WO2010021151A1 - 横編機 - Google Patents

横編機 Download PDF

Info

Publication number
WO2010021151A1
WO2010021151A1 PCT/JP2009/004012 JP2009004012W WO2010021151A1 WO 2010021151 A1 WO2010021151 A1 WO 2010021151A1 JP 2009004012 W JP2009004012 W JP 2009004012W WO 2010021151 A1 WO2010021151 A1 WO 2010021151A1
Authority
WO
WIPO (PCT)
Prior art keywords
knitting
yarn
mode
length
necessary
Prior art date
Application number
PCT/JP2009/004012
Other languages
English (en)
French (fr)
Inventor
西谷泰和
小村善幸
Original Assignee
株式会社島精機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島精機製作所 filed Critical 株式会社島精機製作所
Priority to JP2010525610A priority Critical patent/JP5963393B2/ja
Priority to EP09808087.2A priority patent/EP2336411B1/en
Priority to CN2009801326195A priority patent/CN102131971B/zh
Publication of WO2010021151A1 publication Critical patent/WO2010021151A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B15/00Details of, or auxiliary devices incorporated in, weft knitting machines, restricted to machines of this kind
    • D04B15/38Devices for supplying, feeding, or guiding threads to needles
    • D04B15/44Tensioning devices for individual threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B15/00Details of, or auxiliary devices incorporated in, weft knitting machines, restricted to machines of this kind
    • D04B15/38Devices for supplying, feeding, or guiding threads to needles
    • D04B15/48Thread-feeding devices
    • D04B15/488Thread-feeding devices in co-operation with stitch-length-regulating mechanism

