WO2010018861A1 - 繊維製造装置及び繊維製造方法 - Google Patents
繊維製造装置及び繊維製造方法 Download PDFInfo
- Publication number
- WO2010018861A1 WO2010018861A1 PCT/JP2009/064324 JP2009064324W WO2010018861A1 WO 2010018861 A1 WO2010018861 A1 WO 2010018861A1 JP 2009064324 W JP2009064324 W JP 2009064324W WO 2010018861 A1 WO2010018861 A1 WO 2010018861A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electric heater
- temperature
- raw material
- melt
- nozzle
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0015—Electro-spinning characterised by the initial state of the material
- D01D5/0023—Electro-spinning characterised by the initial state of the material the material being a polymer melt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/05—Filamentary, e.g. strands
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D13/00—Complete machines for producing artificial threads
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D4/00—Spinnerette packs; Cleaning thereof
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0061—Electro-spinning characterised by the electro-spinning apparatus
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/56—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/728—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
Definitions
- the present invention relates to a fiber manufacturing apparatus and a fiber manufacturing method using an electrospinning method.
- a fluid such as a polymer solution or a suspension can be directly formed into a fiber having a diameter of sub-micrometer or less without using a composite spinning method or a blend spinning method. Diameter fibers can also be obtained.
- fluid is sent from a fluid storage tank such as a syringe to nozzles and capillaries with gas pressure and an appropriate metering pump, and a high voltage is applied to the fluid or conductive nozzles and capillaries to ground. Fiber is sprayed on the fiber receiving portion of the counter electrode.
- Patent Document 1 describes an apparatus for producing ultrafine fibers by an electrospinning method.
- the type of fluid is not particularly limited, but there is a description that it is important to have spinnability, and the most preferable viscosity of the fluid is 100 Pa ⁇ s or more and 1000 Pa ⁇ s or less.
- the fluid include various polymer melts, polymer solutions, suspensions, inorganic sols, or mixtures thereof.
- a collector It is also possible to use pitch-based substances such as le pitch and petroleum pitch. However, a specific method for obtaining a melt of a polymer material or a pitch-based material is not described.
- the voltage generated by the voltage generating unit that applies a high voltage to the fluid or the nozzle may flow into the adjacent electric heater and flow backward to the power source of the electric heater.
- a breaker such as an outlet power source may be dropped, or temperature control with an electric heater may not be performed properly, and stable fiberization may be difficult.
- a method of interposing a ceramic member for interrupting electric leakage between the tank and the electric heater can be considered, but the ceramic member may be destroyed due to the influence of high temperature or high voltage. It was.
- a method of heating using hot air or a heat medium instead of the electric heater is conceivable, it is not suitable industrially because the equipment becomes large when applied to a fiber manufacturing apparatus.
- the present invention provides a fiber manufacturing apparatus and a fiber manufacturing method that solve the above-described problems of the prior art and that are less likely to cause damage to the apparatus and that can facilitate stable fiberization. Let it be an issue.
- the fiber manufacturing apparatus is a fiber manufacturing apparatus that manufactures fibers from a raw material that is a polymer substance or a pitch-based substance by an electrospinning method, a storage unit that stores a melt of the raw material, and the storage unit An electric heater that keeps the raw material in a molten state by heating the temperature, a temperature measuring unit that measures the temperature of the melt of the raw material in a non-contact manner, and the electric heater and a power source for the electric heater, the temperature A temperature control unit that controls the electric heater based on the measurement result of the measurement unit to adjust the temperature of the raw material melt, a nozzle that communicates with the storage unit and discharges the raw material melt, and melting of the raw material A collector that collects fibers formed by discharging an object from the nozzle, and a voltage applied between the nozzle and the collector to apply the raw material A voltage generating unit for charging the melt, characterized in that it comprises and an electric heater that keeps the raw material in a molten state by heating the temperature, a temperature measuring unit that measures
- the fiber manufacturing method when manufacturing a fiber by an electrospinning method in which a charged raw material melt is discharged from a nozzle and formed into a fiber shape and collected in a collector, Based on the result of heating the raw material melt to keep the raw material in a molten state using an electric heater connected to a power source, and measuring the temperature of the raw material melt in a non-contact manner, the insulation transformer And a temperature control unit provided between the power supply and the electric heater to control the temperature of the melt of the raw material.
- FIG. 1 is a conceptual diagram showing a structure of a fiber manufacturing apparatus for manufacturing fibers by an electrospinning method.
- FIG. 2 is a cross-sectional view illustrating an example of a nozzle.
- FIG. 1 is a conceptual diagram showing a structure of a fiber manufacturing apparatus for manufacturing fibers by an electrospinning method.
- This fiber manufacturing apparatus includes a storage tank 1 for storing a melt 10 of a raw material (polymer material or pitch-based material), an electric heater 2 for heating the storage tank 1 to keep the raw material in a molten state, and a melt of the raw material.
- a non-contact thermometer 9 that measures the temperature of 10 in a non-contact manner, and an electric heater 2 that is provided between the electric heater 2 and the electric power source 6 for the electric heater, and controls the electric heater 2 based on the measurement result of the non-contact thermometer 9 to make the raw material
- a temperature controller 8 for adjusting the temperature of the melt 10, a nozzle 3 provided in the storage tank 1 for discharging the melt 10 of the raw material in the storage tank 1, and a collector for collecting the fibers 11 made of the raw material 4, a voltage generator 5 for charging the raw material melt 10 by applying a voltage between the nozzle 3 and the collector 4, and an insulating transformer 7 provided between the temperature controller 8 and the electric heater 2.
- the storage tank 1, the nozzle 3 and the melt 10 are positively charged and the collector 4 is grounded, so that the charged melt 10 is sent from the storage tank 1 to the nozzle 3 and is discharged from the nozzle 3.
