WO2010017774A1 - 用于空气环境吸声的方法及装置及隔声室制造方法 - Google Patents

用于空气环境吸声的方法及装置及隔声室制造方法 Download PDF

Info

Publication number
WO2010017774A1
WO2010017774A1 PCT/CN2009/073232 CN2009073232W WO2010017774A1 WO 2010017774 A1 WO2010017774 A1 WO 2010017774A1 CN 2009073232 W CN2009073232 W CN 2009073232W WO 2010017774 A1 WO2010017774 A1 WO 2010017774A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
acoustic
air environment
sound absorption
transformer
Prior art date
Application number
PCT/CN2009/073232
Other languages
English (en)
French (fr)
Inventor
吴哲
吴沛桦
Original Assignee
Wu Zhe
Wu Peihua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN200810142449A external-priority patent/CN101650938A/zh
Priority claimed from CN2009101091596A external-priority patent/CN101989421A/zh
Application filed by Wu Zhe, Wu Peihua filed Critical Wu Zhe
Publication of WO2010017774A1 publication Critical patent/WO2010017774A1/zh

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/8209Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only sound absorbing devices

Definitions

  • the present invention relates to a device for sound absorption in an air environment, and to a method for manufacturing a sound insulation chamber for an air environment, and to a method for manufacturing a device for sound absorption in an air environment.
  • Porous sound absorbing materials can only absorb high-pitched sounds, poor bass, poor weatherability, unsanitary, environmental pollution, and no structural strength.
  • Various fiber and foam sound absorbing materials fall into this category.
  • the resonant sound absorber can only absorb bass, the middle and high sounds are poor, and the sound absorption band is narrow.
  • Various Helmholtz sound absorbers, plate resonance sound absorbers, perforated plate sound absorbers, and microperforated plate sound absorption books are all attributed to this category.
  • Acoustic cusps are perfect for porous sound absorbing materials.
  • the sound impedance ratio of the sound absorbing material is matched with the atmospheric characteristic acoustic impedance ratio, so that the overall sound absorption coefficient reaches the full frequency band.
  • the range is ⁇ 0.99, which is the highest level of sound absorber at present, but its volume is too large (design standard is ⁇ /4 ⁇ /5), too much consumables, and at the same time, poor weather resistance, unsanitary, polluted environment, no structure Strength and other ills still exist. It can only be used in special occasions such as anechoic chambers where space and cost are spared.
  • Ma Dazhao is a great improvement on the resonant sound absorber.
  • the bandwidth may reach 4 octaves, and it can be used in a relatively high temperature and transparent, clean environment. It is a revolution in sound absorption structure.
  • bandwidth and maximum absorption coefficient are mutually constrained; the sound absorption band is uneven or discontinuous (the absorption coefficient curve is the resonance of each harmonic) Discrete overlap combination of peaks); high cost of micropore processing; (thin plate) insufficient structural strength.
  • the scope of application is limited.
  • the above two types of four kinds of sound absorbing materials and structures can be combined to form a full-frequency sound absorbing body, but the cost is doubled.
  • the above materials and structures are required to have structural strength, ultra-clean, hygienic, environmentally friendly, all-weather, extreme environment (high temperature, humidity, corrosion, super strength) hospitals, residential buildings, clean / low noise workshops, highway sound insulation Poor performance or inability to use in environments such as barriers, tunnels, and missile silos.
  • the technical problem to be solved by the present invention is to overcome the above deficiencies, and to provide a device for sound absorption in an air environment with low cost and good sound absorption effect, a sound insulation chamber manufacturing method and a device for manufacturing sound absorption in an air environment. Methods.
  • a device for sound absorption in an air environment comprising an acoustic transformer and an acoustic resistance structure connected to each other, the acoustic transformer improving sound pressure and/or sound source of the sound source in the atmosphere Impedance and transmission to the acoustic resistance structure, the intersection or the joint acoustic resistance structure for sound absorption; the acoustic transformer is from the farthest from the acoustic resistance structure to the most The cross-sectional area near the acoustic resistance structure is gradually reduced, and the axial length of the acoustic transformer is less than 1/6 of its highest operating wavelength.
  • a method for manufacturing an acoustic insulation chamber comprising the steps of: fabricating a first ring beam on a floor; constructing a wall on the first ring beam with the device for sound absorption in an air environment; and making a second wall on the fence
  • the ring beam is used to build a ceiling on the second ring beam with the device for sound absorption in the air environment; or to make a sound insulation ceiling on the second ring beam or on the fence.
  • a method for manufacturing the above-described apparatus for sound absorption in an air environment comprising the steps of: (1) preparing a plastic working material or a rough blank; (2) feeding the mold under a suitable working condition; (3) using a mold pair The blank or the workpiece is processed to form a matrix; (4) solidifying the formed matrix or preliminary curing to obtain a molded blank; (5) demolding, obtaining the finished product or demoulding, and then obtaining a finished product through a post-cure process.
  • the beneficial effects of the present invention compared with the prior art are:
  • the present invention uses a sound transformer to transform the sound pressure and/or the acoustic resistance, so that the atmospheric sound source and the acoustic resistance structure can be coupled in an optimal sound pressure and impedance form, thereby making the sound louder.
  • the sound waves are concentrated, and small surface (body) products and high acoustic resistance materials can be used. Expanded the choice of sound absorbing materials and their processes. High acoustic resistance materials generally correspond to high density, and thus may have higher structural strength.
  • the apparatus for sound absorption in the air environment of the present invention has higher strength;
  • the small face (body) product means smaller consumables and lower cost.
  • the present invention can improve the sound absorption efficiency and expand the sound absorption bandwidth.
  • the invention can also realize ultra-clean, hygienic, environmentally friendly, high-strength structural, all-weather, special environment (high temperature, humidity, corrosion, transparency) and the like, and can be applied in hospitals, residential houses, clean/low noise workshops, highway sound insulation barriers. , tunnels, missile silos, etc.
  • the manufacturing method of the invention changes the fine processing of the high hardness material into the molding process of the soft and plastic material, can process the thicker product, can process the smaller micropores, and can process tens of thousands of holes at a time, Processing a variety of inorganic and organic materials, including corrosion resistance, temperature resistance, weather resistance, environmental protection, clean, high strength of various materials such as ceramics, porcelain, cement, glass, refractory clay, plastics and so on. High processing efficiency, relatively easy mold release, long tool life, and low material and processing costs.
  • FIG. 1 is a schematic structural view of a first embodiment of the present invention
  • FIGS. 2a, 2b, 2c, 2d are schematic cross-sectional views of a first embodiment of the present invention.
  • 3a, 3b, and 3c are schematic cross-sectional views of a first embodiment of the present invention.
  • 4a, 4b, 4c, and 4d are schematic views of an acoustic resistance structure according to a first embodiment of the present invention.
