WO2010021011A1 - 燃料ガス化設備 - Google Patents

燃料ガス化設備 Download PDF

Info

Publication number
WO2010021011A1
WO2010021011A1 PCT/JP2008/002244 JP2008002244W WO2010021011A1 WO 2010021011 A1 WO2010021011 A1 WO 2010021011A1 JP 2008002244 W JP2008002244 W JP 2008002244W WO 2010021011 A1 WO2010021011 A1 WO 2010021011A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fuel
gasification
fluidized bed
supply pipe
Prior art date
Application number
PCT/JP2008/002244
Other languages
English (en)
French (fr)
Inventor
村上高広
青木さと子
須田俊之
谷秀久
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to PCT/JP2008/002244 priority Critical patent/WO2010021011A1/ja
Priority to AU2008360806A priority patent/AU2008360806B2/en
Priority to CN2008801316964A priority patent/CN102186953A/zh
Priority to US13/059,007 priority patent/US20110142721A1/en
Publication of WO2010021011A1 publication Critical patent/WO2010021011A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/22Fuel feeders specially adapted for fluidised bed combustion apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/005Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • C10K3/003Reducing the tar content
    • C10K3/005Reducing the tar content by partial oxidation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0993Inert particles, e.g. as heat exchange medium in a fluidized or moving bed, heat carriers, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1637Char combustion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1659Conversion of synthesis gas to chemicals to liquid hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1668Conversion of synthesis gas to chemicals to urea; to ammonia
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1678Integration of gasification processes with another plant or parts within the plant with air separation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • C10J2300/1815Recycle loops, e.g. gas, solids, heating medium, water for carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a fuel gasification facility.
  • FIG. 1 and FIG. 2 show an example of a conventional fuel gasification facility.
  • the fuel gasification facility has a fluid medium (eg, sand, limestone, etc.) using steam and a reaction gas for flow such as air or oxygen.
  • a gasification furnace 2 that generates gasified gas and combustible solids by gasifying solid fuel (coal, biomass, etc.) that is input after forming the fluidized bed 1, and is generated in the gasifier 2.
  • Combustion furnace 5 in which a combustible solid content is introduced from an introduction pipe 3 together with a fluid medium and a fluidized bed 4 is formed by a reaction gas for flow to burn the combustible solid content.
  • a medium separation device 8 such as a hot cyclone that separates the fluidized medium from the exhaust gas introduced through the exhaust gas and supplies the separated fluidized medium to the gasification furnace 2 through the downcomer 7.
  • a medium separating device 9, such as a cyclone, has provided comprising constituting a collecting container 10 for collecting the fluidized medium separated by said medium separating device 9.
  • reference numeral 11 denotes a dispersion plate for uniformly blowing steam introduced into the bottom of the gasification furnace 2 and flowing reaction gas into the fluidized bed 1
  • 12 denotes the inside of the gasification furnace 2.
  • 5 is a dispersion plate for uniformly blowing the flowing reaction gas introduced into the bottom of the fluidized bed 4
  • 14 is a hopper for storing the solid fuel
  • 15 is a screw feeder for cutting out the solid fuel stored in the hopper 14.
  • 16 is a fuel supply pipe to which the solid fuel cut out by the screw feeder 15 is guided and connected to a position higher than the upper surface of the fluidized bed 1 on the side surface of the gasification furnace 2.
  • the fluidized bed 1 is formed by the reaction gas for flow such as steam and air or oxygen, and the coal, biomass, etc. stored in the hopper 14 here.
  • the solid fuel is cut out by the screw feeder 15 and introduced from the fuel supply pipe 16, the solid fuel is partially oxidized and gasified to produce gasified gas and combustible solids, which are generated in the gasifier 2.
  • the combustible solid content is introduced from the introduction pipe 3 together with the fluid medium into the combustion furnace 5 in which the fluidized bed 4 is formed by the flow reaction gas, and the combustible solid content is combusted.
  • the exhaust gas from is introduced into a medium separation device 8 such as a hot cyclone through an exhaust gas pipe 6, in which the fluid medium is separated from the exhaust gas, and the separated fluid medium is Returned to the gasification furnace 2 through a Unkama 7, it is circulated.
  • a medium separation device 8 such as a hot cyclone
  • an exhaust gas pipe 6 in which the fluid medium is separated from the exhaust gas, and the separated fluid medium is Returned to the gasification furnace 2 through a Unkama 7, it is circulated.
  • the inside of the gasification furnace 2 is maintained at a high temperature in the presence of steam supplied to the bottom of the gasification furnace 2 or moisture evaporated from the solid fuel itself, and is generated by pyrolysis of the solid fuel.
  • the gasified gas generated in the gasification furnace 2 is separated into a fluid medium by a medium separator 9 such as a hot cyclone, and the fluid medium separated by the medium separator 9 is recovered in a recovery container 10.
  • a medium separator 9 such as a hot cyclone
  • Patent Document 1 discloses an apparatus configuration similar to the fuel gasification facility shown in FIGS. 1 and 2.
  • JP 2006-207947 A JP 2006-207947 A
  • An object of the present invention is to provide a fuel gasification facility that can stably supply fuel to a gasification furnace.
  • the present invention comprises a gasification furnace that forms a fluidized bed of a fluidized medium with a fluidizing reaction gas and gasifies a solid fuel that is input to generate a gasified gas and a combustible solid content.
  • CO 2 gas separation and circulation means for separating CO 2 gas from the gasification gas produced in the gasification furnace and leading it to a supply system for the solid fuel gasification furnace It depends on the equipment.
  • the CO 2 gas separated from the gasification gas is effectively used for supplying the solid fuel to the gasification furnace, so that the solid fuel is stably supplied to the gasification furnace and the gasification is performed.
  • C + CO 2 ⁇ 2CO one of the gasification reactions in the furnace Reaction will be promoted, leading to improved gasification efficiency.
  • the CO 2 gas separation and circulation means is provided at the front stage of the FT synthesizer that performs the Fischer-Tropsch synthesis reaction for adjusting the H 2 / CO ratio in the gasification gas to about 2. It can be constituted by a separator.
  • the CO 2 gas separation / circulation means is provided by a CO 2 separator provided in a preceding stage of an ammonia synthesizer for producing ammonia by mixing H 2 in the gasification gas with N 2 . It can also be configured.
  • the CO 2 gas separated by the CO 2 gas separating circulating means be introduced into the hopper solid fuel is stored, the solid fuel is dried, the solid fuel CO 2 This is effective for pumping and steady supply with gas.
  • a fuel supply pipe is connected to a position lower than the upper surface of the fluidized bed on the side surface of the gasification furnace, and solid fuel is supplied from the fuel supply pipe into the fluidized bed.
  • a flow gas pipe is connected in the vicinity of the connecting portion of the fuel supply pipe to the gasification furnace, and the solid gas is stabilized with the CO 2 gas separated by the CO 2 gas separation and circulation means with respect to the flow gas pipe. It can introduce
  • the solid fuel particles do not scatter and are in sufficient contact with the fluid medium, so that the solid fuel While the thermal decomposition of the fuel is surely completed and the amount of gas heat to be obtained, that is, the efficiency of cold gas is increased, the C conversion rate and the H conversion rate can be increased, and the tar in the gasification gas can be reformed.
  • the fuel supply pipe is connected to a position lower than the upper surface of the fluidized bed on the gasifier side surface and the solid fuel is supplied from the fuel supply pipe into the fluidized bed, biomass is used as the solid fuel.
  • the fuel supply temperature is increased to several hundred degrees Celsius at the connection portion of the fuel supply pipe to the gasifier, and the fuel is supplied when it is fixed.
  • CO 2 gas is supplied as a flowing gas from the flow gas pipe connected to the fuel supply pipe, and the flow of the solid fuel is promoted. Even if biomass is used as the solid fuel, the melted biomass does not adhere to the connecting portion of the fuel supply pipe, and there is no fear that the fuel supply pipe is clogged.
  • the CO 2 gas finally separated from the combustible gas such as H 2 or CO that is the product can be effectively used for supplying the solid fuel to the gasification furnace, An excellent effect that the solid fuel can be stably supplied to the gasification furnace can be obtained.
  • FIGS. 3 and 4 show a first embodiment of the present invention.
  • the same reference numerals as those in FIGS. 1 and 2 denote the same components, and the basic configuration is shown in FIGS. 2 is the same as the conventional one shown in FIG. 2, but the feature of this embodiment is that the CO 2 gas is separated from the gasification gas generated in the gasification furnace 2 as shown in FIGS. And CO 2 gas separation / circulation means for guiding the solid fuel to the gasification furnace 2 supply system.
  • An O 2 separator 17 for separating air into O 2 and N 2 ; (Not shown in FIG. 3, see FIG. 1) the generated in the gasification furnace 2 medium separator 9 O 2 where the fluidized medium is separated by the relative separated gasification gas O 2 separator 17
  • a high temperature reforming furnace 18 for mixing and reforming tar and lower hydrocarbons
  • a spray tower 19 for dedusting and removing trace components from the gasified gas reformed in the high-temperature reforming furnace 18
  • a desulfurization tower 20 for removing sulfur from the gasification gas that has been dedusted and trace components removed in the spray tower 19;
  • a precision remover 21 for removing trace components such as light tar from the gasification gas from which sulfur has been removed in the desulfurization tower 20;
  • a CO 2 separator 22 for separating CO 2 from a gasified gas (H 2 , CO, CO 2 ) from which trace components such as light tar have been removed by the precision remover 21;
  • FT for producing H 2 and CO as liquid fuel by performing a Fischer
  • CO 2 gas separated by the CO 2 separator 22 as the CO 2 gas separating circulating means as shown in FIG. 4, a supply system to the gasification furnace 2 of a solid fuel and solid fuel reservoir
  • the hopper 14 is configured to be introduced.
  • the gasified gas produced in the gasification furnace 2 and separated from the fluidized medium in the medium separator 9 (not shown in FIG. 3, see FIG. 1) is reformed at high temperature.
  • O 2 separator 17 are mixed separate O 2 in the furnace 18 is performed reforming tar and lower hydrocarbons, de from the hot reformer 18 with reformed gasification gas in the spray tower 19 Dust and trace components are removed, sulfur is removed from the gasification gas that has been dedusted and trace components removed by the spray tower 19 in the desulfurization tower 20, and sulfur is removed by the desulfurization tower 20 in the precision remover 21.
  • Gasified gas (H 2 , CO, CO 2 ) from which trace components such as light tar are removed from the gasified gas, and trace components such as light tar are removed by the precision remover 21 in the CO 2 separator 22.
  • CO 2 is separated from, FT H 2 and as a liquid fuel by Fischer-Tropsch synthesis reaction to adjust the H 2 / CO ratio of the CO 2 separator 22 CO 2 is separated in the gasification gas in the formation unit 23 to approximately 2 is performed
  • the solid fuel is dried in the hopper 14, and the solid fuel is pumped by the CO 2 gas, so that the solid fuel is constantly supplied. Is possible.
  • N 2 gas, steam, or the like it is possible to introduce N 2 gas, steam, or the like into the hopper 14, but if N 2 gas is introduced into the hopper 14, an inert gas is mixed into the gasification furnace 2, thereby generating While the amount of heat of the gasified gas is reduced, if steam is introduced into the hopper 14, extra steam is required, and the efficiency of the entire system is reduced accordingly.
  • the amount of heat of the gasification gas as in the case of using N 2 gas. There is no concern that the efficiency of the entire system will be reduced as in the case of using steam.
  • the CO 2 gas finally separated from the combustible gas such as H 2 or CO that is the product can be effectively used for supplying the solid fuel to the gasification furnace 2, and the solid fuel is supplied to the gasification furnace 2. It can be supplied stably.
  • FIG. 5 is a main part configuration diagram showing a modified example of the gasification furnace 2, in which the parts denoted by the same reference numerals as those in FIGS. 3 and 4 represent the same components, and the basic configuration is shown in FIG. 3 and FIG. 4, but the feature of this embodiment is that the fuel supply pipe 16 is connected to a position lower than the upper surface of the fluidized bed 1 on the side surface of the gasifier 2 as shown in FIG. The solid fuel is supplied from the fuel supply pipe 16 into the fluidized bed 1.
  • FIG. 6 is a main part configuration diagram showing another specific example of the gasification furnace 2 in the first embodiment of the present invention (see FIG. 3), in which the same reference numerals as those in FIGS. 3 and 5 are given. moiety represents the same material, although the basic configuration is the same as that shown in FIGS. 3 and 5, it is an aspect of this embodiment, CO 2 separation as the CO 2 gas separating circulating means Instead of introducing the CO 2 gas separated in the vessel 22 (see FIG. 3) into the hopper 14 in which the solid fuel is stored, as shown in FIG.
  • the fuel as a supply system of the solid fuel to the gasifier 2 the fluidizing gas pipe 24 connected to the vicinity of connection to the gasifying furnace 2 of the supply pipe 16, CO 2 which respect flowable gas pipe 24 separated by the CO 2 separator 22 as the CO 2 gas separating circulating means Gas is introduced as a fluidized gas to stably supply solid fuel into the fluidized bed It lies in the fact that cormorants configuration.
  • the fuel supply pipe 16 is connected to a position lower than the upper surface of the fluidized bed 1 on the side surface of the gasification furnace 2, and the solid fuel is fed into the fluidized bed 1 from the fuel supply pipe 16.
  • the biomass has a higher volatile content than coal and is easily gasified. Therefore, the temperature of the biomass rises to several hundred degrees Celsius at the connection portion of the fuel supply pipe 16 to the gasifier 2.
  • the fuel supply pipe 16 may be clogged.
  • the flow gas pipe 24 connected to the fuel supply pipe 16 is used.
  • CO 2 gas is supplied as a fluidizing gas from the fluidity of the solid fuel is promoted, even when if using biomass as a solid fuel, biomass and melted is not secured to the connection portion of the fuel supply pipe 16, the Fee there is no worry about clogging the supply pipe 16.
  • CO 2 separator 22 CO 2 gas separated in (see FIG. 3) as CO 2 gas separating circulating means solid fuel is stored Needless to say, it may be introduced into the hopper 14.
  • FIG. 7 shows a second embodiment of the present invention.
  • the same reference numerals as those in FIG. 3 denote the same components, and the basic configuration is the same as that shown in FIG.
  • the present embodiment is characterized in that the CO 2 gas separation and circulation means is a front stage of an ammonia synthesizer 25 for producing ammonia by mixing H 2 in gasification gas with N 2. in points constituted by CO 2 separator 22 provided.
  • the CO 2 in the CO 2 separator 22 is provided with of H 2 separator 26 which separates and H 2 from gasification gas separated, separated by the H 2 separator 26 H 2 is introduced into the ammonia synthesizer 25 for reaction during the production of ammonia, and the CO from which H 2 has been separated by the H 2 separator 26 is gasified gas from which CO 2 has been separated by the CO 2 separator 22. It is trying to return to.

Abstract

 製品となるH2やCO等の可燃性ガスから最終的に分離されるCO2ガスを固体燃料のガス化炉への供給用として有効活用し得、固体燃料をガス化炉へ安定して供給し得る燃料ガス化設備を提供する。  ガス化炉2で生成されたガス化ガス中からCO2ガスを分離して固体燃料のガス化炉2への供給系統へ導くCO2ガス分離循環手段を備える。

Description

燃料ガス化設備
 本発明は、燃料ガス化設備に関するものである。
 従来より、燃料として、石炭、バイオマス、廃プラスチック、或いは各種の含水廃棄物等の固体燃料を用い、ガス化ガスを生成する燃料ガス化設備の開発が進められている。
 図1及び図2は従来の燃料ガス化設備の一例を示すものであって、該燃料ガス化設備は、蒸気、及び空気又は酸素等の流動用反応ガスにより流動媒体(硅砂、石灰石等)の流動層1を形成して投入される固体燃料(石炭、バイオマス等)のガス化を行いガス化ガスと可燃性固形分とを生成するガス化炉2と、該ガス化炉2で生成された可燃性固形分が流動媒体と共に導入管3から導入され且つ流動用反応ガスにより流動層4を形成して前記可燃性固形分の燃焼を行う燃焼炉5と、該燃焼炉5から排ガス管6を介して導入される排ガスより流動媒体を分離し該分離した流動媒体をダウンカマー7を介して前記ガス化炉2に供給するホットサイクロン等の媒体分離装置8と、前記ガス化炉2で生成されたガス化ガスより流動媒体を分離するホットサイクロン等の媒体分離装置9と、該媒体分離装置9で分離された流動媒体を回収する回収容器10とを備えてなる構成を有している。
 尚、図1及び図2中、11は前記ガス化炉2の底部へ導入される蒸気及び流動用反応ガスを流動層1内へ均一に吹き込むための分散板、12は前記ガス化炉2内部における導入管3が接続される部分を下方のみが開放されるように覆うことにより流動層1内の流動媒体が導入管3へ直接流出することを防止するための仕切壁、13は前記燃焼炉5の底部へ導入される流動用反応ガスを流動層4内へ均一に吹き込むための分散板、14は前記固体燃料が貯留されるホッパ、15はホッパ14に貯留された固体燃料を切り出すスクリューフィーダ、16はスクリューフィーダ15によって切り出された固体燃料が導かれ且つ前記ガス化炉2側面における流動層1上面より高い位置に接続された燃料供給管である。
 前述の如き燃料ガス化設備においては、ガス化炉2において、蒸気、及び空気又は酸素等の流動用反応ガスにより流動層1が形成されており、ここにホッパ14に貯留された石炭、バイオマス等の固体燃料をスクリューフィーダ15によって切り出して燃料供給管16から投入すると、該固体燃料は部分酸化してガス化され、ガス化ガスと可燃性固形分とが生成され、前記ガス化炉2で生成された可燃性固形分は流動媒体と共に導入管3から、流動用反応ガスにより流動層4が形成されている燃焼炉5へ導入され、該可燃性固形分の燃焼が行われ、該燃焼炉5からの排ガスは、排ガス管6を介してホットサイクロン等の媒体分離装置8へ導入され、該媒体分離装置8において、前記排ガスより流動媒体が分離され、該分離された流動媒体はダウンカマー7を介して前記ガス化炉2に戻され、循環される。
 ここで、前記ガス化炉2の内部では、ガス化炉2の底部へ供給される蒸気や固体燃料自体から蒸発する水分の存在下で高温が保持されると共に、固体燃料の熱分解によって生成したガスや、その残渣燃料が蒸気と反応することによって、水性ガス化反応C+H2O=H2+COや水素転換反応CO+H2O=H2+CO2が起こり、H2やCO等の可燃性のガス化ガスが生成される。
 前記ガス化炉2で生成されたガス化ガスは、ホットサイクロン等の媒体分離装置9で流動媒体が分離され、該媒体分離装置9で分離された流動媒体は、回収容器10に回収される。
 尚、図1及び図2に示される燃料ガス化設備と類似した装置構成を有するものとしては、例えば、特許文献1がある。
特開2006-207947号公報
 ところで、前述の如き従来の燃料ガス化設備において、前記ガス化炉2で生成されたガス化ガス中にはCO2も含まれており、該ガス化ガス中に含まれるCO2については、製品となるH2やCO等の可燃性ガスから最終的に分離されるものの、必ずしも充分に有効活用されているとは言えないのが現状であった。
 本発明は、斯かる実情に鑑み、製品となるH2やCO等の可燃性ガスから最終的に分離されるCO2ガスを固体燃料のガス化炉への供給用として有効活用し得、固体燃料をガス化炉へ安定して供給し得る燃料ガス化設備を提供しようとするものである。
 本発明は、流動用反応ガスにより流動媒体の流動層を形成して投入される固体燃料のガス化を行いガス化ガスと可燃性固形分とを生成するガス化炉と、
  該ガス化炉で生成されたガス化ガス中からCO2ガスを分離して固体燃料のガス化炉への供給系統へ導くCO2ガス分離循環手段と
  を備えたことを特徴とする燃料ガス化設備にかかるものである。
 上記手段によれば、以下のような作用が得られる。
 前述の如く構成すると、ガス化ガス中から分離されるCO2ガスが固体燃料のガス化炉への供給用として有効活用され、固体燃料がガス化炉へ安定して供給されると共に、ガス化炉内におけるガス化反応の一つである
  C+CO2→2CO
という反応が促進されることとなり、ガス化効率の向上にもつながる。
 前記燃料ガス化設備においては、前記CO2ガス分離循環手段を、ガス化ガス中のH2/CO比を約2に調整するフィッシャー・トロプシュ合成反応を行うFT合成器の前段に設けられるCO2分離器によって構成することができる。
 又、前記燃料ガス化設備においては、前記CO2ガス分離循環手段を、ガス化ガス中のH2をN2と混合してアンモニアを製造するアンモニア合成器の前段に設けられるCO2分離器によって構成することもできる。
 一方、前記燃料ガス化設備においては、前記CO2ガス分離循環手段で分離されたCO2ガスを、固体燃料が貯留されるホッパへ導入することが、固体燃料を乾燥させ、固体燃料をCO2ガスによって圧送し定常供給する上で有効となる。
 更に、前記燃料ガス化設備においては、前記ガス化炉側面における流動層上面より低い位置に燃料供給管を接続し、該燃料供給管から固体燃料を流動層内へ供給するよう構成すると共に、
  前記燃料供給管のガス化炉に対する接続部近傍に流動用ガス管を接続し、該流動用ガス管に対し前記CO2ガス分離循環手段で分離されたCO2ガスを、固体燃料を安定して流動層内へ供給するための流動ガスとして導入することができる。このようにすると、ガス化炉の流動層の上へ燃料供給管から固体燃料を供給する場合に比べ、該固体燃料の微粒子が飛散せずに流動媒体と充分に接触する形となって、固体燃料の熱分解が確実に完了し、得られるガス熱量即ち冷ガス効率が高まる一方、C転換率やH転換率も高くすること、更に、ガス化ガス中のタールの改質が可能となる。ここで、仮に、ガス化炉側面における流動層上面より低い位置に燃料供給管を接続し、該燃料供給管から固体燃料を流動層内へ供給するよう構成すると、特に固体燃料としてバイオマスを使用した場合、該バイオマスは石炭より揮発分が多くガス化しやすいことから、ガス化炉に対する燃料供給管の接続部において、数百℃に昇温して溶融化し、それが固着していくと、燃料供給管が詰まってしまうことも考えられるが、前述の如く構成した場合には、燃料供給管に接続した流動用ガス管からCO2ガスが流動ガスとして供給され、固体燃料の流動が促進されるため、固体燃料としてたとえバイオマスを使用したとしても、溶融化したバイオマスが燃料供給管の接続部に固着せず、該燃料供給管が詰まる心配もない。
 本発明の燃料ガス化設備によれば、製品となるH2やCO等の可燃性ガスから最終的に分離されるCO2ガスを固体燃料のガス化炉への供給用として有効活用し得、固体燃料をガス化炉へ安定して供給し得るという優れた効果を奏し得る。
従来の燃料ガス化設備の一例を示す全体概要構成図である。 従来の燃料ガス化設備の一例におけるガス化炉を示す要部構成図である。 本発明の第一実施例のシステム構成を示すブロック図である。 本発明の第一実施例におけるガス化炉の具体例を示す要部構成図である。 図4に示すガス化炉の変形例を示す要部構成図である。 本発明の第一実施例におけるガス化炉の他の具体例を示す要部構成図である。 本発明の第二実施例のシステム構成を示すブロック図である。
符号の説明
  1  流動層
  2  ガス化炉
  3  導入管
  5  燃焼炉
  7  ダウンカマー
  8  媒体分離装置
 10  回収容器
 11  分散板
 14  ホッパ(供給系統)
 15  スクリューフィーダ
 16  燃料供給管(供給系統)
 22  CO2分離器(CO2ガス分離循環手段)
 23  FT合成器
 24  流動用ガス管
 25  アンモニア合成器
 以下、本発明の実施例を図面を参照して説明する。
 図3及び図4は本発明の第一実施例であって、図中、図1及び図2と同一の符号を付した部分は同一物を表わしており、基本的な構成は図1及び図2に示す従来のものと同様であるが、本実施例の特徴とするところは、図3及び図4に示す如く、ガス化炉2で生成されたガス化ガス中からCO2ガスを分離して固体燃料のガス化炉2への供給系統へ導くCO2ガス分離循環手段を備えた点にある。
 本実施例の場合、
  空気をO2とN2とに分離するO2分離器17と、
  前記ガス化炉2で生成され媒体分離装置9(図3には図示を省略、図1参照)で流動媒体が分離されたガス化ガスに対し前記O2分離器17で分離されたO2を混合してタール及び低級炭化水素の改質を行う高温改質炉18と、
  該高温改質炉18で改質されたガス化ガスから脱塵並びに微量成分除去を行うスプレー塔19と、
  該スプレー塔19で脱塵並びに微量成分除去が行われたガス化ガスから硫黄を除去する脱硫塔20と、
  該脱硫塔20で硫黄が除去されたガス化ガスから軽質タール等の微量成分を除去する精密除去器21と、
  該精密除去器21で軽質タール等の微量成分が除去されたガス化ガス(H2、CO、CO2)からCO2を分離するCO2分離器22と、
  該CO2分離器22でCO2が分離されたガス化ガス中のH2/CO比を約2に調整するフィッシャー・トロプシュ合成反応を行うことにより液体燃料としてのH2及びCOを製造するFT合成器23と
  を具備せしめ、前記CO2ガス分離循環手段を、前記FT合成器23の前段に設けられるCO2分離器22によって構成してある。
 そして、前記CO2ガス分離循環手段としてのCO2分離器22で分離されたCO2ガスは、図4に示す如く、固体燃料のガス化炉2への供給系統であって且つ固体燃料が貯留されるホッパ14へ導入するよう構成してある。
 次に、上記実施例の作用を説明する。
 図3に示す第一実施例の場合、ガス化炉2で生成され媒体分離装置9(図3には図示を省略、図1参照)で流動媒体が分離されたガス化ガスは、高温改質炉18においてO2分離器17で分離されたO2が混合されてタール及び低級炭化水素の改質が行われ、スプレー塔19において前記高温改質炉18で改質されたガス化ガスから脱塵並びに微量成分除去が行われ、脱硫塔20において前記スプレー塔19で脱塵並びに微量成分除去が行われたガス化ガスから硫黄が除去され、精密除去器21において前記脱硫塔20で硫黄が除去されたガス化ガスから軽質タール等の微量成分が除去され、CO2分離器22において前記精密除去器21で軽質タール等の微量成分が除去されたガス化ガス(H2、CO、CO2)からCO2が分離され、FT合成器23において前記CO2分離器22でCO2が分離されたガス化ガス中のH2/CO比を約2に調整するフィッシャー・トロプシュ合成反応が行われることにより液体燃料としてのH2及びCOが製造されるが、前記CO2ガス分離循環手段としてのCO2分離器22で分離されたCO2ガスは、図4に示す如く、固体燃料が貯留されるホッパ14へ導入される。
