WO2010020079A1 - 污水泥渣式水泥及其制备方法 - Google Patents
污水泥渣式水泥及其制备方法 Download PDFInfo
- Publication number
- WO2010020079A1 WO2010020079A1 PCT/CN2008/001615 CN2008001615W WO2010020079A1 WO 2010020079 A1 WO2010020079 A1 WO 2010020079A1 CN 2008001615 W CN2008001615 W CN 2008001615W WO 2010020079 A1 WO2010020079 A1 WO 2010020079A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cement
- parts
- residue
- slag
- ball
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/24—Cements from oil shales, residues or waste other than slag
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/02—Agglomerated materials, e.g. artificial aggregates
- C04B18/023—Fired or melted materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/13—Compounding ingredients
- C04B33/132—Waste materials; Refuse; Residues
- C04B33/1321—Waste slurries, e.g. harbour sludge, industrial muds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/13—Compounding ingredients
- C04B33/132—Waste materials; Refuse; Residues
- C04B33/1324—Recycled material, e.g. tile dust, stone waste, spent refractory material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/13—Compounding ingredients
- C04B33/132—Waste materials; Refuse; Residues
- C04B33/135—Combustion residues, e.g. fly ash, incineration waste
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/60—Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Definitions
- the invention relates to a new cement, in particular to a sewage cement slag cement produced by using sewage sludge discharged from a sewage treatment plant as a raw material, and provides a practical preparation method thereof, belonging to the field of environmental protection or cement.
- the sewage cement slag of sewage treatment plant is the waste residue from the gravity concentration of domestic sewage and mechanized dehydration. It contains nitrogen, phosphorus and potassium needed for plant growth and development and various trace elements and energy to maintain the normal growth and development of plants. Improves the organic matter of the soil structure, and also contains pathogenic microorganisms, parasites (eggs), heavy metals and some refractory organic poisons.
- the water content is 70 ⁇ 80%, which is very difficult to develop and utilize.
- the object of the present invention is to overcome the deficiencies of the above various methods for treating sewage cement residue, and to provide a waste material which can be turned into a waste, which is difficult to handle, and which is produced in large quantities.
- the cement slag type cement with less investment, high wear resistance, good antifreeze performance, small shrinkage, and environmental protection, and can reduce production cost.
- Another object of the present invention is to provide a practical method of preparation for producing acceptable sewage cement slag cement.
- the sewage cement slag cement of the present invention is mainly composed of a mixture of 70% to 95% of cement and 30% to 5% of cement sludge product.
- the raw material parts by weight of the sewage cement residue product are: 2 to 7 parts of sewage cement residue, 1 to 3 parts of acetylene gas residue or lime residue.
- the raw materials of the sewage cement residue products may be: 2 to 7 parts of the sewage cement residue, 1 to 3 parts of the acetylene gas residue or the lime residue.
- the weight of the following raw materials is added: 1 to 3 parts of aluminum sulfate residue, 1 to 2 parts of phosphogypsum or desulfurized gypsum, 2 to 6 parts of slag, and 1 to 2 parts of fly ash.
- the weight of the raw materials is: 2 to 7 parts of the cement residue, acetylene gas residue or lime residue 1 ⁇ 3 parts and appropriate amount of water are added to the agitating machine to process the pellets, and naturally dried to form a raw pellet; or 2 to 7 parts of the cement residue, 1 to 3 parts of the acetylene gas residue or lime residue, and 1 to 3 parts of the aluminum sulfate residue. 1 to 2 parts of phosphogypsum or desulfurized gypsum, 2 to 6 parts of slag, 1 to 2 parts of fly ash, and an appropriate amount of water are added to a stirring forming machine to form a ball, and naturally dried to form a raw material ball;
- the raw material ball is placed in a baking roasting kiln and dried at a low temperature drying belt of 100 to 200 ° C for 20 to 40 minutes, and then calcined at a high temperature of 500 to 1000 ° C for 50 to 100 minutes. Cooling the mature ball is the cement residue product;
- the particle size of the pellet is preferably 5 to 30 mm.
- sewage cement slag type cement of the present invention several raw materials in the sewage cement residue product in the main component, such as the sewage cement residue, are waste residues discharged from the sewage treatment plant which cause serious pollution to the environment, and the aluminum sulfate residue is also used in the chemical plant.
- Sulfuric acid treated bauxite and other high alumina minerals containing aluminum sulfate products which will cause serious pollution to the environment, acetylene gas or lime residue, phosphogypsum, desulfurization gypsum, slag and fly ash are also industrial waste , according to a certain proportion of mixing, will also cause corrosion on the cement residue on the basis of a certain chemical reaction, thereby destroying the original structure of the harmful substances in the cement residue, and then drying it at low temperature and roasting at a high temperature to make it
- the hydration products formed during the chemical activation stage are decomposed and dehydrated to form anhydrous minerals, and new products are produced.
- These new products are themselves high-hydraulic hydraulic binders, and contain a large amount of nanoparticles and highly dispersible silicon and Calcium hydrates, due to the high activity of 810 2, rapidly react with Ca(OH) 2 produced by hydration of silicate minerals, after cement hydration is completed.
- the final hydrate is a calcium silicate hydrate gel mainly composed of CSH, and hydrated calcium aluminate, hydrated calcium sulphoaluminate, hydrated calcium sulphate, etc., forming a network crystal having a microcrystalline structure. Create new functional groups in the product structure and increase the high scores of nanoparticles Dispersive silicon and calcium hydrates, generate new lattice distortions, produce functional genes, and form crystalline products similar to solid solutions.
- the aggregate used can be tightly glued with materials such as slag with hydraulic and slow hydration speed, and can give these hydration slowly.
- the material provides good hydration conditions and is more durable, especially to provide good hydration conditions for slow hydration materials such as slag. Therefore, the sewage cement residue processed by the method can be effectively mixed with cement to effectively improve the cementation performance of cement and the stability of cement stone and the strength of cement, especially to improve the wear resistance of slag cement, and can also replace
- the use of special cement improves the density and mechanical strength of cement stone, so that the strength of cement in the early and late stages continues to increase, exceeding the early and late strength of Portland cement or slag cement and other varieties of cement.
- the method can treat the sewage cement slag discharged from the sewage treatment plant into a large amount of demand, low investment, high wear resistance, good anti-freezing performance, small shrinkage, and is beneficial to environmental protection and can be reduced. High quality cement for production costs.
- the sewage cement slag cement of the present invention can be used at 70 ° /. ⁇ 95% cement is mixed with 30% ⁇ 5% of cement residue products.
- the cement residue product can be made by using the following parts by weight:
- the raw material of the cement residue product is effective in the range of 2 to 7 parts of the cement sludge, acetylene gas residue or lime residue 1 to 3 parts.
- the raw materials of the sewage cement residue products may be: 2 to 7 parts of the sewage cement residue, 1 to 3 parts of the acetylene gas residue or the lime residue.
- the weight of the following raw materials is added: 1 to 3 parts of aluminum sulfate residue, 1 to 2 parts of phosphogypsum or desulfurized gypsum, 2 to 6 parts of slag, and 1 to 2 parts of fly ash.
- dirty cement slag 2 ⁇ 7 parts, acetylene gas residue or lime residue ⁇ 3 parts, 2 parts of aluminum sulfate slag, 1.5 parts of phosphogypsum or desulfurization gypsum, 4 parts of slag, 1.5 parts of fly ash.
- the raw materials of the sewage cement residue product can be in the weight: sewage cement residue 2 ⁇ 7 parts, acetylene gas residue or lime residue 1 to 3 parts, and then add the following parts by weight: 1 to 3 parts of aluminum sulfate residue, 1 to 2 parts of phosphogypsum or desulfurized gypsum, 2 to 6 parts of slag, One or several of the fly ash 1 to 2 parts are effective.
- the preferred practical preparation method is as follows: adding an appropriate amount of water to the raw materials of the above components by weight, processing the pellets into a ball by a stirring forming machine (or other mixer), and naturally drying them into a raw ball; In the drying roasting kiln (such as tunnel kiln, etc.), first dry at 100 ⁇ 200 °C for 20 ⁇ 40 minutes, then pass 500 ⁇ 100 (TC high temperature roasting belt for roasting)
- the powder is the sewage cement slag type cement, and the sewage cement slag product can also be pulverized into powder and then mixed with cement at a ratio of 30% to 5%: 70% to 95% to be a cement slag type cement.
- the calcination temperature may be set between 500 and 1000 ° C. If the calcination temperature is lower than 500 ° C, the raw pellets may not be penetrated and the quality may be affected. For example, if the temperature is higher than 1000 ° C, the clinker ball is not raised.
- the quality will affect the production of new functional groups, and it will cost more fuel and increase the cost.
- the calcination temperature is best controlled at around 800 °C.
- the requirements on the volume of the ball are not very strict, but the volume is too small, which will affect the quality of the ball. If the volume is too large, it will not burn out.
- the particle size of the ball is generally controlled at 5 ⁇ 25mm.
- Table 1 Comparison of performance of cement slag cement and pure clinker cement in several different mixing ratios Sample sample weight flexural strength compressive strength wear resistance after damage freeze-drying shrinkage loss rate number (g) (Mpa) (Mpa) loss (g)
- Dry sequence sample weight bending resistance compression resistance antifreeze rate (g) strength strength loss after loss (
- Table 3 Comparison of performance of sewage cement slag cement and slag cement with several different mixing ratios
- the cement slag type cement which is formed by incorporating a certain proportion of sewage cement slag products into the existing commercial slag cement has the properties of flexural strength, compressive strength and anti-wear, anti-freeze and dry shrinkage. Both are higher than slag cement that is not incorporated into the cement residue product.