- the melt 10 is attracted to the collector 4 to form a fiber, and ultrafine fibers 11 having a diameter of a micrometer or nanometer order are collected by the collector 4.
- a voltage generator that can be charged to a negative charge may be further prepared to charge the collector 4 to a negative charge.
- manufacturing conditions such as physical properties of the melt 10 such as viscosity, conductivity, elasticity, surface tension, an applied voltage, a delivery amount of the melt 10, a distance between the nozzle 3 and the collector 4, an atmospheric temperature,
- the diameter, length, shape, surface property, and the like of the fiber 11 can be controlled by environmental conditions such as humidity and atmospheric pressure.
- the fiber manufacturing apparatus will be described in more detail.
- the number of storage tanks may be one or more.
- the storage tank 1 provided with the nozzle 3 may be charged with a solid polymer material or a pitch-based material and melted, but in an apparatus that continuously performs fiberization, Another storage tank that melts and stores the polymer material and the pitch-based material in advance may be provided, and the melt 10 may be supplied from the storage tank to the storage tank 1 provided with the nozzle 3 by a gear pump or the like.
- the material of the storage tank 1 can be arbitrarily selected depending on the properties of the melt 10, and stainless steel or glass is preferable because it is inexpensive, but it is preferable to use a noble metal such as platinum or nickel for a highly corrosive melt. . Further, ceramic may be used.
- the storage tank 1 does not have to be an integral structure.
- the storage tank 1 is preferably composed of a plurality of members and can be disassembled. In this case, it is preferable to devise so that the melt 10 does not leak due to the internal pressure, and it is preferable to interpose a packing made of aluminum, PTFE or the like between the members.
- the nozzle 3 will be described.
- the nozzle 3 is a part for discharging the melt 10 from the storage tank 1 toward the collector 4. Although the number of nozzles 3 may be singular or plural, a plurality of nozzles 3 are preferable in terms of improving productivity.
- the shape of the nozzle 3 is preferably convex toward the discharge direction of the melt 10. This makes it easy for the melt 10 to go straight toward the collector 4, thereby enabling stable fiberization.
- the equipotential surface near the separation site of the melt 10 becomes a plane perpendicular to the discharge direction of the melt 10, so that the charged melt 10 has directivity. There is a risk of losing. As a result, it becomes extremely difficult to control the moving direction of the melt 10, and the stability of fiberization may be impaired.
- the shape of the nozzle 3 include a needle shape, a rod shape, a conical shape, a polygonal pyramid shape (triangular pyramid, quadrangular pyramid, etc.), a dome shape, a kamaboko shape, an ellipsoid, and combinations thereof.
- the cross-sectional shape of the tip of the nozzle 3 does not have to be a circle, but a triangle (regular triangle, isosceles triangle, etc.), rectangle (square, rectangle, etc.), other polygons, Y-shape, C-shape, hollow, flatness, etc. It is not particularly limited.
- the melt 10 may pass through the inside of the nozzle 3 by capillary action, or may reach the tip of the nozzle 3 by gas pressure loaded on the storage tank 1, surface tension from the bottom, gravity, stretching tension, or the like. It may be guided. Further, the nozzle 3 may be as shown in FIG. That is, the nozzle 3 in FIG.
- the second nozzle portion 32 that discharges the melt 10 discharged from one nozzle portion 31 in a fine thread shape while being pressurized with a pressurized gas such as nitrogen gas.
- the second nozzle portion 32 includes a cylindrical barrel 32a formed on the outer periphery of the first nozzle portion 31, and a nozzle guide that forms a nozzle port 33 having a diameter of about 0.5 mm on the tip side of the barrel 32a.
- the barrel 32a is provided with a pressurized gas supply port 34 for supplying a pressurized gas such as nitrogen gas into the second nozzle portion 32.
- the barrel 32a is made of a material having good thermal conductivity (for example, stainless steel), and the melt 10 supplied from the storage tank 1 into the first nozzle portion 31 is melted on the outer peripheral surface of the barrel 32a.
- an electric heater (not shown) is wound.
- air, helium gas, argon gas, or nitrogen gas can be used as the pressurized gas supplied into the second nozzle portion 32 of the nozzle 3.
- it is preferable to avoid the use of air because the fiber may generate heat or ignite at a high temperature exceeding 300 ° C. due to rapid oxidation.
- a preferable type of pressurized gas is an inert gas that does not oxidize the fibers, and examples thereof include helium, nitrogen, and argon.
- the collector 4 will be described.
- the collector 4 is a part that collects the fibers 11 discharged from the nozzle 3.
- the collector 4 may be composed of a plurality of units or may move like a belt conveyor. The portion where the fiber 11 is separated from the nozzle 3 and substantially contacts first is included in the collector 4. A voltage is applied between the nozzle 3 or the melt 10 and the collector 4 and collected by the collector 4.
- the method for applying the voltage is not particularly limited, and the collector 4 may be either a positive electrode or a negative electrode. Usually, the collector 4 is grounded and the nozzle 3 is used as the positive electrode. This is preferable from the viewpoint of safety.
- the voltage applied to the nozzle 3 and the collector 4 is preferably 500 V or more and 100 kV or less, and is appropriately set depending on the distance between the two. If it is less than 500 V, the melt 10 is difficult to separate from the nozzle 3, and if it is more than 100 kV, there is a possibility that discharge occurs between them.
- the temperature controller 8 controls the electric heater 2 based on the measurement result of the non-contact thermometer 9 to adjust the temperature of the melt 10.
- the fiber manufacturing apparatus of the present embodiment is provided with an insulating transformer 7 between the electric heater 2, the electric heater power supply 6 and the temperature control unit 8 to form a closed circuit. A high voltage does not flow into the electric heater power supply 6 and the temperature control unit 8 on the primary side.
- the temperature of the melt 10 can be appropriately controlled by the electric heater 2, and the temperature of the melt 10 can be stably maintained at a desired temperature (that is, the melt viscosity of the melt 10 is high). Stable fiberization is possible because it is almost constant. Further, when the temperature of the raw material melt 10 is measured by, for example, a thermocouple brought into contact with the electric heater 2, the storage tank 1, etc., the high voltage may flow into the temperature controller 8 through the thermocouple. The temperature control unit 8 may be damaged.
- the temperature of the raw material melt 10 is measured by a non-contact type temperature measuring device such as an infrared radiation temperature sensor, so that the high voltage is passed through the temperature measuring device. There is no risk of flowing into the control unit 8.
- the electric heater 2 is excellent in temperature controllability and economy, it is suitable as a heat source for heating raw materials in a fiber manufacturing apparatus.
- the type of the electric heater 2 is not particularly limited, and a normal one can be used, and it is sufficient if the temperature can be raised to about 500 ° C.
- the withstand voltage of the electric heater 2 is preferably equal to or higher than the applied voltage.
- the electric heater 2 may be installed in the storage tank 1 (internal heating type), it is preferable to attach it to the outside of the storage tank 1 (external heating type) from the viewpoint of not complicating the apparatus.
- the melt viscosity of the melt 10 is preferably 10 poise (1 Pa ⁇ s) or more and 10,000 poise (1000 Pa ⁇ s) or less. In order to achieve such a melt viscosity, heating is performed at an appropriate temperature depending on the type of raw material.
- the type of raw material is not particularly limited, but if it is a polymer material, polyethylene terephthalate (PET), polypropylene terephthalate (PPT), polybutylene terephthalate (PBT), polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN) ), Polyacrylic acid, polymethyl methacrylate (PMMA), polystyrene (PS), polycarbonate, polymethylpentene (PMP), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polyamide (polyamide) 6, polyamide 66, polyamide 610, polyamide 12, polyamide 46, polyamide 9T, etc.), polyurethane, aramid, polyimide (PI), polybenzoimidazole (PBI), polybenzoxazole (PBO) Polyvinyl alcohol (PVA), cellulose, cellulose acetate, cellulose acetate butyrate, polyvinylpyrrolidone (PVP), polyethyleneimi
- Fiber formation was performed using a fiber manufacturing apparatus having a structure as shown in FIG.
- a pitch having a softening point of 80 ° C. prepared from coal tar was used as a raw material.
- This pitch was filled into a stainless steel storage tank (capacity 10 mL).
- a stainless steel 28G nozzle (inner diameter 0.16 mm) is attached to the lower part of the storage tank, and an electric heater is wound around the outer periphery of the storage tank.
- a power source for the electric heater a 100V outlet was used, and an insulating transformer was installed between the electric heater and the outlet power source.
- an outlet power source was connected to the input side of the insulation transformer, an electric heater was connected to the output side, and a current of 100 V output from the output side was used as the power source of the electric heater.
- a temperature controller was installed between the insulation transformer and the outlet power supply to control the electric heater in response to the temperature sensor signal.
- This temperature sensor is an infrared radiation temperature sensor, and measures the temperature of the outer surface of the storage tank (the portion where the electric heater is not wound).
- the temperature of the pitch in a storage tank was controlled to 180 degreeC using the correlation of the outer surface temperature of the storage tank acquired previously, and the temperature of the pitch in a storage tank.
- a voltage of 35 kV generated by a voltage generator was applied to the storage tank, and a ground electrode (collector) was placed at a position 100 mm directly below the nozzle. Thereafter, a 0.7 MPa nitrogen pressure was applied to the sealed storage tank, and the pitch was discharged from the nozzle for fiberization. Pitch fiberization progressed well, and fibers with a diameter of about 1 to 5 ⁇ m and fibers with a diameter of several hundred nm were obtained. During fiberization, high voltage did not leak to the temperature controller or outlet power supply. The pitch fiber collected by the collector was recovered with a bamboo tool and then re-fibrated, so that continuous spinning could be performed without hindrance.
- Example 1 Fiberization was attempted in exactly the same manner as in Example 1 except that an insulating transformer was not disposed between the 100V outlet power supply and the electric heater. However, the high voltage leaked to the electric heater, the breaker of the outlet power supply fell, and the temperature of the pitch in the storage tank was lowered, so that stable fiberization could not be performed. Further, the leakage of electricity caused damage to the substrate of the temperature controller.
- Fiber formation was performed using a fiber manufacturing apparatus having a structure as shown in FIG.
- a liquid crystal pitch having a softening point of 280 ° C. prepared from coal tar was used as a raw material.
- This liquid crystal pitch was filled in a stainless steel storage tank (capacity 10 mL).
- the nozzle shown in FIG. 2 is attached to the lower part of the storage tank, and an electric heater is wound around the outer periphery of the storage tank.
- a power source for the electric heater a 100V outlet was used, and an insulating transformer was installed between the electric heater and the outlet power source.
- an outlet power source was connected to the input side of the insulation transformer, an electric heater was connected to the output side, and a current of 100 V output from the output side was used as the power source of the electric heater.
- the discharge part (the most advanced part) of the liquid crystal pitch was a stainless 27G nozzle having an inner diameter of 0.20 mm and an outer diameter of 0.42 mm, and the diameter of the nozzle port 33 was 0.50 mm.
- a temperature controller was installed between the insulation transformer and the outlet power supply to control the electric heater in response to the temperature sensor signal.
- This temperature sensor is an infrared radiation temperature sensor, and measures the temperature of the outer surface of the storage tank (the portion where the electric heater is not wound).
- the temperature of the liquid crystal pitch in the storage tank was controlled at 350 ° C. using the correlation between the outer surface temperature of the storage tank and the temperature of the liquid crystal pitch in the storage tank, which had been acquired in advance.
