CN108615520B - 一种基于多分级结构的吸声材料及其制备方法 - Google Patents

一种基于多分级结构的吸声材料及其制备方法 Download PDF

Info

Publication number
CN108615520B
CN108615520B CN201611146965.7A CN201611146965A CN108615520B CN 108615520 B CN108615520 B CN 108615520B CN 201611146965 A CN201611146965 A CN 201611146965A CN 108615520 B CN108615520 B CN 108615520B
Authority
CN
China
Prior art keywords
resonant
resonant cavity
cavity
sound
sound absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611146965.7A
Other languages
English (en)
Other versions
CN108615520A (zh
Inventor
陈磊
张涛
周勇
刘思畅
李卓达
夏雅男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Research Institute of Materials and Processing Technology
Original Assignee
Aerospace Research Institute of Materials and Processing Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Research Institute of Materials and Processing Technology filed Critical Aerospace Research Institute of Materials and Processing Technology
Priority to CN201611146965.7A priority Critical patent/CN108615520B/zh
Publication of CN108615520A publication Critical patent/CN108615520A/zh
Application granted granted Critical
Publication of CN108615520B publication Critical patent/CN108615520B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Building Environments (AREA)

Abstract

本发明公开了一种基于多分级结构的吸声材料及其制备方法,本发明以亥姆霍兹共振腔为结构最小基础单元,使入射声波在结构内产生共振,从而使大量能量耗逸,实现单峰强吸声功能;并引入自相似多分级的共振腔结构实现多频率协同共振,实现多峰宽域吸声功能;利用分形几何概念优化多分级共振腔的排布与大小,实现有效吸声频域宽度与吸声系数的整体调控。

Description

一种基于多分级结构的吸声材料及其制备方法
技术领域
本发明涉及一种基于多分级结构的吸声材料及其制备方法,属于吸声材料技术领域。
背景技术
吸声材料按照吸声机理通常分为多孔吸声材料和共振吸声材料两大类。其中,多孔吸声材料主要分为有机纤维材料、无机纤维材料、金属吸声材料、高分子吸声材料等,其利用材料孔内空气振动,将声能转化为热能。其优点是中高频吸声性能良好,缺点是中低频吸声性能较差。鉴于此,共振吸声材料利用共振腔、薄板/薄膜共振吸声,多用于中、低频噪声的吸收。微穿孔板是典型的共振吸声材料,主要用于声学装修工程,如房屋建筑工程中的墙壁或顶棚等,因此微穿孔板需要具有一定的强度,柔软的材料不适合制作微穿孔板,而且当穿孔板的厚度太大时,其声阻会变的很高,吸声性能急剧下降。所以大部分微穿孔板是薄的金属板或塑料板,在应用中受到了一定的限制。且对于共振吸声结构而言,吸声机理多基于材料与背空组成系统的共振特性,因此有一定的频率依赖性,通常只能达到特定频段的窄带吸声效果。
噪声是飞行器飞行过程中的主要力学环境因素,如何减振降噪而保证仪器设备正常工作则是多年来飞行器设计过程中的重要课题,其中,中、低频宽带噪声的高效吸收则更具挑战性,受限于飞行器设计过程中的空间限制,吸声材料不仅需要良好的宽频带吸声效果,还需要受尺寸约束与重量约束,这对材料设计与结构设计提出了更好的期望。鉴于现有吸声材料的缺陷,制备中低频宽域吸声材料在航空/航天发动机的减振降噪以及潜艇吸声隐身等领域有迫切需求。
发明内容
本发明的目的在于克服现有技术不足,提出一种基于多分级结构的吸声材料及其制备方法,本发明利用多分级结构协同共振原理,实现了吸声材料在中低频宽域更好的吸声效果,且采用增材制造技术制备多分级分形结构,实现对中低频宽域噪声的高效吸收。
本发明的技术解决方案:
一种基于多分级结构的吸声材料,所述吸声材料包含n个层级的共振腔,且每个层级共振腔总体积V'满足式(3):
V"/2n≤V'≤2V"/n (3)
其中V"为吸声材料总体积,且n级共振腔的总体积之和小于V",n≥2。
所述n个层级的共振腔的位置分布为:应用几何拓扑学安排每个层级共振腔的位置。
所述n个层级的共振腔中,每个层级共振腔为对称的形状。
所述n优选小于等于20,若选择更大的n,所达到的共振吸声效果变化不大,则根据实际操作考虑,优选n小于等于20。
所述n个层级的共振腔的设计如下:
假设所需吸声材料的共振频率为f1~fn,具体设计如下:
1)确定各层级单个共振腔尺寸
选取共振腔体积为主要控制尺寸,则可以在给定共振腔开口面积S和腔口直径d的条件下由基于亥姆霍兹共振腔的共振频率计算公式即式(1)确定共振腔体积的变化范围V1~Vn
Figure BDA0001179091430000021
其中,c为声速,S为共振腔开口面积,l为共振腔腔口深度,d为共振腔腔口直径,V为共振腔体积;
所述共振腔腔口深度l为:0.5mm≤l≤2mm;
2)共振腔具体分级选择
多分级共振腔的体积序列如式(2)所示:
Figure BDA0001179091430000031
其中,n为分级级数,n≥2,且满足Vi+1<Vi<Vi-1
本发明还提供一种基于多分级结构的吸声材料的制备方法,通过以下步骤实现:
步骤1、多分级共振腔的设计:假设所需吸声材料的共振频率为f1~fn,具体设计如下:
1)确定各层级单个共振腔尺寸
吸声材料的特征尺寸越大,则共振腔或共振贴片尺寸越大,理论上利用共振原理实现的最低吸声频率越低,选取共振腔体积为主要控制尺寸,则可以在给定共振腔开口面积S和腔口直径d的条件下由基于亥姆霍兹共振腔的共振频率计算公式即式(1)确定共振腔体积的变化范围V1~Vn
Figure BDA0001179091430000032
其中,c为声速,S为共振腔开口面积,l为共振腔腔口深度,d为共振腔腔口直径,V为共振腔体积;
所述共振腔腔口深度l为:0.5mm≤l≤2mm;
2)共振腔具体分级选择
多分级共振腔的体积序列如式(2)所示:
Figure BDA0001179091430000033
其中,n为分级级数,n≥2,且满足Vi+1<Vi<Vi-1
步骤2、多分级共振腔的排布
由步骤1得到的n级共振腔,其中,每个层级共振腔总体积V'满足式(3):
V"/2n≤V'≤2V"/n (3)
其中V"为吸声材料总体积,且n级共振腔的总体积之和小于V";
根据所得各个层级的共振腔,应用几何拓扑学安排每个层级共振腔的位置;
步骤3、制造上述设计好的吸声材料。
所述分级级数n优选小于等于20,若选择更大的n,所达到的共振吸声效果变化不大,则根据实际操作考虑,优选n小于等于20。
所述n个层级的共振腔中,每个层级共振腔为对称的形状。
所述步骤3可采用常规的制造方式,例如可优选3D打印技术,具体为:根据步骤2得到的设计结果画出三维图样,选择合适的原材料和相应的3D打印技术成型出吸声材料。
所述用于3D打印的原材料体系包括但不限于各类金属与非金属材料:如铁、铝、镁、钛等金属及其合金材料,PP、PE、PC、PS、PVC、PMMA、ABS、尼龙等非金属材料。
上述方法中,所述共振腔可以采用共振贴片或共振薄膜替代,其多分级设计和所述方法相同。
本发明的设计原理为:
本发明从原理上以亥姆霍兹共振腔作为结构最小基础单元,利用入射声波在结构内产生共振,从而使大量能量耗逸,实现单峰强吸声功能;并引入自相似多分级的共振腔结构,多分级共振腔结构在接受宽频声学信号时可以同时作用实现多频段协同共振吸声,即多峰宽域吸声。
在声学设计与计算的基础上,本发明利用分形几何概念优化多分级共振腔的排布与大小,实现有效吸声频域宽度与吸声系数的整体调控,以期望实现对中低频宽域噪声的高效吸收。通过设计体积大小以及采用点阵拓扑决定共振结构排布,在排布各个层级共振结构时按几何尺寸等比例放大或缩小其几何尺寸,使得每个层级的共振结构具有自相似性,自相似结构的变异性使得共振结构附近共振频率不同,并且每个共振频率附近都出现强吸收峰,多个吸收峰相连形成多吸收峰协同作用区域,从而达到中低频多峰宽域吸声的设计目标。
本发明与现有技术相比的有益效果:
本发明通过声学设计与计算满足中低频宽带吸声的目标,所述吸声材料采用自相似多分级的共振结构,在接受宽频声学信号时可以同时作用实现多频段协同共振吸声,并且在每个层级共振结构的共振频率附近都出现强吸收峰,多个吸收峰相连形成多吸收峰作用区域。本发明所述吸声材料的多吸收峰作用区域可以触及中低频段(2000Hz以下),平均吸声系数可以超过0.5,吸声区域带宽可以达到1000Hz以上。
附图说明
图1为亥姆霍兹共振腔主要几何尺寸示意图
图2为本发明实施例中的共振腔几何尺寸示意图
图3-4为本发明实施例提供的一种共振腔拓扑排布实施例示意图,
其中,图3与图4分别为圆柱形与圆球形共振腔的排布示意图,左上图A为主视图,下图为A-A截面剖视图,右上图为B-B截面剖视图;
图5为本发明实施例提供的一种吸声材料的吸声系数测试值,
图5中,1#、2#、3#样品分别对应实施例1、2、3;
图6为本发明实施例提供的一种吸声材料的传递损失测试值,
图6中,1#、2#、3#样品分别对应实施例1、2、3。
具体实施方式
下面结合附图和实施例对本发明做进一步说明:
实施例1
对于总厚度22mm的板壳状吸声材料,需要其有效吸声频带位于600-2000Hz范围内,设计n级自相似共振腔结构,为简化制造工艺,选择多分级半开口圆柱结构作为共振腔,圆柱直径D;亥姆霍兹共振腔主要几何尺寸如图1所示,选取共振腔腔口直径为d=1mm,腔口深度l=mm,共振腔深度H=20mm,如图2所示,其中下部阴影部分厚度也为l=1mm,腔口面积,共振腔体积,由公式(1)计算其共振腔可设计为直径5-20mm的开口圆柱,原则上多分级结构层级数n可以任意选取,本实施例为简化制造,工艺上选取n=3的多分级共振腔,共振腔直径选择为5mm、10mm、20mm的尺寸序列;其吸声胞元拓扑排布选择环形点阵拓扑,即第i+1级共振腔以环形点阵方式环绕在第i级别共振腔周围,本实施例选择一级结构周围环绕4个二级结构,二级结构周围环绕3个三级结构,单个胞元内多分级结构体积占比为4:4:3;相同胞元以线性点阵方式排列,如图3所示。成型材料选取ABS塑料,通过3D打印成型图3示结构。
实施例2
在实施例1设计结果的基础上,共振腔变为直径为D的半开口圆球,共振腔腔口直径为d=1mm,腔口深度l=1mm,腔口面积,振腔体积,由公式(1)计算其共振腔可设计为直径10-20mm的开口圆球,选取共振腔直径为10mm、15mm、20mm的共振腔直径尺寸序列,其拓扑排布与实施例1相同,如图4所示。材料选取ABS塑料,通过3D打印成型图4所示结构。
实施例3
在实施例2设计结果的基础上,保持材料几何尺寸不变,将打印材料换成PLA塑料,通过3D打印成型图4所示结构。
按实施例1-3制备出的样品其吸声系数测试值如图4所示,吸声系数显著增加区域即是样品发生共振的频域,可以看到距离较近的共振峰出现叠加甚至相连的情况,即多分级共振腔协同共振;传递损失的测试结果如图5所示,可以看出三个样品在特定频率附近出现了明显的传递损失峰,传递损失峰对应的频率即是多分级共振腔的共振频率。
本发明未详细说明部分为本领域技术人员公知技术。

