WO2010016663A2 - 평판 접이식 코일스프링, 이를 이용한 포고핀 및 그 제조방법 - Google Patents

평판 접이식 코일스프링, 이를 이용한 포고핀 및 그 제조방법 Download PDF

Info

Publication number
WO2010016663A2
WO2010016663A2 PCT/KR2009/003815 KR2009003815W WO2010016663A2 WO 2010016663 A2 WO2010016663 A2 WO 2010016663A2 KR 2009003815 W KR2009003815 W KR 2009003815W WO 2010016663 A2 WO2010016663 A2 WO 2010016663A2
Authority
WO
WIPO (PCT)
Prior art keywords
coil spring
bending point
metal plate
pogo pin
bent
Prior art date
Application number
PCT/KR2009/003815
Other languages
English (en)
French (fr)
Other versions
WO2010016663A3 (ko
Inventor
박상량
Original Assignee
Park Sangyang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090054228A external-priority patent/KR101106506B1/ko
Application filed by Park Sangyang filed Critical Park Sangyang
Priority to US13/055,779 priority Critical patent/US8029291B2/en
Publication of WO2010016663A2 publication Critical patent/WO2010016663A2/ko
Publication of WO2010016663A3 publication Critical patent/WO2010016663A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F35/00Making springs from wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F35/00Making springs from wire
    • B21F35/04Making flat springs, e.g. sinus springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/042Wound springs characterised by the cross-section of the wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/55Fixed connections for rigid printed circuits or like structures characterised by the terminals
    • H01R12/57Fixed connections for rigid printed circuits or like structures characterised by the terminals surface mounting terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • H01R13/2421Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means using coil springs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support

Definitions

  • the present invention relates to a very small coil spring manufactured by continuously bending a strip-shaped plate member having a predetermined repeating pattern, a pogo pin formed integrally by employing the coil spring, and a method of manufacturing the same. It is about.
  • Pogo pins are widely used in inspection devices such as semiconductor wafers, LCD modules and semiconductor packages, sockets and battery connections of mobile phones.
  • 1 is a view showing an example of a conventional pogo pin (6).
  • the coil spring 14 is inserted into the cylindrical pin body 11, and the upper probe 12 and the lower probe 13 are positioned at both ends of the coil spring.
  • FIG. 2 is a cross-sectional view showing an example of a socket for a semiconductor package inspection, and shows an example using a pogo pin as a means for connecting between the external terminal of the semiconductor package and the metal wiring on the PCB.
  • the conventional socket for inspecting a semiconductor package 20 is configured to electrically connect the external terminal 3a of the device under test (semiconductor package) 3 and the contact pad 5a of the test board 5. It is composed of pogo pins 6, which serve, and an insulating body 1 which supports the pogo pins so that the pogo pins are arranged at regular intervals and protects the pogo pins from deformation or external physical impact.
  • the pogo pin 6 includes a tubular pin body 11; An upper probe 12 made of a metal body coupled to an upper side of the pin body 11 and in contact with an external terminal 3a of the package 3; A lower probe 13 made of a metal body which is coupled to the lower side of the pin body 11 and is in contact with the contact pad 5a of the test board 5; The upper probe 12 is disposed inside the pin body 11 such that the upper end contacts the lower probe 13 and the lower end 13 contacts the upper probe 12 so that the external probe 3a of the package 3 is inspected. ) And a coil spring 14 for resilient contact when the lower probe 13 is in contact with the contact pad 5a of the test board 5.
  • the size of the pogo pin for inspecting it needs to be very small. As the distance between the external terminals 3a of the semiconductor package is closer, the outer diameter of the pogo pin 6 should be reduced, and the length of the pogo pin 6 is minimized to minimize the electrical resistance between the semiconductor package and the test board. Should be.
  • the length of the pogo pin must also be manufactured to a size of about 0.95 mm.
  • the upper probe 12 And the maximum travel distance between the lower probe 13 and the lower probe 13 are advantageous.
  • the size of the pogo pin is small, for example, when the overall size of the pogo pin is limited to 0.95 mm or less, it is very difficult to increase the maximum moving distance with the conventional pogo pin structure.
  • the actual working space given to the springs is only about 0.6 mm.
  • the diameter of the material is 0.06 If you make a coil spring by winding only 10 times in mm, it takes up 0.6 mm of space just by the thickness of the material.
  • reducing the diameter of the coil entails problems such as insufficient spring force and electrical signal loss, and reducing the number of windings of the coil spring will not ensure sufficient travel distance within the elastic limit of the existing material.
  • the present invention aims to overcome the above problems and has the following object.
  • the following purposes are for illustration only, and are not limited to these.
  • an object of the present invention is to provide a foldable coil spring, a pogo pin using the same, and a method of manufacturing the same, which has a small size and ensures a sufficient spring force.
  • an object of the present invention is to provide a flat folding coil spring having a small size and low electrical resistance, a pogo pin using the same and a manufacturing method thereof.
  • the present invention manufactures a coil spring used for the pogo pin by continuously bending a plate of a predetermined strip shape, and all parts of the pogo pin including a flat plate coil coil spring It is configured and provided as an integral type formed by bending.
  • Flat folding coil spring is composed of a band-shaped metal plate member that is repeated 'U' or 'S' pattern pattern, the metal plate member is at least one bent in opposite directions to each other And at least one inward bending point and an outward bending point, wherein the inward bending point and the outward bending point are spaced apart from each other.
  • a coil spring manufacturing method for manufacturing a coil spring using a metal plate member i) 'U' type or 'S' type pattern is repeated
  • a first step of preparing a metal plate-shaped member of the shape ii) at least one or more inward bending points and outward bending points on the band-shaped metal plate-like member, which are bent in mutually opposite directions, wherein the inward and outward bending points are spaced apart from each other; And bending the second step.
  • the integrated pogo pin according to an aspect of the present invention is composed of a band-shaped metal plate member, wherein the metal plate member includes at least one or more inward bending points and outward bending points that are bent in opposite directions. And the inward bending point and the outward bending point are flatly foldable coil springs 601, characterized in that they are spaced apart from each other; A body 602 containing the flat plate coil coil spring; And an upper probe 604 that is elastically supported by the flat plate folding coil spring and is movable up and down with respect to the body 602.
  • the flat plate folding coil spring 601, the body 602 and the top probe are included. All of the 604 is formed integrally by the metal plate member.
  • a spring portion 501 made of a band-shaped metal plate material pattern is repeated repeatedly;
  • an upper probe portion 504 coupled to the other side of the spring portion 501, and the spring portion 501, the body portion 502, and the upper probe portion 504 are integrally manufactured.
  • the upper probe 604 is characterized in that it is elastically supported by the flat folding coil spring 601 and relatively movable with respect to the body 602.
  • Pogo pin is composed of a band-shaped metal plate member having at least one bending point, the bending point with respect to the first plane at a point on the first plane of the metal plate member Flat folding coil springs that are bent inward or outward; A first contact portion 607 which is elastically supported by the flat plate folding coil spring and movable in an up and down direction; A second contact point 603 which is elastically supported by the flat plate folding coil spring and movable in a vertical direction; And a protrusion 608 protruding laterally from the metal plate member of the plate folding coil spring to maintain a posture of the plate folding coil spring, wherein the plate folding coil spring, the first contact 607, and the The second contact 603 and the protrusion 608 are formed integrally by the metal plate member.
  • Flat folding coil spring according to the present invention can be manufactured in a small size compared to the conventional coil spring, it is possible to increase the width / height ratio of the cross section of the plate member forming the spring to ensure a sufficient probe travel distance and spring force even in a small size There is an effect that can be done.
  • the flat plate coil coil spring according to the present invention can increase the cross-sectional area of the coil has the effect of minimizing the electrical resistance of the coil spring.
  • the pogo pin including a flat plate fold coil spring according to the present invention is low manufacturing cost because all parts are formed by bending from one flat material, and even in a small pogo pin to obtain a sufficient maximum travel distance and probe contact force of the probe It works.
  • FIG. 2 is a cross-sectional view showing an example of a socket for semiconductor package inspection.
  • FIG. 4 is a plan view showing a strip-shaped plate member for use in a flat plate folding coil spring in an embodiment of the present invention
  • FIG. 5 illustrates an example of a flat plate folding coil spring 300 produced by a continuous bending operation
  • FIG. 6 is a view illustrating another example of a flat plate folding coil spring 300 produced by a continuous bending operation
  • FIG. 7 is a view illustrating another example of a flat plate folding coil spring 300 produced by a continuous bending operation
  • FIG. 8 shows an example of a plate material 500 for pogo pin manufacturing for manufacturing an integrated pogo pin including a flat plate coil coil spring
  • FIG. 9 is a view illustrating an integrated pogo pin 600 manufactured by using the plate material 500 for manufacturing the pogo pins of FIG. 6.
  • FIG. 10 shows an example of a plate material 500 for producing pogo pins further having a first protruding contact portion 505 and a second protruding contact portion 506.
  • FIG. 11 is a view illustrating an integrated pogo pin 600 manufactured by using the pogo pin manufacturing plate 500 having only the first protruding contact portion 505 in the pogo pin manufacturing plate member 800 of FIG. 8.
  • FIG. 12 illustrates the integrated pogo pin 600 manufactured by using the pogo pin manufacturing plate 500 having only the second protruding contact portion 506 in the pogo pin manufacturing plate member 800 of FIG. 8.
  • a coil spring is manufactured using the strip
  • a metal plate member having a cross section as shown on the left side of FIG. 3 is used.
  • the width of the metal plate member is referred to as 'W' and the height (or thickness) as 'H'
  • the cross-sectional area (W ⁇ H) must be greater than or equal to a predetermined value in order to have a sufficient spring force.
  • the height H must be made as small as possible, thereby increasing the width W.
  • 3 is a comparative example illustrating a situation of coiling operation using a band-shaped metal plate member. 3 is only an example for comparison, not a method used in the present invention.
  • Figure 4 is a plan view showing a strip-shaped plate member for use in the flat plate folding coil spring in one embodiment of the present invention.
  • Flat folding coil spring according to an embodiment of the present invention has a constant width as shown in Figure 4, the same pattern, for example, the band-like plate-shaped pattern is formed repeatedly of the 'S' or 'U' pattern Prepare the ash 200.
  • the prepared strip-shaped plate member 200 is formed by continuously bending at the inward bending point 210 and the outward bending point 220 so that the bending direction thereof is opposite to the previous bending direction.
  • the inward bending point 210 is a bending point bent inward with respect to the first plane of the metal plate member and the outward bending point 220 is a bending point bent outward with respect to the first plane.
  • the inward bending point 210 and the outward bending point 220 indicate the center point of the bend, and are specifically bent along the inward bending line 211 and the outward bending line 221.
  • the inward bending line 211 and the outward bending line 221 cross the plane of the plate member.
  • the bend may be bent completely flat, but in normal applications it will be bent to some degree R and bend angle.
  • the inward bending point 210 and the outward bending point 220 are formed to be spaced apart from each other.
  • the positions of the inward bending point 210 and the outward bending point 220 may be variously selected as necessary.
  • In the band-shaped plate member shown in the upper and middle of Figure 4 'V' type and 'U' type pattern is to be bent at the connection portion.
  • FIGS. 6 and 7 are views illustrating a flat plate folding coil spring 300 manufactured by a continuous bending operation.
  • 5 illustrates a coil spring where the end of the coil spring 300 ends on the same extension line as the outer diameter of the coil spring
  • FIGS. 6 and 7 show that the end of the coil spring 300 extends into the coil spring and then back. It illustrates a coil spring that is bent 90 degrees upwards or downwards.
  • the plate folding coil spring 300 produced by the continuous bending operation is possible because the plate-shaped material has a relatively large width / height ratio (W / H), the conventional coil spring of the same size Compared with the increase in the maximum travel distance of the probe, it is possible to obtain a high spring force according to the improvement of the mechanical strength by the sufficient width (W).
  • the plate-shaped material is required to have a predetermined elongation in the bending step, it should be a material that can easily increase the elasticity and strength by heat treatment.
  • a beryllium copper alloy is preferred as a material meeting these conditions.
  • the beryllium copper 25 alloy ASTM C17200 is suitable, but other materials satisfying mechanical and electrical requirements may be used. will be.
  • Plating and heat treatment can be optionally added before and after the bending process.
  • materials with low electrical resistance such as gold, can be used, and annealing, air cooling, quenching and tempering can be used. Heat treatment such as tempering may be used as necessary.
  • the conventional pogo pin structure in order to manufacture the pogo pin by applying the coil spring according to the present invention.
  • the conventional pogo pin is manufactured by combining a plurality of components, the size of the small pogo pin is a very difficult manufacturing process and expensive manufacturing cost.
  • a plate fold coil spring to manufacture a component of the pogo pin from a single plate material discloses a configuration that increases the manufacturing cost and mechanical and electrical reliability.
  • FIG. 8 is a view illustrating an example of a plate material 500 for manufacturing pogo pins for manufacturing an integrated pogo pin including a flat plate coil coil spring
  • FIG. 9 uses the plate material 500 for manufacturing pogo pins of FIG. 8. It is a view showing an integrated pogo pin 600 manufactured by.
  • the plate material 500 for pogo pin manufacturing includes a spring portion 501, a body portion 502, a lower probe portion 503, and an upper probe portion 504 as one plate.
  • the spring portion 501 is alternately bent at a plurality of bending points to form a flat folding coil spring 601, and the upper probe portion 504 is bent in a cylindrical shape or a square shape to make contact with the subject.
  • the upper probe 604, the body portion 502 and the lower probe portion 503 is bent to form the body 602 and the lower probe 603.
  • a spring portion 501 made of a band-shaped metal plate material in which the same pattern, for example, a 'V' type, a 'U' type or an 'S' type pattern is repeatedly connected; A body portion 502 coupled to one side of the spring portion 501; And an upper probe part 504 coupled to the other side of the spring part 501; And a lower probe part 503 coupled to the body part 502, wherein the spring part 501, the body part 502, the upper probe part 504, and the lower probe part 503 are integrally formed.
  • the prepared plate material 500 for pogo pin is prepared.
  • the inward bending point and the outward bending point are bent to be spaced apart from each other by folding a flat coil spring ( 601).
  • the inward bending point is a bending point bent inwardly with respect to the first plane of the flat plate and the outward bending point is a bending point bent outward with respect to the first plane.
  • the upper probe portion 504 is bent into a cylindrical or square to form an upper probe 604, the body portion 502 is bent into a cylinder to form a body 602, the lower probe portion 503 It is bent to form the lower probe 603.
  • the order of bending the spring portion 501, the upper probe portion 504, the body portion 502 and the lower probe portion 503 is not important.
  • the lower probe portion 503 may be bent before or after the body portion 502 is bent.
  • the upper probe 604 and the lower probe 605 may exchange roles with each other.
  • the upper probe 604 is elastically supported by the flat plate folding coil spring 601 and is movable up and down relative to the body 602.
  • the lower probe 605 is elastically supported by the flat plate folding coil spring 601 and is movable up and down relative to the body 602.
  • the body portion 502 and the body 602 has been described above, the body portion 502 and the body 602 may be omitted.
  • a continuous stamping method is preferably applied.
  • the pogo pin 600 manufactured in this manner allows the upper probe 604 to elastically contact the subject such as the semiconductor lead while the upper probe 604 moves freely up and down by the elastic force of the foldable coil spring 601 inside the body 602. do.
  • FIG. 10 is a diagram illustrating an example of a plate material 500 for manufacturing a pogo pin further having a first protruding contact portion 505 and a second protruding contact portion 506.
  • the pogo pin manufacturing plate 500 includes a spring portion 501, a body portion 502, a lower probe portion 503, and an upper probe portion 504. It is the same as the flat plate material for manufacturing. However, the pogo pin manufacturing plate 500 of FIG. 10 further includes a first protruding contact portion 505 and a second protruding contact portion 506.
  • the first protruding contact portion 505 is coupled to the upper probe portion 504, and the second protruding contact portion 506 is coupled to the body portion 502. 10 illustrates that both the first protruding contact portion 505 and the second protruding contact portion 506 are present, but there may be optionally only one.
  • FIG. 11 is a view illustrating an integrated pogo pin 600 manufactured by using the pogo pin manufacturing plate 500 having only the first protruding contact portion 505 in the pogo pin manufacturing plate member 800 of FIG. 10. .
  • FIG. 12 is a view illustrating an integrated pogo pin 600 manufactured by using the pogo pin manufacturing plate 500 having only the second protruding contact portion 506 in the pogo pin manufacturing plate member 800 of FIG. 10. .
  • the first protruding contact portion 505 When the first protruding contact portion 505 is formed in the upper probe portion 504, the first protruding contact portion 505 is bent in the outer diameter direction of the upper probe 604 as shown in FIG.
  • the first protruding contact 605 is formed to contact the inner side of the second protruding contact 605, and when the second protruding contact part 505 is formed in the body part 502, the second protruding contact part is as shown in FIG. 9B.
  • the second protruding contact 605 is bent to be bent in the inner diameter direction of the c) to be in contact with the upper probe 604 moving up and down in the body 602.
  • the first protruding contact 605 and the second protruding contact 606 shorten the electric signal movement path in the pogo pin and increase the cross-sectional area of the electric path, thereby reducing the attenuation of the electric signal.
  • the lower probe portion 503 may not be formed in the body portion 502.
  • the material for manufacturing the integral pogo pin including a flat plate coil coil spring requires a certain stretchability in the bending processing step, it should be easy to increase the elasticity and strength by heat treatment.
  • beryllium copper 25 alloy ASTM C17200 is suitable, but other materials satisfying mechanical and electrical requirements may be used. .
  • Plating and heat treatment can be optionally added before and after the bending process.
  • Low plating resistance materials such as gold are used as the plating material.
  • Annealing, normalizing, quenching and tempering heat treatment such as tempering may be used as necessary.
  • FIG. 13 is a view showing the structure of a pogo pin with a protrusion.
  • the spring portion is basically the same as the flat plate folding coil spring described above.
  • the flat plate coil coil spring consists of a strip-shaped metal plate member having at least one bending point, the bending point inward or outward with respect to the first plane at a point on the first plane of the metal plate member. Is bent in the direction.
  • the first contact 607 is elastically supported by a flat plate coil coil spring and is movable in the vertical direction.
  • the first contact 607 may be a circular plane, but may also be a rectangular plane, a crown shape, or the like.
  • the second contact 603 is movable in the vertical direction while being elastically supported by the flat plate folding coil spring, but in the form of a crown in FIG. 13, various shapes such as a circular plane and an angular plane are possible.
  • the pogo pin includes a projection 608, which protrudes laterally from the metal plate member of the plate folding coil spring to maintain the posture of the plate folding coil spring.
  • the shape of the protrusions may vary and may be any shape that can protrude from the metal plate. If the pogo pin 700 is located in another structure, the posture may change, such as the pogo pin 700 is undesirably rotated or tilted.
  • the protrusion 608 may be used to prevent the posture from being changed by being mounted on another structure.
  • the flat plate coil coil, the first contact 607, the second contact 603 and the protrusion 608 are integrally formed by the metal plate member.
  • Flat foldable coil spring and integrated pogo pin according to the present invention can be manufactured in a smaller size than the conventional coil spring and pogo pin, there is an advantage that the manufacturing cost is low because the continuous stamping method can be applied. In addition, there is an advantage that can ensure a sufficient probe moving distance and the spring force even in a small size.
  • Pogo pins manufactured by this method are used for inspection devices such as semiconductor wafers, LCD modules and semiconductor packages, various sockets, battery connections of mobile phones, computer CPU connections, semiconductor DC testers, semiconductor burn-in testers, and commercial It can be widely used for precision connector.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Leads Or Probes (AREA)
  • Springs (AREA)

Abstract

본 발명은 평판 접이식 코일 스프링, 평판 접이식 코일 스프링을 갖는 일체형 포고 핀 및 이들의 제조방법에 관한 것이다. 본 발명의 평판 접이식 코일 스프링 제조 방법은, i) 'U'형 또는 'S'형 패턴이 반복적으로 이어진 띠형상 금속 판형재(200)를 준비하는 단계; ii) 상기 띠형상 금속 판형재 상에 있는 적어도 1개 이상의 안쪽 방향 절곡점(210) 및 바깥쪽 방향 절곡점(220)에서 상호 반대되는 방향으로 절곡하되 상기 안쪽 방향 절곡점(210) 및 상기 바깥쪽 방향 절곡점(220)은 상호 이격되도록 절곡하는 단계를 포함한다. 본 발명에 따르면, 종래의 코일 스프링 및 포고핀에 비하여 소형으로 제조 가능하며, 제조 단가가 저렴하면서도 탐침의 충분한 최대 이동 거리 및 스프링력을 갖게 되는 장점이 있다.

Description

평판 접이식 코일스프링, 이를 이용한 포고핀 및 그 제조방법
본 발명은 소정의 반복되는 패턴을 갖는 띠형상의 판형재를 연속적으로 절곡하여 제조되는 극소형의 코일 스프링, 이 코일 스프링을 채용하여 일체형으로 형성되는 포고 핀(Pogo Pin) 및 이들의 제조방법에 관한 것이다.
포고핀(Pogo Pin)은 반도체 웨이퍼, LCD 모듈 및 반도체 패키지 등의 검사 장치, 각 종 소켓, 핸드폰의 배터리 연결부 등에 널리 쓰이는 부품이다.
도 1은 종래 포고핀(6)의 일 예를 도시한 도면이다.
도 1에서 보는 바와 같이 원통형의 핀 몸체(11) 내에 코일 스프링(14)이 삽입되고, 코일 스프링의 양단에 상부 탐침(12) 및 하부 탐침(13)이 자리잡고 있다.
도 2는 반도체 패키지 검사용 소켓의 일 예를 보인 단면도로서, 반도체 패키지의 외부단자와 PCB상의 금속배선 사이를 연결하는 수단으로 포고핀을 사용한 예를 보여주고 있다.
도면을 참조하면, 종래의 반도체 패키지 검사용 소켓(20)은, 피테스트 소자(반도체 패키지)(3)의 외부단자(3a)와 테스트 보드(5)의 컨택트 패드(5a)를 전기적으로 연결하는 역할을 하는 포고핀(6)들과, 이 포고핀들이 일정한 간격으로 배열되도록 하며 포고핀들을 변형이나 외부의 물리적인 충격으로부터 보호하기 위하여 포고핀들을 지지하는 절연성의 본체(1)로 구성된다.
포고핀(6)은, 관형의 핀 몸체(11)과; 핀 몸체(11)의 상측에 결합되어 패키지(3)의 외부단자(3a)에 접촉되는 금속체로 된 상부 탐침(12)과; 상기 핀 몸체(11)의 하측에 결합되어 테스트 보드(5)의 컨택트 패드(5a)에 접촉되는 금속체로된 하부 탐침(13)과; 상기 상부 탐침(12)에 상단부가 접촉되고 하부 탐침(13)에 하단부가 접촉되도록 상기 핀 몸체(11)의 내부에 배치되어, 검사시 상부 탐침(12)이 패키지(3)의 외부단자(3a)에 접촉되고 하부 탐침(13)이 테스트 보드(5)의 컨택트 패드(5a)에 접촉될 때 탄력적으로 접촉될 수 있도록 하기 위한 코일 스프링(14)으로 구성되어 있다.
그런데, 반도체 패키지의 소형화, 집적화 및 고성능화가 진행됨에 따라 이를 검사하기 위한 포고핀의 크기도 매우 작아져야 할 필요가 있다. 반도체 패키지의 외부단자(3a)들 사이의 거리가 가까워지는 만큼 포고핀(6)의 외경이 작아져야 하며, 반도체 패키지와 테스트 보드 사이의 전기 저항을 최소화하기 위해서는 포고핀(6)의 길이가 최소화되어야 한다.
예를 들어, 반도체 패키지(3)로부터 테스트 보드(5) 사이의 거리를 0.95 mm 이하로 줄이고자 한다면, 이에 따라 포고핀의 길이도 0.95 mm 정도의 사이즈로 제조되어야만 한다.
한편, 반도체 패키지(3)의 외부단자(3a)와 상부 탐침(13) 사이의 전기적 접촉과, 컨택트 패드(5a)와 하부 탐침(13)의 전기적 접촉을 확실하게 보장하기 위해서는, 상부 탐침(12) 및 하부 탐침(13) 사이의 최대 이동 거리가 큰 것이 유리하다. 그런데, 포고 핀의 전체적인 크기가 예를 들어 0.95mm 이하로 제한되는 경우와 같이 그 크기가 소형인 경우에는 종래의 포고핀 구조로 최대 이동 거리를 크게 하는 것이 대단히 어렵다.
예를 들어, 길이가 0.95 mm인 포고핀의 경우, 상·하부 탐침부의 길이를 고려하면 실제로 스프링부에 주어지는 동작 공간은 0.6 mm 정도에 지나지 않는데, 종래의 코일 스프링을 사용할 경우 소재의 직경이 0.06 mm이라면 10회 정도만 감아서 코일 스프링을 만들어도 소재의 굵기만으로도 0.6 mm 공간을 전부 차지해 버리게 된다. 한편 코일의 직경을 줄이게 되면 불충분한 스프링력, 전기적 신호 손실등의 문제가 수반되고 코일 스프링의 감는 횟수를 줄이게 되면 기존 소재의 탄성한도 범위 내에서 요구되는 이동거리를 충분히 확보할 수 없게 된다.
본 발명은 상기한 문제점들을 극복하기 위한 것으로서 하기의 목적을 가진다. 하기의 목적들은 예시를 위한 것이며, 이들에 국한되는 것은 당연히 아니다.
본 발명은 소형의 크기를 가지면서도 탐침의 충분한 최대 이동 거리를 보장하는 평판 접이식 코일 스프링, 이를 이용한 포고핀 및 이들의 제조방법을 제공하는데 그 목적이 있다.
또한, 본 발명은 소형의 크기를 가지면서도 충분한 스프링력를 보장하는 평판 접이식 코일 스프링, 이를 이용한 포고핀 및 이들의 제조방법을 제공하는데 그 목적이 있다.
또한, 본 발명은 소형의 크기를 가지면서도 낮은 전기 저항을 가지는 평판 접이식 코일 스프링, 이를 이용한 포고핀 및 이들의 제조방법을 제공하는데 그 목적이 있다.
상기와 같은 목적을 달성하기 위하여 본 발명은 포고핀에 사용되는 코일 스프링을 소정의 띠형태의 판재를 연속적으로 절곡하여 제조하고, 평판 접이식 코일스프링을 포함하는 포고핀을 모든 부품이 하나의 평판재의 절곡에 의해 형성되는 일체형으로 구성하여 제공한다.
본 발명의 일 양상에 따른 평판 접이식 코일 스프링은, 'U'형 또는 'S'형 패턴이 반복적으로 이어진 띠형상의 금속 판형재로 구성되며, 상기 금속 판형재는 상호 반대되는 방향으로 절곡되어진 적어도 1개이상의 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점을 포함하되, 상기 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점은 상호 이격되어 있는 것을 특징으로 한다.
본 발명의 일 양상에 따른 평판 접이식 코일 스프링 제조방법은, 금속 판형재를 이용하여 코일 스프링을 제조하는 코일 스프링의 제조 방법으로서, i) 'U'형 또는 'S'형 패턴이 반복적으로 이어진 띠형상의 금속 판형재를 준비하는 제 1 단계; ii) 상기 띠형상의 금속 판형재 상에 있는 적어도 1개이상의 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점에서 상호 반대되는 방향으로 절곡하되, 상기 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점은 상호 이격되도록 하여 절곡하는 제 2 단계;를 포함하는 것을 특징으로 한다.
본 발명의 일 양상에 따른 일체형 포고핀은, 띠형상의 금속 판형재로 구성되며, 상기 금속 판형재는 상호 반대되는 방향으로 절곡되어진 적어도 1개 이상의 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점을 포함하되, 상기 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점은 상호 이격되어 있는 것을 특징으로 하는 평판 접이식 코일 스프링(601); 상기 평판 접이식 코일 스프링을 내장하는 몸통(602); 상기 평판 접이식 코일 스프링에 의해 탄성적으로 지지되면서 상기 몸통(602)에 대하여 상하 방향으로 이동 가능한 상부탐침(604);을 포함하며, 상기 평판 접이식 코일 스프링(601), 몸통(602) 및 상부탐침(604)은 모두 상기 금속 판형재에 의해 일체로 형성된 것을 특징으로 한다.
본 발명의 일 양상에 따른 일체형 포고핀의 제조방법은, i) 패턴이 반복적으로 이어진 띠형상의 금속 판형재로 된 스프링부(501); 상기 스프링부(501)의 일측에 결합되는 몸통부(502); 및 상기 스프링부(501)의 타측에 결합되는 상부탐침부(504)를 포함하며, 상기 스프링부(501), 상기 몸통부(502) 및 상기 상부탐침부(504)가 일체로 된 포고핀 제조용 평판재(500)를 준비하는 제 1 단계; ii) 상기 스프링부(501)에 위치하는 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점에서 상호 반대되는 방향으로 절곡하되, 상기 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점은 상호 이격되게 절곡하여 평판 접이식 코일 스프링(601)을 형성하는 제 2 단계; iii) 상기 상부탐침부(504)를 원통형으로 절곡하여 상부탐침(604)를 형성하는 제 3 단계;를 포함하며, 상기 몸통부(502)를 원통형으로 절곡하여 몸통(602)를 형성하되, 상기 상부탐침(604)은 상기 평판 접이식 코일 스프링(601)에 의해 탄성적으로 지지되고 상기 몸통(602)에 대하여 상대적으로 이동 가능한 것을 특징으로 한다.
본 발명의 일 양상에 따른 포고핀은, 적어도 1개 이상의 절곡점을 가진 띠 형상의 금속 판형재로 구성되며, 상기 절곡점은 상기 금속판형재의 제 1 평면상에 있는 지점에서 제 1 평면에 대하여 안쪽 방향 또는 바깥쪽 방향으로 절곡된 것인 평판 접이식 코일 스프링; 상기 평판 접이식 코일 스프링에 의해 탄성적으로 지지 되면서 상하 방향으로 이동 가능한 제 1 접점(607); 상기 평판 접이식 코일 스프링에 의해 탄성적으로 지지 되면서 상하 방향으로 이동 가능한 제 2 접점(603); 상기 평판 접이식 코일 스프링의 상기 금속 판형재에서 측면으로 돌출되어 상기 평판 접이식 코일 스프링의 자세를 유지할 수 있도록 하는 돌출물(608)을 포함하며, 상기 평판 접이식 코일 스프링, 상기 제 1 접점(607), 상기 제 2 접점(603) 및 상기 돌출물(608)은 상기 금속 판형재에 의해 일체로 형성된 것을 특징으로 한다.
본 발명에 의한 평판 접이식 코일 스프링은 종래의 코일 스프링에 비하여 소형으로 제조 가능하며, 스프링을 이루는 평판재 단면의 폭/높이 비를 높게 할 수 있어 소형의 크기에도 충분한 탐침 이동 거리 및 스프링력을 확보할 수 있게 되는 효과가 있다.
또한, 본 발명에 의한 평판 접이식 코일 스프링은, 코일의 단면적을 크게 할 수 있으므로 코일 스프링의 전기 저항을 최소화할 수 있는 효과가 있다.
또한, 본 발명에 의한 평판 접이식 코일 스프링을 포함하는 포고핀은 모든 부품이 하나의 평판재로부터 절곡되어 형성되므로 제조 비용이 저렴하며, 소형의 포고핀에서도 탐침의 충분한 최대 이동 거리 및 탐침 접촉력을 얻는 효과가 있다.
도 1 : 종래 포고핀(6)의 일 예를 도시한 도면
도 2 : 반도체 패키지 검사용 소켓의 일 예를 보인 단면도
도 3 : 띠형상의 금속 판형재를 이용하여 코일링 작업하는 상황을 예시한 비교예
도 4 : 본 발명의 일 실시예에서 평판 접이식 코일 스프링에 사용되기 위한 띠형상의 판형재를 도시한 평면도
도 5 : 연속 절곡작업에 의해 제조된 평판 접이식 코일 스프링(300)의 일례를 예시한 도면
도 6 : 연속 절곡작업에 의해 제조된 평판 접이식 코일 스프링(300)의 다른 일례를 예시한 도면
도 7 : 연속 절곡작업에 의해 제조된 평판 접이식 코일 스프링(300)의 또 다른 일례를 예시한 도면
도 8 : 평판 접이식 코일 스프링을 포함하는 일체형 포고핀을 제조하기 위한 포고핀 제조용 평판재(500)의 일 예를 도시한 도면
도 9 : 도 6의 포고핀 제조용 평판재(500)를 이용하여 제조된 일체형 포고핀(600)를 도시한 도면
도 10 : 제 1 돌출 접접부(505) 및 제 2 돌출 접접부(506)를 더 가진 포고핀 제조용 평판재(500)의 일 예를 도시한 도면
도 11 : 도 8의 포고핀 제조용 평판재(800)에서 제 1 돌출접점부(505)만 더 있는 포고핀 제조용 평판재(500)를 이용하여 제조된 일체형 포고핀(600)를 도시한 도면
도 12 : 도 8의 포고핀 제조용 평판재(800)에서 제 2 돌출접점부(506)만 더 있는 포고핀 제조용 평판재(500)를 이용하여 제조된 일체형 포고핀(600)를 도시한 도면
도 13 : 돌출물을 가진 포고핀의 구조를 도시한 도면
도면의 주요부분에 대한 설명
6 : 포고핀
12, 13 : 탐침
3 : 반도체 패키지
3a : 외부 단자
200 : 띠형의 평판재
210 : 안쪽 방향 절곡점
220 : 바깥쪽 방향 절곡점
300 : 평판 접이식 코일 스프링
500: 포고핀 제조용 평판재
501 : 스프링부
502: 몸통부
503 : 하부탐침부
504 : 상부탐침부
505, 506 : 돌출접점부
600 : 일체형 포고핀
601 : 접이식 스프링
602: 몸통
603 : 하부탐침
604 : 상부탐침
605, 606 : 돌출접점
608 : 돌출물
이하, 본 발명의 바람직한 실시예를 첨부한 도면에 의거하여 보다 상세하게 설명한다. 본 발명의 권리범위는 아래의 실시예에 한정되는 것은 아니며, 본 발명의 기술적 요지를 벗어나지 않는 범위 내에서 당해 기술분야에서 통상적인 지식을 가진 자에 의해 다양하게 변형 실시될 수 있다.
1. 평판 접이식 코일 스프링 및 그 제조 방법
본 발명에서는 띠형상의 금속 판형재를 사용하여 코일 스프링을 제조한다. 예를 들면 도 3의 좌측에 도시된 바와 같은 단면을 가진 금속 판형재를 사용한다.
이러한 금속 판형재의 폭을 'W'라 하고 높이(또는 두께)를 'H'라 할 때, 코일 스프링이 충분한 스프링력을 갖기 위해서는 그 단면적(W×H)이 일정 값이상이어야 한다. 예를 들어 포고핀의 전체 길이를 작게하기 위해서는 높이(H)를 가능한 작게 해야하므로 폭(W)을 크게 할 수밖에 없다.
도 3은 띠형상의 금속 판형재를 이용하여 코일링 작업하는 상황을 예시한 비교예이다. 도 3은 본 발명에서 사용하는 방법이 아니라 비교를 위한 예시에 불과한 점에 유의해야 한다.
도 3에 도시된 바와 같이 일정 값 이상의 폭/높이 비율(W/H)을 가진 금속 판형재를 사용하여 코일링하게 되면, 그 구조적 불안정성에 의해 코일링 작업 자체가 매우 어렵다. 코일링 작업 중 금속 판형재가 옆으로 쓰러지는 현상이 일어날 가능성이 높게 된다. 따라서 본 발명에서는 새로운 방식으로 코일링하는 것을 제안한다.
도 4는 본 발명의 일 실시예에서 평판 접이식 코일 스프링에 사용되기 위한 띠형상의 판형재를 도시한 평면도이다.
본 발명의 일 실시예에 의한 평판 접이식 코일 스프링은 도4에서 보는 바와 같이 일정한 폭을 가지고, 동일한 패턴, 예를 들면, 'S'형 또는 'U'형의 패턴이 반복적으로 형성된 띠형상의 판형재(200)를 준비한다. 준비된 띠형상의 판형재(200)를 그 절곡 방향을 이전 절곡 방향과 반대가 되도록, 연속적으로 안쪽 방향 절곡점(210) 및 바깥쪽 방향 절곡점(220)에서 절곡하여 형성한다. 상기 안쪽 방향 절곡점(210)은 상기 금속 판형재의 제 1 평면에 대하여 안쪽 방향으로 절곡된 절곡점이고 상기 바깥쪽 방향 절곡점(220)은 상기 제 1 평면에 대하여 바깥쪽 방향으로 절곡된 절곡점이며, 안쪽 방향 절곡점(210) 및 바깥쪽 방향 절곡점(220)은 절곡의 중심점을 나타내며, 상세하게는 안쪽 방향 절곡선(211) 및 바깥쪽 방향 절곡선(221)을 따라 절곡된다. 안쪽 방향 절곡선(211) 및 바깥쪽 방향 절곡선(221)은 상기 판형재의 평면을 가로지른다. 절곡은 완전히 납짝하게 절곡될 수도 있지만, 통상의 응용에서는 어느 정도의 R과 절곡각을 갖고서 절곡될 것이다.
안쪽 방향 절곡점(210) 및 바깥쪽 방향 절곡점(220)은 상호 이격되어 형성된다. 상기 안쪽 방향 절곡점(210) 및 바깥쪽 방향 절곡점(220)의 위치는 필요에 따라 다양하게 선택될 수 있다. 도 4 상단 및 중간에 도시된 띠형 판형재에서는 'V'형 및 'U'형 패턴이 접속되는 부분에서 절곡되게 하였다.
도 5, 도 6 및 도 7는 연속 절곡작업에 의해 제조된 평판 접이식 코일 스프링(300)을 예시한 도면이다. 도 5는 코일 스프링(300)의 말단이 코일 스프링의 외경과 같은 연장선상에서 끝나는 코일 스프링을 예시하고 있으며, 도 6 및 도 7는 코일 스프링(300)의 말단이 코일 스프링의 내측으로 연장된 다음 다시 상방 또는 하방으로 90도 절곡된 코일 스프링을 예시하고 있다.
본 발명의 일 실시예에 따라, 연속 절곡작업에 의해 제조된 평판 접이식 코일 스프링(300)은 판형재가 상대적으로 큰 폭/높이 비율(W/H)을 갖는 것이 가능하므로, 동일한 크기의 종래 코일 스프링에 비하여 탐침의 최대 이동 거리가 상대적으로 크게 되면서도, 충분한 폭(W)에 의한 기계적 강도의 향상에 따라 높은 스프링력을 얻는 것이 가능하게 된다.
한편, 연속 절곡 작업은 연속 스템핑(Progressive Stamping) 공법을 적용하는 것이 바람직하다. 그리고 판형재는, 절곡 단계에서 소정의 연신성이 요구되며, 이후 열처리에 의해 탄성 및 강도를 용이하게 높일 수 있는 소재이어야 한다. 또한 전기적 저항이 작은 게 유리한데, 이러한 조건에 부합되는 재료로는 베릴륨 동 합금이 선호되며, 특히 베릴륨 동 25 합금인 ASTM C17200이 적합하나, 기계적, 전기적 요구조건을 만족시키는 다른 재료도 사용될 수 있을 것이다.
절곡 공정 전·후에 선택적으로 도금 및 열처리 공정을 추가할 수 있는데, 도금 재료로는 금과 같이 전기 저항이 낮은 재료가 사용될 수 있으며, 소둔(annealing), 공랭(normalizing), 급랭(quenching), 뜨임(tempering) 등의 열처리가 필요에 따라 사용될 수 있다.
2. 평판 접이식 코일 스프링을 이용한 포고 핀 및 그 제조 방법
본 발명에 따른 코일스프링을 적용하여 포고핀을 제조하기 위하여 종래의 포고핀 구조를 적용하는 것이 가능하다. 그러나 종래의 포고핀은 다수 부품의 결합에 의해 제조되는 것으로서 소형인 포고핀의 크기에 의해 그 제조 공정이 상당히 난이하고 고가의 제조비용이 들어가게 된다.
본 발명의 일 실시예에서는 평판 접이식 코일 스프링을 이용하여 포고핀의 구성요소를 일체의 평판재로부터 제조하여 제조 단가 및 기계적, 전기적 신뢰성을 높이는 구성을 개시한다.
도 8은 평판 접이식 코일 스프링을 포함하는 일체형 포고핀을 제조하기 위한 포고핀 제조용 평판재(500)의 일 예를 도시한 도면이며, 도 9은 도 8의 포고핀 제조용 평판재(500)를 이용하여 제조된 일체형 포고핀(600)를 도시한 도면이다.
포고핀 제조용 평판재(500)는 스프링부(501), 몸통부(502), 하부탐침부(503) 및 상부탐침부(504)가 하나의 판재로 형성된다.
스프링부(501)는 앞에서 설명한 것과 같이 다수의 절곡점에서 교번적으로 절곡되어 평판 접이식 코일스프링(601)으로 되며, 상부탐침부(504)는 원통형 또는 각형으로 절곡되어 피검체와의 접촉을 위한 상부탐침(604)으로 되고, 몸통부(502) 및 하부탐침부(503)는 절곡되어 몸통(602) 및 하부탐침(603)을 형성하게 된다.
동일한 패턴, 예를 들면, 'V'형, 'U'형 또는 'S'형 패턴이 반복적으로 이어진 띠형상의 금속 판형재로 된 스프링부(501); 상기 스프링부(501)의 일측에 결합되는 몸통부(502); 및 상기 스프링부(501)의 타측에 결합되는 상부탐침부(504); 상기 몸통부(502)에 결합된 하부탐침부(503)를 포함하며, 상기 스프링부(501), 상기 몸통부(502), 상기 상부탐침부(504) 및 하부탐침부(503)가 일체로 된 포고핀 제조용 평판재(500)를 준비한다.
상기 스프링부(501)에 위치하는 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점에서 상호 반대되는 방향으로 절곡하되, 상기 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점은 상호 이격되게 절곡하여 평판 접이식 코일 스프링(601)을 형성한다. 상기 안쪽 방향 절곡점은 상기 평판재의 제 1 평면에 대하여 안쪽 방향으로 절곡된 절곡점이고 상기 바깥쪽 방향 절곡점은 상기 제 1 평면에 대하여 바깥쪽 방향으로 절곡된 절곡점이다. 상기 상부탐침부(504)를 원통형 또는 각형으로 절곡하여 상부탐침(604)를 형성하며, 상기 몸통부(502)를 원통형으로 절곡하여 몸통(602)를 형성하며, 상기 하부탐침부(503)를 절곡하여 하부탐침(603)을 형성한다. 상기 스프링부(501), 상부탐침부(504), 몸통부(502) 및 하부탐침부(503)를 절곡하는 순서는 중요하지 않다. 예를 들어, 상기 하부탐침부(503)는 상기 몸통부(502)가 절곡되기 전 또는 절곡된 후에 절곡될 수 있다. 적용 환경에 따라 상부탐침(604)과 하부탐침(605)은 서로 역할을 바꿀수도 있다.
상기 상부탐침(604)은 상기 평판 접이식 코일 스프링(601)에 의해 탄성적으로 지지되고 상기 몸통(602)에 대하여 상대적으로 상하 이동 가능하다.
상기 하부탐침(605)은 상기 평판 접이식 코일 스프링(601)에 의해 탄성적으로 지지되고 상기 몸통(602)에 대하여 상대적으로 상하 이동 가능하다.
한편, 상기에서는 몸통부(502) 및 몸통(602)이 있는 것을 설명하였으나, 몸통부(502) 및 몸통(602)는 생략될 수 있다.
스프링부(501), 몸통부(502), 하부탐침부(504) 및 상부탐침부(504)를 절곡하기 위해서는 연속 스템핑(Progressive Stamping) 공법이 적용되는 것이 바람직하다.
이러한 방법으로 제조된 포고핀(600)은 상부탐침(604)이 몸통(602) 내부에서 접이식 코일 스프링(601)의 탄성력에 의해 상하로 자유롭게 이동하면서 반도체 리드와 같은 피검체와 탄성적으로 접촉하게 된다.
도 10은 제 1 돌출 접접부(505) 및 제 2 돌출 접접부(506)를 더 가진 포고핀 제조용 평판재(500)의 일 예를 도시한 도면이다.
도 10에서도 포고핀 제조용 평판재(500)가 스프링부(501), 몸통부(502), 하부탐침부(503) 및 상부탐침부(504)를 구비하고 있는 점은 도 8에 도시된 포고핀 제조용 평판재와 동일하다. 다만 도 10의 포고핀 제조용 평판재(500)는 제 1 돌출 접점부(505) 및 제 2 돌출 접접부(506)를 더 가진다.
도 10에서 보는 바와 같이, 제 1 돌출 접점부(505)는 상부 탐침부(504)에 결합되며, 제 2 돌출 접점부(506)은 몸통부(502)에 결합된다. 도 10에는 제 1 돌출 접점부(505) 및 제 2 돌출 접점부(506)가 모두 있는 것을 도시하고 있으나, 선택적으로 하나만 있을 수 있다.
도 11는 도 10의 포고핀 제조용 평판재(800)에서 제 1 돌출접점부(505)만 더 있는 포고핀 제조용 평판재(500)를 이용하여 제조된 일체형 포고핀(600)를 도시한 도면이다.
도 12는 도 10의 포고핀 제조용 평판재(800)에서 제 2 돌출접점부(506)만 더 있는 포고핀 제조용 평판재(500)를 이용하여 제조된 일체형 포고핀(600)를 도시한 도면이다.
제 1 돌출접점부(505)가 상부탐침부(504)에 형성되는 경우에는 제 1 돌출접점부(505)는 도9a에서 보는 바와 같이 상부탐침(604)의 외경 방향으로 절곡되어 몸통(602)의 내측과 접촉되도록 제 1 돌출접점(605)을 형성하게 되며, 제 2 돌출접점부(505)가 몸통부(502)에 형성되는 경우에는 제 2 돌출접점부는 도9b에서 보는 바와 같이 몸통(602)의 내경 방향으로 절곡되어 몸통(602)의 내측에서 상하 이동하는 상부탐침(604)과 접촉되도록 제 2 돌출접점(605)을 형성하게 된다.
상기 제 1 돌출접점(605) 및 제 2 돌출접점(606)은 포고핀 내에서의 전기 신호 이동경로를 단축시키고, 전기적 경로의 단면적을 증가시켜 전기 신호의 감쇄를 줄이게 되는 효과가 있다.
한편, 일체형 포고핀에 있어서 하부탐침(603)이 필요하지 않은 경우 하부탐침부(503)는 몸통부(502)에 형성하지 아니할 수도 있다.
평판 접이식 코일 스프링을 포함하는 일체형 포고핀을 제조하기 위한 소재는 절곡 가공 단계에서 소정의 연신성이 요구되며, 열처리에 의해 탄성 및 강도를 높이는 것이 용이하여야 한다. 또한 전기적 저항이 작은 것이 유리한데, 이러한 조건에 부합되는 재료로는 베릴륨 동 합금이 선호되며, 특히 베릴륨 동 25 합금인 ASTM C17200 이 적합하나, 기계적, 전기적 요구조건을 만족시키는 다른 재료도 사용될 수 있다.
절곡 공정 전·후에 선택적으로 도금 및 열처리 공정을 추가할 수 있는데, 도금 재료로는 금과 같은 전기 저항이 낮은 재료가 사용되며, 소둔(annealing), 공랭(normalizing), 급랭(quenching), 뜨임(tempering) 등의 열처리가 필요에 따라 사용될 수 있다.
3. 돌출물을 가진 포고 핀
도 13은 돌출물을 가진 포고핀의 구조를 도시한 도면이다.
스프링부는 기본적으로 상기에서 설명된 평판 접이식 코일 스프링과 동일하다. 평판 접이식 코일 스프링은, 적어도 1개 이상의 절곡점을 가진 띠 형상의 금속 판형재로 구성되며, 상기 절곡점은 상기 금속판형재의 제 1 평면상에 있는 지점에서 제 1 평면에 대하여 안쪽 방향 또는 바깥쪽 방향으로 절곡된다.
제 1 접점(607)은 평판 접이식 코일 스프링에 의해 탄성적으로 지지 되면서 상하 방향으로 이동 가능하며, 도 13에서는 원형의 평면으로 되어있으나 각형의 평면, 크라운 형태 등일 수도 있으며, 다양한 형태가 가능하다.
제 2 접점(603)은 상기 평판 접이식 코일 스프링에 의해 탄성적으로 지지 되면서 상하 방향으로 이동 가능하며, 도 13에서는 크라운 형태로 되어 있으나, 원형의 평면, 각형의 평면 등 다양한 형태가 가능하다.
그리고 포고핀은, 특징적으로 평판 접이식 코일 스프링의 금속 판형재에서 측면으로 돌출되어 상기 평판 접이식 코일 스프링의 자세를 유지할 수 있도록 하는 돌출물(608)을 포함한다. 돌출물의 모양은 다양할 수 있으며 금속 판형재에서 돌출될 수 있는 형태이면 무엇이든 좋다. 포고핀(700)이 다른 구조물 속에 자리 잡는 경우, 포고핀(700)이 원하지 않게 회전되거나 기울어지는 등 자세가 변할 수 있다. 상기 돌출물(608)은 다른 구조물에 안착되어 이와 같이 자세가 변하는 것을 방지하기 위해 사용될 수 있다.
상기 평판 접이식 코일 스프링, 상기 제 1 접점(607), 상기 제 2 접점(603) 및 상기 돌출물(608)은 상기 금속 판형재에 의해 일체로 형성된다.
본 발명에 의한 평판 접이식 코일 스프링 및 일체형 포고핀은 종래의 코일 스프링 및 포고핀에 비하여 소형으로 제조 가능하며, 연속 스탬핑 공법을 적용할 수 있으므로 제조 단가가 저렴한 장점이 있다. 또한, 소형의 크기에도 충분한 탐침 이동 가능 거리 및 스프링력을 확보할 수 있게 되는 장점이 있다.
이러한 공법에 의해 제조된 포고핀은 반도체 웨이퍼, LCD 모듈 및 반도체 패키지 등의 검사 장치, 각 종 소켓, 핸드폰의 배터리 연결부, 컴퓨터 CPU의 연결부, 반도체의 DC 테스터, 반도체의 Burn-in 테스터 및 상용의 정밀 커넥터 등에 널리 사용될 수 있다.

Claims (21)

  1. 동일한 패턴이 반복적으로 이어진 띠형상의 금속 판형재로 구성되며, 상기 금속 판형재는 상호 반대되는 방향으로 절곡되어진 적어도 1개 이상의 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점을 포함하며, 상기 안쪽 방향 절곡점은 상기 금속 판형재의 제 1 평면에 대하여 안쪽 방향으로 절곡된 절곡점이고 상기 바깥쪽 방향 절곡점은 상기 제 1 평면에 대하여 바깥쪽 방향으로 절곡된 절곡점이며, 상기 안쪽 방향 절곡점 및 상기 바깥쪽 방향 절곡점은 상호 이격되어 있는 것을 특징으로 하는 평판 접이식 코일 스프링.
  2. 청구항 1에 있어서,
    상기 패턴은 'V'형, 'U'형 또는 'S'형인 것을 특징으로 하는 평판 접이식 코일 스프링.
  3. 청구항 1에 있어서,
    상기 금속 판형재는 베릴륨 동 합금인 것을 특징으로 하는 평판 접이식 코일 스프링.
  4. 청구항 1에 있어서,
    상기 금속 판형재에는 금도금층이 형성되는 것을 특징으로 하는 평판 접이식 코일 스프링.
  5. 금속 판형재를 이용하여 코일 스프링을 제조하는 코일 스프링 제조 방법으로서,
    i) 동일한 패턴이 반복적으로 이어진 띠형상의 금속 판형재를 준비하는 제 1 단계;
    ii) 상기 띠형상의 금속 판형재 상에 있는 적어도 1개이상의 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점에서 상호 반대되는 방향으로 절곡하되, 상기 안쪽 방향 절곡점은 상기 금속 판형재의 제 1 평면에 대하여 안쪽 방향으로 절곡된 절곡점이고 상기 바깥쪽 방향 절곡점은 상기 제 1 평면에 대하여 바깥쪽 방향으로 절곡된 절곡점이며, 상기 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점은 상호 이격되도록 하여 절곡하는 제 2 단계;
    를 포함하는 것을 특징으로 하는 평판 접이식 코일 스프링 제조방법.
  6. 청구항 5에 있어서,
    상기 패턴은 'V'형, 'U'형 또는 'S'형인 것을 특징으로 하는 평판 접이식 코일 스프링 제조방법.
  7. 청구항 5에 있어서,
    상기 띠형상의 금속 판형재는 베릴륨 동 합금인 것을 특징으로 하는 평판 접이식 코일 스프링 제조방법.
  8. 청구항 5 또는 청구항 6에 있어서,
    상기 띠형상의 금속 판형재에는 금도금층이 형성되는 것을 특징으로 하는 평판 접이식 코일 스프링 제조방법.
  9. 청구항 5 또는 청구항 6에 있어서,
    상기 제 2 단계 이후에,
    iii) 소둔, 공랭, 급랭, 뜨임중 적어도 하나 이상의 열처리를 수행하는 제 3 단계;를 더 포함하는 것을 특징으로 하는 평판 접이식 코일 스프링 제조방법.
  10. 띠형상의 금속 판형재로 구성되며, 상기 금속 판형재는 상호 반대되는 방향으로 절곡되어진 적어도 1개 이상의 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점을 포함하되, 상기 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점은 상호 이격되어 있는 것을 특징으로 하는 평판 접이식 코일 스프링(601);
    상기 평판 접이식 코일 스프링을 내장하는 몸통(602);
    상기 평판 접이식 코일 스프링에 의해 탄성적으로 지지되면서 상기 몸통(602)에 대하여 상하 방향으로 이동 가능한 상부탐침(604);
    을 포함하며,
    상기 평판 접이식 코일 스프링(601), 몸통(602) 및 상부탐침(604)은 모두 상기 금속 판형재에 의해 일체로 형성된 것을 특징으로 하는 일체형 포고핀.
  11. 청구항 10에 있어서,
    상기 몸통(602)과 결합하는 하부탐침(603)이 더 형성된 것을 특징으로 하는 일체형 포고핀.
  12. 청구항 10에 있어서,
    상기 상부탐침(604)에서 상부탐침(604)의 외경 방향으로 연장 형성되어 상기 몸통(602) 내부와 접촉하는 제 1 돌출접점(605), 또는 상기 몸통(602)에서 몸통(602)의 내주 방향으로 연장 형성되어 상기 상부탐침(604)과 접촉하는 제 2 돌출접점(606)중 적어도 어느 하나를 포함하는 것을 특징으로 하는 일체형 포고핀.
  13. 일체형 포고핀의 제조방법으로서,
    i) 동일한 패턴이 반복적으로 이어진 띠형상의 금속 판형재로 된 스프링부(501); 상기 스프링부(501)의 일측에 결합되는 몸통부(502); 및 상기 스프링부(501)의 타측에 결합되는 상부탐침부(504)를 포함하며, 상기 스프링부(501), 상기 몸통부(502) 및 상기 상부탐침부(504)가 일체로 된 포고핀 제조용 평판재(500)를 준비하는 제 1 단계;
    ii) 상기 스프링부(501)에 위치하는 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점에서 상호 반대되는 방향으로 절곡하되, 상기 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점은 상호 이격되게 절곡하여 평판 접이식 코일 스프링(601)을 형성하는 제 2 단계;
    iii) 상기 상부탐침부(504)를 원통형으로 절곡하여 상부탐침(604)을 형성하는 제 3 단계;를 포함하며,
    상기 몸통부(502)를 원통형으로 절곡하여 몸통(602)를 형성하되, 상기 상부탐침(604)은 상기 평판 접이식 코일 스프링(601)에 의해 탄성적으로 지지되고 상기 몸통(602)에 대하여 상대적으로 이동 가능한 것을 특징으로 하는 일체형 포고핀의 제조방법.
  14. 청구항 13에 있어서,
    상기 제 1 단계에서 상기 포고핀 제조용 평판재(500)를 준비할 때, 상기 몸통부(502)에는 하부탐침부(503)가 더 결합된 포고핀 제조용 평판재(500)를 준비하며,
    상기 몸통부(502)를 원통형으로 절곡하는 과정의 전 또는 후에, 상기 하부탐침부(503)도 절곡되어 하부탐침(504)을 형성하는 것을 특징으로 하는 일체형 포고핀의 제조방법.
  15. 청구항 13에 있어서,
    상기 제 1 단계에서 상기 포고핀 제조용 평판재(500)를 준비할 때, 상기 상부탐침부(504)에는 제 1 돌출 접접부(505)가 더 결합된 포고핀 제조용 평판재(500)를 준비하며,
    상기 제 1 돌출 접점부(505)가 상부탐침(604)의 외경 방향으로 연장되도록 절곡하여 제 1 돌출접점(605)을 형성하되 상기 제 1 돌출접점(605)은 상기 몸통(602) 내부와 접촉하도록 하는 것을 특징으로 하는 일체형 포고핀의 제조방법.
  16. 청구항 13에 있어서,
    상기 상기 제 1 단계에서 상기 포고핀 제조용 평판재(500)를 준비할 때, 상기 몸통부(502)에는 제 2 돌출 접접부(505)가 가 더 결합된 포고핀 제조용 평판재(500)를 준비하며,
    상기 제 2 돌출접점부(506)를 몸통(602)의 내경 방향으로 연장되도록 절곡하여 제 2 돌출접점(605)을 형성하되 상기 제 2 돌출접점(605)은 상기 상부탐침(604)과 접촉하도록 하는 것을 특징으로 하는 일체형 포고핀의 제조방법.
  17. 청구항 13 내지 청구항 15 중 어느 한 항에 있어서,
    iv) 상기 제 3 단계 이후에 소둔, 공랭, 급랭, 뜨임중 어느 하나 이상의 열처리를 수행하는 제 4 단계를 더 포함하는 것을 특징으로 하는 일체형 포고핀의 제조방법.
  18. 적어도 1개 이상의 절곡선을 가진 띠형상의 금속 판형재로 구성되며, 상기 절곡선은 상기 금속 판형재의 제 1 평면을 가로지르는 것이며, 상기 절곡선을 중심상기 금속 판형재가 절곡된 것을 특징으로 하는 평판 접이식 코일 스프링.
  19. 적어도 1개 이상의 절곡점을 가진 띠 형상의 금속 판형재로 구성되며, 상기 절곡점은 상기 금속판형재의 제 1 평면상에 있는 지점에서 제 1 평면에 대하여 안쪽 방향 또는 바깥쪽 방향으로 절곡된 것인 평판 접이식 코일 스프링;
    상기 평판 접이식 코일 스프링에 의해 탄성적으로 지지 되면서 상하 방향으로 이동 가능한 제 1 접점(607);
    상기 평판 접이식 코일 스프링에 의해 탄성적으로 지지 되면서 상하 방향으로 이동 가능한 제 2 접점(603);
    상기 평판 접이식 코일 스프링의 상기 금속 판형재에서 측면으로 돌출되어 상기 평판 접이식 코일 스프링의 자세를 유지할 수 있도록 하는 돌출물(608)을 포함하며,
    상기 평판 접이식 코일 스프링, 상기 제 1 접점(607), 상기 제 2 접점(603) 및 상기 돌출물(608)은 상기 금속 판형재에 의해 일체로 형성된 것을 특징으로 하는 포고핀.
  20. 띠형상의 금속 판형재로 구성되며, 상기 금속 판형재는 상호 반대되는 방향으로 절곡되어진 적어도 1개 이상의 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점을 포함하되, 상기 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점은 상호 이격되어 있는 것을 특징으로 하는 평판 접이식 코일 스프링(601);
    상기 평판 접이식 코일 스프링에 의해 탄성적으로 지지되면서 상하 방향으로 이동 가능한 상부 탐침(604);
    상기 평판 접이식 코일 스프링에 의해 탄성적으로 지지되면서 상하 방향으로 이동 가능한 하부 탐침(605);
    을 포함하며,
    상기 평판 접이식 코일 스프링(601), 상기 상부탐침(604) 및 상기 하부탐침(605)은 모두 상기 금속 판형재에 의해 일체로 형성된 것을 특징으로 하는 일체형 포고핀.
  21. 일체형 포고핀의 제조방법으로서,
    i) 동일한 패턴이 반복적으로 이어진 띠형상의 금속 판형재로 된 스프링부(501); 상기 스프링부(501)의 일 측에 결합되는 상부탐침부(504); 및 상기 스프링부(501)의 타 측에 결합되는 하부탐침부(505)를 포함하며, 상기 스프링부(501), 상기 상부탐침부(504) 및 상기 하부탐침부(505)가 일체로 된 포고핀 제조용 평판재(500)를 준비하는 제 1 단계;
    ii) 상기 스프링부(501)에 위치하는 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점에서 상호 반대되는 방향으로 절곡하되, 상기 안쪽 방향 절곡점 및 바깥쪽 방향 절곡점은 상호 이격되게 절곡하여 평판 접이식 코일 스프링(601)을 형성하는 제 2 단계;
    iii) 상기 상부탐침부(504)를 원통형으로 절곡하여 상부탐침(604)을 형성하는 제 3 단계;를 포함하며,
    상기 상부탐침(604)은 상기 평판 접이식 코일 스프링(601)에 의해 탄성적으로 지지되고 상하 이동 가능한 것을 특징으로 하는 일체형 포고핀의 제조방법.
PCT/KR2009/003815 2008-08-07 2009-07-13 평판 접이식 코일스프링, 이를 이용한 포고핀 및 그 제조방법 WO2010016663A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/055,779 US8029291B2 (en) 2008-08-07 2009-07-13 Flat plate folding type coil spring, pogo pin and manufacturing method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2008-0077238 2008-08-07
KR20080077238 2008-08-07
KR20080079910 2008-08-14
KR10-2008-0079910 2008-08-14
KR1020090054228A KR101106506B1 (ko) 2008-08-07 2009-06-18 평판 접이식 코일스프링, 이를 이용한 포고핀 및 그 제조방법
KR10-2009-0054228 2009-06-18

Publications (2)

Publication Number Publication Date
WO2010016663A2 true WO2010016663A2 (ko) 2010-02-11
WO2010016663A3 WO2010016663A3 (ko) 2010-04-29

Family

ID=41664052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003815 WO2010016663A2 (ko) 2008-08-07 2009-07-13 평판 접이식 코일스프링, 이를 이용한 포고핀 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2010016663A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2557634A1 (en) * 2011-08-09 2013-02-13 Yokowo Co., Ltd Connector
EP3270170A1 (en) * 2016-07-11 2018-01-17 Alps Electric Co., Ltd. Spring contact and socket including spring contact

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5542775A (en) * 1994-03-23 1996-08-06 The Stanley Works Squeakless funiture spring anchor clip and method of making same
US20050026512A1 (en) * 2003-08-01 2005-02-03 Jack Seidler One piece stamped compressible spring pin
KR100540842B1 (ko) * 2005-01-27 2006-01-11 최외식 자동차용 디스크 브레이크의 패드스프링 제작 방법
KR100576050B1 (ko) * 2004-03-29 2006-05-10 이종만 판스프링과 이것을 구비한 물품

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5542775A (en) * 1994-03-23 1996-08-06 The Stanley Works Squeakless funiture spring anchor clip and method of making same
US20050026512A1 (en) * 2003-08-01 2005-02-03 Jack Seidler One piece stamped compressible spring pin
KR100576050B1 (ko) * 2004-03-29 2006-05-10 이종만 판스프링과 이것을 구비한 물품
KR100540842B1 (ko) * 2005-01-27 2006-01-11 최외식 자동차용 디스크 브레이크의 패드스프링 제작 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2557634A1 (en) * 2011-08-09 2013-02-13 Yokowo Co., Ltd Connector
EP3270170A1 (en) * 2016-07-11 2018-01-17 Alps Electric Co., Ltd. Spring contact and socket including spring contact

Also Published As

Publication number Publication date
WO2010016663A3 (ko) 2010-04-29

Similar Documents

Publication Publication Date Title
KR101106506B1 (ko) 평판 접이식 코일스프링, 이를 이용한 포고핀 및 그 제조방법
WO2013085254A1 (ko) 탐침부 연결형 포고핀 및 그 제조방법
WO2013151316A1 (ko) 고밀도 도전부를 가지는 테스트용 소켓 및 그 제조방법
WO2015012498A1 (ko) 도전성 커넥터 및 그 제조방법
WO2011149203A2 (ko) 스프링 콘택트 구조
WO2015008887A1 (ko) 스프링 콘택트
WO2013165174A1 (ko) 검사용 탐침장치 및 검사용 탐침장치의 제조방법
KR20160117049A (ko) 실리콘 러버 소켓
WO2014204161A2 (ko) 검사용 인서트
WO2018135674A1 (ko) 양방향 도전성 패턴 모듈
WO2021241992A1 (ko) 전기접속용 커넥터
WO2023080533A1 (ko) 테스트 소켓
WO2018208117A1 (ko) 검사용 소켓
WO2015076614A1 (ko) 하나의 절연성 몸체로 구성되는 소켓
WO2021137379A1 (ko) 고성능 외통형 스프링핀
WO2013042907A2 (ko) 반도체 검사 소켓
WO2017188595A1 (ko) 양분형 탐침 장치
WO2023128428A1 (ko) 신호 손실 방지용 테스트 소켓
WO2019245153A1 (ko) 판 스프링 타입의 연결핀
WO2010016663A2 (ko) 평판 접이식 코일스프링, 이를 이용한 포고핀 및 그 제조방법
WO2018199403A1 (ko) 반도체 장치 검사용 소켓
WO2024147491A1 (ko) 신호 손실 방지용 테스트 소켓
WO2023136439A1 (ko) 테스트 핀
WO2020230945A1 (ko) 스프링 콘택트 및 스프링 콘택트 내장 소켓
WO2017061656A1 (ko) 켈빈 테스트용 프로브, 켈빈 테스트용 프로브 모듈 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09805124

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13055779

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09805124

Country of ref document: EP

Kind code of ref document: A2