WO2010023706A1 - 四重極型質量分析装置及び四重極型質量分析装置の調整方法 - Google Patents

四重極型質量分析装置及び四重極型質量分析装置の調整方法 Download PDF

Info

Publication number
WO2010023706A1
WO2010023706A1 PCT/JP2008/002289 JP2008002289W WO2010023706A1 WO 2010023706 A1 WO2010023706 A1 WO 2010023706A1 JP 2008002289 W JP2008002289 W JP 2008002289W WO 2010023706 A1 WO2010023706 A1 WO 2010023706A1
Authority
WO
WIPO (PCT)
Prior art keywords
quadrupole mass
frequency
voltage
mass spectrometer
ion detector
Prior art date
Application number
PCT/JP2008/002289
Other languages
English (en)
French (fr)
Inventor
水谷司朗
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2010526429A priority Critical patent/JP5152335B2/ja
Priority to PCT/JP2008/002289 priority patent/WO2010023706A1/ja
Publication of WO2010023706A1 publication Critical patent/WO2010023706A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/421Mass filters, i.e. deviating unwanted ions without trapping
    • H01J49/4215Quadrupole mass filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/022Circuit arrangements, e.g. for generating deviation currents or voltages ; Components associated with high voltage supply

Definitions

  • the present invention relates to a quadrupole mass spectrometer using a quadrupole mass filter as a mass separator that separates ions according to m / z values, and a method for adjusting the quadrupole mass spectrometer.
  • ions generated from a sample are introduced into a quadrupole mass filter, and only ions having a specific mass (strictly m / z) are selectively passed through.
  • the detected ions are detected by an ion detector, and a signal corresponding to the amount of ions is acquired.
  • the mass of ions that can pass through the quadrupole mass filter depends on the high-frequency voltage and the DC voltage applied to the rod electrode. Therefore, by scanning the voltage applied to the rod electrode within a predetermined range, the mass of ions passing through the quadrupole mass filter is scanned over the predetermined mass range, and based on the signal obtained by the ion detector at that time.
  • a mass spectrum having the horizontal axis as m / z and the vertical axis as the ion intensity can be created.
  • a direct current type detector that measures an average value and an integral value of an ion current
  • a pulse count type detector that counts the number of reached ions as a pulse signal
  • the former DC type detector is often used.
  • the latter pulse count type is advantageous for measuring the amount of minute ions.
  • a detector is used.
  • LC / MS / MS that performs MS / MS analysis (also referred to as tandem analysis) of components in a sample solution separated by liquid chromatography
  • a pulse count type detector is often used.
  • FIG. 5 shows a schematic configuration of a pulse count type detector disclosed in Patent Document 3 and the like.
  • the ions are first incident on the conversion dynode 31 in the ion detector 3 to be converted into electrons, and the electrons are introduced into a secondary electron multiplier (EM) 32, and the number of electrons is multiplied to correspond to each electron.
  • a signal is output.
  • the peak value of the pulse-like output signal from the secondary electron multiplier 32 is amplified by the preamplifier 51 in the detection circuit unit 5 at the subsequent stage, and further, the peak value of the pulse signal is smaller than the predetermined threshold voltage VTL by the discriminator 52. After being removed as noise, the waveform is shaped. In this example, as described in FIG.
  • the output signal pulse from the secondary electron multiplier 32 is generated downward (negative direction) from the baseline.
  • the noise-removed pulse signal is input to the counting unit 53, and the counting unit 53 counts the pulse signal obtained within a certain time width, and the count value is detection data corresponding to the number of ions incident on the ion detector 3. Is output as
  • a high voltage (hereinafter referred to as “detector voltage”) is applied to the secondary electron multiplier 32 in order to multiply electrons, and the peak value of the output signal pulse depends on the detector voltage. If the detector voltage is too low, the peak value of the output signal pulse from the secondary electron multiplier 32 is small, and the number of ions cannot be accurately counted. On the other hand, if the detector voltage is increased too much, the life of the secondary electron multiplier 32 is shortened. For this reason, in general, a plateau region (a region where the count value is substantially constant with respect to changes in the detector voltage) in a state where an appropriate threshold voltage VTL is set so that noise can be accurately removed by the discriminator 52.
  • the detector voltage is set to operate at FIG. 6 is a diagram showing an example of the relationship between the detector voltage and the count value. In this example, the range of about 2.2 to 2.9 [kV] is the plateau region.
  • the inventor of the present application focused on the high frequency noise superimposed on the output signal from the secondary electron multiplier 32. That is, in general, in a quadrupole mass spectrometer, a quadrupole mass filter to which a high-frequency voltage having a relatively large amplitude is applied and an ion detector are arranged close to each other. Radiation noise derived from voltage jumps into the secondary electron multiplier, and noise having a high frequency component (hereinafter referred to as “high frequency noise”) is superimposed on the output signal obtained from the secondary electron multiplier.
  • FIG. 7 shows an output signal waveform of the ion detector in a state where such high frequency noise is superimposed.
  • the preamplifier 51 of the detection circuit unit 5 is required to have a wide band characteristic, and a high-frequency cut-off filter or the like cannot be inserted. Therefore, it is difficult to remove the high-frequency noise as described above in a circuit. If the threshold voltage VTL of the discriminator 52 is set large so that such high-frequency noise can be removed, the detector voltage when operating in the plateau region becomes too high, and the life of the secondary electron multiplier may be shortened. is there.
  • the present invention has been made in order to solve the above-mentioned problems, and its main purpose is noise superimposed on an output signal of an ion detector in a quadrupole mass spectrometer using a pulse count type detector.
  • Quadrupole mass spectrometry that can reduce the threshold voltage of the discriminator and reduce the detector voltage as much as possible, thereby ensuring both analytical sensitivity and accuracy and extending the life of the ion detector.
  • the present invention provides an apparatus and a method for adjusting a quadrupole mass spectrometer.
  • Another object of the present invention is to improve the S / N ratio by suppressing noise superimposed on the output signal of the ion detector in a quadrupole mass spectrometer using a DC detector.
  • An object of the present invention is to provide a method for adjusting a quadrupole mass spectrometer and a quadrupole mass spectrometer.
  • a first invention is a quadrupole mass filter including four rod electrodes disposed so as to surround an ion optical axis, and an ion of the four rod electrodes.
  • a set of two electrodes facing each other across the optical axis is applied to two sets of electrodes adjacent to each other around the ion optical axis as a superposition of a high-frequency voltage whose phase is reversed and a DC voltage whose polarity is reversed.
  • the voltage generator includes an adjusting unit capable of independently adjusting the amplitude value of the high-frequency voltage whose phase is inverted, and is guided to the ion detector by adjusting the balance between the amplitude values of the two high-frequency voltages by the adjusting unit. High frequency noise can be reduced.
  • a second invention is a quadrupole mass filter including four rod electrodes arranged so as to surround an ion optical axis, and an ion of the four rod electrodes.
  • a set of two electrodes facing each other across the optical axis is applied to two sets of electrodes adjacent to each other around the ion optical axis as a superposition of a high-frequency voltage whose phase is reversed and a DC voltage whose polarity is reversed.
  • An adjustment method in a quadrupole mass spectrometer comprising: a voltage generator; and an ion detector that detects ions that have passed through the quadrupole mass filter,
  • An adjustment means is provided in the voltage generator, which can independently adjust the amplitude value of the high-frequency voltage whose phase is inverted, and the ion detector is adjusted to balance the amplitude value of the two high-frequency voltages by the adjustment means. It is characterized by reducing induced high frequency noise.
  • the adjusting means is means for adjusting the amplitude of the voltage generated by the high-frequency voltage generator, or means for adjusting the value of the L (inductance) component or C (capacitor) component that affects the Q value of the LC resonance circuit, etc. And it is sufficient. Specifically, in the latter case, an inductance variable coil or a capacitance variable capacitor may be used.
  • the amplitude may be adjusted in an analog manner using, for example, a variable resistor, but the high frequency voltage generator reads a digitized voltage value (or a digital signal processing circuit), In the case of a D / A converter, a power amplifier, or the like, the amplitude can be adjusted digitally in a CPU or a digital signal processing circuit.
  • the manifestation status of radiation noise derived from the high frequency voltage applied to the rod electrode of the quadrupole mass filter is the distance between the quadrupole mass filter and the ion detector, the positional relationship between the two,
  • the arrangement and material of surrounding members mainly depend on the configuration and structure. Since the phase of the high frequency voltage applied to the two pairs of rod electrodes is opposite to each other, if radiation noise derived from both of the high frequency voltages jumps into the ion detector equally, both radiations The noise should cancel out. In other words, it is considered that high-frequency noise appears in the output signal of the ion detector when one of both radiation noises is larger than the other depending on the configuration / structure. Therefore, in the first invention and the second invention, by intentionally changing the balance of the amplitude of the high frequency voltage applied to the two sets of rod electrodes, both radiation noises jumping into the ion detector cancel each other.
  • the high-frequency voltage applied to the rod electrode affects the mass of ions that pass through the quadrupole mass filter, so if you change the amplitude of the high-frequency voltages that are out of phase with each other, the behavior of ions passing through May be affected. Therefore, it is preferable that the adjustment by the adjusting means is possible within a range without such influence.
  • the expression of radiation noise derived from high-frequency voltage in the output signal of the ion detector mainly depends on the configuration and structure
  • the balance adjustment of the amplitude values of the two high-frequency voltages by the adjusting means is the main adjustment.
  • a manufacturer that manufactures the quadrupole mass spectrometer according to the invention may be performed at the final stage of apparatus adjustment.
  • the appearance of radiation noise derived from a high-frequency voltage is also affected by subsequent factors such as the degree of contamination of the rod electrode, so the adjustment means may be adjusted on the user side.
  • a quadrupole mass filter including four rod electrodes disposed so as to surround an ion optical axis, and an ion of the four rod electrodes.
  • a set of two electrodes facing each other across the optical axis is applied to two sets of electrodes adjacent to each other around the ion optical axis as a superposition of a high-frequency voltage whose phase is reversed and a DC voltage whose polarity is reversed.
  • a quadrupole mass spectrometer comprising a voltage generator and an ion detector that detects ions that have passed through the quadrupole mass filter, a) high frequency induction means for inducing radiated electromagnetic waves derived from the high frequency voltage generated by the voltage generator; b) a computing means for adding a high frequency signal obtained by the high frequency induction means to the output signal of the ion detector or subtracting it from the output signal to reduce high frequency noise superimposed on the output signal; It is characterized by having.
  • the high-frequency induction means includes, for example, a resistor, a capacitor, a coil, and the like, and is disposed in the vicinity of the high-frequency voltage output terminal of the voltage generator.
  • the high frequency induction means receives radiation energy derived from a high frequency voltage, a high frequency signal is induced in the high frequency induction means.
  • the phase of the high-frequency signal is determined by the positional relationship between the high-frequency induction means and the voltage generator (high-frequency voltage output terminal), and is usually in phase with or opposite to the high-frequency noise superimposed on the output signal of the ion detector. Either.
  • the arithmetic means includes an amplifier that amplifies the high-frequency signal so that the high-frequency signal induced by the high-frequency induction means and the high-frequency noise have substantially the same amplitude.
  • high frequency noise is superimposed on the output signal of the ion detector, but the high frequency noise is canceled out by the computing means, and the noise level is lowered.
  • the signal after the high frequency noise is reduced by the computing means is input to the discriminator, and the pulsed noise other than the high frequency noise is removed.
  • phase correction means an RC filter circuit using a resistor and a capacitor is used, and the phase shift can be adjusted by changing the resistance value or the capacitance.
  • the high-frequency voltage applied to the rod electrode of the quadrupole mass filter The high frequency noise that appears in the output signal of the ion detector due to the above can be reduced.
  • the threshold voltage of the discriminator for noise removal can be reduced.
  • the detector voltage for operating the ion detector in the plateau region is also reduced. You don't have to make it big. Therefore, the lifetime of the ion detector (secondary electron multiplier) can be extended to increase the reliability of the apparatus and reduce the analysis cost. At the same time, it is possible to reduce counting omission of ions incident on the ion detector and prevent erroneous counting due to noise, thereby improving analysis sensitivity and analysis accuracy.
  • the S / N ratio is improved by reducing the high frequency noise appearing in the output signal of the ion detector, and the analysis sensitivity and accuracy can be improved.
  • the block diagram of the principal part of the quadrupole-type mass spectrometer which is one Example of this invention.
  • the figure which shows an example of a structure of a high frequency voltage generation part.
  • the block diagram of the principal part of the quadrupole-type mass spectrometer which is another Example of this invention.
  • the block diagram of the principal part of the quadrupole-type mass spectrometer which is another Example of this invention.
  • mold detector The figure which shows an example of the relationship between a detector voltage and a count value.
  • the figure which shows the output signal waveform of the ion detector of a state with which the high frequency noise was superimposed.
  • FIG. 1 is a configuration diagram of a main part of the quadrupole mass spectrometer.
  • the same components as those already described in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • molecules and atoms in the target sample are ionized by the ion source 1 and are constituted by four rod electrodes 21 to 24 arranged so as to surround the ion optical axis C.
  • the quadrupole mass filter 2 is introduced.
  • the four rod electrodes 21 to 24 are connected as a pair of two electrodes facing each other across the ion optical axis C, and two rod electrodes (one set of reference numerals 21 and 23, Different voltages are applied from the quadrupole voltage generator 4 to one set of reference numerals 22 and 24.
  • the quadrupole voltage generator 4 includes DC voltage generators 42 and 43, high frequency voltage generators 41 and 44, an LC resonance circuit including a coil 45 and a capacitor 46, and an LC resonance circuit including a coil 47 and a capacitor 48.
  • the DC voltage generators 42 and 43 generate DC voltages + U and ⁇ U, respectively, and the voltage values are controlled by the controller 49.
  • the high-frequency voltage generators 41 and 43 basically generate high-frequency voltages v ⁇ cos ⁇ t and ⁇ v ⁇ cos ⁇ t, respectively, and their amplitudes are controlled by the control unit 49.
  • the high frequency voltage v ⁇ cos ⁇ t generated by the high frequency voltage generator 41 is amplified to V ⁇ cos ⁇ t by the LC resonance circuit and added to the direct current voltage + U generated by the direct current voltage generator 42 to obtain a rod as U + V ⁇ cos ⁇ t.
  • the high frequency voltage ⁇ v ⁇ cos ⁇ t generated by the high frequency voltage generator 44 is amplified to ⁇ V ⁇ cos ⁇ t by the LC resonance circuit, and is added to the DC voltage ⁇ U generated by the DC voltage generator 43 to obtain ⁇ It is applied to the rod electrodes 22 and 24 as (U + V ⁇ cos ⁇ t). Since the mass of ions passing through the quadrupole mass filter 2 depends on U and V (or v), when performing mass scanning, the control unit 49 causes U and V to change within a predetermined range.
  • the voltage generators 41 to 44 are controlled.
  • each of the rod electrodes 21 to 24 includes, in addition to the above-described ion selection voltage, an ion source 1 in the front stage, an ion lens (not shown), or a rear stage.
  • an appropriate DC bias voltage is applied in order to appropriately guide ions by a DC potential difference with an ion detector or an aperture electrode (not shown).
  • the high-frequency voltage + V ⁇ cos ⁇ t and ⁇ V ⁇ cos ⁇ t have the same amplitude and the inverted phase, whereas the quadrupole mass analysis of the present embodiment.
  • the amplitude of the high-frequency voltage generated by the two high-frequency voltage generators 41 and 44 can be adjusted within a predetermined range. That is, (v + ⁇ v1) ⁇ cos ⁇ t is generated in the high-frequency voltage generation unit 41, and ⁇ (v + ⁇ v2) ⁇ cos ⁇ t is generated in the high-frequency voltage generation unit 44, and ⁇ v1 and ⁇ v2 can be adjusted within a predetermined range.
  • the ⁇ v1 and ⁇ v2 can be adjusted by a variable resistor, for example, but here, digital adjustment is performed as follows.
  • FIG. 2 is a diagram showing a schematic configuration of the high-frequency voltage generators 41 and 44.
  • the control circuit 411 includes a digital signal processing circuit such as a CPU or FPGA (Field Programmable Gate Gate Array), reads out data stored in the voltage value data table 412 at predetermined time intervals, and performs a digital / analog converter (DAC). To 413.
  • the DAC 413 converts the input data into an analog voltage value, and the power amplifier 414 amplifies it and outputs it.
  • the amplitude of the high-frequency voltage is determined by data read from the voltage value data table 412 and sent to the DAC 413 in the control circuit 411. Therefore, for example, the control circuit 411 is configured to multiply the data read from the voltage value data table 412 by a predetermined adjustment coefficient, and the adjustment coefficient can be set within a predetermined range, thereby adjusting the amplitude of the high-frequency voltage. Can do.
  • analog adjustment such as adjusting the gain of the power amplifier 414 with a variable resistor is also possible.
  • the Q value of the LC oscillation circuit instead of adjusting the amplitude of the high-frequency voltage generated by the high-frequency voltage generators 41 and 44, the amplitudes of the two high-frequency voltages can be adjusted in the same manner as described above. It is.
  • the Q value of the LC oscillation circuit can be adjusted by adjusting the inductances of the coils 45 and 47, or by adjusting the capacitances of the capacitors 46 and 48, respectively.
  • the amplitude of the high-frequency voltage applied to the rod electrodes 21 and 23 and the amplitude of the high-frequency voltage applied to the rod electrodes 22 and 24 are not the same, and are adjusted appropriately.
  • the magnitude of radiation noise that jumps into the ion detector 3 changes. Therefore, for example, the manufacturer of the apparatus monitors the output signal of the ion detector 3 as shown in FIG. 7 while monitoring the output signal of the ion detector 3 as shown in FIG. 7, and minimizes the high-frequency noise superimposed on the output signal. Adjust the balance of the amplitude of the high frequency voltage. As a result, high frequency noise in the output signal is reduced, so that sufficient noise removal can be performed even if the threshold voltage VTL is reduced by the discriminator 52.
  • FIG. 3 the same components as those already described in FIGS. 1 and 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the high-frequency noise that appears in the output signal of the ion detector 3 is reduced by adjusting the voltage applied to the quadrupole mass filter 2.
  • high-frequency noise appearing in the output signal of the ion detector 3 is reduced by canceling the detection circuit unit 5.
  • the detection circuit unit 5 includes a high frequency (RF) induction unit 54, a high frequency amplifier 55 whose amplification degree can be adjusted, and an adder (or subtractor) 56. And comprising.
  • the high frequency induction unit 54 includes, for example, a resistor, a capacitor, and a coil, and detects electromagnetic waves derived from a high frequency voltage radiated from the quadrupole voltage generation unit 4, particularly from the high frequency voltage output end of the quadrupole voltage generation unit 4. Induces high frequency current.
  • the phase of the high-frequency current depends on the installation position of the high-frequency induction unit 54 and the like. Here, it is assumed that the phase of the induced high frequency current is opposite to the high frequency noise superimposed on the output signal of the ion detector 3.
  • the high-frequency amplifier 55 converts the high-frequency current into current / voltage and amplifies it with an appropriate amplification degree.
  • the amplified high-frequency signal is added to the output signal of the preamplifier 51 in the adder 56, the high-frequency signal and the high-frequency noise superimposed on the output signal are opposite in phase, so that they cancel each other.
  • the amplification degree of the high frequency amplifier 55 is adjusted while monitoring the output signal of the adder 56 so that the high frequency noise is minimized. In this manner, the high frequency noise superimposed on the output signal of the ion detector 3 can be reduced before the discriminator 52.
  • the phase of the high-frequency current induced in the high-frequency induction unit 54 is the same as the high-frequency noise superimposed on the output signal of the ion detector 3.
  • the adder 56 the high frequency noise can be canceled in the same manner as described above.
  • phase of the high-frequency current detected by the high-frequency induction unit 54 is in phase or anti-phase with the high-frequency noise superimposed on the output signal of the ion detector 3, the above configuration may be used, but it is not in phase or anti-phase In some cases, high frequency noise cannot be removed even if subtraction or addition is performed as it is. Such a phase shift is often caused by a phase around a circuit such as the preamplifier 51, the high frequency induction unit 54, and the high frequency amplifier 55. Therefore, if there is such a phase shift, a phase correction unit 57 is inserted between the high-frequency amplifier 55 and the adder (or subtractor) 56 as shown in FIG.
  • the phase correction unit 57 can be an RC filter circuit using a resistor and a capacitor, for example, and the phase shift amount can be adjusted by using a variable resistor. After the phase of the high-frequency signal is adjusted to the same or opposite phase as the high-frequency noise by the phase correction unit 57, the high-frequency noise can be appropriately canceled by appropriately adjusting the amplification degree by the high-frequency amplifier 55.
  • a pulse count type detector is used to detect ions.
  • an arithmetic process for integrating or averaging the ion current obtained by the secondary electron multiplier 32 within a predetermined time is executed. Even when a direct current detector is used, the same method can be applied. In that case, the output of the preamplifier 51 or the output of the adder 56 may be directly introduced into a hardware circuit such as a CPU or an integrator in the detection circuit unit 5 for processing.
  • the present invention is applied to a quadrupole mass spectrometer having a simple configuration.
  • a quadrupole mass filter a triple quadrupole is required.
  • the application range is not particularly limited, such as a type mass spectrometer, a gas chromatograph mass spectrometer, and a liquid chromatograph mass spectrometer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

 従来の四重極型質量分析装置では、高周波電圧が印加される四重極質量フィルタ(2)からの輻射ノイズがイオン検出器(3)に飛び込み、それによって検出回路部(5)のディスクリミネータ(52)でのスレショルド電圧を大きく設定する必要があった。それに対し、本発明では、ロッド電極(21~24)に印加する高周波電圧を生成する高周波電圧発生部(41、44)において振幅をそれぞれ調整可能な構成とした。互いに逆位相の高周波電圧の振幅を適宜に調整することで、イオン検出器(3)に飛び込む2つの高周波電圧由来の輻射ノイズがちょうど打ち消し合うようにすることができ、イオン検出器3の出力信号に現れる高周波ノイズを低減することができる。それにより、ディスクリミネータ(52)でのスレショルド電圧を小さくすることができ、イオン検出器(3)への印加電圧を抑えて該検出器(3)の寿命を延ばすことができる。

Description

四重極型質量分析装置及び四重極型質量分析装置の調整方法
 本発明は、m/z値に応じてイオンを分離する質量分離器として四重極質量フィルタを用いた四重極型質量分析装置、及び四重極型質量分析装置の調整方法に関する。
 四重極型質量分析装置では、試料から生成された各種イオンを四重極質量フィルタに導入して特定の質量(厳密にはm/z)を有するイオンのみを選択的に通過させ、通過してきたイオンをイオン検出器により検出してイオンの量に応じた信号を取得する。四重極質量フィルタを通過し得るイオンの質量は、ロッド電極に印加される高周波電圧と直流電圧とに依存する。そこで、ロッド電極への印加電圧を所定範囲で走査することにより、四重極質量フィルタを通過するイオンの質量を所定の質量範囲に亘り走査し、その際にイオン検出器により得られる信号に基づいて、横軸をm/z、縦軸をイオン強度とするマススペクトルを作成することができる。
 質量分析装置のためのイオン検出器としては、大別して、イオン電流の平均値や積分値を測定する直流型検出器と、到達したイオンの個数をパルス信号として計数するパルスカウント型検出器と、が知られている(特許文献1、2など参照)。一般的には前者の直流型検出器が利用されることが多いが、信号強度が低い場合で、且つ化学的ノイズが小さい場合には、微小イオン量の測定に有利な、後者のパルスカウント型検出器が利用される。例えば、液体クロマトグラフで成分分離された試料液中の成分のMS/MS分析(タンデム分析ともいう)を行うLC/MS/MSでは、パルスカウント型検出器が利用されることが比較的多い。
 特許文献3などに開示されているパルスカウント型検出器の概略構成を図5に示す。イオンはイオン検出器3においてまずコンバージョンダイノード31に入射して電子に変換され、この電子が二次電子増倍管(EM)32に導入され、電子の数が増倍されて各電子に応じた信号が出力される。二次電子増倍管32からのパルス状の出力信号の波高値が後段の検出回路部5においてプリアンプ51で増幅され、さらにディスクリミネータ52で所定のスレショルド電圧VTLよりも波高値の小さなものがノイズとして除去された後に波形整形される。この例では、図5中に記載のように、二次電子増倍管32からの出力信号パルスはベースラインから下向き(負方向)に生じる。ノイズ除去されたパルス信号が計数部53に入力され、計数部53は一定の時間幅内に得られるパルス信号を計数し、その計数値がイオン検出器3に入射したイオン数に応じた検出データとして出力される。
 電子を増倍するために二次電子増倍管32には高電圧(以下「検出器電圧」という)が印加されており、出力信号パルスの波高値は検出器電圧に依存する。この検出器電圧が低すぎると二次電子増倍管32からの出力信号パルスの波高値が小さく、イオンの数を正確に計数できない。一方、検出器電圧を大きくしすぎると二次電子増倍管32の寿命が短くなる。このため一般的には、ディスクリミネータ52でノイズを的確に除去できるように適切なスレショルド電圧VTLを設定した状態で、プラトー領域(計数値が検出器電圧の変化に対しほぼ一定となる領域)で動作するように検出器電圧を設定するようにしている。図6は検出器電圧と計数値との関係の一例を示す図であり、この例では2.2~2.9[kV]程度の範囲がプラトー領域である。
 しかしながら、実際には、二次電子増倍管32の寿命を延ばすように検出器電圧を適宜に抑えた状態ではノイズを適切に除去するようなスレショルド電圧VTLを設定することは難しい。その要因として、本願発明者は二次電子増倍管32からの出力信号に重畳している高周波ノイズに着目した。即ち、一般に四重極型質量分析装置では、比較的大きな振幅を持つ高周波電圧が印加される四重極質量フィルタとイオン検出器とは近接して配置されるため、ロッド電極に印加された高周波電圧由来の輻射ノイズが二次電子増倍管に飛び込み、二次電子増倍管で得られる出力信号には高周波成分を持つノイズ(以下「高周波ノイズ」という)が重畳される。図7はこうした高周波ノイズが重畳した状態のイオン検出器の出力信号波形である。
 パルスカウント型検出器では信号の立ち上がり特性が重要であるため、検出回路部5のプリアンプ51などには広帯域特性のものが求められ、高域カットオフフィルタなどを挿入することができない。そのため、上記のような高周波ノイズを回路的に除去することは難しい。こうした高周波ノイズを除去可能なようにディスクリミネータ52のスレショルド電圧VTLを大きく設定すると、プラトー領域で動作させる際の検出器電圧が高くなりすぎ、二次電子増倍管の寿命を短くするおそれがある。
 即ち、従来の四重極型質量分析装置でパルスカウント型検出器を用いた場合には、二次電子増倍管の寿命を延ばすべく検出器電圧を低く抑えると、計数効率が低下して分析感度が下がるか、或いは、ノイズを十分に除去できずに分析精度が落ちることになる。逆に、分析感度や分析精度を上げるためには、検出器電圧を高くして二次電子増倍管の寿命を犠牲にすることになる。
 一方、四重極型質量分析装置で直流型検出器を用いた場合には、化学的ノイズを無視すれば、イオン検出器後段の電気回路におけるノイズがS/Nに寄与するノイズとなるから、上記のような高周波ノイズはSN比を改善する際の障害となる。
特開平6-118176号公報 特開平9-251079号公報 特開平6-267497号公報
 本発明は上記課題を解決するために成されたものであり、その主な目的は、パルスカウント型検出器を用いた四重極型質量分析装置において、イオン検出器の出力信号に重畳するノイズを抑えることより、ディスクリミネータのスレショルド電圧を小さくするとともに検出器電圧もできるだけ小さくし、分析感度・精度の確保とイオン検出器の長寿命化とを両立させることができる四重極型質量分析装置、及び四重極型質量分析装置の調整方法を提供することにある。
 また、本発明の他の目的は、直流型検出器を用いた四重極型質量分析装置において、イオン検出器の出力信号に重畳するノイズを抑えることより、SN比を改善することができる四重極型質量分析装置、及び四重極型質量分析装置の調整方法を提供することにある。
 上記課題を解決するために成された第1発明は、イオン光軸を取り囲むように配設された4本のロッド電極から成る四重極質量フィルタと、前記4本のロッド電極のうちのイオン光軸を挟んで対向する2本の電極を1組としてイオン光軸の周りに隣接する2組の電極に、互いに位相が反転した高周波電圧と極性が反転した直流電圧とを重畳して印加する電圧発生部と、前記四重極質量フィルタを通過したイオンを検出するイオン検出器と、を具備する四重極型質量分析装置において、
 前記電圧発生部にあって位相が反転した高周波電圧の振幅値をそれぞれ独立に調整可能な調整手段を備え、該調整手段による2つの高周波電圧の振幅値のバランス調整により前記イオン検出器に誘導される高周波ノイズを低減可能としたことを特徴としている。
 上記課題を解決するために成された第2発明は、イオン光軸を取り囲むように配設された4本のロッド電極から成る四重極質量フィルタと、前記4本のロッド電極のうちのイオン光軸を挟んで対向する2本の電極を1組としてイオン光軸の周りに隣接する2組の電極に、互いに位相が反転した高周波電圧と極性が反転した直流電圧とを重畳して印加する電圧発生部と、前記四重極質量フィルタを通過したイオンを検出するイオン検出器と、を具備する四重極型質量分析装置における調整方法であって、
 前記電圧発生部にあって位相が反転した高周波電圧の振幅値をそれぞれ独立に調整可能な調整手段を設けておき、該調整手段による2つの高周波電圧の振幅値のバランス調整により前記イオン検出器に誘導される高周波ノイズを低減させることを特徴としている。
 第1発明及び第2発明において、前記電圧発生部が、高周波電圧発生部と、この高周波電圧発生部で生成された高周波電圧の振幅を増幅するLC共振回路と、を含む構成である場合、前記調整手段は、高周波電圧発生部で生成される電圧の振幅を調整する手段、或いは、LC共振回路のQ値を左右するL(インダクタンス)成分又はC(コンデンサ)成分の値を調整する手段、などとすればよい。具体的には、後者の場合、インダクタンス可変コイルやキャパシタンス可変コンデンサを利用すればよい。一方、前者の場合、例えば可変抵抗などを用いてアナログ的に振幅を調整可能な構成としてもよいが、高周波電圧発生部が、デジタル化された電圧値を読み出すCPU(又はデジタル信号処理回路)、D/A変換器、パワーアンプなどにより構成される場合、CPUやデジタル信号処理回路においてデジタル的に振幅を調整する構成とすることもできる。
 イオン検出器の出力信号において、四重極質量フィルタのロッド電極に印加される高周波電圧に由来する輻射ノイズの発現状況は、四重極質量フィルタとイオン検出器との距離、両者の位置関係、その周囲の部材の配置や材質など、主として構成・構造に依存する。各2本ずつ2組のロッド電極に印加される高周波電圧の位相は逆位相であるから、その両方の高周波電圧由来の輻射ノイズが全く同等にイオン検出器に飛び込んでいる場合には、両輻射ノイズが打ち消し合う筈である。換言すれば、構成・構造に依存して両輻射ノイズの一方が他方よりも大きい場合に、イオン検出器の出力信号において高周波ノイズが発現すると考えられる。そこで、第1発明及び第2発明では、2組のロッド電極に印加する高周波電圧の振幅のバランスを意図的に変えることで、イオン検出器に飛び込んだ両輻射ノイズが互いに打ち消し合うようにする。
 もちろん、ロッド電極に印加される高周波電圧は四重極質量フィルタを通過するイオンの質量を左右するから、互いに位相が逆である高周波電圧の振幅を大幅に変えると、通過しようとするイオンの挙動に影響を与えるおそれがある。したがって、こうした影響のない範囲で、前記調整手段による調整を可能としておくことが好ましい。なお、上述したように、イオン検出器の出力信号における高周波電圧由来の輻射ノイズの発現は主として構成・構造に依存するものであるから、調整手段による2つの高周波電圧の振幅値のバランス調整は本発明に係る四重極型質量分析装置を製造するメーカーが最終的な装置調整の段階で行っておけばよい。もちろん、高周波電圧由来の輻射ノイズの発現状況はロッド電極の汚れ具合などの後発的要素の影響も受けるため、ユーザ側において調整手段を調整できるようにしても構わない。
 上記課題を解決するために成された第3発明は、イオン光軸を取り囲むように配設された4本のロッド電極から成る四重極質量フィルタと、前記4本のロッド電極のうちのイオン光軸を挟んで対向する2本の電極を1組としてイオン光軸の周りに隣接する2組の電極に、互いに位相が反転した高周波電圧と極性が反転した直流電圧とを重畳して印加する電圧発生部と、前記四重極質量フィルタを通過したイオンを検出するイオン検出器と、を具備する四重極型質量分析装置において、
 a)前記電圧発生部で生成される高周波電圧に由来する放射電磁波を誘導する高周波誘導手段と、
 b)前記高周波誘導手段により得られる高周波信号を前記イオン検出器の出力信号に加算し又は該出力信号から減算し、該出力信号に重畳している高周波ノイズを低減させる演算手段と、
 を備えることを特徴としている。
 第3発明に係る四重極型質量分析装置において、高周波誘導手段は例えば抵抗、コンデンサ、コイルなどを含んで構成され、電圧発生部の高周波電圧出力端の近傍に配設される。高周波誘導手段が高周波電圧由来の放射エネルギーを受けると、高周波誘導手段に高周波信号が誘起される。その高周波信号の位相は、高周波誘導手段と電圧発生部(高周波電圧出力端)との位置関係などにより決まり、通常、イオン検出器の出力信号に重畳している高周波ノイズと同位相又は逆位相のいずれかである。同位相となる場合には演算手段として減算を行うものを用意し、逆位相となる場合には演算手段として加算を行うものを用意しておけばよい。また、高周波誘導手段に誘導される高周波信号と高周波ノイズとの振幅がほぼ同一となるように、演算手段は高周波信号を増幅するアンプを含むものとする。
 第3発明に係る四重極型質量分析装置では、イオン検出器の出力信号には高周波ノイズが重畳しているが、演算手段において高周波ノイズが打ち消されてノイズレベルが下がる。パルスカウント型検出器の場合には、演算手段で高周波ノイズが低減された後の信号がディスクリミネータに入力され、高周波ノイズ以外のパルス状のノイズが除去される。
 なお、例えばイオン検出器の後段のプリアンプや高周波誘導手段などの回路で位相遅れや位相進みがあるような場合には、演算手段で加算又は減算を行う時点で高周波ノイズと高周波信号とが同位相又は逆位相になっていないことがあり得る。その場合には、前記高周波誘導手段で得られた高周波信号の位相が、イオン検出器の出力信号に重畳している高周波ノイズの位相と同位相又は逆位相になるように、位相を補正する位相補正手段をさらに備える構成とすればよい。位相補正手段としては抵抗とコンデンサとを用いたRCフィルタ回路を用い、抵抗値又はキャパシタンスを可変とすることで位相ずれを調整するものとすることができる。
 第1及び第3発明に係る四重極型質量分析装置、及び第2発明に係る四重極型質量分析装置の調整方法によれば、四重極質量フィルタのロッド電極に印加される高周波電圧に由来してイオン検出器の出力信号に現れる高周波ノイズを低減することができる。それにより、パルスカウント型検出器を用いる場合においては、ノイズ除去のためのディスクリミネータのスレショルド電圧を小さくすることができ、その結果、イオン検出器をプラトー領域で動作させるための検出器電圧も大きくせずに済む。それ故に、イオン検出器(二次電子増倍管)の寿命を長くして、装置の信頼性を高めるとともに分析コストを低減することができる。また同時に、イオン検出器に入射したイオンの計数漏れを減らし、ノイズによる誤計数も防止できるので、分析感度や分析精度の向上も図ることができる。
 また直流型検出器を用いる場合においては、イオン検出器の出力信号に現れる高周波ノイズが低減されることでSN比が良好になり、分析感度・分析精度の向上を図ることができる。
本発明の一実施例である四重極型質量分析装置の要部の構成図。 高周波電圧発生部の構成の一例を示す図。 本発明の他の実施例である四重極型質量分析装置の要部の構成図。 本発明の他の実施例である四重極型質量分析装置の要部の構成図。 従来の一般的なパルスカウント型検出器の概略構成図。 検出器電圧と計数値との関係の一例を示す図。 高周波ノイズが重畳した状態のイオン検出器の出力信号波形を示す図。
符号の説明
1…イオン源
2…四重極質量フィルタ
21~24…ロッド電極
3…イオン検出器
31…コンバージョンダイノード
32…二次電子増倍管
4…四重極電圧発生部
41、44…高周波電圧発生部
411…制御回路
412…電圧値データテーブル
413…デジタル/アナログ変換器
414…パワーアンプ
42、43…直流電圧発生部
45、47…コイル
46、48…コンデンサ
49…制御部
5…検出回路部
51…プリアンプ
52…ディスクリミネータ
53…計数部
54…高周波誘導部
55…高周波アンプ
56…加算器
  [第1実施例]
 本発明の一実施例(以下「第1実施例」という)である四重極型質量分析装置について、添付図面を参照して詳細に説明する。図1はこの四重極型質量分析装置の要部の構成図である。図中、既に説明した図5中の構成要素と同一のものについては同一符号を付して詳しい説明を省略する。
 本実施例の四重極型質量分析装置において、目的試料中の分子や原子はイオン源1でイオン化され、イオン光軸Cを取り囲むように配設された4本のロッド電極21~24により構成される四重極質量フィルタ2に導入される。4本のロッド電極21~24は、図1中に示すようにイオン光軸Cを挟んで対向する2本が1組として接続され、2組のロッド電極(符号の21、23の1組、符号22、24の1組)には四重極電圧発生部4より互いに異なる電圧が印加される。四重極質量フィルタ2に導入された各種イオンのうち、ロッド電極21~24に印加された電圧に応じた特定の質量(厳密にはm/z)を有するイオンのみが四重極質量フィルタ2を通り抜けてイオン検出器3に到達し、他のイオンは途中で発散してしまう。
 四重極電圧発生部4は、直流電圧発生部42、43、高周波電圧発生部41、44、コイル45及びコンデンサ46からなるLC共振回路、コイル47及びコンデンサ48からなるLC共振回路、を含む。直流電圧発生部42、43はそれぞれ直流電圧+U、-Uを生成するものであり、その電圧値は制御部49により制御される。高周波電圧発生部41、43は基本的にそれぞれ高周波電圧v・cosωt、-v・cosωtを生成するものであり、その振幅は制御部49により制御される。高周波電圧発生部41で生成された高周波電圧v・cosωtはLC共振回路でV・cosωtに増幅され、それが直流電圧発生部42で生成された直流電圧+Uと加算されて、U+V・cosωtとしてロッド電極21、23に印加される。また高周波電圧発生部44で生成された高周波電圧-v・cosωtはLC共振回路で-V・cosωtに増幅され、それが直流電圧発生部43で生成された直流電圧-Uと加算されて、-(U+V・cosωt)としてロッド電極22、24に印加される。四重極質量フィルタ2を通過するイオンの質量は、U、V(又はv)に依存するから、質量走査を行う場合には、制御部49はU、Vがそれぞれ所定の範囲で変化するように各電圧発生部41~44を制御する。
 なお、煩雑になるためにここでは省略しているが、各ロッド電極21~24には、上記のイオン選択用の電圧のほかに、前段のイオン源1や図示しないイオンレンズ、或いは、後段のイオン検出器や図示しないアパーチャ電極など、との間の直流的な電位差によりイオンを適切に導くために、適宜の直流バイアス電圧が印加されるのが一般的である。
 従来の四重極型質量分析装置では、高周波電圧+V・cosωtと-V・cosωtとでは振幅が同一であって位相が反転したものであるのに対し、本実施例の四重極型質量分析装置では、2つの高周波電圧発生部41、44で生成される高周波電圧の振幅はそれぞれ所定の範囲で調整が可能となっている。即ち、高周波電圧発生部41では(v+Δv1)・cosωtが生成され、高周波電圧発生部44では-(v+Δv2)・cosωtが生成され、Δv1とΔv2とはそれぞれ所定の範囲で調整可能である。このΔv1、Δv2は、例えば可変抵抗により調整可能な構成とすることもできるが、ここでは次のようにデジタル的な調整を行うものとする。
 図2は高周波電圧発生部41、44の概略構成を示す図である。制御回路411はCPU又はFPGA(Field Programmable Gate Array)などのデジタル信号処理回路から構成され、電圧値データテーブル412に格納されているデータを所定の時間間隔で読み出してデジタル/アナログ変換器(DAC)413へと送る。DAC413は入力されたデータをアナログ電圧値に変換し、パワーアンプ414はこれを増幅して出力する。
 即ち、この構成では、高周波電圧の振幅は、制御回路411において電圧値データテーブル412から読み出されDAC413へと送られるデータで決まる。したがって、例えば制御回路411において電圧値データテーブル412から読み出したデータに所定の調整係数を乗じる構成とし、この調整係数を所定の範囲内で設定可能としておくことにより、高周波電圧の振幅を調整することができる。もちろん、パワーアンプ414のゲインを可変抵抗により調整するといった、アナログ的な調整も可能である。
 また、高周波電圧発生部41、44で生成する高周波電圧の振幅を調整する代わりに、LC発振回路のQ値を調整することによっても、上記と同様に2つの高周波電圧の各振幅の調整が可能である。LC発振回路のQ値の調整は、コイル45、47のインダクタンスをそれぞれ調整可能なものとするか、或いは、コンデンサ46、48のキャパシタンスをそれぞれ調整可能なものとすればよい。
 上述のいずれかの構成により、ロッド電極21、23に印加される高周波電圧の振幅とロッド電極22、24に印加される高周波電圧の振幅とが同一ではなく適宜に相違するように調整されると、イオン検出器3に飛び込む輻射ノイズの大きさが変化する。そこで、例えば、当該装置の製造メーカーでは、最終の調整段階において、図7に示したようなイオン検出器3の出力信号をモニタしながら、その出力信号に重畳している高周波ノイズが最も小さくなるように高周波電圧の振幅のバランスを調整する。これにより、出力信号の高周波ノイズは低減されるから、ディスクリミネータ52でスレショルド電圧VTLを小さくしても十分なノイズ除去を行うことができる。
  [第2実施例]
 次に本発明の第2実施例の四重極型質量分析装置を、図3により説明する。図3中、既に説明した図1、図5中の構成要素と同一のものについては同一符号を付して詳しい説明を省略する。
 第1実施例の四重極型質量分析装置では、四重極質量フィルタ2への印加電圧を調整することでイオン検出器3の出力信号に現れる高周波ノイズを低減させていたが、この第2実施例では、イオン検出器3の出力信号に現れる高周波ノイズを検出回路部5において打ち消すことで低減させるようにしている。
 この第2実施例の四重極型質量分析装置において、検出回路部5は、高周波(RF)誘導部54と、増幅度が調整可能である高周波アンプ55と、加算器(又は減算器)56と、を備える。高周波誘導部54は、例えば抵抗、コンデンサ、コイルなどを含み、四重極電圧発生部4から、特に四重極電圧発生部4の高周波電圧出力端から放射される高周波電圧由来の電磁波を検知し、高周波電流を誘起させる。この高周波電流の位相は高周波誘導部54の設置位置などに依存する。ここでは、誘起される高周波電流の位相がイオン検出器3の出力信号に重畳している高周波ノイズとは逆位相であるとする。
 高周波アンプ55は高周波電流を電流/電圧変換して適宜の増幅度で増幅する。増幅された高周波信号が加算器56においてプリアンプ51の出力信号と加算されると、高周波信号と出力信号に重畳している高周波ノイズとは逆位相であるので両者は打ち消し合う。例えば、当該装置の製造メーカーの最終調整段階において、加算器56の出力信号をモニタしながら高周波アンプ55の増幅度を調整し、高周波ノイズが最も小さくなるように調整する。このようにしてディスクリミネータ52の手前で、イオン検出器3の出力信号に重畳している高周波ノイズを打ち消すことにより低減することができる。
 なお、高周波誘導部54の設置位置によっては、高周波誘導部54に誘起される高周波電流の位相がイオン検出器3の出力信号に重畳している高周波ノイズと同位相となる。この場合、加算器56の代わりに減算器を用いれば、上記と同様に高周波ノイズを打ち消すことができる。
 高周波誘導部54により検知される高周波電流の位相がイオン検出器3の出力信号に重畳している高周波ノイズと同位相又は逆位相である場合には上記構成でよいが、同位相又は逆位相でない場合には、そのままでは減算や加算を行っても高周波ノイズを除去することはできない。こうした位相のずれは、プリアンプ51、高周波誘導部54、高周波アンプ55などの回路での位相まわりに起因することが多い。そこで、このような位相のずれがある場合には、図4に示すように高周波アンプ55と加算器(又は減算器)56との間に位相補正部57を挿入する。位相補正部57は例えば抵抗とコンデンサとを用いたRCフィルタ回路とすることができ、抵抗を可変抵抗とすることで位相ずれ量を調整することができる。この位相補正部57で高周波信号の位相を高周波ノイズと同位相又は逆位相に合わせた後に、高周波アンプ55で増幅度を適宜調整することで、高周波ノイズを適切に打ち消すことが可能となる。
 上記各実施例では、イオンを検出するためにパルスカウント型検出器を用いたが、二次電子増倍管32で得られたイオン電流を所定時間内で積分する又は平均化する演算処理を実行する直流型検出器を用いた場合でも、同様の手法を適用することができる。その場合には、検出回路部5においてプリアンプ51の出力又は加算器56の出力を直接、CPUや積分器などのハードウエア回路に導入して処理するようにすればよい。
 また、上記実施例は単に本発明の一例にすぎず、本発明の趣旨の範囲で適宜変更や修正、追加を行っても本願請求の範囲に包含されることは明らかである。例えば、上記実施例は単純な構成の四重極型質量分析装置に本発明を適用したものであるが、四重極質量フィルタを利用した質量分析装置でありさえすれば、三連四重極型質量分析装置、ガスクロマトグラフ質量分析装置、液体クロマトグラフ質量分析装置など、その適用範囲は特に限定されるものではない。

Claims (4)

  1.  イオン光軸を取り囲むように配設された4本のロッド電極から成る四重極質量フィルタと、前記4本のロッド電極のうちのイオン光軸を挟んで対向する2本の電極を1組としてイオン光軸の周りに隣接する2組の電極に、互いに位相が反転した高周波電圧と極性が反転した直流電圧とを重畳して印加する電圧発生部と、前記四重極質量フィルタを通過したイオンを検出するイオン検出器と、を具備する四重極型質量分析装置において、
     前記電圧発生部にあって位相が反転した高周波電圧の振幅値をそれぞれ独立に調整可能な調整手段を備え、該調整手段による振幅値のバランス調整により前記イオン検出器に誘導される高周波ノイズを低減可能としたことを特徴とする四重極型質量分析装置。
  2.  イオン光軸を取り囲むように配設された4本のロッド電極から成る四重極質量フィルタと、前記4本のロッド電極のうちのイオン光軸を挟んで対向する2本の電極を1組としてイオン光軸の周りに隣接する2組の電極に、互いに位相が反転した高周波電圧と極性が反転した直流電圧とを重畳して印加する電圧発生部と、前記四重極質量フィルタを通過したイオンを検出するイオン検出器と、を具備する四重極型質量分析装置における調整方法であって、
     前記電圧発生部にあって位相が反転した高周波電圧の振幅値をそれぞれ独立に調整可能な調整手段を設けておき、該調整手段による2つの高周波電圧の振幅値のバランス調整により前記イオン検出器に誘導される高周波ノイズを低減させることを特徴とする四重極型質量分析装置の調整方法。
  3.  イオン光軸を取り囲むように配設された4本のロッド電極から成る四重極質量フィルタと、前記4本のロッド電極のうちのイオン光軸を挟んで対向する2本の電極を1組としてイオン光軸の周りに隣接する2組の電極に、互いに位相が反転した高周波電圧と極性が反転した直流電圧とを重畳して印加する電圧発生部と、前記四重極質量フィルタを通過したイオンを検出するイオン検出器と、を具備する四重極型質量分析装置において、
     a)前記電圧発生部で生成される高周波電圧に由来する放射電磁波を誘導する高周波誘導手段と、
     b)前記高周波誘導手段により得られる高周波信号を前記イオン検出器の出力信号に加算し又は該出力信号から減算し、該出力信号に重畳している高周波ノイズを低減させる演算手段と、
     を備えることを特徴とする四重極型質量分析装置。
  4.  請求項3に記載の四重極型質量分析装置であって、
     前記高周波誘導手段で得られた高周波信号の位相が、イオン検出器の出力信号に重畳している高周波ノイズの位相と同位相又は逆位相になるように、位相を補正する位相補正手段をさらに備えることを特徴とする四重極型質量分析装置。
PCT/JP2008/002289 2008-08-25 2008-08-25 四重極型質量分析装置及び四重極型質量分析装置の調整方法 WO2010023706A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010526429A JP5152335B2 (ja) 2008-08-25 2008-08-25 四重極型質量分析装置及び四重極型質量分析装置の調整方法
PCT/JP2008/002289 WO2010023706A1 (ja) 2008-08-25 2008-08-25 四重極型質量分析装置及び四重極型質量分析装置の調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/002289 WO2010023706A1 (ja) 2008-08-25 2008-08-25 四重極型質量分析装置及び四重極型質量分析装置の調整方法

Publications (1)

Publication Number Publication Date
WO2010023706A1 true WO2010023706A1 (ja) 2010-03-04

Family

ID=41720895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/002289 WO2010023706A1 (ja) 2008-08-25 2008-08-25 四重極型質量分析装置及び四重極型質量分析装置の調整方法

Country Status (2)

Country Link
JP (1) JP5152335B2 (ja)
WO (1) WO2010023706A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108050A1 (ja) 2011-02-10 2012-08-16 株式会社島津製作所 四重極型質量分析装置
JP2013511113A (ja) * 2009-11-16 2013-03-28 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド 質量分光計内の多極に提供するためにrf信号およびac信号を結合する装置および方法
GB2512121A (en) * 2013-03-21 2014-09-24 Thermo Fisher Scient Bremen Preamplifier for charged particle detection
WO2014163941A3 (en) * 2013-03-11 2014-12-31 1St Detect Corporation Mass spectrum noise cancellation by alternating inverted synchronous rf
WO2017104303A1 (ja) * 2015-12-17 2017-06-22 株式会社 日立ハイテクノロジーズ 質量分析装置
CN108352293A (zh) * 2015-11-11 2018-07-31 株式会社岛津制作所 四极杆滤质器以及四极杆质谱分析装置
CN114141602A (zh) * 2021-10-20 2022-03-04 广州禾信仪器股份有限公司 四极杆控制扫描质谱系统及其控制方法
CN114446763A (zh) * 2020-11-06 2022-05-06 塞莫费雪科学(不来梅)有限公司 离子检测器电流转换器
WO2023026201A3 (en) * 2021-08-25 2023-04-06 Dh Technologies Development Pte. Ltd. System and method of driving radio frequency for multipole ion processing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11270874B2 (en) 2020-03-30 2022-03-08 Thermo Finnigan Llc Amplifier amplitude digital control for a mass spectrometer
US11336290B2 (en) 2020-03-30 2022-05-17 Thermo Finnigan Llc Amplifier amplitude digital control for a mass spectrometer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321278A (ja) * 1995-05-24 1996-12-03 Shimadzu Corp Icp質量分析装置
JP2002033075A (ja) * 2000-07-18 2002-01-31 Shimadzu Corp 質量分析装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321278A (ja) * 1995-05-24 1996-12-03 Shimadzu Corp Icp質量分析装置
JP2002033075A (ja) * 2000-07-18 2002-01-31 Shimadzu Corp 質量分析装置

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511113A (ja) * 2009-11-16 2013-03-28 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド 質量分光計内の多極に提供するためにrf信号およびac信号を結合する装置および方法
US8907274B2 (en) 2011-02-10 2014-12-09 Shimadzu Corporation Quadrupole mass spectrometer
WO2012108050A1 (ja) 2011-02-10 2012-08-16 株式会社島津製作所 四重極型質量分析装置
WO2014163941A3 (en) * 2013-03-11 2014-12-31 1St Detect Corporation Mass spectrum noise cancellation by alternating inverted synchronous rf
US9196467B2 (en) 2013-03-11 2015-11-24 1St Detect Corporation Mass spectrum noise cancellation by alternating inverted synchronous RF
GB2512121A (en) * 2013-03-21 2014-09-24 Thermo Fisher Scient Bremen Preamplifier for charged particle detection
CN104065347A (zh) * 2013-03-21 2014-09-24 塞莫费雪科学(不来梅)有限公司 用于带电粒子检测的前置放大器
US9097806B2 (en) 2013-03-21 2015-08-04 Thermo Fisher Scientific (Bremen) Gmbh Preamplifier for charged particle detection
GB2512121B (en) * 2013-03-21 2018-03-28 Thermo Fisher Scient Bremen Gmbh Preamplifier for charged particle detection
CN108352293A (zh) * 2015-11-11 2018-07-31 株式会社岛津制作所 四极杆滤质器以及四极杆质谱分析装置
GB2559527A (en) * 2015-12-17 2018-08-08 Hitachi High Tech Corp Mass spectrometer
CN108369890A (zh) * 2015-12-17 2018-08-03 株式会社日立高新技术 质量分析装置
WO2017104303A1 (ja) * 2015-12-17 2017-06-22 株式会社 日立ハイテクノロジーズ 質量分析装置
US20190006164A1 (en) * 2015-12-17 2019-01-03 Hitachi High-Technologies Corporation Mass Spectrometer
US10607825B2 (en) 2015-12-17 2020-03-31 Hitachi High-Technologies Corporation Mass spectrometer
GB2559527B (en) * 2015-12-17 2021-10-27 Hitachi High Tech Corp Mass spectrometer
CN114446763A (zh) * 2020-11-06 2022-05-06 塞莫费雪科学(不来梅)有限公司 离子检测器电流转换器
EP3996128A1 (en) * 2020-11-06 2022-05-11 Thermo Fisher Scientific (Bremen) GmbH Ion detector current converter
GB2600723A (en) * 2020-11-06 2022-05-11 Thermo Fisher Scient Bremen Gmbh Ion detector current converter
US11887829B2 (en) 2020-11-06 2024-01-30 Thermo Fisher Scientific (Bremen) Gmbh Ion detector current converter
CN114446763B (zh) * 2020-11-06 2024-06-11 塞莫费雪科学(不来梅)有限公司 离子检测器电流转换器
WO2023026201A3 (en) * 2021-08-25 2023-04-06 Dh Technologies Development Pte. Ltd. System and method of driving radio frequency for multipole ion processing device
CN114141602A (zh) * 2021-10-20 2022-03-04 广州禾信仪器股份有限公司 四极杆控制扫描质谱系统及其控制方法
CN114141602B (zh) * 2021-10-20 2024-02-13 广州禾信仪器股份有限公司 四极杆控制扫描质谱系统及其控制方法

Also Published As

Publication number Publication date
JPWO2010023706A1 (ja) 2012-01-26
JP5152335B2 (ja) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5152335B2 (ja) 四重極型質量分析装置及び四重極型質量分析装置の調整方法
JP5556890B2 (ja) 四重極型質量分析装置
CN109962004B (zh) 用于串扰补偿的方法和装置
JP4665970B2 (ja) 四重極型質量分析装置
JP5087079B2 (ja) ガス分析計
US7078684B2 (en) High resolution fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry methods and apparatus
JP6736199B1 (ja) 電流検出装置、およびそれを用いたスペクトロメーター
WO2012152949A1 (en) Ion detection
KR20140135126A (ko) 이온의 질량 선택성 결정을 위한 장치
GB2481701A (en) Forward and reverse mass scanning for an ion beam instrument
JP2015075348A (ja) イオン移動度分光計
US9196467B2 (en) Mass spectrum noise cancellation by alternating inverted synchronous RF
JP6593451B2 (ja) 四重極マスフィルタ及び四重極型質量分析装置
JP5412246B2 (ja) 四重極質量分析装置におけるスペクトル信号補正方法
JP6418337B2 (ja) 四重極マスフィルタ及び四重極型質量分析装置
JP2008052996A (ja) 質量分析装置
JP2002033075A (ja) 質量分析装置
KR20220153588A (ko) 하전 입자 검출을 위한 입자 검출기
KR20160083801A (ko) 질량 분석기 및 그것의 전자빔 주입을 제어하는 방법
JP2020505745A (ja) 電子エネルギー損失分光器のための高調波ラインノイズ補正関連出願の相互参照
JP4957602B2 (ja) 質量分析装置
CN112992648A (zh) 四极杆质量分析装置及方法以及程序记录介质
WO2019229951A1 (ja) 飛行時間型質量分析装置
JP5422485B2 (ja) ガス分析計
JP2012169175A (ja) 四重極型質量分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08790493

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526429

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08790493

Country of ref document: EP

Kind code of ref document: A1