Definitions

  • the present invention relates to a flat knitting machine capable of calculating and supplying the length of a knitting yarn necessary for knitting the knitted fabric based on the knitting data of the knitted fabric.
  • FIG. 5 shows the configuration of the flat knitting machine 1 disclosed in FIG.
  • the flat knitting machine 1 supplies the knitting yarn 4 to a knitting needle (not shown) from a yarn supplying port 3a of a yarn supplying member 3 such as a yarn feeder in order to knitting the knitted fabric 2.
  • the side cover 5 of the flat knitting machine 1 is provided with a yarn supplying device 6 for supplying the knitting yarn 4 to the yarn supplying member 3.
  • a buffer arm 7 is provided in a path through which the knitting yarn 4 is supplied from the yarn supplying device 6.
  • the buffer arm 7 is capable of swinging and displacing a hook-like portion up to the distal end side 9 with the proximal end side 8 as a fulcrum.
  • the yarn feeding device 6 feeds the knitting yarn 4 to the buffer arm 7 side or pulls the knitting yarn 4 back from the buffer arm 7 side while sandwiching the knitting yarn 4 between the main roller 10 and the slave roller 11. Can do.
  • the main roller 10 is attached to the rotation shaft of the servo motor 12.
  • the slave roller 11 is driven by a servo motor 12 via a driven mechanism 13 formed by a combination of a plurality of gears.
  • the cone 14 for supplying the knitting yarn 4 is installed above the frame of the flat knitting machine 1. The knitting yarn 4 taken out from the cone 14 is guided between the main roller 10 and the sub roller 11 of the yarn supplying device 6 through the relay roller 15.
  • the buffer arm 7 is urged in a direction in which the distal end side 9 moves away from the side cover 5 by a torque spring 16 provided on the proximal end side 8.
  • the buffer arm 7 is inclined at an angle at which the urging force and the tension of the knitting yarn 4 are balanced.
  • the buffer arm 7 has a buffer function for retracting and storing the knitting yarn 4 or sending the knitting yarn 4 by increasing or decreasing the inclination angle.
  • the inclination angle sensor 17 for detecting this inclination angle is provided.
  • a needle bed 18 for knitting the knitted fabric 2 is provided in a straight line.
  • the needle bed 18 is provided with a large number of knitting needles that are slidably displaced perpendicularly to the linear direction.
  • the knitting needle is selectively driven by a knitting cam mounted on a carriage 19 that reciprocates along the needle bed 18.
  • the knitting needle is driven so that the hook at the tip is advanced and retracted to a tooth opening formed on one side of the needle bed 18.
  • the knitting operation by the flat knitting machine 1 is controlled by the knitting controller 20.
  • the knitting controller 20 controls the carriage 19 and the knitting cam according to the knitting data created in advance to knitting the knitted fabric.
  • the yarn feed controller 21 calculates the length of the knitting yarn 4 supplied from the yarn feeding device 6 based on the knitting data for the knitted fabric to be knitted.
  • the total loop length of the stitches constituting one course is the theoretical knitting yarn length.
  • the knitting controller 20 corrects the stitches so as to be knitted into the knitted fabric without excess or deficiency while supplying a knitting yarn having a theoretical length.
  • the pull-in amount when the knitting cam pulls the knitting needle into the needle bed 18 is corrected.
  • FIG. 6 shows a partial configuration including the yarn feeding device 6 and the buffer arm 7 of FIG.
  • the buffer function by the buffer arm 7 is exhibited when the inclination angle is within a certain range. For example, if the tension of the knitting yarn 4 becomes too large, the inclination angle of the buffer arm 7 remains near the lower limit. If the tension of the knitting yarn 4 becomes too small, the inclination angle of the buffer arm 7 remains near the upper limit.
  • the tension of the knitting yarn 4 also has a great influence on the size of the stitch loop formed by drawing the knitting yarn 4 by the knitting needle.
  • the supply of the knitting yarn 4 in the constant arm angle mode cannot be performed so as to keep the inclination angle of the buffer arm 7 completely constant.
  • the length at which the knitting yarn 4 is knitted when the knitted fabric 2 is knitted increases rapidly when the knitting needle is pulled in under the action of the mountain cam. It is difficult to instantaneously supply this sudden increase from the yarn supplying device 6, and the knitting yarn 4 stored in the buffer arm 7 is supplied.
  • the inclination angle of the buffer arm 7 becomes small, and the knitting yarn 4 is supplied from the yarn supplying device 6 to the buffer arm 7 until the next knitting needle is drawn, so that the inclination angle is reduced. Return. Therefore, even when the knitting yarn 4 is supplied in the arm angle constant mode, the change in the inclination angle of the buffer arm 7 must be allowed.
  • the tension of the knitting yarn 4 is also related to the traveling direction of the carriage 19.
  • the tension of the knitting yarn 4 also varies depending on whether or not the range in which the carriage 19 entrains the yarn supplying member 3 is within the knitting width of the knitted fabric 2. Therefore, the supply of the knitting yarn 4 in the constant arm angle mode is performed only within a range in which the knitting yarn 4 is supplied to the inside of the knitting width, excluding a portion having a length of several tens to 100 mm at the end.
  • the length of the necessary knitting yarn 4 can be calculated over the entire knitting width of the knitted fabric 2, and the stitch correction can be performed. Therefore, it is expected that the required yarn feed mode has a smaller error in the supply length of the knitting yarn 4 than the constant arm angle mode.
  • one course or a plurality of courses are determined in advance as the knitting cycle.
  • the buffer arm 7 is used in the range of 10 degrees or more and 90 degrees or less, with the lower limit being 0 degrees and the upper limit being 100 degrees.
  • the range below 10 degrees is close to the lower limit, and the range above 90 is close to the upper limit. Therefore, there is a possibility that the lower limit and the upper limit are easily reached by mechanical inertia.
  • the relief process is performed when the inclination angle of the buffer arm 7 deviates from the use range.
  • the necessary yarn feeding mode is switched to the constant arm angle mode, and the remaining knitting of the knitting course is performed.
  • the correction is not performed, so the accuracy of the supply length of the knitting yarn 4 is maintained. I can't.
  • An object of the present invention is to provide a flat knitting machine capable of maintaining the accuracy with respect to the supply length of a knitting yarn even if a relief process is performed during the supply of the knitting yarn in the necessary yarn feeding mode.
  • the present invention provides a yarn supplying means for supplying a knitting yarn to a knitting needle that operates for knitting a knitted fabric and capable of controlling a supply state, Based on the knitting data of the knitted fabric, the control means for calculating the length of the knitting yarn necessary for knitting the knitted fabric for each predetermined knitting cycle, and for controlling the supply state of the yarn feeding means; Measuring means for measuring the length of the knitting yarn supplied from the yarn supplying means to the knitting needle; A correction means for comparing the length of the knitting yarn supplied to the knitting needle and the calculation result of the control means for each knitting cycle measured by the measurement means, and performing the second correction based on the comparison result; Buffer means provided in a knitting yarn supply path from the yarn feeding means to the knitting needle, and capable of temporarily storing the knitting yarn in a predetermined length range with a state change corresponding to the tension; Including flat knitting machines, The control means controls to start the yarn feeding state of the yarn feeding means in a necessary yarn feed mode for supplying a knitting yarn having a length corresponding to the calculation result
  • the measuring means measures the length of the knitting yarn between the initial stage and the final stage in accordance with the control at the timing of both the necessary yarn feeding mode and the buffer condition mode,
  • the control means switches the supply state of the yarn supplying means from the necessary yarn feed mode to the buffer condition mode in the middle of the knitting cycle, the correcting means is measured between the initial stage and the end of the buffer condition mode in the knitting period.
  • This is a flat knitting machine that performs stitch correction by comparing the length of the knitting yarn with the length of the knitting yarn according to the calculation result of the control means.
  • the measuring means may be In the necessary yarn feed mode, the initial and final measurements are performed so as to include a start part and an end part of the knitting cycle, In the buffer condition mode, the initial measurement and the final measurement are respectively performed so as to exclude a start portion and an end portion of the knitting cycle.
  • the knitting cycles of the necessary yarn feeding mode and the buffer condition mode correspond to the same course for knitting the knitted fabric.
  • the knitting cycle in the necessary yarn feeding mode corresponds to a course for knitting the knitted fabric
  • the knitting cycle in the buffer condition mode includes a knitting cycle in a continuous necessary yarn feed mode.
  • the control means calculates the length of the knitting yarn necessary for knitting the knitted fabric for each predetermined knitting cycle based on the knitting data of the knitted fabric, and the supply state of the yarn supplying means is the calculation result.
  • Each knitting cycle is started by controlling the yarn feeding means so as to be in a necessary yarn feeding mode for supplying a knitting yarn having a length corresponding to the knitting yarn.
  • the measuring means measures the length of the knitting yarn between the initial stage and the final stage in accordance with the control in both the necessary yarn feed mode and the buffer condition mode for each knitting cycle.
  • the control means monitors the buffer means for each knitting cycle, and when the state change exceeds a predetermined range in the middle of the knitting cycle, the supply state of the knitting yarn from the yarn supplying means in the remaining period of the knitting cycle Is switched to a buffer condition mode in which the state change in the buffer means is controlled so as to satisfy a predetermined condition.
  • the control means switches the supply state of the yarn supplying means from the necessary yarn feed mode to the buffer condition mode in the middle of the knitting cycle, the correcting means is measured between the initial stage and the end of the buffer condition mode in the knitting period.
  • the stitch length is corrected by comparing the length of the knitting yarn with the length of the knitting yarn according to the calculation result of the control means. Therefore, even if the relief process is performed during the supply of the knitting yarn in the necessary yarn feed mode, the accuracy of the knitting yarn supply length can be maintained by the correction.
  • the length of the knitting yarn can be measured at an appropriate timing even when the relief process is performed during the necessary yarn feeding mode and the buffer condition mode is switched.
  • the knitting cycle in the buffer condition mode includes the knitting cycle in the continuous necessary yarn feed mode. Therefore, even if the knitting width of the knitted fabric is relatively small, the accuracy of the stitch correction in the buffer condition mode Can keep.
  • FIG. 1 is a block diagram showing a schematic configuration of a flat knitting machine 31 as an embodiment of the present invention, and a timing chart showing a measurement timing of a length for supplying a knitting yarn 4.
  • FIG. 2 is a timing chart showing an outline of an operation of supplying the knitting yarn 4 in the necessary yarn feed mode for each course in the flat knitting machine 31 of FIG.
  • FIG. 3 is a flowchart showing a yarn feeding procedure in which the flat knitting machine 31 of FIG. 1 is accompanied by a mode change as shown in FIG.
  • FIG. 4 is a time chart showing an operation for making the range of the constant arm angle mode to be switched when performing relief processing different from the necessary yarn feeding mode as another embodiment of the present invention.
  • FIG. 5 is a block diagram showing a schematic configuration of the flat knitting machine 1 according to the prior art. 6 is a front view showing a partial configuration including the yarn feeding device 6 and the buffer arm 7 of FIG.
  • FIG. 1 shows a schematic configuration of a flat knitting machine 31 as an embodiment of the present invention in (a), and shows a measurement timing of a length for supplying the knitting yarn 4 in (b).
  • parts corresponding to the flat knitting machine 1 shown in FIG. 5 are denoted by the same reference numerals, and redundant description may be omitted.
  • the rotation angle of the main roller 10 of the yarn feeding device 6 as the yarn feeding means is detected by the encoder 32 as the measuring means.
  • the flat knitting machine 31 performs relief processing when the inclination angle of the buffer arm 7 which is a condition as buffer means approaches the lower limit or the upper limit in the middle of the necessary yarn feeding mode.
  • the mode is switched to the buffer condition mode, for example, the constant arm angle mode.
  • the knitting controller 33 as correction means performs the second correction even in the relief process.
  • the length of the knitting yarn 4 fed from the main roller 10 and the sub roller 11 to the buffer arm 7 side can be calculated based on the difference in the rotation angle detected by the encoder 32.
  • the buffer arm 7 has a buffer function of temporarily storing the knitting yarn 4 or sending the stored knitting yarn 4 to the yarn supplying member 3 side by changing the inclination angle.
  • the variation in the supply amount of the knitting yarn 4 and the variation in the tension are large, so that the variation in the inclination angle of the buffer arm 7 also increases. Therefore, as shown in FIG. 1B, the measurement timing by the encoder 32 for the knitting controller 33 to perform the stitch correction in the buffer arm constant mode is made to correspond to the inside of the knitting width.
  • the supply of the knitting yarn 4 in the constant arm angle mode is performed only within a range in which the knitting yarn 4 is supplied to the inside of the knitting width, excluding a portion having a length of about several tens to 100 mm at the end. Because.
  • the buffer function of the buffer arm 7 is used to temporarily store and feed the knitting yarn 4, but the buffer function can be realized by other configurations. For example, if the knitting yarn 4 is hung by its own weight between two rollers or is lowered by another roller, the buffer function can be realized by increasing or decreasing the amount of sag or the amount of sag. In addition, the buffer function can be realized in an active manner such as winding or rewinding on a roller or the like. However, in any buffer function, the length of the knitting yarn 4 that can be temporarily stored is limited. Further, the length of the knitting yarn 4 to be supplied is limited to the length of the stored knitting yarn 4. Therefore, even in other configurations, it is necessary to operate in the buffer condition mode in which the buffer function can be sufficiently exhibited in response to the arm angle constant mode of the buffer arm 7.
  • the configuration of the yarn feeding device 6, the encoder 32, the knitting controller 33, and the like can be realized by other configurations having equivalent functions.
  • the arrangement of the measuring means such as the encoder 32 may be any one of the supply paths of the knitting yarn 4 from the yarn supplying device 6 to the yarn supplying member 3.
  • FIG. 2 shows an outline of the operation of supplying the knitting yarn 4 in the necessary yarn feeding mode for each course by the flat knitting machine 31 of FIG.
  • FIG. 2A shows an outline of an operation for performing stitch correction while supplying the knitting yarn 4 in either the necessary yarn feed mode or the constant arm angle mode.
  • FIG. 2B shows an outline of an operation for switching to the constant arm angle mode as a relief process in the middle of the necessary yarn feeding mode by the flat knitting machine 1 of FIG.
  • FIG. 2C shows an outline of an operation for switching to the constant arm angle mode as a relief process in the middle of the necessary yarn feeding mode by the flat knitting machine 31.
  • the rotation angle is detected in parallel by the encoder 32, which is necessary for the operations of the necessary yarn feeding mode and the constant arm angle mode.
  • the necessary yarn feed mode and the constant arm angle mode can be switched at the start of the course, but normally, the necessary yarn feed mode in which the stitch correction is highly accurate is selected. If the inclination angle of the buffer arm 7 is less than a predetermined range exceeding 10 degrees or exceeding 90 degrees during the thread feeding in the necessary thread feeding mode, an error occurs and a relief process is performed.
  • FIG. 2 (b) in the conventional flat knitting machine 1, the supply of the knitting yarn 4 is only switched to the constant arm angle mode as the relief process, and no correction is performed.
  • the encoder 32 detects the rotation angle at the beginning of the course and performs the initial measurement. If the final measurement is performed at the end of the course, the second correction based on the difference between the final measurement value and the initial measurement value can be performed.
  • FIG. 3 shows a yarn feeding procedure in which the flat knitting machine 31 is accompanied by mode switching as shown in FIG.
  • the knitting cycle for controlling the supply state of the knitting yarn is set as one course, and the length of the knitting yarn 4 required in the course for each course of knitting the knitted fabric 2 is supplied as control means.
  • the yarn controller 21 calculates it.
  • the knitting controller 33 stores the initial value of the tilt angle of the buffer arm 7 indicated by the tilt angle sensor 17.
  • the knitting controller 33 detects the rotation angle with the encoder 32 and stores it as an initial value in the necessary yarn feed mode.
  • the yarn feeding controller 21 controls the yarn feeding device 6 to start feeding the knitting yarn 4 in the necessary yarn feeding mode.
  • step s5 the knitting controller 33 determines whether the inclination angle of the buffer arm 7 indicated by the inclination angle sensor 17 is out of the predetermined range and the relief process is necessary. If relief processing is not necessary, steps s5 and s6 are repeated until it is determined in step s6 that the course has ended. If it is determined in step s6 that the course has ended, the knitting controller 33 stores the rotation angle of the encoder 32 as the final value in the necessary yarn feed mode in step s7. The knitting controller 33 also stores the inclination angle of the buffer arm 7 indicated by the inclination angle sensor 17 in step s8.
  • step s5 If it is determined in step s5 that relief processing is necessary, the mode is switched from step s9 to the constant arm angle mode.
  • the yarn feeding controller 21 controls the yarn feeding device 6 so that the inclination angle of the buffer arm 7 is within the angle range in the constant arm angle mode.
  • the knitting controller 33 stores the rotation angle of the encoder 32 as the end value.
  • step s8 or step s9 the stitch correction controller 33 controls the stitch correction in step s10, and the procedure for one course is completed.
  • the second correction is performed corresponding to the necessary yarn feed mode or the constant arm angle mode, respectively, according to the determination regarding the relief processing in step s5.
  • the necessary yarn feed mode the difference between the inclination angles of the buffer arm 7 detected by the inclination angle sensor 17 in steps s1 and s8, and the initial value and the end of the rotation angle detected by the encoder 32 in steps s2 and s7. Based on the value difference, the length of the supplied knitting yarn 4 is calculated.
  • the supplied knitting yarn 4 Calculate the length.
  • the stitch correction is based on the knitting data and the theoretical value of the stitch loop length at the entire course for the required yarn feed mode and the middle portion of the knitting width for the constant arm angle mode. The difference from the supply length of 4 is reduced.
  • FIG. 4 shows another embodiment of the present invention, the range of the constant arm angle mode that is switched when the relief process is performed when the tilt angle of the buffer arm is outside the predetermined range in the necessary yarn feeding mode. It shows the operation to be different. Such an operation is effective when the knitting width of the knitted fabric 2 to be knitted becomes relatively small and the error is increased when the second correction is performed only in the middle except for the vicinity of the end of the knitting width.
  • the knitting cycle for controlling the supply state of the knitting yarn is corrected by setting the second course corresponding to the reciprocation of the carriage 19 as one round, whereas the constant arm angle mode is performed in three modes. The course will be corrected once every round.
  • the supply length of the knitting yarn 4 is calculated using the initial value and the final value of each mode. For this reason, the initial value and the end value for the necessary yarn feed mode are detected every two courses, and at the same time, the initial value and the end value for the constant arm angle mode are detected every three courses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Knitting Machines (AREA)

Abstract

 必要糸送りモードでの編糸の供給中に救済処理が行われても、編糸の供給長さについての精度を保つことができる横編機を提供する。  (a)に示すように、横編機31では、給糸装置6の主ローラ10の回転角度をエンコーダ32で検出する。必要糸送りモードの途中で、バッファアーム7の傾斜角度が下限や上限に近付くと、救済処理として、アーム角度一定モードに切替える。ただし、編成コントローラ33は、救済処理でも、度目補正を行う。主ローラ10と従ローラ11の間からバッファアーム7側に送り出される編糸4の長さは、エンコーダ32が検出する回転角度の差に基づいて算出する。(b)に示すように、編成コントローラ33がバッファアーム一定モードで度目補正を行うためのエンコーダ32による計測のタイミングは、編幅の内側に対応させている。

Description

横編機
 本発明は、編地の編成データに基づいて、編地の編成に必要な編糸の長さを算出して供給することが可能な横編機に関する。
 従来から、横編機では、編成する編地の編目ループ長を安定化させて製品の均一化を図ることが要望されている。このような要望は、たとえば、編成に必要な編糸の長さを算出して供給しながら、算出された長さの編糸で過不足なく編地が編成されるように度目補正を行うことで実現される(たとえば、特許文献1参照)。
 図5は、特許文献1に図1として開示されている横編機1の構成を示す。ただし、説明の便宜上、参照符号は変更している。横編機1は、編地2を編成するために、ヤーンフィーダなどの給糸部材3の給糸口3aから、図示を省略している編針に編糸4を供給する。横編機1のサイドカバー5などには、給糸部材3に編糸4を供給する給糸装置6が設けられる。給糸装置6から編糸4が供給される経路には、バッファアーム7が備えられる。バッファアーム7は、基端側8を支点として、先端側9までの竿状の部分が揺動変位可能である。
 給糸装置6は、主ローラ10と従ローラ11との間で編糸4を挟みながら、バッファアーム7側に編糸4を送出したり、バッファアーム7側から編糸4を引戻したりすることができる。主ローラ10は、サーボモータ12の回転軸に取付けられる。従ローラ11は、複数の歯車などの組合せで形成する従動機構13を介して、サーボモータ12の駆動を受ける。編糸4を供給するコーン14は、横編機1のフレームの上方に設置される。コーン14から取出される編糸4は、中継ローラ15を介して給糸装置6の主ローラ10と従ローラ11との間に導かれる。
 バッファアーム7は、基端側8に備えられるトルクばね16で、先端側9がサイドカバー5から遠ざかる方向に付勢される。バッファアーム7の先端側9に編糸4を通すと、バッファアーム7は、付勢力と編糸4の張力とが釣合う角度で傾斜する。バッファアーム7は、傾斜角度の増減で、編糸4を引込んで貯留したり、編糸4を送出したりするバッファ機能を有する。このように、バッファアーム7の傾斜角度は、編糸4が貯留される長さに関連するので、この傾斜角度を検出する傾斜角センサ17が設けられる。
 横編機1では、編地2を編成するための針床18が直線状に設けられる。針床18には、この直線状の方向に対して垂直に摺動変位する多数の編針が並設される。編針は、針床18に沿って往復走行するキャリッジ19に搭載される編成カムで選択的に駆動される。編針は、先端のフックが針床18の一側方に形成される歯口に進退するように駆動される。歯口への進出時に、キャリッジ19が連行する給糸部材3の給糸口3aから供給される編糸4を受けたフックを、針床18に引込むと編目ループが形成される。横編機1による編成動作は、編成コントローラ20によって制御される。編成コントローラ20は、予め作成される編成データに従って、キャリッジ19や編成カムを制御し、編地を編成する。給糸コントローラ21は、給糸装置6から供給する編糸4の長さを、編成する編地についての編成データに基づいて算出する。一コース分の編地を編成する際に、一コースを構成する編目のループ長の合計値が理論的な編糸の長さとなる。理論的な長さの編糸を供給しながら、過不足なく編地に編込まれるように、編成コントローラ20は度目補正を行う。度目補正では、編成カムが編針を針床18に引込む際の引込み量を補正する。このような必要糸送りモードでの編糸4の供給と度目補正とを併用することによって、編目のループ長が均一化された高品質の編地を得ることができる。
 図6は、図5の給糸装置6とバッファアーム7とを含む部分的な構成を示す。バッファアーム7によるバッファ機能は、傾斜角度が一定の範囲内に収まるときに発揮される。たとえば、編糸4の張力が大きくなり過ぎると、バッファアーム7の傾斜角度は下限付近に留まる。また、編糸4の張力が小さくなり過ぎると、バッファアーム7の傾斜角度は上限付近に留まる。編針による編糸4の引込で形成される編目ループの大きさには、編糸4の張力も大きな影響を与える。したがって、バッファ条件としてのバッファアーム7の傾斜角度が一定に保たれるように編糸4の供給状態を制御するアーム角度一定モードでも、度目補正と併用して、編目のループ長を均一化することができると期待される(たとえば、特許文献2参照)。
特許第4016030号公報 特許第3603031号公報
 アーム角度一定モードでの編糸4の供給は、バッファアーム7の傾斜角度を完全に一定に保つように行うことはできない。編地2の編成の際に編糸4が編込まれる長さは、編針が編成カムの度山カムの作用を受けて引込まれる際に急増する。この急増分を給糸装置6から瞬間的に供給することは困難であり、バッファアーム7に貯留されている編糸4が供給される。貯留されている編糸4の供給で、バッファアーム7の傾斜角度は小さくなり、次の編針が引込まれるまでに、給糸装置6からバッファアーム7に編糸4が補給されて傾斜角度が戻る。したがって、アーム角度一定モードでの編糸4の供給時でも、バッファアーム7の傾斜角度の変化は許容されなければならない。
 図5に示すような横編機1では、給糸装置6が針床18の一側方に設けられているので、編糸4の張力は、キャリッジ19の走行方向にも関係する。また、編糸4の張力は、キャリッジ19が給糸部材3を連行する範囲が編地2の編幅内であるか否かによっても変動する。したがって、アーム角度一定モードでの編糸4の供給は、端部で数10mm~100mm程度の長さの部分を除く、編幅の内部に編糸4を供給する範囲でのみ行われる。
 必要糸送りモードでは、編地2の編幅の全体にわたって必要な編糸4の長さを算出し、度目補正を行うことができる。したがって、アーム角度一定モードと比較すると、必要糸送りモードの方が編糸4の供給長さについての誤差が小さいと期待される。
 編糸の供給状態を制御するためには、一コースあるいは複数コースを、編成周期として予め定めておく。一編成周期での編糸4の供給長さが長くなると、小さい誤差でも蓄積されて、バッファアーム7の傾斜角度の変化範囲が上限や下限に接近するおそれがある。バッファアーム7は、たとえば下限を0度、上限を100度として、10度以上で90度以下の範囲で使用する。10度未満の範囲では下限に近く、90を越える範囲では上限に近いので、機械的な慣性で容易に下限や上限に達する可能性がある。バッファアーム7が下限や上限に達すると、編糸4の張力が急激に増加したり減少したりするので、編目ループ長も変動してしまう。このため、必要糸送りモードによる高精度の度目調整は不可能になり、度目補正を行えば、編目ループ長の乱れを大きくしてしまうおそれがある。
 したがって、ある編成コースで必要糸送りモードでの編糸4の供給中に、バッファアーム7の傾斜角度が使用範囲から外れると、救済処理が行われる。救済処理としては、必要糸送りモードからアーム角度一定モードに切替えて、その編成コースの残りの編成を行うようにしている。このようなモード切替えを伴う救済処理では、アーム角度一定モード用の編糸の供給長さを計測していないため、度目補正は行われないので、編糸4の供給長さについての精度を保つことができない。
 本発明の目的は、必要糸送りモードでの編糸の供給中に救済処理が行われても、編糸の供給長さについての精度を保つことができる横編機を提供することである。
 本発明は、 編地を編成するために作動する編針に編糸を供給し、供給状態を制御可能な給糸手段と、
 編地の編成データに基づいて、予め定める編成周期毎に編地の編成に必要な編糸の長さを算出するとともに、給糸手段の供給状態を制御する制御手段と、
 給糸手段から編針に供給する編糸の長さを計測する計測手段と、
 計測手段によって計測される各編成周期毎に編針に供給された編糸の長さと制御手段の算出結果との比較を行い、比較結果に基づいて度目補正を行う補正手段と、
 給糸手段から編針への編糸の供給経路に設けられ、編糸を、予め定める長さの範囲で、張力に対応する状態変化を伴いながら、一時的に貯留可能なバッファ手段とを、
含む横編機において、
 制御手段は、各編成周期毎に、給糸手段の給糸状態を、算出結果に応じる長さの編糸を供給する必要糸送りモードにして開始するように制御するとともに、バッファ手段を監視し、必要糸送りモードで開始した編成周期の途中で状態変化が予め定める範囲を超えると、救済処理として、該編成周期の残りの期間での給糸手段からの編糸の供給状態を、バッファ手段での状態変化が予め定める条件を満たすように制御するバッファ条件モードに切替え、
 計測手段は、各編成周期毎に、必要糸送りモードとバッファ条件モードとの両方のタイミングでの制御に合わせて、初期と終期との間の編糸の長さをそれぞれ計測しておき、
 補正手段は、制御手段が編成周期の途中で給糸手段の供給状態を必要糸送りモードからバッファ条件モードに切替えると、該編成周期でのバッファ条件モードについての初期と終期との間で計測される編糸の長さを、制御手段の算出結果に応じる編糸の長さと比較して度目補正を行うことを特徴とする横編機である。
 また本発明で、前記計測手段は、
  前記必要糸送りモードで、前記編成周期の開始部分および終了部分を含むように、前記初期および前記終期の計測をそれぞれ行い、
  前記バッファ条件モードで、前記編成周期の開始部分および終了部分を除くように、前記初期および前記終期の計測をそれぞれ行うことを特徴とする。
 また本発明で、前記必要糸送りモードおよび前記バッファ条件モードの編成周期は、編地を編成する同一のコースに対応することを特徴とする。
 また本発明で、前記必要糸送りモードの編成周期は、編地を編成するコースに対応し、
 前記バッファ条件モードの編成周期は、連続する必要糸送りモードの編成周期を含むことを特徴とする。
 本発明によれば、制御手段は、編地の編成データに基づいて、予め定める編成周期毎に編地の編成に必要な編糸の長さを算出し、給糸手段の供給状態が算出結果に応じる長さの編糸を供給する必要糸送りモードとなるように給糸手段を制御して各編成周期を開始する。計測手段は、各編成周期毎に、必要糸送りモードとバッファ条件モードとの両方のタイミングでの制御に合わせて、初期と終期との間の編糸の長さをそれぞれ計測しておく。制御手段は、各編成周期毎に、バッファ手段を監視し、編成周期の途中で状態変化が予め定める範囲を超えると、その編成周期の残りの期間での給糸手段からの編糸の供給状態を、バッファ手段での状態変化が予め定める条件を満たすように制御するバッファ条件モードに切替えるので、救済処理が行われる。補正手段は、制御手段が編成周期の途中で給糸手段の供給状態を必要糸送りモードからバッファ条件モードに切替えると、その編成周期でのバッファ条件モードについての初期と終期との間で計測される編糸の長さを、制御手段の算出結果に応じる編糸の長さと比較して度目補正を行う。したがって、必要糸送りモードでの編糸の供給中に救済処理が行われても、度目補正で編糸の供給長さについての精度を保つことができる。
 また本発明によれば、必要糸送りモードの途中で救済処理が行われてバッファ条件モードに切替えられても、編糸の長さの計測を適切なタイミングで行うことができる。
 また本発明によれば、編地を編成する同一のコース毎に、必要糸送りモードからバッファ条件モードに切替える救済処理を行うことができる。
 また本発明によれば、バッファ条件モードの編成周期は、連続する必要糸送りモードの編成周期を含むので、編地の編幅が比較的小さくなっても、バッファ条件モードでの度目補正の精度を保つことができる。
図1は、本発明の実施の一形態としての横編機31の概略的な構成を示すブロック図、および編糸4を供給する長さの計測タイミングを示すタイミングチャートである。 図2は、図1の横編機31で、コース毎に必要糸送りモードで編糸4の供給を行う動作の概要を示すタイミングチャートである。 図3は、図1の横編機31が図2のようなモードの切替えを伴う糸送りの手順を示すフローチャートである。 図4は、本発明の実施の他の形態として、救済処理を行う際に切替えるアーム角度一定モードの範囲を、必要糸送りモードとは異ならせる動作を示すタイムチャートである。 図5は、先行技術による横編機1の概略的な構成を示すブロック図である。 図6は、図5の給糸装置6とバッファアーム7とを含む部分的な構成を示す正面図である。
  2 編地
  3 給糸部材
  4 編糸
  6 給糸装置
  7 バッファアーム
  17 傾斜角センサ
  21 給糸コントローラ
  31 横編機
  32 エンコーダ
  33 編成コントローラ
 図1は、本発明の実施の一形態としての横編機31の概略的な構成を(a)で、編糸4を供給する長さの計測タイミングを(b)でそれぞれ示す。横編機31について、図5に示す横編機1に対応する部分には同一の参照符を付して示し、重複する説明を省略することがある。
 図1(a)に示すように、横編機31では、たとえば給糸手段としての給糸装置6の主ローラ10の回転角度を計測手段としてのエンコーダ32で検出する。横編機31は、図5の横編機1と同様に、必要糸送りモードの途中で、バッファ手段としての条件であるバッファアーム7の傾斜角度が下限や上限に近付くと、救済処理として、バッファ条件モード、たとえばアーム角度一定モードに切替える。ただし、補正手段としての編成コントローラ33は、救済処理でも、度目補正を行う。
 主ローラ10と従ローラ11の間からバッファアーム7側に送り出される編糸4の長さは、エンコーダ32が検出する回転角度の差に基づいて算出することができる。前述のように、バッファアーム7は、傾斜角度が変化することによって、編糸4を一時的に貯留したり、貯留する編糸4を給糸部材3側に送り出したりするバッファ機能を有する。編地2の編幅の端部付近では、編糸4の供給量の変動や張力の変動が大きいので、バッファアーム7の傾斜角度の変動も大きくなる。したがって、図1(b)に示すように、編成コントローラ33がバッファアーム一定モードで度目補正を行うためのエンコーダ32による計測のタイミングは、編幅の内側に対応させている。前述のように、アーム角度一定モードでの編糸4の供給は、端部で数10mm~100mm程度の長さの部分を除く、編幅の内部に編糸4を供給する範囲でのみ行われるからである。
 なお、横編機31ではバッファアーム7のバッファ機能を用いて編糸4の一時的な貯留や送り出しを行っているけれども、バッファ機能は他の構成で実現することもできる。たとえば、編糸4を二つのローラ間で自重によって垂れ下がるようにしたり、他のローラで引下げるようにしておけば、垂れ下がり量または引下げ量を増減させてバッファ機能を実現させることができる。またローラなどに巻取ったり、巻戻したりするような能動式でバッファ機能を実現することもできる。ただし、いずれのバッファ機能でも、一時的に貯留可能な編糸4の長さには制限がある。また、供給する編糸4の長さは、貯留している編糸4の長さに限られる。したがって、他の構成でも、バッファアーム7のアーム角度一定モードに対応して、バッファ機能が充分に発揮可能なバッファ条件モードで動作させる必要がある。
 同様に、給糸装置6、エンコーダ32、編成コントローラ33などの構成も、同等の機能を有する他の構成で実現することができる。また、エンコーダ32などの計測手段の配置は、給糸装置6から給糸部材3までの編糸4の供給経路のいずれかであればよい。
 図2は、図1の横編機31で、コース毎に必要糸送りモードで編糸4の供給を行う動作の概要を示す。図2(a)は、必要糸送りモードまたはアーム角度一定モードのいずれかで編糸4を供給しながら度目補正を行う動作の概要を示す。図2(b)は、比較のため、図5の横編機1による必要糸送りモードの途中で、救済処理としてアーム角度一定モードに切替える動作の概要を示す。図2(c)は、横編機31による必要糸送りモードの途中で、救済処理としてアーム角度一定モードに切替える動作の概要を示す。
 図2(a)に示すように、必要糸送りモードとアーム角度一定モードとの動作に必要なエンコーダ32による回転角度の検出を並行して行う。必要糸送りモードとアーム角度一定モードとは、コースの開始時点で切替え可能であるけれども、通常は、度目補正が高精度になる必要糸送りモードが選択される。必要糸送りモードでの糸送りの途中でバッファアーム7の傾斜角度が10度未満または90度を超える所定範囲外になると、エラーとなり、救済処理が行われる。図2(b)に示すように、従来の横編機1では、救済処理としては編糸4の供給をアーム角度一定モードに切替えるのみで、度目補正は行わない。図2(c)に示すように、横編機31では、救済処理でアーム角度一定モードに切替えられても、コースの初期にエンコーダ32が回転角度を検出して初期の計測を行っているので、コースの終了で終期の計測を行えば、終期と初期との計測値の差に基づく度目補正を行うことができる。
 図3は、横編機31が図2のようなモードの切替えを伴う糸送りの手順を示す。本実施の形態では、編糸の供給状態を制御するための編成周期を一コースとし、編地2を編成するコース毎に、そのコースで必要な編糸4の長さを制御手段としての給糸コントローラ21が算出しておく。ステップs1で、編成コントローラ33は、傾斜角センサ17が示すバッファアーム7の傾斜角の初期値を記憶する。また、編成コントローラ33は、ステップs2で、エンコーダ32で回転角度を検出し、必要糸送りモードでの初期値として記憶する。ステップs3から、給糸コントローラ21が給糸装置6を制御し、必要糸送りモードでの編糸4の送り出しが開始される。
 必要糸送りモードの途中、ステップs4でアーム角度一定モードの初期値を計測するタイミングに達すると、エンコーダ32の回転角度が記憶される。ステップs5では、編成コントローラ33が傾斜角センサ17が示すバッファアーム7の傾斜角度が所定範囲外となって救済処理が必要か否かを判断する。救済処理の必要がなければ、ステップs6でコース終了と判断するまで、ステップs5とステップs6とを繰返す。ステップs6でコース終了と判断すると、編成コントローラ33は、ステップs7でエンコーダ32の回転角度を必要糸送りモードでの終期値として記憶する。編成コントローラ33は、ステップs8で傾斜角センサ17が示すバッファアーム7の傾斜角度も記憶する。
 ステップs5で救済処理が必要と判断されると、ステップs9からアーム角度一定モードに切替える。給糸コントローラ21は、バッファアーム7の傾斜角度がアーム角度一定モードでの角度範囲内になるように、給糸装置6を制御する。編成コントローラ33は、アーム角度一定モードの終期になると、エンコーダ32の回転角度を終期値として記憶する。ステップs8またはステップs9が終了すると、ステップs10で編成コントローラ33による度目補正の制御が行われ、一コース分の手順が終了する。
 度目補正は、ステップs5での救済処理に関する判断に応じ、必要糸送りモードまたはアーム角度一定モードに対応してそれぞれ行われる。必要糸送りモードに対しては、ステップs1およびステップs8で傾斜角センサ17が検出するバッファアーム7の傾斜角度の差と、ステップs2およびステップs7でエンコーダ32が検出する回転角度の初期値および終期値の差とに基づいて、供給した編糸4の長さを算出する。アーム角度一定モードに対しては、ステップs4でエンコーダ32が検出する回転角度の初期値と、ステップs9でエンコーダ32が検出する回転角度の終期値との差に基づいて、供給した編糸4の長さを算出する。度目補正は、必要糸送りモードに対してはコース全体、アーム角度一定モードに対しては編幅の中間部分での編目ループ長の理論値を、編成データに基づいて算出しておき、編糸4の供給長との差が減少するように行う。
 図4は、本発明の実施の他の形態として、必要糸送りモードでバッファアームの傾斜角度が所定範囲外となって救済処理を行う際に切替えるアーム角度一定モードの範囲を、必要糸送りモードとは異ならせる動作を示す。このような動作は、編成する編地2の編幅が比較的小さくなり、編幅の端部付近を除く中間のみで度目補正を行うと、誤差が大きくなる場合に有効となる。たとえば、必要糸送りモードは、編糸の供給状態を制御するための編成周期を、キャリッジ19の往復に対応する二コースを一ラウンドとして度目補正を行うのに対し、アーム角度一定モードは、三コースを一ラウンドとして度目補正を行う。度目補正では、各モードの初期値と終期値とを使用して、編糸4の供給長さを算出する。このため、必要糸送りモード用の初期値と終期値との検出を二コース毎に行うとともに、並行して、アーム角度一定モード用の初期値と終期値との検出を三コース毎に行う。
 必要糸送りモードでの一ラウンドのコースaとbとのうちのbでエラーが発生すると、コースbの残りの区間は救済処理でアーム角度一定モードに移行する。編糸4の供給は、コースcでは必要糸送りモードに戻す。したがって、コースbの途中からのみアーム角度一定モードでの編糸4の供給となるけれども、度目補正は、コースa,b,cを通して、アーム角度一定モードに対応して行う。

Claims (4)

  1.  編地を編成するために作動する編針に編糸を供給し、供給状態を制御可能な給糸手段と、
     編地の編成データに基づいて、予め定める編成周期毎に編地の編成に必要な編糸の長さを算出するとともに、給糸手段の供給状態を制御する制御手段と、
     給糸手段から編針に供給する編糸の長さを計測する計測手段と、
     計測手段によって計測される各編成周期毎に編針に供給された編糸の長さと制御手段の算出結果との比較を行い、比較結果に基づいて度目補正を行う補正手段と、
     給糸手段から編針への編糸の供給経路に設けられ、編糸を、予め定める長さの範囲で、張力に対応する状態変化を伴いながら、一時的に貯留可能なバッファ手段とを、
    含む横編機において、
     制御手段は、各編成周期毎に、給糸手段の給糸状態を、算出結果に応じる長さの編糸を供給する必要糸送りモードにして開始するように制御するとともに、バッファ手段を監視し、必要糸送りモードで開始した編成周期の途中で状態変化が予め定める範囲を超えると、救済処理として、該編成周期の残りの期間での給糸手段からの編糸の供給状態を、バッファ手段での状態変化が予め定める条件を満たすように制御するバッファ条件モードに切替え、
     計測手段は、各編成周期毎に、必要糸送りモードとバッファ条件モードとの両方のタイミングでの制御に合わせて、初期と終期との間の編糸の長さをそれぞれ計測しておき、
     補正手段は、制御手段が編成周期の途中で給糸手段の供給状態を必要糸送りモードからバッファ条件モードに切替えると、該編成周期でのバッファ条件モードについての初期と終期との間で計測される編糸の長さを、制御手段の算出結果に応じる編糸の長さと比較して度目補正を行うことを特徴とする横編機。
  2.  前記計測手段は、
      前記必要糸送りモードで、前記編成周期の開始部分および終了部分を含むように、前記初期および前記終期の計測をそれぞれ行い、
      前記バッファ条件モードで、前記編成周期の開始部分および終了部分を除くように、前記初期および前記終期の計測をそれぞれ行うことを特徴とする請求項1記載の横編機。
  3.  前記必要糸送りモードおよび前記バッファ条件モードの編成周期は、編地を編成する同一のコースに対応することを特徴とする請求項1または2記載の横編機。
  4.  前記必要糸送りモードの編成周期は、編地を編成するコースに対応し、
     前記バッファ条件モードの編成周期は、連続する必要糸送りモードの編成周期を含むことを特徴とする請求項1または2記載の横編機。
PCT/JP2009/004012 2008-08-22 2009-08-21 横編機 WO2010021151A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010525610A JP5963393B2 (ja) 2008-08-22 2009-08-21 横編機
EP09808087.2A EP2336411B1 (en) 2008-08-22 2009-08-21 Flat knitting machine
CN2009801326195A CN102131971B (zh) 2008-08-22 2009-08-21 横机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-214648 2008-08-22
JP2008214648 2008-08-22

Publications (1)

Publication Number Publication Date
WO2010021151A1 true WO2010021151A1 (ja) 2010-02-25

Family

ID=41707034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004012 WO2010021151A1 (ja) 2008-08-22 2009-08-21 横編機

Country Status (4)

Country Link
EP (1) EP2336411B1 (ja)
JP (1) JP5963393B2 (ja)
CN (1) CN102131971B (ja)
WO (1) WO2010021151A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101954658B1 (ko) 2017-05-08 2019-03-06 가부시키가이샤 시마세이키 세이사쿠쇼 횡편기에 있어서의 탄성사의 실 이송장치
CN111235749A (zh) * 2020-01-13 2020-06-05 苏州特点电子科技有限公司 一种全自动电脑横机的罗拉控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6108882B2 (ja) * 2013-03-05 2017-04-05 株式会社島精機製作所 横編機と横編機での編成方法
CN103132232B (zh) * 2013-03-15 2014-04-02 中山市斯玛特电子科技有限公司 一种电脑横机纱嘴工作检测报警装置
CN104164743B (zh) * 2014-06-23 2016-08-31 泉州精准机械有限公司 一种电脑横机送纱器及其纱线检测控制系统
IT201800005463A1 (it) * 2018-05-17 2019-11-17 Procedimento di realizzazione di tessuto a maglia pregiato
DE102021111510A1 (de) 2021-05-04 2022-11-10 Digitale Strickmanufaktur PoC GmbH Strickmaschine zur Herstellung von zumindest teilweise dreidimensional gefertigten Strickteilen, System umfassend eine Mehrzahl von Strickmaschinen sowie Verfahren zur Herstellung von zumindest teilweise dreidimensional gefertigten Strickteilen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416030B2 (ja) 1986-12-18 1992-03-19 Nippon Jidosha Buhin Sogo Kenkyusho Kk
JPH06264342A (ja) * 1993-03-12 1994-09-20 Tsudakoma Corp 編み地制御装置
JP3603031B2 (ja) 2001-01-31 2004-12-15 株式会社島精機製作所 給糸装置
JP2006169675A (ja) * 2004-12-16 2006-06-29 Shima Seiki Mfg Ltd 横編機の給糸装置
JP4016030B2 (ja) * 2002-07-24 2007-12-05 株式会社島精機製作所 横編機の給糸装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4015973B2 (ja) * 2003-07-30 2007-11-28 株式会社島精機製作所 編糸保持切断方法および装置
JP4366312B2 (ja) * 2004-12-27 2009-11-18 株式会社島精機製作所 度目調整機能付きの横編機と、編成方法、及び編成プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416030B2 (ja) 1986-12-18 1992-03-19 Nippon Jidosha Buhin Sogo Kenkyusho Kk
JPH06264342A (ja) * 1993-03-12 1994-09-20 Tsudakoma Corp 編み地制御装置
JP3603031B2 (ja) 2001-01-31 2004-12-15 株式会社島精機製作所 給糸装置
JP4016030B2 (ja) * 2002-07-24 2007-12-05 株式会社島精機製作所 横編機の給糸装置
JP2006169675A (ja) * 2004-12-16 2006-06-29 Shima Seiki Mfg Ltd 横編機の給糸装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2336411A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101954658B1 (ko) 2017-05-08 2019-03-06 가부시키가이샤 시마세이키 세이사쿠쇼 횡편기에 있어서의 탄성사의 실 이송장치
CN111235749A (zh) * 2020-01-13 2020-06-05 苏州特点电子科技有限公司 一种全自动电脑横机的罗拉控制方法
CN111235749B (zh) * 2020-01-13 2021-06-29 苏州特点电子科技有限公司 一种全自动电脑横机的罗拉控制方法

Also Published As

Publication number Publication date
JPWO2010021151A1 (ja) 2012-01-26
EP2336411A4 (en) 2014-01-01
EP2336411A1 (en) 2011-06-22
CN102131971B (zh) 2012-11-21
JP5963393B2 (ja) 2016-08-03
EP2336411B1 (en) 2015-03-25
CN102131971A (zh) 2011-07-20

Similar Documents

Publication Publication Date Title
JP5963393B2 (ja) 横編機
JP3603031B2 (ja) 給糸装置
JP4016030B2 (ja) 横編機の給糸装置
JP6381594B2 (ja) 複数本の糸を用いて運転される繊維機械に、糸を一定の取り込み長で供給する方法及び装置
US7493188B2 (en) Yarn feeder of weft knitting machine
JP2009173445A5 (ja)
CN108866785B (zh) 横机中的弹性纱的送纱装置
JP5330371B2 (ja) 弾性糸使用の編地編成装置および方法
JP6108882B2 (ja) 横編機と横編機での編成方法
CN109518352B (zh) 用于对经编机进行准备的方法和经编机
KR101520525B1 (ko) 니트웨어 또는 양말류용 환편기에서 생산하는 편직 물품들의 크기를 조절하기 위한 공정
US8249739B2 (en) Yarn feeding device and yarn feeding method for knitting machine
JP5827945B2 (ja) 直線運動機械に供給される糸長を自動的に測定する方法及び装置
JPH06272141A (ja) 編み地制御装置
CN110468493B (zh) 织机的张力测定装置及其张力测定方法
EP2439322B1 (en) Yarn length control device and control method in a flat knitting machine
JP2000303329A (ja) 横編み機の編み地長さ制御方法およびその装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980132619.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808087

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010525610

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009808087

Country of ref document: EP