HUVEC)を、endothelial basal medium-2(EGM-2、Bio Whittaker Inc.)培地溶液中にて37℃で5%二酸化炭素存在下に保存した。コンフルエント時には、0.025mg/mLトリプシン/EDTA-PBS(-)溶液で細胞をはがした。
B5-3.遺伝子ノックダウンの評価
 トランスフェクションの16時間前に直径35mmの培養皿中に前記で培養した細胞を入れた。GAPDHをノックダウン可能なsiRNA溶液(北海道システム・サイエンス株式会社)と、上記(B4-1)にて調製されたリポソーム溶液をそれぞれDEPC処理水で希釈し、5分間室温でインキュベーションした。siRNA溶液と同体積の上記(B4-1)にて調製されたリポソーム溶液を混合し、上記(B4-1)にて調製されたリポソーム溶液中の窒素/siRNA中のリン=24/1(電荷比)からなる複合体とした。この複合体を20分間室温でインキュベーションした後、siRNAの最終濃度が50nMとなるように細胞培地に添加した。複合体添加24時間に培地を交換し、複合体添加48あるいは72時間後に遺伝子ノックダウン評価を実施した。培養皿から培養液を取り除き、細胞をPBS溶液で一度洗い、200μLの溶解用緩衝溶液[2mM フェニルメチルスルフォニルフルオライド(PMSF)、0.2mM ロイペプチン、0.05mg/mL アプロチニン、0.1mM ペプスタチンAを含む1%還元トリトンX-100溶液]を加えることにより細胞を溶解した。細胞溶解液は0.5 mLのエッペンドルフチューブに回収して、-20℃で保存した。各サンプルをSDS-PAGEで分離し、Western blotting法でGAPDH量を検出した。発色試薬にはECL Western blotting detection regents(GEヘルスケア株式会社)を用い、LAS3000(富士フィルム株式会社)で測定した。
B5-3.結果
 結果を図5に示す。
 遺伝子ノックダウンはタンパク質発現の減少を指標にして評価した。バンドが薄いほど遺伝子ノックダウン効率が高いことを意味する。
 図5中、「(B4-1 DETA)」とは、リン脂質誘導体(P-1)を用い、上記(B4-1)にて調製されたリポソームであり、「(B4-1 TEPA)」とは、リン脂質誘導体(P-4)を用い、上記(B4-1)にて調製されたリポソームであり、「LFA2K」とは、siRNAとリポフェクタミン2000を混和し、20分間室温でインキュベーションした後、siRNAの最終濃度が50nMとなるように細胞培地に添加により調製されたリポソームである。
 リン脂質誘導体(P-1)あるいはリン脂質誘導体(P-4)を含むリポソーム(上記(B4-1))は活性化状態の内皮細胞において、(Actinの発現量はほとんど変化がなく)いずれもGAPDHの発現のみを優位に抑制し、遺伝子ノックダウン効果を示し、LFA2Kよりも高い遺伝子ノックダウン効果を示した。
試験例B6
リン脂質誘導体(P-1)またはリン脂質誘導体(P-4)を含有するリポソーム(siRNA)
 リン脂質誘導体(P-1)またはン脂質誘導体(P-4)を含有するリポソームの遺伝子導入効率能(タンパク質(mTOR)発現の減少)の評価
B6-1.リポソームの調製
 上記(B4-1)にて調製できるリポソームを使用した。
B6-2.細胞培養
 細胞は、B16BL6黒色腫細胞を、DME/HamF12培地溶液[10%ウシ胎仔血清(FBS)、カナマイシン 60μg/mLを含有する溶液]中にて37℃で5%二酸化炭素存在下に保存した。コンフルエント時には、0.25mg/mLトリプシン/EDTA-PBS(-)溶液で細胞をはがした。
B6-3.遺伝子ノックダウンの評価
 トランスフェクションの24時間前に6個のくぼみを持つプレート中に前記で培養した細胞を入れた。mTORをノックダウン可能なsiRNA溶液(北海道システム・サイエンス株式会社)と、上記(B4-1)にて調製されたリポソーム溶液をそれぞれDEPC処理水で希釈し、5分間室温でインキュベーションした。siRNA溶液と同体積の、上記(B4-1)にて調製されたリポソーム溶液を混合し、上記(B4-1)にて調製されたリポソーム溶液中の窒素/siRNA中のリン=24/1(電荷比)からなる複合体とした。この複合体を20分間室温でインキュベーションした後、siRNAの最終濃度が50nMとなるように細胞培地に添加した。複合体添加4時間後に培地を交換し、複合体添加28時間後に遺伝子ノックダウン評価を実施した。プレートのそれぞれくぼみから培養液を取り除き、細胞をPBS溶液で一度洗い、100μLの溶解用緩衝溶液[2mM フェニルメチルスルフォニルフルオライド(PMSF)、0.2mM ロイペプチン、0.05mg/mL アプロチニン、0.1mM ペプスタチンAを含む1%還元トリトンX-100溶液]を加えることにより細胞を溶解した。細胞溶解液は1.5mLのエッペンドルフチューブに回収して、1,000gで10分間遠心し、その上清を回収した。各サンプルをSDS-PAGEで分離し、Western blotting法でmTOR量を検出した。発色試薬にはECL Western blotting detection regents(GEヘルスケア株式会社)を用い、LAS3000(富士フィルム株式会社)で測定した。
B6-4.結果
 結果を図6に示す。
 遺伝子ノックダウンはタンパク質発現の減少を指標にして評価した。バンドが薄いほど遺伝子ノックダウン効率が高いことを意味する。
 図6中、「(B4-1 DETA)」とは、リン脂質誘導体(P-1)を用い、上記(B4-1)にて調製されたリポソームであり、「(B4-1 TEPA)」とは、リン脂質誘導体(P-4)を用い、上記(B4-1)にて調製されたリポソームである。
 リン脂質誘導体(P-1)あるいはリン脂質誘導体(P-4)を含むリポソーム(上記(B4-1)は、(Actinの発現量はほとんど変化がなく)いずれもGAPDHの発現のみを優位に抑制し、高い遺伝子ノックダウン効果を示した。
 本発明は、細胞への優れた遺伝子・核酸導入効率を有する脂質膜構造体(リポソーム、エマルション、ミセル等)の製造のために有用なリン脂質誘導体である。
 本発明のリン脂質誘導体は、高い遺伝子発現効率や高い遺伝子発現抑制効果を示す遺伝子や核酸等の細胞内導入ないし治療用キャリア及びその研究用試薬である脂質膜構造体として有用である。