- the comprehensive ratio of the mixing ratio of No. 4 in the table is better.
- the method uses the method to treat the sewage cement slag discharged from the sewage treatment plant into a sewage cement residue product, and the cement slag type cement which is mixed with the clinker cement according to a certain ratio is better than the pure cement material.
- pure clinker cement it can be used directly. It can also be mixed with other varieties of commercial cement in a proper proportion to form cement slag-type cement, which can effectively improve the quality of cement and reduce the cost of cement.
- the above-mentioned several kinds of sewage cement slag cements are in accordance with ISO standards for cement physical property testing. The strength and wear resistance, anti-freeze, dry shrinkage and other physical properties are compared and tested.
- the sewage cement slag cement which is mixed with cement in a certain proportion has the advantages of fast slurry collection, high strength and low heat of cementation.
- the anti-freezing performance, dry shrinkage is basically zero, the performance of preventing water leakage and anti-wear resistance is better than that of cement which does not infiltrate cement residue products.
- the results are consistent with the test results.
- the sewage cement residue treated by the method has low energy consumption and low cost, and the produced cement residue product is about 150 yuan/ton, while the pure clinker cement is 250 350 yuan/ton, according to a certain proportion of commodity cement with various varieties.
- the mixed cement slag type cement grade can be improved by 1-2 grades than the commercial cement grade before mixing, and the wear resistance, frost resistance, dry shrinkage and the like are higher than that of the pre-mixed commercial cement. Therefore, the application prospect of the sewage cement slag cement produced by this method will be very good, and it is in line with the development of the national industrial waste residue resource recycling cycle, which is conducive to the development of sewage cement residue for building materials products and the waste of environmental protection policies. A good way to be a treasure.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Dispersion Chemistry (AREA)