- a voltage of 25 kV generated by a voltage generator was applied to the storage tank, and a ground electrode (collector) was placed at a position 120 mm directly below the nozzle. Thereafter, a nitrogen pressure of 0.5 MPa was applied to the sealed storage tank, and a liquid crystal pitch was discharged from a nozzle controlled at 350 ° C. for fiberization. At this time, nitrogen gas preheated to 350 ° C.
- the nozzle is passed through the nozzle as a pressurized gas, and a line of 100 m / s is formed in the gap at the tip of the nozzle (the gap between the first nozzle portion and the second nozzle portion). It was made to flow at speed.
- the fiber pitch of the liquid crystal pitch progressed well, and ultrafine fibers were obtained.
- high voltage did not leak to the temperature controller or outlet power supply.
- the ultrafine fibers obtained as described above were infusibilized and carbonized, and then graphitized at 2700 ° C., whereby carbon fibers having a relatively uniform diameter of about 600 to 800 nm were obtained.
- Fibrosis and graphitization were performed in the same manner as in Example 2 except that nitrogen gas preheated to 350 ° C. was not passed. As a result, carbon fibers mainly having a diameter of about 3 to 5 ⁇ m were obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Description
エレクトロスピニング法で繊維を製造する装置の構造は比較的簡単であり、流体供給部(通常はタンク及びノズルで構成される)と繊維受容部との間に電圧を印加して流体を繊維状に成形するものである。エレクトロスピニング法によれば、複合紡糸法やブレンド紡糸法を使わずに、ポリマー溶液やサスペンジョンなどの流体を直接サブマイクロメーター以下の径の繊維に成形することが可能であるほか、シングルナノメーターの径の繊維を得ることもできる。一般的には、注射器のような流体貯蔵タンクから、ガス圧力や適当な計量ポンプ等でノズルやキャピラリー等に流体を送り、流体又は導電性のノズル,キャピラリー等に高電圧を印加して、グランドされた対電極の繊維受容部に繊維を吹き付ける。
特許文献1には、エレクトロスピニング法による極細繊維の製造装置が記載されている。そして、流体の種類は特に限定されないが、曳糸性を持つことが重要であるとの記載があり、最も好ましい流体の粘度は100Pa・s以上1000Pa・s以下とされている。また、流体の種類については、各種高分子融液,高分子溶液,サスペンション,無機ゾル,又はその混合体などが例示されており、一般的な高分子物質(ポリマー)のほか、コ−ルタ−ルピッチ、石油ピッチなどのピッチ系物質なども使用可能とされている。ただし、高分子物質やピッチ系物質の融液を得るための具体的な方法は記載されていない。
しかしながら、上記のような電熱ヒーターを用いてタンクを加熱する方法には、以下のような問題点があった。すなわち、流体又はノズルに高電圧を印加する電圧発生部によって生じた電圧が、近接する電熱ヒーターに流れ込み、電熱ヒーターの電源に逆流するおそれがあった。このような漏電が起こると、コンセント電源等のブレーカーが落ちたり、電熱ヒーターによる温度制御が適切に行えなくなったりするので、安定した繊維化が困難となる場合があった。
このような漏電対策として、タンクと電熱ヒーターとの間に漏電を遮断するためのセラミック部材を介装する方法が考えられるが、高温や高電圧の影響でセラミック部材が破壊してしまう場合があった。また、電熱ヒーターの代わりに、熱風や熱媒体を用いて加熱する方法も考えられるが、繊維製造装置に適用した場合は設備が大きくなるため、工業的には不向きであった。
また、タンクやノズルの精緻な温度制御のために温度制御器を用いると、電圧発生部によって生じた電圧が、電熱ヒーターや熱電対を介して温度制御器に流れ込み、温度制御器の基板等が破壊される場合があるという問題点があった。とりわけ、30kVを超えるような高電圧を印加した場合、又は、繊維製造中に人間,器具等のアースとなるものが温度制御器に接近した場合は、高電圧の電流が温度制御器に流れ込み、温度制御器の基板等が破壊される場合があるという問題点があった。
そこで、本発明は、上記のような従来技術が有する問題点を解決し、装置の破損が生じにくく且つ安定した繊維化を容易に行うことができる繊維製造装置及び繊維製造方法を提供することを課題とする。
また、本発明に係る繊維製造方法は、帯電させた原材料の溶融物をノズルから吐出して繊維状に形成しコレクタに捕集するエレクトロスピニング法によって繊維を製造するに際して、絶縁変圧器を介して電源に接続した電熱ヒーターを用いて、前記原材料の溶融物を加熱して前記原材料を溶融状態に保つとともに、前記原材料の溶融物の温度を非接触で測定した結果に基づいて、前記絶縁変圧器と前記電源との間に設けられた温度制御部で、前記電熱ヒーターを制御し前記原材料の溶融物の温度を調節することを特徴とする。
図2は、ノズルの一例を示す断面図である。
この繊維製造装置は、原材料(高分子物質又はピッチ系物質)の溶融物10を貯蔵する貯蔵タンク1と、貯蔵タンク1を加熱して原材料を溶融状態に保つ電熱ヒーター2と、原材料の溶融物10の温度を非接触で測定する非接触温度計9と、電熱ヒーター2と電熱ヒーター用電源6との間に設けられ、非接触温度計9の測定結果に基づいて電熱ヒーター2を制御し原材料の溶融物10の温度を調節する温度制御部8と、貯蔵タンク1に設けられ貯蔵タンク1内の原材料の溶融物10を吐出するノズル3と、原材料で構成された繊維11を捕集するコレクタ4と、ノズル3とコレクタ4との間に電圧を印加して原材料の溶融物10を帯電させる電圧発生機5と、温度制御部8と電熱ヒーター2との間に設けられた絶縁変圧器7と、を備えている。
電圧の印加により貯蔵タンク1、ノズル3及び溶融物10が正電荷に帯電し、コレクタ4がグランドされているので、帯電している溶融物10が貯蔵タンク1からノズル3に送り出されノズル3から吐出されると、溶融物10がコレクタ4に引き寄せられ繊維状となり、マイクロメーター又はナノメーターオーダーの直径を有する極細の繊維11がコレクタ4に捕集される。なお、負電荷に帯電させることのできる電圧発生機をさらに用意して、コレクタ4を負電荷に帯電させても構わない。
このとき、粘度、導電性、弾性、表面張力等の溶融物10の物性や、印加電圧、溶融物10の送り出し量、ノズル3とコレクタ4との間の距離等の製造条件や、雰囲気温度、湿度、気圧等の環境条件によって、繊維11の径、長さ、形状、表面性状等を制御することができる。
ここで、繊維製造装置について、さらに詳細に説明する。まず、貯蔵タンクの数は、ひとつでもよいが、複数でも差し支えない。すなわち、ノズル3が設けられた貯蔵タンク1に固体状態の高分子物質やピッチ系物質を装入して融解してもよいが、連続的に繊維化を行うような装置においては、固体状態の高分子物質やピッチ系物質をあらかじめ融解して貯蔵しておく別の貯蔵タンクを設け、その貯蔵タンクからギアポンプ等でノズル3が設けられた貯蔵タンク1に溶融物10を供給してもよい。
貯蔵タンク1の材質は溶融物10の性質によって任意に選択することができ、ステンレスやガラスが安価で好ましいが、腐食性の高い溶融物に対しては白金,ニッケル等の貴金属を用いることが好ましい。さらに、セラミックを用いてもよい。貯蔵タンク1は、一体的な構造である必要はなく、むしろメンテナンスを考慮すると、複数の部材から構成され分解可能な構造であることが好ましい。この場合は、内圧によって溶融物10が漏出しないように工夫することが好ましく、部材間にアルミニウム,PTFE等で構成されたパッキンを介装することが好ましい。
次に、ノズル3について説明する。ノズル3は、貯蔵タンク1から溶融物10をコレクタ4に向けて吐出する部位である。ノズル3の数は単数でもよいし複数でもよいが、生産性を向上するという点では複数の方が好ましい。また、ノズル3の形状は、溶融物10の吐出方向に向かって凸状であることが好ましい。これにより、溶融物10がコレクタ4に向かって直進しやすくなるため、安定な繊維化を実現することが可能となる。
ノズル3の形状が平面状又は凹状であると、溶融物10の離脱部位付近の等電位面が溶融物10の吐出方向に対して垂直な平面状になるため、帯電した溶融物10が方向性を失うおそれがある。その結果、溶融物10の移動方向を制御することが著しく困難となり、繊維化の安定性が損なわれるおそれがある。
ノズル3の形状の例としては、針状,棒状,円錐状,多角錘状(三角錐,四角錐等),ドーム型,かまぼこ型,楕円体及びこれらの組み合わせなどがあげられる。ノズル3の先端の断面形状は円形である必要はなく、三角形(正三角形,二等辺三角形等),矩形(正方形,長方形等),その他の多角形,Y字,C字,中空,扁平など、特に限定されるものではない。溶融物10は、ノズル3の内部を毛細管現象により通るようになっていてもよいし、貯蔵タンク1に負荷したガス圧力、底面からの表面張力や重力、延伸張力などによって、ノズル3の先端まで誘導されるようになっていてもよい。
また、ノズル3として、図2に示すようなものを用いてもよい。すなわち、図2のノズル3は、貯蔵タンク1に貯蔵された溶融物10を細糸状に吐出する第1のノズル部31を有しており、この第1のノズル部31の外周には、第1のノズル部31から吐出された溶融物10を窒素ガス等の加圧ガスにより加圧しながら細糸状に吐出する第2のノズル部32が設けられている。
第2のノズル部32は、第1のノズル部31の外周に形成された円筒状のバレル32aと、このバレル32aの先端側に例えば0.5mm程度の直径のノズル口33を形成するノズルガイド32bとで形成されており、バレル32aには、窒素ガス等の加圧ガスを第2のノズル部32内に供給する加圧ガス供給口34が設けられている。バレル32aは熱伝導性の良好な材料(例えばステンレス鋼)で形成されており、このバレル32aの外周面には、貯蔵タンク1から第1のノズル部31内に供給された溶融物10を溶融状態に保つために、電熱ヒーター(図示してない)が巻き付けられている。
ノズル3の第2のノズル部32内に供給される加圧ガスとしては、例えば空気,ヘリウムガス,アルゴンガス,窒素ガスを用いることができる。ただし、300℃を超えるような高温では急激な酸化により繊維が発熱したり発火したりする場合があるので、空気の使用は避けることが好ましい。好ましい加圧ガスの種類は、繊維を酸化させない不活性ガスであり、例えばヘリウム,窒素,アルゴンがあげられる。なお、加圧ガスの温度が低すぎると、溶融物10が固化するおそれがあり、高すぎると分解するおそれがある。
次に、コレクタ4について説明する。コレクタ4は、ノズル3から吐出された繊維11を捕集する部位である。コレクタ4は複数のユニットから構成されていてもよく、またベルトコンベアのように移動するようになっていてもよい。なお、繊維11がノズル3から離れ、実質的に最初に接触した部分はコレクタ4に含まれる。ノズル3又は溶融物10とコレクタ4との間には電圧が印加され、コレクタ4にて捕集される。
電圧を印加する方法は特に限定されるものではなく、コレクタ4は正極でも負極でもどちらでも構わないが、通常はコレクタ4をグランドしてノズル3を正極にする方が、繊維製造装置の簡易性,安全性の観点から好ましい。ノズル3及びコレクタ4に印加される電圧は、500V以上100kV以下であることが好ましく、両者間の距離によって適宜設定される。500V未満であると、溶融物10がノズル3から離脱しにくくなり、100kV超過であると、両者間に放電が生じるおそれがある。
このような繊維製造装置においては、非接触温度計9の測定結果に基づき温度制御部8によって電熱ヒーター2を制御して溶融物10の温度を調節するが、高電圧が印加されるノズル3や貯蔵タンク1に電熱ヒーター2が近接しているため、電圧発生機5による高電圧が電熱ヒーター2に流れ込み、電熱ヒーター2の電源6や温度制御部8に逆流する場合があった。このような漏電が起こると、電熱ヒーター用電源6や温度制御部8に故障等の問題が生じたり、電熱ヒーター2による溶融物10の温度制御が適切に行えなくなったりするので、安定した繊維化が困難となる場合があった。