  • 5a and 5b are schematic structural views of a second embodiment of the present invention.
  • 6a and 6b are schematic structural views of a third embodiment of the present invention.
  • FIG. 7a, 7b, and 7c are schematic views of another structure of a third embodiment of the present invention.
  • Figure 8 is a schematic structural view of a fourth embodiment of the present invention.
  • FIG. 9 is another schematic structural view of a fourth embodiment of the present invention.
  • 10a, 10b, 10c, 10d, 10e, 10f, 10g are various artistic sound absorbers made by using a device for sound absorption in an air environment as shown in FIG. 9;
  • Figures 11a, 11b, llc, lld, lie are schematic views showing the structure of the apparatus for sound absorption in the air environment as shown in Fig. 9;
  • 12a, 12b, and 12c are schematic structural views of a fifth embodiment of the present invention.
  • Figure 13 is a schematic structural view showing one mode of manufacturing the apparatus for sound absorption in the air environment shown in Figures 12a, 12b, and 12c;
  • Figure 14 is a device for sound absorption in the air environment shown in Figures 12a, 12b, and 12c.
  • FIG. 15 is a schematic view showing the structure of the sound absorbing chamber by using the apparatus for sound absorption in the air environment shown in FIGS. 12a, 12b, and 12c;
  • FIG. 16 is a schematic structural view of the sixth embodiment;
  • FIG. 17 is a schematic view showing a manufacturing method of a seventh embodiment
  • Embodiment 8 is a schematic view showing a manufacturing method of Embodiment 8.
  • Fig. 19 is a schematic view showing a manufacturing method of a ninth embodiment.
  • a method for absorbing sound in an air environment comprising the steps of: first increasing the sound pressure and/or impedance of a sound source in the atmosphere, and absorbing sound with an acoustic resistance structure.
  • a device for sound absorption in an air environment includes an acoustic transformer A1 and an acoustic resistance structure A2, and an acoustic transformer A1 and an acoustic resistance structure A2 are connected to each other.
  • the acoustic transformer A1 increases the sound pressure and/or impedance of the sound source in the atmosphere and transmits it to the acoustic resistance structure A2 and imparts sound absorption to or in combination with the acoustic resistance structure A2.
  • the acoustic transformer A1 gradually shrinks from the Ao farthest from the acoustic resistance structure to the Aoo closest to the acoustic resistance structure.
  • the tapered cross section smoothly converts the low sound pressure and low acoustic impedance ratio of the large cross section into a high sound pressure and a high acoustic impedance ratio corresponding to the small cross section.
  • the axial length of the acoustic transformer A1 and the maximum length of the section are less than 1/6 of its maximum operating wavelength.
  • the acoustic transformer A1 can also have an acoustic resistance function (microporous viscous acoustic resistance and acoustic resistance of its own structural material). At this time, the acoustic transformer A1 can also perform sound absorption, and combined with the acoustic resistance structure A2 for sound absorption.
  • an acoustic transformer to transform the sound pressure and/or acoustic resistance enables the atmospheric sound source and the acoustic resistance structure to be coupled in an optimal sound pressure and impedance form to achieve the following objectives. Focusing on sound waves in the form of high sound pressure or high sound resistance, it is possible to use small surface (body) products and high acoustic resistance materials. Expanded the choice of sound absorbing materials and their processes. High acoustic resistance materials correspond to high density and may have higher structural strength. Many high acoustic resistance structural materials that could not be used as sound absorbing materials can be used; and small surface (body) products mean smaller consumables.
  • the invention can improve the sound absorption efficiency and expand the sound absorption bandwidth.
  • the invention can also achieve ultra-clean, hygienic, environmentally friendly, high-strength structural, all-weather, special environment (high temperature, humidity, corrosion, transparency) and the like.
  • the device for sound absorption in an air environment further includes a back structure A 3 , and the sound resistance structure is located in the back structure.
  • a 3 a back hollow structure is acoustically resistive structure between A2 and C is formed of a rigid wall.
  • the backspace structure A 3 can achieve auxiliary resonance sound absorption.
  • the acoustic transformer A1 has a V-shaped cross section.
  • the tapered V-shaped acoustic transformer A1 has a large-area notch end Ao and a small-area groove bottom open end Ao Q .
  • the small-area groove bottom open end ⁇ connects the acoustic resistance sound absorption area A 2 .
  • the cross-sectional shape of the acoustic transformer A1 may also be circular, elliptical, polygonal, rectangular, or the like.
  • the cross-sectional shape of the acoustic transformer A1 is not limited.
  • the law of the cross-sectional area of the acoustic transformer A1 is tapered by various curve functions that are advantageous for the performance of the acoustic transformer, such as a straight line, an exponential curve, and a hyperbola.
  • the acoustic impedance material and the acoustically resistive structural material have a relative acoustic impedance ratio greater than 2, and may even be a rigid material or a non-porous material.
  • the acoustic resistance structure may be composed of micro-tube acoustic resistance; as shown in FIG. 4b, the acoustic resistance structure may also be composed of soft micro-tube acoustic resistance; as shown in FIG. 4c, the acoustic resistance structure may also be micro-slit acoustic resistance. Composition, as shown in Fig. 4d, the acoustic resistance structure can also be composed of other materials.
  • the test piece 1 and the test piece 2 having the same material are prepared, and the standing wave tube test is performed: the test piece 1 is a low and medium frequency test piece, the diameter is 100 mm, the back space is 80 mm, and the test piece 2 is a medium and high frequency test. Parts, diameter 50mm, rear space 60mm.
  • the control group of the test piece 1 was a double-layer microperforated plate with a perforation rate of 2.5%+1% and a backspace of 30+70 mm.
  • the control group of the test piece 2 was a single-layer microperforated plate with a thickness of 0.5 mm and a hole diameter of 0.5 mm. %, back space 80mm, the control data are from the reference.
  • Test piece 2 (medium, high frequency)
  • the sound absorption coefficient curve of the test piece processed according to the present invention is relatively flat, the bandwidth is wide, and the average sound absorption coefficient is high.
  • FIG. 5a FIG acoustic transformer may further include a smooth bell mouth splicing A4 and drogue A 5, a sectional area larger than the bell mouth cross-sectional area of the conical pipe 5b.
  • the bell mouth A4 and the cone tube A 5 may be of the same or different materials.
  • the cone A 5 is a hose whose section is tapered. The cone A 5 can be bent to save space.
  • the acoustic resistance structure A 2 can also be smoothly spliced with the tapered tube A 5 .
  • the acoustic resistance structure A 2 may be a microporous tube, a soft micro tube or other acoustic resistance structure, and the acoustic resistance structure A 2 may be integrated with the conical tube A 5 .
  • the acoustic resistance structure A 2 can also be bent To save space. Thus, the overall thickness of the apparatus for sound absorbing of the air environment of the present invention can be reduced.
  • Embodiment 3 As shown in FIG. 6a and FIG. 6b, a device for sound absorption in an air environment, wherein at least two first acoustic transformers are distributed inward from the first sound absorbing surface D, after each of the first acoustic transformers Both are connected to a first acoustic resistance structure A 2 . Since a single acoustic transformer must have sufficient size to convert sound waves of lower frequency, the corresponding circumferential length at the large cross section must be greater than the acoustic wavelength ⁇ ; and the expansion coefficient m that determines the efficiency of the acoustic transformer determines that the axial dimension of the acoustic transformer is not It may be too small, which limits the application of acoustic transformers.
  • the acoustic transformer array receiving surface (sound absorption surface) has a very high aperture ratio (close to 90%), almost no diffraction and reflection; the acoustic resistance surface has a very low perforation rate, and it is easy to form acoustic resistance and strength. structure.
  • the sound absorption efficiency and structural strength are taken into consideration.
  • the overall thickness of the apparatus for sound absorbing of the air environment of the present invention can be made small by synthesizing the caliber.
  • each acoustic transformer unit may not be perpendicular to the sound absorbing surface, such as a downward inclination. Moreover, this can lengthen the acoustic transformer unit by about 10 to 30% at the same thickness.
  • a device for sound absorption in an air environment wherein at least two first acoustic transformers are distributed inward from the first sound absorbing surface D, and each of the first acoustic transformers is connected with a first one. Sound resistance structure B 2 .
  • the first acoustic transformer 8 is a ⁇ -shaped slot.
  • the distribution of the first acoustic transformer and the first acoustic transformer is not limited, and may be closed or unclosed, continuous or discontinuous, grouped or ungrouped straight lines, curved lines, circular lines, wavy lines, curved lines, and the like.
  • the device for sound absorption in the air environment can be as large as 100% as long as the front surface aperture ratio (i.e., the ratio of the total area of the large open end Ao of the first acoustic transformer to the plane D) is relatively large.
  • the arrangement of the first acoustic transformer and the first acoustic transformer is substantially uniform and beautiful.
  • the thickness of the embodiment can be made larger, and the micro-perforated plate can only be a prohibited law of a thin plate of 5 mm or less.
  • the specific embodiment has high structural strength, high sound absorption, and full-band flatness. In addition, depending on the materials used, this embodiment also has the characteristics of full transparency, ultra-clean, all-weather, extreme environment (high temperature, low temperature, humidity, corrosion, super strength) and weather resistance.
  • a device for sound absorption in an air environment wherein at least two first acoustic transformers are distributed inward from the first sound absorbing surface D, and each of the first acoustic transformers is connected There is a first acoustic resistance structure A 2 . At least two second acoustic transformers are divided on the second sound absorbing surface -D opposite to the first sound absorbing surface D, and the first acoustic transformer and the second acoustic transformer are symmetrically dislocated.
  • the apparatus for air environment sound absorption of the present embodiment can realize two-way sound absorption by providing a first acoustic transformer and a second acoustic transformer which are symmetrically reversely displaced. Moreover, the device for sound absorption in an air environment of the present embodiment is small in size, light in weight, and simple in structure.
  • the apparatus for sound absorption in the air environment, the cross-sectional shapes of the first acoustic transformer and the second acoustic transformer- ⁇ are respectively V-shaped; and the apparatus for sound absorption in the air environment as shown in FIG. It is a folded structure made of a film or a sheet. The thickness of the board can be very small.
  • the structure for sound absorption in the air environment shown in FIG. 9 is light and thin, and can be made Use for sound absorbing curtains or adjustable sound absorbers.
  • a device for sound absorption in an air environment as shown in Fig. 9 can be folded into various art sound absorbing bodies. Due to the light weight and foldability of the continuous V-shaped sheet or film, the present embodiment can be shaped into a variety of shapes. Moreover, by adopting certain materials, the artistic sound absorbing body can have transparent characteristics, and rich colors and patterns can be used on the artistic sound absorbing body, thereby further improving the artistry. This particular embodiment can increase the application of the present invention, and the cost of this embodiment is low. As shown in Figs.
  • a device for sound absorption in an air environment as shown in Fig. 9 can be installed in the duct Q. This enables air duct noise reduction with low wind resistance and low regenerative noise. Compared with the noise elimination methods in other ventilation/air conditioning systems, the present embodiment has high noise reduction efficiency, low reproduction noise, low sound absorption bandwidth, low wind resistance, and is not affected by water vapor.
  • a device for sound absorption in an air environment includes a sound absorbing surface D and a sound insulating surface M and a cavity P.
  • the sound absorbing surface D is distributed at least two first inward.
  • the acoustic transformer A has a first acoustic resistance structure connected to each of the first acoustic transformers A.
  • the cavity P is located between the first acoustic resistance structure and the sound insulating surface M, and the cavity P can assist sound absorption and sound insulation.
  • the apparatus for sound absorption in the air environment as shown in Fig. 12a can be made into a sound absorbing/insulating hollow block. Cavity P is a form of backspace structure.
  • the sound insulation surface M is a form of sound insulation structure.
  • a device for absorbing air environment comprising a first sound absorbing surface Di, a second sound absorbing surface D 2, M sound insulation surface, the first cavity! And the second cavity P 2 , the first sound absorption surface is distributed with at least two first acoustic transformers A, and each of the first acoustic transformers A is connected with a first acoustic resistance structure.
  • the second sound absorbing surface D 2 is distributed with at least two second acoustic transformers B, and each of the second acoustic transformers A is connected with a second acoustic resistance structure.
  • the first cavity Pi is located between the first sound absorbing surface 0 1 and the sound insulating surface M
  • the second cavity P 2 is located between the second sound absorbing surface D 2 and the sound insulating surface M, the first cavity! ⁇ and the second cavity P 2 assist in sound absorption and sound insulation.
  • the device for sound absorption in the air environment as shown in Figure lib can be made into a sound-absorbing/insulating hollow block, while simultaneously absorbing/sounding the sound in two spaces, or absorbing sound in one space.
  • a device for absorbing air environment comprising a first sound absorbing surface Di, a second sound absorbing surface D 2, the first surface acoustic Mi, a second insulation surface M 2, a first a cavity Pi, a second cavity P 2 and a third cavity P 3 ,
  • the first sound absorption surface Di is distributed with at least two first acoustic transformers A, and each of the first acoustic transformers A is connected with a first An acoustic structure.
  • the second sound absorbing surface D 2 is distributed with at least two second acoustic transformers, and each of the second acoustic transformers A is connected with a second acoustic resistance structure.
  • the first cavity Pi is located on the first sound absorbing surface!
  • the third cavity P 3 is located between the second sound absorbing surface D 2 and the second sound insulating surface M 2 , and the second cavity P 2 is located at the first sound insulating surface and the second Between the sound insulating faces M 2 , the first cavity Pi and the third cavity P 3 assist in sound absorption and sound insulation, and the second cavity P 2 enhances sound insulation.
  • the device for sound absorption in the air environment as shown in Fig. lib can be made into a sound-absorbing/insulating hollow block, and at the same time, sound-absorbing and reinforced sound insulation are applied to the two.
  • the apparatus for sound absorption in the air environment as shown in Figs. 12a, 12b, and 12c can be formed by separately processing the sound absorbing module D and then fitting and adhering to the hollow block body.
  • the sound absorbing module includes a sound absorption surface At least two acoustic transformers of the cloth, each of which is connected to an acoustic resistance structure.
  • Each of the hollow block bodies includes a sound insulating surface M and a cavity P, and the cavity P assists in sound absorption and sound insulation.
  • This separate processing of the sound absorption module can reduce the processing difficulty and reduce the cost; and the material can be more flexible, the pursuit of different indicators, higher cost performance, the surface can be pretreated such as paint, spray or glaze to meet sound absorption, beauty, cleanliness, High-grade requirements such as corrosion resistance.
  • Fig. 14 using the device for sound absorption in the air environment as shown in Figs. 12a, 12b, 12c, it can be built into a one-way sound absorption / sound insulation wall J or a two-way sound absorption / sound insulation / sound absorption wall J.
  • the apparatus for sound absorption in the air environment shown in Figures 12a, 12b, and 12c can be made into a full-function sound absorbing block which best embodies the superiority of the present invention and can be used as a building material, and can provide sound insulation and sound absorption.
  • a full-function sound absorbing block which best embodies the superiority of the present invention and can be used as a building material, and can provide sound insulation and sound absorption.
  • it can be used in theaters, stadiums, hospitals, residential buildings, clean/low noise workshops, highway barriers/sound barriers, tunnels, missile silos, etc.
  • this embodiment is also cost effective (high sound absorption coefficient, low material cost and installation man-hour).
  • the sound absorbing chamber may be caused by means for sound absorption in the air environment as shown in Figs. 12a, 12b, 12c.
  • the specific manufacturing method may be: forming a first ring beam H 1 with reinforcing ribs on the floating floor G ; and using the device for sound absorption in the air environment as shown in FIGS. 12a, 12b, 12c on the first ring beam 3 ⁇ 4 Masonry wall J; a second ring beam H 2 with ribs is formed on the wall J ; the second ring beam H 2 is masonry for the sound absorption of the air environment as shown in Figs. 12a, 12b, 12c Canopy L.
  • a silent bridge (no keel) sound absorbing chamber and the sound absorbing chamber has the functions of super sound insulation, vibration isolation and sound absorption.
  • the ceiling L into a semi-silent bridge (keel) sound-absorbing room composed of a common light-type sound insulation ceiling and a floating floor G, a first ring beam Hi, a second ring beam H 2 , and a wall J.
  • the ribs can be steel bars. Or save the second ring beam H 2 and make a light acoustic ceiling directly on the wall J.
  • the sound absorbing chamber shown in Fig. 15 is a broadcast television acoustic professional room.
  • the existing sound insulation / vibration isolation suite manufacturing methods generally include: light steel keel - glass wool - gypsum board - staggered laminated gypsum board - light steel keel - glass wool - perforated gypsum board a total of seven processes and four / seven layers material.
  • the invention simplifies the process and materials, has low cost, and has good clean performance and environmental protection performance. This is unmatched by existing processes and materials. More importantly, the above manufacturing method is the only one that has eliminated the rigid connection of the light steel keel and ceiling hook in the original process, and realized the construction process of the fully isolated super-acoustic/isolated independent suite of the true silent bridge. Provides advanced performance for advanced acoustic technology rooms with reduced costs. Of course, in order to reduce the weight, the top cover portion can be used in the current ceiling manner, which becomes a semi-sound bridge structure.
  • Embodiment 6 As shown in FIG. 16, the specific embodiment is characterized in that: the acoustic transformer is transparent or transparent.
  • the apparatus for sound absorption in an air environment further includes an illuminating body for illuminating the acoustic transformer.
  • the illuminating body may include a light source 166 and a light plate 165, thus forming a surface light source, and the lighting effect is soft. It can also be used in simple patterns or color illumination. After the light transformer is refracted by light, it forms a floodlight pattern with a special artistic effect.
  • the illuminating body can also be illuminated by a light-emitting diode (LED), either directly or through a finishing layer, to form a surface illumination, Scattered starry sky illumination, monochromatic, colored illuminating patterns, clear patterns, high brightness.
  • LED light-emitting diode
  • the illuminator can also be driven by a preset program to get a dynamic effect.
  • a method for manufacturing the above-mentioned apparatus for sound absorption in an air environment comprising the following steps: (1) preparing one of the following three materials: plasticity, softness material or dispersibility In the state of powder, aggregate and other materials 171; or liquid, fluid, amorphous material 172; or plastic blank 173.
  • the above three materials have process curing properties such as hot melt, thermoplasticity, thermosetting, adhesiveness, gelation, self-setting, and sinterability.
  • the blank or the workpiece is processed using a mold, wherein the male mold 174 has a core 175, which is clamped to the female mold 177 in a certain direction and injected or pressed into the mold.
  • the means for absorbing sound in an air environment includes an acoustic transformer 176, which may be a micro-hole or micro-slit of less than 1 mm at the narrowest point.
  • the "mold" in the step (3) employs a "variable cross-section" core 185a whose cross-sectional area is gradually reduced from the root portion 189 toward the top portion 180.
  • the cross-sectional area of the acoustic transformer (specifically microporous or micro-slit) in the device for air ambient sound absorption is also gradually reduced from the surface 182 to the depth 183.
  • the advantage of this is that since the core is formed into a cone or a wedge, it is advantageous to release the mold, and the mold can be demoulded smoothly by using an auxiliary mold release method such as vibration.
  • the core does not have to penetrate the bottom 184 of the substrate to form an acoustic layer capable of controlling thickness and acoustic resistance.
  • the tip of the core is protected, the precision of the core manufacturing is reduced, the sound absorption efficiency is improved, and the micropore or microslit array structure is simplified.
  • the thickness of the acoustic transformer is also greater than 5 mm, up to 30 to 50 mm or even thicker.
  • the sound absorbing device for air environment thus manufactured has structural strength and a better sound absorbing effect. This is not possible with other processing methods.
  • the present embodiment is characterized in that: the "variable section" core 195 is converted from a conical shape to a wedge shape, and its sectional area is gradually reduced from the root portion 195 toward the top portion 190, and the interception of the acoustic transformer 191 The area is also gradually reduced from the micro-slit surface 192 to the depth 193. In addition to the same advantages, it also reduces the number of cores, reduces mold costs, and has a unique appearance of fences and louvers.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Multimedia (AREA)
  • Building Environments (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