- Civil Engineering (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Treatment Of Sludge (AREA)
- Processing Of Solid Wastes (AREA)
Description
污水泥渣式水泥及其制备方法 技术领域
本发明涉及一种新的水泥,特别是一种利用污水处理厂排出的污 水泥渣为原料生产的一种污水泥渣式水泥,并为其提供了实用的制备 方法, 属于环保或水泥领域。
^ 不
污水处理厂的污水泥渣是将生活污水用重力浓缩为主和机械化 脱水等排出的废渣, 它含有植物生长发育所需的氮、磷、钾及维持植 物正常生长发育的多种微量元素和能改良土壤结构的有机质,同时也 含有病原微生物、 寄生虫 (卵)、 重金属及某些难降解的有机毒物。 含 水率在 70〜80%, 开发利用十分困难。
为了处理这些污泥, 国内外很多人想了不少办法,其方法主要是 将污泥进行填埋、堆放、 投弃海洋、 焚烧、 堆肥处理等。 在我国未来 年代里, 每年有 2亿吨污泥排放量出现。 土地填埋、堆放、 是目前处 理污泥的主要方法。 该法的处理过程简单, 但需要大量场地和运费, 地基需作防漏处理, 以免污染地下水和散发臭味。另外, 适合充填的 土地逐年减少,美国环保局统计今后 16年内, 美国 6500块填埋场将 有 5000个关闭。 有的州已无场地可供堆放污泥。 对于投弃海洋, 虽 是一种方便而经济的处理方法,但此法会危害海洋生态系统及人类食 物链, 会造成全球范围内的危害, 应予禁止。对于焚烧处理法, 明显 存在焚烧设备及运行费用昂贵,废气会造成大气污染,也不是好方法。 对于堆肥化处理方法, 是借助于微生物对污泥中的有机废物进行分 解,但污水污泥中的重金属和有机污染物含量已成为污泥土地利用的 重要限制因素, 污泥中往往含有大量的铜、 镍、 镉、 铅、 锌、 汞等重
金属和许多种有毒有机物, 若农田中长期施用, 会导致土壤污染, 它 们被农作物吸收后又通过食物链进入人体,从而影响人体健康。 目前 据有关资料统计, 日本污泥陆地和海洋填埋占 62. 7% , 农用绿化占 24. 9% , 其他处置占 12. 4% , 德国污泥填埋占 80%, 农用绿化占 8% , 焚烧占 8%, 堆肥占 4%。美国污泥填埋占 35 %, 焚烧占 1 5 %, 农用或其他土地利用占 49%, 其他处置占 1 %。综上所述, 到目前为 止, 还未见有其它更好的有利于环保的污泥处理方法的报道。
发明内容
本发明的目的是为了克服上述现有的对污水泥渣处理的各种方 法的不足之处,提供一种能将堆积如山又难以处理的污水泥渣变废为 宝, 生产成需求量巨大、 投资少、 耐磨强度高、 抗冻性能好、干缩性 小、 既有利于环保、 又能降低生产成本的污水泥渣式水泥。
本发明的另一目的是为生产出合格的污水泥渣式水泥而提供一 种实用的制备方法。
本发明的污水泥渣式水泥, 其主要成分由 70%〜95%的水泥与 30%〜5%的污水泥渣产品混合而成。
所述污水泥渣产品中的原料重量份为: 污水泥渣 2〜7份、 乙炔 气渣或石灰渣 1〜3份。
为了在确保产品质量的前提下进一步降低成本和利用其它一些 工业废物, 可将污水泥渣产品的原料在上述重量份为: 污水泥渣 2〜 7份、 乙炔气渣或石灰渣 1〜3份的基础上, 再增加下述原料重量份 为: 硫酸铝渣 1〜3份, 磷石膏或脱硫石膏 1〜2份、 矿渣 2〜6份、 粉煤灰 1〜2份。
为了生产出合格的污水泥渣式水泥,经过多次试验比较,提供一 种由下列步骤组成的优选的适合工业化生产的实用的制备方法。
A)将原料重量份为: 污水泥渣 2〜7份、 乙炔气渣或石灰渣 1〜
3份和适量水加入搅拌成型机加工成料球, 自然晾干成生料球; 或将 污水泥渣 2〜7份、 乙炔气渣或石灰渣 1〜3份、 硫酸铝渣 1〜3份、 磷石膏或脱硫石膏 1〜2份, 矿渣 2〜6份、 粉煤灰 1〜2份和适量水 加入搅拌成型机加工成料球, 自然晾干成生料球;
B)将生料球置于烘干焙烧窑内经 100〜200°C的低温烘干带烘干 20〜40分钟,再经 500〜1000°C高温焙烧带焙烧 50〜100分钟, 出窑 后自然冷却成熟料球即为污水泥渣产品;
C)将污水泥渣产品与水泥熟料按 30%〜5%: 70%〜95%的比例 混合在一起粉磨成粉即为污水泥渣式水泥,也可将污水泥渣产品粉磨 成粉后再与水泥按 30%〜5% : 70%〜95%的比例混合在一起即为污 水泥渣式水泥。
为了便于晾干和焙烧, 所述料球的粒径为 5~30mm最佳。
本发明的污水泥渣式水泥,其主要成分中的污水泥渣产品中的几 种原料,如污水泥渣是污水处理厂排出的会对环境造成严重污染的废 渣,硫酸铝渣也是化工厂用硫酸处理铝矾土等含高氧化铝矿物生产硫 酸铝产品时排出的会对环境造成严重污染的废渣, 乙炔气渣或石灰 渣、磷石膏、脱硫石膏、矿渣和粉煤灰也都是工业废渣, 按一定比例 混合, 会在产生一定的化学反应基础上还对污水泥渣产生腐蚀作用, 从而破坏污水泥渣中的有害物质的原有结构,再经低温烘干和高温焙 烧,使其在化学活化阶段形成的水化产物发生分解脱水,生成无水矿 物, 并产生新的产物,这些新产物本身就是具有高活性的水硬性胶凝 材料, 同时含有大量的纳米粒子高分散性的硅和钙的水化物, 由于具 有高活性 8102迅速与硅酸盐矿物水化产生的 Ca (OH)2反应, 水泥水 化完成后。最终水化物是以 C-S-H为主的水化硅酸钙凝胶, 以及水化 铝酸钙、水化硫铝酸钙、水化硫铁酸钙等, 构成具有微晶结构的网络 状晶体, 可使产品结构中产生新的功能基团,增加了纳米粒子的高分
散性的硅和钙的水化物, 生成新的晶格畸变、产生功能基因, 形成类 似固溶体的结晶产物。在水泥中, 能更好地和熟料产生水化物共同胶 合, 所用的骨料也能与具有水硬性, 水化速度较慢的矿渣之类材料紧 紧胶合, 并能给这些水化缓慢的材料提供好的水化条件, 更富有耐久 性能,特别是能够给矿渣之类的水化慢的材料提供好的水化条件。因 此, 经该方法加工处理出来的污水泥渣产品, 与水泥混合使用能有效 提高水泥胶凝性能和水泥石的稳定性能以及水泥的强度,特别是能提 高矿渣水泥耐磨等性能,还可替代特种水泥使用,提高了水泥石的致 密度和机械强度,使水泥早后期强度持续增长,超过硅酸盐水泥或矿 渣水泥以及其它品种水泥早后期强度。该方法能将污水处理厂排出的 堆积如山又难以处理的污水泥渣处理成需求量巨大、投资少、耐磨强 度高、 抗冻性能好、 干缩性小、 既有利于环保、又能降低生产成本的 优质水泥。
具体实施方式
本发明的污水泥渣式水泥可用 70°/。〜95%的水泥与 30%〜5%的 污水泥渣产品混合而成。
其中的污水泥渣产品 ;用下列各组的重量份原料均可制成:
1、 污水泥渣 7份、 乙炔气渣或石灰渣 3份。
2、 污水泥渣 7份、 乙炔气渣或石灰渣 1份。
3、 污水泥渣 7份、 乙炔气渣或石灰渣 2份。
4、 污水泥渣 5份、 乙炔气渣或石灰渣 3份。
5、 污水泥渣 5份、 乙炔气渣或石灰渣 1份。
6、 污水泥渣 5份、 乙炔气渣或石灰渣 2份。
7、 污水泥渣 2份、 乙炔气渣或石灰渣 3份。
8、 污水泥渣 2份、 乙炔气渣或石灰渣 1份。
9、 污水泥渣 2份、 乙炔气渣或石灰渣 2份。
综上所述, 污水泥渣产品的重量份原料在污水泥渣 2〜7份、 乙 炔气渣或石灰渣 1〜3份的范围内均为有效。
为了在确保产品质量的前提下进一步降低成本和利用其它一些 工业废物, 可将污水泥渣产品的原料在上述重量份为: 污水泥渣 2〜 7份、 乙炔气渣或石灰渣 1〜3份的基础上, 再增加下述原料重量份 为: 硫酸铝渣 1〜3份, 磷石膏或脱硫石膏 1〜2份、 矿渣 2〜6份、 粉煤灰 1〜2份。
10、 污水泥渣 2〜7份、 乙炔气渣或石灰渣 1〜3份、 硫酸铝渣 1 份, 磷石膏或脱硫石膏 1份、 矿渣 2份、 粉煤灰 1份。
11、 污水泥渣 2〜7份、 乙炔气渣或石灰渣 1〜3份、 硫酸铝渣 3 份, 磷石膏或脱硫石膏 2份、 矿渣 6份、 粉煤灰 2份。
12、 污水泥渣 2〜7份、 乙炔气渣或石灰渣〗〜 3份、 硫酸铝渣 2 份, 磷石膏或脱硫石膏 1.5份、 矿渣 4份、 粉煤灰 1.5份。
13、污水泥渣 2〜7份、乙炔气渣或石灰渣 1〜3份、硫酸铝渣 1〜
3份。
14、 污水泥渣 2〜7份、 乙炔气渣或石灰渣 1〜3份、 磷石膏或脱 硫石膏 1〜2份。
15、 污水泥渣 2〜7份、 乙炔气渣或石灰渣 1〜3份、 矿渣 2〜6 份。
16、 污水泥渣 2〜7份、 乙炔气渣或石灰渣 1〜3份、 粉煤灰 1〜 2份。
17、污水泥渣 2〜7份、乙炔气渣或石灰渣 1〜3份、硫酸铝渣 1〜 3份, 磷石膏或脱硫石膏 1〜2份。
18、污水泥渣 2〜7份、乙炔气渣或石灰渣 1〜3份、硫酸铝渣 1〜 3份, 磷石膏或脱硫石膏 1〜2份、 矿渣 2〜6份。
19、综上所述,污水泥渣产品的原料可在重量份为:污水泥渣 2〜
7份、 乙炔气渣或石灰渣 1〜3份的基础上, 再增加下述原料重量份 为: 硫酸铝渣 1〜3份, 磷石膏或脱硫石膏 1〜2份、 矿渣 2〜6份、 粉煤灰 1〜2份中的一种或几种均为有效。
其优选的实用的制备方法是:在上述组分的重量份的原料中加入 适量水在搅拌成型机(或其它搅拌机)加工成料球, 自然晾干成生料 球; 再将生料球置于烘干焙烧窑内 (如隧道窑等)先经 100〜200°C 的低温烘干带烘干 20〜40分钟, 再经 500〜100(TC高温焙烧带焙烧
50〜100分钟, 出窑后自然冷却成熟料球即为污水泥渣产品; 最后将 污水泥渣产品与水泥熟料按 30%〜5% : 70%〜95%的比例混合在一 起粉磨成粉即为污水泥渣式水泥,也可将污水泥渣产品粉磨成粉后再 与水泥按 30%〜5% : 70%〜95%的比例混合在一起即为污水泥渣式 水泥。 上述焙烧温度设在 500〜1000°C之间均可, 如低于 500°C则会 使生料球烧不透而影响质量, 如温度高于 1000 °C, 并不会提高熟料 球的质量,反而会影响新的功能基团的产生,还会多消耗很多燃料而 增加成本, 焙烧温度控制在 800°C左右最好。 对料球体积的要求不是 很严格,但体积过小则会影响料球的质量, 体积过大不易烧透, 料球 粒径一般控制在 5〜25mm为宜。
在纯熟料水泥中分别加入 5%、 10%、 15%、 25%的污水泥渣产品 而组成的不同比例的污水泥渣式水泥(表中序号为 2-5),分别作为胶 凝材料与纯熟料水泥(表中序号为 1 )作为胶凝材料, 按照 ISO有关 水泥物理性能测试标准进行了强度、耐磨、抗冻、干缩性等物理性能 测试。 其测试结果如表 1所示。
表 1 : 几种不同混合比例的污水泥渣式水泥与纯熟料水泥性能比较表
序 试样重量 抗折强度 抗压强度 耐磨后损 抗 冻 干 缩 后 损 率 号 (g) (Mpa) (Mpa) 失 (g)
失(g ) (%) 纯熟料 污水泥 3 28 3 28 3 28 -6度 3天 水泥 渣产品 天 天 天 天 天 天
1 450.0 5.8 7.2 39.1 55.0 0.8 0.4 1.1 0.06
2 422.5 22.5 6.9 9.5 42.6 67.3 0.5 0.2 0.6 0
3 405.0 45.0 7.0 9.6 47.0 70.1 0.4 0.1 0.5 0
4 382.5 67.5 7.4 9.7 51.3 76.0 0.4 0.1 0.5 0
5 337.5 112.5 7.5 10.1 52.1 77.1 0.4 0.1 0.5 0 由表 1可知,在纯熟料水泥中掺入适量的污水泥渣产品,其物理 性能比纯熟料水泥更好, 而纯熟料水泥的质量在水泥中是最好的, 但 成本是最高的, 在惨入部分污泥产品粉后的质量还能有进一步的提 高, 成本却能因污水泥渣产品的低成本而明显下降。
实施例 2:
将现有的商品胶凝材料的矿渣粉与污水泥渣产品按一定比例混 合成的污水泥渣式水泥作为胶凝材料,按照 ISO有关水泥物理性能测 试标准与商品普通水泥、 道路水泥、 复合水泥进行性能比较, 结果如 表 2所示:
表 2: 污水泥渣式水泥与常用几种水泥性能比较表
干 序 试样重量 抗折 抗压 耐磨 抗 冻 縮 率 号 (g) 强度 强度 后损 后 损 (
(Mpa) (Mpa) %) 失 ( g) 失(g) 污水
矿渣 普通 道 路 Ά 口 3 28 3 28 3 28 -6度 泥渣
广 ώ: TO口 粉 水泥 水泥 水泥 天 天 天 天 天 天
1 90 360 一 一 ― 4.6 8.9 28.5 59.6 1.0 0.5 1.1 0
2 135 315 一 一 ― 5.6 9.9 31.5 63.5 0.8 0.2 0.9 0
3 一 一 450 一 一 3.6 7.6 26.3 40.6 1.5 1.0 1.8 0.07
4 ― 一 一 450 一 3.8 7.8 22.6 43.5 1.0 0.6 1.4 0.05
5 一 一 一 一 450 3.9 7.7 20.3 41.1 1.0 0.7 1.4 0.06 由表 2可见,在现有的商品矿渣粉中惨入一定比例的污水泥渣产 品而成的污水泥渣式水泥作为胶凝材料, 其抗折强度, 抗压强度和耐 磨、抗冻、千缩性能都高于未掺入污水泥渣产品的普通水泥、道路水 泥、 复合水泥。 由此可见, 能很好的代替普通水泥、 道路水泥、 复合 水泥使用。
实施例 3
在商品矿渣水泥中分别加入一定比例的污水泥渣产品混合而成的 污水泥渣式水泥 (表中序号为 2-5 ) 分别作为胶凝材料与商品矿渣水 泥(表中序号为 1 )作为胶凝材料, 分别按照 ISO有关水泥物理性能 测试标准进行强度和耐磨、抗冻、干缩性等物理性能测试比较, 其测 试结果如表 3所示:
表 3: 几种不同混合比例的污水泥渣式水泥与矿渣水泥性能比较表
由表 3可见,在现有商品矿渣水泥中掺入一定比例的污水泥渣产 品而成的污水泥渣式水泥, 其抗折强度, 抗压强度和抗磨、 抗冻、干 縮性等性能都高于未掺入污水泥渣产品的矿渣水泥。表中的 4号混合 比例的综合性能更好。
综上所述,用本方法将污水处理厂排出的污水泥渣处理成污水泥 渣产品,按一定比例与熟料水泥混合成的污水泥渣式水泥, 其质量比 纯熟料水泥还好, 能代替纯熟料水泥直接使用。也可按适当比例与其 它各品种的商品水泥混合成污水泥渣式水泥, 可有效提高水泥质量, 并可降低水泥成本,将上述几种的污水泥渣式水泥按照 ISO有关水泥 物理性能测试标准进行强度和耐磨、抗冻、干縮性等物理性能测试比 较, 证明将污水泥渣产品与水泥按一定比例混合后的污水泥渣式水 泥, 具有收浆快、强度高、水泥化热低、抗冻性能、干缩性基本为零、 防止水渗漏和抗耐磨等性能都比不惨入污水泥渣产品的水泥的质量 好。 经有关工程实际试用, 其结果与测试结果一致。 同时, 用本方法 处理的污水泥渣产品能耗低、成本低、生产的污水泥渣产品约 150元 /吨,而纯熟料水泥为 250 350元 /吨, 按一定比例与各品种的商品 水泥混合后,可使混合后的污水泥渣式水泥标号比混合前的商品水泥 标号提高 1一 2级, 其耐磨性、 抗冻性、 干縮性等性能都高于混合前 的商品水泥。所以, 用本方法生产的污水泥渣式水泥的应用前景将是 非常好的,更是符合国家工业废渣资源化循环发展, 有利于开发污水 泥渣用于建材产品以及有利于环保政策的变废为宝的好方法。
Claims
1、 一种污水泥渣式水泥, 其特征在于由 70%〜95%的水泥与 30%〜5%的污水泥渣产品混合而成。
2、 如权利要求 1所述的污水泥渣式水泥, 其特征在于污水泥渣 产品中的原料重量份为: 污水泥渣 2〜7份、 乙炔气渣或石灰渣 1〜3 权
份。
3、 如权利要求 2所述的污水泥渣式水泥, 其特征在于污水泥渣 产品的原料中还包括重量份为: 硫酸铝渣 1〜3份, 磷石膏或脱硫石 膏 1〜2份、 矿渣 2〜6份、 粉煤灰 1〜2份。
4、 权利要求 1或 2或 3所述水泥的制备求方法, 其特征在于包括 以下步骤:
A)将原料重量份为: 污水泥渣 2〜7份、 乙炔气渣或石灰渣 1〜 3份和适量水加入搅拌成型机加工成料球, 自然晾干成生料球; 或将 污水泥渣 2〜7份、 乙炔气渣或石灰渣 1〜3份、 硫酸铝渣 1〜3份、 磷石膏或脱硫石膏 1〜2份, 矿渣 2〜6份、 粉煤灰 1〜2份和适量水 加入搅拌成型机加工成料球, 自然晾干成生料球;
B)将生料球置于烘干焙烧窑内经 100〜20(TC的低温烘干带烘干 20〜40分钟,再经 500〜1000°C高温焙烧带焙烧 50〜100分钟, 出窑 后自然冷却成熟料球即为污水泥渣产品;
C)将污水泥渣产品与水泥熟料按 30%〜5%: 70%〜95%的比例 混合在一起粉磨成粉即为污水泥渣式水泥,也可将污水泥渣产品粉磨 成粉后再与水泥按 30%〜5% : 70%〜95%的比例混合在一起即为污 水泥渣式水泥。
5、 如权利要求 4所述水泥的制备方法, 其特征在于制备方法的 步骤 A) 中所述的料球的粒径为 5〜30mm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810124512.3 | 2008-08-22 | ||
CN2008101245123A CN101343149B (zh) | 2008-08-22 | 2008-08-22 | 污水泥渣式水泥及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010020079A1 true WO2010020079A1 (zh) | 2010-02-25 |
Family
ID=40245288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2008/001615 WO2010020079A1 (zh) | 2008-08-22 | 2008-09-16 | 污水泥渣式水泥及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101343149B (zh) |
WO (1) | WO2010020079A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114455927A (zh) * | 2022-01-20 | 2022-05-10 | 云南胜威化工有限公司 | 一种磷石膏砌块的生产方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101863629B (zh) * | 2010-06-28 | 2012-04-11 | 长治市漳山建材有限公司 | 一种主要用固体工业废渣生产硫铝酸盐水泥熟料的方法 |
PL231407B1 (pl) * | 2012-02-17 | 2019-02-28 | Lsa Spolka Z Ograniczona Odpowiedzialnoscia | Sposób wysokotemperaturowej utylizacji fosfogipsu |
CN104016601B (zh) * | 2014-06-20 | 2018-06-12 | 淮安市水泥厂有限公司 | 工业废渣污泥生产水泥胶凝材料的方法 |
CN104591561A (zh) * | 2015-01-12 | 2015-05-06 | 扬中市大地水泥有限公司 | 一种水泥无机增强剂的制备工艺 |
CN105036576A (zh) * | 2015-06-25 | 2015-11-11 | 西安美吕环保科技有限公司 | 利用金属镁还原渣制备的复合硅酸盐水泥及其矿物调节物 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1061948A (zh) * | 1991-09-27 | 1992-06-17 | 武汉钢铁公司 | 炼轧污泥矿渣硅酸盐黑水泥的生产方法 |
JP2002265242A (ja) * | 2001-03-08 | 2002-09-18 | Taiheiyo Cement Corp | セメントクリンカおよびセメント組成物 |
CN101041562A (zh) * | 2007-02-27 | 2007-09-26 | 谭纪林 | 硫酸铝渣用作水泥配料的处理方法 |
CN101172788A (zh) * | 2007-10-17 | 2008-05-07 | 莱芜钢铁集团有限公司 | 一种利用钢渣球磨尾泥生产钢渣矿渣水泥的方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1115309C (zh) * | 2000-05-31 | 2003-07-23 | 蒋兆广 | 粉煤灰的处理方法 |
CN101172790A (zh) * | 2007-10-26 | 2008-05-07 | 尹小林 | 利用湿态污泥废渣二级配料生产水泥的新工艺 |
-
2008
- 2008-08-22 CN CN2008101245123A patent/CN101343149B/zh not_active Expired - Fee Related
- 2008-09-16 WO PCT/CN2008/001615 patent/WO2010020079A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1061948A (zh) * | 1991-09-27 | 1992-06-17 | 武汉钢铁公司 | 炼轧污泥矿渣硅酸盐黑水泥的生产方法 |
JP2002265242A (ja) * | 2001-03-08 | 2002-09-18 | Taiheiyo Cement Corp | セメントクリンカおよびセメント組成物 |
CN101041562A (zh) * | 2007-02-27 | 2007-09-26 | 谭纪林 | 硫酸铝渣用作水泥配料的处理方法 |
CN101172788A (zh) * | 2007-10-17 | 2008-05-07 | 莱芜钢铁集团有限公司 | 一种利用钢渣球磨尾泥生产钢渣矿渣水泥的方法 |
Non-Patent Citations (1)
Title |
---|
QI HONG: "Feasibility Study on Producing Ecological Cement by Sludge", JOURNAL OF ANHUI ARGI. SCI., vol. 36, no. 17, June 2008 (2008-06-01), pages 7380 - 7381 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114455927A (zh) * | 2022-01-20 | 2022-05-10 | 云南胜威化工有限公司 | 一种磷石膏砌块的生产方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101343149A (zh) | 2009-01-14 |
CN101343149B (zh) | 2011-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
He et al. | Synthesis and characterization of red mud and rice husk ash-based geopolymer composites | |
WO2021093168A1 (zh) | 一种基于工业尾气-污水处理-绿色高性能土木功能材料协同处置的赤泥利用方法 | |
CN104045298B (zh) | 一种磷石膏基污泥干化剂的制备方法及其在干化污泥上的应用 | |
CN103449796A (zh) | 一种污泥蒸压砖及其制备方法 | |
CN101215142A (zh) | 一种拜耳法赤泥复合砖及其生产方法 | |
CN111393083A (zh) | 一种全固废高性能混凝土及其制备方法和应用 | |
WO2020073792A1 (zh) | 改性污泥及其制备方法以及其作为覆土材料的施工方法 | |
WO2010020079A1 (zh) | 污水泥渣式水泥及其制备方法 | |
CN103951298B (zh) | 一种钛石膏基复合胶凝材料的制备方法及在干化污泥中的应用 | |
CN102584043B (zh) | 秸秆灰生产低温水泥熟料的方法 | |
CN104355674A (zh) | 利用城市污泥烧制多孔陶瓷材料的方法 | |
Fan et al. | New applications of municipal solid waste incineration bottom ash (MSWIBA) and calcined clay in construction: Preparation and use of an eco-friendly artificial aggregate | |
Wen et al. | Electrochemical response and effect evaluation of high belite sulphoaluminate cement combined with red mud-fly ash on solidification of Cu2+-contaminated kaolin | |
CN115093200B (zh) | 一种强化电解锰渣烧结砖及其制备方法 | |
CN106698991A (zh) | 一种混凝土掺合料及其制备方法 | |
CN101704650B (zh) | 增钙干化污泥渣的资源化利用方法 | |
CN111448968B (zh) | 一种利用自来水厂尾泥改良制备绿化土的方法 | |
Villagrán-Zaccardi et al. | Use of recycled fines from waste concrete as an admixture in new concrete | |
CN112456952A (zh) | 一种基于废弃窖泥的生土建筑材料及其制备方法和应用 | |
WO2023226321A1 (zh) | 一种填埋场覆土用改性市政污泥及其制备方法 | |
CN117362124A (zh) | 一种煤矸石脱碳除杂制人造黑土的方法 | |
CN108558250B (zh) | 一种低温煅烧磷石膏制备β-半水石膏的工艺 | |
CN111548031B (zh) | 利用工业废渣中和渣制备的矿粉及其制备方法 | |
CN111777388A (zh) | 余泥渣土聚合物植生混凝土及制备方法 | |
CN112408934B (zh) | 一种含Cr电镀污泥生产双免砖的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08800608 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08800608 Country of ref document: EP Kind code of ref document: A1 |