しかしながら、本実施形態の繊維製造装置は、電熱ヒーター2と電熱ヒーター用電源6及び温度制御部8との間に絶縁変圧器7が設けられ閉回路が構成されているので、絶縁変圧器7の1次側である電熱ヒーター用電源6及び温度制御部8に高電圧が流入することがない。よって、電熱ヒーター用電源6や温度制御部8(例えば基板)に故障等の問題が生じることがない。また、電熱ヒーター2による溶融物10の温度制御を適切に行うことが可能となり、溶融物10の温度を所望の温度に安定的に保持することができるので(すなわち、溶融物10の溶融粘度がほぼ一定であるので)、安定した繊維化が可能となる。
さらに、原材料の溶融物10の温度測定を、例えば、電熱ヒーター2,貯蔵タンク1等に接触させた熱電対で行う場合は、前記高電圧が熱電対を通して温度制御部8に流れ込むおそれがあるため、温度制御部8が損傷することがある。しかしながら、本実施形態の繊維製造装置においては、例えば赤外放射温度センサーのような非接触方式の温度測定装置で原材料の溶融物10の温度を測定するので、前記高電圧が温度測定装置を通して温度制御部8に流れ込むおそれがない。
電熱ヒーター2は、温度制御性及び経済性が優れているので、繊維製造装置において原材料を加熱する熱源として好適である。電熱ヒーター2の形式は特に限定されるものではなく、通常のものを用いることができ、500℃程度まで昇温できれば充分である。ただし、電熱ヒーター2の耐電圧は、印加する電圧以上であることが好ましい。電熱ヒーター2は貯蔵タンク1内に設置してもよいが(内熱式)、装置を複雑にしないという観点から、貯蔵タンク1の外側に取り付ける方(外熱式)が好ましい。
なお、溶融物10の溶融粘度は、10ポイズ(1Pa・s)以上10000ポイズ(1000Pa・s)以下とすることが好ましい。このような溶融粘度となるように、原材料の種類によって適切な温度に加熱する。
原材料の種類は特に限定されるものではないが、高分子物質であれば、ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート(PPT)、ポリブチレンテレフタレート(PBT)、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル(PAN)、ポリアクリル酸、ポリメチルメタクリレ−ト(PMMA)、ポリスチレン(PS)、ポリカーボネート、ポリメチルペンテン(PMP)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアミド(ポリアミド6、ポリアミド66、ポリアミド610,ポリアミド12、ポリアミド46、ポリアミド9Tなど)、ポリウレタン、アラミド、ポリイミド(PI)、ポリベンゾイミダゾ−ル(PBI)、ポリベンズオキサゾール(PBO)、ポリビニルアルコ−ル(PVA)、セルロ−ス、酢酸セルロ−ス、酢酸酪酸セルロ−ス、ポリビニルピロリドン(PVP)、ポリエチレンイミド(PEI)、ポリオキシメチレン(POM)、ポリエチレンオキシド(PEO)、ポリ(コハク酸エチレン)、ポリ(硫化エチレン)、ポリ(酸化プロピレン)、ポリ(酢酸ビニル)、ポリアニリン、ポリ(テレフタル酸エチレン)、ポリ(ヒドロキシ酪酸)、ポリ(酸化エチレン)、ポリ乳酸(PLA)、ポリグリコール酸(PGA)、ポリエチレングリコール(PEG)、ポリカプロラクトン、ポリペプチド、タンパク質、コラーゲン、及びこれらのうち複数のコポリマーや混合物などがあげられる。また、ピッチ系物質であれば、コ−ルタ−ルピッチ、石油ピッチなどがあげられる。さらに、高分子物質やピッチ系物質には、有機物又は無機物の粉末,ウイスカー等を混合して用いることも可能である。
以下に実施例を示して、本発明をさらに具体的に説明する。
このピッチをステンレス製の貯蔵タンク(容量10mL)に充填した。貯蔵タンクの下部にはステンレス製の28Gのノズル(内径0.16mm)が取り付けられており、また貯蔵タンクの外周部には電熱ヒーターが巻き付けられている。この電熱ヒーターの電源としては、100Vのコンセントを用い、電熱ヒーターとコンセント電源との間に絶縁変圧器を設置した。すなわち、絶縁変圧器の入力側にコンセント電源を接続し、出力側に電熱ヒーターを接続して、出力側から出力される100Vの電流を電熱ヒーターの電源として用いた。
さらに、絶縁変圧器とコンセント電源との間に、温度センサーの信号を受けて電熱ヒーターを制御する温度制御器を設置した。この温度センサーは赤外放射温度センサーであり、貯蔵タンクの外面(電熱ヒーターが巻き付けられていない部分)の温度を測定している。そして、予め取得しておいた貯蔵タンクの外面温度と貯蔵タンク内のピッチの温度との相関を用いて、貯蔵タンクの中のピッチの温度を180℃に制御した。
貯蔵タンクには、電圧発生機で発生させた35kVの電圧を印加し、ノズルの直下100mmの位置にアース電極(コレクタ)を置いた。その後、密閉してある貯蔵タンクに0.7MPaの窒素圧を負荷して、ピッチをノズルから吐出して繊維化を行った。ピッチの繊維化は良好に進み、直径1~5μm程度の繊維や直径数百nmの繊維が得られた。繊維化中は、温度制御器やコンセント電源に高電圧が漏電することはなかった。
なお、コレクタに捕集されたピッチ繊維を竹製の道具等で回収した後に再度繊維化を行うことにより、支障なく連続紡糸を行うことができた。
〔比較例1〕
100Vのコンセント電源と電熱ヒーターとの間に絶縁変圧器を配置しない点以外は、実施例1と全く同様にして繊維化を試みた。ところが、高電圧が電熱ヒーターに漏電してコンセント電源のブレーカーが落ち、貯蔵タンク内のピッチの温度が低下したため、安定した繊維化を行うことができなかった。また、前記漏電により、温度制御器の基板に破損が生じた。
この液晶ピッチをステンレス製の貯蔵タンク(容量10mL)に充填した。貯蔵タンクの下部には、図2に示すノズルが取り付けられており、また貯蔵タンクの外周部には電熱ヒーターが巻き付けられている。この電熱ヒーターの電源としては、100Vのコンセントを用い、電熱ヒーターとコンセント電源との間に絶縁変圧器を設置した。すなわち、絶縁変圧器の入力側にコンセント電源を接続し、出力側に電熱ヒーターを接続して、出力側から出力される100Vの電流を電熱ヒーターの電源として用いた。なお、液晶ピッチの吐出部(最先端部)は、内径0.20mm,外径0.42mmのステンレス製の27Gノズルとし、ノズル口33の直径は0.50mmとした。
さらに、絶縁変圧器とコンセント電源との間に、温度センサーの信号を受けて電熱ヒーターを制御する温度制御器を設置した。この温度センサーは赤外放射温度センサーであり、貯蔵タンクの外面(電熱ヒーターが巻き付けられていない部分)の温度を測定している。そして、予め取得しておいた貯蔵タンクの外面温度と貯蔵タンク内の液晶ピッチの温度との相関を用いて、貯蔵タンクの中の液晶ピッチの温度を350℃に制御した。
