WO2010020878A2 - Anillos cónicos para la succión de la cornea durante la realización de queratectomias de tipo lasik - Google Patents

Anillos cónicos para la succión de la cornea durante la realización de queratectomias de tipo lasik Download PDF

Info

Publication number
WO2010020878A2
WO2010020878A2 PCT/IB2009/006767 IB2009006767W WO2010020878A2 WO 2010020878 A2 WO2010020878 A2 WO 2010020878A2 IB 2009006767 W IB2009006767 W IB 2009006767W WO 2010020878 A2 WO2010020878 A2 WO 2010020878A2
Authority
WO
WIPO (PCT)
Prior art keywords
conical
ring
suction
present
lasik
Prior art date
Application number
PCT/IB2009/006767
Other languages
English (en)
French (fr)
Other versions
WO2010020878A3 (es
Inventor
Armando Orjuela Murillo
Original Assignee
Armando Orjuela Murillo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Armando Orjuela Murillo filed Critical Armando Orjuela Murillo
Publication of WO2010020878A2 publication Critical patent/WO2010020878A2/es
Publication of WO2010020878A3 publication Critical patent/WO2010020878A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/013Instruments for compensation of ocular refraction ; Instruments for use in cornea removal, for reshaping or performing incisions in the cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/009Auxiliary devices making contact with the eyeball and coupling in laser light, e.g. goniolenses

Definitions

  • the present invention is developed in the field of medicine. More specifically, the present invention relates to application devices in the area of ophthalmology corresponding to suction rings of the cornea to be implemented in a microkeratome for the rapid, efficient and safe treatment of malformations of the cornea, particularly in treatments LASIK type (Intracorneal Laser Polishing).
  • LASIK type Intracorneal Laser Polishing
  • LASIK Intracomeal Laser Polishing
  • LASIK stands for "laser-assisted in situ keratomileusis" for its acronym in English, that is, laser-assisted in situ keratomileusis.
  • the traditional procedure consists in the opening of a flap ("flap") in the stroma of the eyes and the use of an excimer laser to reshape the cornea, producing a better vision.
  • this LASIK treatment involves the use of a laser to give new shape to the cornea of the eyes after a corneal flap is created, and thus help in the treatment of refractive defects of the eye, such as myopia, astigmatism. , farsightedness, etc. And to achieve this, surgeons use a tool called microkeratome that allows the flap of the cornea to be created before surgery.
  • microkeratome that allows the flap of the cornea to be created before surgery.
  • microkeratometers including the hansatome, the turbokeratome, among others. For example, in the case of a LASIK microkeratome, it must provide access to the corneal stroma (intermediate part of the cornea) by the surgeon in order to apply the laser energy and carry out the required treatment in the eye.
  • the microkeratome is a device that is basically composed of a ring that is placed over the eye and a cutting unit that is coupled to the vacuum ring and travels over the cornea; depending on the intention of the surgeon to create a complete lenticule or intentionally leaving an uncut area of the "hinge" cornea.
  • an ideal microkeratome must produce a delicate cut; give options to create the "flap" with respect to the diameter, thickness and location of the hinge; have an easy assembly (for the surgeon or technician to mount it without difficulty); if possible, monitor the vacuum pressure so that the excursion of the blade stops instantly if the suction is lost.
  • the ideal microkeratome must be economical, durable and available; Easy to assemble, maintain and clean, or be disposable. It must also be fast and need little pressure on the eye to minimize the elevation of the infraocular pressure (IOP) and Ia patient discomfort Adapt without difficulty to any eyelid or orbit and all corneal curves, from 30 D to 50 D.
  • IOP infraocular pressure
  • One of the essential components of the microkeratome in LASIK keratoplasty is the suction rings, which is placed over the eye for the suction of the surface of the cornea and the realization of the respective cut with the microkeratome cutting element.
  • the commercially available microkeratomes have their respective suction rings for securing the corneal surface.
  • these rings exhibit clear technical flaws that do not allow desirable results in the cutting of the corneal surface.
  • the main technical failure of commercially available suction rings lies in their design and dimensions, which restricts their application to only certain types of cornea, since their function in corneal suction is not highly effective.
  • most microkeratomes have two or three rings of different sizes to try to cover the different cornea sizes of the patients, which is not enough to solve the problem completely.
  • Figure 1 is a perspective view from above of the conical suction ring like that of the present invention for assistance in LASfK keratectomies;
  • Figure 2 is a perspective view from below of the suction ring of Figure 1, without the clamping handle;
  • Figure 3 is a perspective view from below of the suction ring shown in Figure 4, in which the 360 ° security chamber is illustrated in detail;
  • Figure 4 is a schematic plan view of the novel conical suction ring of the present invention.
  • Figure 5 is a schematic plan view comparing a cross section of a conventional and conical flat suction ring like that of the present invention
  • Figure 6 is a schematic plan view showing in detail the groove of the suction ring
  • Figure 7 shows an illustrative graph of a corneal topography.
  • Figure 8 illustrates a nomogram that identifies the variety of suction rings as those of the present invention available for a microkeratome for the development of a LASIK keratoplasty.
  • the researchers of the present invention managed to design a novel corneal suction ring to be implemented in a microkeratome for the elaboration of LASIK-type keratoplasties, the which makes LASIK treatment safer, faster and more effective, since it can be adapted to any type of cornea of the patients.
  • the conical rings of the present invention constitute excellent tools for the elaboration of Lasik Keratectomies (Laser Intracorneal Polishing), at different depths from 100 microns to 160 microns in the treatment of refractive defects of the eye. (Such as Myopia, Astigmatism, Hypermetropia).
  • the present invention provides a conical corneal suction ring (1) for its implementation in microkeratomes for the development of LASIK keratectomies, which is characterized in that it consists of a cylindrical body (1.1) that is made conical outwardly consisting of two surfaces: an external surface (1.2) and an internal surface (1.3); on the outer surface in its upper portion a lid (1.4) of low thickness is arranged, perforated with different internal diameters where the patient's comea will finally be housed, and on this cover (1.4) rests a cylindrical pivot pivot (1.5) , and 180 ° from the other end of said outer surface (1.2) rests a semi-cylindrical metal portion (1.7) having an upper section (1.7.1), a lower section (1.7.2), an internal section (1.7.
  • a conical corneal suction ring (1) for its implementation in microkeratomes for the development of LASIK keratectomies, which is characterized in that it consists of a cylindrical body (1.1) that
  • a trapezoidal section (1.9) of support is provided to which a hollow rod or clamping handle (2) is connected which in turn is located connected at its other end to a vacuum chamber;
  • the internal surface (1.3) of said cylindrical body (1.1) corresponds to a smooth surface that at one of its ends includes a small security chamber of (1.3.1), which maintains direct communication with the hollow rod or holding handle (2), through which the corneal suction is performed.
  • the conical ring is characterized in that the security chamber (1.3.1) is configured in a dihedral angle that varies between 90 ° to 120 ° and that continues with the hollow rod hole or holding handle (2).
  • the conical ring is characterized in that the inner diameter of the cover (1.4) varies between 11.25 to 13.00 mm.
  • the conical ring is characterized in that the inner diameter of the cover (1.4) corresponds to 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, and 13.00 mm.
  • the conical ring is characterized in that the hollow rod (2) has a hypodermic needle type coupling system at its proximal end! to be coupled via a vacuum hose to a vacuum unit.
  • the conical ring is characterized in that the hollow rod (2) is cylindrical and carved on its surface.
  • this illustrates in perspective the novel conical corneal suction ring of the present invention for its implementation in a mjcrokeratome during the performance of LASIK type lamellar keratectomies.
  • the conical suction rings of the present invention are formed by the following components, as illustrated in Figures 1 to 4:
  • the conical corneal suction ring (1) of the present invention is responsible for sucking the eyeball by means of negative pressure supplied by an external source, to allow an eye approach with the cutting head, which has a blade in its lower part whose function is to cut and separate a small sheet of cornea.
  • the conical corneal suction ring of the present invention consists of: a hollow rod (2) for transmitting the vacuum suction to the suction chamber of the ring is given a vacuum unit; Said rod is made of stainless steel with a non-slip carving for its grip on its surface and of the suction ring (1) itself, which is coupled to the distal end of the rod to allow the eyeball to be secured by means of the suction generated in Ia vacuum unit transmitted to the ring cavity.
  • the rod at its proximal end has a conventional hypodermic needle type coupling system for coupling by means of the vacuum hose to the vacuum unit.
  • the conical suction ring (1) is characterized in that it consists of a cylindrical body (1.1) that is made conical outwardly consisting of two surfaces: an external surface (1.2) and an internal surface (1.3); on the outer surface in its upper portion has a lid (1.4) of low thickness, perforated with different diameters where the cornea of the patient will finally be accommodated by means of the suction conducted through the rod (2).
  • a lid On the surface of the lid is the pivot (1.5) on one of its sides, which serves as the axis of rotation for the cutting head of a microkeratome.
  • the conical suction ring (1) is characterized in that it exhibits a novel design that is open cone simulating the anatomical curves of the eyeball. Its main advantage is based on pneumatic physics, according to GO ⁇ which, as the area of suction on e is enlarged (eye increases the retention force of the eye, and inversely decreases the risk of loss of support, which constitutes one of the major technical problems of all conventional microkeratomes, thus, it is possible to have rings of the same size with a greater holding power over the eye, thus, as things increase dihedral angle of the ring in 90 ° to 120 °, either with intervals of 1 o , the efficiency of the vacuum pump is significantly increased.
  • QM keratometry (average measurement in diopters of the cornea)
  • D / BB * Total diameter of the white to white cornea, that is, from one of the edges of the sclera to the other.
  • the conical ring of the present invention can vary its internal diameter between 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, and 13.00 mm.
  • Another technical aspect of great importance in the design of the ring of the present invention is an internal cavity (1.3.1) machined in 360 degrees (see Figures 3 and 6) where the dihedral angle of the ring that continues with the hole is formed of the vacuum rod (2); said cavity prevents the suction of the vacuum pump from being obstructed at some point by the conjunctiva (mobile membrane and transparent outer lax of the eye which is the one that normally undergoes the vacuum pressure) causing an erroneous registration of suction, and by Therefore, producing a defective cut. It is well known that it is practically impossible that the conjunctiva at any given time can obstruct ios 360 degrees of said cavity, because anatomically it is almost impossible for this to happen.
  • the suction ring of the present invention has a circular guide to fit the cutting head, this being the system that guarantees that said head make the route on the cornea at the fixed distance traveled to make a good cut.
  • the ring of the present invention has a fixed end of travel stop or turn stop (1.8) for the cutting head of a microkeratome.
  • This turning stop is located in the upper part, pre-calibrated in all ring sizes to guarantee a good flap size; without having such corn flaps without hinge or hinge; Known this complication in medical language as loose flap.
  • the internal taper of the rings of the present invention represents several advantages.
  • the conical shape allows a better grip of the eye during surgery.
  • the following graph shows how two rings with the same height can have different suction power depending on their shape.
  • Figure 5 illustrates flat schematic views comparing a conventional flat ring (scheme 1) with a conical ring (scheme 2) as that of the present invention.
  • both rings have the same height however the ring of the present invention has a greater area of contact with the eye, which means a greater force on the eye maintaining the same vacuum pressure since:
  • Figure 6 illustrates the 360 ° groove of the suction ring of the present invention. Thanks to this groove, the safety of the conical ring of the present invention is substantially improved, since the vacuum pressure is transmitted around the ring through it, keeping the eye tissue away and ensuring the same suction power in all its circumference.
  • FIG. 7 illustrates an illustrative graph of a corneal topography. This type of topography is of great help during the surgical procedure since the possibility of a confusion in the selection of the ring practically disappears, since it is no longer necessary to look at the small numbers thereof, but that they are identified with their colors directly .
  • the colors shown in said Figure 7 are illustrative of how curved the eye is;
  • the size of the eye is largely a function of its curvature, which is why the rings scale according to their diameters.
  • the rings of the present invention are sizes adjusted to the cornea from 38 to 48 diopters of curvature, and corneal diameter from 10.75 mm to 12.50 mm (6.1)
  • a suitable ring is selected according to the normogram described in Figure 10; this is coupled with a vacuum hose by means of the hollow rod or clamping handle (2) and the surgical procedure is performed according to the known technique: the vacuum ring is mounted on the eyeball; the vacuum system is turned on; The cutting head of a microkeratome is fitted on the conical ring (1) of the present invention to match the male hexagon of the motor housing of the microkeratome with the female hexagon of the ring pivot pivot. Finally, the automated process of cutting the corneal lenticule is performed.
  • the conical corneal suction rings of the present invention constitute a significant technical improvement with respect to conventional rings, since they exhibit technical aspects that had not been considered for said conventional rings, which are summarized in the following advantages: ADVANTAGES OF THE INVENTION
  • the suction rings of the present invention are designed to maximize the efficiency of corneal suction, of different internal and external size for each eye size, which guarantees the same suction power for all eyes;
  • the present invention provides multiple conical corneal suction rings with sizes that fit all eye sizes, for which they are color coded that correlate with corneal topography maps.
  • the rings of the present invention are of sizes adjusted to the cornea from 38 to 48 diopters of curvature and corneal diameter from 10.75 mm to 12.50 mm (6.1)
  • the conical corneal suction rings of the present invention can be classified by color codes, which are they relate to the colors that represent the curvature of the eye in the corneal topographies and the size of the ring.
  • the conical suction rings of the present invention allow the realization of corneal topographies, which constitute an excellent tool during the surgical procedure, since it is possible to eliminate the possibility of confusion in the selection of the conical suction ring; The practitioner no longer needs to look at the small numbers of conventional rings, but can easily and directly identify the required suction ring using colors.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

La presente invención se desarrolla en el campo de Ia medicina. Más específicamente, Ia presente invención se relaciona con dispositivos del tipo anillos cónicos de aplicación en el área de Ia oftalmología, particularmente para su implementación en microqueratomos y asistir de manera rápida, eficaz y segura los tratamientos refractivos de tipo LASIK (Pulido Intracorneal con Láser). Esto es posible dado que los anillos cónicos de Ia presente invención exhiben características técnicas específicas de conicidad, apertura, y dimensiones que facilitan notablemente Ia manipulación del microqueratomo por parte del instrumentador y reducen significativamente las molestias para el paciente en tratamientos del tipo LASIK.

Description

ANILLOS CÓNICOS PARA LA SUCCIÓN DE LA CÓRNEA DURANTE LA REALIZACIÓN DE QUERATECTOMtAS DE TIPO LAStK
La presente invención se desarrolla en el campo de Ia medicina. Más específicamente, Ia presente invención se relaciona con dispositivos de aplicación en el área de Ia oftalmología correspondientes a anillos de succión de Ia cornea para ser implementados en un microqueratomo para el tratamiento rápido, eficaz y seguro de mal formaciones de Ia cornea, particularmente en tratamientos de tipo LASIK (Pulido Intracorneal con Láser).
ANTECEDENTES DE LA INVENCIÓN
En el estado de Ia técnica son bien conocidos los tratamientos de queratoplastia para Ia corrección de deformaciones de Ia cornea. Uno de estos tratamientos refractivos es conocido como queratoplastia del tipo LASIK (Pulido Intracomeal con Láser). LASIK corresponde al acrónimo de "laser-assisted in situ keratomileusis" por sus siglas en inglés, esto es, queratomileusis in situ asistido por láser. El procedimiento tradicional consiste en Ia apertura de un colgajo ("flap") en el estroma de los ojos y Ia utilización de un láser de excímero para remodelar Ia córnea, produciendo una mejor visión. Así, éste tratamiento LASIK implica Ia utilización de un láser para dar nueva forma a Ia córnea de los ojos después de que se crea un colgajo corneal, y de esta forma ayudar en el tratamiento de los defectos refractivos del ojo, tales como miopía, astigmatismo, hipermetropía, etc. Y para lograr esto, los cirujanos utilizan una herramienta llamada microqueratomo que permite crear el colgajo de Ia córnea antes de Ia cirugía. Con el desarrollo de ésta técnica LASIK, recientemente ha surgido gran interés por parte de los cirujanos y otras personas de Ia industria por crear un microqueratomo que ofrezca Ia mejor calidad del tratamiento, predictibilidad, que sea reproducible, fácil de usar con seguridad y bajo costo. Para lograr estos resultados, se han desarrollado diversas clases de microqueratometros, entre los que se incluye el hansatome, el turboqueratomo, entre otros. Por ejemplo, en el caso de un microqueratomo para LASIK, éste debe proveer un acceso al estroma corneal (parte intermedia de Ia cornea) por parte del cirujano para poder aplicar Ia energía del láser y llevar a cabo el tratamiento requerido en el ojo.
El microqueratomo es un dispositivo que está compuesto básicamente de un anillo que se coloca sobre el ojo y una unidad de corte que se acopla al anillo de vacío y hace un recorrido sobre Ia cornea; dependiendo de Ia intención del cirujano para crear un lenticulo completo o dejando intencionalmente una zona sin cortar de Ia cornea "bisagra". Así, un microqueratomo ideal debe producir un corte delicado; dar opciones para crear el "flap" con respecto al diámetro, espesor y localización de Ia bisagra; tener un ensamblaje fácil (para que el cirujano o el técnico Io monte sin dificultad); monitorear, si es posible, Ia presión del vacío para que Ia excursión de Ia cuchilla pare instantáneamente si se pierde Ia succión.
Otros factores importantes que se deben considerar para un microqueratomo ideal son el tamaño y Ia visibilidad del colgajo "flap" durante el procedimiento y su curva de aprendizaje. Además, el microqueratomo ideal debe ser económico, durable y disponible; fácil de ensamblar, mantener y limpiar, o ser desechable. También debe ser rápido y necesitar poca presión sobre el ojo para minimizar Ia elevación de Ia presión infraocular (PIO) y Ia incomodidad del paciente. Adaptarse sin dificultad a cualquier párpado u órbita y a todas las curvas corneales, de 30 D a 50 D.
Uno de los componentes esenciales del microqueratomo en la queratoplastia LASIK Io constituyen los anillos de succión, el cuál se coloca sobre el ojo para Ia succión de Ia superficie de Ia cornea y Ia realización del corte respectivo con el elemento de corte del microqueratomo. Los microqueratomos disponibles comercialmente cuentan con sus respectivos anillos de succión para Ia sujeción de Ia superficie corneal. Sin embargo, estos anillos exhiben claras falencias de tipo técnico que no permiten resultados deseables en el corte de Ia superficie corneal. De hecho, Ia principal falla técnica de los anillos de succión disponibles comercialmente radica en su diseño y dimensiones, Io cuál restringe su aplicación a solo unos determinados tipos de cornea, dado que su función en Ia succión de Ia córnea no es altamente eficaz. De hecho, Ia mayoría de microqueratomos dispone de dos o tres anillos de diversos tamaños para tratar de abarcar los diversos tamaños de cornea de los pacientes, Io cuál no es suficiente para solucionar el problema completamente.
Por consiguiente, es claro que aún existe Ia necesidad en el campo de la oftalmología, particularmente en los tratamientos de tipo LASIK, de una mejora técnica significativa en los anillos de succión que conforman los microqueratomos en aras de lograr resultados más eficaces, rápidos, seguros y menos incómodos para los pacientes. Los anillos de succión juegan un papel muy importante en el desarrollo del tratamiento LASIK, y como implemento del microqueratomo, deben exhibir características técnicas mejoradas con respecto a los anillos disponibles comercialmente. Las expectativas de los pacientes y profesionales del campo de Ia oftalmología hacen que cada vez se perfeccionen más los instrumentos y las técnicas para garantizar mejores resultados en Ia cirugía refractiva con láser de manera rápida, efectiva y sin dolor, y para proporcionar una visión excelente. DESCRIPCIÓN DE LAS FIGURAS
Los anillos cónicos de succión de Ia presente invención se pueden comprender mejor si se hace referencia a las Figuras acompañantes, de las cuales;
La Figura 1 es una vista en perspectiva desde arriba del anillo de succión cónico como el de Ia presente invención para Ia asistencia en queratectomías LASfK;
La Figura 2 es una vista en perspectiva desde abajo del anillo de succión de Ia figura 1 , sin el mango de sujeción;
La Figura 3 es una vista en perspectiva desde debajo del anillo de succión mostrado en Ia Figura 4, en Ia cuál se ilustra de manera detallada la cámara de seguridad de 360°;
La Figura 4 es una vista esquemática plana del novedoso anillo de succión cónico de Ia presente invención;
La Figura 5 es una vista plana esquemática que compara un corte transversal de un anillo de succión plano convencional y uno cónico como el de la presente invención;
La Figura 6 es una vista plana esquemática que muestra en detalle Ia ranura del anillo de succión;
La Figura 7 muestra un gráfico ilustrativo de una topografía corneal. La Figura 8 ilustra un nomograma que identifica Ia variedad de anillos de succión como los de Ia presente invención disponibles para un microquerátomo para el desarrollo de una queratoplastía LASIK.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Para lograr superar los inconvenientes discutidos anteriormente presentes en los anillos de succión corneal disponibles para los microqueratomos convencionales, los investigadores de Ia presente invención lograron diseñar un novedoso anillo de succión corneal para ser implementado en un microquerátomo para Ia elaboración de queratoplastias de tipo LASIK, el cuál hace más seguro, rápido y eficaz el tratamiento LASIK, dado que se puede adaptar a cualquier tipo de cornea de los pacientes. Los anillos cónicos de Ia presente invención constituyen excelentes herramientas para la elaboración de Queratectomías tipo Lasik (Pulido Intracorneal con Láser), a diferentes profundidades de 100 mieras hasta 160 mieras en el tratamiento de los defectos refractivos del ojo. (Tales como Miopía, Astigmatismo, Hipermetropía).
Específicamente, Ia presente invención proporciona un anillo cónico de succión corneal (1) para su implementación en microqueratomos para el desarrollo de queratectomías LASIK, el cual se caracteriza porque consiste de un cuerpo cilindrico (1.1) que se hace cónico hacia afuera que consta de dos superficies: una superficie externa (1.2) y una superficie interna (1.3); sobre Ia superficie externa en su porción superior se encuentra dispuesta una tapa (1.4) de bajo espesor, perforada con diferentes diámetros internos donde se alojará finalmente Ia comea del paciente, y sobre esta tapa (1.4) descansa un pivote de giro cilindrico (1.5), y a 180° del otro extremo de dicha superficie externa (1.2) descansa una porción metálica semi-cilíndrica (1.7) que tiene una sección superior (1.7.1), una sección inferior (1.7.2), una sección interna (1.7.3) y una sección externa (1.7.4); sobre Ia sección superior (1.7.1) de dicha porción metálica semi-cilíndrica (1.7) se soporta un tope de giro (1.8); sobre Ia sección externa (1.7.4) de dicha porción metálica semi-cilíndrica (1.7) se dispone una sección trapezoidal (1.9) de soporte a Ia cual se conecta un vastago hueco o mango de sujeción (2) que a su vez se encuentra conectado por su otro extremo a una cámara de vacío; Ia superficie interna (1.3) de dicho cuerpo cilindrico (1.1) corresponde a una superficie lisa que en uno de sus extremos incluye una pequeña cámara de seguridad de (1.3.1), Ia cual mantiene comunicación directa con el vastago hueco o mango de sujeción (2), a través del cual se realiza Ia succión de Ia cornea.
En una realización de Ia presente invención, el anillo cónico se caracteriza porque Ia cámara de seguridad (1.3.1) se configura en un ángulo diedro que varía entre 90° hasta 120° y que continúa con el agujero del vastago hueco o mango de sujeción (2).
En una realización de Ia presente invención, el anillo cónico se caracteriza porque el diámetro interno de Ia tapa (1.4) varía entre 11.25 a 13.00 mm.
En una realización de la presente invención, el anillo cónico se caracteriza porque el diámetro interno de Ia tapa (1.4) corresponde a 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, y 13.00 mm.
En una realización de Ia presente invención, el anillo cónico se caracteriza porque el vastago hueco (2) tiene un sistema de acople tipo aguja hipodérmica en su extremo próxima! para acoplarse mediante una manguera de vacío a una unidad de vacío.
En una realización de Ia presente invención, el anillo cónico se caracteriza porque el vastago hueco (2) es cilindrico y está tallado sobre su superficie.
Con respecto a Ia Figura 1, esta ilustra en perspectiva el novedoso anillo cónico de succión corneal de Ia presente invención para su implementación en un mjcroqueratomo durante Ia realización de queratectomías lamelares tipo LASIK.
Los anillos cónicos de succión de Ia presente invención están conformados por los siguientes componentes, tal como se ilustra en las Figuras 1 a 4:
- Vastago de succión (2)
- Tope de giro (1.8)
- Cámara de seguridad de 360°(1.3.1)
- Pivote de giro (1.5)
- Cono abierto del anillo cónico (6.8)
- Anillo cónico (6.9)
El anillo cónico de succión corneal (1) de Ia presente invención se encarga de succionar el globo ocular por medio de presión negativa suministrada por una fuente externa, para permitir un acercamiento del ojo con Ia cabeza de corte, Ia cual cuenta con una cuchilla en su parte inferior cuya función es cortar y separar una pequeña lamina de cornea.
El anillo cónico de succión corneal de Ia presente invención consta de: un vastago hueco (2) para transmitir Ia succión de vacio a Ia cámara de succión del anillo dése una unidad de vacío; dicho vastago es fabricado en acero inoxidable con un tallado antideslizante para su sujeción en su superficie y del anillo de succión (1) propiamente dicho, que se encuentra acoplado al extremo distal del vastago para permitir Ia sujeción del globo ocular mediante Ia succión generada en Ia unidad de vacío transmitida a Ia cavidad del anillo. El vastago en su extremo proximal tiene un sistema de acople tipo aguja hipodérmica convencional para acoplarse mediante Ia manguera de vacío a Ia unidad de vacío.
El anillo cónico de succión (1) se caracteriza porque consiste de un cuerpo cilindrico (1.1) que se hace cónico hacia afuera que consta de dos superficies: una superficie externa (1.2) y una superficie interna (1.3); sobre Ia superficie externa en su porción superior tiene una tapa (1.4) de bajo espesor, perforada con diferentes diámetros donde se alojará finalmente Ia cornea del paciente mediante Ia succión conducida a través del vastago (2). Sobre Ia superficie de Ia tapa se encuentra en uno de sus lados el pivote (1.5) que sirve como eje de giro para Ia cabeza de corte de un microqueratomo.
El anillo cónico de succión (1) se caracteriza porque exhibe un diseño novedoso que es de cono abierto simulando las curvas anatómicas del globo ocular. Su ventaja principal está fundamentada en Ia física neumática, de acuerdo GOΠ la cual, a medida que se amplía el área de succión sobre e( ojo se incrementa proporcionalmente Ia fuerza de retención del ojo, e inversamente se disminuye el riesgo de pérdida de sujeción, el cual constituye uno de los mayores problemas técnicos de todos los microquerátomos convencionales. De esta manera, se tiene Ia posibilidad de disponer de anillos del mismo tamaño con un poder de sujeción mayor sobre el ojo. Así las cosas, a medida que se aumenta el ángulo diedro del anillo en 90° hasta 120° así sea con intervalos de 1o, se aumenta significativamente Ia eficiencia de Ia bomba de vacío.
Otras características importantes que se deben considerar para los anillos de succión de Ia presente invención son:
a. Gran variedad de tamaños: se dispone de ocho (8) anillos cónicos en total para cubrir las diferentes dimensiones de ojos, codificados con colores, y números en su vastago de sujeción, para una fácil identificación y correlación con los mapas de topografía corneal (escaneo de la superficie corneal que se realiza a todos los pacientes de cirugía y se representa como un mapa de colores). De esta manera, es posible disponer de un nomograma, como se muestra en Ia Figura 8, para seleccionar el anillo adecuado en el momento de realizar las cirugías correlacionándolo con el mapa de colores corneal (Figura 7), y con el diámetro de cada cornea en particular. Este aspecto constituye una característica original de Ia presente invención, dado que los dispositivos convencionales no consideran ios nomogramas en virtud a que dichos dispositivos convencionales tienen como criterio Ia curva corneal. Por el contrario, Ia presente invención combina tres parámetros fundamentales, esto es, diámetro corneal, diámetro del anillo y curvas cornéales asimiladas a ios colores de la topografía.
Este aspecto garantiza que siempre se obtenga un lentículo corneal de buen tamaño independiente del tamaño del ojo. En este dispositivo se maneja un concepto novedoso en el evento de seleccionar el anillo de succión ya que no se tienen en cuenta prioritariamente las curvaturas cornéales, sino los tamaños corneales, lo cual constituye un elemento que brinda mayor predictibilidad del tamaño del lentículo. (Ver nomograma ilustrado en Ia figura 8). El nomograma de Ia Figura 8 exhibe las siguientes abreviaturas:
QM = queratometria (medida promedio en dioptrías de Ia cornea)
No= Numero ordinal del anillo
D/BB*= Diámetro total de la cornea blanco a blanco es decir de unos de los bordes de Ia esclera al otro.
D/A- Diámetro interno del anillo
D/F= Diámetro del "flap" (lecho corneal)
L/D* Lecho corneal disponible para el tratamiento con el láser.
Históricamente los fabricantes han diseñado los anillos convencionales con un diámetro externo estándar, y únicamente cambian el tamaño del diámetro del agujero interno (es decir, el sitio donde se acopla Ia cornea al anillo) en los diferentes ojos. En Ia medida en que el diámetro de este agujero se agranda para las corneas más grandes, no se tiene en cuenta que es un ojo mas grande, y se conserva el mismo diámetro externo, y de esta manera obtienen en teoría anillos de succión más grandes. Como consecuencia de Io anterior, se disminuye el área de sujeción del ojo, y por ende, se disminuye proporcionalmente el poder de succión, con Io cual se presenta con más frecuencia perdidas de succión del ojo al momento de realizar el corte corneal en ojos grandes. Lo anterior representa claramente una complicación molesta ya que obliga a cancelar Ia cirugía. Así, para los propósitos de Ia presente invención, para cada tamaño de anillo se preservo una constante entre el diámetro interno y el diámetro externo para obtener al final ocho diferentes anillos rectos y cónicos en sus medidas externas e internas. De esta manera, el anillo cónico de Ia presente invención puede variar su diámetro interno entre 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, y 13.00 mm.
Lo anterior garantiza un poder de vació de igual intensidad en todos los anillos y en todos los ojos, y por ende, se disminuye el riesgo por perdida de vacío en Ia cirugía con Ia ventaja que con los anillos cónicos es aún menor dicho riesgo, Io cual no había sido desarrollado hasta el momento en el estado de Ia técnica.
Otro aspecto técnico de gran importancia en el diseño del anillo de Ia presente invención, es una cavidad interna (1.3.1) maquinada en 360 grados (ver Figuras 3 y 6) donde se forma el ángulo diedro del anillo que se continua con el agujero del vastago de vacio (2); dicha cavidad impide que Ia succión de Ia bomba de vacío sea obstruida en algún momento por Ia conjuntiva (membrana móvil y laxa transparente externa del ojo que es Ia que normalmente se somete a Ia presión de vacío) ocasionando un registro erróneo de succión, y por Io tanto, produciendo un corte defectuoso. Es bien sabido que es prácticamente imposible que Ia conjuntiva en un momento dado pueda obstruir ios 360 grados de dicha cavidad, porque anatómicamente es casi imposible que esto suceda.
El anillo de succión de Ia presente invención posee una guía circular para encajar Ia cabeza de corte, siendo este el sistema que garantiza que dicha cabeza realice el recorrido sobre Ia cornea a Ia distancia fija recorrida para realizar un buen corte.
Además, el anillo de Ia presente invención posee un tope fijo de fin de recorrido o tope de giro (1.8) para Ia cabeza de corte de un microqueratomo. Este tope de giro está ubicado en Ia parte superior, pre-calibrado en todos los tamaños de anillo para garantizar un buen tamaño de colgajo; sin tener dichos colgajos cornéales sin bisagra o charnela; conocida esta complicación en el lenguaje médico como colgajo suelto.
Los siguientes son algunos de los aspectos técnicos que caracterizan los anillos cónicos de succión de Ia presente invención, los cuales los hacen únicos y hacen que los mismos hagan su tarea de una forma segura y eficaz.
• Conicidad Interna.
La conicidad interna de los anillos de Ia presente invención representa varias ventajas.
1. El ojo se expone a menores deformaciones mientras está siendo succionado ya que no hay rincones pronunciados donde el cuerpo pueda desplazarse.
2. La forma cónica permite un mejor agarre del ojo durante Ia intervención quirúrgica.
3. El siguiente gráfico demuestra como dos anillos con Ia misma altura pueden tener poder de succión distintos en función de su forma.
La Figura 5 ilustra vistas esquemáticas planas que comparan un anillo plano (esquema 1) convencional con un anillo cónico (esquema 2) como el de Ia presente invención. En dicha Figura se puede observar que ambos anillos tienen Ia misma altura sin embargo el anillo de Ia presente invención tiene una mayor área de contacto con el ojo, Io cual significa una mayor fuerza sobre el ojo manteniendo Ia misma presión de vacío dado que:
Presión* Fuerza/Área Presión = Cte.
Área * Cte. = fuerza
Cuando el área aumenta Ia fuerza sobre el ojo aumenta linealmente manteniendo Ia presión constante.
• Proporcionalidad entre los diámetros del anillo o escalamientos proporcionados de tamaño.
La proporcionalidad que guardan el diámetro interior superior y el diámetro interior inferior hace que el área de contacto se mantenga en anillos para ojos grandes (ver medida "h" en Ia Figura 5)
• Ranura de succión de 360 grados.
La Figura 6 ilustra Ia ranura de 360° del anillo de succión de la presente invención. Gracias a esta ranura, Ia seguridad del anillo cónico de Ia presente invención se ve mejorada sustancialmente, ya que la presión de vacio se transmite alrededor del anillo a través de la misma, manteniendo el tejido del ojo al alejado y asegurando el mismo poder de succión en toda su circunferencia.
• Código de colores que relaciona los colores que representan la curvatura del ojo en las topografías cornéales y el tamaño del anillo. La Figura 7 ilustra un gráfico ilustrativo de una topografía corneal. Este tipo de topografías son de gran ayuda durante el procedimiento quirúrgico ya que prácticamente desaparece Ia posibilidad de una confusión en Ia selección del anillo, puesto que ya no es necesario fijarse en los pequeños números de los mismos, sino que se identifican con sus colores directamente.
Los colores mostrados en dicha Figura 7 son ilustrativos de que tan curvo es el ojo; el tamaño del ojo en gran medida es función de su curvatura es por esto que los anillos van en escala según sus diámetros.
Los anillos de Ia presente invención son de tamaños ajustados a Ia córnea desde 38 hasta 48 dioptrías de curvatura, y de diámetro corneal desde 10.75 mm hasta 12.50 mm (6.1)
De esta manera, cuando se va a realizar el tratamiento LASIK, se selecciona un anillo adecuado según normograma descrito en Ia Figura 10; éste se acopla con una manguera de vacío mediante el vastago hueco o mango de sujeción (2) y se realiza el procedimiento quirúrgico de acuerdo con Ia técnica conocida: se monta el anillo de vació sobre el globo ocular; se enciende el sistema de vacío; se acopia Ia cabeza de corte de un microqueratomo sobre el anillo cónico (1) de Ia presente invención para que coincidan el hexágono macho de Ia carcasa de motores del microqueratomo con el hexágono hembra del pivote de giro del anillo. Finalmente, se realiza el proceso automatizado de corte del lentículo corneal.
En consecuencia, los anillos cónicos de succión corneal de Ia presente invención constituyen una mejora técnica significativa con respecto a los anillos convencionales, dado que exhiben aspectos técnicos que no habían sido considerados para dichos anillos convencionales, los cuales se resumen en las siguientes ventajas: VENTAJAS DE LA INVENCIÓN
• Los anillos de succión de Ia presente invención están diseñados para maximizar Ia eficiencia de succión corneal, de diferente tamaño interno y externo para cada tamaño de ojo, Io que garantiza el mismo poder de succión para todos los ojos;
• Gracias al diseño cónico de los anillos de succión de Ia presente invención, se minimiza el riesgo de pérdida de vació, particularmente, para aquellos ojos grandes durante Ia queratectomía. (esto es, corte de Ia cornea)
• La presente invención proporciona múltiples anillos cónicos de succión corneal con tamaños que se acoplan a todos los tamaños de ojo, para Io cual están codificados con colores que se correlacionan con los mapas de topografía corneal.
• Los anillos de Ia presente invención son de tamaños ajustados a Ia córnea desde 38 hasta 48 dioptrías de curvatura y de diámetro corneal desde 10.75 mm hasta 12.50 mm (6.1)
• El ojo se expone a menores deformaciones mientras está siendo succionado ya que no hay rincones pronunciados donde el cuerpo pueda desplazarse.
• La forma cónica permite un mejor agarre del ojo durante Ia intervención quirúrgica, y evita molestias indeseables al paciente.
• Los anillos cónicos de succión corneal de Ia presente invención se pueden clasificar mediante códigos de colores, los cuales se relacionan con los colores que representan Ia curvatura del ojo en las topografías cornéales y el tamaño del anillo.
• Los anillos cónicos de succión de Ia presente invención permiten Ia realización de topografías corneales, las cuales constituyen una excelente herramienta durante el procedimiento quirúrgico, dado que es posible desaparecer Ia posibilidad de confusión en Ia selección del anillo cónico de succión; el practicante ya no necesita fijarse en los pequeños números de los anillos convencionales, sino que puede identificar fácil y directamente el anillo de succión requerido mediante colores.
Ahora bien, cualquier persona en el arte, particularmente una persona versada que tenga acceso a las enseñanzas de Ia presente invención, reconocerá sin dificultad que es posible cualquier modificación o variación sobre el aparato aquí revelado, sin que las mismas se aparten del alcance y espíritu de Ia invención. Por ejemplo, se reconocerá que se puede emplear cualquier variedad de componentes de diferentes materiales que cumplan con los propósitos de Ia invención. De tal manera que todas las realizaciones y variaciones expuestas en Ia presente invención no deben entenderse como limitantes del alcance de Ia invención, el cual se determina por el contenido de las siguientes reivindicaciones.

Claims

REIVINDICACIONES
1. Anillo cónico de succión corneal (1) para su implementación en microqueratomos para el desarrollo de queratectomías LASIK, el cual se caracteriza porque consiste de un cuerpo cilindrico (1.1) que se hace cónico hacia afuera que consta de dos superficies: una superficie externa (1.2) y una superficie interna (1.3); sobre Ia superficie externa en su porción superior se encuentra dispuesta una tapa (1.4) de bajo espesor, perforada con diferentes diámetros internos donde se alojará finalmente Ia cornea del paciente, y sobre esta tapa (1.4) descansa un pivote de giro cilindrico (1.5), y a 180° del otro extremo de dicha superficie externa (1.2) descansa una porción metálica semi-cilíndrica (1.7) que tiene una sección superior (1.7.1), una sección inferior (1.7.2), una sección interna (1.7.3) y una sección externa (1.7.4); sobre Ia sección superior (1.7.1) de dicha porción metálica semi- cilíndrica (1.7) se soporta un tope de giro (1.8); sobre Ia sección externa (1.7.4) de dicha porción metálica semi-cilíndrica (1.7) se dispone una sección trapezoidal (1.9) de soporte a Ia cual se conecta un vastago hueco o mango de sujeción (2) que a su vez se encuentra conectado por su otro extremo a una cámara de vacío; Ia superficie interna (1.3) de dicho cuerpo cilindrico (1.1) corresponde a una superficie lisa que en uno de sus extremos incluye una pequeña cámara de seguridad de (1.3.1), Ia cual mantiene comunicación directa con el vastago hueco o mango de sujeción (2), a través del cual se realiza Ia succión de Ia cornea.
2. Un anillo cónico como el de Ia reivindicación 1 , caracterizado porque Ia cámara de seguridad (1.3.1) se configura en un ángulo diedro que varía entre 90° hasta 120° y que continúa con el agujero del vastago hueco o mango de sujeción (2).
3. Un anillo cónico como el de las reivindicaciones 1 a 2, caracterizado porque el diámetro interno de (a tapa (1 A) varía entre 11.25 a 13.00 mm.
4. Un anillo cónico como el de Ia reivindicación 3, caracterizado porque el diámetro interno de la tapa (1.4) corresponde a 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, y 13.00 mm.
5. Un anillo cónico como el de las reivindicaciones 1 a 4, caracterizado porque el vastago hueco (2) tiene un sistema de acople tipo aguja hipodérmica en su extremo próxima! para acoplarse mediante una manguera de vacío a una unidad de vacío.
6. Un anillo cónico como el de las reivindicaciones 1 a 5, caracterizado porque el vastago hueco (2) es cilindrico y está labrado sobre su superficie.
PCT/IB2009/006767 2008-08-21 2009-08-21 Anillos cónicos para la succión de la cornea durante la realización de queratectomias de tipo lasik WO2010020878A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CO08-86777 2008-08-21
CO08086777 2008-08-21

Publications (2)

Publication Number Publication Date
WO2010020878A2 true WO2010020878A2 (es) 2010-02-25
WO2010020878A3 WO2010020878A3 (es) 2010-06-24

Family

ID=41707513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2009/006767 WO2010020878A2 (es) 2008-08-21 2009-08-21 Anillos cónicos para la succión de la cornea durante la realización de queratectomias de tipo lasik

Country Status (1)

Country Link
WO (1) WO2010020878A2 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4137104A1 (en) * 2013-03-15 2023-02-22 AMO Development, LLC Hybrid ophthalmic interface apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2445318C (en) * 2001-04-25 2011-01-18 Johann F. Hellenkamp A positioning assembly for retaining and positioning a cornea
CA2501126A1 (en) * 2002-09-09 2004-03-18 Alexander Dybbs Ophthalmic surgical system and method
DE102005040338B4 (de) * 2005-08-25 2019-08-29 Carl Zeiss Meditec Ag Kontaktglas für die Augenchirurgie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4137104A1 (en) * 2013-03-15 2023-02-22 AMO Development, LLC Hybrid ophthalmic interface apparatus
US11590025B2 (en) 2013-03-15 2023-02-28 Amo Development, Llc Hybrid ophthalmic interface apparatus

Also Published As

Publication number Publication date
WO2010020878A3 (es) 2010-06-24

Similar Documents

Publication Publication Date Title
ES2689555T3 (es) Sistema de lente gonioscópica con mecanismo de estabilización
ES2217390T3 (es) Dispositivo quirurgico automatico mejorado para cortar una cornea.
ES2280203T3 (es) Implante universal para modificar la curvatura de la cornea.
US5984913A (en) Corneal aspiration cannula and method of using
US5752967A (en) Corneal surface marker and marking method for improving laser centration
ES2677879T3 (es) Sistema de administración para implante ocular
ES2333386T3 (es) Dispositivo para acceder al espacio subretiniano de un ojo.
ES2763200T3 (es) Dispositivo y método para un sistema de tratamiento de cirugía ocular asistido por láser
US10617558B2 (en) Apparatus for delivering ocular implants into an anterior chamber of the eye
ES2643151T3 (es) Instrumento para raspar el epitelio corneal
US10945886B2 (en) Eye marker device with electronic positional detection system and tip associated therewith
JPH01274759A (ja) 眼球固定方法とその装置および頭部固定装置
ES2368711T3 (es) Sistema y procedimiento para determinar una posición para un bolsillo en la esclerótica para una prótesis escleral.
US20210007893A1 (en) Ophthalmic incisional procedure instrument and method
WO1997004726A1 (en) Corneal flap/cap elevator
US5800406A (en) Corneal irrigation cannula
AU2001259137B2 (en) A positioning assembly for retaining and positioning a cornea
WO2010020878A2 (es) Anillos cónicos para la succión de la cornea durante la realización de queratectomias de tipo lasik
ES2865109T3 (es) Aparato de tratamiento para corregir un error de refracción de un ojo
JP7116161B2 (ja) 低侵襲性緑内障外科手術デバイス、システム、および関連方法
CN209864084U (zh) 一种眼科用眼球固定器
RU196316U1 (ru) Микрохирургический инструмент для определения угла циклоторсии в процессе выполнения рефракционной операции интрастромального удаления лентикулы
CN108618891A (zh) 一种术中眼球固定器
ES2777664T3 (es) Tonómetro de aplanación
JP3159239U (ja) マーキング装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09796787

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 09796787

Country of ref document: EP

Kind code of ref document: A2