WO2010025641A1 - 激光调制器偏置控制方法和装置 - Google Patents

激光调制器偏置控制方法和装置 Download PDF

Info

Publication number
WO2010025641A1
WO2010025641A1 PCT/CN2009/073058 CN2009073058W WO2010025641A1 WO 2010025641 A1 WO2010025641 A1 WO 2010025641A1 CN 2009073058 W CN2009073058 W CN 2009073058W WO 2010025641 A1 WO2010025641 A1 WO 2010025641A1
Authority
WO
WIPO (PCT)
Prior art keywords
bias control
bias
control voltage
laser modulator
input
Prior art date
Application number
PCT/CN2009/073058
Other languages
English (en)
French (fr)
Inventor
沈剑青
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP09811016.6A priority Critical patent/EP2333915B1/en
Priority to US13/061,709 priority patent/US8320775B2/en
Publication of WO2010025641A1 publication Critical patent/WO2010025641A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • H04B10/50575Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the modulator DC bias
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0327Operation of the cell; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/21Thermal instability, i.e. DC drift, of an optical modulator; Arrangements or methods for the reduction thereof

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a bias control method and apparatus for a laser modulator.
  • the external modulation mode has the advantages of high rate, large extinction ratio, high input optical power, adjustable ⁇ , and insensitivity to wavelength, which can increase the transmission distance of the wavelength division system and increase the transmission speed. Therefore, the external modulation method is Wide range of applications in wavelength division systems.
  • the operating point of the Mach-Zehnder modulator based on LiNb ⁇ 3 (lithium niobate) material is affected by temperature, mechanical stress, and device aging, the phase shift occurs, which affects the performance of the output optical signal.
  • the modulator bias (BIAS) operating point needs to be feedback controlled to form a closed loop to ensure stable bias.
  • the composition of the traditional bias control device is shown in Figure 1. It consists mainly of components such as modulators, drivers, signal generators, amplifiers, and related operators.
  • the bias control device works as follows: The signal generator generates a low-frequency sinusoidal pilot signal, and controls the amplitude control of the high-speed communication electrical signal by a small ratio by controlling the gain control terminal of the lithium niobate driver (Amplitude Modulation) For AM). After Mach-Zehnder modulation by a lithium niobate modulator, it is converted into an optical signal output to the optical fiber line.
  • Step S214 input a communication electrical signal at an input end of the modulator
  • Step S216 The pilot signal outputted at the output is electrically-light converted, and is photodiode
  • Step S218 The control program samples the signal detected by the PD, and amplifies and filters the signal. And inputting the amplified and filtered signal to the correlation operator;
  • Step S220 the correlation operator performs a correlation operation on the input signal and the pilot signal to calculate a current offset error;
  • Step S222 according to the current offset error size And polarity, adjusting the current bias control voltage to adjust the bias to the correct operating point direction; specifically, if the current bias error is low, step S224 is performed to increase the bias control voltage; if normal, execute Step S226, the bias voltage is not adjusted; if it is high, step S228 is performed to lower the bias control voltage.
  • a small amplitude low frequency pilot signal is inserted into a communication signal of a modulator radio frequency (RF) electrode, and is modulated into an optical signal at a signal output position.
  • the split pilot detects the modulated pilot signal.
  • the detection signal is compared with the original signal in amplitude and phase, and the offset error is detected. After being integrated and amplified, it is output to the modulator BIAS electrode to control the bias phase of the modulator to maintain the stable operating point.
  • the present invention provides a laser modulator bias control method and apparatus for solving the problems of slow convergence speed and long control time in the prior art bias control method. According to an aspect of the present invention, a laser modulator bias control method is provided.
  • a laser modulator bias control method includes: when a laser modulator is activated, inputting a linearly varying bias control voltage at a bias electrode of the laser modulator, and acquiring an output optical power of the laser modulator, determining Presetting the bias control voltage corresponding to the working point; then, enabling the communication electrical signal of the laser modulator RF electrode, and amplitude modulating the communication electrical signal through the low frequency sinusoidal pilot signal, and simultaneously determining the offset at the bias electrode input Control voltage; sample the output optical signal of the laser modulator, compare the sampled optical signal with the pilot signal, and adjust the bias control voltage of the input bias electrode according to the comparison result.
  • a laser modulator bias control device is provided.
  • a laser modulator bias control apparatus includes: a photodiode, a first amplifier, a filter and a correlation operator, a control unit and a selection switch, wherein the photodiode is used to detect the output optical power of the laser modulator; the control unit is configured to input a linearly varying bias control voltage at the bias electrode input of the laser modulator, and Determining a bias control voltage corresponding to a preset operating point according to the output optical power detected by the photodiode; the correlation operator is configured to input the bias control voltage determined by the control unit to the bias electrode of the laser modulator; During the startup phase of the laser modulator, a linearly varying bias control voltage output from the control unit is coupled to the bias electrode, and the bias control voltage of the associated operator output is coupled to the bias during the normal operation of the laser modulator.
  • Another laser modulator bias control device includes: a first input module, an acquisition module, a determination module, a second input module, and a regulation module.
  • the first input module is configured to input a linearly varying bias control voltage at a bias electrode of the laser modulator;
  • the acquisition module is configured to obtain an output optical power of the laser modulator;
  • the determining module is configured to input the bias according to the first input module
  • the control voltage and the output optical power obtained by the acquisition module are determined, and the bias control voltage corresponding to the preset operating point is determined;
  • the second input module is configured to determine the offset determined by the biasing electrode input module during the normal working phase of the laser modulator
  • the control voltage is used to adjust the bias control voltage input by the second input module according to the output optical power of the laser modulator and the input pilot signal during the normal working phase of the laser modulator.
  • the characteristic of the modulator is scanned by inputting a linearly varying bias control voltage at the bias electrode of the laser modulator to obtain a bias corresponding to the preset operating point.
  • the voltage is controlled, and the bias control voltage is used as the initial bias control voltage to perform closed-loop feedback control on the laser modulator, thereby shortening the time for the laser modulator to stabilize and improving the accuracy of the bias control.
  • FIG. 1 is a block diagram showing the composition of a bias control device according to the prior art
  • FIG. 2 is a flow chart of a lithium niobate bias control method according to the prior art
  • FIG. 3 is a laser modulator bias control according to an embodiment of the present invention.
  • FIG. 4 is a graph showing the output power power characteristics of the laser modulator under the input of a linearly varying bias control voltage according to an embodiment of the present invention;
  • FIG. 5 is a preferred embodiment of the present invention.
  • FIG. 6 is a flowchart of a laser modulator bias control method according to an embodiment of the present invention;
  • FIG. 7 is a laser modulator bias control method according to an embodiment of the present invention;
  • FIG. 8A is a block diagram showing the structure of another laser modulator bias control device according to an embodiment of the present invention;
  • FIG. 8B is another laser modulator bias according to a preferred embodiment of the present invention.
  • the present invention is directed to the problem of achieving a stable operation time at the start of a laser modulator, and proposes a laser modulator bias control scheme in which a laser modulator is activated.
  • a linearly varying bias control voltage is input to the bias electrode of the laser modulator, and the input and output characteristics of the modulator are scanned to determine a bias control voltage corresponding to the preset operating point.
  • the bias control voltage as the initial bias control voltage, inputting the bias electrode in the normal working phase of the laser modulator, and performing closed-loop feedback control on the laser modulator.
  • a laser modulator bias control device is first proposed.
  • 3 is a block diagram showing the structure of a laser modulator bias control device according to an embodiment of the present invention. 3 It can be seen that the bias control device of the embodiment of the present invention adds a control unit and a selection switch to the conventional bias control device (shown in FIG. 1).
  • the laser modulator bias control apparatus includes: a photodiode PD 31, a first amplifier 32, a filter 33, a signal generator 35, a correlation operator 34, and a control unit 36. And select switch 37.
  • a photodiode PD 31 for detecting an output optical power of the laser modulator; one end of the first amplifier 32 is connected to the PD 31, and the other end is connected to the filter 33 for amplifying the output optical power detected by the PD 31, and The amplified output optical power is input to the filter 33; one end of the filter 33 is connected to the first amplifier 32, and the other end is connected to the correlation operator 34 for filtering the output optical power amplified by the first amplifier 32, And inputting the filtered output optical power to the correlation operator 34; one end of the correlation operator 34 is connected to the filter 33, and the other end is connected to the bias electrode of the laser modulator through the selection switch 37, and the correlation operator 34 is further connected to the signal generator 35 and a control unit 36, the bias electrode for bias control voltage input from the input control unit 36 to the laser modulator, and ⁇ photodiode PD 31 is detected by the first amplifier 32 and a filter
  • the output optical power processed by the processor 33 is