貯蔵タンクには、電圧発生機で発生させた25kVの電圧を印加し、ノズルの直下120mmの位置にアース電極(コレクタ)を置いた。その後、密閉してある貯蔵タンクに0.5MPaの窒素圧を負荷して、350℃に制御されたノズルから液晶ピッチを吐出して繊維化を行った。このとき、ノズルには、350℃に予熱した窒素ガスを加圧ガスとして流し、ノズルの先端の間隙(第1のノズル部と第2のノズル部との間の間隙)において100m/sの線速度で流れるようにした。
液晶ピッチの繊維化は良好に進み、極細の繊維が得られた。繊維化中は、温度制御器やコンセント電源に高電圧が漏電することはなかった。
次に、上記のようにして得られた極細の繊維を不融化及び炭素化した後、2700℃で黒鉛化したところ、600~800nm前後の比較的均一な直径を有する炭素繊維が得られた。
Claims (2)
- 高分子物質又はピッチ系物質である原材料からエレクトロスピニング法によって繊維を製造する繊維製造装置において、
前記原材料の溶融物を貯蔵する貯蔵部と、
前記貯蔵部を加熱して前記原材料を溶融状態に保つ電熱ヒーターと、
前記原材料の溶融物の温度を非接触で測定する温度測定部と、
前記電熱ヒーターと電熱ヒーター用電源との間に設けられ、前記温度測定部の測定結果に基づいて前記電熱ヒーターを制御し前記原材料の溶融物の温度を調節する温度制御部と、
前記貯蔵部に連通し前記原材料の溶融物を吐出するノズルと、
前記原材料の溶融物が前記ノズルから吐出されることによって形成された繊維を捕集するコレクタと、
前記ノズルと前記コレクタとの間に電圧を印加して前記原材料の溶融物を帯電させる電圧発生部と、
前記温度制御部と前記電熱ヒーターとの間に設けられた絶縁変圧器と、
を備えることを特徴とする繊維製造装置。 - 帯電させた原材料の溶融物をノズルから吐出して繊維状に形成しコレクタに捕集するエレクトロスピニング法によって繊維を製造するに際して、絶縁変圧器を介して電源に接続した電熱ヒーターを用いて、前記原材料の溶融物を加熱して前記原材料を溶融状態に保つとともに、前記原材料の溶融物の温度を非接触で測定した結果に基づいて、前記絶縁変圧器と前記電源との間に設けられた温度制御部で、前記電熱ヒーターを制御し前記原材料の溶融物の温度を調節することを特徴とする繊維製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/058,747 US20110148006A1 (en) | 2008-08-11 | 2009-08-07 | Fibre-production device and fibre-production method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008207196 | 2008-08-11 | ||
JP2008-207196 | 2008-08-11 | ||
JP2009-107654 | 2009-04-27 | ||
JP2009107654A JP2010065366A (ja) | 2008-08-11 | 2009-04-27 | 繊維製造装置及び繊維製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010018861A1 true WO2010018861A1 (ja) | 2010-02-18 |
Family
ID=41669001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/064324 WO2010018861A1 (ja) | 2008-08-11 | 2009-08-07 | 繊維製造装置及び繊維製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20110148006A1 (ja) |
JP (1) | JP2010065366A (ja) |
KR (1) | KR20110036920A (ja) |
WO (1) | WO2010018861A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103392032A (zh) * | 2010-12-06 | 2013-11-13 | 株式会社托普泰克 | 场发射装置及纳米纤维制造装置 |
JP2014500134A (ja) * | 2010-10-07 | 2014-01-09 | ポステック アカデミー−インダストリー ファウンデーション | 電場補助ロボティック・ノズルプリンタ、及びそれを利用した整列された有機ワイヤパターンの製造方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7967588B2 (en) * | 2007-11-20 | 2011-06-28 | Clarcor Inc. | Fine fiber electro-spinning equipment, filter media systems and methods |
KR101608246B1 (ko) | 2012-06-26 | 2016-04-01 | 윈엔윈(주) | 금속 코팅 유리섬유의 제조방법 |
KR101617847B1 (ko) | 2014-08-13 | 2016-05-04 | 박종철 | 온도조절 장치를 포함하는 나노섬유 제조방법 |
KR20240050484A (ko) * | 2015-09-29 | 2024-04-18 | 템플 유니버시티-오브 더 커먼웰쓰 시스템 오브 하이어 에듀케이션 | 휴대용 스피너 및 사용 방법 |
US11207510B2 (en) | 2018-11-19 | 2021-12-28 | Octet Medical, Inc. | Apparatus for applying a treatment solution to a treatment site |
CA3129491A1 (en) * | 2019-02-14 | 2020-08-20 | The Uab Research Foundation | An alternating field electrode system and method for fiber generation |
CN115386970A (zh) * | 2022-08-02 | 2022-11-25 | 绍兴柯桥大元化纤有限公司 | 涤纶高弹丝及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008506864A (ja) * | 2004-07-13 | 2008-03-06 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 改善されたエレクトロブローウェブ形成法 |
JP2008141809A (ja) * | 2006-11-30 | 2008-06-19 | Mitsubishi Electric Corp | 樹脂モールド絶縁導体 |
JP2009035839A (ja) * | 2007-08-02 | 2009-02-19 | Japan Vilene Co Ltd | 液体供給装置及び静電紡糸装置 |
JP2009203564A (ja) * | 2008-02-26 | 2009-09-10 | Jfe Chemical Corp | 繊維製造装置及び繊維製造方法 |
-
2009
- 2009-04-27 JP JP2009107654A patent/JP2010065366A/ja active Pending
- 2009-08-07 WO PCT/JP2009/064324 patent/WO2010018861A1/ja active Application Filing
- 2009-08-07 US US13/058,747 patent/US20110148006A1/en not_active Abandoned
- 2009-08-07 KR KR1020117002220A patent/KR20110036920A/ko not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008506864A (ja) * | 2004-07-13 | 2008-03-06 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 改善されたエレクトロブローウェブ形成法 |
JP2008141809A (ja) * | 2006-11-30 | 2008-06-19 | Mitsubishi Electric Corp | 樹脂モールド絶縁導体 |
JP2009035839A (ja) * | 2007-08-02 | 2009-02-19 | Japan Vilene Co Ltd | 液体供給装置及び静電紡糸装置 |
JP2009203564A (ja) * | 2008-02-26 | 2009-09-10 | Jfe Chemical Corp | 繊維製造装置及び繊維製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014500134A (ja) * | 2010-10-07 | 2014-01-09 | ポステック アカデミー−インダストリー ファウンデーション | 電場補助ロボティック・ノズルプリンタ、及びそれを利用した整列された有機ワイヤパターンの製造方法 |
CN103392032A (zh) * | 2010-12-06 | 2013-11-13 | 株式会社托普泰克 | 场发射装置及纳米纤维制造装置 |
CN103392032B (zh) * | 2010-12-06 | 2015-09-16 | 株式会社托普泰克 | 场发射装置及纳米纤维制造装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2010065366A (ja) | 2010-03-25 |
KR20110036920A (ko) | 2011-04-12 |
US20110148006A1 (en) | 2011-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010018861A1 (ja) | 繊維製造装置及び繊維製造方法 | |
KR101060918B1 (ko) | 전기방사용 다중 노즐 방사 팩 및 이를 포함하는 전기방사장치 | |
JP2009275339A (ja) | 繊維製造装置及び繊維製造方法 | |
JP2010121238A (ja) | エレクトロスピニング方式ナノ・ファイバ製造装置 | |
US11162193B2 (en) | Apparatus and process for uniform deposition of polymeric nanofibers on substrate | |
KR20120008230A (ko) | 초극세 섬유 제조용 멜트-블로잉 전기방사장치 | |
CN101886294A (zh) | 非溶液接触式电极的静电纺丝装置 | |
KR101056255B1 (ko) | 전기방사용 절연 노즐팩 및 이를 포함하는 전기방사장치 | |
JP4639324B2 (ja) | ナノ・ファイバ製造装置およびそれを用いたナノ・ファイバ製造方法 | |
KR101069493B1 (ko) | 전기방사용 다중 롤 콜렉터 및 이를 포함하는 전기방사장치 | |
JP4864915B2 (ja) | 繊維製造装置及び繊維製造方法 | |
KR101023876B1 (ko) | 멀티히팅쳄버를 이용한 전기방사장치 | |
JP4987755B2 (ja) | 繊維状ピッチの製造方法及び炭素繊維の製造方法 | |
KR101466287B1 (ko) | 나노섬유 제조장치 | |
KR20110125334A (ko) | 전기방사용 방사노즐팩 및 이를 구비하는 전기방사장치 | |
KR20110078016A (ko) | 드럼형 방사블록 및 이를 포함하는 전기방사장치 | |
KR101433127B1 (ko) | 전기방사용 노즐팩 및 이를 포함하는 전기방사장치 | |
KR20110078813A (ko) | 전기방사장치용 노즐 유니트 및 그를 포함하는 전기방사장치 | |
KR101816735B1 (ko) | 고투명성 폴리에스테르 나노섬유 시트의 제조방법 | |
KR20100078784A (ko) | 전기방사용 절연 노즐팩 및 이를 포함하는 전기방사장치 | |
KR20120077998A (ko) | 용융전기방사용 콜렉터 | |
KR100689185B1 (ko) | 나노 섬유 제조 장치 | |
JP4913102B2 (ja) | 繊維製造装置 | |
JP2010133038A (ja) | 溶融物吐出装置および繊維製造装置ならびに繊維製造方法 | |
JP2012067432A (ja) | 炭素繊維の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09806752 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20117002220 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13058747 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09806752 Country of ref document: EP Kind code of ref document: A1 |