Claims (10)

  1.  下記一般式(1)で表される化合物:
    Figure JPOXMLDOC01-appb-C000001

     式(1)中、
     Rは炭素数10~22の脂肪族炭化水素基であり、
     Rは炭素数10~22の脂肪族炭化水素基であり、
     ZはC2~4アルキレン基であり、
     ZはC2~3アルキレン基であり、
     Zは水素原子、-Z-NH、-Z-NH-Z-NHおよび-((CH-NH)-Hからなる群から選択される少なくとも1種であり、
      ZはC2~4アルキレン基であり、
      ZはC2~4アルキレン基であり、
      qは3~5の整数である。
  2.  Zが-CH-CH-である、請求項1に記載の化合物。
  3.  Zが-CH-CH-である、請求項1または2に記載の化合物。
  4.  Zが-((CH-NH)-H(式中、rは0~4の整数である。)である、請求項1~3のいずれか1項に記載の化合物。
  5.  Rがドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基およびオクタデセニル基からなる群から選択される少なくとも1種である、請求項1~4のいずれか1項に記載の化合物。
  6.  Rがドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基およびオクタデセニル基からなる群から選択される少なくとも1種である、請求項1~5のいずれか1項に記載の化合物。
  7.  下記一般式(2)で表される化合物:
    Figure JPOXMLDOC01-appb-C000002

     式(2)中、
     Rは炭素数10~22の脂肪族炭化水素基であり、
     Rは炭素数10~22の脂肪族炭化水素基であり、
     Yはメチレン基またはカルボニル基であり、
     Yはメチレン基またはカルボニル基であり、
     XおよびXは、相異なって、水素原子または-(CH-NHC(=NH)NHで表される基であり、
     Tは、下記一般式(T2)または一般式(T2)で表される基であり、
    Figure JPOXMLDOC01-appb-C000003

      式(T2)および式(T3)中、
      XおよびXは、相異なって、水素原子またはカルボキシル基であり、
     nは4~12から選ばれる整数である。
  8.  Rが、ウンデシル基、トリデシル基、ペンタデシル基、ヘプタデシル基およびヘプタデセニル基からなる群から選択される少なくとも1種である、請求項7に記載の化合物。
  9.  Rが、ウンデシル基、トリデシル基、ペンタデシル基、ヘプタデシル基およびヘプタデセニル基からなる群から選択される少なくとも1種である、請求項7または8に記載の化合物。
  10.  請求項1~9のいずれか1項に記載の化合物を含有してなるリポソーム。
PCT/JP2008/065744 2008-09-02 2008-09-02 ポリカチオン化リン脂質誘導体 WO2010026621A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/065744 WO2010026621A1 (ja) 2008-09-02 2008-09-02 ポリカチオン化リン脂質誘導体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/065744 WO2010026621A1 (ja) 2008-09-02 2008-09-02 ポリカチオン化リン脂質誘導体

Publications (1)

Publication Number Publication Date
WO2010026621A1 true WO2010026621A1 (ja) 2010-03-11

Family

ID=41796809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/065744 WO2010026621A1 (ja) 2008-09-02 2008-09-02 ポリカチオン化リン脂質誘導体

Country Status (1)

Country Link
WO (1) WO2010026621A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007021A (ja) * 2013-06-26 2015-01-15 富士フイルム株式会社 脂質粒子、核酸送達キャリア、核酸送達キャリア製造用組成物、脂質粒子の製造方法及び遺伝子導入方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3654300A (en) * 1966-11-25 1972-04-04 Petrolite Corp Imidazoline phosphoramides
JPS4817264B1 (ja) * 1969-02-20 1973-05-28
EP1046394A2 (en) * 1999-04-19 2000-10-25 ImaRx Pharmaceutical Corp. Novel compositions useful for delivering compounds into a cell
JP2003530875A (ja) * 2000-04-21 2003-10-21 ニュー イングランド メディカル センター ホスピタル インコーポレイテッド Gタンパク質共役型受容体(gpcr)のアゴニストおよびアンタゴニスト、および、それらを用いてgpcrを活性化および阻害する方法
JP2005247750A (ja) * 2004-03-04 2005-09-15 Takemoto Oil & Fat Co Ltd リン脂質誘導体及び遺伝子導入キャリア
WO2006088245A1 (ja) * 2005-02-18 2006-08-24 The University Of Tokushima ポリオキシアルキレン鎖含有脂質誘導体及び該誘導体を含有する脂質膜構造体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3654300A (en) * 1966-11-25 1972-04-04 Petrolite Corp Imidazoline phosphoramides
JPS4817264B1 (ja) * 1969-02-20 1973-05-28
EP1046394A2 (en) * 1999-04-19 2000-10-25 ImaRx Pharmaceutical Corp. Novel compositions useful for delivering compounds into a cell
JP2003530875A (ja) * 2000-04-21 2003-10-21 ニュー イングランド メディカル センター ホスピタル インコーポレイテッド Gタンパク質共役型受容体(gpcr)のアゴニストおよびアンタゴニスト、および、それらを用いてgpcrを活性化および阻害する方法
JP2005247750A (ja) * 2004-03-04 2005-09-15 Takemoto Oil & Fat Co Ltd リン脂質誘導体及び遺伝子導入キャリア
WO2006088245A1 (ja) * 2005-02-18 2006-08-24 The University Of Tokushima ポリオキシアルキレン鎖含有脂質誘導体及び該誘導体を含有する脂質膜構造体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KEN MATSUOKA ET AL.: "The Use of Liposomes to Study COPII- and COPI-Coated Vesicle Formation and Membrane Protein Sorting", METHODS, vol. 20, no. 4, 2000, pages 417 - 428 *
TAKEHISA DEWA ET AL.: "Novel Polyamine-Dialkyl Phosphate Conjugates for Gene Carriers. Facile Synthetic Route via an Unprecedented Dialkyl Phosphate", BIOCONJUGATE CHEMISTRY, vol. 15, no. 4, 2004, pages 824 - 830 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007021A (ja) * 2013-06-26 2015-01-15 富士フイルム株式会社 脂質粒子、核酸送達キャリア、核酸送達キャリア製造用組成物、脂質粒子の製造方法及び遺伝子導入方法
US9540638B2 (en) 2013-06-26 2017-01-10 Fujifilm Corporation Lipid particle, nucleic acid transfer carrier, compound for manufacturing nucleic acid transfer carrier, method for manufacturing lipid particle, and gene transfer method

Similar Documents

Publication Publication Date Title
CN111902397B (zh) 改进了细胞内动力学的阳离子脂质
US20230132645A1 (en) Lipid membrane structure for delivery into sirna cell
EP2414322B1 (en) Polyamine derivatives
US10385030B2 (en) Cationic lipid
JP2022025076A (ja) 脂質粒子を含むキット、脂質粒子を利用した活性剤送達方法、および細胞の作製方法
JP6887020B2 (ja) 生分解性化合物、脂質粒子、脂質粒子を含む組成物、およびキット
TW201408324A (zh) KRAS基因表現抑制RNAi醫藥組合物
WO2023236976A1 (zh) 一种脂质化合物及其制备方法与应用
EP3184506B1 (en) Cationic lipid for nucleic acid delivery
Metwally et al. Efficient silencing of EGFP reporter gene with siRNA delivered by asymmetrical N 4, N 9-diacyl spermines
EP3456714B1 (en) Biodegradable compound, lipid particle, composition containing lipid particle and kit
EP2802556B1 (en) Lipopolyamines of spermine type for construction of liposomal transfection systems
KR20070019941A (ko) 글리세롤 유도체로 수식된 화합물
KR101000358B1 (ko) 인테그린 αⅤβ3 결합성 지질 유도체 및 그를 포함하는 지질 나노입자
US20170101639A1 (en) RNAi PHARMACEUTICAL COMPOSITION FOR SUPPRESSING EXPRESSION OF CKAP5 GENE
WO2010026621A1 (ja) ポリカチオン化リン脂質誘導体
WO2022235935A2 (en) Ionizable cationic lipids for rna delivery
US8143413B2 (en) Polycationized phospholipid derivatives
US8557875B2 (en) Gene transfer agent composition containing polyamidoamine dendron
TW201815736A (zh) 作為陽離子性脂質之化合物
Wu et al. Evaluation of pentaerythritol-based and trimethylolpropane-based cationic lipidic materials for gene delivery
CN117534585A (zh) 一种新型可电离阳离子脂质化合物及其制备方法与应用
JP2024519715A (ja) ペプチド-脂質コンジュゲートを含む脂質組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08809802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08809802

Country of ref document: EP

Kind code of ref document: A1