Claims (8)

1.一种基于多分级结构的吸声材料,其特征在于,所述吸声材料包含n个层级的共振腔,所述各个层级共振腔的尺寸设计如下:
假设所需吸声材料的共振频率为f1~fn,具体为:
1)确定各层级单个共振腔尺寸
选取共振腔体积为主要控制尺寸,则在给定共振腔开口面积S和腔口直径d的条件下由基于亥姆霍兹共振腔的共振频率计算公式即式(1)确定共振腔体积的变化范围V1~Vn
Figure FDA0002596150100000011
其中,c为声速,S为共振腔开口面积,l为共振腔腔口深度,d为共振腔腔口直径,V为共振腔体积;
所述共振腔腔口深度l为:0.5mm≤l≤2mm;
2)共振腔具体分级选择
多分级共振腔的体积序列如式(2)所示:
Figure FDA0002596150100000012
其中,n为分级级数,n≥2,满足Vi+1<Vi<Vi-1
且所述每个层级共振腔总体积V'满足式(3),
V"/2n≤V'≤2V"/n (3)
其中V"为吸声材料总体积,且n级共振腔的总体积之和小于V";
所述n个层级的共振腔的位置分布为:应用几何拓扑学安排每个层级共振腔的位置。
2.根据权利要求1所述的一种基于多分级结构的吸声材料,其特征在于:所述n个层级的共振腔中,每个层级共振腔为对称的形状。
3.根据权利要求1所述的一种基于多分级结构的吸声材料,其特征在于:所述n小于等于20。
4.一种基于多分级结构的吸声材料的制备方法,其特征在于,通过以下步骤实现:
步骤1、多分级共振腔的设计:假设所需吸声材料的共振频率为f1~fn,具体设计如下:
1)确定各层级单个共振腔尺寸
选取共振腔体积为主要控制尺寸,则在给定共振腔开口面积S和腔口直径d的条件下由式(1)确定共振腔体积的变化范围V1~Vn
Figure FDA0002596150100000021
其中,c为声速,S为共振腔开口面积,l为共振腔腔口深度,d为共振腔腔口直径,V为共振腔体积;
所述共振腔腔口深度l为:0.5mm≤l≤2mm;
2)共振腔具体分级选择
多分级共振腔的体积序列如式(2)所示:
Figure FDA0002596150100000022
其中,n为分级级数,n≥2,且满足Vi+1<Vi<Vi-1
步骤2、多分级共振腔的排布
由步骤1得到的n级共振腔,其中,每个层级共振腔总体积V'满足式(3):
V"/2n≤V'≤2V"/n (3)
其中V"为吸声材料总体积,且n级共振腔的总体积之和小于V";
根据所得各个层级的共振腔,应用几何拓扑学安排每个层级共振腔的位置;
步骤3、制造上述设计好的吸声材料。
5.根据权利要求4所述的方法,其特征在于:所述n小于等于20。
6.根据权利要求4所述的方法,其特征在于:所述n个层级的共振腔中,每个层级共振腔为对称的形状。
7.根据权利要求4所述的方法,其特征在于,所述制造方法为:根据根据步骤2得到的设计结果画出三维图样,选择合适的原材料和相应的3D打印技术成型出吸声材料。
8.根据权利要求4所述的方法,其特征在于:所述共振腔采用共振贴片或共振薄膜替代。
CN201611146965.7A 2016-12-13 2016-12-13 一种基于多分级结构的吸声材料及其制备方法 Active CN108615520B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611146965.7A CN108615520B (zh) 2016-12-13 2016-12-13 一种基于多分级结构的吸声材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611146965.7A CN108615520B (zh) 2016-12-13 2016-12-13 一种基于多分级结构的吸声材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108615520A CN108615520A (zh) 2018-10-02
CN108615520B true CN108615520B (zh) 2020-10-16

