WO2010021283A1 - 潤滑油の劣化判定具及び潤滑油の劣化判定方法 - Google Patents

潤滑油の劣化判定具及び潤滑油の劣化判定方法 Download PDF

Info

Publication number
WO2010021283A1
WO2010021283A1 PCT/JP2009/064245 JP2009064245W WO2010021283A1 WO 2010021283 A1 WO2010021283 A1 WO 2010021283A1 JP 2009064245 W JP2009064245 W JP 2009064245W WO 2010021283 A1 WO2010021283 A1 WO 2010021283A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
indicator
deterioration
membrane filter
base material
Prior art date
Application number
PCT/JP2009/064245
Other languages
English (en)
French (fr)
Inventor
昌敏 遠藤
俊樹 渡部
弘 栃木
邦治 山本
Original Assignee
国立大学法人山形大学
コスモ石油ルブリカンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山形大学, コスモ石油ルブリカンツ株式会社 filed Critical 国立大学法人山形大学
Publication of WO2010021283A1 publication Critical patent/WO2010021283A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators

Definitions

  • the present invention relates to a lubricant deterioration determination tool and a lubricant deterioration determination method. More specifically, in order to determine the deterioration of the lubricating oil in use, lubrication can be performed by performing a neutralization reaction on a solid substrate such as a membrane and measuring the base number of the lubricating oil by discoloring the indicator to determine its deterioration.
  • the present invention relates to an oil deterioration determination method and a lubricant deterioration determination tool that can be used therefor.
  • an engine oil for an internal combustion engine generates an acidic substance due to use and is oxidatively deteriorated, resulting in a decrease in lubricity and cooling capacity.
  • the oxidative degradation of engine oil is moderate at the beginning, but when it progresses to some extent, the oxidative degradation may progress abruptly, and the replacement timing of degraded engine oil is important.
  • a guideline for replacing the deteriorated engine oil is usually determined by an index such as a predetermined travel distance, a period of use, or a visual inspection of the degree of contamination.
  • this indicator may not necessarily accurately reflect the life of the engine oil.
  • the life of the engine oil remains and a case where the deterioration has already progressed and the replacement time has passed.
  • the engine oil is replaced even though it can be used sufficiently, and there is a waste from the viewpoint of resource saving.
  • the lubrication efficiency is lowered or the lubrication part is damaged. From such a viewpoint, it is necessary to accurately grasp the replacement timing of the deteriorated lubricating oil.
  • a method for determining the deterioration of a lubricating oil for example, a method mainly used at a site where the lubricating oil is used has been proposed in which a predetermined reagent is mixed with the lubricating oil and the deterioration of the lubricating oil is determined by a neutralization reaction. (See Patent Document 1 and Patent Document 2). Further, a method for detecting the deterioration of the lubricating oil by measuring the absorbance of the lubricating oil in a specific wavelength region has been proposed (see Patent Document 3).
  • An object of the present invention is to provide a method for determining the deterioration of a lubricating oil that is easy to handle, reduces the effect of black lubricating oil, and can be quickly determined, and a tool for determining the deterioration of a lubricating oil that can be used therefor. It is to provide.
  • the present inventors have conventionally conducted neutralization reactions performed in a solution on a substrate such as a membrane filter holding an indicator previously dissolved in a protic solvent. Incorporation of basic substances in lubricating oil in the absence of moisture, causing neutralization reaction on the base material, and measuring base number in lubricating oil makes it easy to deteriorate the lubricating oil.
  • the present invention has been completed by finding that it can be determined.
  • the present invention provides a lubricant judging device and a lubricant judging method described in 1 to 16 below.
  • a lubricant deterioration determining tool characterized in that an indicator solution in which an indicator is dissolved in a protic solvent is held on a base material having cation exchange performance and capable of adding protons.
  • the indicator is an indicator that changes color in an acidic region.
  • the indicator is bromocresol green, bromophenol blue, thymol blue, or a mixture thereof, and the protic solvent is one or more of a protic organic solvent composed of propanol, butanol, pentanol, and a mixture thereof.
  • An indicator solution in which an indicator is dissolved in a protic solvent is held on a base material, the lubricant is attached to the surface of the base material, and proton dissociation of the indicator occurs on the base material, thereby deteriorating the lubricant.
  • a method for determining deterioration of a lubricating oil characterized by: determining.
  • the base material is a film
  • the basic substance in the lubricating oil adhered to the film surface is reacted with the indicator, proton dissociation of the indicator occurs on the film, and the deterioration of the lubricating oil is determined by the base number.
  • the indicator is bromocresol green, bromophenol blue, thymol blue, or a mixture thereof
  • the protic solvent is one or more of a protic organic solvent composed of propanol, butanol, pentanol, and a mixture thereof.
  • a method of holding an indicator solution dissolved in a protic solvent on a substrate is a method of holding the indicator solution in which the substrate is previously acid-treated and dried, and then the indicator is dissolved in a protic solvent [9].
  • the method for judging deterioration of a lubricating oil according to any one of [15] to [15].
  • various lubricating oils such as engine oil, hydraulic oil, and compressor oil are neutralized on a solid substrate substantially free of moisture such as a membrane filter, and the base of the lubricating oil is obtained.
  • the deterioration of the lubricating oil can be easily determined without being substantially affected by the black color of the lubricating oil.
  • the lubricant deterioration judging device of the present invention is a lubricating oil characterized in that an indicator solution in which an indicator is dissolved in a protic solvent is held on a base material having cation exchange performance and capable of adding protons. It is a deterioration judgment tool.
  • the base material in the lubricant deterioration judging device of the present invention has (1) a cation exchange performance and a performance capable of adding a proton, and (2) a performance capable of holding a protic solvent, ( 3) It is necessary to have the ability to retain the indicator, and in addition, (4) the components in the lubricating oil that can cause proton dissociation of the indicator can move or penetrate, but the lubricating oil itself can move or penetrate.
  • Performance that is difficult to perform in other words, a material having a good balance between hydrophilicity and lipophilicity, specifically, hydrophilicity and lipophilicity are moderate
  • performance that can maintain different proton amounts by pretreatment It is preferable to have at least one of the following.
  • the performance of the above (1) can be exhibited in a state substantially free of moisture.
  • the base material polymer materials such as polyethersulfone (PES), nitrocellulose, cellulose acetate, polysulfone, polyetherketone, polyfluorinated ethylene, polyethylene, and polypropylene, and fillers mixed with these polymer materials And the like.
  • the substrate include porous bodies and foams made of these materials, woven fabrics and nonwoven fabrics of fibers of these materials, and intertwined sheet-like materials.
  • membrane is mentioned, for example.
  • the film is a sheet-like material having pores and includes paper.
  • a polymer film used as a dense and porous material and a filter paper used as a filter medium also fall within the category of a membrane, and the membrane is a generic term for these.
  • a porous membrane and specifically a membrane filter is preferred.
  • the membrane filter is a microfiltration membrane made of a polymer material, which captures particles larger than the pore size, but has different hydrophilicity and lipophilicity depending on the material of the membrane. Substances corresponding to each physical property Is adsorbed on the surface of the membrane and extracted into the membrane.
  • the membrane filter has the above performances (1) to (5), is excellent in the indicator adsorption performance, has excellent lipophilicity, and can cause proton dissociation of the indicator. It is excellent in the ability to selectively adsorb components (for example, basic components) therein.
  • Specific examples of the membrane filter include membrane filters made of materials such as polyethersulfone (PES), nitrocellulose, cellulose acetate, polyfluorinated ethylene, polyethylene, and polypropylene. Among these, a membrane filter made of PES and a membrane filter made of nitrocellulose are particularly preferable in terms of affinity with the lubricating oil.
  • the location of the base material holding the indicator solution in which the indicator is dissolved in the protic solvent may be the surface of the base material or a void existing inside the base material.
  • the gap may or may not communicate with the outside of the base material, but preferably it communicates with the outside of the base material.
  • the material of the base material surrounding the void is a component contained in the indicator solution or the lubricating oil attached to the surface of the base material, and a component that causes proton dissociation of the indicator, for example, an acid value. It is preferable that the component to be shown, nitrate ion, sulfate ion, basic substance or the like can be permeated or moved.
  • the average pore size of the voids present inside the substrate is usually preferably from 0.025 to 50 ⁇ m, more preferably from 0.2 to 1 ⁇ m. Further, the porosity is preferably about 40 to 90%, more preferably 50 to 80%.
  • the indicator used in the present invention when the base number is used as a determination means, one that changes color in an acidic region is used.
  • the indicator is not particularly limited as long as it is an indicator that changes color in the acidic range, but those that change color clearly with a base value as an index for determining deterioration are preferred.
  • the indicator can be used alone, but it can also be used by appropriately adjusting the color change region by combining a plurality of indicators.
  • the indicator examples include bromocresol green (BCG), thymol blue (TB), cresol red (CR), bromophenol blue (BPB), methyl red (MR), bromothymol blue (BTB), methyl orange ( MO) and the like, and combinations thereof.
  • BCG, BPB, TB, or mixtures thereof are preferred.
  • BCG, BPB, TB, or mixtures thereof are preferred.
  • the combination of BCG and TB is mentioned as the specific example.
  • a protic solvent As a solvent for dissolving the indicator, it is necessary to use a protic solvent in order to cause proton dissociation of the indicator on a substrate such as a membrane filter.
  • a protic organic solvent As the protic solvent, a protic organic solvent is preferable.
  • the protic organic solvent can quickly change the color when determining the deterioration of the lubricating oil.
  • alcohols having a relatively high boiling point are preferable.
  • the boiling point of the alcohol is preferably 75 ° C. or higher, and more preferably 80 ° C. or higher.
  • the upper limit of the boiling point of the alcohol is not particularly limited, but is preferably 150 ° C. or lower, and more preferably 140 ° C. or lower.
  • alcohols include propanol, butanol, pentanol, ethanol and the like.
  • propanol, butanol, and pentanol are preferable from the viewpoint of color development with the indicator and retention of the indicator on the base material.
  • a protic organic solvent may be used independently, may mix 2 or more types, may contain a small amount of other solvents, and may contain a small amount of water. In addition, it is not preferable to contain a large amount of water because discoloration is delayed.
  • the water content is preferably 0.4% by mass or less, and more preferably 0.2% by mass or less.
  • the content ratio of the protic solvent and the indicator in the indicator solution in which the indicator is dissolved in the protic solvent may be appropriately selected.
  • the mass ratio is preferably 20000: 1 to 100: 1, and preferably 10,000: 1 to 1000: 1. The degree is more preferable.
  • the indicator solution is held on the substrate, but holding on the substrate may be adhesion to the surface of the substrate, impregnation to the substrate, filling or the like. May be.
  • Specific examples of the retention on the base material include the attachment of an indicator solution in which the indicator is dissolved in the protic solvent to the surface of the base material, and the indicator solution in which the indicator in the void inside the base material is dissolved in the protic solvent. Impregnation, filling and the like.
  • the amount of the indicator solution in which the indicator is dissolved in the protic solvent may be appropriately selected, but is usually preferably 1 to 12 g / g, more preferably 2 to 8 g / g per unit mass of the base material.
  • the amount of the indicator retained may be appropriately selected, but is usually preferably 1 to 10 mg / g, more preferably 2 to 7 mg / g, and further preferably 3 to 5 mg / g per unit mass of the base material.
  • the method for determining the deterioration of lubricating oil according to the present invention can be performed using the above-described tool for determining deterioration of lubricating oil.
  • an indicator solution in which an indicator is dissolved in a protic solvent is held on a substrate.
  • determining the deterioration of the lubricating oil by attaching the lubricating oil to the surface of the base material and causing proton dissociation of the indicator on the base material.
  • a neutralization reaction which is typically a titration reaction in a solution, is held on a base material by holding an indicator solution dissolved in a protic organic solvent, thereby causing proton dissociation of the indicator on the base material. Is used to determine the deterioration of the lubricating oil.
  • an acid value, nitrate ion, sulfate ion, etc. that increase as deterioration progresses can be considered.
  • those that increase in value when judging deterioration are difficult to determine the index, so as an index when judging deterioration, basic substances in lubricating oil that decrease with the use of lubricating oil It is preferred to use a base number representing the amount of
  • the method for determining deterioration of a lubricating oil according to the present invention it is necessary that proton dissociation of an indicator dissolved in a protic organic solvent held on the base material occurs on the base material. Further, since the lubricating oil used as a sample usually contains about 0.01 to 0.2% by mass even if it contains water, the proton dissociation of the indicator is substantially free of water. Occurs under conditions. At the same time, it is necessary to incorporate the basic substance in the lubricating oil onto the base material.
  • the lubricating oil degradation determination method of the present invention operates as follows, measures the base number of various lubricating oils, and determines the degree of degradation. For example, when a membrane filter is used as the substrate, the membrane filter is impregnated with an indicator prepared in advance. An indicator that changes color in a specific pH range is used, and the relationship between the degree of color change and the base number is known in advance. Thereafter, the sample lubricating oil is dropped on the membrane filter to cause a neutralization reaction, and the base number is judged by the degree of color change, and the degree of deterioration is judged.
  • the basic substance When using an indicator with multiple color change areas in the acidic range, for example, when the initial hue changes to red, there is almost no basic substance, and when the color changes to yellow, the basic substance is slightly In the remaining state or when the color is changed to green, it can be appropriately set in relation to the base number, such as a state in which some basic substance is present.
  • the base value is usually 0. About 5 to 1 is considered as one standard.
  • the influence of the black color of the lubricating oil can be reduced by using a membrane filter such as PES or nitrocellulose.
  • a membrane filter such as PES or nitrocellulose.
  • the basic substance in the lubricant is taken up on the filter, and the solvent in which the indicator is dissolved remains on the filter. If so, the lubricating oil does not spread so much, and the basic substance in the lubricating oil can react with the indicator. In this case, the lubricating oil on the membrane filter can be easily wiped off, and discoloration can be confirmed on the membrane filter after wiping off the lubricating oil with almost no black influence.
  • region in each base number can be shifted by carrying out the acid treatment in advance on a base material, for example, a membrane filter.
  • a base material for example, a membrane filter.
  • the acid used for the acid treatment inorganic acids such as hydrochloric acid and sulfuric acid are preferable.
  • the concentration of the acid used for the acid treatment is preferably 0.001 to 2 mol / L, more preferably 0.005 to 1 mol / L, and still more preferably 0.01 to 0.5 mol / L.
  • the acid treatment temperature is not particularly limited, but it is usually preferably 0 to 40 ° C. After the acid treatment, it is preferable to dry. Drying may be natural drying or forced drying.
  • the drying temperature is not particularly limited but is usually preferably 20 to 80 ° C.
  • a membrane filter is immersed in hydrochloric acid for about 5 to 10 minutes and then dried.
  • the color change range is shifted to about 2 or the acid concentration used is changed to about 3 by changing the acid concentration used.
  • the color change range of the indicator can be changed as appropriate, such as by shifting, and the base number that requires replacement of the lubricating oil can be freely set. Further, by setting the concentration of the acid used for the acid treatment higher, for example, it is possible to shift the color change region to a high base number region having a base number of 20-30.
  • the degree of discoloration can be determined by sticking a membrane filter impregnated with an indicator solution to a stick-shaped flat plastic, dropping the lubricating oil onto the sticking surface, and wiping the lubricating oil.
  • the membrane filter to be attached it is also useful to prepare a plurality of filters having different color change areas, such as those that change color when the base value is about 1, and those that change color when the base value is about 2. It is also possible to affix a membrane filter that changes color with a plurality of base values to a rod-shaped flat plastic.
  • plastics can be used as the plastic, for example, polyolefin resins such as polyethylene resins and polypropylene resins, polyester resins such as polyamide resins, polyimide resins and polyethylene terephthalate resins, polycarbonate resins, acrylic resins, polystyrene resins and polyphenylenes.
  • plastics such as sulfide resin, polyvinyl chloride resin and fluorine resin, polymer blends and polymer alloys thereof, and those obtained by kneading fillers may be mentioned.
  • the amount of the membrane filter to be attached to the rod-shaped flat plastic may be appropriately selected, but is preferably 1 to 100 mg / cm 2 per unit area, more preferably 3 to 50 mg / cm 2 .
  • the sticking of the membrane filter to the plastic plate may be performed via an adhesive or may be simply made to adhere without an adhesive.
  • the adhesive those that do not dissolve the membrane filter and those that do not contain acid / alkali components are preferable, and specific examples thereof include vinyl acetate-based adhesives.
  • the impregnation of the indicator solution into the membrane filter may be performed on the membrane filter before being attached to the rod-shaped plate plastic, or may be performed on the membrane filter after being adhered to the rod-shaped plate plastic, The latter is preferred because the membrane filter can be easily attached to a rod-like flat plastic.
  • These rod-shaped flat plastics are preferably stored in a hermetically sealed state, for example, by covering the membrane filter in a wet state containing a protic solvent for a long period of time with a film that is difficult to permeate the protic solvent. .
  • the film that hardly permeates the protic solvent include cellophane, laminate film, aluminum film and the like.
  • the rod-shaped flat plate plastic can have various other shapes, specifically, a polygonal columnar shape, a columnar shape, an elliptical columnar shape, a polygonal plate shape, a disc shape, an elliptical plate shape, etc. Can be mentioned.
  • the plastic can be made of various other materials. For example, organic substances such as paper and wood, and inorganic substances such as ceramic and metal can be used.
  • Example 1 (1) Preparation of indicator solution A mixture of 0.02 g of bromocresol green (BCG) as an indicator and 0.05 g of thymol blue (TB) is dissolved in 100 mL of propanol as a protic organic solvent to give an indicator. A solution was prepared. (2) Creation of lubricant deterioration judging tool (holding indicator solution on substrate) A commercially available polyethersulfone (PES) membrane filter (Millipore, trade name “HPWP type”, average pore diameter 0.45 ⁇ m, porosity 74%) is used as a membrane for incorporating basic substances in lubricating oil. Was used.
  • PES polyethersulfone
  • the membrane filter was cut into a 5 mm square and attached to a stick-shaped flat plate plastic (polypropylene resin) at a rate of 4 mg / cm 2 per plane unit area.
  • the membrane filter portion was immersed in the indicator solution prepared in the above (1) for 5 seconds, so that the membrane filter was impregnated with the indicator solution, and a lubricant deterioration judging device was prepared.
  • the resulting lubricant deterioration determination tool had a light red coloration, and an indicator solution of 4.5 g / g was held per unit mass of the membrane filter.
  • lubricating base oil paraffinic mineral oil, 40 ° C. kinematic viscosity 32.83 mm 2 / s, 100 ° C. Kinematic viscosity 5.6 mm 2 / s
  • base number is 0 mgKOH / g
  • overbased Ca sulfonate base number: 303 mgKOH / g
  • the base number is a value measured by the method defined in JIS K2501 8-potentiometric titration method (base number / hydrochloric acid method).
  • base number / hydrochloric acid method is a value measured by the method defined in JIS K2501 8-potentiometric titration method (base number / hydrochloric acid method).
  • the deterioration determination tool for lubricating oil is used to determine the deterioration using the engine deterioration oil of a car that has actually been filled with engine oil. The degree was judged. As engine oil deteriorates, the basic substance decreases and the base number decreases.At the same time, the acidic substance increases and the pH decreases. is expected.
  • the engine oil used for actual driving is API service classification SL, SAE viscosity classification 10W-30, initial performance 40 ° C kinematic viscosity 57.9mm 2 / s, 100 ° C kinematic viscosity 9.9mm 2 / s, viscosity It has an index of 158 and a base number (JIS hydrochloric acid method) of 4.50 mg KOH / g.
  • the engine oil was filled, a plurality of automobiles were run, and the engine oil was extracted from each automobile to determine deterioration.
  • the deteriorated engine oil extracted from each automobile had a black color, but the deteriorated engine oil was lubricated with propanol contained in the lubricant deterioration determination tool created in (2) above.
  • the oil was dropped on the oil deterioration determining tool and then the black engine oil was wiped off, the discoloration of the lubricant deterioration determining tool was clearly confirmed.
  • the color before the test of the deterioration determination tool for lubricating oil was light red. The results are shown in Table 2.
  • Example 2 The membrane filter was deteriorated in the same manner as in Example 1 except that a membrane filter made of nitrocellulose (trade name “HAWP type”, average pore diameter 0.45 ⁇ m, porosity 78%) was used as the membrane filter.
  • the engine oil was used to determine the degree of deterioration using a lubricant deterioration determination tool. This lubricant deterioration determining tool retained 4.5 g / g indicator solution per unit mass of the membrane filter. Further, as in Example 1, the base values of these engine oils were confirmed in advance by the JIS hydrochloric acid method. The results are shown in Table 3. Similar to the first embodiment, it is possible to determine the timing for replacing the engine oil.
  • Example 3 Using the nitrocellulose membrane filter used in Example 2 as the membrane filter, the membrane filter was pre-immersed in 0.01 mol / L hydrochloric acid and 0.1 mol / L hydrochloric acid for 5 minutes respectively, and then air-dried. In the same manner as described in Example 1, a lubricant deterioration judging tool was prepared. In the same manner as described in Example 1, the lubricating oil deterioration determining tool was dropped with a standard test lubricating oil whose base number was adjusted, and the degree of discoloration was confirmed. The results are shown in Table 4.
  • Example 3 the very light green color obtained when the deterioration determining tool for lubricating oil not treated with hydrochloric acid is standard test lubricating oil 1 (base number is 1.0 mgKOH / g) is the deterioration of lubricating oil with hydrochloric acid.
  • the color obtained when the deterioration judgment tool of the lubricating oil treated with 0.01 mol / L hydrochloric acid is the standard test lubricating oil 2 (base number is 2.0 mgKOH / g), and It can be seen that the deterioration judging tool of the lubricating oil treated with 0.1 mol / L hydrochloric acid shows a color exhibited when the lubricating oil for standard test 3 (base number is 3.0 mgKOH / g).
  • Example 4 Except that 100 mL of butanol was used as the protic solvent of the indicator solution, the degree of deterioration was determined using a deterioration determination tool for lubricating oil in the same manner as in Example 1, using deteriorated engine oil. Further, as in Example 1, the base values of these engine oils were confirmed in advance by the JIS hydrochloric acid method. The results are shown in Table 5. Similar to the first embodiment, it is possible to determine the timing for replacing the engine oil.
  • Example 5 Except that 100 mL of pentanol was used as the protic solvent of the indicator solution, the degree of deterioration was determined by using a deterioration determination tool for lubricating oil in the same manner as in Example 1, using deteriorated engine oil. Further, as in Example 1, the base values of these engine oils were confirmed in advance by the JIS hydrochloric acid method. The results are shown in Table 6. Similar to the first embodiment, it is possible to determine the timing for replacing the engine oil.
  • Example 6 Prepare an indicator by dissolving 0.002 g of bromophenol blue (BPB) as an indicator and 0.008 g of thymol blue (TB) in a mixture of 50 ml of propanol and 50 ml of butanol as a protic organic solvent. Except for what was performed, in the same manner as in Example 1, the deteriorated engine oil was used to determine the degree of deterioration using a lubricant deterioration determination tool.
  • BBPB bromophenol blue
  • TB thymol blue
  • Table 8 shows the results of using deteriorated engine oil. It is possible to determine when to change the engine oil.
  • Example 1 As in Example 1, except that acetonitrile is used as the solvent for dissolving the indicator, the lubricant deterioration determination tool is prepared, and the engine oil deteriorated in the cars A, B, and C is used as the lubricant deterioration determination tool. It was dripped in and the presence or absence of the discoloration was confirmed. As a result, it was confirmed that none of the deterioration determining tools for lubricating oil was discolored. In this comparative example, an aprotic solvent is used as a solvent for dissolving the indicator.
  • Comparative Example 2 The cation exchange resin suspension in which the cation exchange resin was suspended was filtered through a membrane filter, and a lubricant deterioration judging tool composed only of the cation exchange resin was prepared.
  • engine oil deteriorated in cars A, B, and C was dropped onto the lubricant deterioration determination tool, and the discoloration was confirmed.
  • none of the lubricant deterioration determination tools was discolored and remained initially light red.
  • water does not exist and proton dissociation of the indicator does not occur on the base material, so that the lubricant deterioration determination tool does not change color.
  • the method for judging deterioration of lubricating oil according to the present invention reduces the influence of the black color of the lubricating oil, and can easily and quickly determine the deterioration at the site where the lubricating oil is used. Useful in parts and supplies stores.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

 取扱いが簡易で、かつ黒色の潤滑油でもその影響を低減させ、判定が迅速に可能となる潤滑油の劣化判定方法及びそれに用いる潤滑油の劣化判定具を提供する。指示薬をプロトン性溶媒に溶解した指示薬溶液を基材に保持させ、その基材表面に潤滑油を付着させ、基材上で指示薬のプロトン解離を生起させることにより、潤滑油の劣化を判定することを特徴とする潤滑油の劣化判定方法とする。

Description

潤滑油の劣化判定具及び潤滑油の劣化判定方法
 本発明は、潤滑油の劣化判定具及び潤滑油の劣化判定方法に関する。さらに詳しくは、使用中の潤滑油の劣化を判定するために膜などの固体の基材上で中和反応を行わせ、指示薬の変色により潤滑油の塩基価を測定しその劣化を判定できる潤滑油の劣化判定方法及びそれに用いることができる潤滑油の劣化判定具に関する。
 潤滑油は使用し続けると、潤滑油が本来果たすべき性能が劣化し、潤滑効率が低下したり、潤滑箇所の損傷につながるので、劣化した潤滑油は交換する必要が生じる。例えば、内燃機関用のエンジン油は、使用によって酸性物質が生成し酸化劣化し、潤滑性や冷却能力が低下する。そして、エンジン油の酸化劣化は開始当初は緩やかであるが、ある程度進行すると急激に酸化劣化が進行する場合もあり、劣化したエンジン油の交換時期は重要である。劣化したエンジン油の交換時期の目安は、通常、決められた走行距離、使用期間、あるいは汚れ度合いの目視などの指標により決められている。
 しかし、この指標は、必ずしもエンジン油の寿命を的確に反映していない場合がある。この場合、エンジン油の寿命が残っている場合と、すでに劣化が進み、交換時期が過ぎている場合の両者がある。前者の場合、十分使用できるのにエンジン油の交換をしており、省資源の観点から無駄があり、後者の場合、潤滑効率が低下したり、潤滑箇所の損傷につながるおそれがある。
 このような観点から、劣化した潤滑油の交換時期を的確に把握する必要がある。従来、潤滑油の劣化判定法として、例えば、主に潤滑油の使用現場において使用する方法として、所定の試薬を用い潤滑油と混合し中和反応により潤滑油の劣化を判定する方法が提案されている(特許文献1、特許文献2参照。)。また、潤滑油の特定波長域の吸光度を測定することにより、潤滑油の劣化を検知する方法が提案されている(特許文献3参照。)。
日本国特許第2539768号公報 日本国特公昭61-585号公報 日本国特許第2963346号公報
 しかし、これら従来提案されている指示薬キットやセンサー型の簡易潤滑油劣化判定器は、作業性に難点があり、また劣化した黒色の潤滑油では、潤滑油の黒色のためにその識別判定が困難な場合もあり得る。
 本発明の目的は、その取扱いが簡易で、かつ黒色の潤滑油でもその影響を低減させ、判定が迅速に可能となる潤滑油の劣化判定方法及びそれに用いることができる潤滑油の劣化判定具を提供することにある。
 本発明者らは、上記目標を達成すべく鋭意検討した結果、従来、溶液内で行われる中和反応を、あらかじめプロトン性溶媒に溶解させた指示薬を保持させたメンブランフィルターなどの基材上に、実質的に水分の存在しない状態で潤滑油中の塩基性物質を取り込み、基材上で中和反応を行わせ、潤滑油中の塩基価を測定することにより、潤滑油の劣化を簡易に判定できることを見出して本発明を完成した。
 すなわち本発明は、上記目的を達成するために、以下の1~16に記載の潤滑油の劣化判定具及び潤滑油の劣化判定方法を提供するものである。
[1]陽イオン交換性能を有し、プロトンを付加できる基材に、指示薬をプロトン性溶媒に溶解した指示薬溶液を保持させていることを特徴とする潤滑油の劣化判定具。
[2]プロトン性溶媒がプロトン性有機溶媒である[1]に記載の潤滑油の劣化判定具。
[3]基材が膜である[1]又は[2]に記載の潤滑油の劣化判定具。
[4]膜がメンブランフィルターである[3]に記載の潤滑油の劣化判定具。
[5]メンブランフィルターが、ポリエーテルスルホン製メンブランフィルター、又はニトロセルロース製メンブランフィルターである[4]に記載の潤滑油の劣化判定具。
[6]指示薬が酸性域で変色する指示薬である[1]~[5]のいずれかに記載の潤滑油の劣化判定具。
[7]指示薬がブロモクレゾールグリーン、ブロモフェノールブルー、チモールブルー、又はそれらの混合物であり、プロトン性溶媒がプロパノール、ブタノール、ペンタノール、及びそれらの混合物からなるプロトン性有機溶媒の1種以上である[6]に記載の潤滑油の劣化判定具。
[8]基材が予め酸処理し乾燥させたものである[1]~[7]のいずれかに記載の潤滑油の劣化判定具。
[9]指示薬をプロトン性溶媒に溶解した指示薬溶液を基材に保持させ、その基材表面に潤滑油を付着させ、基材上で指示薬のプロトン解離を生起させることにより、潤滑油の劣化を判定することを特徴とする潤滑油の劣化判定方法。
[10]プロトン性溶媒がプロトン性有機溶媒である[9]に記載の潤滑油の劣化判定方法。
[11]基材が膜であり、膜表面に付着された潤滑油中の塩基性物質と指示薬を反応させ、膜上で指示薬のプロトン解離を生起させ、塩基価により潤滑油の劣化を判定することを特徴とする[9]又は[10]に記載の潤滑油の劣化判定方法。
[12]膜がメンブランフィルターである[11]に記載の潤滑油の劣化判定方法。
[13]メンブランフィルターが、ポリエーテルスルホン製メンブランフィルター、又はニトロセルロース製メンブランフィルターである[12]に記載の潤滑油の劣化判定方法。
[14]指示薬が酸性域で変色する指示薬である[9]~[13]のいずれかに記載の潤滑油の劣化判定方法。
[15]指示薬がブロモクレゾールグリーン、ブロモフェノールブルー、チモールブルー、又はそれらの混合物であり、プロトン性溶媒がプロパノール、ブタノール、ペンタノール、及びそれらの混合物からなるプロトン性有機溶媒の1種以上である[14]に記載の潤滑油の劣化判定方法。
[16]基材にプロトン性溶媒に溶解した指示薬溶液を保持させる方法が、基材を予め酸処理し乾燥させ、その後指示薬をプロトン性溶媒に溶解した指示薬溶液を保持させる方法である[9]~[15]のいずれかに記載の潤滑油の劣化判定方法。
 本発明によれば、エンジン油、作動油、圧縮機油など種々の潤滑油を、メンブランフィルターなどの実質的に水分の存在しない固体の基材上で中和反応を行わせ、その潤滑油の塩基価を測定することにより、潤滑油の黒色の影響をほとんど受けずに潤滑油の劣化を簡便に判定することができる。
 本発明の潤滑油の劣化判定具は、陽イオン交換性能を有し、プロトンを付加できる基材に、指示薬をプロトン性溶媒に溶解した指示薬溶液を保持させていることを特徴とする潤滑油の劣化判定具である。
 本発明の潤滑油の劣化判定具における基材は、(1)陽イオン交換性能を有し、プロトンを付加できる性能を有するものであり、また、(2)プロトン性溶媒を保持できる性能、(3)指示薬を保持できる性能を有することが必要であり、その他に、(4)指示薬のプロトン解離を生起することができる潤滑油中の成分を移動又は浸透できるが、潤滑油自身は移動又は浸透しにくい性能(別言すると、親水性と親油性のバランスのよいもの、具体的には親水性も親油性も中程度であるもの)、及び(5)前処理により異なるプロトン量を保持できる性能の少なくとも一つを有することが好ましい。
 なお、上記(1)の性能は、実質的に水分の存在しない状態で発揮できるものであることがより好ましい。
 基材の素材としては、ポリエーテルスルホン(PES)、ニトロセルロース、酢酸セルロース、ポリスルホン、ポリエーテルケトン、ポリフッ化エチレン、ポリエチレン、ポリプロピレンなどの高分子物質や、これらの高分子物質に充填剤を混合したものなどが挙げられる。
 基材は、これらの素材からなる多孔体、発泡体、これらの素材の繊維の織布、不織布、及び絡み合ったシート状のものなどが挙げられる。
 基材の好適な具体例としては、例えば膜が挙げられる。ここで、膜とは、細孔を有するシート状材料であり、紙を含む。また、緻密性及び多孔性を有するものとして用いられている高分子フィルム、濾材として用いられている濾紙も、膜の範疇に入るものであり、膜はこれらを総称したものをいう。その一例として、多孔質膜が挙げられ、具体的にはメンブランフィルターが好ましい。
 ここで、メンブランフィルターとは、高分子材料でできた精密ろ過膜のことであり、孔径より大きい粒子を捕捉するが、膜の素材によって親水性、親油性が異なり、それぞれの物性に対応した物質を膜表面に吸着し、膜内部へ抽出する性質を有するものを言う。
 メンブランフィルターは、上記(1)~(5)の性能を有するものであり、また、指示薬の吸着性能に優れ、親油性に優れており、さらに、指示薬のプロトン解離を生起することができる潤滑油中の成分(例えば、塩基性成分)を選択的に吸着する性能に優れている。
 メンブランフィルターの具体例としては、ポリエーテルスルホン(PES)、ニトロセルロース、酢酸セルロース、ポリフッ化エチレン、ポリエチレン、ポリプロピレンなどの材質のメンブランフィルターが挙げられる。これらのうち、潤滑油との親和性との面で、PES製メンブランフィルターとニトロセルロース製メンブランフィルターが特に好ましい。
 指示薬をプロトン性溶媒に溶解した指示薬溶液を保持させている基材の場所は、基材の表面であってもよいし、基材の内部に存在する空隙であってもよい。また、空隙は、基材の外部に通じていてもよいし、通じていなくてもよいが、基材の外部に通じているものが好ましい。
 なお、空隙を囲んでいる基材の材質は、指示薬溶液や、基材表面に付着した潤滑油中に含有されている成分であって、指示薬のプロトン解離を生起する成分、例えば、酸価を示す成分、硝酸イオン、硫酸イオン、塩基性物質などを浸透又は移動させることができるものであることが好ましい。
 基材内部に存在する空隙の平均孔径は、通常0.025~50μmが好ましく、0.2~1μmがより好ましい。また、空隙率は、40~90%程度が好ましく、50~80%がより好ましい。
 また、本発明で用いる指示薬としては、塩基価を判定手段として使用する場合は、酸性域で変色するものが用いられる。酸性域で変色する指示薬であれば特に限定されないが、劣化判定の指標とする塩基価値で鮮明に変色するものが好ましい。また、指示薬は単独で用いることもできるが、複数の指示薬を組合せて変色域を適宜調整して使用することもできる。
 指示薬としては、具体的に、ブロモクレゾールグリーン(BCG)、チモールブルー(TB)、クレゾールレッド(CR)、ブロモフェノールブルー(BPB)、メチルレッド(MR)、ブロモチモールブルー(BTB)、メチルオレンジ(MO)等や、それらの組合せが挙げられる。これらのうち、BCG、BPB、TB、又はそれらの混合物が好ましい。中でも、酸性域で複数の変色域を持たせることができるものが好ましく、その具体例として、BCGとTBとの組合せが挙げられる。
 指示薬を溶解する溶媒としては、メンブランフィルターなどの基材上で指示薬のプロトン解離を生起させるためには、プロトン性溶媒を用いる必要がある。プロトン性溶媒としては、プロトン性有機溶媒が好ましい。プロトン性有機溶媒は、潤滑油の劣化判定を行う際に、変色を速やかに行うことができる。
 プロトン性有機溶媒としては、沸点の比較的高いアルコール類が好ましい。アルコール類の沸点は、75℃以上が好ましく、80℃以上がより好ましい。アルコール類の沸点の上限は、特に制限ないが、150℃以下が好ましく、140℃以下がより好ましい。
 アルコール類の具体例としては、プロパノール、ブタノール、ペンタノール、エタノールなどが挙げられる。用いる基材や指示薬の種類にもよるが、指示薬との発色性や基材への指示薬の保持との観点からは、プロパノール、ブタノール、ペンタノールが好ましい。
 プロトン性有機溶媒は、単独で使用してもよいし、2種以上を混合してもよく、他の溶媒を少量含んでもよいし、また、水を少量含んでもよい。なお、水を多量に含む場合は、変色が遅くなるので好ましくない。水の含有量は0.4質量%以下であることが好ましく、0.2質量%以下であることがより好ましい。
 指示薬をプロトン性溶媒に溶解した指示薬溶液におけるプロトン性溶媒と指示薬との含有割合は、適宜選定すればよいが、通常質量比で20000:1~100:1が好ましく、10000:1~1000:1程度がより好ましい。
 また、本発明においては、指示薬溶液は基材に保持されるが、基材への保持とは、基材の表面への付着であってもよいし、基材への含浸、充填などであってもよい。
 基材への保持の具体例としては、基材の表面への指示薬をプロトン性溶媒に溶解した指示薬溶液の付着や、基材の内部にある空隙への指示薬をプロトン性溶媒に溶解した指示薬溶液の含浸、充填などが挙げられる。
 また、指示薬をプロトン性溶媒に溶解した指示薬溶液の保持量は、適宜選定すればよいが、通常基材の単位質量当たり、1~12g/gが好ましく、2~8g/gがより好ましく、3~6g/gがさらに好ましい。
 また、指示薬の保持量は、適宜選定すればよいが、通常基材の単位質量当たり、1~10mg/gが好ましく、2~7mg/gがより好ましく、3~5mg/gがさらに好ましい。
 本発明の潤滑油の劣化判定方法は、上記の潤滑油の劣化判定具を用いて行うことができるものであり、具体的には、指示薬をプロトン性溶媒に溶解した指示薬溶液を基材に保持させ、その基材表面に潤滑油を付着させ、基材上で指示薬のプロトン解離を生起させることにより、潤滑油の劣化を判定することを特徴とする潤滑油の劣化判定方法である。
 従来、溶液内での滴定反応が代表的であった中和反応を基材上にプロトン性有機溶媒に溶解した指示薬溶液を保持させることにより、その基材上で指示薬のプロトン解離を生起させることにより中和反応を行わせて、潤滑油の劣化を判定するものである。
 潤滑油の劣化判定の指標としては、劣化が進行すると増加する酸価、硝酸イオン、硫酸イオンなどが考えられる。これらのうち、劣化判定の際に値が増加するものは、その指標を決めるのが難しい点があるため、劣化判定時の指標としては、潤滑油の使用とともに低下する潤滑油中の塩基性物質の量を表す塩基価を用いるのが好ましい。
 本発明の潤滑油の劣化判定方法においては、基材上で、その基材に保持されているプロトン性有機溶媒に溶解している指示薬のプロトン解離が生起することが必要である。また、通常、試料となる潤滑油中には、水分が含まれているとしても0.01~0.2質量%程度であるので、指示薬のプロトンの解離は、水が実質的にほとんど存在しない条件下において生起する。また、それと共に、潤滑油中の塩基性物質を基材上に取り込むことが必要である。
 本発明の潤滑油劣化判定方法は、以下のように操作し、各種潤滑油の塩基価を測定しその劣化度合いを判断する。
 基材として例えばメンブランフィルターを用いる場合、そのメンブランフィルターを事前に調製した指示薬に含浸させる。指示薬は、特定のpH域で変色するものを用い、その変色の度合いと塩基価との関係を事前に把握しておく。その後、メンブランフィルター上に試料の潤滑油を滴下し中和反応を行わせ、その変色度合でその塩基価を判断し、劣化の度合いを判定する。
 酸性域で複数の変色域を持つ指示薬を用いた場合、例えば、初期の色相から赤に変色した場合は、塩基性物質がほとんど存在しない状態、黄色に変色した場合は、塩基性物質がわずかに残存している状態、緑に変色した場合は、塩基性物質が多少存在している状態など、塩基価との関係で、適宜設定することができる。また、どの段階で具体的に劣化していると判断し交換の目安とするかは、その潤滑油の用途も考慮する必要があるが、ガソリンエンジン油の場合は、通常、塩基価の値0.5~1程度がひとつの基準と考えられる。
 また、本発明では、PES、ニトロセルロースなどのメンブランフィルターを用いることにより、潤滑油の黒色の影響を低減することができる。具体的には、指示薬の含有したメンブランフィルター上に、潤滑油を滴下した場合、潤滑油中の塩基性物質はフィルター上に取り込まれ、また、フィルター上に指示薬を溶解している溶媒が残存していると潤滑油はあまり広がらず、潤滑油中の塩基性物資と指示薬とを反応させることができる。この場合、メンブランフィルター上の潤滑油は、容易にふき取ることができ、潤滑油をふき取った後のメンブランフィルター上に、黒色の影響をほぼ受けずに変色を確認することができる。
 さらに、本発明では、基材上、例えばメンブランフィルター上を事前に酸処理することにより、それぞれの塩基価での変色域をシフトさせることができる。
 酸処理に使用する酸としては、塩酸、硫酸などの無機酸が好ましい。
 酸処理に使用する酸の濃度としては、0.001~2mol/Lが好ましく、0.005~1mol/Lがより好ましく、0.01~0.5mol/Lがさらに好ましい。
 酸処理温度は、特に制限ないが、通常0~40℃が好ましい。
 酸処理した後は、乾燥させることが好ましい。乾燥は、自然乾燥であってもよいし、強制乾燥であってもよい。乾燥温度は、特に制限ないが、通常20~80℃が好ましい。
 酸処理の好適な具体例としては、塩酸にメンブランフィルターを5~10分間程度浸しその後乾燥するものが挙げられる。
 この酸処理を行うことにより、例えば、未処理では塩基価1程度で変色していたものを塩基価2程度に変色域をシフトさせたり、用いる酸濃度を変化させることにより、塩基価3程度にシフトさせたりなど、指示薬の変色域を適宜変更することができ、潤滑油の要交換となる塩基価を自由に設定することができる。また、酸処理に使用する酸の濃度を高めに設定することにより、例えば、塩基価20~30の高塩基価域に変色域をシフトさせることも可能である。
 本発明の潤滑油の劣化判定方法は、種々の態様が考えられる。例えば、棒状平板のプラスチックに、指示薬溶液を含浸したメンブランフィルターを貼付しておき、その貼付面に潤滑油を滴下し、潤滑油をふき取ることにより、変色度合を判断することができる。この場合、貼付するメンブランフィルターとしては、例えば、塩基価1程度で変色するもの、塩基価2程度で変色するものなど、変色域が異なるものを複数用意しておくことも有用である。また、棒状平板のプラスチックに、複数の塩基価値で変色するメンブランフィルターをそれぞれ、貼付しておくことも可能である。
 プラスチックとしては、種々のプラスチックが適用でき、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂などのポリオレフィン系樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエチレンテレフタレート樹脂などのポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリスチレン樹脂、ポリフェニレンスルフィド樹脂、ポリ塩化ビニル樹脂、フッ素系樹脂などの各種プラスチック、これらのポリマーブレンド、ポリマーアロイ、また、これらに充填材を混練したものなどが挙げられる。
 棒状平板のプラスチックに貼付するメンブランフィルターの量は適宜選定すればよいが、単位面積当たり1~100mg/cmが好ましく、3~50mg/cmがより好ましい。
 なお、メンブランフィルターの棒状平板のプラスチックへの貼付は、接着剤を介して行ってもよいし、接着剤なしに単に付着させたものであってもよい。
 接着剤としては、メンブランフィルターが溶解しないもの、酸・アルカリの成分を含まないものが好ましく、具体例としては、酢酸ビニル系接着剤などが好ましく挙げられる。
 指示薬溶液のメンブランフィルターへの含浸は、棒状平板のプラスチックに貼付する前のメンブランフィルターに対して行ってもよいし、棒状平板のプラスチックに貼付した後のメンブランフィルターに対して行ってもよいが、後者の方がメンブランフィルターを棒状平板のプラスチックに貼付し易いので好ましい。
 これらの棒状平板のプラスチックは、長期間、メンブランフィルターをプロトン性溶媒を含有するウェット状態で保持するために、プロトン性溶媒を透過し難いフィルムでカバーするなどし、密閉状態で保管することが好ましい。プロトン性溶媒を透過し難いフィルムとしては、セロハン、ラミネートフィルム、アルミフィルムなどが挙げられる。
 なお、棒状平板のプラスチックは、他の種々の形状のものにすることができ、具体的には、多角柱状、円柱状、楕円形柱状、多角形板状、円板状、楕円板状などが挙げられる。
 また、プラスチックも他の種々の材質のものにすることもできる。例えば、紙、木材などの有機物質、セラミック、金属などの無機物質などが挙げられる。
 以下、実施例および比較例によりさらに具体的に本発明を説明するが、本発明は、これらの実施例に限定されるものではない。
(実施例1)
(1)指示薬溶液の調製
 指示薬としてのブロモクレゾールグリーン(BCG)の0.02gと、チモールブルー(TB)の0.05gの割合の混合物を、プロトン性有機溶媒としてのプロパノール100mLに溶解して指示薬溶液を調製した。
(2)潤滑油の劣化判定具の作成(基材への指示薬溶液の保持)
 潤滑油中の塩基性物質を取り込む膜として、市販されているポリエーテルスルホン(PES)製メンブランフィルター(ミリポア社製、商品名「HPWP型」、空隙の平均孔径0.45μm、空隙率74%)を用いた。このメンブランフィルターを5mmの正方形に切り取り、平面単位面積当たり4mg/cmの割合で、棒状平板のプラスチック(ポリプロピレン樹脂)に貼り付けた。
 それのメンブランフィルター部分を、上記(1)で調製した指示薬溶液に5秒間浸すことにより、メンブランフィルターに指示薬溶液を含浸させ、潤滑油の劣化判定具を作成した。得られた潤滑油の劣化判定具は、薄い赤色の着色があり、メンブランフィルターの単位質量当たり、4.5g/gの指示薬溶液が保持されていた。
(3)標準試験用潤滑油の調製及び潤滑油の劣化判定具による変色の確認
 標準試験用潤滑油として、潤滑油基油(パラフィン系鉱油、40℃動粘度32.83mm/s、100℃動粘度5.6mm/s)単独のもの(塩基価が0mgKOH/g)、及びその潤滑油基油に、過塩基性Caスルホネート(塩基価:303mgKOH/g)の所定量を溶解含有させ、塩基価が1、2、3、5mgKOH/gのもの4種類を調製した。ここで、塩基価(JIS塩酸法)とは、JIS K2501の8電位差滴定法(塩基価・塩酸法)に規定された方法で測定したものである。
 上記(2)で作成した潤滑油の劣化判定具にプロパノールが含有している状態で、標準試験用潤滑油を潤滑油の劣化判定具のメンブランフィルター部分に滴下し、潤滑油の劣化判定具の変色を確認した。標準試験用潤滑油は透明であり、変色は表1に示すように、塩基価が高いほどより鮮明に緑色を呈し、変色を明確に把握することができた。
Figure JPOXMLDOC01-appb-T000001
(4)劣化したエンジン油を用いた潤滑油の劣化判定具による判定
 次に、実際にエンジン油を充填して走行した自動車の劣化したエンジン油を用いて、潤滑油の劣化判定具により劣化の程度を判定した。
 劣化したエンジン油は、塩基性物質が減少し塩基価が低下するのと同時に、酸性物質が増加し、pHが低下するので、その劣化の程度に応じて、潤滑油の劣化判定具の変色が予想される。
 実走行に用いたエンジン油は、APIサービス分類がSL、SAE粘度分類が10W-30で、初期性能が40℃動粘度57.9mm/s、100℃動粘度9.9mm/s、粘度指数158、塩基価(JIS塩酸法)4.50mgKOH/gである。このエンジン油を充填し、複数の自動車を走行させ、それぞれの自動車からエンジン油を抜き出して劣化判定を行った。
 各自動車から抜き出した劣化したエンジン油は、黒色を呈していたが、その劣化したエンジン油を、上記(2)で作成した潤滑油の劣化判定具にプロパノールが含有している状態で、その潤滑油の劣化判定具に滴下し、その後、黒色のエンジン油をふき取ると潤滑油の劣化判定具の変色が鮮明に確認された。なお、潤滑油の劣化判定具の試験前の色は薄い赤色であった。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 以上の結果から、エンジン油の交換時期の目安を塩基価=1mgKOH/gとすると、本潤滑油の劣化判定具を用いて各エンジン油の劣化度合いを判断する際、その変色の相違により、使用現場で容易にエンジン油の交換の判断時期を把握することができる。
(実施例2)
 メンブランフィルターとして、ニトロセルロース製メンブランフィルター(ミリポア社製、商品名「HAWP型」、空隙の平均孔径0.45μm、空隙率78%)を用いた以外は、実施例1と同様にして、劣化したエンジン油を用いて、潤滑油の劣化判定具により劣化の程度を判定した。この潤滑油の劣化判定具には、メンブランフィルターの単位質量当たり、4.5g/gの指示薬溶液が保持されていた。また、実施例1と同様に、それらのエンジン油の塩基価は、事前にJIS塩酸法で確認した。その結果を表3に示す。実施例1と同様に、エンジン油の交換の時期を判断することができる。
Figure JPOXMLDOC01-appb-T000003
(実施例3)
 メンブランフィルターとして実施例2で使用したニトロセルロース製メンブランフィルターを用い、そのメンブランフィルターを予め0.01mol/L塩酸と、0.1mol/L塩酸にそれぞれ、5分間浸し、その後、自然乾燥し、実施例1に記載と同様に、潤滑油の劣化判定具を作成した。その潤滑油の劣化判定具に実施例1に記載したのと同様にして、塩基価が調整された標準試験用潤滑油を滴下し、変色の度合いを確認した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例3から、塩酸で処理していない潤滑油の劣化判定具が標準試験用潤滑油1(塩基価が1.0mgKOH/g)のときに呈したごく薄い緑色は、塩酸で潤滑油の劣化判定具を事前に処理することにより、0.01mol/L塩酸で処理した潤滑油の劣化判定具が標準試験用潤滑油2(塩基価が2.0mgKOH/g)のときに呈した色、および、0.1mol/L塩酸で処理した潤滑油の劣化判定具が標準試験用潤滑油3(塩基価が3.0mgKOH/g)のときに呈した色を呈するようになることがわかる。
(実施例4)
 指示薬溶液のプロトン性溶媒としてブタノール100mLを用いた以外は、実施例1と同様にして、劣化したエンジン油を用いて、潤滑油の劣化判定具により劣化の程度を判定した。また、実施例1と同様に、それらのエンジン油の塩基価は、事前にJIS塩酸法で確認した。その結果を表5に示す。実施例1と同様に、エンジン油の交換の時期を判断することができる。
Figure JPOXMLDOC01-appb-T000005
(実施例5)
 指示薬溶液のプロトン性溶媒としてペンタノール100mLを用いた以外は、実施例1と同様にして、劣化したエンジン油を用いて、潤滑油の劣化判定具により劣化の程度を判定した。また、実施例1と同様に、それらのエンジン油の塩基価は、事前にJIS塩酸法で確認した。その結果を表6に示す。実施例1と同様に、エンジン油の交換の時期を判断することができる。
Figure JPOXMLDOC01-appb-T000006
(実施例6)
 指示薬としてのブロモフェノールブルー(BPB)の0.002gと、チモールブルー(TB)の0.008gの割合の混合物を、プロトン性有機溶媒としてのプロパノール50mlとブタノール50mlの混合物に溶解して指示薬調製を行ったこと以外は、実施例1と同様にして、劣化したエンジン油を用いて、潤滑油の劣化判定具により劣化の程度を判定した。
 作成した潤滑油の劣化判定具にプロパノールとブタノールが含有している状態で、標準試験用潤滑油及び劣化したエンジン油を潤滑油の劣化判定具に滴下し、潤滑油の劣化判定具の変色を確認した。標準試験用潤滑油を用いた結果を表7に示す。標準試験用潤滑油は透明であり、変色は塩基性物質の含有量が多いほどより鮮明に緑色、青緑色を呈し、変色を明確に把握することができた。
Figure JPOXMLDOC01-appb-T000007
 また、劣化したエンジン油を用いた結果を表8に示す。エンジン油の交換の時期を判断することができる。
Figure JPOXMLDOC01-appb-T000008
(比較例1)
 指示薬を溶解する溶媒として、アセトニトリルを用いる以外は、実施例1と同様に、潤滑油の劣化判定具を調製し、A車、B車、C車の劣化したエンジン油を潤滑油の劣化判定具に滴下し、その変色の有無を確認した。
 その結果、潤滑油の劣化判定具はいずれも、変色していないことを確認した。
 本比較例は、指示薬を溶解する溶媒として、非プロトン性溶媒を使用した場合の例である。
(比較例2)
 陽イオン交換樹脂が懸濁した陽イオン交換樹脂懸濁液をメンブランフィルターにろ過し、陽イオン交換樹脂のみからなる潤滑油の劣化判定具を作成した。この潤滑油の劣化判定具に、比較例1と同様にA車、B車、C車の劣化したエンジン油を潤滑油の劣化判定具に滴下し、その変色を確認した。その結果、潤滑油の劣化判定具はいずれも、変色せず、当初の薄い赤色のままであった。
 本比較例は、水が存在せず、基材上で指示薬のプロトン解離が起こらないために、潤滑油の劣化判定具が変色しない例である。
 本出願は、2008年8月22日出願の日本特許出願(特願2008-213702)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の潤滑油の劣化判定方法は、潤滑油の黒色の影響を低減させ、その劣化を潤滑油の使用現場で簡易かつ迅速に判定できるものであり、ガソリンスタンドをはじめ、自動車整備工場、自動車部品・用品店など各所で有用である。

Claims (16)

  1.  陽イオン交換性能を有し、プロトンを付加できる基材に、指示薬をプロトン性溶媒に溶解した指示薬溶液を保持させていることを特徴とする潤滑油の劣化判定具。
  2.  プロトン性溶媒がプロトン性有機溶媒である請求項1に記載の潤滑油の劣化判定具。
  3.  基材が膜である請求項1又は2に記載の潤滑油の劣化判定具。
  4.  膜がメンブランフィルターである請求項3に記載の潤滑油の劣化判定具。
  5.  メンブランフィルターが、ポリエーテルスルホン製メンブランフィルター、又はニトロセルロース製メンブランフィルターである請求項4に記載の潤滑油の劣化判定具。
  6.  指示薬が酸性域で変色する指示薬である請求項1~5のいずれかに記載の潤滑油の劣化判定具。
  7.  指示薬がブロモクレゾールグリーン、ブロモフェノールブルー、チモールブルー、又はそれらの混合物であり、プロトン性溶媒がプロパノール、ブタノール、ペンタノール、及びそれらの混合物からなるプロトン性有機溶媒の1種以上である請求項6に記載の潤滑油の劣化判定具。
  8.  基材が予め酸処理し乾燥させたものである請求項1~7のいずれかに記載の潤滑油の劣化判定具。
  9.  指示薬をプロトン性溶媒に溶解した指示薬溶液を基材に保持させ、その基材表面に潤滑油を付着させ、基材上で指示薬のプロトン解離を生起させることにより、潤滑油の劣化を判定することを特徴とする潤滑油の劣化判定方法。
  10.  プロトン性溶媒がプロトン性有機溶媒である請求項9に記載の潤滑油の劣化判定方法。
  11.  基材が膜であり、膜表面に付着された潤滑油中の塩基性物質と指示薬を反応させ、膜上で指示薬のプロトン解離を生起させ、塩基価により潤滑油の劣化を判定することを特徴とする請求項9又は10に記載の潤滑油の劣化判定方法。
  12.  膜がメンブランフィルターである請求項11に記載の潤滑油の劣化判定方法。
  13.  メンブランフィルターが、ポリエーテルスルホン製メンブランフィルター、又はニトロセルロース製メンブランフィルターである請求項12に記載の潤滑油の劣化判定方法。
  14.  指示薬が酸性域で変色する指示薬である請求項9~13のいずれかに記載の潤滑油の劣化判定方法。
  15.  指示薬がブロモクレゾールグリーン、ブロモフェノールブルー、チモールブルー、又はそれらの混合物であり、プロトン性溶媒がプロパノール、ブタノール、ペンタノール、及びそれらの混合物からなるプロトン性有機溶媒の1種以上である請求項14に記載の潤滑油の劣化判定方法。
  16.  指示薬をプロトン性溶媒に溶解した指示薬溶液を基材に保持させる方法が、基材を予め酸処理し乾燥させ、その後指示薬をプロトン性溶媒に溶解した指示薬溶液を保持させる方法である請求項9~15のいずれかに記載の潤滑油の劣化判定方法。
PCT/JP2009/064245 2008-08-22 2009-08-12 潤滑油の劣化判定具及び潤滑油の劣化判定方法 WO2010021283A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008213702A JP5354992B2 (ja) 2008-08-22 2008-08-22 潤滑油の劣化判定具及び潤滑油の劣化判定方法
JP2008-213702 2008-08-22

Publications (1)

Publication Number Publication Date
WO2010021283A1 true WO2010021283A1 (ja) 2010-02-25

Family

ID=41707161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064245 WO2010021283A1 (ja) 2008-08-22 2009-08-12 潤滑油の劣化判定具及び潤滑油の劣化判定方法

Country Status (2)

Country Link
JP (1) JP5354992B2 (ja)
WO (1) WO2010021283A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5884643B2 (ja) * 2012-05-29 2016-03-15 トヨタ自動車株式会社 車両用内装部材
JP2017061642A (ja) * 2015-09-25 2017-03-30 一般財団法人電力中央研究所 工業用油の性状維持方法及び工業用油の性状維持装置
JP6719896B2 (ja) * 2015-12-10 2020-07-08 ウシオ電機株式会社 フィルタ
JP6659198B2 (ja) * 2016-02-16 2020-03-04 一般財団法人電力中央研究所 工業用油の保守方法及び工業用油の保守装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61585B2 (ja) * 1976-05-24 1986-01-09 Nippon Oil Co Ltd
JPS62102159A (ja) * 1985-10-29 1987-05-12 Eiken Kagaku Kk 塩化物濃度測定用試験片

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61585B2 (ja) * 1976-05-24 1986-01-09 Nippon Oil Co Ltd
JPS62102159A (ja) * 1985-10-29 1987-05-12 Eiken Kagaku Kk 塩化物濃度測定用試験片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASATOSHI ENDO ET AL.: "Engine Oil no Kan'i Rekka Hantei Shikenho no Kaihatsu", THE JAPAN SOCIETY FOR ANALYTICAL CHEMISTRY NENKAI KOEN YOSHISHU, vol. 57, 27 August 2008 (2008-08-27), pages 139 *

Also Published As

Publication number Publication date
JP2010048691A (ja) 2010-03-04
JP5354992B2 (ja) 2013-11-27

Similar Documents

Publication Publication Date Title
US4301115A (en) Test device resistant to cross contamination between reactant areas and process for making it
US20230194398A1 (en) Blood staining patch, method and device for blood test using the same
JP5354992B2 (ja) 潤滑油の劣化判定具及び潤滑油の劣化判定方法
JP5970551B2 (ja) インプリントフォトニックポリマーならびにその調製および使用方法
EP1037045B1 (en) Quick acting toxic ammonia test for aqueous samples
JPH03163361A (ja) 血液分離および分析物の検出法
AU710651B2 (en) Glass/cellulose as protein reagent
CA2214400C (en) Method for the detection of lysozyme using a protein error indicator dye in conjunction with an alkane sulfonic acid
WO2014033258A1 (en) Glycated haemoglobin assay method
US4004453A (en) Method for detecting oil in water
JP4958277B2 (ja) イオン性有機試薬とコロイド微粒子もしくは繊維からなるナノコンポジット膜、金属イオン検出膜並びにその製造方法
WO2014087255A2 (en) Systems and methods for monitoring biological fluids
JP5641410B2 (ja) 潤滑油の劣化判定具
Fan et al. Sampling of dissolved inorganic Sb III by mercapto-functionalized silica-based diffusive gradients in thin-film technique
KR20170007097A (ko) 막 잔류 수준 및/또는 기공 구조의 결정을 위한 덴드리머 접합체
US3635677A (en) Glycol detection in oil
CA2259164A1 (en) Method and device for the colorimetric determination of analytes in the presence of interfering particulate materials
Bae et al. Quantification of solution-free red blood cell staining by sorption kinetics of Romanowsky stains to agarose gels
JP2003043025A (ja) フッ化物イオン検出用プレートおよびそれを用いたフッ化物イオン濃度判定方法
CN106226896A (zh) 一种可以透明微孔滤膜的显微镜镜油配制方法
JP4493535B2 (ja) 試験紙
US9726650B2 (en) Chromatographic medium
RU2481573C1 (ru) Способ определения содержания тяжелых фракций углеводородов в моторных маслах и топливах с помощью химического сенсора
US9726649B2 (en) Chromatographic medium
RU2234084C1 (ru) Индикаторная водочувствительная паста "глюк"

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09808219

Country of ref document: EP

Kind code of ref document: A1