用于空气环境吸声的方法及装置及隔声室制造方法 技术领域
本发明涉及一种用于空气环境吸声的装置, 本发明还涉及一种用于空气环境的隔声 室制造方法, 本发明还涉及一种制造用于空气环境吸声的装置的方法。
背景技术 说
目前用于大气吸声的材料和结构有两类 4种。 一类是多孔(声阻)吸声材料, 一类是 共振 (声抗) 吸声体 (结构)。 它们各自都有原理性、 根本性的缺陷。 多孔吸声材料只能 吸中高音, 低音很差, 且耐候性差、 不卫生、 污染环境、 无结构强度。 各种纤维、 泡沫吸 声材料都归于此类。共振吸声体只能吸低音, 中高音很差, 且吸声频带窄。各种亥姆霍兹 吸声体、板共振吸声体、 穿孔板吸声体、微穿孔板吸书声体都归于此类。 吸声尖劈是对多孔 吸声材料的完善,它通过逐步增加吸声材料声阻抗率的办法达到吸声材料声阻抗率与大气 特性声阻抗率的匹配, 从而使整体吸声系数达到全频带范围≥0.99, 是目前水平最高的吸 声体, 但它的体积太大 (设计标准为≥λ/4~λ/5 ), 耗材太多, 同时, 耐候性差、 不卫生、 污染环境、 无结构强度等弊病依然存在。 只能用于消声室等不惜空间与成本的特殊场合。 马大猷先生发明的微穿孔板吸声体是对共振吸声体的较大改进, 带宽可能达到 4 个倍频 程,而且能用在相对高温和透明、洁净环境下,是吸声结构的一次革命,但仍存在不足一 低穿孔率(≤1%) 的绕射、 反射损耗; 带宽与最大吸声系数互相制约; 吸声频带不平坦或 不连续 (吸声系数曲线为各次谐波的共振峰的离散交叠组合); 微孔加工成本高; (薄板) 结构强度不够等。 适用范围受到限制。
以上两类 4种吸声材料和结构可以复合组成全频吸声体,但成本成倍上升。一般而言, 上述材料和结构在要求具备结构强度、 超洁净、 卫生、 环保、 全天候、 极端环境 (高温、 潮湿、 腐蚀、 超强度) 的医院、 民居、 洁净 /低噪车间、 高速公路隔声屏障、 隧道、 导弹 发射井等环境中表现欠佳或不能使用。
发明内容
本发明所要解决的技术问题就是为了克服以上的不足,提出了一种成本低、吸声效果 好的用于空气环境吸声的装置及隔声室制造方法及制造用于空气环境吸声的装置的方法。
本发明的技术问题通过以下的技术方案予以解决: 一种用于空气环境吸声的装置, 包括相互连接的声变压器和声阻结构, 所述声变压器提高大气中声源的声压和 /或阻抗并 传送到声阻结构、交由或联合声阻结构进行吸声;所述声变压器从最远离声阻结构处到最 靠近声阻结构处的截面积逐渐缩小, 声变压器的轴长小于其最高工作波长的 1/6。
一种隔声室的制造方法, 包括如下步骤: 在地板制作第一圈梁; 在第一圈梁上用所 述用于空气环境吸声的装置砌筑围墙;在所述围墙上制作第二圈梁,在第二圈梁上用所述 用于空气环境吸声的装置砌筑天棚; 或者在第二圈梁上或围墙上制作隔声吊顶。
一种制造上述的用于空气环境吸声的装置的方法, 包括如下步骤: (1 ) 制备可塑性 工料或粗坯; (2)在适合的工况环境下向模具加料; (3 )使用模具对粗坯或工料加工, 形 成基体; (4) 固化已成型的基体或者初步固化得到成型的坯件; (5 )脱模, 得到成品或脱 模后再经过后固化工序得到成品。
本发明与现有技术对比的有益效果是: 本发明采用声变压器变换声压和 /或声阻, 就 能使大气声源与声阻结构以最佳声压和阻抗形式耦合,从而可以高声压或高声阻形式集中 倾注声波, 能使用小面(体)积、 高声阻材料。 拓展了吸声材料及其工艺的选择范围。 高 声阻材料通常与高密度对应, 因而可能有更高结构强度,许多原来不能作为吸声材料的高 声阻结构材料可以被使用, 本发明的用于空气环境吸声的装置强度更高; 而且小面 (体) 积则意味着更小耗材、 成本更低。 而且, 本发明可以提高吸声效率, 扩展吸声带宽。 本发 明还能实现超洁净、 卫生、 环保、 高强结构性、 全天候、 特殊环境 (高温、 潮湿、 腐蚀、 透明) 等性能, 可以应用在医院、 民居、 洁净 /低噪车间、 高速公路隔声屏障、 隧道、 导 弹发射井等环境中。
本发明的制做方法将对高硬度材质的精微加工改变为对柔软、可塑性材料的模塑加工, 可以加工较厚的产品, 可以加工较小的微孔, 可以一次加工上万个孔, 可以加工多种无机 和有机材料, 包括耐蚀、 耐温、 耐候、 环保、 洁净、 强度高的各种材料如陶、 瓷、 水泥、 玻璃、 耐火泥、 塑胶等。 加工效率高、 退模相对容易、 模具寿命长, 能实现材料和加工费 用的双低。
附图说明
图 1是本发明具体实施方式一的结构示意图;
图 2a、 2b、 2c、 2d是本发明具体实施方式一的横截面示意图;
图 3a、 3b、 3c是本发明具体实施方式一的剖面示意图;
图 4a、 4b、 4c、 4d是本发明具体实施方式一的声阻结构的示意图;
图 5a、 5b是本发明具体实施方式二的结构示意图;
图 6a、 6b是本发明具体实施方式三的结构示意图;
图 7a、 7b、 7c是本发明具体实施方式三的另一结构示意图;
图 8是本发明具体实施方式四的结构示意图;
图 9是本发明具体实施方式四的另一结构示意图; 图 10a、 10b、 10c、 10d、 10e、 10f、 lOg是采用如图 9所示的用于空气环境吸声的装置制 成的各种艺术吸声体;
图 lla、 llb、 llc、 lld、 lie是将如图 9所示的用于空气环境吸声的装置放入风管中的结 构示意图;
图 12a、 12b、 12c是本发明具体实施方式五的结构示意图;
图 13是制造图 12a、 12b、 12c所示的用于空气环境吸声的装置的一种方式的结构示意图; 图 14是采用图 12a、 12b、 12c所示的用于空气环境吸声的装置砌筑成墙的结构示意图; 图 15是采用图 12a、 12b、 12c所示的用于空气环境吸声的装置制造吸声室的示意图; 图 16是具体实施方式六的结构示意图;
图 17是具体实施方式七的制作方法的示意图;
图 18是具体实施方式八的制作方法的示意图;
图 19是具体实施方式九的制作方法的示意图。
具体实施方式
下面通过具体的实施方式并结合附图对本发明做进一步详细说明。一种用于空气环境 吸声的方法, 包括如下步骤: 先提高大气中声源的声压和 /或阻抗, 并用声阻结构吸声。
具体实施方式一: 如图 1所示, 一种用于空气环境吸声的装置, 包括声变压器 A1和 声阻结构 A2, 声变压器 A1和声阻结构 A2相互连接。 声变压器 A1提高大气中声源的声 压和 /或阻抗并传送到声阻结构 A2、 并交由或联合声阻结构 A2进行吸声。 声变压器 A1 从最远离声阻结构处 Ao到最靠近声阻结构处 Aoo的截面积逐渐缩小。 逐渐缩小的截面将 大截面的低声压、 低声阻抗率平滑转换成小截面对应的高声压、 高声阻抗率。 声变压器 A1的轴长和截面最大处(即最远离声阻结构处 Ao)的周长都小于其最高工作波长的 1/6。 而且, 声变压器 A1 也可具有声阻功能 (微孔粘滞声阻和自身结构材料声阻)。 这时声变 压器 A1也可进行吸声, 并联合声阻结构 A2进行吸声。
采用声变压器变换声压和 /或声阻, 就能使大气声源与声阻结构以最佳声压和阻抗形 式耦合, 从而达到以下目的。 以高声压或高声阻形式集中倾注声波, 能使用小面(体)积、 高声阻材料。拓展了吸声材料及其工艺的选择范围。高声阻材料与高密度对应, 可能有更 高结构强度, 许多原来不能作为吸声材料的高声阻结构材料可以被使用; 而且小面 (体) 积则意味着更小耗材。本发明可以提高吸声效率,扩展吸声带宽。本发明还能实现超洁净、 卫生、 环保、 高强结构性、 全天候、 特殊环境 (高温、 潮湿、 腐蚀、 透明) 等性能。
如图 1所示, 用于空气环境吸声的装置还包括背空结构 A3, 声阻结构位于背空结构
A3与声变压器之间。 在图 1中, 背空结构 A3是由声阻结构 A2与刚性壁 C之间形成的。 背空结构 A3可以实现辅助共振吸声作用。 在图 1中, 声变压器 A1的横截面为 V形, 面 积渐缩的 V形声变压器 A1具有大面积槽口端 Ao和小面积槽底开口端 AoQ。 小面积槽底 开口端 Αοο连接声阻吸声区 A2。 如图 2a、 2b、 2c、 2d所示, 声变压器 A1的横截面形状 还可以是圆形、椭圆形、多边形、矩形等。声变压器 A1的横截面形状不限。如图 3a、 3b、 3c所示, 声变压器 A1 的截面积渐缩的规律可以采用各种有利于声变压器性能的曲线函 数, 如直线、 指数曲线、 双曲线。 声变压器材料和声阻结构材料的相对声阻抗率大于 2, 甚至可以是刚性材料也可以是无孔材料。
如图 4a所示, 声阻结构可以是微管声阻构成; 如图 4b所示, 声阻结构也可以是软微 管声阻构成; 如图 4c, 声阻结构还可以是微缝声阻构成, 如图 4d所示, 声阻结构还可以 其他材料声阻构成。
按照具体实施方式一制成材质相同的试件 1和试件 2、进行驻波管测试:试件 1是低、 中频试件、直径 100mm, 后空 80mm, 试件 2是中、 高频试件、直径 50mm、后空 60mm。 试件 1的对照组为双层微穿孔板, 穿孔率 2.5%+1%、 后空 30+70mm, 试件 2的对照组为 单层微穿孔板, 厚 0.5mm、 孔径 0.5mm穿孔率 0.8%、 后空 80mm, 对照组数据均来自参 考文献。 最新的测试结果如下: 试件 1 (低、 中频)
Figure imgf000006_0001
试件 2 (中、 高频)
Figure imgf000006_0002
从中可以看到: 按本发明加工的试件吸声系数曲线比较平坦、 带宽较宽、 平均吸声系 数较高。
具体实施方式二: 如图 5a、 5b所示, 声变压器还可包括平滑拼接而成的喇叭口 A4和 锥管 A5, 喇叭口的截面积大于锥管的截面积。 喇叭口 A4和锥管 A5可以是相同或不同的 材料构成。 如图 5b, 锥管 A5是一段截面积渐缩的软管。 锥管 A5可以弯曲以节省空间。
如图 5a、 5b所示, 声阻结构 A2也可与锥管 A5平滑拼接。 声阻结构 A2可以是一段微 孔管、 软微管或其他声阻结构, 声阻结构 A2可与锥管 A5成一体化。 声阻结构 A2也可弯 曲以节省空间。 这样, 可以减小本发明的用于空气环境吸声的装置的整体厚度。
具体实施方式三: 如图 6a、 6b所示, 一种用于空气环境吸声的装置, 从第一吸声面 D向里分布有至少两个第一声变压器 ,每个第一声变压器 后都连接有一个第一声阻 结构 A2。 由于单个声变压器必须有足够的尺寸才能转换较低频率的声波, 大截面处对应 的圆周长必须大于声波波长 λ; 而决定声变压器效率的婉展系数 m则决定了声变压器的 轴向尺寸不可能太小,这限制了声变压器的应用。我们通过在一吸声面向里分布多个声变 压器, 组成声变压器阵列, 来获得 "大 (合成) 口径声变压器"以适应全声频应用。 从另 一个角度来看, 声变压器阵列接收面 (吸声面) 开孔率极大 (可接近 90%), 几乎无绕射 和反射;声阻面穿孔率极低,易于形成声阻和强度结构。同时兼顾了吸声效率和结构强度。 而且通过合成口径可使本发明的用于空气环境吸声的装置整体厚度变小。 如图 7a、 7b、 7c所示, 为了阻挡雨水、 脏物入侵, 同时遮挡视线、 便于表面喷涂, 可以让每个声变压 器单元的轴线 00'与吸声面不垂直, 如成一下倾角。 而且, 这样可以在同等厚度下加长声 变压器单体约 10~30%。
如图 6b所示, 一种用于空气环境吸声的装置, 从第一吸声面 D向里分布有至少两个 第一声变压器 , 每个第一声变压器 ^后都连接有一个第一声阻结构 B2。第一声变压器 8 为 ¥形槽。 第一声变压器 、 第一声变压器 的分布的规律没有限制, 可以是封闭 或不封闭、 连续或不连续、 分组或不分组的直线、 曲线、 环形线、 波浪线、 回形线等。 用 于空气环境吸声的装置只要满足前表面开口率 (即: 所有第一声变压器的大开口端 Ao总 面积与平面 D的面积比) 相对较大即可, 最大可接近 100%。 第一声变压器 、 第一声 变压器 的排布大致均匀、 美观即可。 本具体实施方式的厚度可以做到较大, 打破了微 穿孔板只能是 5mm以下薄板的禁律, 本具体实施方式具有较高结构强度、 高吸声量、 全 频带平直特性。 此外, 根据使用材料的不同, 本具体实施方式还具备全透明、 超洁净、 全 天候、 极端环境 (高温、 低温、 潮湿、 腐蚀、 超强度) 耐候性等特性。
具体实施方式四: 如图 8所示, 一种用于空气环境吸声的装置, 从第一吸声面 D向里 分布有至少两个第一声变压器 , 每个第一声变压器 后都连接有一个第一声阻结构 A2。在与第一吸声面 D相对的第二吸声面 -D上分有至少两个第二声变压器 - ,第一声变 压器 和第二声变压器 - 反向错位对称。 本具体实施方式的用于空气环境吸声的装置 通过设置反向错位对称的第一声变压器 和第二声变压器 - , 从而可以实现双向吸声。 并且本具体实施方式的用于空气环境吸声的装置的体积小、 重量轻、 结构简单。
如图 9所示的用于空气环境吸声的装置, 第一声变压器 ^和第二声变压器 -Β 的剖面 形状分别为 V形; 而且如图 9所示的用于空气环境吸声的装置是采用膜或板做成折叠式 结构。板的厚度可以非常小。如图 9所示的用于空气环境吸声的装置的结构轻薄, 可以作 为吸声窗帘或者可调吸声体使用。
如图 10a、 10b、 10c、 10d、 10e、 10f、 lOg所示, 采用如图 9所示的用于空气环境吸 声的装置可折叠成各种艺术吸声体。 由于连续 V形薄板或薄膜的轻巧性和可折叠性, 从 而使本具体实施方式可造型成多种外形。而且通过采用一定的材料,可使艺术吸声体具备 透明的特性, 在艺术吸声体上还可使用丰富的色彩和图案, 从而进一步提高艺术性。本具 体实施方式可增加本发明的应用,本具体实施方式的成本很低。如图 lla、 llb、 llc、 lld、 lie所示, 可将如图 9所示的用于空气环境吸声的装置安装在风管 Q内。这样可实现低风 阻、 低再生噪声的风管消声。 与其他通风 /空调系统内的消声方式比, 本具体实施方式消 声效率高、 再生噪声低、 吸声频带宽、 风阻低、 不受水汽影响。
具体实施方式五: 如图 12a所示, 一种用于空气环境吸声的装置, 包括吸声面 D和隔 声面 M和空腔 P, 吸声面 D向里分布有至少两个第一声变压器 A, 每个第一声变压器 A 后都连接有一个第一声阻结构。 空腔 P位于第一声阻结构与隔声面 M之间, 空腔 P可以 辅助吸声和隔声。如图 12a所示的用于空气环境吸声的装置可以做成吸声 /隔声空心砌块。 空腔 P是背空结构的一种形式。 隔声面 M是隔声结构的一种形式。
如图 12b所示, 一种用于空气环境吸声的装置, 包括第一吸声面 Di、 第二吸声面 D2、 隔声面 M、 第一空腔!^和第二空腔 P2, 第一吸声面 向里分布有至少两个第一声变压 器 A, 每个第一声变压器 A后都连接有一个第一声阻结构。 第二吸声面 D2向里分布有至 少两个第二声变压器 B, 每个第二声变压器 A后都连接有一个第二声阻结构。 第一空腔 Pi位于第一吸声面 01与隔声面 M之间, 第二空腔 P2位于第二吸声面 D2与隔声面 M之 间, 第一空腔!^和第二空腔 P2辅助吸声和隔声。 如图 lib所示的用于空气环境吸声的装 置可以做成吸声 /隔声空心砌块, 同时对两个空间吸声 /隔声, 或对一个空间加强吸声。
如图 12c所示, 一种用于空气环境吸声的装置, 包括第一吸声面 Di、 第二吸声面 D2、 第一隔声面 Mi、 第二隔声面 M2、第一空腔 Pi、 第二空腔 P2和第三空腔 P3, 第一吸声面 Di向里分布有至少两个第一声变压器 A, 每个第一声变压器 A后都连接有一个第一声阻 结构。 第二吸声面 D2向里分布有至少两个第二声变压器, 每个第二声变压器 A后都连接 有一个第二声阻结构。 第一空腔 Pi位于第一吸声面!^与第一隔声面 之间, 第三空腔 P3位于第二吸声面 D2与第二隔声面 M2之间, 第二空腔 P2位于第一隔声面 与第二隔 声面 M2之间, 第一空腔 Pi和第三空腔 P3辅助吸声和隔声, 第二空腔 P2加强隔声。 如图 lib所示的用于空气环境吸声的装置可以做成吸声 /隔声空心砌块,同时对两个进行吸声和 加强型隔声。
如图 13所示, 对于如图 12a、 12b、 12c所示的用于空气环境吸声的装置, 可以通过 单独加工吸声模块 D再与空心砌块本体嵌合并粘牢制成。 吸声模块包括从吸声面向里分 布的至少两个声变压器,每个声变压器后都连接有一个声阻结构。每个空心砌块本体都包 含隔声面 M和空腔 P, 空腔 P辅助吸声和隔声。 这样单独加工吸声模块可以降低加工难 度, 降低成本; 而且材料可更灵活选择, 追求不同指标, 性价比更高, 表面可进行预处理 如涂料、 喷塑或涂釉以满足吸声、 美观、 洁净、 耐蚀等高档要求。
如图 14所示, 采用如图 12a、 12b、 12c所示的用于空气环境吸声的装置, 可以砌筑 成单向吸声 /隔声墙 J或者双向吸声 /隔声 /吸声墙 J。
图 12a、 12b、 12c所示的用于空气环境吸声的装置可以做成最能体现本发明优越性的、 并可作为建筑材料使用的全功能吸声砌块, 能集隔声、 吸声于一体。 当采用图 13所示的 方法砌成墙时能应用在包括剧院、 体育馆、 医院、 民居、 洁净 /低噪车间、 高速公路隔 /吸 声屏障、 隧道、 导弹发射井等处。 本具体实施方式除具备超洁净、 环保、 全天候、 极端环 境 (高温、 低温、 潮湿、 腐蚀、 超强度) 耐候性等特性, 还具备高性价比 (高吸声系数、 低材料成本和安装工时)。
如图 15所示, 可以采用如图 12a、 12b、 12c所示的用于空气环境吸声的装置造成吸 声室。 具体制造方法可以为: 在浮筑地板 G上制作带加强筋的第一圈梁 H1 ; 在第一圈梁 ¾上用如图 12a、 12b、 12c所示的用于空气环境吸声的装置砌筑围墙 J; 在围墙 J上制作 带加强筋的第二圈梁 H2 ; 在第二圈梁 H2上用如图 12a、 12b、 12c所示的用于空气环境吸 声的装置砌筑天棚 L。这样就造成了无声桥(无龙骨)吸声室, 吸声室具备超隔声、隔振、 吸声的功能。 当然, 也可以将天棚 L改用普通轻型隔声吊顶与浮筑地板 G、第一圈梁 Hi、 第二圈梁 H2、 墙 J组成半无声桥 (龙骨) 吸声房。 加强筋可以为钢筋。 或者省去第二圈 梁 H2, 直接在围墙 J上制作轻型隔声吊顶。 如图 15所示的吸声室是一种广播电视声学专 业用房。 现有的隔声 /隔振套房制造方法一般包括: 轻钢龙骨—玻璃棉—石膏板—错缝叠 层石膏板—轻钢龙骨—玻璃棉—穿孔石膏板一共七道工序和四种 /七层材料。 本发明简化 了工序和材料, 造价很低、 而且具备很好的洁净性能、环保性能。这是现有工艺和材料所 不能比拟的。 更重要的是, 上述制造方法是截至目前为止唯一革除了原工艺中轻钢龙骨、 天花吊钩的刚性连接, 实现了真正无声桥的全隔离超隔声 /隔振独立套房施工工艺, 将在 降低成本前提下为高级声学技术用房提供更高级的性能。当然,为降低重量也可将顶盖部 分采用现行吊顶方式, 那样就成为半无声桥结构了。
具体实施方式六: 如图 16所示, 本具体实施方式的特点在于: 声变压器透光或透明。 用于空气环境吸声的装置还包括用于对声变压器进行照明的照明体。照明体可以包括光源 166和光板 165, 这样形成面光源, 照明效果柔和。 还可以采用简单图案或彩色照明, 经 过声变压器透光折射后形成朦胧的泛光图案, 有特殊艺术效果。
照明体还可以采用发光二极管 (LED), 直接或通过饰面层照明, 可以构成面照明、 散点星空照明、 单色、 彩色的发光图案, 图案清晰, 亮度高。 照明体还可以由预置程序驱 动, 得到动态效果。
具体实施方式七: 如图 17所示, 一种制造上述用于空气环境吸声的装置的方法, 包 括如下步骤: (1 )制备下述三种工料之一: 可塑性、 柔软性材料或分散性状态的粉体、 集 料等工料 171 ; 或者液态、 流动性、 无定形工料 172; 或者可塑性粗坯 173。 上述三种工 料具备热熔性、 热塑性、 热固性、 胶粘性、 胶凝性、 自凝性、 可烧结性等加工固化性能。
(2) 在适合的工况环境下向模具加料, 所述工况环境, 包括粗坯、 工料、 模具的温度、 湿度、 压力等。 (3 ) 使用模具对粗坯或工料进行加工, 其中阳模 174上有模芯 175, 按照 一定方向与阴模 177合模并将所述工料注入或压入模中。(4)在所需固化条件下固化, 或 者初步固化得到成型的坯件, (5 ) 脱模, 得到或脱模后再经过后固化 (如烧结、 自凝等) 得到用于空气环境吸声的装置。 该用于空气环境吸声的装置包括声变压器 176, 该声变压 器最窄处可以是小于 1mm的微孔或微缝。
具体实施方式八: 如图 18所示, 本具体实施方式中, 步骤 (3 ) 中的 "模具"采用 了 "变截面"模芯 185a, 其截面积由根部 189向顶部 180逐渐缩小。 制成的用于空气环 境吸声的装置中声变压器(具体可为微孔或微缝)的截面积也相应由表面 182向深处 183 逐渐缩小。这样做的好处是, 由于模芯成锥体或楔形体对脱模就十分有利, 加以采用振动 等辅助退模措施就能顺利脱模。
当工料采用声阻适当的微孔材料时, 模芯不必穿透基体的底部 184, 从而形成一层可 以控制厚度和声阻的声阻层。这样做的结果, 保护了模芯的尖端, 降低了模芯制造的精度 要求, 提高了吸声效率, 简化了微孔或微缝阵列体结构。
当"变截面 "模芯 185a的长度大于 5mm,声变压器的厚度也大于 5mm,可达 30~50mm 甚至更厚。这样所制造的用于空气环境的吸声装置具有结构强度, 吸声效果更好。这是其 他加工方式所做不到的。
具体实施方式九: 如图 19所示, 本具体实施方式的特点在于: "变截面"模芯 195由 圆锥形转换成楔形,其截面积由根部 195向顶部 190逐渐缩小,声变压器 191的截面积也 相应由微缝表面 192向深处 193逐渐缩小。 除具有同样的优点外, 还能减少模芯的数量, 降低模具成本, 并具有栅栏、 百叶窗式独特的外观效果。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发 明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱 离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护 范围。

Claims

权 利 要 求 书
1. 一种用于空气环境吸声的装置, 其特征在于: 包括相互连接的声变压器和声阻结构, 所述声变压器提高大气中声源的声压和 /或阻抗并传送到声阻结构、 交由或联合声阻结构 进行吸声; 所述声变压器从最远离声阻结构处到最靠近声阻结构处的截面积逐渐缩小, 声变压器的轴长小于其最高工作波长的 1/6。
2. 根据权利要求 1所述的用于空气环境吸声的装置, 其特征在于: 所述声变压器包括平 滑拼接而成的喇叭口和锥管, 所述喇叭口的截面积大于锥管的截面积。
3. 根据权利要求 1所述的用于空气环境吸声的装置, 其特征在于: 所述声变压器材料和 声阻结构材料的相对声阻抗率大于 2。
4. 根据权利要求 2所述的用于空气环境吸声的装置, 其特征在于: 所述锥管可弯曲。
5. 根据权利要求 1所述的用于空气环境吸声的装置, 其特征在于: 所述声变压器和声阻 结构为一体化。
6. 根据权利要求 1所述的用于空气环境吸声的装置, 其特征在于: 在第一吸声面向里分 布有至少两个第一声变压器, 每个第一声变压器后都连接有一个第一声阻结构。
7. 根据权利要求 6所述的用于空气环境吸声的装置, 其特征在于: 所述每个第一声变压 器的轴线与所述第一吸声面不垂直。
8. 根据权利要求 6所述的用于空气环境吸声的装置, 其特征在于: 在与所述第一吸声面 相对的第二吸声面上也分布有至少两个第二声变压器, 每个第二声变压器后都连接有一 个第二声阻结构。
9. 根据权利要求 1-8任一所述的用于空气环境吸声的装置, 其特征在于: 还包括背空结 构, 所述声阻结构位于背空结构与声变压器之间。
10. 根据权利要求 9所述的用于空气环境吸声的装置, 其特征在于: 还包括隔声结构, 所 述背空结构位于隔声结构与声变压器之间。
11. 根据权利要求 10所述的用于空气环境吸声的装置, 其特征在于: 所述第一吸声面与 第二吸声面的所有声变压器结构反向分布在同一块材料的正反两面且错位对称嵌入相对 吸声面的空隙。
12. 根据权利要求 1-8任一所述的用于空气环境吸声的装置, 其特征在于: 所述声变压器 截面最大处的形状为直线或曲线的狭长开口。
13. 根据权利要求 12所述的用于空气环境吸声的装置, 其特征在于: 所述声阻结构为微 缝声阻。
14. 根据权利要求 6所述的用于空气环境吸声的装置, 其特征在于: 所述第一吸声面为非 平面。
15. 根据权利要求 1或 12所述的用于空气环境吸声的装置, 其特征在于: 所述用于空气 环境吸声的装置采用膜或板做成折叠式结构。
16. 根据权利要求 12所述的用于空气环境吸声的装置, 其特征在于: 所述用于空气环境 吸声的装置位于管道中。
17. 根据权利要求 6所述的用于空气环境吸声的装置, 其特征在于: 所述声变压器透光或 透明, 所述用于空气环境吸声的装置还包括用于对或通过声变压器进行照明的照明体。
18. —种隔声室的制造方法, 其特征在于: 包括如下步骤:
在地板制作第一圈梁;
在第一圈梁上用如权利要求 6或 8所述的用于空气环境吸声的装置砌筑围墙;
在所述围墙上制作第二圈梁,在第二圈梁上用如权利要求 6或 8所述的用于空气环境吸声 的装置砌筑天棚; 或者在第二圈梁上或围墙上制作隔声吊顶。
19.一种制造权利要求 6所述的用于空气环境吸声的装置的方法,其特征是包括如下步骤:
( 1 ) 制备可塑性工料或粗坯;
(2) 在适合的工况环境下向模具加料;
( 3 ) 使用模具对粗坯或工料加工, 形成基体;
(4) 固化已成型的基体或者初步固化得到成型的坯件;
( 5 ) 脱模, 得到成品或脱模后再经过后固化工序得到成品。
20. 根据权利要求 19所述制造方法, 其特征是: 所述步骤(3 ) 中形成基体时还形成最窄 处小于 1mm的微孔或微缝。
21. 根据权利要求 20所述制造方法, 其特征是: 所述模具的模芯由根部向顶部截面积逐 渐缩小, 从而使所述微孔或微缝的截面积也相应逐渐缩小。
22. 根据权利要求 21所述制造方法, 其特征是: 所述工料采用微孔声阻材料, 所述模芯 不穿透基体的底部, 所制造的微孔或微缝的底部与基体底面之间形成一层声阻层。
23. 根据权利要求 21所述制造方法, 其特征是: 所述模芯制造出的声变压器的厚度大于 5mm
PCT/CN2009/073232 2008-08-15 2009-08-13 用于空气环境吸声的方法及装置及隔声室制造方法 WO2010017774A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200810142449.6 2008-08-15
CN200810142449A CN101650938A (zh) 2008-08-15 2008-08-15 用于空气环境吸声的方法及装置及隔声室制造方法
CN200910109159.6 2009-07-31
CN2009101091596A CN101989421A (zh) 2009-07-31 2009-07-31 微孔或微缝阵列体的制造方法及产品

Publications (1)

Publication Number Publication Date
WO2010017774A1 true WO2010017774A1 (zh) 2010-02-18

Family

ID=41668711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073232 WO2010017774A1 (zh) 2008-08-15 2009-08-13 用于空气环境吸声的方法及装置及隔声室制造方法

Country Status (1)

Country Link
WO (1) WO2010017774A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107657946A (zh) * 2017-11-15 2018-02-02 苏州岸肯电子科技有限公司 一种特殊结构的吸声尖劈
RU2659926C1 (ru) * 2017-09-11 2018-07-04 Олег Савельевич Кочетов Способ звукоизоляции
CN114382188A (zh) * 2020-10-20 2022-04-22 中国电力科学研究院有限公司 一种吸隔声单元结构以及变电站模块化吸隔声墙体
GB2605371A (en) * 2021-03-29 2022-10-05 Bae Systems Plc Acoustic absorbing structures

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2293181A (en) * 1940-07-17 1942-08-18 Int Standard Electric Corp Sound absorbing apparatus
US3997020A (en) * 1974-10-29 1976-12-14 Busnel Rene Guy Sound absorber
US4163479A (en) * 1976-07-15 1979-08-07 Messerschmitt-Bolkow-Blohm Gmbh Noise absorbing device
WO1997024496A1 (en) * 1995-12-29 1997-07-10 Korea Sound Absorption Corporation Honeycomb soundproofing board
CN2499461Y (zh) * 2001-09-28 2002-07-10 钟惠洲 装潢用结构改良吸音板材
CN201242857Y (zh) * 2008-08-15 2009-05-20 吴哲 用于空气环境吸声的装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2293181A (en) * 1940-07-17 1942-08-18 Int Standard Electric Corp Sound absorbing apparatus
US3997020A (en) * 1974-10-29 1976-12-14 Busnel Rene Guy Sound absorber
US4163479A (en) * 1976-07-15 1979-08-07 Messerschmitt-Bolkow-Blohm Gmbh Noise absorbing device
WO1997024496A1 (en) * 1995-12-29 1997-07-10 Korea Sound Absorption Corporation Honeycomb soundproofing board
CN2499461Y (zh) * 2001-09-28 2002-07-10 钟惠洲 装潢用结构改良吸音板材
CN201242857Y (zh) * 2008-08-15 2009-05-20 吴哲 用于空气环境吸声的装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2659926C1 (ru) * 2017-09-11 2018-07-04 Олег Савельевич Кочетов Способ звукоизоляции
CN107657946A (zh) * 2017-11-15 2018-02-02 苏州岸肯电子科技有限公司 一种特殊结构的吸声尖劈
CN114382188A (zh) * 2020-10-20 2022-04-22 中国电力科学研究院有限公司 一种吸隔声单元结构以及变电站模块化吸隔声墙体
CN114382188B (zh) * 2020-10-20 2023-12-26 中国电力科学研究院有限公司 一种吸隔声单元结构以及变电站模块化吸隔声墙体
GB2605371A (en) * 2021-03-29 2022-10-05 Bae Systems Plc Acoustic absorbing structures

Similar Documents

Publication Publication Date Title
US20040129492A1 (en) Planar diaphragm loudspeaker and related methods
CN102332259B (zh) 一种自适应微穿孔板吸声器及其微孔实时调节方法
WO2010017774A1 (zh) 用于空气环境吸声的方法及装置及隔声室制造方法
CN201074392Y (zh) 微穿孔蜂窝夹层吸声装饰板
CN103069086A (zh) 声学板
CN102888999B (zh) 一种软连接隔声墙的施工方法
CN202390946U (zh) 带有亥姆霍兹式共振腔的吸声板
CN101650938A (zh) 用于空气环境吸声的方法及装置及隔声室制造方法
CN104097357B (zh) 一种多孔吸声材料及其加工方法
CN206189725U (zh) 一种木塑蜂窝复合墙板
CN104481104A (zh) 一种住宅室内用吸声喷绘饰板
US10356511B2 (en) Ultrathin acoustic impedance converter
CN206289841U (zh) 一种柔性软膜天花吸声结构
CN201242857Y (zh) 用于空气环境吸声的装置
JP5599140B2 (ja) 吸音構造体用部材及び吸音構造体
KR100915770B1 (ko) 건물의 내외장재용 블록
CN206287734U (zh) 室内吸声装饰画
CN100565669C (zh) 透明空间吸声体及其制作方法
CN208617708U (zh) 一种砂质吸声板
CN2441906Y (zh) 一种建筑装饰用复合板
CN207363155U (zh) 一种竹制多孔降噪板
CN201229772Y (zh) 薄膜共振声效板
CN106368366A (zh) 一种柔性软膜天花吸声结构
CN201031459Y (zh) 隔声复合墙砖
CN220598975U (zh) 一种新型轻质强大理石板材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09806377

Country of ref document: EP

Kind code of ref document: A1