WO2010024126A1 - 磁気抵抗素子、論理ゲート、及び論理ゲートの動作方法 - Google Patents
磁気抵抗素子、論理ゲート、及び論理ゲートの動作方法 Download PDFInfo
- Publication number
- WO2010024126A1 WO2010024126A1 PCT/JP2009/064262 JP2009064262W WO2010024126A1 WO 2010024126 A1 WO2010024126 A1 WO 2010024126A1 JP 2009064262 W JP2009064262 W JP 2009064262W WO 2010024126 A1 WO2010024126 A1 WO 2010024126A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetization
- logic gate
- magnetic layers
- magnetoresistive element
- magnetic
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 9
- 230000005415 magnetization Effects 0.000 claims abstract description 191
- 239000004065 semiconductor Substances 0.000 claims description 12
- 230000006870 function Effects 0.000 description 33
- 238000010586 diagram Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/16—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using saturable magnetic devices
- H03K19/168—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using saturable magnetic devices using thin-film devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/161—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1659—Cell access
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1675—Writing or programming circuits or methods
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/18—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using galvano-magnetic devices, e.g. Hall-effect devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/01—Manufacture or treatment
Definitions
- the present invention relates to a magnetoresistive element, a logic gate using the magnetoresistive element, and a semiconductor integrated circuit including the logic gate.
- a typical magnetoresistive element includes a magnetization fixed layer whose magnetization direction is fixed, a magnetization free layer whose magnetization direction can be reversed, and a nonmagnetic material layer sandwiched between the magnetization fixed layer and the magnetization free layer.
- the magnetoresistive element is called a TMR (Tunnel MagnetoResistance) element or an MTJ (Magnetic Tunnel Junction) element.
- the resistance value of the magnetoresistive element varies depending on whether the magnetization directions of the magnetization fixed layer and the magnetization free layer are parallel or antiparallel.
- a memory that stores data in a non-volatile manner using such a change in the resistance value of the magnetoresistive element is a magnetic random access memory (MRAM).
- MRAM magnetic random access memory
- FIG. 1 schematically shows a configuration of a magnetic logic element 100 described in Japanese Patent Application Laid-Open No. 2004-6775.
- the magnetic logic element 100 includes two magnetoresistive elements 110 and 120, and the two magnetoresistive elements 110 and 120 are stacked with the intermediate portion SP interposed therebetween.
- the first magnetoresistive element 110 has a laminated structure in which a hard magnetic part HM1, a spin transfer intermediate part NM1, and a soft magnetic part SM1 are laminated.
- the second magnetoresistive element 120 has a laminated structure in which a hard magnetic part HM2, a spin transfer intermediate part NM2, and a soft magnetic part SM2 are laminated.
- the hard magnetic portions HM1 and HM2 correspond to a magnetization fixed layer whose magnetization direction is fixed.
- the soft magnetic parts SM1 and SM2 correspond to magnetization free layers whose magnetization directions are not fixed.
- the soft magnetic parts SM1 and SM2 are provided on both sides of the intermediate part SP.
- the magnetization directions of the soft magnetic parts SM1 and SM2 are controlled by a spin injection method.
- the spin injection method a current in the vertical direction is passed between the soft magnetic part and the hard magnetic part through the spin transfer intermediate part, and the magnetization direction of the soft magnetic part is reversed by spin transfer due to spin-polarized electrons.
- electrodes E1, E2, E3, and E4 are connected to the hard magnetic part HM1, the soft magnetic part SM1, the soft magnetic part SM2, and the hard magnetic part HM2, respectively.
- the magnetization direction of the soft magnetic part SM1 of the first magnetoresistive element 110 can be controlled.
- the magnetization direction of the soft magnetic part SM2 of the second magnetoresistive element 120 can be controlled by inputting input signals to the electrodes E3 and E4. Then, the logical value of the magnetic body logic element 100 is determined according to the relationship of the magnetization direction (parallel, antiparallel) between the soft magnetic part SM1 and the soft magnetic part SM2.
- a magnetic logic element 100 In such a magnetic logic element 100, two types of input signals (A, B) are appropriately input to the electrodes E1 to E4. Thereby, the magnetic body logic element 100 can implement
- Such an element is referred to as a “reconfigurable logic gate”.
- An object of the present invention is to provide a technique capable of realizing a reconfigurable logic gate at a lower cost.
- a logic gate in a first aspect of the present invention, includes a magnetoresistive element, a magnetization state control unit, and an output unit.
- the magnetoresistive element has a laminated structure in which N layers (N is an integer of 3 or more) magnetic layers and N ⁇ 1 nonmagnetic layers are alternately laminated.
- the resistance value of the magnetoresistive element changes according to the magnetization state of the N magnetic layers.
- the magnetization state control unit sets the magnetization states of the N magnetic layers according to each of the N types of input data.
- the output unit outputs output data that changes according to the resistance value of the magnetoresistive element.
- a semiconductor integrated circuit including the logic gate is provided.
- a method for operating a logic gate having a magnetoresistive element has a laminated structure in which N layers (N is an integer of 3 or more) magnetic layers and N ⁇ 1 nonmagnetic layers are alternately laminated.
- the magnetization states of the N magnetic layers depend on N types of input data input to the logic gate.
- the resistance value of the magnetoresistive element changes according to the magnetization state of the N magnetic layers.
- the output data of the logic gate changes according to the resistance value of the magnetoresistive element.
- the operation method of the logic gate includes (A) a step of inputting a part of N types of input data and setting a magnetization state of the magnetic layer corresponding to a part of the input data among the N magnetic layers. (B) inputting the rest of the N types of input data and outputting the output data.
- a magnetoresistive element in a fourth aspect of the present invention, includes an N layer (N is an integer of 3 or more) magnetic layers and an N ⁇ 1 nonmagnetic layer. N magnetic layers and N-1 nonmagnetic layers are alternately stacked. Each of the N magnetic layers includes a first magnetization fixed region in which the magnetization direction is fixed in the first direction, a second magnetization fixed region in which the magnetization direction is fixed in a second direction opposite to the first direction, A magnetization reversal region between the first magnetization fixed region and the second magnetization fixed region. The magnetization direction of the magnetization switching region is reversed between the first direction and the second direction by domain wall movement driven by a current flowing between the first magnetization fixed region and the second magnetization fixed region.
- a reconfigurable logic gate can be realized at a lower cost.
- FIG. 1 is a schematic diagram showing a configuration of a magnetic logic element according to related technology.
- FIG. 2 is a schematic diagram showing a magnetic layer used in the magnetoresistive element according to the embodiment of the present invention.
- FIG. 3 is a schematic diagram showing the configuration of the magnetoresistive element according to the present embodiment.
- FIG. 4 is a cross-sectional view showing an example of the layout structure of the magnetoresistive element according to the present exemplary embodiment.
- FIG. 5 is a top view showing another example of the layout structure of the magnetoresistive element according to the present exemplary embodiment.
- FIG. 6 is a block diagram showing a configuration of the logic gate according to the present embodiment.
- FIG. 7 shows an example of the output part of the logic gate according to this embodiment.
- FIG. 8 shows an example of a logic function realized by the logic gate according to this embodiment.
- FIG. 9 shows the correspondence between input data and output data in the case of FIG.
- FIG. 10 shows another example of the logic function realized by the logic gate according to this embodiment.
- FIG. 11 shows the correspondence between input data and output data in the case of FIG.
- FIG. 12 shows still another example of the logic function realized by the logic gate according to the present embodiment.
- FIG. 13 is a summary diagram showing a logical operation by the logic gate according to the present embodiment.
- FIG. 14 shows still another example of the logic function realized by the logic gate according to the present embodiment.
- FIG. 15 is a flowchart showing a method of using the logic gate according to the present embodiment.
- FIG. 16 is a block diagram showing a modification of the magnetoresistive element and the logic gate according to the present embodiment.
- FIG. 17 is a block diagram showing an example of the configuration of the semiconductor
- FIG. 2 shows a magnetic layer 10 used in the magnetoresistive element according to the present embodiment.
- the magnetization state of the magnetic layer 10 is not fixed, and the magnetization direction of at least a part of the magnetic layer 10 is variable.
- the magnetic layer 10 has the same configuration as a magnetic recording layer (domain wall moving layer) used in a typical domain wall motion type MRAM.
- Such a magnetic layer 10 has a domain wall DW, and it is possible to move the domain wall DW and change the magnetization state by passing a current in the in-plane direction in the magnetic layer 10.
- the magnetic layer 10 has a first magnetization fixed region 11, a second magnetization fixed region 12, and a magnetization switching region 13.
- the magnetization switching region 13 is sandwiched between the first magnetization fixed region 11 and the second magnetization fixed region 12.
- the first magnetization fixed region 11 and the second magnetization fixed region 12 are provided on both sides of the magnetization switching region 13.
- the magnetization direction of the first magnetization fixed region 11 is substantially fixed in the first direction.
- the magnetization direction of the second magnetization fixed region 12 is substantially fixed in the second direction.
- the first direction and the second direction are opposite to each other.
- the magnetization direction of the magnetization switching region 13 is not fixed and can be reversed between the first direction and the second direction.
- the magnetic layer 10 is formed of, for example, a perpendicular magnetization film having perpendicular magnetic anisotropy.
- the magnetization direction of each region of the magnetic layer 10 is a + Z direction or a ⁇ Z direction perpendicular to the film surface.
- the magnetic layer 10 may be formed of an in-plane magnetization film having in-plane magnetic anisotropy.
- the magnetization direction of each region of the magnetic layer 10 is an in-plane direction orthogonal to the Z direction.
- one magnetic layer 10 is formed of the same magnetic material.
- the magnetic layer 10 has perpendicular magnetic anisotropy.
- the magnetization direction of the first magnetization fixed region 11 is fixed in the ⁇ Z direction
- the magnetization direction of the second magnetization fixed region 12 is fixed in the opposite + Z direction.
- the magnetization direction of the magnetization switching region 13 is allowed to be the ⁇ Z direction or the + Z direction.
- the domain wall DW is formed in the vicinity of the boundary between the first magnetization fixed region 11 and the magnetization switching region 13.
- this magnetization state is referred to as “first magnetization state MS1”.
- second magnetization state MS2 when the magnetization direction of the magnetization switching region 13 is the ⁇ Z direction, the domain wall DW is formed in the vicinity of the boundary between the second magnetization fixed region 12 and the magnetization switching region 13.
- this magnetization state is referred to as “second magnetization state MS2”.
- the magnetization state of the magnetic layer 10, that is, the magnetization direction of the magnetization switching region 13 can be changed by flowing a current in the in-plane direction.
- a first current supply terminal 21 and a second current supply terminal 22 are provided.
- the first current supply terminal 21 and the second current supply terminal 22 are connected to the first magnetization fixed region 11 and the second magnetization fixed region 12, respectively.
- the first write current IW1 is passed from the second current supply terminal 22 to the first current supply terminal 21.
- spin-polarized electrons in the ⁇ Z direction are supplied from the first magnetization fixed region 11 to the magnetization switching region 13.
- the domain wall DW is driven by the spin transfer and moves from the first magnetization fixed region 11 side to the second magnetization fixed region 12 side.
- the magnetization direction of the magnetization switching region 13 is reversed in the ⁇ Z direction, and the second magnetization state MS2 is obtained.
- the second write current IW2 is caused to flow from the first current supply terminal 21 to the second current supply terminal 22.
- spin-polarized electrons in the + Z direction are supplied from the second magnetization fixed region 12 to the magnetization switching region 13.
- the domain wall DW is driven by the spin transfer and moves from the second magnetization fixed region 12 side to the first magnetization fixed region 11 side.
- the magnetization direction of the magnetization switching region 13 is reversed in the + Z direction, and the first magnetization state MS1 is obtained.
- the magnetization state of the magnetic layer 10 changes.
- the magnetization state of the magnetic layer 10 can be set by controlling the direction of the current.
- the magnetic layer 10 is preferably a perpendicular magnetization film having perpendicular magnetic anisotropy as in the present embodiment.
- the current required for the domain wall movement can be reduced as the magnetic layer is made smaller and thinner, so that the element can be easily reduced in size. That is, it is possible to reduce the size of a logic gate (described later) using the magnetoresistive element according to the present embodiment.
- the magnetoresistive element 1 is configured by using the magnetic layer 10 described above. Specifically, the magnetoresistive element 1 has a laminated structure in which N magnetic layers 10 and N ⁇ 1 nonmagnetic layers are alternately laminated. Here, N is an integer of 3 or more. In other words, in the present embodiment, three or more magnetic layers 10 are stacked via the nonmagnetic layer, whereby the magnetoresistive element 1 is formed.
- FIG. 3 shows an example of the magnetoresistive element 1 according to the present exemplary embodiment.
- three magnetic layers 10-1, 10-2, 10-3 and two nonmagnetic layers 31, 32 are alternately stacked.
- the first magnetic layer 10-1 and the second magnetic layer 10-2 are laminated via the first nonmagnetic layer 31.
- the first nonmagnetic layer 31 is sandwiched at least between the magnetization switching region 13 of the first magnetic layer 10-1 and the magnetization switching region 13 of the second magnetic layer 10-2.
- the second magnetic layer 10-2 and the third magnetic layer 10-3 are laminated via the second nonmagnetic layer 32.
- the second nonmagnetic layer 32 is sandwiched at least between the magnetization switching region 13 of the second magnetic layer 10-2 and the magnetization switching region 13 of the third magnetic layer 10-3.
- Each nonmagnetic layer is a thin insulating film (tunnel barrier layer) such as an Al 2 O 3 film or an MgO film.
- first MTJ is formed by the first nonmagnetic layer 31 and the magnetic layers 10-1 and 10-2 on both sides thereof.
- the MTJ resistance value R1 depends on the magnetization states of the first magnetic layer 10-1 and the second magnetic layer 10-2. For example, when the first magnetic layer 10-1 and the second magnetic layer 10-2 are in the same magnetization state, that is, when the magnetization directions of the respective magnetization switching regions 13 are “parallel”, the resistance value R1 Takes a relatively small value RL. On the other hand, when the first magnetic layer 10-1 and the second magnetic layer 10-2 are in different magnetization states, that is, when the magnetization directions of the respective magnetization switching regions 13 are "antiparallel" to each other, the resistance value R1 takes a relatively large value RH.
- the resistance value RH is larger than the resistance value RL (RH> RL).
- one MTJ (second MTJ) is formed by the second non-magnetic layer 32 and the magnetic layers 10-2 and 10-3 on both sides thereof.
- the MTJ resistance value R2 depends on the magnetization states of the second magnetic layer 10-2 and the third magnetic layer 10-3, and takes either a relatively small value RL or a relatively large value RH.
- the resistance values RH and RL that can be taken by the first MTJ are preferably the same as the resistance values RH and RL that can be taken by the second MTJ. That is, it is preferable that the magnetoresistive element 1 is designed so that the magnetic properties of the first MTJ and the second MTJ are the same.
- the magnetic layers 10-1, 10-2, and 10-3 are made of the same material and have the same film thickness.
- the nonmagnetic layers 31 and 32 are formed of the same material and have the same film thickness.
- the resistance value R can take three patterns of 2RL, RL + RH, and 2RH (2RL ⁇ RL + RH ⁇ 2RH).
- the resistance value R of the magnetoresistive element 1 changes according to the magnetization states of the magnetic layers 10-1 to 10-3.
- each magnetic layer 10 can be set by supplying a current through the first current supply terminal 21 and the second current supply terminal 22. As shown in FIG. 3, a current is supplied to the first magnetic layer 10-1 through the current supply terminals 21-1 and 22-1. A current is supplied to the second magnetic layer 10-2 through current supply terminals 21-2 and 22-2. A current is supplied to the third magnetic layer 10-3 through the current supply terminals 21-3 and 22-3.
- FIG. 4 is a cross-sectional view showing an example of the layout structure of the magnetoresistive element 1 according to the present exemplary embodiment.
- the current supply terminals 21 and 22 are formed in a wiring layer above the magnetoresistive element 1.
- the first magnetic layer 10-1 is connected to current supply terminals 21-1 and 22-1 through contacts 23-1 and 24-1, respectively.
- the second magnetic layer 10-2 is connected to current supply terminals 21-2 and 22-2 via contacts 23-2 and 24-2.
- the third magnetic layer 10-3 is connected to current supply terminals 21-3 and 22-3 via contacts 23-3 and 24-3, respectively.
- each magnetic layer 10 is formed to extend in the same plane direction (X direction). Further, the lengths in the X direction are different between the magnetic layers 10 so that the contacts connected to the respective magnetic layers 10 do not overlap each other. Specifically, each length of the magnetic layer 10 in the X direction becomes longer from the upper layer toward the lower layer. That is, the second magnetic layer 10-2 is formed longer on both sides than the first magnetic layer 10-1, and the third magnetic layer 10-3 is longer than the second magnetic layer 10-2. It is long on both sides.
- FIG. 5 is a top view showing another example of the layout structure of the magnetoresistive element 1.
- the magnetic layers 10-1 to 10-3 are formed so as to extend in different plane directions. This prevents the contacts connected to the respective magnetic layers 10 from overlapping each other. However, the magnetic layers 10-1 to 10-3 overlap each other at least at the positions of the nonmagnetic layers 31 and 32.
- each magnetic layer 10 is not limited to a rectangle.
- the planar shape of each magnetic layer 10 may be rhombus or U-shaped. As long as the domain wall motion can be realized, the planar shape of the magnetic layer 10 is arbitrary.
- FIG. 6 is a block diagram showing a configuration of the logic gate 40 according to the present embodiment.
- the logic gate 40 includes the magnetoresistive element 1, a magnetization state control unit 50, and an output unit 60.
- N types of input data are input to the logic gate 40.
- N 3 types of input data (A, B, C) are input.
- the logic gate 40 performs a logical operation based on the input data and outputs the result as output data Q.
- the input data A, B, and C are input to the magnetization state control unit 50.
- the magnetization state control unit 50 sets the magnetization states of the magnetic layers 10-1, 10-2, and 10-3 of the magnetoresistive element 1 according to the input data A, B, and C, respectively. That is, the magnetization state control unit 50 sets the first magnetic layer 10-1 to a magnetization state corresponding to the input data A. For example, when the input data A is “1”, the magnetization state control unit 50 sets the first magnetic layer 10-1 to the first magnetization state MS1 (see FIG. 2). On the other hand, when the input data A is “0”, the magnetization state control unit 50 sets the first magnetic layer 10-1 to the second magnetization state MS2.
- the relationship between the input data B and the magnetization state of the second magnetic layer 10-2 and the relationship between the input data C and the magnetization state of the third magnetic layer 10-3 are the same.
- the magnetization state control unit 50 includes current supply circuits 51, 52, and 53.
- the current supply circuit 51 is connected to current supply terminals 21-1 and 22-1 related to the first magnetic layer 10-1.
- the current supply circuit 51 supplies a write current (IW1 or IW2) to the first magnetic layer 10-1 through the current supply terminals 21-1 and 22-1.
- the direction of the write current is switched according to the input data A. For example, when the input data A is “1”, the current supply circuit 51 supplies the second write current IW2 to the first magnetic layer 10-1. As a result, the first magnetic layer 10-1 is set to the first magnetization state MS1 (see FIG. 2).
- the current supply circuit 51 supplies the first write current IW1 to the first magnetic layer 10-1. As a result, the first magnetic layer 10-1 is set to the second magnetization state MS2.
- the current supply circuit 51 supplies the first magnetic layer 10-1 with the write current whose direction is switched according to the input data A.
- the current supply circuit 52 is connected to the current supply terminals 21-2 and 22-2 related to the second magnetic layer 10-2, and the write current (IW1 or IW2) corresponding to the input data B is supplied to the second magnetic layer 10-2.
- the current supply circuit 53 is connected to the current supply terminals 21-3 and 22-3 related to the third magnetic layer 10-3, and writes the write current (IW1 or IW2) corresponding to the input data C to the third magnetic layer. Supply to body layer 10-3. Note that the supply time of the write current is determined in advance.
- the magnetization state control unit 50 supplies currents according to the input data A, B, and C to thereby respectively magnetize the magnetic layers 10-1, 10-2, and 10-3. Set the state.
- the magnetization states of the magnetic layers 10-1, 10-2, 10-3 of the magnetoresistive element 1 depend on the input data A, B, C input to the logic gate 40.
- the resistance value R of the magnetoresistive element 1 changes according to the magnetization state of the magnetic layers 10-1, 10-2, 10-3 (see FIG. 3). Therefore, it can be said that the resistance value R of the magnetoresistive element 1 also changes depending on the input data A, B, and C.
- the output unit 60 is connected to the magnetoresistive element 1. And the output part 60 produces
- the resistance value R of the magnetoresistive element 1 can take 3 patterns of 2RL, RL + RH, and 2RH depending on the combination of the magnetization states of the magnetic layers 10-1 to 10-3 (2RL ⁇ RL + RH ⁇ 2RH). ). Based on the resistance value R, the output unit 60 outputs data “0” or data “1” as output data Q.
- the output unit 60 when the resistance value R is larger than a predetermined threshold value Rth, the output unit 60 outputs one of data “0” and data “1”, and the resistance value R is smaller than the threshold value Rth. In addition, the other of data “0” and data “1” is output.
- the threshold value Rth is set to a value between “2RL” and “RL + RH”.
- the resistance value R is “2RL” smaller than the threshold value Rth, for example, data “0” is output as the output data Q.
- the resistance value R is “RL + RH” or “2RH” larger than the threshold value Rth
- data “1” is output as the output data Q.
- FIG. 7 shows an example of a circuit configuration for realizing such an output unit 60.
- the output unit 60 includes an inverter 61 and a resistor 62 (resistance value: Rref).
- the resistor 62 is connected between the node 63 and the ground terminal.
- the magnetoresistive element 1 is connected between the node 63 and a power supply terminal (power supply voltage: Vcc). That is, the magnetoresistive element 1 and the resistor 62 are connected in series between the power supply terminal and the ground terminal.
- the resistance value R of the magnetoresistive element 1 varies depending on the input data A, B, and C.
- the resistance value Rref of the resistor 62 is designed to an appropriate value in advance. At this time, the voltage of the node 63 is given by Vcc ⁇ Rref / (R + Rref).
- the input terminal of the inverter 61 is connected to the node 63, and the output data Q is output from the output terminal of the inverter 61.
- the voltage of the node 63 is applied to the gates of the PMOS transistor and NMOS transistor that constitute the inverter 61.
- logic gate 40 can be reconfigured.
- FIG. 8 shows an example of a logic function realized by the logic gate 40.
- the output data Q changes depending on the input data A and B.
- FIG. 9 shows the correspondence between input data A and B and output data Q in the case of FIG. By combining the input data A and B, four patterns P1 to P4 are obtained.
- the logic gate 40 of this example functions as a “two-input NAND gate”.
- FIG. 10 shows another example of the logic function realized by the logic gate 40.
- the third magnetic layer 10-3 is fixed to the second magnetization state MS2.
- the output data Q changes depending on the input data A and B.
- FIG. 11 shows the correspondence between the input data A and B and the output data Q in the case of FIG. By combining the input data A and B, four patterns P5 to P8 are obtained.
- the logic gate 40 of this example functions as a “two-input OR gate”.
- FIG. 12 shows still another example of the logic function realized by the logic gate 40.
- the output data Q changes depending on the input data A.
- the correspondence between the input data A and the output data Q is the same as the patterns P1 and P2 shown in FIG. That is, the logic gate 40 of this example functions as a “NOT gate” that outputs inverted data of the input data A.
- the patterns P1 to P4 shown in FIG. 9 and the patterns P5 to P8 shown in FIG. 11 are all 8 patterns obtained by combining the three types of input data A, B, and C.
- FIG. 13 summarizes the eight patterns P1 to P8. As is apparent from FIG. 13, when no input data is fixed, the logic gate 40 functions as a “3-input EXOR gate”. FIG. 14 shows the logic gate 40 in that case.
- FIG. 15 is a flowchart showing how to use the logic gate 40.
- the logic gate 40 is changed to a NOT gate. Can be set to When the logic gate 40 is set as a 3-input EXOR gate, it is not necessary to input input data. In this way, it is possible to reconfigure the logic function of the logic gate 40 before executing the logic operation.
- Step S20 In the second mode, the logic gate 40 performs a logic operation and outputs output data Q. At this time, the remaining input data not used for setting the logic function in the first mode is input to the logic gate 40.
- the logic gate 40 For example, in the case of a NAND gate or an OR gate, input data A and B are input. In the case of a NOT gate, input data A is input. In the case of an EXOR gate, input data A, B, and C are input. As a result, output data Q corresponding to the logical function set in the first mode is output.
- the present embodiment it is possible to realize four types of logic functions without changing the structure of the logic gate 40. That is, the logic function of the logic gate 40 can be reconfigured according to the purpose.
- the logic gate 40 according to the present embodiment can realize a 3-input EXOR gate. That is, it is possible to realize a sophisticated logic function with one logic gate 40. Therefore, it is possible to improve the area efficiency and the degree of integration.
- the three-input EXOR gate can be realized by three magnetic layers 10-1 to 10-3. Therefore, the manufacturing cost is reduced.
- a two-input logic gate can be realized by the three magnetic layers 10-1 to 10-3.
- at least four magnetic layers are required. According to the present embodiment, since the total number of magnetic layers can be reduced, the manufacturing cost can be reduced.
- the configuration of the magnetoresistive element 1 according to the present exemplary embodiment is not limited to the above.
- the magnetoresistive element 1 may include four or more magnetic layers 10.
- FIG. 16 shows a magnetoresistive element 1 including four magnetic layers 10-1 to 10-4 and a logic gate 40 using the magnetoresistive element 1.
- the magnetoresistive element 1 includes a fourth magnetic layer 10-4 and a third nonmagnetic layer 33 in addition to the components shown in FIG.
- the third magnetic layer 10-3 and the fourth magnetic layer 10-4 are laminated via the third nonmagnetic layer 33.
- the magnetization state control unit 50 includes a current supply circuit 54 in addition to the current supply circuits 51 to 53.
- the current supply circuit 54 supplies a write current (IW1 or IW2) corresponding to the input data D to the fourth magnetic layer 10-4, thereby controlling the magnetization state of the fourth magnetic layer 10-4. Also with such a configuration, four types of logic functions can be realized similarly.
- a four-input EXOR gate can be realized by the four magnetic layers 10-1 to 10-4. Accordingly, the area efficiency and the degree of integration are further improved.
- the magnetoresistive element 1 according to the present embodiment can realize a multi-input logic function only by laminating the magnetic layers in the layer thickness direction, so that it is easy to improve the area efficiency and the degree of integration. Can be realized.
- FIG. 17 shows an example of a semiconductor integrated circuit 70 on which the logic gate 40 according to the present embodiment is mounted.
- the semiconductor integrated circuit 70 includes a plurality of logic gates 40.
- the logic gate 40-1 performs a logical operation on the input data A, B, and C and outputs the output data Q.
- the logic gate 40-2 performs a logical operation on the input data D, E, and F and outputs the output data W.
- the function provided by the semiconductor integrated circuit 70 can be changed to a desired one by appropriately setting the logic function of each logic gate 40. That is, the semiconductor integrated circuit 70 can be reconfigured.
- a circuit for that purpose is the reconfiguration control circuit 80.
- the reconfiguration control circuit 80 receives a reconfiguration signal RECON indicating a desired function. This reconfiguration signal RECON is issued by the CPU, for example.
- the reconfiguration control circuit 80 executes step S10 described above in response to the reconfiguration signal RECON. That is, the reconfiguration control circuit 80 changes the logic function of each logic gate 40 so that the function specified by the reconfiguration signal RECON is realized.
- a selector 90 is disposed in front of each logic gate 40.
- the selector 90 outputs either normal input data or reconfiguration input data output from the reconfiguration control circuit 80 to the logic gate 40 in response to the select signal SEL.
- the selector 90 In the first mode (step S ⁇ b> 10), the selector 90 outputs the reconfiguration input data output from the reconfiguration control circuit 80 to the logic gate 40.
- the selector 90 In the second mode (step S20), the selector 90 outputs normal input data to the logic gate 40.
- the integration degree of the reconfigurable semiconductor integrated circuit 70 is improved by using the logic gate 40 according to the present embodiment.
- the reconfigurable semiconductor integrated circuit 70 can be realized at low cost.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Manufacturing & Machinery (AREA)
- Hall/Mr Elements (AREA)
- Logic Circuits (AREA)
Abstract
Description
図2は、本実施の形態に係る磁気抵抗素子において用いられる磁性体層10を示している。本実施の形態において、磁性体層10の磁化状態は固定されておらず、磁性体層10の少なくとも一部の磁化方向は可変である。例えば、磁性体層10は、典型的な磁壁移動型MRAMで用いられる磁化記録層(磁壁移動層)と同様の構成を有する。そのような磁性体層10は磁壁DWを有しており、電流を磁性体層10中で面内方向に流すことにより、磁壁DWを移動させ、磁化状態を変化させることが可能である。
本実施の形態によれば、上述の磁気抵抗素子1を利用することにより、再構成可能な論理ゲート40が実現される。図6は、本実施の形態に係る論理ゲート40の構成を示すブロック図である。図6に示されるように、論理ゲート40は、磁気抵抗素子1、磁化状態制御部50、及び出力部60を備えている。論理ゲート40に入力されるのは、N種類の入力データである。N=3の場合、3種類の入力データ(A,B,C)が入力される。論理ゲート40は、それら入力データに基づいて論理演算を行い、その結果を出力データQとして出力する。
本実施の形態によれば、論理ゲート40の論理機能を再構成可能である。
第1モードにおいて、論理ゲート40の論理機能が、上述の4種類のうち所望のものに設定される。このとき、入力データA,B,Cのうち少なくとも1つを論理ゲート40に入力することにより、論理ゲート40の論理機能を変更することができる。例えば、入力データC=1を入力し、対応する第3磁性体層10-3の磁化状態をあらかじめ設定することにより、論理ゲート40を2入力のNANDゲートに設定することができる。また、入力データC=0を入力し、対応する第3磁性体層10-3の磁化状態をあらかじめ設定することにより、論理ゲート40を2入力のORゲートに設定することができる。また、入力データB=1、C=1を入力し、対応する第2磁性体層10-2及び第3磁性体層10-3の磁化状態をあらかじめ設定することにより、論理ゲート40をNOTゲートに設定することができる。論理ゲート40を3入力のEXORゲートに設定する場合、特に入力データを入力する必要はない。このように、論理演算の実行前に、論理ゲート40の論理機能を再構成することが可能である。
第2モードにおいて、論理ゲート40は論理演算を実行し、出力データQを出力する。このとき、第1モードにおいて論理機能の設定に用いられなかった残りの入力データが、論理ゲート40に入力される。例えば、NANDゲートあるいはORゲートの場合、入力データA,Bが入力される。NOTゲートの場合、入力データAが入力される。EXORゲートの場合、入力データA,B,Cが入力される。これにより、第1モードで設定された論理機能に応じた出力データQが出力される。
本実施の形態に係る磁気抵抗素子1の構成は、上述のものに限られない。磁気抵抗素子1は、4層以上の磁性体層10を備えていてもよい。
本実施の形態に係る論理ゲート40を用いて、機能を再構成可能な半導体集積回路を作成することができる。図17は、本実施の形態に係る論理ゲート40が搭載された半導体集積回路70の一例を示している。半導体集積回路70は、複数の論理ゲート40を備えている。例えば、論理ゲート40-1は、入力データA,B,Cの論理演算を行い、出力データQを出力する。同様に、論理ゲート40-2は、入力データD,E,Fの論理演算を行い、出力データWを出力する。
Claims (17)
- N層(Nは3以上の整数)の磁性体層とN-1層の非磁性体層とが交互に積層された積層構造を有し、前記N層の磁性体層の磁化状態に応じて抵抗値が変化する磁気抵抗素子と、
N種類の入力データのそれぞれに応じて、前記N層の磁性体層のそれぞれの磁化状態を設定する磁化状態制御部と、
前記磁気抵抗素子の前記抵抗値に応じて変化する出力データを出力する出力部と
を備える
論理ゲート。 - 請求の範囲1に記載の論理ゲートであって、
前記磁化状態制御部は、前記N種類の入力データのそれぞれに応じて方向が切り替わる電流を、前記N層の磁性体層のそれぞれに供給し、
前記N層の磁性体層のそれぞれの磁化状態は、前記供給される電流によって駆動される磁壁移動により変化する
論理ゲート。 - 請求の範囲2に記載の論理ゲートであって、
前記N層の磁性体層の各々は、垂直磁気異方性を有する垂直磁化膜で形成される
論理ゲート。 - 請求の範囲2又は3に記載の論理ゲートであって、
前記N層の磁性体層の各々は、
磁化方向が第1方向に固定された第1磁化固定領域と、
磁化方向が前記第1方向と反対の第2方向に固定された第2磁化固定領域と、
前記第1磁化固定領域と前記第2磁化固定領域との間の磁化反転領域と
を有し、
前記電流は、前記第1磁化固定領域と前記第2磁化固定領域との間を流れ、
前記磁化反転領域の磁化方向は、前記磁壁移動により、前記第1方向と前記第2方向との間で反転する
論理ゲート。 - 請求の範囲4に記載の論理ゲートであって、
前記各々の磁性体層の前記第1磁化固定領域と前記第2磁化固定領域は、コンタクトを介して、第1電流供給端子と第2電流供給端子のそれぞれに接続されており、
前記磁化状態制御部は、前記第1電流供給端子と前記第2電流供給端子を通して、前記電流を前記各々の磁性体層に供給する
論理ゲート。 - 請求の範囲5に記載の論理ゲートであって、
前記N層の磁性体層は、同一の平面方向に延在するように形成されており、
前記同一の平面方向における前記N層の磁性体層のそれぞれの長さは、上層から下層へ向かうにつれて長くなる
論理ゲート。 - 請求の範囲5に記載の論理ゲートであって、
前記N層の磁性体層は、それぞれ異なる平面方向に延在するように形成されている
論理ゲート。 - 請求の範囲1乃至7のいずれか一項に記載の論理ゲートであって、
前記出力部は、前記抵抗値が閾値よりも大きい場合に、データ0とデータ1の一方を前記出力データとして出力し、前記抵抗値が前記閾値よりも小さい場合に、データ0とデータ1の他方を前記出力データとして出力する
論理ゲート。 - 請求の範囲1乃至8のいずれか一項に記載の論理ゲートであって、
前記N種類の入力データのうち少なくとも1つは固定されている
論理ゲート。 - 請求の範囲1乃至8のいずれか一項に記載の論理ゲートであって、
前記N種類の入力データのうち一部が前記磁化状態制御部に入力された後、前記N種類の入力データの残りが前記磁化状態制御部に入力される
論理ゲート。 - 請求の範囲1乃至10のいずれか一項に記載の論理ゲートを備える半導体集積回路。
- 磁気抵抗素子を有する論理ゲートの動作方法であって、
前記磁気抵抗素子は、N層(Nは3以上の整数)の磁性体層とN-1層の非磁性体層とが交互に積層された積層構造を有し、
前記N層の磁性体層のそれぞれの磁化状態は、前記論理ゲートに入力されるN種類の入力データのそれぞれに依存しており、
前記磁気抵抗素子の抵抗値は、前記N層の磁性体層の磁化状態に応じて変化し、
前記論理ゲートの出力データは、前記磁気抵抗素子の前記抵抗値に応じて変化し、
前記動作方法は、
前記N種類の入力データのうち一部を入力し、前記N層の磁性体層のうち前記一部の入力データに対応する磁性体層の磁化状態を設定するステップと、
前記N種類の入力データの残りを入力し、前記出力データを出力するステップと
を含む
論理ゲートの動作方法。 - N層(Nは3以上の整数)の磁性体層と、
N-1層の非磁性体層と
を備え、
前記N層の磁性体層と前記N-1層の非磁性体層は、交互に積層されており、
前記N層の磁性体層の各々は、
磁化方向が第1方向に固定された第1磁化固定領域と、
磁化方向が前記第1方向と反対の第2方向に固定された第2磁化固定領域と、
前記第1磁化固定領域と前記第2磁化固定領域との間の磁化反転領域と
を有し、
前記磁化反転領域の磁化方向は、前記第1磁化固定領域と前記第2磁化固定領域との間を流れる電流によって駆動される磁壁移動により、前記第1方向と前記第2方向との間で反転する
磁気抵抗素子。 - 請求の範囲13に記載の磁気抵抗素子であって、
前記N層の磁性体層の各々は、垂直磁気異方性を有する垂直磁化膜で形成される
磁気抵抗素子。 - 請求の範囲13または14に記載の磁気抵抗素子であって、
前記各々の磁性体層の前記第1磁化固定領域と前記第2磁化固定領域は、コンタクトを介して、第1電流供給端子と第2電流供給端子のそれぞれに接続されており、
前記電流は、前記第1電流供給端子と前記第2電流供給端子を通して、前記各々の磁性体層に供給される
磁気抵抗素子。 - 請求の範囲15に記載の磁気抵抗素子であって、
前記N層の磁性体層は、同一の平面方向に延在するように形成されており、
前記同一の平面方向における前記N層の磁性体層のそれぞれの長さは、上層から下層へ向かうにつれて長くなる
磁気抵抗素子。 - 請求の範囲15に記載の磁気抵抗素子であって、
前記N層の磁性体層は、それぞれ異なる平面方向に延在するように形成されている
磁気抵抗素子。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010526649A JP5288293B2 (ja) | 2008-08-25 | 2009-08-12 | 磁気抵抗素子、論理ゲート、及び論理ゲートの動作方法 |
US13/060,574 US8354861B2 (en) | 2008-08-25 | 2009-08-12 | Magnetoresistive element, logic gate and method of operating logic gate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008215184 | 2008-08-25 | ||
JP2008-215184 | 2008-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010024126A1 true WO2010024126A1 (ja) | 2010-03-04 |
Family
ID=41721296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/064262 WO2010024126A1 (ja) | 2008-08-25 | 2009-08-12 | 磁気抵抗素子、論理ゲート、及び論理ゲートの動作方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8354861B2 (ja) |
JP (1) | JP5288293B2 (ja) |
WO (1) | WO2010024126A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012093701A1 (ja) * | 2011-01-06 | 2012-07-12 | 日本電気株式会社 | 不揮発論理演算デバイス |
US8358154B2 (en) | 2010-10-29 | 2013-01-22 | Honeywell International Inc. | Magnetic logic gate |
US8358149B2 (en) | 2010-10-29 | 2013-01-22 | Honeywell International Inc. | Magnetic logic gate |
US8374020B2 (en) | 2010-10-29 | 2013-02-12 | Honeywell International Inc. | Reduced switching-energy magnetic elements |
US8427199B2 (en) | 2010-10-29 | 2013-04-23 | Honeywell International Inc. | Magnetic logic gate |
US8427197B2 (en) | 2011-06-15 | 2013-04-23 | Honeywell International Inc. | Configurable reference circuit for logic gates |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8400066B1 (en) | 2010-08-01 | 2013-03-19 | Lawrence T. Pileggi | Magnetic logic circuits and systems incorporating same |
US8476925B2 (en) | 2010-08-01 | 2013-07-02 | Jian-Gang (Jimmy) Zhu | Magnetic switching cells and methods of making and operating same |
US8552759B2 (en) * | 2011-02-21 | 2013-10-08 | Northwestern University | Programmable logic based on a magnetic diode and applications of same |
US9208845B2 (en) * | 2011-11-15 | 2015-12-08 | Massachusetts Instiute Of Technology | Low energy magnetic domain wall logic device |
US9712171B2 (en) * | 2013-09-11 | 2017-07-18 | Intel Corporation | Clocked all-spin logic circuit |
CN105493292B (zh) | 2013-09-30 | 2019-09-06 | 英特尔公司 | 自旋电子逻辑元件 |
EP3016287B1 (en) * | 2014-11-03 | 2017-04-26 | IMEC vzw | A spin torque majority gate device |
US9773539B2 (en) | 2015-09-10 | 2017-09-26 | Toshiba Memory Corporation | Logical operation circuit and memory device |
KR102582672B1 (ko) | 2016-11-01 | 2023-09-25 | 삼성전자주식회사 | 자기 터널 접합 소자를 포함하는 논리 회로 |
WO2021091484A1 (en) * | 2019-11-05 | 2021-05-14 | Nanyang Technological University | Magnetic logic device, circuit having magnetic logic devices, and methods for controlling the magnetic logic device and the circuit |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11238924A (ja) * | 1998-02-20 | 1999-08-31 | Toshiba Corp | スピン依存伝導素子とそれを用いた電子部品および磁気部品 |
JP2004179219A (ja) * | 2002-11-25 | 2004-06-24 | Matsushita Electric Ind Co Ltd | 磁気デバイスおよびこれを用いた磁気メモリ |
JP2004281548A (ja) * | 2003-03-13 | 2004-10-07 | Japan Science & Technology Agency | 強磁性単電子素子とこれを用いた記憶素子 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09212829A (ja) * | 1996-02-07 | 1997-08-15 | Hitachi Ltd | 磁気抵抗効果素子と、それを用いた磁気記録再生装置 |
US6034887A (en) * | 1998-08-05 | 2000-03-07 | International Business Machines Corporation | Non-volatile magnetic memory cell and devices |
DE10255857B3 (de) * | 2002-11-29 | 2004-07-15 | Forschungsverbund Berlin E.V. | Magnetische Logikeinrichtung |
US7110287B2 (en) * | 2004-02-13 | 2006-09-19 | Grandis, Inc. | Method and system for providing heat assisted switching of a magnetic element utilizing spin transfer |
US7057921B2 (en) * | 2004-05-11 | 2006-06-06 | Grandis, Inc. | Spin barrier enhanced dual magnetoresistance effect element and magnetic memory using the same |
KR100612884B1 (ko) * | 2004-12-30 | 2006-08-14 | 삼성전자주식회사 | 자기 논리 소자와 그 제조 및 동작 방법 |
US7379321B2 (en) * | 2005-02-04 | 2008-05-27 | Hitachi Global Storage Technologies Netherlands B.V. | Memory cell and programmable logic having ferromagnetic structures exhibiting the extraordinary hall effect |
JP4599259B2 (ja) * | 2005-09-20 | 2010-12-15 | 株式会社東芝 | 磁気素子及びこれを用いた磁気信号処理装置 |
US7397277B2 (en) * | 2005-10-17 | 2008-07-08 | Northern Lights Semiconductor Corp. | Magnetic transistor circuit with the EXOR function |
JP2008109118A (ja) * | 2006-09-29 | 2008-05-08 | Toshiba Corp | 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ |
US20090218645A1 (en) * | 2007-02-12 | 2009-09-03 | Yadav Technology Inc. | multi-state spin-torque transfer magnetic random access memory |
US7728622B2 (en) * | 2007-03-29 | 2010-06-01 | Qualcomm Incorporated | Software programmable logic using spin transfer torque magnetoresistive random access memory |
US7486551B1 (en) * | 2007-04-03 | 2009-02-03 | Grandis, Inc. | Method and system for providing domain wall assisted switching of magnetic elements and magnetic memories using such magnetic elements |
US8039913B2 (en) * | 2008-10-09 | 2011-10-18 | Seagate Technology Llc | Magnetic stack with laminated layer |
US8503222B2 (en) * | 2009-01-27 | 2013-08-06 | Nec Corporation | Non-volatile logic circuit |
US8058906B2 (en) * | 2009-06-16 | 2011-11-15 | The University Of Notre Dame Du Lac | Non-majority MQCA magnetic logic gates and arrays based on misaligned magnetic islands |
US8476925B2 (en) * | 2010-08-01 | 2013-07-02 | Jian-Gang (Jimmy) Zhu | Magnetic switching cells and methods of making and operating same |
US9006704B2 (en) * | 2011-02-11 | 2015-04-14 | Headway Technologies, Inc. | Magnetic element with improved out-of-plane anisotropy for spintronic applications |
-
2009
- 2009-08-12 JP JP2010526649A patent/JP5288293B2/ja active Active
- 2009-08-12 WO PCT/JP2009/064262 patent/WO2010024126A1/ja active Application Filing
- 2009-08-12 US US13/060,574 patent/US8354861B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11238924A (ja) * | 1998-02-20 | 1999-08-31 | Toshiba Corp | スピン依存伝導素子とそれを用いた電子部品および磁気部品 |
JP2004179219A (ja) * | 2002-11-25 | 2004-06-24 | Matsushita Electric Ind Co Ltd | 磁気デバイスおよびこれを用いた磁気メモリ |
JP2004281548A (ja) * | 2003-03-13 | 2004-10-07 | Japan Science & Technology Agency | 強磁性単電子素子とこれを用いた記憶素子 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8358154B2 (en) | 2010-10-29 | 2013-01-22 | Honeywell International Inc. | Magnetic logic gate |
US8358149B2 (en) | 2010-10-29 | 2013-01-22 | Honeywell International Inc. | Magnetic logic gate |
US8374020B2 (en) | 2010-10-29 | 2013-02-12 | Honeywell International Inc. | Reduced switching-energy magnetic elements |
US8427199B2 (en) | 2010-10-29 | 2013-04-23 | Honeywell International Inc. | Magnetic logic gate |
WO2012093701A1 (ja) * | 2011-01-06 | 2012-07-12 | 日本電気株式会社 | 不揮発論理演算デバイス |
US9083336B2 (en) | 2011-01-06 | 2015-07-14 | Nec Corporation | Non-volatile logic operation device |
JP5874647B2 (ja) * | 2011-01-06 | 2016-03-02 | 日本電気株式会社 | 不揮発論理演算デバイス |
US8427197B2 (en) | 2011-06-15 | 2013-04-23 | Honeywell International Inc. | Configurable reference circuit for logic gates |
Also Published As
Publication number | Publication date |
---|---|
JP5288293B2 (ja) | 2013-09-11 |
JPWO2010024126A1 (ja) | 2012-01-26 |
US20110148458A1 (en) | 2011-06-23 |
US8354861B2 (en) | 2013-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5288293B2 (ja) | 磁気抵抗素子、論理ゲート、及び論理ゲートの動作方法 | |
US8503222B2 (en) | Non-volatile logic circuit | |
JP4122358B2 (ja) | 磁気論理素子とその製造及び動作方法 | |
Lyle et al. | Magnetic tunnel junction logic architecture for realization of simultaneous computation and communication | |
CA2785625C (en) | Magnetic random access memory device and method for producing a magnetic random access memory device | |
EP1826770A1 (en) | Magnetic tunneling junction cell based xor logic circuit and method of opearting the same | |
US8405421B2 (en) | Nonvolatile full adder circuit | |
US8681535B2 (en) | Nonvolatile latch circuit | |
JP2009200123A (ja) | 磁気ランダムアクセスメモリ | |
JP5365813B2 (ja) | 不揮発ロジック回路 | |
US20120313688A1 (en) | Nonvolatile Multiplexer Circuit | |
EP2693486A1 (en) | A nanomagnetic logic gate and an electronic device | |
KR101712725B1 (ko) | 단일 MTJ를 이용한 2-input 프로그래머블 논리 소자 | |
JP5874647B2 (ja) | 不揮発論理演算デバイス | |
JP2013191873A (ja) | 磁気ランダムアクセスメモリ | |
JP5472821B2 (ja) | 磁気抵抗素子の初期化方法、及び磁気抵抗素子 | |
JP2016066634A (ja) | 磁気論理素子、磁気論理回路、磁気メモリ | |
Niemier et al. | Systolic architectures and applications for nanomagnet logic | |
EP1573744B1 (en) | Current re-routing scheme for serial-programmed mram | |
US12106879B2 (en) | Nano spintronic device using spin current of ferromagnetic material and heavy metal channel | |
CN117897039A (zh) | 基于磁性隧道结的自旋逻辑器件和包括其的电子设备 | |
WO2014154497A1 (en) | Spin torque magnetic integrated circuit | |
JP2015015597A (ja) | 論理演算素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09809779 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010526649 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13060574 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09809779 Country of ref document: EP Kind code of ref document: A1 |