WO2010020174A1 - 用电交叉方式实现子波长通道共享保护的方法及系统 - Google Patents

用电交叉方式实现子波长通道共享保护的方法及系统 Download PDF

Info

Publication number
WO2010020174A1
WO2010020174A1 PCT/CN2009/073322 CN2009073322W WO2010020174A1 WO 2010020174 A1 WO2010020174 A1 WO 2010020174A1 CN 2009073322 W CN2009073322 W CN 2009073322W WO 2010020174 A1 WO2010020174 A1 WO 2010020174A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection
wavelength
sub
channel
switching
Prior art date
Application number
PCT/CN2009/073322
Other languages
English (en)
French (fr)
Inventor
张乃罡
董均
许鹍
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2010020174A1 publication Critical patent/WO2010020174A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0295Shared protection at the optical channel (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/009Topology aspects
    • H04Q2011/0092Ring

Definitions

  • the present invention relates to the field of optical communication-intensive wavelength division multiplexing DWDM network system services, and particularly relates to a method for sharing sub-wavelength channel sharing protection by using electrical crossover mode. Method and system. BACKGROUND OF THE INVENTION
  • the survivability of the network is an important design criterion, the network capacity and the ever-expanding service capacity, and the market demand for high-quality services, so that the importance of the optical transmission network protection function is increasing.
  • the dual-fiber bidirectional channel sharing protection system wavelength allocation diagram As shown in Figure 1, the basic principle of the protection mode is: There are two working fibers between the adjacent nodes, namely the inner ring fiber 102 and the outer ring fiber 101. If the working wavelength of the inner ring fiber 102 is S1, the S1 working wavelength channel 103 of the outer ring fiber 101 is reserved as a shared protection channel occupying the S1 wavelength working service between the inner ring node and the inner ring node.
  • the operating wavelength of the ring fiber 101 is S2
  • the S2 working wavelength channel 104 of the inner ring fiber 102 is reserved as a shared protection channel occupying the S2 wavelength working service with the outer ring node
  • the channel sharing is named.
  • the usual method is to implement switching between the service working channel and the protection channel by switching the optical switch.
  • the Chinese patent "02145080.3 all-optical network two-fiber bidirectional Road sharing protection device introduces a method and device for implementing channel sharing protection by using an optical switch
  • FIG. 2 is a schematic diagram of a dual-fiber bidirectional channel sharing protection principle according to the related technology, as shown in FIG.
  • the optical switching switch 205 controls the pre-switching service route 207 to the switched service route 208, and the shared protection channel access switch 206 controls the working channel 203 and the shared protection channel 204.
  • the cross-symbol is used to indicate;
  • the optical switch switching method uses the optical power as the starting switching condition, so the performance of the service is insufficiently monitored.
  • the switching particles are wavelength-sized, because the same wavelength in the network bandwidth increases with the aggregation of the WDM clustering service.
  • the capacity can simultaneously satisfy the transmission of multiple low-rate services, usually called sub-wavelength, which requires the switching granularity to be in the sub-wavelength unit, so that the channel sharing protection with finer granularity cannot be achieved.
  • the main object of the present invention is to provide a method for implementing sub-wavelength channel sharing protection and System to solve at least one of the above problems.
  • a method for implementing sub-wavelength channel sharing protection by means of electrical crossover is provided.
  • the method for implementing sub-wavelength channel shared protection by using the electrical crossover method according to the present invention includes:
  • a road interface unit aggregates the customer side services into a plurality of backplane side branch sub-wavelength signals, and sends them to an electrical cross-switching unit through the backplane side interface;
  • the electrical cross switching unit cross-assigns the sub-wavelength signal to a back-side branch of a line interface unit
  • the line interface unit aggregates the cross-assigned sub-wavelength signals into line signals for transmission to the fiber line.
  • the method wherein the sub-wavelength signal in step B is assigned to the protection channel of the line interface unit by the working channel of the original backplane side branch line interface unit by the electrical cross-switching unit.
  • the electric cross-switching unit in step B performs the cross-assignment operation on the sub-wavelength sub-wavelength signal of the back-plane side branch according to the assignment state sent by the current node automatic protection switching controller.
  • the performing the cross-assignment operation on the sub-wavelength sub-wavelength signal in the step B further includes: Bl, configuring a sub-wavelength channel to share a working path and a protection path of the protection service, and providing a channel transmission service by the line interface unit, and providing a working channel and a protection channel;
  • a system for implementing sub-wavelength channel sharing protection by means of electrical crossover is provided.
  • a system for implementing sub-wavelength channel shared protection by using an electrical crossover method according to the present invention based on a multi-stage structure of a backplane, a backplane side branch and an interface, a line interface, and an automatic protection switching controller, including a branch interface unit, a line interface unit and an optical transmission unit, wherein an electrical cross-switching unit is disposed on the backplane between the branch interface unit and the line interface unit, and is configured by an automatic protection switching controller for implementing sub-wavelength channel shared protection switching operating.
  • the line interface unit is configured with a working channel and a protection channel in parallel in the forward and reverse directions, and is used for the working path and the protection path of the sub-wavelength channel sharing protection service.
  • the working channel and the protection channel are further configured with independent input ports and output ports for sharing protection switching of the cross-matching wavelength channel.
  • the cross-grain size is used as the sub-wavelength of the side branch of the backplane, and the switching trigger is triggered by the fault of the back-side side branch triggering protection switching, and the wavelength-level channel sharing protection is solved only when the group path fault is triggered to trigger the protection switching.
  • FIG. 1 is a schematic diagram of wavelength allocation of a dual-fiber bidirectional channel shared protection system according to the related art
  • FIG. 2 is a schematic diagram of a dual-fiber bidirectional channel shared protection principle according to the related art
  • FIG. 3 is a schematic diagram of the present invention.
  • FIG. 4 is a schematic diagram of a sub-wavelength dual-fiber bidirectional channel shared protection according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a sub-wavelength dual-fiber bidirectional channel shared protection according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of implementation of a three-node service distribution of a protection system according to an embodiment of the present invention
  • FIG. 7 is a three-node protection system according to an embodiment of the present invention
  • the present invention utilizes an electrical crossover technique to implement a method and system for sharing protection of sub-wavelength channels, and more specifically, a channel for realizing sub-wavelength granularity using an electrical crossover method in a fiber-optic transmission network channel shared ring network protection.
  • the shared core protection method and implementation system, the main core point is that by configuring the independent sub-wavelength working channels and protection channels in the forward and reverse directions, the cross-sharing is realized by the electrical cross-switching unit under the assignment of the current node automatic protection switching controller. Protection channel switching, which solves the problem that the wavelength-level channel sharing protection can trigger the protection switching only in the group path failure.
  • Step 1 The client interface services are aggregated into four by the branch interface unit.
  • the sub-wavelength level back-side tributary signal is sent to the electrical cross-switching unit through the back-plane side interface.
  • Step 2 The electrical cross-switching unit crosses the sub-wavelength signal of the four backplane side branches of the branch interface unit according to the assignment state issued by the controller of the automatic protection switching (APS) of the current node.
  • the sub-wavelength signal is assigned to the protection channel of the line interface unit by the electrical cross-switching unit of the original back-plane-side branch line interface unit.
  • the line interface unit aggregates the four backplane side branch sub-wavelength signals after the cross-assignment into a line signal and transmits the signal to the optical fiber line.
  • FIG. 5 is a flowchart of a method for controlling sub-wavelength dual-fiber bidirectional channel sharing protection according to an embodiment of the present invention.
  • the method for performing cross-assignment by the electrical cross-switching unit includes the following steps S510 to S550: Step S510, configuring a working path and a protection path of the sub-wavelength channel sharing protection service.
  • the input port of the A-direction working channel is AWI (A way Work Input, the tube is called AWI), and the output port of the A-direction working channel is AWO (A way).
  • AWI A way Work Input, the tube is called AWI
  • AWO A way
  • AWO Work Output
  • a direction The input port of the protection channel is API (A way Protect Input, the cartridge is called API), the output port of the A-direction protection channel is APO (A way Protect Output, the cartridge is called APO);
  • the input port of the B-direction working channel is BWI ( B way Work Input, the tube is called BWI), the output port of B to the working channel is BWO (B way Work Output, the tube is called BWO), and the input port of the B to the protection channel is BPI (B way Protect Input, the tube is called BPI), the output port of the B-direction protection channel is BPO (B way Protect Output, the tube is called BPO); each direction of the node provides one working channel and one reverse protection channel of the wavelength level.
  • Step S550 The backplane signal monitoring point monitors the quality of the received signal in real time.
  • the APS controller controls the electrical cross-switching unit to perform a protection recovery operation, that is, the APS controller receives the alarm disappearing message reported by the service receiving device, and controls The operation of the electrical cross-switching unit returns to the working path; otherwise, the alarm disappearing message is not received, and the protection selection switch remains in the protection switching state.
  • a protection recovery operation that is, the APS controller receives the alarm disappearing message reported by the service receiving device, and controls The operation of the electrical cross-switching unit returns to the working path; otherwise, the alarm disappearing message is not received, and the protection selection switch remains in the protection switching state.
  • Embodiments of the System Embodiment The system for implementing the above-mentioned channel sharing protection is specifically described.
  • the system for implementing the above-mentioned channel sharing protection is a multi-level structure based on the backplane, the backplane side branch and the interface, the line interface, and the APS controller. As shown in Figure 3, the system mainly includes the following parts:
  • the backplane provides one for all branch interface units, electrical crossover units, and line interface units.
  • a bearer platform that interconnects the sub-wavelength signal particles of all the boards.
  • Optical transmission unit It is used to realize the transmission of wavelength signals between nodes, and DWDM transmission is realized by wavelength division multiplexing of G.692 wavelength output by the line interface unit.
  • the optical transmission unit includes necessary unit facilities in the conventional wavelength division, for example, a multiplexer unit and an amplifying unit.
  • Branch interface unit It is used to implement service access and realize business interaction with the outside world.
  • the branch interface unit port is further divided into a backplane side and a branch side, and the backplane side signal is from the backplane, and is connected to the electrical crossover switching unit; the service signal is accessed by the branch side, and is packaged and multiplexed into the backplane subrate signal.
  • the power cross-switching unit is crossed to the line interface unit, and is transmitted from the line side of the line interface unit to the optical transmission unit for transmission, and the reverse process is implemented.
  • the external interface optical interface on the branch side is generated by the optical module.
  • the branch interface unit converts the customer side service into the backplane side tributary signal and the reverse process.
  • the backplane side branch is sent to the electrical cross switching unit through the backplane interface. .
  • the air-crossing function of the signal is realized by the backplane of the system, and the cross-connection of the high-speed data on the backplane side of the line interface unit and the backplane side of the branch interface unit is completed.
  • the electrical cross-switching unit is a switching execution unit of the channel sharing protection, and the protection switching of the sub-wavelength level signal can be completed by the unit, and the sub-wavelength signal is crossed by the back-plate signal, and is assigned to the working wavelength or the protection wavelength as the transmission wavelength completion signal transmission.
  • the electrical cross-switching unit serves as the core of the entire channel shared protection system, and realizes the sub-wavelength level cross-connection of the branch interface unit and the line interface unit.
  • Line interface unit The convergence multiplexing process and the inverse process of the electrical signal received from the back-board electrical cross-switching unit are converted to an optical signal that satisfies G.692 and transmitted through the optical transmission unit to implement DWDM transmission.
  • the line interface unit port is divided into a backplane side and a line side, and the backplane side signal is from the backplane, and is connected to the backplane electrical crossover switching unit.
  • the backplane signal can be multiple subrate signals, and the number is large and the rate is low, so the backplane side
  • the signal is also called the tributary signal;
  • the external interface on the line side is an optical signal, which is generated by the optical module, and the line interface unit converts the line side service into the back side side tributary signal and its inverse process, and the back board side branch passes through the back board.
  • the interface is sent to the electrical crossover unit.
  • APS control unit The information collection, protocol processing, and switching commands are delivered by the APS controller.
  • the electrical cross-switching unit of the local node is instructed to complete the switching.
  • the APS information between the nodes can be transmitted through the monitoring system or the optical transport network (OTN) of the line interface board to implement channel-related APS information transmission.
  • Example 2 applies the above method and unit to a 10G optical transmission system
  • FIG. 6 is implemented in accordance with the present invention.
  • the line interface unit has a line rate of 10G
  • the backplane side branch can adopt a 2.5G signal.
  • FIG. 7 is a protection system according to an embodiment of the present invention.
  • a schematic diagram of implementing the protection of the node system, as shown in FIG. 7, the principle of implementing the shared protection of the sub-wavelength channels by the electrical crossover technology and the state of the electrical crossover before and after the switching are specifically described.
  • a node Under normal working conditions, the A node is connected from the AAdd of its branch interface unit, through the virtual connection (Virtual Connection, called VC), and the service is assigned to the branch interface unit.
  • a backplane side branch such as the backplane side branch 1, and the backplane side branch 1 signal is assigned to the backplane side branch of the line unit by the electrical crossover unit according to the assigned port calculated by the APS control unit
  • the backplane side branch 1 is aggregated and sent from the BWO port of the A node through the line interface unit.
  • the BWI port of the working line interface unit of the Node B receives, the signal is aggregated to the back side side branch 1, and the signal of the backplane side branch 1 is passed according to the APS control unit.
  • the assigned port is calculated, and the electrical cross-switching unit is crossed to the branch-side back-side branch 1 of the branch unit, and the branch-interface unit is electrically converted into a service signal from the ADROP of the Node B. As shown by the solid line in Figure 7.
  • the source and destination nodes A and B of the service are switched over the backplane side tributary signal, and the backplane side branch 1 is connected to the backplane side branch of the line interface unit having the BWO port. And switching to the backplane side branch 1 of the line interface unit having the APO port for transmission, so that the line interface unit of the two protection directions of the C node performs the through connection of the backplane side branch, as shown by the dotted line in FIG. .
  • Step 1 Configure the working path and protection path of the dual-fiber bidirectional channel shared protection service, such as the working path. As shown by the solid line in Fig. 7, the protection path is as shown by the broken line in Fig. 7.
  • the line unit provides a wavelength channel transmission service that satisfies G.692.
  • the node uses two line port units in each direction, one for work and one for protection.
  • the two line interface units in the A direction are respectively defined as: A-direction working line output port AWO, the signal is outputted to the fiber by the port; the line input port is AWI, receiving the reverse signal; the A-direction protection line output port is APO, the protection signal is output to the fiber by this port; the protection signal input port is API, and the reverse protection signal is received.
  • the B direction is BWO, BWI, BPO, BPI.
  • the back signal monitoring point monitors the quality of the received signal in real time.
  • the APS controller controls the electrical cross-switching unit to perform In the protection switching operation, the sub-wavelength level signal of the source and sink sites of the service is switched.
  • the AB node at this time is the switching state of the backplane side branch 1, and the C node is connected to the through state through the electrical cross switching unit.
  • the back signal monitoring point monitors the quality of the received signal in real time.
  • the APS controller controls the electrical cross switching unit to perform a protection recovery operation.
  • a method and a system for implementing sub-wavelength channel shared protection by using an electrical crossover method provided by a specific embodiment of the present invention, wherein the cross-grain is determined by the sub-wavelength of the back-side side branch, and the switching trigger is triggered by the back-side side branch fault. Switching to the condition, thus solving the disadvantage that the wavelength-level channel sharing protection can trigger the protection switching only in the group path fault; meanwhile, it is proposed to use the electric cross-over method to realize the sub-wavelength channel shared ring network protection switching in the dense wavelength division multiplexing system.
  • a high-reliability switching implementation is provided, and the processing service is also more flexible, and a channel sharing protection switching method and system with finer granularity is realized. It should be understood that those skilled in the art can modify or change according to the description of the above scheme, such as single-fiber bidirectional channel, four-way unidirectional channel, etc., and all these improvements and transformations belong to the present invention. The scope of protection of the claims. Obviously, those skilled in the art should understand that the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalents, and modifications made within the spirit and principles of the present invention. Zhang Jin, etc., should be included in the protection of the present invention Within the scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

用电交叉方式实现子波长通道共享保护的方法及系统 技术领域 本发明涉及光通信密集型波分复用 DWDM网络体系服务领域 , 尤其涉 及的是一种用电交叉方式实现子波长通道共享保护的方法及系统。 背景技术 在光传输网络中, 网络的生存性是重要的设计准则, 网络 莫和业务容 量的日益扩大以及高质量业务的市场需要, 使得光传输网络保护功能的重要 性也日渐增加。 尤其是, 近几年面向互联网协议 ( Internet Protocol , 筒称为 IP ) 的新一 代传送网络构架的形成, 从 IP over 同步数字体系 (Synchronous Digital Hierarchy, 筒称为 SDH )和波分复用 ( Wavelength Division Multiplexing, 筒 称为 WDM ) 向 IP over 密集型波分复用 ( Dense Wavelength Division Multiplexing, 筒称为 DWDM )逐步演进, 使得在 IP over DWDM的构架下, 对光层的组网和保护提出了更高的要求。 虽然, WDM技术日渐成熟, 为传输容量的发展和成本的降氐提供了最 直接有效的技术手段, 但是, 提高业务传输的可靠性, 还需要在光传输网络 中采取保护措施。 与 SDH 的保护相类似, DWDM 城 i或网最常见的组网方式是环网; DWDM 有多种保护倒换方式, 一种保护倒换方式是双纤双向通道共享保护 倒换方式, 图 1是才艮据相关技术的双纤双向通道共享保护系统波长分配的示 意图, 如图 1所示, 该保护方式的基本原理是: 相邻节点之间有两根工作光 纤, 即内环光纤 102和外环光纤 101 , 如果内环光纤 102的工作波长为 S1 , 则预留外环光纤 101的 S1工作波长通道 103 ,作为和内环节点之间所有占用 S1 波长工作业务的共享保护通道; 同理, 如果外环光纤 101 的工作波长为 S2 , 则预留内环光纤 102的 S2工作波长通道 104, 作为和外环节点之间所有 占用 S2波长工作业务的共享保护通道, 通道共享由此得名。 为实现该保护功能,通常的 法是采用光开关的倒换实现业务工作通道 和保护通道之间的倒换。 例如, 中国专利 《02145080.3全光网络两纤双向通 道共享保护装置》 , 介绍了一种利用光开关实现通道共享保护的方法和装置 , 图 2是才艮据相关技术的双纤双向通道共享保护原理的示意图, 如图 2所示, 光倒换开关 205控制倒换前业务路由 207到倒换后业务路由 208 , 共享保护 通道接入开关 206控制工作通道 203和共享保护通道 204, 当 AB之间的业 务发生故障时用图中交叉符号示意; 一方面, 光开关倒换的方法以光功率作 为启动的倒换条件, 因此对业务的性能监测不足; 另一方面, 倒换颗粒以波 长为粒度, 因为, 随着 WDM的汇聚类业务的增多, 网络带宽中同一波长的 容量能够同时满足多个低速率业务的传输, 通常称为子波长, 这就要求倒换 粒度要以子波长为单位 , 因此不能实现颗粒度更细的通道共享保护。 发明内容 针对相关技术中波长级通道共享保护只在群路故障才能触发保护倒换 的问题的问题而提出本发明, 为此, 本发明的主要目的在于提供一种实现子 波长通道共享保护的方法及系统 , 以解决上述问题至少之一。 为了实现上述目的, 才艮据本发明的一个方面, 提供了一种用电交叉方式 实现子波长通道共享保护的方法。 才艮据本发明的用电交叉方式实现子波长通道共享保护的方法包括:
A、 一支路接口单元将客户侧业务解汇聚成多个背板侧支路子波长信 号 , 并通过背板侧接口送到一电交叉倒换单元;
B、 电交叉倒换单元将该子波长信号交叉指配到一线路接口单元背板侧 支路;
C、 线路接口单元将交叉指配后的子波长信号汇聚成线路信号传输到光 纤线路中。 所述的方法, 其中, 步骤 B 中该子波长信号由原背板侧支路线路接口 单元的工作通道被电交叉倒换单元交叉指配到线路接口单元的保护通道。 所述的方法, 其中, 步骤 B 中电交叉倒换单元按照当前节点自动保护 切换控制器发出的指配状态, 对背板侧支路子波长信号进行交叉指配操作。 所述的方法, 其中, 其特征在于, 所述步骤 B 中对背板侧支路子波长 信号进行交叉指配操作具体还包括: Bl、 配置子波长通道共享保护业务的工作路径和保护路径, 由线路接 口单元提供通道传输业务, 同时提供工作通道和保护通道;
B2、 实时监测接收的子波长信号质量, 背板侧支路发生子波长级别故 障时由电交叉倒换单元进行保护倒换操作; B3、 当子波长级别故障消失后, 自动保护切换控制器控制电交叉倒换 单元执行保护恢复操作。 所述的方法, 其中, 其特征在于, 步骤 B1中的工作通道和保护通道均 按正反双方向单独配置。 所述的方法, 其中, 步骤 B 1中的工作通道和保护通道还配置有各自独 立的输入端口和输出端口。 所述的方法, 其中, 其特征在于, 步骤 B2中子波长级别故障包括信号 丢失、 帧丢失或信号失效。 为了实现上述目的 , 才艮据本发明的另一个方面 , 提供了一种用电交叉方 式实现子波长通道共享保护的系统。 根据本发明的一种用电交叉方式实现子波长通道共享保护的系统,基于 背板、 背板侧支路及接口、 线路接口和自动保护切换控制器的多级结构, 包 括支路接口单元、 线路接口单元和光传送单元, 其中, 在位于支路接口单元 和线路接口单元之间的背板上设置有电交叉倒换单元, 通过自动保护切换控 制器指配, 用于实现子波长通道共享保护倒换操作。 所述的系统, 其中, 线路接口单元按正反双方向并列配置有工作通道和 保护通道, 用于子波长通道共享保护业务的工作路径和保护路径。 所述的系统, 其中, 工作通道和保护通道还配置有各自独立的输入端口 和输出端口, 用于交叉指配子波长通道共享保护倒换。 通过本发明, 采用交叉粒度以背板侧支路的子波长为级别, 倒换触发以 背板侧支路故障触发保护倒换为条件, 解决了波长级通道共享保护只在群路 故障才能触发保护倒换的弊端; 同时, 提出利用电交叉方式来实现密集型波 分复用系统中子波长通道共享环网保护倒换, 提供了一种高可靠性的倒换实 现方式, 处理业务也更加灵活, 实现了保护颗粒度更细的一种通道共享保护 倒换方法和系统。 附图说明 图 1是根据相关技术的双纤双向通道共享保护系统波长分配的示意图; 图 2是才艮据相关技术的双纤双向通道共享保护原理的示意图; 图 3 是才艮据本发明实施例的子波长双纤双向通道共享保护的单节点结 构框图; 图 4 是才艮据本发明实施例的子波长双纤双向通道共享保护的原理示意 图; 图 5 是才艮据本发明实施例的子波长双纤双向通道共享保护的控制方法 ¾ u程图; 图 6是才艮据本发明实施例的保护系统三节点业务分布的实施示意图; 图 7 是 居本发明实施例的保护系统三节点系统实现保护的实施示意 图。 具体实施方式 功能相克述 本发明利用电交叉技术实现子波长通道共享保护的方法和系统,更具体 的说, 是一种光纤传输网络通道共享环网保护中利用电交叉方式现实子波长 粒度的通道共享保护的方法和实现系统, 主要核心点在于, 通过配置正反双 方向各自独立的子波长工作通道和保护通道, 在当前节点自动保护切换控制 器的指配下, 由电交叉倒换单元实现交叉共享保护通道倒换, 解决了波长级 通道共享保护只在群路故障才能触发保护倒换的弊端; 同时, 提出利用电交 叉方式来实现密集型波分复用系统中子波长通道共享环网保护倒换, 提供了 一种高可靠性的倒换实现方式, 处理业务也更加灵活, 实现了保护颗粒度更 细的一种通道共享保护倒换方法和系统。至于 G.692、 WDM、DWDM和 IP over DWDM等技术为本领域技术人员所熟知, 在此不再赞述。 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互组合。 下面将结合附图, 对本发明用电交叉方式实现子波长通道 共享保护的方法及系统的具体实施方式和实施例加以详细说明。 在以下实施例中,在附图的流程图示出的步骤可以在诸如一组计算机可 执行指令的计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但 是在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤。 方法实施例 才艮据本发明的实施例,提供了一种电交叉技术实现子波长通道共享保护 的方法, 该方法包括以下步骤: 步骤一:由支路接口单元将客户侧业务解汇聚成四个子波长级背板侧支 路信号, 并通过背板侧接口送到电交叉倒换单元。 步骤二: 电交叉倒换单元 艮据当前节点自动保护切换 ( Automatic Protection Switching, 筒称为 APS ) 控制器发出的指配状态, 将该支路接口 单元的四个背板侧支路子波长信号交叉指配到线路接口单元背板侧支路;即 , 该子波长信号由原背板侧支路线路接口单元的工作通道被电交叉倒换单元交 叉指配到线路接口单元的保护通道。 步骤三:线路接口单元将交叉指配后的四个背板侧支路子波长信号汇聚 成线路信号传输到光纤线路中。 根据实际情况,还可以将四个背板侧支路子波长信号解汇聚成多个背板 侧支路子波长信号。 图 5是才艮据本发明实施例的子波长双纤双向通道共享保 护的控制方法流程图, 如图 5所示, 电交叉倒换单元进行交叉指配的方法包 括如下的步骤 S510至步骤 S550: 步骤 S510, 配置子波长通道共享保护业务的工作路径和保护路径。 线 路接口单元提供满足包含光放大器的多通道系统之光介面 G.692的波长通道 传输业务, 同时提供工作通道和保护通道, 按正反双方向单独配置, 并配置 有各自独立的输入端口和输出端口; 图 3是才艮据本发明实施例的子波长双纤 双向通道共享保护的单节点结构框图, 图 4是才艮据本发明实施例的子波长双 纤双向通道共享保护的原理示意图, 如图 3和 4所示, 在双纤双向环网系统 中, A向工作通道的输入端口为 AWI ( A way Work Input, 筒称为 AWI ), A 向工作通道的输出端口为 AWO ( A way Work Output, 筒称为 AWO ), A向 保护通道的输入端口为 API ( A way Protect Input, 筒称为 API ), A向保护通 道的输出端口为 APO ( A way Protect Output, 筒称为 APO ); B向工作通道 的输入端口为 BWI ( B way Work Input, 筒称为 BWI ), B向工作通道的输出 端口为 BWO ( B way Work Output, 筒称为 BWO ), B向保护通道的输入端 口为 BPI ( B way Protect Input, 筒称为 BPI ), B向保护通道的输出端口为 BPO ( B way Protect Output, 筒称为 BPO ); 节点的每个方向均提供波长级的 一个工作通道和一个反向保护通道。 步骤 S520, 背板侧信号监测点实时监测接收的子波长信号质量, 当信 号发生故障时, 指的是背板侧支路故障, 即子波长级别故障, 该故障可以是 信号丢失 (Loss Of Signal, 筒称为 LOS )、 帧丢失 ( Loss Of Frame, 筒称 为 LOF )、 或信号失效 ( Signal Fail, 筒称为 SF ) 等故障。 步骤 S530 , 判断业务信号检测点即背板侧信号监测点是否检测到前述 的信号故障, 是则进入步骤 S540 , 否则返回步骤 S520。 步骤 S540 , APS控制器控制电交叉倒换单元执行保护倒换操作 , 此时, 业务的源宿节点通过背板电交叉倒换单元倒换到反向保护通道, 其余站点通 过电交叉倒换单元联通为直通状态, 即在业务的源宿节点发生倒换, 其它站 点直通。 整个倒换过程仅由背板电交叉倒换单元来执行, 倒换粒度为背板信 号, 即子波长颗粒。 步骤 S550, 背板信号监测点实时监测接收信号的质量, 当信号故障消 失时, APS控制器控制电交叉倒换单元执行保护恢复操作, 即 APS控制器接 收到业务接收设备上报的告警消失消息, 控制电交叉倒换单元返回到工作通 路的操作; 否则, 没有接收到告警消失消息, 保护选择开关仍保持在保护倒 换状态。 系统实施例 实例一 下面对上述通道共享保护的系统进行具体说明 ,实现上述通道共享保护 的系统是一种基于背板、 背板侧支路及接口、 线路接口和 APS控制器的多级 结构 , 如图 3所示, 该系统主要包括以下部分:
1、 背板为所有支路接口单元、 电交叉倒换单元和线路接口单元提供一 个承载平台, 实现所有单板的子波长信号颗粒互连。
2、 光传送单元: 用于实现波长信号在节点之间的传输, 将由线路接口 单元输出的满足 G.692波长波分复用实现 DWDM传送。 光传送单元包括传 统波分中必要的单元设施, 例如, 合分波单元和放大单元等。 3、 支路接口单元: 用于实现业务接入, 实现和外界的业务交互。 支路 接口单元端口还分为背板侧和支路侧, 背板侧信号来自背板, 和电交叉倒换 单元相连; 业务信号由支路侧接入, 经封装复用处理为背板子速率信号, 经 电交叉倒换单元交叉至线路接口单元 , 由线路接口单元线路侧传输至光传送 单元进行传输, 及实现其逆过程。 支路侧对外接口光接口, 由光模块产生, 支路接口单元是将客户侧业务转换为背板侧支路信号及其逆过程, 背板侧支 路通过背板接口送到电交叉倒换单元。
4、 电交叉倒换单元: 由系统的背板实现信号的空分交叉功能, 完成线 路接口单元背板侧, 支路接口单元背板侧高速数据的交叉连接。 电交叉倒换 单元是通道共享保护的倒换执行单元, 通过该单元可以完成子波长级信号的 保护倒换, 子波长信号通过背板信号交叉, 指配至工作波长或者保护波长作 为承载波长完成信号的传送, 电交叉倒换单元作为整个通道共享保护系统的 核心 , 实现支路接口单元和线路接口单元的子波长级交叉连接。
5、 线路接口单元: 用于从背板电交叉倒换单元接收的电信号的汇聚复 用处理及其逆过程, 转换为满足 G.692 的光信号经光传送单元传输实现 DWDM 传输。 线路接口单元端口分为背板侧和线路侧, 背板侧信号来自背 板, 和背板电交叉倒换单元相连, 背板信号可以是多个子速率信号, 数量多 且速率低, 所以背板侧信号也称为支路信号; 线路侧对外接口是光信号, 由 光模块产生, 线路接口单元是将线路侧业务转换为背板侧支路信号及其逆过 程, 背板侧支路通过背板接口送到电交叉倒换单元。 6、 APS控制单元: 由 APS控制器实现信息收集、 协议处理以及倒换命 令的下发。 指挥本节点的电交叉倒换单元完成倒换, 节点间的 APS信息可以 通过监控系统传输或者线路接口板的光传送网 ( Optical Transport Network, 筒称为 OTN ) 开销 , 实现通道相关的 APS信息传递。 实例二 将上述方法和单元应用于 10G光传输系统中, 图 6是根据本发明实施 例的保护系统三节点业务分布的实施示意图, 如图 6所示, 线路接口单元的 线路速率为 10G, 背板侧支路可以采用 2.5G信号, 图 7是根据本发明实施例 的保护系统三节点系统实现保护的实施示意图, 如图 7所示, 对用电交叉技 术实现子波长通道共享保护的原理以及倒换前后的电交叉状态进行具体说 明。
AB之间业务的发送过程: 在正常工作状态下, A节点从其支路接口单 元的 AAdd上路, 通过虚连接 ( Virtual Connection, 筒称为 VC ) 指配, 业务指配到支路接口单元的一个背板侧支路, 例如背板侧支路 1 , 背板侧支 路 1的信号根据通过 APS控制单元计算出指配端口,通过电交叉倒换单元指 配到线路单元的背板侧支路, 例如背板侧支路 1 , 经过线路接口单元汇聚从 A节点的 BWO端口发送业务。
AB之间业务的接收过程: 在正常工作状态下, B节点的工作线路接口 单元的 BWI端口接收, 信号解汇聚到背板侧支路 1 , 背板侧支路 1的信号根 据通过 APS控制单元计算出指配端口,通过电交叉倒换单元交叉至支路单元 背板侧支路 1 , 经支路接口单元电光转换为业务信号从 B节点的 ADROP下 路。 如图 7中的实线所示。 当 AB之间的业务发生故障时, 业务的源宿站点 A和 B节点发生背板 侧支路信号的倒换, 背板侧支路 1 由有 BWO端口的线路接口单元的背板侧 支路 1 ,倒换到有 APO端口的线路接口单元的背板侧支路 1进行传送,从而, C节点的两个保护方向的线路接口单元进行背板侧支路的直通 , 如图 7中的 虚线所示。 其中, APS控制单元计算电交叉指配状态对背板侧支路信号进行交叉指 配的流程包括以下步骤: 第一步, 配置双纤双向通道共享保护业务的工作路径和保护路径, 工作 路径如图 7中的实线所示, 保护路径如图 7中的虚线所示。 线路单元提供满 足 G.692的波长通道传输业务。 本实施例双纤双向 DWDM系统中, 节点每 个方向采用两个线 口单元, 一个负责工作, 一个负责保护。 如 A向的两 个线路接口单元分别定义为: A 向的工作线路输出端口 AWO , 信号由此端 口输出到光纤中; 线路输入端口为 AWI, 接收反向信号; A向的保护线路输 出端口为 APO ,保护信号由此端口输出到光纤中;保护信号输入端口为 API , 接收反向的保护信号。 同理, B向分别为 BWO、 BWI、 BPO、 BPI。 第二步,背板信号监测点实时监测接收信号的质量,当信号发生故障时, 如 AB节点信号发生故障, 例如子波长级 LOS、 LOF或 SF故障时, APS 控制器控制电交叉倒换单元执行保护倒换操作, 业务的源宿站点子波长级信 号发生倒换, 此时的 AB节点为背板侧支路 1倒换状态, C节点通过电交叉 倒换单元联通为直通状态。 第三步,背板信号监测点实时监测接收信号的质量,当信号故障消失时, APS控制器控制电交叉倒换单元执行保护恢复操作。 以上具体实施方式中电交叉保护倒换技术才艮据实际应用可以采用现有 各种可能的方案, 为本领域技术人员所熟知, 在此也不再赘述。 本发明具体实施方式中所提供的用电交叉方式实现子波长通道共享保 护的方法及系统, 由于交叉粒度以背板侧支路的子波长为级别, 倒换触发以 背板侧支路故障触发保护倒换为条件, 从而, 解决了波长级通道共享保护只 在群路故障才能触发保护倒换的弊端; 同时, 提出利用电交叉方式来实现密 集型波分复用系统中子波长通道共享环网保护倒换, 提供了一种高可靠性的 倒换实现方式, 处理业务也更加灵活, 实现了保护颗粒度更细的一种通道共 享保护倒换方法和系统。 应当理解的是, 对本领域普通技术人员来说, 可以根据上述方案的说明 加以改进或变换, 例如单纤双向通道、 四紆单向通道等, 而所有这些改进和 变换都本应属于本发明所附权利要求的保护范围。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块 , 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 ?丈进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种用电交叉方式实现子波长通道共享保护的方法, 包括以下步骤:
A、 一支路接口单元将客户侧业务解汇聚成多个背板侧支路子波 长信号 , 并通过背板侧接口送到一电交叉倒换单元;
B、 所述电交叉倒换单元将该子波长信号交叉指配到一线路接口 单元背板侧支路;
C、 所述线路接口单元将交叉指配后的子波长信号汇聚成线路信 号传输到光纤线路中。
2. 根据权利要求 1所述的方法, 其特征在于, 所述步骤 B中该子波长信 号由原背板侧支路线路接口单元的工作通道被所述电交叉倒换单元交 叉指配到所述线路接口单元的保护通道。
3. 根据权利要求 2所述的方法, 其特征在于 , 所述步骤 B中电交叉倒换 单元按照当前节点自动保护切换控制器发出的指配状态, 对所述背板 侧支路子波长信号进行交叉指配操作。
4. 根据权利要求 3所述的方法, 其特征在于, 所述步骤 B中对所述背板 侧支路子波长信号进行交叉指配操作具体还包括:
Bl、 配置子波长通道共享保护业务的工作路径和保护路径, 由所 述线路接口单元提供通道传输业务, 同时提供工作通道和保护通道;
B2、 实时监测接收的子波长信号质量, 背板侧支路发生子波长级 别故障时由所述电交叉倒换单元进行保护倒换操作;
B3、 当子波长级别故障消失后, 所述自动保护切换控制器控制电 交叉倒换单元执行保护恢复操作。
5. 根据权利要求 4所述的方法, 其特征在于, 所述步骤 B1中的工作通道 和保护通道均按正反双方向单独配置。
6. 根据权利要求 4所述的方法 , 其特征在于 , 所述步骤 B 1中的工作通道 和保护通道还配置有各自独立的输入端口和输出端口。
7. 根据权利要求 5或 6所述的方法 , 其特征在于 , 所述步骤 B2中子波长 级别故障包括信号丢失、 帧丢失或信号失效。
8. 一种用电交叉方式实现子波长通道共享保护的系统, 基于背板、 背板 侧支路及接口、 线路接口和自动保护切换控制器的多级结构 , 包括支 路接口单元、 线路接口单元和光传送单元, 其特征在于, 在位于所述 支路接口单元和所述线路接口单元之间的背板上设置有电交叉倒换单 元, 通过自动保护切换控制器指配, 用于实现子波长通道共享保护倒 换操作。
9. 根据权利要求 8所述的系统 , 其特征在于 , 所述线路接口单元按正反 双方向并列配置有工作通道和保护通道, 用于子波长通道共享保护业 务的工作路径和保护路径。
10. 根据权利要求 9所述的系统, 其特征在于, 所述工作通道和保护通道 还配置有各自独立的输入端口和输出端口, 用于交叉指配子波长通道 共享保护倒换。
PCT/CN2009/073322 2008-08-21 2009-08-18 用电交叉方式实现子波长通道共享保护的方法及系统 WO2010020174A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008101420669A CN101345600B (zh) 2008-08-21 2008-08-21 一种用电交叉方式实现子波长通道共享保护的方法及系统
CN200810142066.9 2008-08-21

Publications (1)

Publication Number Publication Date
WO2010020174A1 true WO2010020174A1 (zh) 2010-02-25

Family

ID=40247500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073322 WO2010020174A1 (zh) 2008-08-21 2009-08-18 用电交叉方式实现子波长通道共享保护的方法及系统

Country Status (2)

Country Link
CN (1) CN101345600B (zh)
WO (1) WO2010020174A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101345600B (zh) * 2008-08-21 2012-05-23 中兴通讯股份有限公司 一种用电交叉方式实现子波长通道共享保护的方法及系统
CN101645750B (zh) 2009-09-02 2013-09-11 中兴通讯股份有限公司 分布式电交叉装置实现snc级联保护的系统和方法
CN106941373B (zh) * 2017-03-21 2019-09-17 烽火通信科技股份有限公司 一种在光传送网中实现广播业务保护的装置及方法
CN107528660B (zh) * 2017-06-29 2019-04-19 瑞斯康达科技发展股份有限公司 传输公务电话业务的方法和sdh终端设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1037492A2 (en) * 1999-03-15 2000-09-20 The Furukawa Electric Co., Ltd. Optical line switching system
US20030210870A1 (en) * 1999-10-06 2003-11-13 Graves Alan F. Switch for optical signals
CN1674469A (zh) * 2004-03-23 2005-09-28 华为技术有限公司 多光口光波长转换单元
CN1691550A (zh) * 2004-04-21 2005-11-02 华为技术有限公司 光通信网络中的业务保护装置及其方法
CN1946013A (zh) * 2006-10-08 2007-04-11 华为技术有限公司 业务信号节点交叉调度方法和系统
CN101345600A (zh) * 2008-08-21 2009-01-14 中兴通讯股份有限公司 一种用电交叉方式实现子波长通道共享保护的方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100346588C (zh) * 2001-10-29 2007-10-31 上海贝尔有限公司 用于波分复用光网的双纤双向通道/复用段倒换环系统
US8023825B2 (en) * 2006-04-04 2011-09-20 Cisco Technology, Inc. Optical switching architectures for nodes in WDM mesh and ring networks
CN100568844C (zh) * 2007-10-29 2009-12-09 中兴通讯股份有限公司 用于光传输环形网络的子波长倒换和阻错方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1037492A2 (en) * 1999-03-15 2000-09-20 The Furukawa Electric Co., Ltd. Optical line switching system
US20030210870A1 (en) * 1999-10-06 2003-11-13 Graves Alan F. Switch for optical signals
CN1674469A (zh) * 2004-03-23 2005-09-28 华为技术有限公司 多光口光波长转换单元
CN1691550A (zh) * 2004-04-21 2005-11-02 华为技术有限公司 光通信网络中的业务保护装置及其方法
CN1946013A (zh) * 2006-10-08 2007-04-11 华为技术有限公司 业务信号节点交叉调度方法和系统
CN101345600A (zh) * 2008-08-21 2009-01-14 中兴通讯股份有限公司 一种用电交叉方式实现子波长通道共享保护的方法及系统

Also Published As

Publication number Publication date
CN101345600B (zh) 2012-05-23
CN101345600A (zh) 2009-01-14

Similar Documents

Publication Publication Date Title
US6950391B1 (en) Configurable network router
US7933266B2 (en) Configurable network router
US6856600B1 (en) Method and apparatus for isolating faults in a switching matrix
US7266297B2 (en) Optical cross-connect
US7170852B1 (en) Mesh with projection channel access (MPCA)
US7602703B2 (en) Method and system for providing ethernet protection
CN101237254A (zh) 光纤保护倒换装置、方法及具有该装置的无源光网络系统
JP2002247038A (ja) ネットワークにおけるリング形成方法及び障害回復方法並びにリング形成時のノードアドレス付与方法
US7170851B1 (en) Systems and methods for automatic topology provisioning for SONET networks
WO2005083499A1 (en) Reroutable protection schemes of an optical network
US7002907B1 (en) System and methods for automatic equipment provisioning for SONET networks
WO2009082894A1 (fr) Procédé, système et équipement pour la mise en œuvre d'une commutation automatique de protection entre cartes principales et de réserve
US7058012B1 (en) Systems and methods for automatic end-to-end path provisioning for SONET networks
WO2015007134A1 (zh) 光突发交换环网中实现自动保护倒换的方法、系统及节点
WO2010020174A1 (zh) 用电交叉方式实现子波长通道共享保护的方法及系统
US20040085954A1 (en) Out-of-band signalling apparatus and method for an optical cross connect
CN102263587B (zh) 光网络单元的光口切换方法和系统
WO2011150739A1 (zh) 一种otn网络中共享保护的方法、系统和节点设备
JP2009017190A (ja) Sonet/sdh装置
WO2008052398A1 (fr) Système et procédé destinés à éviter l'auto-excitation de protection du partage de canal du réseau en boucle optique
WO2011017863A1 (zh) 光数据单元环路共享保护控制方法与装置
JP2000349861A (ja) 通信装置および通信システム
Li et al. Resource-efficient protection scheme for optical service units in fifth-generation fixed networks
JP2012235409A (ja) 光回線ユニット、局側装置および通信経路制御方法
JP2002044148A (ja) ネットワーク内でトラフィックをルーティングする方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09807873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09807873

Country of ref document: EP

Kind code of ref document: A1