  • the selection switch 37 is connected to the control unit 36 and the correlation operator 34 for connecting the linearly varying bias control voltage outputted by the control unit 36 to the bias electrode during the laser modulator startup phase, and the laser modulator operates normally.
  • the bias control voltage output from the correlation operator 34 is connected to the bias electrode.
  • a second amplifier 38 may be added between the control unit 36 and the photodiode PD 31, as shown in FIG. 3, for detecting the optical power of the photodiode PD 31. Zoom in.
  • an analog to digital converter may be included in control unit 36 for converting the output optical power to a digital quantity.
  • control unit 36 may further include a scan generator for generating and outputting a linearly varying bias control voltage such that, in the case of such a continuously input bias control voltage, the output power of the laser modulator can be It shows a sinusoidal change as shown in Figure 4.
  • a scan generator for generating and outputting a linearly varying bias control voltage such that, in the case of such a continuously input bias control voltage, the output power of the laser modulator can be It shows a sinusoidal change as shown in Figure 4.
  • FIG. 5 is a structural diagram of a specific implementation of the above bias controller in a specific implementation process, the bias controller adopting an analog-digital hybrid circuit architecture.
  • the hardware part consists of an MCU microprocessor, a transimpedance amplifier, a two-stage filter and a bias amplifier, and an adder.
  • step-by-step control flow is mainly realized by MCU software programming.
  • the traditional control flow is divided into two steps. First, open-loop control is performed to detect the output characteristics of the laser modulator, and the bias control voltage corresponding to the preset operating point is obtained. Then the obtained bias control is obtained.
  • the voltage is input to the bias electrode as an initial value, and closed-loop control is performed to track the characteristic drift and shorten the control stabilization time.
  • a laser modulator bias control method which can be implemented by using the above-described bias control device. 6 is a control flow of a laser modulator bias control method according to an embodiment of the present invention, as shown in FIG.
  • the laser modulator bias control method mainly includes the following processing steps: Step S602: When the laser modulator is activated, a linearly varying bias control voltage is input to the bias electrode of the laser modulator.
  • Step S604 enabling the input of the signal of the RF modulator of the laser modulator, and passing the low frequency sinusoidal guide The frequency signal amplitude modulates the input signal, and simultaneously inputs the determined bias control voltage at the bias electrode;
  • step S606 sampling the output optical signal of the laser modulator, and comparing the sampled optical signal with the pilot signal According to the result of the comparison, the bias control voltage at the bias electrode input is adjusted.
  • Step S602 When the laser modulator is activated, first disconnect the communication signal input by the RF electrode and the related operation The input of the device is then controlled by the control unit's scan generator at a bias voltage of the laser modulator's bias electrode. Under the bias voltage, the laser modulator can output at the output as shown in Fig. 4. The sinusoidal output optical power shown, PD can detect the output optical power, and after amplification and analog/digital change, the corresponding relationship between the input bias control voltage and the output optical power can be obtained.
  • the preset working point is generally a point corresponding to the maximum value, the minimum value, or the intermediate value of the output optical power
  • the preset working point corresponding to The bias control voltage corresponding to the output optical power, that is, the bias control voltage corresponding to the preset operating point.
  • the processing of this step is actually an open loop control process, the purpose of which is to obtain the bias control voltage corresponding to the preset working point.
  • This step turns off the communication signal, and the input bias control voltage and output light can be detected within tens of milliseconds. The corresponding relationship of the powers, thereby obtaining the bias control voltage of the correct operating point.
  • Step S604 In this step, the communication signal input by the RF modulator of the laser modulator is turned on, and a low frequency sinusoidal pilot signal is generated by the signal generator to amplitude modulate the communication signal before the input RF pole, and the control unit will The bias control voltage determined in step S602 is output to the correlation operator, which outputs it as an initial bias control voltage to the bias control electrode.
  • Step S606 the PD photoelectrically converts the output optical signal of the laser modulator, obtains an output signal for amplification and filtering, and outputs it to the correlation operator, and the related operator inputs the optical signal and the signal generator.
  • the input pilot signals are compared, and the bias control voltage of the bias electrodes is adjusted based on the result of the comparison.
  • the processing of this step is the same as the traditional bias control process.
  • the offset control is adjusted. Voltage, in the case of a curve drift, keep the modulator operating point at the position of optical power Pmax, Pmin or (Pmax + Pmin) 12.
  • FIG. 7 is a flowchart of a specific implementation of a laser modulator bias control method according to an embodiment of the present invention. As shown in FIG. 7, the specific implementation of the method mainly includes the following steps: Step S702: Turn off the communication electrical signal; Step S704 : The control voltage is linearly scanned and output to the modulator bias control terminal via DAC1.
  • Step S706 ADC1 sampling And detecting, by the photodiode PD, the amplified PD voltage signal indicating the optical power;
  • Step S708 storing the optical power corresponding to each of the bias voltages;
  • Step S710 determining whether the scanning is finished, and if yes, executing step S712, otherwise, returning Step S704; After the scanning is finished, according to the stored optical power corresponding to each bias voltage, the bias characteristic table of the modulator can be obtained;
  • Step S712 The voltage corresponding to the bias operating point is obtained according to the demand lookup table.
  • the above steps S702 - S712 are the scanning flow of the open loop control.
  • the closed loop control feedback flow is basically the same as the conventional lithium niobate bias control method shown in FIG.
  • Step S714 Controlling the enable communication electrical signal
  • Step S716 DAC1 outputs a pilot signal, and the pilot signal passes After the electro-optical conversion is detected by the photodiode PD
  • Step S718 ADC0 samples the signal detected by the PD, and amplifies and filters the signal
  • Step S720 Perform correlation operation using the amplified and filtered signal and the pilot signal, and calculate Current offset error
  • Step S722 The current bias voltage is adjusted according to the magnitude and polarity of the current offset error.
  • step S724 is performed to increase the bias control voltage; if normal, step S726 is performed, and the bias control voltage is not adjusted; if it is high, step S728 is performed to lower the bias control voltage. Since the open-loop control scanning process has established an initial bias control voltage, the closed-loop control feedback process does not require excessive adjustments to achieve bias stabilization.
  • a laser modulator bias control device which can implement the above method. 8A is a block diagram showing the structure of a laser modulator bias control device according to an embodiment of the present invention, and FIG. 8B is a block diagram showing the structure of a laser modulator bias control device according to a preferred embodiment of the present invention. As shown in FIG.
  • a laser modulator bias control apparatus includes: a first input module 80, an acquisition module 82, a determination module 84, a second input module 86, and a regulation module 88.
  • the various modules described above are further described below in conjunction with the drawings.
  • the first input module 80 is coupled to the bias electrode of the laser modulator for inputting a linearly varying bias control voltage at the bias electrode of the laser modulator;
  • the acquisition module 82 is coupled to the output of the laser modulator for acquiring the laser
  • the output optical power of the modulator is connected to the first input module 80 and the acquisition module 82 for determining and presetting according to the bias control voltage input by the first input module 80 and the output optical power obtained by the acquisition module 82.
  • the second input module 86 is coupled to the determining module 84 and the bias electrode of the laser modulator for the bias control voltage determined by the bias electrode input determining module 84; the regulating module 88 and the obtaining
  • the module 82 and the second input module 86 are connected to adjust the bias control voltage of the second input module input 86 according to the output optical power of the laser modulator acquired by the acquisition module 82 and the input pilot signal.
  • the obtaining module 82 can include: a detecting submodule 822, a processing submodule 824, and an obtaining submodule 826, as shown in FIG. 8B.
  • the detecting sub-module 822 is configured to detect the output optical power of the laser modulator during the input of the bias control voltage by the first input module 80.
  • the processing sub-module 824 is connected to the detecting sub-module 822 for the detecting sub-module.
  • the output optical power detected by 822 is amplified and analog-digital converted; the acquisition sub-module 826 is connected to the detection sub-module 824 for obtaining The output optical power processed by the processing sub-module 824 is taken.
  • a linearly varying bias control voltage is input to the bias electrode of the laser modulator, and the input and output characteristics of the modulator are scanned, thereby obtaining
  • the operating point of the laser modulator corresponds to a bias control voltage
  • the bias control voltage is input to the bias control electrode as an initial bias control voltage when the laser modulator operates normally, and the bias is offset according to the deviation in operation.
  • Set the control voltage to adjust. Since the initial bias control voltage can be detected within tens of milliseconds after the communication signal is turned off, in the working phase, only the offset operating point drift caused by external factors needs to be tracked, so that the laser modulator can be shortened to a stable time.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Description

激光调制器偏置控制方法和装置
技术领域 本发明涉及通信技术领域, 尤其涉及激光调制器的偏置控制方法和装 置。 背景技术 由于外调制方式具有高速率、 大消光比、 高输入光功率、 啁啾可调及对 波长不敏感等优势, 可以增加波分系统的传输距离, 提高传输速度, 因此, 外调制方式在波分系统中具有广泛的应用。 然而由于基于 LiNb〇3 (铌酸锂) 材料的 Mach-Zehnder (马赫 -曾德尔)调制器工作点受温度、 机械应力、 器 件老化的影响出现相位漂移, 从而影响输出光信号的性能, 因此在使用调制 器时, 需要对调制器的偏置(BIAS ) 工作点进行反馈控制, 形成闭环, 保证 偏置稳定。 传统偏置控制装置的组成如图 1所示, 主要由调制器、 驱动器、 信号发 生器、 放大器、 相关运算器等组件组成。 该偏置控制装置的工作原理为: 信 号发生器产生低频正弦导频信号, 通过控制铌酸锂驱动器的增益控制端, 以 艮小的比例对高速通信电信号进行幅度调制(Amplitude Modulation, 筒称为 AM )。 经过铌酸锂调制器进行 Mach - Zehnder调制后转换为光信号输出到光 纤线路上。部分光被银酸锂调制器上附带的光电二极管( Photoelectric Diode , 筒称为 PD )检测, 经过放大、 滤波后与原始输入的导频信号进行对比, 进 行相关运算后得到偏置控制的误差电压, 用该误差电压对调制器偏置点进行 闭环反馈控制。 图 2示出了传统的铌酸锂偏置控制方法的流程图,该方法是一个典型的 相关检测 +比例积分算法, 主要包括以下步骤: 步骤 S214: 在调制器的输入端输入通信电信号; 步骤 S216: 在输出端输出的导频信号通过电 -光变换, 被光电二极管
PD检测; 步骤 S218:控制程序采样 PD检测的信号,并对该信号进行放大和滤波, 并将放大滤波后的信号输入相关运算器; 步骤 S220: 相关运算器才艮据输入的上述信号与导频信号进行相关运算, 计算出当前偏置误差; 步骤 S222: 根据当前偏置误差的大小和极性 , 调节当前偏置控制电压, 使偏置向正确的工作点方向进行调整; 具体地, 如果当前偏置误差偏低, 则 执行步骤 S224, 增加偏置控制电压; 如果正常, 则执行步骤 S226 , 不调整 偏置电压; 如果偏高, 则执行步骤 S228 , 降低偏置控制电压。 如上所述,在目前的偏置控制技术中,在调制器射频( Radio Frequency, 筒称为 RF )电极的通信信号中插入小幅度的低频导频信号,调制成光信号后, 在信号输出位置分光检测调制后的导频信号。 通过相关运算将检测信号与原 始信号进行幅度和相位上的对比, 检测出偏置误差, 经积分、 放大后输出到 调制器 BIAS电极上, 控制调制器的偏置相位, 维持工作点稳定。 在这种控制方法中, 由于每次调节的偏置控制电压的幅度较小, 在激光 调制器启动时, 其收敛速度慢, 因此, 激光调制器达到稳定工作点所需要的 时间较长, 有时长达数秒至数十秒。 发明内容 有鉴于此, 本发明提供一种激光调制器偏置控制方法及装置, 用以解决 现有技术中偏置控制方法收敛速度慢、 控制时间较长的问题。 才艮据本发明的一个方面, 提供了一种激光调制器偏置控制方法。 根据本发明提供的激光调制器偏置控制方法包括: 在激光调制器启动 时, 在激光调制器的偏置电极输入线性变化的偏置控制电压, 并获取激光调 制器的输出光功率, 确定与预设工作点对应的偏置控制电压; 然后, 使能激 光调制器射频电极的通信电信号, 并通过低频正弦导频信号对通信电信号进 行幅度调制, 同时在偏置电极输入确定的偏置控制电压; 对激光调制器的输 出光信号进行采样, 并将采样的光信号与导频信号进行比较, 根据比较的结 果, 调节输入偏置电极的偏置控制电压。 根据本发明的另一个方面 , 提供了一种激光调制器偏置控制装置。 根据本发明的激光调制器偏置控制装置包括:光电二极管、第一放大器、 滤波器和相关运算器、 控制单元和选择开关, 其中, 光电二极管用于检测激 光调制器的输出光功率; 控制单元用于在激光调制器的偏置电极输入线性变 化的偏置控制电压, 并根据光电二极管检测到的输出光功率, 确定与预设的 工作点对应的偏置控制电压; 相关运算器用于将控制单元确定的偏置控制电 压输入到激光调制器的偏置电极; 选择开关用于在激光调制器启动阶段, 将 控制单元输出的线性变化的偏置控制电压接入到偏置电极, 在激光调制器正 常工作阶段, 将相关运算器输出的偏置控制电压接入到偏置电极。 根据本发明的又一个方面 , 提供了另一种激光调制器偏置控制装置。 根据本发明的另一种激光调制器偏置控制装置包括: 第一输入模块、 获 取模块、 确定模块、 第二输入模块和调控模块。 其中, 第一输入模块用于在 激光调制器的偏置电极输入线性变化的偏置控制电压; 获取模块用于获取激 光调制器的输出光功率; 确定模块用于根据第一输入模块输入的偏置控制电 压和获取模块获取的输出光功率, 确定与预设工作点对应的偏置控制电压; 第二输入模块用于在激光调制器正常工作阶段, 在偏置电极输入确定模块确 定的偏置控制电压; 调控模块用于在激光调制器正常工作阶段, 根据激光调 制器的输出光功率与输入的导频信号, 对第二输入模块输入的偏置控制电压 进行调节。 通过本发明的上述至少一个方案, 通过在激光调制器的启动阶段, 在其 偏置电极输入线性变化的偏置控制电压, 对调制器的特性进行扫描, 从而获 取预设工作点对应的偏置控制电压 , 并将该偏置控制电压作为初始偏置控制 电压 , 对激光调制器进行闭环反馈控制 , 从而缩短了激光调制器达到稳定的 时间, 提高了偏置控制的精度。 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说 明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优 点可通过在所写的说明书、 权利要求书、 以及附图中所特别指出的结构来实 现和获得。 附图说明 此处所说明的附图用来提供对本发明的进一步理解 ,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1为根据现有技术的偏置控制装置的组成框图; 图 2为根据现有技术的铌酸锂偏置控制方法的流程图; 图 3为根据本发明实施例的激光调制器偏置控制装置的结构框图; 图 4 为才艮据本发明实施例中在输入线性变化的偏置控制电压的作用下 的激光调制器输出光功率特性曲线图; 图 5为才艮据本发明优选实施例的偏置控制装置的结构框图; 图 6为才艮据本发明实施例的激光调制器偏置控制方法的流程图; 图 7 为才艮据本发明实施例的激光调制器偏置控制方法的具体实现流程 图; 图 8A为才艮据本发明实施例的另一种激光调制器偏置控制装置的结构框 图; 图 8B为才艮据本发明优选实施例的另一种激光调制器偏置控制装置的结 构框图。 具体实施方式 功能相克述 本发明针对目前在激光调制器启动时 , 达到稳定工作的时间较长的问 题, 提出了一种激光调制器偏置控制方案, 在该方案中, 通过在激光调制器 启动时, 在断开通信信号输入的情况下, 在激光调制器的偏置电极输入线性 变化的偏置控制电压, 扫描调制器的输入输出特性, 从而确定与预设工作点 对应的偏置控制电压, 并将该偏置控制电压作为初始偏置控制电压, 在激光 调制器正常工作阶段输入其偏置电极, 对激光调制器进行闭环反馈控制。 以下结合附图对本发明的优选实施例进行说明 , 应当理解 , 此处所描述 的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。 根据本发明实施例, 首先提出了一种激光调制器偏置控制装置。 图 3为根据本发明实施例的激光调制器偏置控制装置的结构框图,由图 3可知, 本发明实施例的偏置控制装置在传统偏置控制装置 (如图 1所示) 基础上增加了控制单元和选择开关。 如图 3所示, 才艮据本发明实施例的激光 调制器偏置控制装置包括: 光电二极管 PD 31、 第一放大器 32、 滤波器 33、 信号发生器 35、 相关运算器 34、 控制单元 36和选择开关 37。 下面接合附图 进一步描述上述各个实体。 光电二极管 PD 31 , 用于检测激光调制器的输出光功率; 第一放大器 32的一端与 PD 31连接, 另一端与滤波器 33连接, 用于对 PD 31检测到的输出光功率进行放大, 并将放大后的输出光功率输入到滤波 器 33; 滤波器 33的一端与第一放大器 32连接,另一端与相关运算器 34连接, 用于对经第一放大器 32 放大的输出光功率进行滤波, 并将滤波后的输出光 功率输入到相关运算器 34; 相关运算器 34的一端与滤波器 33连接, 另一端通过选择开关 37与激 光调制器的偏置电极连接, 并且, 相关运算器 34还与信号发生器 35和控制 单元 36连接, 用于将控制单元 36输入的偏置控制电压输入到激光调制器的 偏置电极, 并^1光电二极管 PD 31检测到的经第一放大器 32和滤波器 33处 理后的输出光功率与从信号发生器 35 接收到的导频信号进行比较, 根据比 较结果, 调节输入偏置电极的偏置控制电压; 选择开关 37与控制单元 36和相关运算器 34连接, 用于在激光调制器 启动阶段, 将控制单元 36输出的线性变化的偏置控制电压接入到偏置电极, 在激光调制器正常工作阶段, 将相关运算器 34 输出的偏置控制电压接入到 偏置电极。 为了使控制单元 36 获取的输出光功率便于处理, 可以在控制单元 36 和光电二极管 PD 31之间 , 添加第二放大器 38, 如图 3所示, 用于对光电二 极管 PD 31检测到的光功率进行放大。 为了将获取的输出光功率由模拟信号转换为数字信号, 在控制单元 36 中可以包含一个模 /数变换器, 用于将输出光功率转换为数字量。 并且, 控制 单元 36 还可以包括一个扫描发生器, 用于产生并输出呈线性变化的偏置控 制电压, 使得在这种连续输入的偏置控制电压的情况下, 激光调制器的输出 光功率可以呈如图 4所示的正弦变化。 如图 4 所示在偏置电极输入呈线性变化的偏置控制电压作用下, 且在 RF电极无信号输入, 铌酸锂调制器输出光功率按照三角函数规律周期变化。 图 5为在具体实施过程中上述偏置控制器的具体实现的结构图,该偏置 控制器采用模拟-数字混合电路架构。 硬件部分由 MCU微处理器、 跨阻抗 放大器、 两级滤波器和偏置放大器、 加法器组成, 硬件上比传统方案增加了 极少的器件, 包括: 导频信号检测器件 ADC0、 光功率监控器件 ADC1、 偏 置控制器件 DAC0、 导频信号产生器件 DAC1、 调制器射频增益控制器件 DAC2 , 分步控制流程主要通过 MCU软件编程实现。 通过附加的开环控制回 路, 将传统的控制流程分成了两步, 首先开环控制, 检测出激光调制器输出 特性, 得到预设工作点对应的偏置控制电压; 然后将得到的偏置控制电压作 为初始值输入到偏置电极, 进行闭环控制, 跟踪特性漂移, 缩短了控制稳定 时间。 才艮据本发明实施例, 还提供了一种激光调制器偏置控制方法, 该方法可 以利用上述的偏置控制装置实现。 图 6为才艮据本发明实施例的激光调制器偏置控制方法的控制流程,如图
6 所示, 根据本发明实施例的激光调制器偏置控制方法主要包括如下处理步 骤: 步骤 S602: 在激光调制器启动时, 在激光调制器的偏置电极输入线性 变化的偏置控制电压, 并获取激光调制器的输出光功率, 扫描调制器的输入 输出特性, 确定与预设工作点对应的偏置控制电压; 步骤 S604: 使能输入激光调制器射频电极的信号, 并通过低频正弦导 频信号对输入的信号进行幅度调制 , 同时在偏置电极输入上述确定的偏置控 制电压; 步骤 S606: 对激光调制器的输出光信号进行采样, 并将采样的光信号 与导频信号进行比较, 根据比较的结果, 调节在偏置电极输入的偏置控制电 压。 以下进一步描述上述处理的各细节。 (一) 步骤 S602 在激光调制器启动时, 首先断开 RF电极输入的通信信号以及相关运算 器的输入, 然后通过控制单元的扫描发生器在激光调制器的偏置电极输入呈 线性变化的偏置控制电压, 在该偏置电压的作用下, 激光调制器在输出端可 以输出如图 4所示的呈正弦变化的输出光功率, PD可以检测到该输出光功 率, 进行放大和模 /数变化后, 可以得到输入的偏置控制电压与输出光功率的 对应关系。 由于预设工作点一般为输出光功率的最大值、 最小值或中间值对应的 点, 因此, 在得到输入的偏置控制电压与输出光功率的对应关系后, 可以得 到预设工作点对应的输出光功率所对应的偏置控制电压, 也就是预设工作点 对应的偏置控制电压。 该步骤的处理其实是一个开环控制过程,其目的是得到预设工作点对应 的偏置控制电压, 该步骤关闭通信信号, 数十毫秒内即可检测出输入的偏置 控制电压与输出光功率的对应关系 , 从而得到正确工作点的偏置控制电压。
(二) 步骤 S604 在该步骤中, 导通激光调制器 RF极输入的通信信号, 并通过信号发生 器产生一低频正弦导频信号对输入 RF极之前的通信信号进行幅度调制, 控 制单元将在步骤 S602 中确定的偏置控制电压输出给相关运算器, 相关运算 器将其作为初始偏置控制电压输出到偏置控制电极。
(三) 步骤 S606 在该步骤中 , PD对激光调制器的输出光信号进行光电变换 , 得到输出 信号进行放大和滤波后, 输出到相关运算器, 相关运算器对输入的光信号与 信号发生器输入的导频信号进行比较, 根据比较的结果, 调节偏置电极的偏 置控制电压。 该步骤的处理与传统的偏置控制过程相同, 对在激光调制器工作过程 中, 由于温度、 应力、 老化等外部因素, 输出光功率的特性曲线发生左右的 偏移时, 通过调整偏置控制电压, 在曲线漂移的情况下, 保持调制器工作点 位于光功率 Pmax, Pmin或者( Pmax + Pmin ) 12的位置。 由于相关运算器输 出已经是正确的偏置工作点 , 控制环路只需要跟踪外部因素造成的偏置工作 点漂移即可, 从而大大地缩短了调制器达到稳定的时间。 根据本发明实施例的上述方法克服了现有偏置控制技术收敛速度慢,控 制时间过长的缺点, 缩短了控制稳定时间, 提高了控制精度。 图 7 为才艮据本发明实施例的激光调制器偏置控制方法的具体实现流程 图, 如图 7所示, 该方法的具体实现主要包括以下步骤: 步骤 S702: 关闭通信电信号; 步骤 S704: 控制电压进行线性扫描, 经 DAC1输出到调制器偏置控制 端 , 在该偏置扫描电压的作用下, 输出光功率将按照当前调制器偏置电 -光 调制特性变化; 步骤 S706: ADC1采样经过光电二极管 PD检测放大后的表征光功率的 PD电压信号; 步骤 S708: 存储每一个偏置电压所对应的光功率; 步骤 S710: 判断扫描是否结束, 如果是, 则执行步骤 S712, 否则, 返 回步骤 S704; 在扫描结束后, 才艮据存储的每个偏置电压对应的光功率, 可以得到调制 器的偏置特性表; 步骤 S712: 才艮据需求查表得到偏置工作点对应的电压, 经 DAC1输出 , 即可快速建立初始偏置, 完成开环控制扫描流程。 上述步骤 S702 -步骤 S712为开环控制的扫描流程。 闭环控制反馈流程与图 2所示的传统铌酸锂偏置控制方法基本相同,主 要包括以下步骤: 步骤 S714: 控制使能通信电信号; 步骤 S716: DAC1 输出导频信号, 该导频信号通过电-光变换后被光 电二极管 PD检测; 步骤 S718: ADC0采样 PD检测的信号, 并对该信号进行放大和滤波; 步骤 S720: 利用上述放大和滤波后的信号与导频信号进行相关运算, 计算出当前偏置误差; 步骤 S722: 才艮据当前偏置误差的大小和极性调节当前偏置电压。 具体 地, 如果偏氏, 则执行步骤 S724, 增加偏置控制电压; 如果正常, 则执行步 骤 S726, 不调整偏置控制电压; 如果偏高, 则执行步骤 S728 , 降低偏置控 制电压。 由于开环控制扫描流程已经建立初始偏置控制电压 , 闭环控制反馈 流程不需要做过多的调整即可实现偏置稳定。 根据本发明实施例 , 还提供了一种激光调制器偏置控制装置 , 该装置可 以实现上述方法。 图 8A为才艮据本发明实施例的激光调制器偏置控制装置的结构框图 , 图 8B 为才艮据本发明优选实施例的激光调制器偏置控制装置的结构框图。 如图 8A所示,根据本发明实施例的激光调制器偏置控制装置包括: 第一输入模块 80、 获取模块 82、 确定模块 84、 第二输入模块 86和调控模块 88。 以下接合 附图进一步描述上述各个模块。 第一输入模块 80与激光调制器的偏置电极连接, 用于在激光调制器的 偏置电极输入线性变化的偏置控制电压; 获取模块 82与激光调制器的输出端连接 , 用于获取激光调制器的输出 光功率; 确定模块 84与第一输入模块 80和获取模块 82连接 , 用于根据第一输 入模块 80输入的偏置控制电压和获取模块 82获取的输出光功率, 确定与预 设工作点对应的偏置控制电压; 第二输入模块 86与确定模块 84和激光调制器的偏置电极连接,用于在 偏置电极输入确定模块 84确定的偏置控制电压; 调控模块 88与获取模块 82和第二输入模块 86连接, 用于根据获取模 块 82 获取的激光调制器的输出光功率与输入的导频信号, 对第二输入模块 输入 86的偏置控制电压进行调节。 进一步地, 获取模块 82 可以包括: 检测子模块 822、 处理子模块 824 和获取子模块 826, 如图 8B所示。 其中, 检测子模块 822, 用于在第一输入 模块 80 输入偏置控制电压的过程中, 检测激光调制器的输出光功率; 处理 子模块 824与检测子模块 822连接 , 用于对检测子模块 822检测到的输出光 功率进行放大和模 /数变换; 获取子模块 826与检测子模块 824连接, 用于获 取经过处理子模块 824处理后的所述输出光功率。 如上所述, 借助本发明, 可以在激光调制器的启动阶段, 通过关闭通信 信号, 在激光调制器的偏置电极输入线性变化的偏置控制电压, 扫描调制器 的输入输出特性, 从而得到与激光调制器的工作点对应的偏置控制电压, 并 将该偏置控制电压作为激光调制器正常工作时的初始偏置控制电压输入到偏 置控制电极, 并根据工作中的偏移对该偏置控制电压进行调节。 由于在关闭 通信信号后, 数十毫秒内便可检测出初始偏置控制电压, 而在工作阶段, 只 需要跟踪外部因素造成的偏置工作点漂移 , 因而可以缩短激光调制器达到稳 定的时间 , 提高控制精度, 减少了光发射机的准备时间。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的^^申和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种激光调制器偏置控制方法, 其特征在于, 包括:
在激光调制器启动时 ,在所述激光调制器的偏置电极输入线性变化 的偏置控制电压, 并获取所述激光调制器的输出光功率, 确定与预设工 作点对应的偏置控制电压;
使能所述激光调制器射频电极的通信电信号,并通过^^频正弦导频 信号对所述通信电信号进行幅度调制, 同时在所述偏置电极输入确定的 所述偏置控制电压;
对所述激光调制器的输出光信号进行采样 ,并将采样的光信号与所 述导频信号进行比较, 才艮据比较的结果, 调节输入所述偏置电极的所述 偏置控制电压。
2. 根据权利要求 1所述的方法, 其特征在于, 在所述激光调制器的偏置电 极输入线性变化的偏置控制电压具体包括:
输入呈线性变化的偏置控制电压 ,使所述激光调制器的输出光功率 呈正弦变化。
3. 才艮据权利要求 1或 2所述的方法, 其特征在于, 所述确定与预设工作点 对应的偏置电压具体包括:
确定输入的所述偏置控制电压和所述输出光功率的对应关系; 根据所述对应关系, 以及所述预设工作点对应的输出光功率, 获取 所述预设工作点对应的所述偏置控制电压。
4. 根据权利要求 3所述的方法, 其特征在于, 所述确定输入的所述偏置控 制电压和所述输出光功率的对应关系具体包括: 检测所述输出光功率, 并对所述光功率进行放大和模 /数变换, 获 取经过变换的输出光功率的值;
才艮据输入的所述偏置控制电压的值与所述经过变换的输出光功率 的值, 获取所述输出光功率与输入的所述偏置控制电压的对应关系。
5. 根据权利要求 1所述的方法, 其特征在于, 所述预设工作点包括: 所述 输出光功率的最大值、 最小值或中间值对应的点。
6. 一种激光调制器偏置控制装置, 包括光电二极管、 第一放大器、 滤波器 和相关运算器, 其特征在于, 还包括: 控制单元和选择开关, 其中, 所述光电二极管, 用于检测所述激光调制器的输出光功率; 所述控制单元,用于在所述激光调制器的偏置电极输入线性变化的 偏置控制电压, 并根据所述光电二极管检测到的输出光功率, 确定与预 设的工作点对应的偏置控制电压;
所述相关运算器,用于将所述控制单元确定的所述偏置控制电压作 为初始偏置控制电压输入到所述激光调制器的偏置电极;
所述选择开关, 用于在所述激光调制器启动阶段, 将所述控制单元 输出的线性变化的偏置控制电压接入到所述偏置电极, 在所述激光调制 器正常工作阶段, 将所述相关运算器输出的所述偏置控制电压接入到所 述偏置电极。
7. 根据权利要求 6所述的装置, 其特征在于, 所述偏置控制装置还包括: 第二放大器,用于对所述光电二极管检测到的输出光功率进行放大 后, 输入所述控制单元。
8. 根据权利要求 6所述的装置, 其特征在于, 所述控制单元包括:
扫描发生器, 用于产生呈线性变化的偏置控制电压, 并将所述偏置 控制电压输入到所述激光调制器的偏置电极;
模 /数变换器 , 用于将所述光电二极管检测到的输出光功率转换为 数字量。
9. 一种激光调制器偏置控制装置, 其特征在于, 包括:
第一输入模块,用于在激光调制器的偏置电极输入线性变化的偏置 控制电压;
获取模块, 用于获取所述激光调制器的输出光功率; 确定模块,用于才艮据所述第一输入模块输入的偏置控制电压和所述 获取模块获取的输出光功率, 确定与预设工作点对应的偏置控制电压; 第二输入模块, 用于在所述激光调制器正常工作阶段, 在所述偏置 电极输入所述确定模块确定的所述偏置控制电压;
调控模块, 用于在所述激光调制器正常工作阶段, 才艮据所述激光调 制器的输出光功率与输入的导频信号 , 对所述第二输入模块输入的所述 偏置控制电压进行调节。 才艮据权利要求 9所述的装置, 其特征在于, 所述获取模块包括:
检测子模块,用于在所述第一输入模块输入所述偏置控制电压的过 程中 , 检测所述激光调制器的输出光功率;
处理子模块,用于对所述检测子模块检测到的所述输出光功率进行 放大和模 /数变换;
获取子模块,用于获取经过所述处理子模块处理后的所述输出光功 率。
PCT/CN2009/073058 2008-09-05 2009-08-03 激光调制器偏置控制方法和装置 WO2010025641A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09811016.6A EP2333915B1 (en) 2008-09-05 2009-08-03 Method and device of bias control of laser modulator
US13/061,709 US8320775B2 (en) 2008-09-05 2009-08-03 Method and device for bias control of a laser MZ modulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810215037.0 2008-09-05
CN2008102150370A CN101354515B (zh) 2008-09-05 2008-09-05 激光调制器偏置控制方法和装置

Publications (1)

Publication Number Publication Date
WO2010025641A1 true WO2010025641A1 (zh) 2010-03-11

Family

ID=40307382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073058 WO2010025641A1 (zh) 2008-09-05 2009-08-03 激光调制器偏置控制方法和装置

Country Status (4)

Country Link
US (1) US8320775B2 (zh)
EP (1) EP2333915B1 (zh)
CN (1) CN101354515B (zh)
WO (1) WO2010025641A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140953A (zh) * 2021-03-31 2021-07-20 深圳市欧凌镭射科技有限公司 一种激光信号的控制方法、装置、激光器及可读存储介质

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101354515B (zh) 2008-09-05 2012-04-04 中兴通讯股份有限公司 激光调制器偏置控制方法和装置
CN101777886A (zh) * 2009-12-03 2010-07-14 中兴通讯股份有限公司 一种偏置控制滤波器及外调制器偏置控制滤波装置
CN101807085A (zh) * 2010-03-12 2010-08-18 上海华魏光纤传感技术有限公司 偏置控制及驱动装置以及控制和驱动光强度调制器的方法
CN101846814B (zh) * 2010-03-25 2013-05-08 中兴通讯股份有限公司 调制器的偏置点确定方法和装置
CN101808063B (zh) * 2010-03-30 2014-01-01 中兴通讯股份有限公司 一种控制调制器相位延迟偏置点的方法及装置
CN101995569A (zh) * 2010-09-28 2011-03-30 中国科学院上海光学精密机械研究所 消光比自补偿电光调制光脉冲装置
WO2012144082A1 (en) * 2011-04-19 2012-10-26 Nec Corporation Optical transmitter and method for controlling the same
CN102333056B (zh) * 2011-10-08 2015-08-12 中兴通讯股份有限公司 控制双偏振正交相移键控调制器相位偏置点的方法及系统
EP2845048B1 (en) 2012-05-02 2017-03-01 BAE Systems PLC Controlling bias voltages for optical modulators
GB2502261A (en) * 2012-05-02 2013-11-27 Bae Systems Plc Controlling a bias voltage for an optical modulator
GB2502260A (en) * 2012-05-02 2013-11-27 Bae Systems Plc Controlling a bias voltage for an optical modulator
GB2502258A (en) * 2012-05-02 2013-11-27 Bae Systems Plc Determining a bias voltage for an optical modulator
GB2502259A (en) * 2012-05-02 2013-11-27 Bae Systems Plc Finding a bias voltage for an optical modulator
US8849129B2 (en) * 2012-07-20 2014-09-30 Finisar Corporation Method and apparatus for stabilization of optical transmitter
CN104467979B (zh) 2013-09-12 2017-06-27 华为技术有限公司 Qpsk信号的共轭关系识别方法、装置及色散补偿方法、系统
WO2015063437A1 (en) * 2013-11-01 2015-05-07 Bae Systems Plc Controlling bias voltages for optical modulators
WO2015149254A1 (zh) * 2014-03-31 2015-10-08 华为技术有限公司 控制导频信号调制深度的方法、发射机及导频锁定装置
US11115022B2 (en) * 2015-05-07 2021-09-07 Northwestern University System and method for integrated circuit usage tracking circuit with fast tracking time for hardware security and re-configurability
CN106559139A (zh) * 2015-09-29 2017-04-05 青岛海信宽带多媒体技术有限公司 一种光模块
CN105609954B (zh) * 2015-10-30 2018-07-24 中国电子科技集团公司第二十九研究所 一种基于光学手段的一位幅/相加权实现方法及装置
CN105388959B (zh) * 2015-11-10 2018-02-16 上海金盾消防智能科技有限公司 一种基于pwm信号控制激光管功率电路及方法
CN107294613A (zh) * 2016-03-30 2017-10-24 青岛海信宽带多媒体技术有限公司 一种光模块
CN109196408B (zh) * 2016-06-02 2021-09-17 三菱电机株式会社 光调制装置以及光调制装置的控制方法
CN106506071A (zh) * 2016-10-30 2017-03-15 中国电子科技集团公司第二十九研究所 一种mzm调制器工作点控制方法及装置
JP7056729B2 (ja) * 2018-03-30 2022-04-19 日本電気株式会社 光送受信装置、光変調器制御方法および光変調器制御プログラム
CN110749875B (zh) * 2019-10-28 2023-03-31 中国计量大学 一种导频自适应的马赫曾德调制器激光脉冲调节模块
CN112782972B (zh) * 2019-11-07 2022-12-02 大族激光科技产业集团股份有限公司 激光加热温度控制方法
CN111077820B (zh) * 2019-12-12 2022-10-14 太原理工大学 基于SoC FPGA的电光调制器偏置电压控制及校准方法
CN111045229B (zh) * 2019-12-20 2021-05-14 天津大学 一种电光调制器偏置电压线性工作点控制方法
US20220021463A1 (en) * 2020-07-15 2022-01-20 Xuefeng Tang Device and method for real-time calibration and compensation for transmitter power imbalance in a coherent transceiver
CN114499684B (zh) * 2020-10-26 2023-12-05 青岛海信宽带多媒体技术有限公司 一种控制mz调制器工作点稳定的方法及系统
CN114745060B (zh) * 2022-04-15 2023-09-22 烽火通信科技股份有限公司 一种光学调制器偏压控制方法及系统
CN114647030B (zh) * 2022-05-19 2022-09-09 深圳市迅特通信技术股份有限公司 一种用于pon olt系统的硅基光电子的收发集成芯片

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5003624A (en) * 1990-03-29 1991-03-26 Hughes Aircraft Company Automatic bias controller for electro-optic modulator
US5557445A (en) * 1994-02-25 1996-09-17 Fujitsu Limited Optical signal transmitter having an apc circuit with automatic bias current control
US5812572A (en) * 1996-07-01 1998-09-22 Pacific Fiberoptics, Inc. Intelligent fiberoptic transmitters and methods of operating and manufacturing the same
JP2002328348A (ja) * 2001-04-27 2002-11-15 Toshiba Corp 光変調装置および交番位相化パルス発生装置
US20070248130A1 (en) * 2006-04-25 2007-10-25 Hiroto Ishibashi Optical transmitter with a digitally controlled bias and modulation currents for a laser diode
EP1939679A2 (en) * 2003-03-27 2008-07-02 Fujitsu Limited Control apparatus and control method for optical modulator
CN101354515A (zh) * 2008-09-05 2009-01-28 中兴通讯股份有限公司 激光调制器偏置控制方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3499605B2 (ja) 1994-09-07 2004-02-23 株式会社東芝 光外部強度変調器
JP2697639B2 (ja) 1994-11-04 1998-01-14 日本電気株式会社 光変調装置
JP3672257B2 (ja) 2002-08-09 2005-07-20 住友大阪セメント株式会社 外部光変調器の動作点/光出力安定化方法及び装置
US7787778B2 (en) * 2004-12-10 2010-08-31 Ciena Corporation Control system for a polar optical transmitter
JP4922594B2 (ja) * 2005-05-23 2012-04-25 富士通株式会社 光送信装置、光受信装置、およびそれらを含む光通信システム
JP4552032B2 (ja) * 2005-08-31 2010-09-29 独立行政法人情報通信研究機構 高次成分を消去可能な光振幅変調システム
CN100535710C (zh) * 2006-06-12 2009-09-02 中兴通讯股份有限公司 一种铌酸锂调制器控制方法及系统
JP2008039929A (ja) * 2006-08-02 2008-02-21 Nec Corp 光送信システム及び光送信器,光送信方法、光送信用プログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5003624A (en) * 1990-03-29 1991-03-26 Hughes Aircraft Company Automatic bias controller for electro-optic modulator
US5557445A (en) * 1994-02-25 1996-09-17 Fujitsu Limited Optical signal transmitter having an apc circuit with automatic bias current control
US5812572A (en) * 1996-07-01 1998-09-22 Pacific Fiberoptics, Inc. Intelligent fiberoptic transmitters and methods of operating and manufacturing the same
JP2002328348A (ja) * 2001-04-27 2002-11-15 Toshiba Corp 光変調装置および交番位相化パルス発生装置
EP1939679A2 (en) * 2003-03-27 2008-07-02 Fujitsu Limited Control apparatus and control method for optical modulator
US20070248130A1 (en) * 2006-04-25 2007-10-25 Hiroto Ishibashi Optical transmitter with a digitally controlled bias and modulation currents for a laser diode
CN101354515A (zh) * 2008-09-05 2009-01-28 中兴通讯股份有限公司 激光调制器偏置控制方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140953A (zh) * 2021-03-31 2021-07-20 深圳市欧凌镭射科技有限公司 一种激光信号的控制方法、装置、激光器及可读存储介质

Also Published As

Publication number Publication date
CN101354515A (zh) 2009-01-28
EP2333915A4 (en) 2011-11-16
EP2333915B1 (en) 2016-08-31
EP2333915A1 (en) 2011-06-15
US8320775B2 (en) 2012-11-27
CN101354515B (zh) 2012-04-04
US20110164300A1 (en) 2011-07-07

Similar Documents

Publication Publication Date Title
WO2010025641A1 (zh) 激光调制器偏置控制方法和装置
CN101859156B (zh) 电光调制器偏置电压控制装置及其控制方法
JP3765967B2 (ja) 光送信装置およびこれに用いる光変調器のバイアス電圧制御方法
EP2432139B1 (en) Method, device and system for feedback control of a coherent receiver
CN1524327A (zh) 可调谐激光器控制系统
JP4915147B2 (ja) 位相制御装置および光dqpsk受信機
WO2010056905A1 (en) Bias control apparatus and method for optical modulator
CN201690436U (zh) 应用于相位调制器的工作点控制装置
CN103412594B (zh) 电光调制器工作点控制装置及控制方法
CN101674138B (zh) 差分四相相移键控发送机的驱动幅度控制装置及方法
CN116566494B (zh) 信号传输系统
CN209418982U (zh) 半导体激光器的平均功率及消光比控制电路
CN102496850B (zh) 一种稳定的激光光源
JP2006041628A (ja) 光受信回路
JP2020046497A (ja) マッハツェンダ干渉型光変調器
CN105807534B (zh) 工作模式可选的智能化半导体光纤放大器
CN103235629B (zh) 实现输出功率自动调节控制电路结构及其方法
CN108964758B (zh) 双平行马赫-曾德尔调制器啁啾参数的测量方法及系统
CN111025689A (zh) 一种dp-bpsk电光调制器偏置电压控制方法及控制器
JP2013125049A (ja) 光検出回路
CN112436378B (zh) 一种激光器驱动电流扩流系统
CN110911962B (zh) 光模块消光比闭环控制系统
CN202384638U (zh) 一种稳定的激光光源
CN115704972A (zh) 偏置点检测方法、控制方法、检测电路、控制电路及雷达
CN115225156B (zh) 用于光发射器的反馈电路和光发射器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811016

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13061709

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009811016

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009811016

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1391/KOLNP/2011

Country of ref document: IN