Family

ID=63643738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611146965.7A Active CN108615520B (zh) 2016-12-13 2016-12-13 一种基于多分级结构的吸声材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108615520B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111128109B (zh) * 2020-01-02 2023-06-23 山东理工大学 一种嵌套开缝共振腔型声学超材料结构
CN112103975B (zh) * 2020-09-11 2022-09-06 南京大学 一种基于共鸣器kagome阵列的声学拓扑储能结构
CN112927670A (zh) * 2021-04-01 2021-06-08 广东电网有限责任公司广州供电局 一种吸声结构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147239A (ja) * 2000-11-09 2002-05-22 Toyota Motor Corp エンジン
CN2462079Y (zh) * 2000-12-28 2001-11-28 长安汽车(集团)有限责任公司 多腔并联旁支型共振消声器
US20030006090A1 (en) * 2001-06-27 2003-01-09 Reed John Douglas Broadband noise-suppressing barrier
CN101727894B (zh) * 2010-01-08 2012-05-23 中国科学院声学研究所 一种内置共振腔体的复合吸声装置
CN101944357A (zh) * 2010-08-27 2011-01-12 张宇 多模块阻抗复合隔声板及其制作方法
CN103533488B (zh) * 2013-10-09 2017-01-11 清华大学 亥姆霍兹共振器及其设计方法
CN103791603A (zh) * 2014-01-23 2014-05-14 乐金电子(天津)电器有限公司 空调室内机及空调室内机降噪方法
CN105458262A (zh) * 2016-02-01 2016-04-06 哈尔滨工程大学 一种多层消声/减振结构及采用3d打印技术制造该消声/减振结构的方法

Also Published As

Publication number Publication date
CN108615520A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
JP6970880B2 (ja) 音響メタマテリアル騒音制御法およびダクトシステムにおける装置
JP6495280B2 (ja) 内部隔壁を有するハニカムを備えた雑音吸収構造体
Liu et al. Acoustic properties of a porous polycarbonate material produced by additive manufacturing
JP6438025B2 (ja) 音響構造体に使用するための音導波管
CN108615520B (zh) 一种基于多分级结构的吸声材料及其制备方法
Lu et al. Sound absorption of cellular metals with semiopen cells
CN107195292B (zh) 一种宽低频吸声的超薄吸声结构
CN109300464B (zh) 一种渐变截面低频吸声体的设计方法
Ma et al. Enhancing of broadband sound absorption through soft matter
CN104732967B (zh) 一种利用共面空心管吸收声音的吸声屏
JP2018536201A (ja) 吸収音響メタマテリアル
CN204010667U (zh) 宽频片式消声器
CN107563065B (zh) 中低频腔管宽频吸声结构设计方法及其结构
CN111456854A (zh) 一种涡扇发动机短舱消声结构
CN111581733A (zh) 一种涡扇发动机短舱微穿孔板吸声结构设计方法
KR101643689B1 (ko) 흡음재의 제조 방법 및 이를 포함한 흡음 구조체
CN110537219B (zh) 用于吸声的表面衬里
CN113123261A (zh) 一种基于海螺腔体构造的仿生吸声结构及其吸声单元板
RU157128U1 (ru) Комбинированный глушитель аэродинамического шума
CN207397275U (zh) 中低频腔管宽频吸声结构
CN110473512A (zh) 低声速超材料层及由其制成的中低频高效吸声的超材料复合结构
Sugahara A 3D-printed sound-absorbing material based on multiple resonator-like unit cells for low and middle frequencies
Min et al. Comparison Sound Absorption Methods of Multilayer Micro-perforated Panels
Yang et al. Adjustable and extensible hexagonal acoustic metamaterial cell combining multiple parallel Helmholtz resonators with optional apertures
Catapane et al. Labyrinth-Coiling Quarter Wavelength Tubes Embedded in Honeycomb Cells for Advanced Acoustic Liner Designs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant