WO2010020155A1 - 旋风分离器、旋风分离装置及装有该装置的真空吸尘器 - Google Patents

旋风分离器、旋风分离装置及装有该装置的真空吸尘器 Download PDF

Info

Publication number
WO2010020155A1
WO2010020155A1 PCT/CN2009/073210 CN2009073210W WO2010020155A1 WO 2010020155 A1 WO2010020155 A1 WO 2010020155A1 CN 2009073210 W CN2009073210 W CN 2009073210W WO 2010020155 A1 WO2010020155 A1 WO 2010020155A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclone
inner cylinder
cyclone separator
return
outer cylinder
Prior art date
Application number
PCT/CN2009/073210
Other languages
English (en)
French (fr)
Inventor
钱东奇
郑德钦
Original Assignee
Qian Dongqi
Zheng Deqin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qian Dongqi, Zheng Deqin filed Critical Qian Dongqi
Publication of WO2010020155A1 publication Critical patent/WO2010020155A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/08Vortex chamber constructions
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/16Arrangement or disposition of cyclones or other devices with centrifugal action
    • A47L9/1608Cyclonic chamber constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C7/00Apparatus not provided for in group B04C1/00, B04C3/00, or B04C5/00; Multiple arrangements not provided for in one of the groups B04C1/00, B04C3/00, or B04C5/00; Combinations of apparatus covered by two or more of the groups B04C1/00, B04C3/00, or B04C5/00

Definitions

  • the present invention relates to a cyclone separator, and a cyclone separation apparatus equipped with the cyclone separator and a vacuum cleaner thereof. Background technique
  • the vacuum cleaner uses its built-in motor to drive the fan to generate negative pressure for dust removal. It does not fly dust during operation and can absorb dust that is not easy to remove in the gap and on the carpet. It is easy to use and simple to operate. Used in homes and public places.
  • vacuum cleaners With the improvement of people's living standards, the awareness of environmental protection is gradually increasing. In addition to the functions of vacuum cleaners, the requirements for vacuum cleaners will take into account the comprehensive factors such as service life, noise and dust collection efficiency. As a result, vacuum cleaners with cyclone separation devices have emerged as a result of universal acceptance.
  • the conventional cyclone separation device is described in detail in the patent document EP0042723B1, the applicant of which is incorporated herein by reference.
  • This conventional cyclone separation unit is equipped with a dual cyclone separator which is modified by a single stage cyclone technology.
  • the primary cyclone separator is located upstream of the secondary cyclone and the air outlet of the primary cyclone is in communication with the air inlet of the secondary cyclone.
  • Each cyclone separator includes a cyclone body, an air inlet, and an air outlet.
  • the cyclone body includes a cavity formed by a side wall pivotally closed with a center line of the corresponding cyclone, the air inlet Arranging on one side of the upper portion of the cyclone body in a direction tangential to the cyclone body, thereby directing airflow into the cyclone body, the incoming airflow can be easily rotated downward.
  • the air outlet is disposed on a top surface of the cyclone body.
  • both the air inlet and the air outlet are arranged at the upper portion of the cyclone separation device, the gas flow is in operation, and the gas and solid two-phase flow is separated from top to bottom, and then passes through the air from bottom to top.
  • the outlet is released, and the single-disconnected airflow has a long flow path, a large pressure drop, and high energy consumption.
  • the incoming downward swirling airflow collides with the discharged ascending airflow in the inner cavity of the cyclone body, so that the dust collecting efficiency of the cyclone separating device is thereby reduced.
  • the publication number is CN1840239A
  • the applicant's patent document for Samsung Gwangju Electronics Co., Ltd. discloses an improved technical solution.
  • the invention provides an external space for inhalation from A cyclone dust separation device that separates dust from the gas and discharges the separated dust.
  • the apparatus includes: at least one first cyclone body 120 having a tubular shape and forming a first cyclone chamber 121 for rotating outside air therein; at least one second cyclone body 140 forming air for discharging from the first cyclone chamber 121 a second cyclone chamber 142 in which the dust is again rotated to separate the dust, wherein the outside air is drawn in through the air inlet 122 at the lower end of the first cyclone chamber 121 and is discharged through the air outlet 125 at the upper end of the first swirl chamber 121, from the first cyclone The air discharged from the chamber is drawn in through the air inlet 143 at the upper end of the second cyclone chamber 142 and discharged through the air outlet 146 at the upper end of the second cyclone chamber.
  • the air taken in by the air inlet reaches the air outlet by generating an air flow in one direction, the air flow path is shortened, and the air flow moving in the opposite direction is prevented. Collision reduces suction loss and improves cleaning efficiency.
  • the airflow separated by the first cyclone unit directly enters the second cyclone unit through the air outlet of the first cyclone unit, and then separated by the second cyclone gas-solid separation, and the separated airflow passes through the second cyclone unit.
  • the air outlet is released. From the point of view of the entire separation process, the air flow from the air inlet entering the first cyclone unit to the air outlet exiting the air outlet of the second cyclone unit, the direction of the air flow is a single route, and there is no backflow of gas.
  • a liquid-liquid circulating liquid-solid separator which comprises an inner and outer cylinder, and a discharge groove is opened above the inner cylinder to be liquid-solidified. After the cylinder is separated once, it enters the outer cylinder from the discharge tank for secondary separation.
  • the separator relates to a large-scale separation device for industrial applications, and is used for liquid-solid separation, and the proportional relationship between the flow rate of a part of the fluid for secondary separation from the discharge tank into the outer cylinder and the flow rate of the newly-introduced fluid is not specifically limited. Therefore, the technical solutions disclosed in this patent document are similar in principle to the present invention, but are fundamentally different. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a cyclone separator, a cyclone separating device equipped with the cyclone separator, and a vacuum cleaner, in which the airflow direction is completely changed and a part of the airflow is provided in the separator.
  • the recirculation cycle is carried out, and the separation efficiency is high and the gas-solid separation is thorough.
  • the operation of the low-power electric fan is adopted to achieve the purpose of energy saving, consumption reduction and environmental protection.
  • a cyclone separator comprising an inner cylinder and an outer cylinder, an outer wall of the inner cylinder and an inner wall of the outer cylinder
  • An annular gap is formed between the lower end of the inner cylinder, an air inlet is formed on the outer cylinder wall, an air outlet is disposed at an upper end of the outer cylinder, and a return portion is disposed between the upper end of the inner cylinder and the air outlet;
  • the air inlet at the lower end of the outer cylinder enters the separator tangentially, a part of the separated airflow is discharged from the air outlet, and the other part is separated again from the return portion through the above-mentioned annular gap, and the separated return gas enters the inner cylinder and newly enters.
  • the gas stream is mixed and separated again.
  • the lower end of the outer cylinder (301) may be closed.
  • the return flow of the reflux gas is 0.1-0.2 times the amount of intake air, preferably 0.15 times the amount of intake air.
  • the upper end of the outer cylinder extends from the side wall toward the center to form an end cover, and the middle of the end cover extends toward the inside of the cylinder to form a skirt, and the air outlet is surrounded by the skirt.
  • the reflow portion can achieve the purpose of reflow by adopting various structural forms, and can be a plurality of return holes opened in the upper portion of the inner cylinder, and the return hole can be opened at the upper portion of the inner cylinder wall or at the upper end of the inner cylinder A plurality of recessed return ports are provided along the circumference.
  • the return portion may be an axial head gap provided between the upper end surface of the inner cylinder and the lower end surface of the skirt.
  • the return portion may be a gap between the inner wall of the inner cylinder and the outer wall of the skirt, and the effective cross-sectional area of the air outlet enclosed by the skirt is 20%-60 of the effective cross-sectional area of the inner cylinder %.
  • the reflow portion is one of the above structures or a combination thereof.
  • the shape of the air inlet can also adopt various structures, and the shape of the air inlet is one of a circular shape, a rectangular shape, a diamond shape and an elliptical shape, and the height of the air inlet cross section is The width ratio is 1-2.5.
  • the air inlets are plural, and the air flow is staggered along the axial height and the radial angle according to the size of the spiral lead in the inner cylinder. If two air inlets are used, the angle between the two is usually 180°, and the axial spacing is close to half of the spiral lead.
  • the shape of the return port is any one of a rectangular shape, a semi-circular arc shape, and a wave shape.
  • the lower end of the outer cylinder is a cone or a straight tube of considerable length.
  • the outer cylinder and the inner cylinder are preferably disposed coaxially.
  • the present invention also provides a multi-stage cyclone separation apparatus which is formed by a multi-stage cyclone separator in series, and at least one of the multi-stage cyclone separators is the above-mentioned cyclone separator.
  • the plurality of stages are two stages, and includes a primary cyclone separator and a secondary cyclone separator, the secondary cyclone separator being arranged in parallel by a plurality of the above-mentioned cyclones.
  • the return flow rate of the reflux gas is 0.1-0.2 times the amount of intake air, preferably 0.15 times the amount of intake air.
  • the upper end of the outer cylinder extends from the side wall toward the center to form an end cover, and the middle portion of the end cover extends toward the inside of the cylinder to form a skirt, and the air outlet is surrounded by the skirt.
  • the return portion is a plurality of return holes formed in an upper portion of the inner cylinder, and the return holes may be opened at an upper portion of the inner cylinder wall or a plurality of recessed return openings of the inner cylinder at the upper end.
  • the return portion is an axial head gap provided between the upper end surface of the inner cylinder and the lower end surface of the skirt.
  • the return portion is a gap between the inner wall of the inner cylinder and the outer wall of the skirt, and the effective sectional area of the air outlet is 20%-60% of the effective cross-sectional area of the inner cylinder ;
  • the reflow portion is one of the above structures or a combination thereof.
  • the present invention also provides a vacuum cleaner comprising a vacuum cleaner body and a suction head, wherein the vacuum cleaner body is provided with a cyclone separation device, and the cyclone separation device is the above-mentioned cyclone separation device.
  • the structure of the invention is arranged to realize partial circulation of the airflow, multiple separation, prevention of short circuit of the airflow and re-winding of the dust particles after the precipitation, so that the separation efficiency is greatly improved, and the gas-solid separation is more thorough;
  • FIG. 1 is a schematic view showing the internal structure of an existing vacuum cleaner
  • FIG. 2 is a schematic structural view of a cyclone separator of the present invention
  • 3A-3D are schematic views showing the shape of a return port of the cyclone separator of the present invention.
  • 4A-4D are schematic views showing the shape of an air inlet of the cyclone separator of the present invention.
  • Figure 5 is a cross-sectional view taken along line A-A of Figure 2;
  • Figure 6 is a schematic structural view of a multi-stage cyclone separation device of the present invention.
  • Figure 7 is a perspective view of the upright vacuum cleaner of the present invention
  • Figure 8 is a cross-sectional view taken along line BB of Figure 6;
  • Figure 9 is a perspective view of a horizontal vacuum cleaner of the present invention.
  • Figure 10 is a cross-sectional structural view of the cyclone separation device of the horizontal vacuum cleaner of Figure 9. detailed description
  • FIG. 2 is a schematic structural view of a cyclone separator according to the present invention.
  • the present invention provides a cyclone separator including an inner cylinder 300 and an outer cylinder 301, and an outer wall and an outer cylinder of the inner cylinder 300.
  • An annular gap 302 is formed between the inner walls of the body 301, the lower end of the inner cylinder 300 is an open end, the lower end of the outer cylinder 301 is closed, an air inlet 303 is defined in the outer cylinder wall, and an air outlet 304 is disposed at an upper end of the outer cylinder 301.
  • a reflow portion is provided between the upper end of the cylinder 300 and the air outlet 304.
  • the gas stream enters the separator from the air inlet 303, a portion of the separated gas stream is discharged from the air outlet 304, and another portion is secondarily separated from the reflux portion via the annulus 302, and the separated gas flows back from the lower end of the inner cylinder 300 into the inner cylinder.
  • the body 300 is mixed with the fresh air stream entering from the air inlet 303, separated again, and thus recirculated and subjected to multiple separations.
  • the lower end of the outer cylinder 301 may be a cone 3011.
  • the upper end of the outer cylinder 301 extends from the side wall 306 toward the center to form an end cover 307.
  • the middle portion of the end cover 307 extends toward the inside of the cylinder to form a skirt 305.
  • the space enclosed by the skirt 305 constitutes an outer cylinder.
  • the reflow portion disposed between the upper end of the inner cylinder 300 and the air outlet 304 can adopt various structural forms.
  • the reflow portion includes a return hole that is opened on the wall of the inner cylinder 300, and the return hole can be The return hole is opened in the upper part of the inner wall of the inner cylinder 300, or may be a plurality of recessed return ports 308 on the upper end of the inner cylinder 300, as shown in FIGS. 3A-3D, according to different design requirements, reflow
  • the shape of the port 308 may be any one of a rectangular shape, a semi-circular arc shape, and a wave shape. Only the above several structural forms are listed in the drawings, and the single practical application is not limited thereto.
  • the reflow portion further includes a reflow headspace between the upper end of the inner cylinder 300 and the air outlet 304, i.e., a reflow headspace 309 formed between the upper end surface of the inner cylinder 300 and the lower end surface of the skirt 305.
  • a reflow headspace 309 is not less than 0 mm.
  • the return portion may also include a gap 310 between the inner wall of the inner cylinder 300 and the outer wall of the skirt 305.
  • the above three kinds of reflow portions may be used singly or in combination, and as shown in Fig. 2, the combined reflow effect is better.
  • the upper end surface of the inner cylinder 300 may be semi-closed, that is, only an intermediate outlet is left in contact with the skirt 305, and the remaining portion is closed, and the return gas is only from the return port. 308 discharge;
  • the reflux headspace 309 is used alone as the reflow portion, the return port 308 may not be opened at the upper end of the inner cylinder 300, so that the return gas is discharged only by the reflow headspace 309.
  • the air inlet is opened at the bottom of the inner cylinder, and the pressure loss and power consumption are 1/3 of the original.
  • the return flow is 0.1 times the intake air volume
  • the total internal flow of the inner cylinder is 1.1 times the original flow rate
  • the total pressure loss existing
  • the cyclone separator provided by the present invention can basically select a motor whose power is less than half of the original, the motor power is small, the cost is reduced, the power consumption is reduced, and the noise is reduced. The temperature rise is reduced.
  • the shape of the air inlet 303 can also adopt various structural forms, as shown in the figure.
  • the air inlet 303 is opened on the outer cylinder wall, and the ratio of the height to the width of the cross section is 1-2.5.
  • the air inlet 303 may be provided in plurality, such as the air inlets 303 and 303' shown in Fig. 2, and an axial distance and a radial angle difference are provided between the plurality of air inlets.
  • the spiral lead in the inner cylinder can be adjusted, thereby affecting the number of revolutions, allowing the dust particles to have sufficient time to concentrate on the inner cylinder wall and then into the reflux chamber.
  • Fig. 5 is a cross-sectional view taken along line A-A of Fig. 2. As shown in Fig. 5, when two air inlets 303 and 303' are used, the angle between the two is generally 180°, and the axial spacing is close to half of the spiral lead.
  • the effective cross-sectional area of the air outlet 304 is generally between 20% and 60% of the effective cross-sectional area of the inner cylinder 300.
  • the outer cylinder 301 and the inner cylinder 300 are preferably disposed coaxially.
  • the working process of the cyclone provided by the present invention is as follows:
  • the airflow is as shown by the arrowed curve in the figure, and the airflow entraining impurities such as dust particles enters the whirlwind tangentially through the air inlet 303.
  • the inner cylinder of the separator causes the airflow to move in a rotary upward motion.
  • the axial velocity of the upward flow decreases due to the sudden expansion of the flow area, and the airflow contains large particulate impurities under the action of gravity.
  • the precipitate is deposited on the bottom plate of the outer cylinder 301; the medium-grain impurities are spirally moved along with the airflow in the inner cylinder 300, and are smashed toward the inner wall of the inner cylinder 300 due to the centrifugal force, and then settled to the outer cylinder along the inner cylinder wall.
  • the gap 309 between the upper end faces is recirculated into the passage formed by the annulus 302 between the inner and outer cylinders for separation and settlement.
  • the small amount of reflux airflow enters from below the inner cylinder and is mixed with the airflow entering the air inlet 303 to continue.
  • the reflux cycle is performed, so that the separation is repeated a plurality of times; and most of the cleaner gas flow escapes from the inner cylinder 300 into the air outlet 304.
  • Fig. 6 is a schematic view showing the structure of a multi-stage cyclone separating apparatus according to the present invention.
  • the present invention further provides a multi-stage cyclone separating apparatus which is composed of a multi-stage cyclone separator.
  • the multi-stage cyclone separation device shown in FIG. 6 is a secondary cyclone separation device, including a primary cyclone separator and a secondary cyclone separator, and the two-stage cyclone separator is used as shown in FIG. 2 . Cyclone separator.
  • the primary cyclone separator and the secondary cyclone separator are connected in series with each other, the primary cyclone separator is a separate cyclone separator, and the secondary cyclone separator is a plurality of cyclone separators connected in parallel with each other.
  • the respective outer cylinders of the plurality of cyclones separated in parallel are connected and closed by the structure of the secondary cyclone dust collecting chamber 113b, that is, the center cylinder wall 119.
  • the lower end does not have to be closed in order to make the airflow unobstructed; when the cyclone is used as the primary cyclone 103a, the lower end is provided for the purpose of dust accumulation. Must be closed.
  • the cyclone separating apparatus 102 provided in this embodiment is the multi-stage cyclone separating apparatus described above.
  • the present embodiment provides a cyclonic separating apparatus 102 in an upright vacuum cleaner comprising a primary cyclonic separating apparatus 103 and a secondary cyclonic separating apparatus 113.
  • the primary cyclonic separating apparatus 103 includes a cavity surrounded by a side wall 109 and a bottom plate 110, and the lower end of the cavity is a primary cyclone dust collecting area 103b.
  • the primary cyclone separation device 103 mainly includes a primary cyclone separator 103a.
  • the primary cyclone separator is a reflux cyclone separator.
  • the primary cyclone separator 103a mainly includes an outer cylinder 104, an inner cylinder 105, an air inlet 106, a return port 107, and an air outlet 108.
  • the outer cylinder 104 is disposed coaxially with the inner cylinder 105, and the inner cylinder 105 has an open shape at both ends.
  • the outer cylinder 104 has a length in the axial direction longer than the inner cylinder 105 in the axial direction, and a gap is formed between the inner wall of the outer cylinder 104 and the outer wall of the inner cylinder 105 to form an annulus 111.
  • the air inlet 106 passes through the outer cylinder 104 and is tangentially inserted into the lower portion of the inner cylinder 105 of the primary cyclone 103a.
  • the air outlet 108 is located at the top of the outer cylinder 104 and is disposed coaxially with the inner body barrel 105.
  • the upper end of the outer cylinder 104 extends from the side wall toward the center to form an end cap 1082.
  • the middle portion of the end cap 1082 extends toward the inside of the cylinder to form a skirt 1081, and the air outlet 108 is surrounded by the skirt 1081.
  • a spacing may be provided between the lower end surface 108a of the skirt 1081 and the upper end surface 105a of the inner cylinder 105, and the spacing is not less than 0 mm.
  • the passage for reflow in this embodiment includes the return port 107 and the gap between the lower end surface 108a of the skirt 1081 and the upper end surface 105a of the inner cylinder.
  • the secondary cyclone separating device 113 includes a secondary cyclone 113a and a secondary cyclone dust collecting chamber 113b.
  • the secondary cyclone 113a is also a return cyclone separator.
  • Each of the secondary cyclones 113a mainly includes an outer cylinder 114, an inner cylinder 115, an air inlet 116, a return port 117, and an air outlet 118.
  • the positional relationship and other technical features between the components in the secondary cyclone 113a are the same as those of the primary cyclone, and will not be described herein.
  • FIG. 7 is a perspective view of the upright vacuum cleaner of the present invention.
  • the present embodiment provides a vacuum cleaner I having a multi-stage dust separating function.
  • the vacuum cleaner 1 includes a cleaner body 101 and a suction head 130.
  • the main body 101 is provided with an electric blower unit (not shown), and the electric blower unit functions as a vacuum generator for generating a suction force.
  • the suction head 130 communicates with the cleaner body 101 for drawing in dusty air from the surface to be cleaned.
  • the vacuum cleaner 1 includes a cyclonic separating apparatus 102 mounted on the cleaner body 101, which communicates with the cleaner body 101 and the suction head 130 for achieving gas-solid separation, and the clean airflow is released through the outlet of the electric fan unit. Into the atmosphere. When the dust particles are full, the user can take the cyclone 102 from the cleaner body 101 to achieve the dusting function.
  • Figure 8 is a cross-sectional view taken along line BB of Figure 6, showing the spatial layout of each of the secondary cyclones.
  • Fig. 7 in the present embodiment, there are a total of eight secondary cyclones, one of which is disposed coaxially with the outer cylinder 104 of the primary cyclone 103a, and the other one surrounds the primary cyclonic separating apparatus 103.
  • the axis of the shaft is in a circular arrangement.
  • the layout is such that each of the secondary cyclones 113a forms a rigid structure, the structure is firm, and the diameter of the entire secondary cyclone 113a can be made smaller while satisfying the separation effect, thereby making the entire product of the vacuum cleaner The volume is reduced, making the product structure more compact and aesthetically pleasing.
  • the air inlets 116 of the secondary cyclone 113a are each provided with two.
  • An axial distance and a radial angular difference are provided between the two air inlets 116 of each secondary cyclone 113a.
  • the preferred value is 180 °
  • the axial spacing is close to half of the spiral lead, tangentially
  • each return cyclone the number of air inlets can be flexibly adjusted and used according to actual needs.
  • a return cyclone with multiple air inlets can be used not only for the secondary cyclone, but also for the primary cyclone.
  • the airflow direction and gas-solid separation process in this embodiment are described below in conjunction with FIG. 6:
  • the airflow direction is as shown by the arrowed curve in FIG. 6, and the airflow entraining impurities such as dust particles enters the primary return cyclone through the air inlet 106 tangentially.
  • the inner cavity of 103a causes the airflow to move in a rotary upward motion.
  • the axial velocity of the upward flow decreases due to the sudden enlargement of the cross-sectional area, and the large particulate impurities in the gas flow are directly precipitated by gravity to the bottom plate 110 of the primary reflux cyclone 103a;
  • the impurity is spirally ascended along the airflow on the inner cylinder 105, and is smashed toward the inner wall of the inner cylinder 105 due to the centrifugal force, and then settles along the body wall of the inner cylinder 105 to the bottom plate 110; most of the smaller particulate impurities accompany the airflow Rotating to the upper end of the inner cylinder 105, they circulate through the back gap 107a and the gap 107b between the lower end surface 108a of the air outlet and the upper end surface 105a of the inner cylinder with a small amount of return gas, and enter the annulus 111 between the inner and outer cylinders.
  • the formed passage is subjected to separation and settling, and the small amount of reflux airflow enters the inner cylinder 105 together with the airflow re-entered by the air inlet 106, and the circulation separation is continued. Most of the airflow escapes from the inner cylinder 105 into the air outlet 108, enters the air inlet 116 of the secondary return cyclone 113a, and performs a helical motion in the inner chamber of the secondary cyclone 113a.
  • the cyclone separation device 103 is the same and will not be described again.
  • the dust particle impurities separated from the secondary cyclone 113a settle in the secondary cyclone chamber 113b surrounded by the center cylinder wall 119 and the bottom plate 110, which is located in the primary cyclone 103a.
  • the inner cylinder 105 is disposed coaxially with the inner cylinder 105. After separation from the secondary cyclone, clean air is released from the air outlet 118.
  • the combination of the bottom plate 110 and the side wall 109 may be of a different connection type (not shown) such as a pivot type or a snap type.
  • FIG. 9 is a perspective view of a horizontal vacuum cleaner of the present invention
  • FIG. 10 is a cross-sectional structural view of the cyclone separation device of the horizontal vacuum cleaner of FIG.
  • this embodiment provides a vacuum cleaner II having a multi-stage dust separating function.
  • the vacuum cleaner II includes a cleaner body 201 and a suction head 230.
  • the main body 201 is provided with an electric blower unit (not shown), and the electric blower unit functions as a vacuum generator for generating a suction force.
  • the tip 230 is in communication with the cleaner body 201 for drawing in dust and air from the surface to be cleaned.
  • the vacuum cleaner II includes a cyclone separating device 202, which is mounted on the cleaner body 201, and communicates with the cleaner body 201 and the suction head 230 for achieving gas-solid separation, and the clean airflow passes through the electric fan unit. The exit is released into the atmosphere.
  • the cyclonic separating apparatus 202 in this embodiment is also a multi-stage cyclone separating apparatus, which is formed by connecting a primary cyclone separator and a secondary cyclone separator in series.
  • the multi-stage cyclone separation device provided in this embodiment is also a secondary cyclone separation device, including a primary cyclone separator and a secondary cyclone separator, wherein the secondary cyclone separator adopts a cyclone separator as described in FIG.
  • the primary cyclone separator is a conventional cyclone separator, the primary cyclone separator and the secondary cyclone separator are connected in series with each other, and the secondary cyclone separator is connected in parallel with the plurality of cyclones.
  • the respective outer cylinders of the plurality of cyclones separated in parallel are connected and closed by the structure of the secondary cyclone collecting chamber 213b. As shown in Fig.
  • the lower end does not have to be closed in order to make the airflow unobstructed; when the cyclone is used as the primary cyclone 203a, the lower end is provided for the purpose of dust accumulation. Must be closed.
  • the cyclone separating apparatus 202 of the present embodiment includes a primary cyclone separating apparatus.
  • the primary cyclonic separating apparatus 203 includes a cavity surrounded by a wall body 209 and a bottom plate 210, and the lower end of the cavity is a cyclone dust collecting area 203b.
  • the primary cyclone separation device 203 mainly includes a primary cyclone separator 203a.
  • the primary cyclone separator 203a is a conventional cyclone separator provided with an air inlet 206 and an air outlet 208, and the air inlet 206 is located at the wall of the cyclone separation device 203.
  • the upper portion of the body 209 is disposed tangentially to the wall 209.
  • the air outlet 208 is disposed coaxially with the primary cyclonic separating apparatus 203, and the air outlet 208 is generally provided as a mesh filtering structure with a plurality of through holes, and again the residual dust in the airflow during the discharge of the airflow from the air outlet 208 The impurities are filtered once.
  • Airflow direction As shown by the arrowed curve in Fig. 10, the airflow entraining impurities such as dust particles enters the primary cyclone tangentially through the air inlet 206.
  • the inner cavity of the separator 203a causes the airflow to move downward in a rotary manner to achieve gas-solid separation under the action of centrifugal force.
  • Impurities such as separated particles are retained on the bottom plate 210, and a cleaner gas stream passes through the air outlet 208 into the air inlet 216 of the secondary cyclonic separating device 213.
  • the air flow is helically moved in the inner cavity of the secondary cyclone 213a in the same manner as the primary cyclone 203a of the previous embodiment, and will not be described herein.
  • the dust particle impurities separated from the secondary cyclone 213a settle in the secondary cyclone chamber 213b surrounded by the side wall 219 and the bottom plate 210. After a plurality of stages of gas-solid separation, clean air is released from the air outlet 218.
  • the return cyclone separation device Since the pressure loss and power loss mainly occur in the secondary of the cyclone separation device, the return cyclone separation device is disposed in the secondary of the entire cyclone separation device, and has a positive effect on the separation effect, energy saving and consumption reduction. but It is worth noting that this does not mean that the return cyclone separation device is limited to being disposed in the secondary of the cyclone separation device.
  • the cyclone separation device can be used alone or in combination with other cyclone separation devices for different practical conditions and for different effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cyclones (AREA)
  • Filters For Electric Vacuum Cleaners (AREA)

Description

旋风分离器、 旋风分离装置及装有该装置的真空吸尘器 技术领域
本发明涉及一种旋风分离器、 以及装有该旋风分离器的旋风分离装置及其真空吸 尘器。 背景技术
真空吸尘器利用其内置的电动机驱动风机而产生负压进行除尘, 它在操作使用时 不会灰尘飞扬, 并能吸除缝隙中及地毯上一般不易清除的尘屑, 使用方便、 操作简单, 被广泛用于家庭和公共场所中。
随着人们生活水平的日益提高, 对环保的意识也在逐渐增强, 人们对于吸尘器的 要求除了能满足有效吸尘的功能之外, 还会考虑到使用寿命、 噪声、 集尘效率等综合 因素。 由此, 带有旋风分离装置的吸尘器应运而生得到了人们的普遍认可。
专利号为 EP0042723B1 , 申请人为 ROTORK器具有限公司的专利文献中对此类 传统型的旋风分离装置有详细描述。 此传统的旋风分离装置带有双重旋风分离器, 其 是由单级旋风分离器技术改进而来。 初级旋风分离器位于次级旋风分离器的上游, 且 初级旋风分离器的空气出口与次级旋风分离器的空气入口相连通。 每一个旋风分离器 包括旋风器主体、 空气入口、 空气出口, 旋风器主体包括一腔体, 该腔体由侧壁以对 应的旋风分离器的轴心线为中心线回转闭合而成, 空气入口沿着与旋风器主体相切的 方向布置在旋风器主体的上部的一侧, 从而引导气流进入旋风器主体, 进入的气流可 容易地向下旋转。 空气出口布置在旋风器主体的顶表面。 当气流在旋风器主体的内部 呈向下螺旋运动并进行气固分离后, 分离出来的灰尘颗粒沉淀, 较干净的气流随着气 流通道上升, 通过空气出口将气流释放到旋风分离装置之外。
这种传统的旋风分离装置中, 由于空气入口和空气出口都布置在旋风分离装置的 上部, 因此气流在运行中, 气、 固两相流由上而下进行分离, 再由下而上经过空气出 口释放, 单次分离的气流流动路线长、 压降大、 能耗高。 加之, 进入的旋转向下的气 流与排放的上升气流在旋风器主体的内腔内产生碰撞, 使得旋风分离装置的集尘效率 由此而降低。
为此, 公开号为 CN1840239A, 申请人为三星光州电子株式会社的专利文献中公 开一种改进型的技术方案。 如图 1所示, 该发明提供一种用于从吸入到其中的外部空 气中分离灰尘并排放分离的灰尘的旋风灰尘分离设备。 该设备包括: 至少一个第一旋 风体 120, 呈管形形状并形成使外部空气在其中旋转的第一旋风室 121 ; 至少一个第二 旋风体 140, 形成使从第一旋风室 121排放的空气在其中再次旋转以分离灰尘的第二 旋风室 142, 其中, 外部空气通过第一旋风室 121下端的空气入口 122被吸入并通过 第一旋室 121上端的空气出口 125被排放, 从第一旋风室排放的空气通过第二旋风室 142上端的空气入口 143被吸入并通过第二旋风室上端的空气出口 146被排放。
依照该发明的改进, 该旋风灰尘设备的第一旋风单元中, 空气入口吸入的空气通 过沿着一个方向产生气流而到达空气出口, 气流流动路径縮短, 并且防止沿着相反方 向运动的气流之间的碰撞, 减小了吸力损失, 并提高了清洁效率。
然而这种旋风分离装置, 经过第一旋风单元分离出的气流通过第一旋风单元的空 气出口直接进入第二旋风单元, 再经过第二旋风气固分离, 分离出的气流通过第二旋 风单元的空气出口释放。 从整个分离过程来看, 气流从进入第一旋风单元的空气入口 到气流离开第二旋风单元的空气出口, 气流的走向是一个单一的路线, 不存在气体的 回流。 这就存在一个问题: 当气流在第一旋风单元气固分离不充分的情况下, 夹带灰 尘颗粒的气流直接进入第二旋风单元,气流在第二旋风单元气固分离不完全的情况下, 夹带细微颗粒的杂质就会离开旋风分离装置, 通过电风机而释放到大气中。
另外,在公开号为 CN1034478C的专利文献中公开了一种旋液环流式液固分离器, 其结构包括了内、 外筒体, 且在内筒体的上方开设有排放槽, 液固在内筒体进行一次 分离后, 从排放槽进入外筒体进行二次分离。 该分离器涉及工业应用大型分离装置, 而且是用于液固分离, 对从排放槽进入外筒体进行二次分离的部分流体的流量与新流 入的流体流量之间的比例关系没有具体限定。 因此, 该专利文献所公开的技术方案虽 然从原理上与本发明有相似之处, 但却有本质的不同。 发明内容
本发明所要解决的技术问题在于针对现有技术的不足, 提供一种旋风分离器、 装 有该旋风分离器的旋风分离装置及真空吸尘器, 在分离器中, 彻底改变了气流走向, 使部分气流进行回流循环, 分离效率高且气固分离彻底, 通过选用小功率电风机工作 而达到节能、 降耗、 环保的目的。
本发明所要解决的技术问题是通过如下技术方案实现的:
一种旋风分离器, 该分离器包括内筒体和外筒体, 内筒体的外壁和外筒体的内壁 之间形成环隙, 内筒体的下端为开放端, 外筒壁上开设空气入口, 外筒体的上端设有 空气出口, 内筒体的上端与空气出口之间设有回流部; 气流从外筒体下端的空气入口 沿切向进入分离器, 分离后的气流一部分从空气出口排出, 另一部分从回流部经上述 的环隙再次分离,分离后的回流气体进入内筒体与新进入的气流混合进行又一次分离。
所述的外筒体 (301 ) 下端可以是封闭的。
所述的回流气体的回流量为进风量的 0.1-0.2倍, 优选为进风量的 0.15倍。
所述的外筒体上端自侧壁向中心延伸形成一端盖, 端盖中部向筒体内部延伸形成 裙板, 所述的空气出口由该裙板围设而成。
所述的回流部可以通过采用多种结构形式来实现回流目的, 可以为开设在内筒体 上部的多个回流孔, 该回流孔可以开设在内筒体筒壁的上部或者在内筒体上端沿圆周 开设的多个凹陷的回流口。
或者所述的回流部可以为在内筒体上端面与裙板的下端面之间设置的轴向顶隙。 或者所述的回流部还可以为内筒体的内壁与裙板外壁之间的间隙, 该裙板围设而 成的空气出口的有效截面积为内筒体有效横截面积的 20%-60%。
所述的回流部为上述结构之一或其组合。
为使产品造型灵活多变, 所述的空气入口的形状同样可以采用多种结构形式, 该 空气入口的形状是圆形、 矩形、 菱形、 椭圆形中的一种, 该空气入口截面的高度与宽 度之比为 1-2.5。
为进一步降低压降和功耗, 所述的空气入口为多个, 按照气流在内筒体中的螺旋 导程的大小沿轴向高度及径向角度错开排布。 如采用两个空气入口, 一般两者错开的 角度为 180° , 其轴向间距接近螺旋导程的一半。
根据不同的设计需求, 所述的回流口的形状是矩形、 半圆弧形、 波浪形中的任一 种。
为了便于积尘, 所述的外筒体下端为锥筒或有相当长度的直筒。
从结构设计的角度考虑, 所述的外筒体与所述的内筒体优选为同轴设置。
本发明还提供一种多级旋风分离装置, 由多级旋风分离器串联而成, 所述的多级 旋风分离器中的至少一级为上述的旋风分离器。
所述的多级为二级, 包括初级旋风分离器和次级旋风分离器, 该次级旋风分离器 由多个上述的旋风分离器并联设置而成。
所述的回流气体的回流量为进风量的 0.1-0.2倍, 优选为进风量的 0.15倍。 上述的多级旋风分离装置中, 外筒体上端自侧壁向中心延伸形成一端盖, 端盖中 部向筒体内部延伸形成裙板, 所述的空气出口由该裙板围设而成。
所述的回流部为开设在内筒体上部的多个回流孔, 该回流孔可以开设在内筒体筒 壁的上部或者在内筒体上端沿圆周开设的多个凹陷的回流口。
或者所述的回流部为在内筒体上端面与裙板的下端面之间设置的轴向顶隙。 或者所述的回流部为内筒体的内壁与裙板外壁之间的间隙, 空气出口的有效截面 积为内筒体有效横截面积的 20%-60% ;
或者所述的回流部为上述结构之一或其组合。
本发明还提供一种真空吸尘器, 包括吸尘器主体和吸头, 吸尘器主体内设有旋风 分离装置, 所述旋风分离装置为上述的旋风分离装置。
与现有技术相比, 本发明的有益效果在于:
1、 压降低: 由于空气入口设置成穿过外筒体并切向地接入到旋风分离装置的内 筒体中, 内筒体中只有一个向上的旋涡, 单次分离的气流流动路径短, 从而使得气流 沿径向、 轴向流动速度梯度小, 气流剪应力小, 因此压力损失和功率损耗低;
2、 分离效率高: 本发明的结构设置, 使部分气流实现回流循环、 多次分离, 防 止气流短路以及沉淀后的灰尘颗粒的再次卷扬, 使分离效率大幅度提高, 气固分离更 加彻底;
3、 节能、 环保: 由于压降低、 功率损失小, 且不随进灰量的增加而增大, 从而 可选用小功率电风机使用, 这样不仅节省能源、 降低电机温升, 同时可降低整个吸尘 器的噪音, 达到节能、 降耗、 环保的要求, 使得制造 "绿色家电"成为可能。
下面结合附图和具体实施例对本发明的技术方案进行详细地说明。 附图说明
图 1为现有吸尘器的内部结构示意图;
图 2为本发明旋风分离器的结构示意图;
图 3A-图 3D为本发明旋风分离器的回流口的形状示意图;
图 4A-图 4D为本发明旋风分离器的空气入口的形状示意图;
图 5为图 2的 A-A剖视图;
图 6为本发明多级旋风分离装置的结构示意图;
图 7为本发明直立式真空吸尘器立体图; 图 8为图 6的 B-B剖视图;
图 9为本发明卧式真空吸尘器的立体图;
图 10为图 9卧式真空吸尘器中旋风分离装置的剖面结构示意图。 具体实施方式
图 2为本发明旋风分离器的结构示意图, 如图 2所示, 本发明提供一种旋风分离 器, 该分离器包括内筒体 300和外筒体 301, 内筒体 300的外壁和外筒体 301的内壁 之间形成环隙 302, 内筒体 300的下端为开放端, 外筒体 301下端封闭, 外筒壁上开 设空气入口 303, 外筒体 301的上端设有空气出口 304, 内筒体 300的上端与空气出口 304之间设有回流部。 气流从空气入口 303进入分离器, 一次分离后的气流一部分从 空气出口 304排出, 另一部分从回流部经环隙 302进行二次分离, 分离后的气体从内 筒体 300的下端回流进入内筒体 300并与新从空气入口 303进入的气流混合, 再次分 离,如此回流循环并进行多次分离。为了便于积尘,外筒体 301的下端可以为锥筒 3011。
如图 2所示, 外筒体 301上端自侧壁 306向中心延伸形成一端盖 307, 端盖 307 中部向筒体内部延伸形成裙板 305, 该裙板 305所围设的空间构成外筒体 301上的空 气出口 304。
设置在内筒体 300 上端与空气出口 304 之间的回流部可以通过采用多种结构形 式, 在图 2中, 该回流部包括开设在内筒体 300筒壁上的回流孔, 该回流孔可以是开 设在内筒体 300筒壁上部的回流孔, 也可以是内筒体 300上端沿圆周上的多个凹陷的 回流口 308, 如图 3A-图 3D所示, 根据不同的设计需求, 回流口 308的形状可以是矩 形、 半圆弧形、 波浪形中的任一种, 图中只列举了上述几种结构形式, 单实际应用中 并不局限于此。
所述的回流部还包括在内筒体 300上端与空气出口 304之间的回流顶隙, 即内筒 体 300上端面与裙板 305 的下端面之间所形成的回流顶隙 309。 通常该回流顶隙 309 不小于 0毫米。
所述的回流部还可以包括内筒体 300的内壁与裙板 305外壁之间的间隙 310。 在实际应用中, 上述的三种回流部既可以单独使用, 也可以组合使用, 如图 2所 示, 组合使用的回流效果更佳。
单独采用回流孔或回流口 308做回流部时,内筒体 300的上端面可以是半封闭的, 即只留出一中间出口与裙板 305相接, 其余部分封闭, 回流气体仅从回流口 308排出; 单独使用回流顶隙 309做回流部时, 可以不在内筒体 300上端开设回流口 308, 使回 流气体仅由回流顶隙 309排出。
对于采用本发明的旋风分离器的真空吸尘器来说, 旋风分离器中回流量的大小是 吸尘效果好坏的决定性因素。 因为压力损失与"风速"的平方成正比, 功率损失与"风 速"的三次方成正比, 内筒体内的流量=进风量十回流量。 因此, 回流量不能过大, 一 般经回流部回流的气体的回流量为进风量的 0.1-0.2倍, 优选为进风量的 0.15倍, 否 则会提高压力损失和功率损耗。 同时, 由于本发明所提供的旋风分离器, 将空气入口 开设在内筒体底部, 压力损失和功率消耗为原来的 1/3。举例来说, 若回流量为进风量 的 0.1 倍, 此时内筒体内部的总流量为原来流量的 1.1 倍, 压力损失为原来的 1.1 X 1.1=1.21 倍, 而总的压力损失=现有旋风分离器压力损失的 1/3 X 1.21 = 0.403倍; 功 率消耗为原来的 1.1 X 1.1 X 1.1 = 1.331倍,而总的功率损失=现有旋风分离器功率损耗 的 1/3 X 1.311 = 0.437倍。 因此, 当回流量为进风量的 0.1倍时, 采用本发明所提供的 旋风分离器, 基本上可以选用功率比原来小一半的电机, 电机功率小, 成本降低, 耗 电量减小, 噪音降低, 温升降低。
为使产品造型灵活多变, 空气入口 303的形状同样可以采用多种结构形式, 如图
4A-图 4D所示, 可以是圆形、 矩形、 菱形、 椭圆形中的一种。 为保证分离效果, 该空 气入口 303开设在外筒壁上, 其截面的高度与宽度之比为 1-2.5。
为进一步降低压降和功耗, 空气入口 303可以设置为多个, 如图 2所示的空气入 口 303和 303 ', 且多个空气入口之间设置轴向距离和径向角度差。 通过改变多个空气 入口的间角和间距, 可调节气流在内筒体中的螺旋导程, 从而影响旋转圈数, 使尘粒 有足够的时间富集到内筒体内壁, 然后进入回流分离。 图 5为图 2的 A-A剖视图, 如 图 5所示, 采用两个空气入口 303和 303 ' 时, 一般二者错开的角度为 180° , 其轴向 间距接近螺旋导程的一半。
为了保证更好的回流效果, 空气出口 304的有效截面积一般为内筒体 300有效横 截面积的 20%-60%。
从结构设计的角度考虑,通常情况下,外筒体 301与内筒体 300优选为同轴设置。 结合图 2所示, 本发明所提供的旋风分离器的工作过程是这样的: 气流走向如图 中的带箭头的曲线所示, 夹带灰尘颗粒等杂质的气流通过空气入口 303切向地进入旋 风分离器的内筒体, 使得气流呈旋转式上升运动。 气流进入内筒体 300后, 由于流通 面积的突然扩大, 向上流动的轴向速度降低, 气流中含较大颗粒杂质在重力作用下直 接沉淀至外筒体 301的底板上;中等颗粒杂质随同气流在内筒体 300做螺旋上升运动, 由于离心力作用而被甩向内筒体 300体壁, 然后沿内筒体壁沉降至外筒体 301的底板 上; 绝大多数的较小颗粒杂质随气流旋至内筒体 300的上端, 它们会伴随少部分空气 通过回流口 308和空气出口 304的裙板 305下端面与内筒体 300上端面之间的间隙 309 回流而下进入由内外筒体之间的环隙 302形成的通道进行分离沉降, 该少量回流气流 自内筒体下方进入, 与空气入口 303进入的气流相混合, 继续进行回流循环, 如此反 复进行多次分离; 而大部分较洁净的气流从内筒体 300进入空气出口 304逸出。
图 6为本发明多级旋风分离装置的结构示意图, 如图 6所示, 本发明还提供一种 多级旋风分离装置, 该多级分离装置由多级旋风分离器组合而成。 具体来说, 如图 6 所示的多级旋风分离装置, 为二级旋风分离装置, 包括初级旋风分离器和次级旋风分 离器, 该两级旋风分离器都采用的是如图 2所述的旋风分离器。 初级旋风分离器和次 级旋风分离器彼此串联, 初级旋风分离器为单独的旋风分离器, 而次级旋风分离器为 多个旋风分离器彼此并联。 并联在一起的多个旋风分离器各自的外筒体, 通过次级旋 风灰尘收集室 113b的结构, 即中心筒壁 119连接在一起并封闭。 如图 6所示, 当旋风 分离器作为次级旋风分离器 113a使用时, 为了使气流通畅, 其下端不必封闭; 当旋风 分离器作为初级旋风分离器 103a使用时, 为了便于积尘, 其下端必须封闭。
结合图 6所示, 本实施例中所提供的旋风分离装置 102即为上述的多级旋风分离 装置。 具体地说, 如图 6所示, 本实施例提供了一种直立式真空吸尘器中的旋风分离 装置 102, 它包括初级旋风分离装置 103和次级旋风分离装置 113。初级旋风分离装置 103包括由侧壁 109和底板 110围设而成的腔体, 该腔体的下端为初级旋风灰尘收集 区 103b。初级旋风分离装置 103主要包括初级旋风分离器 103a, 本实施例中初旋风分 离器为回流旋风分离器。 该初级旋风分离器 103a主要包括: 外筒体 104、 内筒体 105、 空气入口 106、 回流口 107、空气出口 108。为结构布局需要, 外筒体 104与内筒体 105 同轴设置, 且内筒体 105呈两端敞开口状。 外筒体 104沿轴向长度比内筒体 105沿轴 向长度要长, 且外筒体 104的内壁与内筒体 105的外壁之间留有间距形成环隙 111。 空气入口 106穿过外筒体 104并且切向地接入到初级旋风分离器 103a的内筒体 105下 部。 空气出口 108位于外筒体 104的顶部, 与内体筒 105同轴设置。 外筒体 104上端 自侧壁向中心延伸形成一端盖 1082, 端盖 1082中部向筒体内部延伸形成裙板 1081, 空气出口 108由裙板 1081围设而成。 为保证气流循环顺畅和分离效果, 裙板 1081的 下端面 108a与内筒体 105的上端面 105a之间可以设有间距, 该间距不小于 0毫米, 并且空气出口 108的有效截面积为内筒体 105有效横截面积的 20%~60%,其中以 40% 左右为佳(注: 空气出口的有效横截面积=空气出口的总面积一位于空气出口内部用于 传送第二旋风分离器分离后的灰尘颗粒的管道面积;内筒体的有效横截面积=内筒体的 总面积一位于内筒体内部用于传送第二旋风分离器分离后的灰尘颗粒的管道面积)。综 上, 本实施例中起到回流作用的通道包括回流口 107和裙板 1081的下端面 108a与内 筒体上端面 105a之间的间隙两部分。
次级旋风分离装置 113包括次级旋风分离器 113a和次级旋风灰尘收集室 113b。 本实施例中, 次级旋风分离器 113a亦为回流旋风分离器。 每个次级旋风分离器 113a 主要包括外筒体 114、 内筒体 115、 空气入口 116、 回流口 117、 空气出口 118。 有关次 级旋风分离器 113a中各元件之间的位置关系和其它技术特征与初级旋风分离器相同, 在此不再赘述。
图 7为本发明直立式真空吸尘器立体图, 如图 7所示, 本实施例提供一种具有多 级灰尘分离功能的吸尘器 I。 该吸尘器 I包括吸尘器主体 101和吸头 130, 该主体 101 设置有电风机单元 (图中未示), 电风机单元作为真空发生器用于产生抽吸力。 吸头 130与吸尘器主体 101相连通,用于从待清洁表面吸入带有灰尘的空气。吸尘器 I包括 旋风分离装置 102, 该旋风分离装置 102安装在吸尘器主体 101上, 其与吸尘器主体 101和吸头 130 的相连通, 用于实现气固分离, 干净的气流通过电风机单元的出口释 放到大气中。 当灰尘颗粒集满后, 使用者可以将旋风分离装置 102从吸尘器主体 101 上取出, 实现倒灰功能。
图 8为图 6的 B-B剖视图, 示出了各个次级旋风分离器空间布局。 从图 7可清晰 地看出, 本实施例中, 次级旋风分离器共有 8 个, 其中 1 个与初级旋风分离器 103a 的外筒体 104同轴设置, 另外 Ί个围绕初级旋风分离装置 103的轴心线呈圆周布局。 如此布局, 使得各次级旋风分离器 113a形成了一个刚性架构, 结构牢固, 并且在满足 分离效果的同时, 能使整个次级旋风分离器 113a的直径相应变小, 从而可使得吸尘器 整个产品的体积减小, 使产品结构更为紧凑、 外观美观。 为更进一步降低压降和功耗, 如图 7所示, 次级旋风分离器 113a的空气入口 116各设有二个。 每个次级旋风分离器 113a的二个空气入口 116之间设置轴向距离和径向角度差。 通过改变空气入口 116的 相对位置, 即调整各空气入口 116的轴向距离和径向角度, 改变气流螺旋导程, 增加 气流在内筒体 115内的旋转圈数, 提高集尘性能。 例如: 对于两个空气入口的径向角 度差从理论上分析, 其优选值为 180 ° , 其轴向间距接近螺旋导程的一半时, 切向进 入旋风分离装置内筒的气流呈同方向旋转, 没有出现进入的空气彼此间碰撞的情况, 由此气流在内筒体内有效旋转次数增多, 压降减小, 从而分离效果提高。
每个回流旋风分离器的空气入口, 空气入口的数量可按实际的需要灵活地加以调 整和运用。 带有多个空气入口的回流旋风分离器不仅可以适用于次级旋风分离器, 同 样也可以适用初级旋风分离器。
本实施例中的气流走向和气固分离过程结合图 6描述如下: 气流走向如图 6中带 箭头的曲线所示, 夹带灰尘颗粒等杂质的气流通过空气入口 106切向地进入初级回流 旋风分离器 103a的内腔, 使得气流呈旋转式上升运动。 气流进入内筒体 105后, 由于 截面积的突然扩大, 向上流动的轴向速度降低, 气流中含较大颗粒杂质在重力作用下 直接沉淀至初级回流旋风分离器 103a的底板 110上;中等颗粒杂质随同气流在内筒体 105上做螺旋上升运动, 由于离心力作用而被甩向内筒体 105体壁, 然后沿内筒 105 体壁沉降至底板 110 ; 绝大多数的较小颗粒杂质随气流旋至内筒体 105 的上端, 它们 伴随少量回流气体通过回流缺口 107a和空气出口下端面 108a与内筒体上端面 105a之 间的间隙 107b环流而下进入由内外筒体之间的环隙 111形成的通道进行分离沉降,该 少量回流气流与空气入口 106再次进入的气流一起进入内筒体 105, 继续进行循环分 离。而大部分气流从内筒体 105进入空气出口 108逸出,进入次级回流旋风分离器 113a 的空气入口 116, 在次级旋风分离器 113a的内腔中进行螺旋运动, 具体气流运行方式 与初级旋风分离装置 103相同, 在此不再赘述。 从次级旋风分离器 113a中分离出的灰 尘颗粒杂质沉降在由中心筒壁 119和底板 110围设的次级旋风集尘室 113b内,所述的 中心筒壁 119位于初级旋风分离器 103a的内筒体 105内, 且与内筒体 105同轴设置。 从次级旋风分离后, 干净的空气从空气出口 118释放。 为方便清空旋风分离装置 102 内的垃圾, 底板 110与侧壁 109之间的结合可采用枢轴式或是卡扣式等不同的连接方 式 (未示出)。
图 9为本发明卧式真空吸尘器的立体图, 图 10为图 9所示卧式真空吸尘器中旋 风分离装置的剖面结构示意图。 如图 9所示, 本实施例提供一种具有多级灰尘分离功 能的吸尘器 II。 该吸尘器 II包括吸尘器主体 201和吸头 230, 该主体 201设置有电风 机单元(图中未示), 电风机单元作为真空发生器用于产生抽吸力。 吸头 230与吸尘器 主体 201相连通, 用于从待清洁表面吸入灰尘和空气。 所述吸尘器 II包括旋风分离装 置 202, 该旋风分离装置 202安装在吸尘器主体 201上, 其与吸尘器主体 201和吸头 230的相连通, 用于实现气固分离, 干净的气流通过电风机单元的出口释放到大气中。 结合图 10所示, 本实施例中的旋风分离装置 202也为多级旋风分离装置, 由初级旋风 分离器和次级旋风分离器串联设置而成。 本实施例中所提供的多级旋风分离装置也是 二级旋风分离装置, 包括初级旋风分离器和次级旋风分离器, 其中的次级旋风分离器 采用的是如图 2所述的旋风分离器, 而初级旋风分离器则为传统型旋风分离器, 初级 旋风分离器和次级旋风分离器彼此串联,次级旋风分离器为多个旋风分离器彼此并联。 并联在一起的多个旋风分离器各自的外筒体,通过次级旋风收集室 213b的结构连接在 一起并封闭。 如图 10所示, 当旋风分离器作为次级旋风分离器 213a使用时, 为了使 气流通畅, 其下端不必封闭; 当旋风分离器作为初级旋风分离器 203a使用时, 为了便 于积尘, 其下端必须封闭。
具体地说, 如图 10所示, 本实施例中旋风分离装置 202包括初级旋风分离装置
203和次级旋风分离装置 213。初级旋风分离装置 203包括由壁体 209和底板 210围设 而成的腔体, 该腔体的下端为旋风灰尘收集区 203b。 初级旋风分离装置 203主要包括 初级旋风分离器 203a, 本实施例中初级旋风分离器 203a为传统型旋风分离器, 其设 有空气入口 206和空气出口 208, 空气入口 206位于旋风分离装置 203的壁体 209的 上部且与壁体 209呈切向设置。 空气出口 208与初级旋风分离装置 203同轴设置, 且 空气出口 208通常设置为带有多个通孔的网孔过滤结构, 在气流从空气出口 208排出 的过程中, 再次对气流中残余的灰尘杂质进行一次过滤。
次级旋风分离装置 213 中各元件之间的位置关系和其它技术特征与前述的实施 例一中的次级旋风分离器完全相同, 在此不再赘述。
现对本实施例中旋风分离装置 202的气流走向和气固分离的整个过程如下: 气流 走向如图 10中带箭头的曲线所示,夹带灰尘颗粒等杂质的气流通过空气入口 206切向 地进入初级旋风分离器 203a的内腔, 使得气流呈旋转式向下运动, 在离心力的作用下 实现气固分离。 被分离出来的颗粒等杂质滞留在底板 210上, 较干净的气流通过空气 出口 208进入次级旋风分离装置 213的空气入口 216。 气流在次级旋风分离器 213a的 内腔中进行螺旋运动, 具体运动方式与前述实施例的初级旋风分离器 203a相同, 在此 不再赘述。从次级旋风分离器 213a中分离出的灰尘颗粒杂质沉降在由侧壁 219和底板 210围设有的次级旋风集尘室 213b内。 经过多级气固分离后, 干净的空气从空气出口 218释放。
由于压力损失和功率损耗主要发生在旋风分离装置的次级, 因此将回流旋风分离 装置设置在整个旋风分离装置的次级, 对于分离效果、 节能降耗都有积极的作用。 但 是值得说明的是, 这并不意味着回流旋风分离装置仅局限于设置在旋风分离装置的次 级。 对于不同的实际情况和满足不同的作用效果, 旋风分离装置可单独使用, 亦可和 其它的旋风分离装置任意组合使用。
本发明保护并不局限于说明书具体实施方式中所列举的实施例所描述的具体结 构布局。 显然, 在本发明权利要求书的保护范围内, 还可以有多种不同的变型和结构 组合。

Claims

权利要求书
1、 一种旋风分离器, 用于分离气体中的固体颗粒, 该分离器包括内筒体 (300) 和外筒体 (301), 内筒体 (300) 的外壁和外筒体 (301) 的内壁之间形成环隙 (302), 其特征在于: 内筒体(300)的下端为开放端, 外筒体(301)壁上开设空气入口 (303), 外筒体 (301) 的上端设有空气出口 (304), 内筒体 (300) 的上端与空气出口 (304) 之间设有回流部; 气流从外筒体 (301) 下端的空气入口 (303) 沿切向进入分离器, 分离后的气流一部分从空气出口 (304)排出, 另一部分从回流部经上述的环隙 (302) 再次分离,分离后的回流气体进入内筒体(300)与新进入的气流混合进行又一次分离。
2、 如权利要求 1所述的旋风分离器, 其特征在于: 所述的外筒体 (301) 下端封 闭。
3、 如权利要求 1 所述的旋风分离器, 其特征在于: 所述的回流气体的回流量为 进风量的 0.1-0.2倍。
4、 如权利要求 3 所述的旋风分离器, 其特征在于: 所述的回流量优选为进风量 的 0.15倍。
5、 如权利要求 1所述的旋风分离器, 其特征在于: 所述的外筒体 (301) 上端自 侧壁 (306) 向中心延伸形成一端盖 (307), 端盖 (307) 中部向筒体内部延伸形成裙 板 (305), 所述的空气出口 (304) 由该裙板 (305) 围设而成。
6、 如权利要求 1 所述的旋风分离器, 其特征在于: 所述的回流部为开设在内筒 体 (300) 上部的多个回流孔;
或者所述的回流部为在内筒体 (300) 上端面与裙板 (305) 的下端面之间设置的 轴向顶隙 (309);
或者所述的回流部为内筒体 (300) 顶端的内壁与裙板 (305) 外壁之间的间隙 (310);
或者所述的回流部为上述结构的组合。
7、 如权利要求 6所述的旋风分离器, 其特征在于: 所述的回流孔为内筒体(300) 上端沿圆周开设的多个凹陷的回流口 (308 )。
8、 如权利要求 1所述的旋风分离器, 其特征在于: 所述的空气出口 (304) 的有 效截面积为内筒体 (300 ) 有效横截面积的 20%-60%。
9、 如权利要求 1所述的旋风分离器, 其特征在于: 所述的空气入口 (303 ) 的形 状是圆形、 矩形、 菱形、 椭圆形中的一种, 该空气入口 (303 ) 截面的高度与宽度之比 为 1-2.5。
10、 如权利要求 1 所述的旋风分离器, 其特征在于: 所述的空气入口 (303 ) 为 多个, 按气流在内筒体中螺旋导程的大小沿轴向高度及径向角度错开排布。
11、 如权利要求 7 所述的旋风分离器, 其特征在于: 所述的回流口 (308 ) 的形 状是矩形、 半圆弧形、 波浪形中的任一种。
12、 如权利要求 1 所述的旋风分离器, 其特征在于: 所述的外筒体下端为锥筒 ( 3011 )。
13、 一种多级旋风分离装置, 由多级旋风分离器串联而成, 其特征在于: 所述的 多级旋风分离器中的至少一级为权利要求 1-12所述的旋风分离器。
14、 如权利要求 13所述的多级旋风分离装置, 其特征在于: 所述的多级为二级, 包括初级旋风分离器和次级旋风分离器,该次级旋风分离器由多个如权利要求 1-12所 述的旋风分离器并联设置而成。
15、一种真空吸尘器, 包括吸尘器主体和吸头, 吸尘器主体内设有旋风分离装置, 其特征在于: 所述旋风分离装置为权利要求 13或 14任一项所述的旋风分离装置。
PCT/CN2009/073210 2008-08-20 2009-08-12 旋风分离器、旋风分离装置及装有该装置的真空吸尘器 WO2010020155A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200810147527 CN101653345B (zh) 2008-08-20 2008-08-20 旋风分离器、旋风分离装置及装有该装置的真空吸尘器
CN200810147527.1 2008-08-20

Publications (1)

Publication Number Publication Date
WO2010020155A1 true WO2010020155A1 (zh) 2010-02-25

Family

ID=41706855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073210 WO2010020155A1 (zh) 2008-08-20 2009-08-12 旋风分离器、旋风分离装置及装有该装置的真空吸尘器

Country Status (2)

Country Link
CN (1) CN101653345B (zh)
WO (1) WO2010020155A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014068719A (ja) * 2012-09-28 2014-04-21 Mitsubishi Electric Corp 遠心分離装置
US11358156B1 (en) 2019-05-10 2022-06-14 Vacuum Technologies, Llc Dual connection cyclonic overhead separator

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102525348A (zh) 2010-12-29 2012-07-04 泰怡凯电器(苏州)有限公司 旋风分离装置及装有该装置的旋风吸尘器
CN106639931A (zh) * 2015-10-30 2017-05-10 中石化石油工程技术服务有限公司 一种超临界二氧化碳钻井过程中井口岩屑清除装置
CN105640435B (zh) * 2016-02-05 2017-11-28 宁波海际电器有限公司 一种旋风分离式吸尘器
CN108324177A (zh) * 2018-03-13 2018-07-27 航宇智创科技(北京)有限公司 一种利用旋风管分离的真空吸尘器
FR3093779B1 (fr) * 2019-03-11 2021-03-05 Sogefi Filtration Spa Dispositif de séparation et utilisation du dispositif pour séparer et collecter les poussières de freinage
CN112942218B (zh) * 2021-01-29 2023-02-10 厦门威迪思汽车设计服务有限公司 一种沉降式气体净化装置和具有该装置的清扫车
CN114289196B (zh) * 2021-12-20 2023-12-12 赛诺浦新能源(江苏)有限公司 一种高效旋风除尘器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2093042U (zh) * 1991-03-02 1992-01-15 长沙市岳麓环保机电厂 高效低阻旋风除尘器
CN1084104A (zh) * 1992-09-08 1994-03-23 青岛化工学院 旋液环流式液固分离器
CN1307850A (zh) * 2000-02-08 2001-08-15 三洋电机株式会社 电动吸尘器
CN1582838A (zh) * 2003-08-21 2005-02-23 张周新 吸尘器的空气回流装置
CN1704171A (zh) * 2004-05-27 2005-12-07 乐金电子(天津)电器有限公司 旋风式除尘器的灰尘分离装置
CN2936112Y (zh) * 2006-07-21 2007-08-22 王跃旦 吸尘器二次旋风式分离尘杯
CN200939096Y (zh) * 2006-06-26 2007-08-29 王克荣 吸尘器的旋风除尘装置
CN201275033Y (zh) * 2008-08-20 2009-07-22 泰怡凯电器(苏州)有限公司 旋风分离器、旋风分离装置及装有该装置的真空吸尘器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2093042U (zh) * 1991-03-02 1992-01-15 长沙市岳麓环保机电厂 高效低阻旋风除尘器
CN1084104A (zh) * 1992-09-08 1994-03-23 青岛化工学院 旋液环流式液固分离器
CN1307850A (zh) * 2000-02-08 2001-08-15 三洋电机株式会社 电动吸尘器
CN1582838A (zh) * 2003-08-21 2005-02-23 张周新 吸尘器的空气回流装置
CN1704171A (zh) * 2004-05-27 2005-12-07 乐金电子(天津)电器有限公司 旋风式除尘器的灰尘分离装置
CN200939096Y (zh) * 2006-06-26 2007-08-29 王克荣 吸尘器的旋风除尘装置
CN2936112Y (zh) * 2006-07-21 2007-08-22 王跃旦 吸尘器二次旋风式分离尘杯
CN201275033Y (zh) * 2008-08-20 2009-07-22 泰怡凯电器(苏州)有限公司 旋风分离器、旋风分离装置及装有该装置的真空吸尘器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014068719A (ja) * 2012-09-28 2014-04-21 Mitsubishi Electric Corp 遠心分離装置
US11358156B1 (en) 2019-05-10 2022-06-14 Vacuum Technologies, Llc Dual connection cyclonic overhead separator

Also Published As

Publication number Publication date
CN101653345A (zh) 2010-02-24
CN101653345B (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
WO2010020155A1 (zh) 旋风分离器、旋风分离装置及装有该装置的真空吸尘器
RU2362477C1 (ru) Мультициклонное пылеотделяющее устройство пылесоса
US6755880B2 (en) Decelerated centrifugal dust removing apparatus for dust cleaner
RU2362476C1 (ru) Циклонное пылеотделяющее устройство пылесоса
RU2328965C2 (ru) Мультициклонный пылеотделитель
CN100577081C (zh) 吸尘器的旋风分离装置
CN100376191C (zh) 吸尘器的旋风分离装置
EP1785081B1 (en) A dust cup in a centrifugal cleaner with fall
JP6519665B2 (ja) 電気掃除機
RU2326578C2 (ru) Циклонное пылеулавливающее устройство
EP1915940B1 (en) A dust removing appliance of a parallel type cleaner
JP4947110B2 (ja) 電気掃除機
RU2358811C2 (ru) Циклонный уловитель
JP5077370B2 (ja) サイクロン分離装置並びに電気掃除機
JP5351260B2 (ja) サイクロン掃除機
CN201082150Y (zh) 真空吸尘器二次旋风式分离装置
CN201223346Y (zh) 旋风吸尘器
CN100374065C (zh) 外置式吸尘器除尘装置
WO1998052673A1 (en) Cyclone separator
JPH08322769A (ja) 電気掃除機
CN103622642A (zh) 无吸力损耗的吸尘器尘杯
WO2020024537A1 (zh) 一种螺旋尘气分离装置及气体净化装置
KR102638412B1 (ko) 진공청소기를 위한 분리 시스템 및 분리 시스템을 포함하는 진공청소기
CN202776166U (zh) 无吸力损耗的吸尘器尘杯
CN202198537U (zh) 旋风分离装置及装有该装置的旋风吸尘器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09807854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09807854

Country of ref document: EP

Kind code of ref document: A1