 このように、前記CO2ガスがホッパ14へ導入されると、該ホッパ14内において固体燃料の乾燥が行われると共に、固体燃料がCO2ガスによって圧送される形となり、該固体燃料の定常供給が可能となる。
 更に、前記CO2ガスがホッパ14からスクリューフィーダ15と燃料供給管16を経てガス化炉2へ供給されることにより、ガス化反応の一つである
  C+CO2→2CO
という反応が促進されることとなり、ガス化効率の向上にもつながる。
 因みに、N2ガスや蒸気等をホッパ14へ導入することも可能ではあるが、仮にN2ガスをホッパ14へ導入した場合、ガス化炉2に不活性ガスが混入することとなって、生成されるガス化ガスの熱量が低下する一方、仮に蒸気をホッパ14へ導入した場合、余分な蒸気が必要となり、その分システム全体の効率が低下してしまうこととなる。しかし、本実施例では、製品となるH2やCO等の可燃性ガスから最終的に分離されるCO2を循環させて利用するため、N2ガスを用いる場合のようにガス化ガスの熱量が低下したり、蒸気を用いる場合のようにシステム全体の効率が低下してしまう心配は全くない。
 こうして、製品となるH2やCO等の可燃性ガスから最終的に分離されるCO2ガスを固体燃料のガス化炉2への供給用として有効活用し得、固体燃料をガス化炉2へ安定して供給し得る。
 図5はガス化炉2の変形例を示す要部構成図であって、図中、図3及び図4と同一の符号を付した部分は同一物を表わしており、基本的な構成は図3及び図4に示すものと同様であるが、本実施例の特徴とするところは、図5に示す如く、ガス化炉2側面における流動層1上面より低い位置に燃料供給管16を接続し、該燃料供給管16から固体燃料を流動層1内へ供給するよう構成した点にある。
 前述の如く、ガス化炉2側面における流動層1上面より低い位置に燃料供給管16を接続し、該燃料供給管16から固体燃料を流動層1内へ供給するよう構成すると、図4に示す例の如く、ガス化炉2の流動層1の上へ燃料供給管16から固体燃料を供給する場合に比べ、該固体燃料の微粒子が飛散せずに流動媒体と充分に接触する形となって、固体燃料の熱分解が確実に完了し、得られるガス熱量即ち冷ガス効率が高まる一方、C転換率やH転換率も高くすること、更に、ガス化ガス中のタールの改質が可能となる。
 図6は本発明の第一実施例(図3参照)におけるガス化炉2の他の具体例を示す要部構成図であって、図中、図3及び図5と同一の符号を付した部分は同一物を表わしており、基本的な構成は図3及び図5に示すものと同様であるが、本実施例の特徴とするところは、前記CO2ガス分離循環手段としてのCO2分離器22(図3参照)で分離されたCO2ガスを固体燃料が貯留されるホッパ14へ導入する代りに、図6に示す如く、前記固体燃料のガス化炉2への供給系統としての燃料供給管16のガス化炉2に対する接続部近傍に流動用ガス管24を接続し、該流動用ガス管24に対し前記CO2ガス分離循環手段としてのCO2分離器22で分離されたCO2ガスを、固体燃料を安定して流動層内へ供給するための流動ガスとして導入するよう構成した点にある。
 ここで、図5や図6に示す例の如く、ガス化炉2側面における流動層1上面より低い位置に燃料供給管16を接続し、該燃料供給管16から固体燃料を流動層1内へ供給するよう構成すると、特に固体燃料としてバイオマスを使用した場合、該バイオマスは石炭より揮発分が多くガス化しやすいことから、ガス化炉2に対する燃料供給管16の接続部において、数百℃に昇温して溶融化し、それが固着していくと、燃料供給管16が詰まってしまうことも考えられるが、図6に示す例の場合には、燃料供給管16に接続した流動用ガス管24からCO2ガスが流動ガスとして供給され、固体燃料の流動が促進されるため、固体燃料としてたとえバイオマスを使用したとしても、溶融化したバイオマスが燃料供給管16の接続部に固着せず、該燃料供給管16が詰まる心配もない。
 尚、図6に示す例において、図5に示す例と同様に、CO2ガス分離循環手段としてのCO2分離器22(図3参照)で分離されたCO2ガスを固体燃料が貯留されるホッパ14へ導入しても良いことは言うまでもない。
 図7は本発明の第二実施例であって、図中、図3と同一の符号を付した部分は同一物を表わしており、基本的な構成は図3に示すものと同様であるが、本実施例の特徴とするところは、図7に示す如く、前記CO2ガス分離循環手段を、ガス化ガス中のH2をN2と混合してアンモニアを製造するアンモニア合成器25の前段に設けられるCO2分離器22によって構成した点にある。
 本実施例の場合、前記CO2分離器22でCO2が分離されたガス化ガス中からH2を分離するH2分離器26を設けてあり、該H2分離器26で分離されたH2を前記アンモニア合成器25にアンモニア製造時の反応用として導入し、前記H2分離器26でH2が分離されたCOは、前記CO2分離器22でCO2が分離されたガス化ガスに戻すようにしてある。
 図7に示すシステム構成を採用した場合にも、ガス化炉2の具体例としては、図3の場合と同様に、図4、図5、図6のいずれの形式を用いることができ、前述と同様の作用効果が得られる。
 尚、本発明の燃料ガス化設備は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。

Claims (12)

  1.  流動用反応ガスにより流動媒体の流動層を形成して投入される固体燃料のガス化を行いガス化ガスと可燃性固形分とを生成するガス化炉と、
      該ガス化炉で生成されたガス化ガス中からCO2ガスを分離して固体燃料のガス化炉への供給系統へ導くCO2ガス分離循環手段と
      を備えたことを特徴とする燃料ガス化設備。
  2.  前記CO2ガス分離循環手段を、ガス化ガス中のH2/CO比を約2に調整するフィッシャー・トロプシュ合成反応を行うFT合成器の前段に設けられるCO2分離器によって構成した請求項1記載の燃料ガス化設備。
  3.  前記CO2ガス分離循環手段を、ガス化ガス中のH2をN2と混合してアンモニアを製造するアンモニア合成器の前段に設けられるCO2分離器によって構成した請求項1記載の燃料ガス化設備。
  4.  前記CO2ガス分離循環手段で分離されたCO2ガスを、固体燃料が貯留されるホッパへ導入するよう構成した請求項1記載の燃料ガス化設備。
  5.  前記CO2ガス分離循環手段で分離されたCO2ガスを、固体燃料が貯留されるホッパへ導入するよう構成した請求項2記載の燃料ガス化設備。
  6.  前記CO2ガス分離循環手段で分離されたCO2ガスを、固体燃料が貯留されるホッパへ導入するよう構成した請求項3記載の燃料ガス化設備。
  7.  前記ガス化炉側面における流動層上面より低い位置に燃料供給管を接続し、該燃料供給管から固体燃料を流動層内へ供給するよう構成すると共に、
      前記燃料供給管のガス化炉に対する接続部近傍に流動用ガス管を接続し、該流動用ガス管に対し前記CO2ガス分離循環手段で分離されたCO2ガスを、固体燃料を安定して流動層内へ供給するための流動ガスとして導入するよう構成した請求項1記載の燃料ガス化設備。
  8.  前記ガス化炉側面における流動層上面より低い位置に燃料供給管を接続し、該燃料供給管から固体燃料を流動層内へ供給するよう構成すると共に、
      前記燃料供給管のガス化炉に対する接続部近傍に流動用ガス管を接続し、該流動用ガス管に対し前記CO2ガス分離循環手段で分離されたCO2ガスを、固体燃料を安定して流動層内へ供給するための流動ガスとして導入するよう構成した請求項2記載の燃料ガス化設備。
  9.  前記ガス化炉側面における流動層上面より低い位置に燃料供給管を接続し、該燃料供給管から固体燃料を流動層内へ供給するよう構成すると共に、
      前記燃料供給管のガス化炉に対する接続部近傍に流動用ガス管を接続し、該流動用ガス管に対し前記CO2ガス分離循環手段で分離されたCO2ガスを、固体燃料を安定して流動層内へ供給するための流動ガスとして導入するよう構成した請求項3記載の燃料ガス化設備。
  10.  前記ガス化炉側面における流動層上面より低い位置に燃料供給管を接続し、該燃料供給管から固体燃料を流動層内へ供給するよう構成すると共に、
      前記燃料供給管のガス化炉に対する接続部近傍に流動用ガス管を接続し、該流動用ガス管に対し前記CO2ガス分離循環手段で分離されたCO2ガスを、固体燃料を安定して流動層内へ供給するための流動ガスとして導入するよう構成した請求項4記載の燃料ガス化設備。
  11.  前記ガス化炉側面における流動層上面より低い位置に燃料供給管を接続し、該燃料供給管から固体燃料を流動層内へ供給するよう構成すると共に、
      前記燃料供給管のガス化炉に対する接続部近傍に流動用ガス管を接続し、該流動用ガス管に対し前記CO2ガス分離循環手段で分離されたCO2ガスを、固体燃料を安定して流動層内へ供給するための流動ガスとして導入するよう構成した請求項5記載の燃料ガス化設備。
  12.  前記ガス化炉側面における流動層上面より低い位置に燃料供給管を接続し、該燃料供給管から固体燃料を流動層内へ供給するよう構成すると共に、
      前記燃料供給管のガス化炉に対する接続部近傍に流動用ガス管を接続し、該流動用ガス管に対し前記CO2ガス分離循環手段で分離されたCO2ガスを、固体燃料を安定して流動層内へ供給するための流動ガスとして導入するよう構成した請求項6記載の燃料ガス化設備。
PCT/JP2008/002244 2008-08-20 2008-08-20 燃料ガス化設備 WO2010021011A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2008/002244 WO2010021011A1 (ja) 2008-08-20 2008-08-20 燃料ガス化設備
AU2008360806A AU2008360806B2 (en) 2008-08-20 2008-08-20 Fuel gasification equipment
CN2008801316964A CN102186953A (zh) 2008-08-20 2008-08-20 燃料气化设备
US13/059,007 US20110142721A1 (en) 2008-08-20 2008-08-20 Fuel gasification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/002244 WO2010021011A1 (ja) 2008-08-20 2008-08-20 燃料ガス化設備

Publications (1)

Publication Number Publication Date
WO2010021011A1 true WO2010021011A1 (ja) 2010-02-25

Family

ID=41706908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/002244 WO2010021011A1 (ja) 2008-08-20 2008-08-20 燃料ガス化設備

Country Status (4)

Country Link
US (1) US20110142721A1 (ja)
CN (1) CN102186953A (ja)
AU (1) AU2008360806B2 (ja)
WO (1) WO2010021011A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208297A (ja) * 2007-02-28 2008-09-11 Ihi Corp 燃料ガス化設備
JP2011220543A (ja) * 2010-04-05 2011-11-04 Mitsubishi Heavy Ind Ltd ボイラ設備

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9314763B2 (en) 2011-07-27 2016-04-19 Res Usa, Llc Gasification system and method
JP2013189510A (ja) * 2012-03-13 2013-09-26 Ihi Corp 循環式ガス化炉
CN102732317A (zh) * 2012-06-13 2012-10-17 林冲 一种生物质制备合成气的工艺流程
CN109070156B (zh) * 2016-02-16 2021-08-17 国际热化学恢复股份有限公司 两阶段能量集成产物气体发生系统和方法
US11697779B2 (en) * 2019-03-22 2023-07-11 King Fahd University Of Petroleum And Minerals Co-gasification of microalgae biomass and low-rank coal to produce syngas/hydrogen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236801A (ja) * 1996-07-15 1998-09-08 Ebara Corp 有機性廃棄物の資源化方法及び資源化装置
JP2002275479A (ja) * 2001-03-16 2002-09-25 Kawasaki Heavy Ind Ltd 可燃性ガスの製造方法および製造装置
JP2003171675A (ja) * 2001-09-25 2003-06-20 Ebara Corp 液体燃料合成システム
JP2006207947A (ja) * 2005-01-28 2006-08-10 Ishikawajima Harima Heavy Ind Co Ltd 含水廃棄物の燃焼方法及び装置
JP2008208297A (ja) * 2007-02-28 2008-09-11 Ihi Corp 燃料ガス化設備

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927996A (en) * 1974-02-21 1975-12-23 Exxon Research Engineering Co Coal injection system
DE4336580A1 (de) * 1993-10-27 1995-05-04 Krupp Koppers Gmbh Verfahren zur Aufarbeitung von kommunalem Kunststoffabfall
FR2718428B1 (fr) * 1994-04-11 1997-10-10 Air Liquide Procédé et installation de production de monoxyde de carbone.
US5900224A (en) * 1996-04-23 1999-05-04 Ebara Corporation Method for treating wastes by gasification
KR100590973B1 (ko) * 2000-02-29 2006-06-19 미츠비시 쥬고교 가부시키가이샤 바이오매스 가스화 가스를 이용한 메탄올 합성 장치 및 이의 사용방법
CA2461685A1 (en) * 2001-09-25 2003-04-03 Rentech, Inc. Integrated urea manufacturing plants and processes
US20030083390A1 (en) * 2001-10-23 2003-05-01 Shah Lalit S. Fischer-tropsch tail-gas utilization
CN100427443C (zh) * 2006-10-11 2008-10-22 太原理工天成科技股份有限公司 一种同时生产甲醇、尿素和人工燃气的方法
CN100436393C (zh) * 2006-10-19 2008-11-26 太原理工天成科技股份有限公司 一种同时生产二甲醚、液化天然气及尿素的方法
CN100441946C (zh) * 2006-11-09 2008-12-10 华中科技大学 富氧燃烧循环流化床锅炉系统
CN201047595Y (zh) * 2007-05-15 2008-04-16 东南大学 生物质流化床燃烧装置
CN101235321B (zh) * 2008-01-25 2010-09-15 东南大学 固体燃料的间接气化装置及方法
CN101220297B (zh) * 2008-01-30 2011-12-28 广东科达机电股份有限公司 煤气生产方法及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236801A (ja) * 1996-07-15 1998-09-08 Ebara Corp 有機性廃棄物の資源化方法及び資源化装置
JP2002275479A (ja) * 2001-03-16 2002-09-25 Kawasaki Heavy Ind Ltd 可燃性ガスの製造方法および製造装置
JP2003171675A (ja) * 2001-09-25 2003-06-20 Ebara Corp 液体燃料合成システム
JP2006207947A (ja) * 2005-01-28 2006-08-10 Ishikawajima Harima Heavy Ind Co Ltd 含水廃棄物の燃焼方法及び装置
JP2008208297A (ja) * 2007-02-28 2008-09-11 Ihi Corp 燃料ガス化設備

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208297A (ja) * 2007-02-28 2008-09-11 Ihi Corp 燃料ガス化設備
JP2011220543A (ja) * 2010-04-05 2011-11-04 Mitsubishi Heavy Ind Ltd ボイラ設備

Also Published As

Publication number Publication date
US20110142721A1 (en) 2011-06-16
CN102186953A (zh) 2011-09-14
AU2008360806B2 (en) 2013-01-17
AU2008360806A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
JP5088535B2 (ja) 燃料ガス化設備
Karl et al. Steam gasification of biomass in dual fluidized bed gasifiers: A review
Pala et al. Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model
US9616403B2 (en) Systems and methods for converting carbonaceous fuels
WO2010021011A1 (ja) 燃料ガス化設備
EP1606370B1 (en) Method for producing synthesis gas
US8709113B2 (en) Steam generation processes utilizing biomass feedstocks
JP5114412B2 (ja) 固体燃料の分離型流動層ガス化方法およびガス化装置
JP5763618B2 (ja) 2段階乾燥供給ガス化装置および方法
JP5630626B2 (ja) 有機物原料のガス化装置及び方法
Hofbauer et al. Waste gasification processes for SNG production
JP2014111768A (ja) 合成ガスの製造方法
CA2806344A1 (en) A method of gasifying carbonaceous material and a gasification system
JP2012512318A (ja) 段階的なスラリー添加によるガス化系および方法
US10995288B2 (en) Integrated process plant having a biomass reforming reactor using a fluidized bed
FI110266B (fi) Menetelmä hiilipitoisen polttoaineen kaasuttamiseksi leijukerroskaasuttimessa
JP2009120432A (ja) 循環流動層改質装置
SE457355B (sv) Saett att framstaella en ren, koloxid och vaetgas innehaallande gas
KR101633213B1 (ko) 기포유동층 이산화탄소 가스화를 이용한 석유 코크스 탈황 장치 및 방법
JP2008208259A (ja) 燃料ガス化設備
WO2010021010A1 (ja) 燃料ガス化設備
JP6637614B2 (ja) 2段階ガス化装置及び原料自由度を有するガス化プロセス
JP5040361B2 (ja) 燃料ガス化設備
AU2007347601B2 (en) Method of gasifying gasification fuel and apparatus therefor
JP2022528777A (ja) 炭素質材料のガス化及び改質による合成ガスの製造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880131696.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08808276

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008360806

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13059007

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2008360806

Country of ref document: AU

Date of ref document: 20080820

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 08808276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP