WO2010016481A1 - 無線通信システム、基地局装置、移動局装置、通信方法 - Google Patents

無線通信システム、基地局装置、移動局装置、通信方法 Download PDF

Info

Publication number
WO2010016481A1
WO2010016481A1 PCT/JP2009/063796 JP2009063796W WO2010016481A1 WO 2010016481 A1 WO2010016481 A1 WO 2010016481A1 JP 2009063796 W JP2009063796 W JP 2009063796W WO 2010016481 A1 WO2010016481 A1 WO 2010016481A1
Authority
WO
WIPO (PCT)
Prior art keywords
station apparatus
base station
reference signal
mobile station
signal
Prior art date
Application number
PCT/JP2009/063796
Other languages
English (en)
French (fr)
Inventor
阿部一博
平川功
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to BRPI0917098-7A priority Critical patent/BRPI0917098B1/pt
Priority to CA2732975A priority patent/CA2732975C/en
Priority to MX2011001292A priority patent/MX2011001292A/es
Priority to AU2009278433A priority patent/AU2009278433B2/en
Priority to EP09804964A priority patent/EP2312779A4/en
Priority to US13/057,723 priority patent/US9020516B2/en
Priority to CN200980139448.9A priority patent/CN102171959B/zh
Priority to JP2010523859A priority patent/JP4684371B2/ja
Publication of WO2010016481A1 publication Critical patent/WO2010016481A1/ja
Priority to ZA2011/01692A priority patent/ZA201101692B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/322Power control of broadcast channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels

Definitions

  • the present invention relates to a radio communication system, a base station apparatus, a mobile station apparatus, and a communication method.
  • the resource block when performing communication by beamforming, includes a reference signal determined by each base station device and the mobile A reference signal and a data signal determined for each station apparatus are arranged.
  • the reference signal determined for each base station apparatus is mainly used for reproduction of a control signal and measurement of channel quality
  • the reference signal determined for each mobile station apparatus is mainly used for reproduction of a data signal.
  • control signal reproduction, channel quality measurement, and the like are not characteristic portions, and therefore description of control signal and channel quality measurement will be omitted.
  • the power of the reference signal determined for each base station apparatus is constant within the resource block, and the power of the data signal within the OFDM symbol including the reference signal determined for each base station apparatus is constant within the resource block.
  • the power of the reference signal determined for each base station apparatus is increased for the purpose of improving cell coverage and cell edge throughput under the conditions, the reference signal and mobile station apparatus determined for each base station apparatus as shown in FIG. 1A Since the number of OFDM symbol data signals mixed with reference signals determined for each base station device is smaller than the number of data signals in the OFDM symbol including the reference signals determined for each base station device, the reference signals determined for each base station device There is a problem that the power of the data signal in the OFDM symbol including only the power is lowered more than necessary.
  • the total power at the 3rd OFDM symbol is 24a, whereas the total power at the 4th OFDM is 20a. Therefore, at the 4th OFDM symbol, the data signal drops by an extra 4a. I'm stuck.
  • Non-Patent Document 1 when a reference signal defined for each base station apparatus and a reference signal defined for each mobile station apparatus are mixed in one OFDM symbol of a resource block, the reference signal defined for each base station apparatus There is a problem that the restriction when frequency-shifting the reference signal determined for each mobile station apparatus becomes severe.
  • Non-Patent Document 1 in order to avoid this problem, as shown in FIG. 1B, a reference signal determined for each base station apparatus and a reference signal determined for each mobile station apparatus are not mixed in one OFDM symbol. It has been proposed to move a reference signal determined for each mobile station apparatus of the 8th OFDM symbol to the 9th OFDM symbol.
  • Non-Patent Document 2 describes the relationship between the power of the reference signal and the power of the data signal determined for each mobile station apparatus.
  • the power of the reference signal determined for each mobile station apparatus is an OFDM symbol that does not include the reference signal determined for each base station apparatus in the same resource block as the reference signal determined for each mobile station apparatus. It is assumed that the power of the data signal is the same.
  • Non-Patent Document 3 proposes a method for increasing the power of a reference signal determined for each base station apparatus in order to improve cell coverage and cell edge throughput.
  • Non-Patent Document 3 as shown in FIG. 2, the SFBC (Space Frequency Block Code) + FSTD (Frequency Switched Transmit Diversity) encoding process is studied.
  • SFBC Space Frequency Block Code
  • FSTD Frequency Switched Transmit Diversity
  • Non-Patent Document 3 since the power of the data signal is lowered, the diversity gain is lowered and the throughput characteristics and the like are deteriorated.
  • Non-Patent Document 4 the power of the reference signal determined for each base station apparatus is increased in order to improve cell coverage and cell edge throughput.
  • SFBC Space Frequency Block Code
  • FSTD Frequency Switched Transmit Diversity
  • Non-Patent Document 4 since the power of the data signal does not decrease, there is no deterioration in the throughput characteristics and the like due to this, but the throughput characteristics and the like are deteriorated by the amount of the data signal that can be allocated to unused subcarriers. Is concerned.
  • Non-Patent Document 5 when performing communication by beam forming, the accuracy of channel estimation is increased by increasing the power of a reference signal determined for each mobile station device (for example, 2a to 5a). This shows that it is improved. Accordingly, the power of the data signal in the OFDM symbol of the same resource block as the reference signal determined for each mobile station device whose power is to be increased is reduced.
  • Non-Patent Document 5 shows a result as shown in FIG. In FIG. 5, when the modulation scheme is 64QAM (Quadrature Amplitude Modulation) and QPSK (Quadrature Phase Shift Keying), the magnitude of the reference signal power determined for each mobile station apparatus is compared with the throughput characteristics. It is a figure which shows the influence which acts on.
  • the reference signal defined for every base station apparatus in 1 OFDM symbol by moving the reference signal defined for every 8 OFDM symbol mobile station apparatus to the 9th OFDM symbol And reference signals determined for each mobile station apparatus are not mixed.
  • the mobile station apparatus moves at high speed. In this case, it is predicted that the accuracy of channel estimation deteriorates. Therefore, it is necessary to consider a method for avoiding this.
  • Non-Patent Document 2 the condition that the power of the reference signal determined for each mobile station apparatus is equal to the power of the data signal in the OFDM symbol that does not include the reference signal determined for each base station apparatus.
  • how to increase the power of the reference signal determined for each base station apparatus is also a problem.
  • the present invention prevents a reference signal defined for each base station apparatus and a reference signal defined for each mobile station apparatus from being mixed in one OFDM symbol of a resource block, and a base station apparatus in one OFDM symbol of a resource block.
  • An object of the present invention is to solve a problem in increasing the power of a reference signal in an OFDM symbol in which a reference signal determined every time and a reference signal determined every mobile station apparatus are mixed.
  • a wireless communication system having a base station apparatus and a mobile station apparatus, wherein the signal arrangement unit included in the base station apparatus includes a reference signal determined for each base station apparatus and the mobile Means for avoiding reference signals defined for each station device from being mixed in the same OFDM symbol of the same resource block, or reference signals defined for each base station device and references defined for each mobile station device And a means for increasing the power of a reference signal determined for each base station apparatus, wherein the signal is mixed in the same OFDM symbol of the same resource block.
  • a reference determined for each base station apparatus by means for avoiding that a reference signal determined for each base station apparatus and a reference signal determined for each mobile station apparatus are mixed in the same OFDM symbol of the same resource block It is possible to eliminate the limitation of the pattern when frequency-shifting between the signal and the reference signal determined for each mobile station apparatus and the influence of increasing the power of the reference signal determined for each base station apparatus. Further, even if the reference signal defined for each base station apparatus and the reference signal defined for each mobile station apparatus are mixed in the same OFDM symbol of the same resource block, the reference determined for each base station apparatus By providing means for increasing the power of the signal, it is possible to reduce the influence of increasing the power of the reference signal determined for each base station apparatus in order to improve the cell coverage and the throughput at the cell edge.
  • the signal arrangement unit is configured to arrange a reference signal determined for each base station apparatus with respect to a resource block, a reference signal and data signal defined for each mobile station apparatus, a reference signal defined for each base station apparatus and the movement Based on a signal arrangement pattern consisting of information for adjusting the power of the reference signal and data signal determined for each station apparatus, the reference signal determined for each mobile station apparatus for the resource block and each base station apparatus It is preferable that the arrangement of the reference signal and the data signal determined, the reference signal determined for each base station device, the reference signal determined for each mobile station device, and the adjustment of the power of the data signal are performed.
  • a reference signal defined for each base station apparatus and a reference signal defined for each mobile station apparatus are not mixed in the same OFDM symbol of the same resource block.
  • the signal allocation pattern includes a mixture of a reference signal determined for each base station apparatus and a reference signal determined for each mobile station apparatus in the same OFDM symbol of the same resource block.
  • the power of the reference signal determined for each mobile station apparatus may be equal to the power of the data signal in the OFDM symbol.
  • the signal arrangement pattern includes a mixture of a reference signal defined for each base station apparatus and a reference signal defined for each mobile station apparatus in the same OFDM symbol of the same resource block, and for each base station apparatus When increasing the power of the determined reference signal, unused resource elements may be set in the OFDM symbol.
  • the signal arrangement pattern includes a mixture of a reference signal defined for each mobile station apparatus and a reference signal defined for each base station apparatus in the same OFDM symbol of the same resource block, and for each base station apparatus
  • the power of the reference signal determined for each mobile station apparatus of the OFDM symbol may be made larger than the power of the data signal.
  • the signal arrangement pattern includes a mixture of a reference signal defined for each mobile station apparatus and a reference signal defined for each base station apparatus in the same OFDM symbol of the same resource block, The method of adjusting the power with the OFDM symbol may be different.
  • the base station apparatus includes a modulation unit that modulates an externally input data signal, an arrival direction estimation unit that estimates an arrival direction of the radio wave, and a weight for directing the radio wave with respect to the arrival direction of the signal. It is preferable to include a first weight control unit that controls, a transmission beamforming unit that performs weighting for directing radio waves, and a transmission unit that transmits a signal to the mobile station apparatus.
  • the base station apparatus in the radio communication system described above may be a base station apparatus characterized in that the modulation unit performs quadrature amplitude modulation on a data signal input from the outside. .
  • the transmission beamforming unit weights the resource block using the weight for directing the radio wave in the arrival direction of the radio wave estimated by the first weight control unit, and the weighted resource
  • a base station apparatus characterized by outputting a block to a transmission unit may be used.
  • the present invention is characterized in that the arrival direction estimation unit estimates the arrival direction of the radio wave from the radio wave transmitted from the mobile station apparatus, and outputs the estimated arrival direction of the radio wave to the first weight control unit.
  • the arrival direction estimation unit estimates the arrival direction of the radio wave from the radio wave transmitted from the mobile station apparatus, and outputs the estimated arrival direction of the radio wave to the first weight control unit.
  • the present invention may be a base station apparatus characterized in that the transmission section transmits a resource block to which beamforming output from the transmission beamforming section is applied to a mobile station apparatus.
  • the mobile station apparatus performs channel estimation using a receiving unit that receives a resource block and a reference signal that is arranged in the resource block, and is arranged in the resource block.
  • a second weight control unit that controls a weight for equalizing the data signal, an equalization unit that applies a weight for equalizing the data signal to the data signal arranged in the resource block, etc.
  • the receiving unit of the mobile station apparatus in the radio communication system described above receives a resource block transmitted from the transmitting unit of the base station apparatus.
  • the second weight control unit estimates a channel using a reference signal arranged in the resource block, and controls a weight for equalizing the data signal arranged in the resource block from the estimated channel. It may be a mobile station apparatus characterized by the above. Further, the equalization unit may be a mobile station device that applies the weight output from the second weight control unit to the data signal arranged in the resource block.
  • the demodulator may be a mobile station apparatus that performs quadrature amplitude demodulation on the equalized data signal. Further, the measurement signal transmission unit transmits a signal used by the arrival direction estimation unit of the base station apparatus to estimate an arrival direction of a signal transmitted from the mobile station apparatus. It may be a station device.
  • the present invention is a communication method of the base station apparatus that communicates with the mobile station apparatus, wherein the resource block is based on a first process of modulating a data signal input from the outside and a signal arrangement pattern.
  • the reference signal determined for each base station apparatus that has adjusted the power, the arrangement of the reference signal and data signal determined for each mobile station apparatus, the reference signal determined for each base station apparatus and each mobile station apparatus
  • a fourth process for controlling the weight for controlling, a fifth process for applying a weight for directing radio waves to the resource block, and a sixth process for transmitting the resource block to the mobile station apparatus Is a communication method characterized by comprising.
  • a mobile station apparatus communication method for communicating with the base station apparatus, wherein a first process of receiving a resource block and a reference signal arranged in the resource block are used.
  • Channel estimation and a second process for controlling the weight for equalizing the data signal arranged in the resource block, and for equalizing the data signal to the data signal arranged in the resource block.
  • a fifth process for communicating with the base station apparatus, wherein a first process of receiving a resource block and a reference signal arranged in the resource block are used.
  • the present invention is a communication method for transmitting data from a base station to a mobile station using a plurality of second regions configured by arranging a plurality of first regions defined by frequency and time in the frequency direction.
  • a reference signal determined for each base station, and a reference signal determined for each mobile station is arranged, and power for each first area is set.
  • Communication including control for setting a ratio of transmission power between the first area where the reference signal determined for each base station is arranged and the first area where the data is arranged when the base station adjusts
  • the second area including a reference signal determined for each mobile station
  • the first area where the reference signal determined for each mobile station is arranged and the first area where the data is arranged
  • the ratio of transmit power in the region of is equal
  • a communication method characterized by and.
  • the ratio of the transmission power of the first area where the data is arranged and the transmission power of the first area where the reference signal defined for each mobile station is determined is a reference signal determined for each mobile station It is preferable to make it equal among the plurality of second regions in which are arranged.
  • the reference signal determined for each mobile station is arranged for the transmission power of the first area where the data is arranged and the transmission power of the first area where the reference signal defined for each mobile station is arranged. It may be made equal in the second area.
  • the transmission power of the first area where the reference signal determined for each base station is arranged and the data where the data in the second area including the reference signal defined for each base station is arranged
  • the ratio of the transmission power of one area is determined so that the transmission power of the first area where the reference signal determined for each base station is arranged and the reference signal determined for each base station is not included in the second area. It is preferable that the transmission power ratio of the first area where the data is arranged is different from that of the first area.
  • the base station performs beam forming on the mobile station.
  • the present invention is a communication method for transmitting data from a base station to a mobile station using a plurality of second regions configured by arranging a plurality of first regions defined by frequency and time in the frequency direction.
  • any one of the data, a reference signal defined for each base station, and a reference signal defined for each mobile station is arranged, and Including control for setting a ratio of transmission power between the first area where the reference signal determined for each base station is arranged and the first area where the data is arranged when the base station determines the power
  • the ratio of transmission power of the first area where the reference signal determined for each mobile station is arranged and the first area where the data is arranged is equal. .
  • the present invention may be a program for causing a computer to execute the method described above, or a computer-readable storage medium that records the program.
  • Each constituent element of the present invention is independently established as an invention.
  • the invention of the base station device and the mobile station device can be extracted based on the configuration of each device. it can.
  • Non-Patent Document 3 in order to increase the power of the reference signal determined for each base station apparatus in one OFDM symbol of the resource block at the time of SFBC (Space Frequency Block Code) + FSTD (Frequency Switched Transmit Diversity) encoding, It is a figure which shows the method of reducing the electric power of the data signal in the same OFDM symbol as the reference signal defined for every base station apparatus.
  • SFBC Space Frequency Block Code
  • FSTD Frequency Switched Transmit Diversity
  • Non-Patent Document 4 to increase the power of the reference signal determined for each base station apparatus in one OFDM symbol of the resource block at the time of SFBC (Space Frequency Block Code) + FSTD (Frequency Switched Transmit Diversity) coding, It is a figure which shows the method of setting an unused subcarrier in the same OFDM symbol as the reference signal defined for every base station apparatus.
  • a method proposed in Non-Patent Document 5 that improves the accuracy of channel estimation by increasing the power of a reference signal determined for each mobile station device (for example, 2a to 5a) when performing communication by beamforming.
  • Non-Patent Document 5 which compares the case of 64QAM (Quadrature Amplitude Modulation) with the case of QPSK (Quadrature Phase Shift Keying), and the power of the reference signal determined for each mobile station device It is a figure which shows the influence which a size has on a throughput characteristic It is a figure which shows the example of 1 structure of the radio
  • 10a Arrival direction estimation unit, 10c-4 to 17c-4 ... Antenna 0 to antenna 7, 10b ... Modulation unit, 10c to 17c ... Signal processing device 0 to Signal processing device 7, 10c-1 to 17c-1 ... Signal arrangement Unit, 10c-2 to 17c-2 ... transmission beam forming unit, 10c-3 to 17c-3 ... transmission unit, 11a ... weight control unit 1, 100a ... base station apparatus, 20a-1 ... antenna, 20a-2 ... reception , 20a-3 ... equalization unit, 20b ... weight control unit 2, 20c ... demodulation unit, 20d ... transmission unit, 200a ... mobile station device, 30a ... arrival direction estimation unit, 30c-4 to 37c-4 ...
  • the communication technique according to the first embodiment of the present invention will be described.
  • the communication system according to the present embodiment will be described by taking as an example a case where the base station apparatus includes eight antennas and the mobile station (terminal station) apparatus includes one antenna.
  • FIG. 8A is a diagram showing an example of a signal arrangement pattern of resource blocks according to the present embodiment.
  • the reference signal defined for each base station apparatus and the reference signal defined for each mobile station apparatus are not mixed in one OFDM symbol of the resource block, and the mobile station apparatus OFDM symbols including reference signals determined every time are arranged at equal intervals on the time axis.
  • the reference signal defined for each base station apparatus and the reference signal defined for each mobile station apparatus are mixed in one OFDM symbol of the resource block shown in Non-Patent Document 1 above. Therefore, it is possible to avoid the problems caused by this and to suppress the degradation of channel estimation when the mobile station moves at high speed.
  • FIG. 6 is a diagram illustrating a configuration example of a wireless communication system according to the present embodiment.
  • the wireless communication system includes a base station device (100a) and a mobile station device (200a).
  • the base station apparatus (100a) uses an uplink signal transmitted from the mobile station apparatus (200a).
  • the arrival direction of the uplink signal that is, the direction in which the mobile station apparatus is located is estimated.
  • Reference signal determined for each base station apparatus for resource block reference signal determined for each mobile station apparatus and data signal arrangement, reference signal determined for each base station apparatus, reference signal and data determined for each mobile station apparatus It adjusts the power of the signal.
  • a downlink signal is transmitted to a mobile station apparatus (200a).
  • the mobile station apparatus (200a) receives the downlink signal transmitted from the base station apparatus (100a).
  • Channel estimation is performed using a reference signal included in the downlink signal.
  • Equalization processing is performed using the estimated channel characteristics, and a data signal is reproduced from the equalized signal.
  • FIG. 7 is a functional block diagram illustrating a configuration example of the base station apparatus (100a).
  • the base station apparatus (100a) transmits uplink signals transmitted from the mobile station apparatus (200a) to antenna 0 (10c-4), antenna 1 (11c-4), and antenna 2 (12c). -4), antenna 3 (13c-4), antenna 4 (14c-4), antenna 5 (15c-4), antenna 6 (16c-4), and antenna 7 (17c-4) Receive via.
  • An arrival direction estimation unit (10a) that estimates the arrival direction of the uplink signal using the received uplink signal, and for directing the beam with respect to the estimated arrival direction for each resource block to which beamforming is applied.
  • a weight control unit 1 (11a) for controlling the weight.
  • the signal processing device 0 (10c) includes a reference signal determined for each base station device for a resource block, a reference signal determined for each mobile station device, a data signal arrangement, a reference signal determined for each base station device, and a mobile station A reference signal defined for each base station apparatus and a reference defined for each mobile station apparatus based on a signal arrangement pattern composed of information for adjusting a reference signal and data signal power determined for each apparatus
  • a signal placement unit (10c-1) for adjusting the power of the signal and the data signal, the reference signal determined for each base station device, the reference signal determined for each mobile station device, and the power of the data signal;
  • a transmission beam forming unit (10c) that applies a weight controlled by the weight control unit 1 (11a) to a reference signal determined in the mobile station apparatus 2) and inverse fast Fourier transform, cyclic prefix insertion, digital / analog conversion, analog signal processing, etc., and the downlink signal is transmitted to the mobile station apparatus (200a) via the antenna (10c-4).
  • the base station device (100a) is divided into two systems. One is a system A that controls weights for performing communication by beam forming, and the other is a system B that performs signal processing on a data signal input from the outside.
  • system A it is assumed that an uplink signal is transmitted from the mobile station apparatus (200a) to the base station apparatus (100a).
  • the arrival direction estimation unit (10a) first transmits an uplink signal transmitted from the mobile station apparatus (200a) to antenna 0 (10c-4), antenna 1 (11c-4), antenna 2 (12c-4), and antenna 3 (13c-4), antenna 4 (14c-4), antenna 5 (15c-4), antenna 6 (16c-4), and antenna 7 (17c-4). Next, the arrival direction of the uplink signal is estimated from the received uplink signal, and the estimated arrival direction is output to the weight control unit 1 (11a).
  • the weight control unit 1 (11a) first controls the weight of each antenna for directing the beam with respect to the estimated arrival direction for each resource block. Next, the weight for antenna 0 (10c-4) is output to signal processing device 0 (10c), the weight for antenna 1 (11c-4) is output to signal processing device 1 (11c), and antenna 2 ( 12c-4) is output to the signal processing device 2 (12c), the weight for the antenna 3 (13c-4) is output to the signal processing device 3 (13c), and the weight for the antenna 4 (14c-4) is output.
  • the weight is output to the signal processor 4 (14c), the weight for the antenna 5 (15c-4) is output to the signal processor 5 (15c), and the weight for the antenna 6 (16c-4) is output to the signal processor 6 (16c) and the weight for the antenna 7 (17c-4) is output to the signal processing device 7 (17c).
  • system B it is assumed that a reference signal determined for each base station device, a reference signal determined for each mobile station device, and a data signal are input to the base station device (100a) from the outside.
  • the modulation unit (10b) performs quadrature amplitude modulation on the input data signal, and the signal processing device 0 (10c), the signal processing device 1 (11c), the signal processing device 2 (12c), and the signal processing device 3 (13c). And the signal processor 4 (14c), the signal processor 5 (15c), the signal processor 6 (16c), and the signal processor 7 (17c).
  • the signal processing device 0 (10c) performs quadrature amplitude modulation on the input data signal
  • the signal processing device 0 (10c) the signal processing device 1 (11c), the signal processing device 2 (12c), and the signal processing device 3 (13c).
  • the signal processor 4 (14c) the signal processor 5 (15c), the signal processor 6 (16c), and the signal processor 7 (17c).
  • the data signal input to the signal processing device 0 (10c) is input to the signal arrangement unit (10c-1).
  • FIG. 8A illustrates the arrangement of reference signals determined for each base station apparatus with respect to resource blocks, reference signals and data signals determined for each mobile station apparatus, reference signals determined for each base station apparatus and each mobile station apparatus. It is a figure which shows an example of the signal arrangement pattern which consists of the information for performing the adjustment of the electric power of the defined reference signal and data signal.
  • the signal arrangement unit (10c-1) arranges the reference signal determined for each base station apparatus and the reference signal and data signal determined for each mobile station apparatus for the resource block. And adjusting the power of the reference signal determined for each base station device, the reference signal determined for each mobile station device, and the data signal.
  • this resource block is output to the transmission beamforming unit (10c-2) in units of OFDM symbols.
  • the transmission beamforming unit (10c-2) first adds the weight output from the weight control unit 1 (11a) to the data signal included in the OFDM symbol output from the signal allocation unit (10c-1) and each mobile station apparatus. It acts on the reference signal defined in Next, the weighted OFDM symbol is output to the transmission unit (10c-3).
  • the transmission unit (10c-3) performs inverse fast Fourier transform, cyclic prefix insertion, digital / analog conversion, analog signal processing, and the like, and transmits to the mobile station apparatus (200a) via the antenna 0 (10c-4). In response, a downlink signal is transmitted.
  • FIG. 9 is a diagram illustrating a configuration example of the mobile station apparatus (200a).
  • the mobile station apparatus (200a) transmits a measurement signal for transmitting, via the antenna (20a-1), an uplink signal used by the base station apparatus (100a) to direct a beam toward the mobile station apparatus (200a).
  • a transmission unit (20d) is provided. Furthermore, a receiving unit (20a-2) that receives a downlink signal transmitted from the base station apparatus (100a) via the antenna (20a-1), and an equalizing unit (20a-3) that performs equalization processing And a demodulator (20c) that performs quadrature amplitude demodulation, and a weight controller 2 (for controlling the weight used in the equalization process from the reference signal determined for each mobile station apparatus output from the receiver (20a-2)). 20b).
  • the mobile station device (200a) is divided into two systems.
  • One is a system A in which the base station apparatus (100a) transmits an uplink signal used to direct a beam to the mobile station apparatus (200a), and one is transmitted from the base station apparatus (100a).
  • This is a system B that receives a downlink signal and reproduces a data signal by signal processing.
  • the measurement signal transmission unit (20d) transmits, via the antenna (20a-1), an uplink signal used by the base station apparatus (100a) to direct the beam in the direction in which the mobile station apparatus (200a) is located. Send.
  • system B it is assumed that a downlink signal is transmitted from the base station apparatus (100a) to the mobile station apparatus (200a).
  • the reception unit (20a-2) receives a downlink signal transmitted from the base station apparatus (100a) via the antenna (20a-1).
  • the received downlink signal is subjected to analog signal processing, analog / digital conversion, cyclic prefix removal, fast Fourier transform, etc., and a data signal is output to the equalization unit (20a-3).
  • the reference signal determined for each mobile station apparatus is output to the weight control unit 2 (20b).
  • the weight control unit 2 (20b) performs channel estimation using the input reference signal determined for each mobile station apparatus, controls the weight used in the equalization processing of the equalization unit (20a-3), and the weight Is output to the equalization unit (20a-3).
  • the equalization unit (20a-3) applies the input weight to the input data signal for equalization, and outputs the equalized data signal to the demodulation unit (20c).
  • the demodulator (20c) performs quadrature amplitude demodulation on the input data signal and outputs the demodulated data signal to the outside.
  • the signal arrangement pattern of FIG. 8A has been described as an example, but the signal arrangement pattern of FIG. 8B may be used.
  • the signal arrangement pattern of FIG. 8B has a feature that accuracy is improved when channel estimation is performed using a reference signal determined for each mobile station apparatus, compared to the case of using the signal arrangement pattern shown in FIG. 8A.
  • the base station apparatus includes 8 antennas used for beamforming communication and 4 antennas used for transmission of reference signals determined for each base station apparatus, and a mobile station (terminal station).
  • a mobile station terminal station
  • a case where the apparatus includes one antenna will be described as an example.
  • the power is adjusted so that the powers of all OFDM symbols are the same. By doing so, it is possible to reduce the load in the analog signal processing of the mobile station apparatus (200a).
  • FIG. 8A is a diagram showing an example of a signal arrangement pattern of resource blocks according to the present embodiment.
  • the reference signal defined for each base station apparatus and the reference signal defined for each mobile station apparatus are not mixed in one OFDM symbol of the resource block, and the mobile station apparatus OFDM symbols including reference signals determined every time are arranged at equal intervals on the time axis.
  • the reference signal defined for each base station apparatus and the reference signal defined for each mobile station apparatus are mixed in one OFDM symbol of the resource block shown in Non-Patent Document 1 above. Therefore, it is possible to avoid the problems caused by this and to suppress the degradation of channel estimation when the mobile station moves at high speed.
  • FIG. 6 is a diagram illustrating a configuration example of a wireless communication system according to the present embodiment.
  • the wireless communication system includes a base station device (100a) and a mobile station device (200a).
  • the base station apparatus (100a) uses an uplink signal transmitted from the mobile station apparatus (200a).
  • the arrival direction of the uplink signal that is, the direction in which the mobile station apparatus is located is estimated.
  • Reference signal determined for each base station apparatus for resource block reference signal determined for each mobile station apparatus and data signal arrangement, reference signal determined for each base station apparatus, reference signal and data determined for each mobile station apparatus It adjusts the power of the signal.
  • a downlink signal is transmitted to a mobile station apparatus (200a).
  • the mobile station apparatus (200a) receives the downlink signal transmitted from the base station apparatus (100a).
  • Channel estimation is performed using a reference signal included in the downlink signal.
  • Equalization processing is performed using the estimated channel characteristics, and a data signal is reproduced from the equalized signal.
  • FIG. 15 is a functional block diagram illustrating a configuration example of the base station apparatus (100a).
  • the base station apparatus (100a) transmits an uplink signal transmitted from the mobile station apparatus (200a) to an antenna A0 (30c-4), an antenna A1 (31c-4), and an antenna A2 (32c). -4), antenna A3 (33c-4), antenna A4 (34c-4), antenna A5 (35c-4), antenna A6 (36c-4), and antenna A7 (37c-4). Receive via.
  • An arrival direction estimation unit (30a) that estimates the arrival direction of the uplink signal using the received uplink signal, and directs the beam with respect to the estimated arrival direction for each resource block to which beamforming is applied.
  • a weight control unit 1 (31a) for controlling the weight.
  • the signal processing device A0 (30c), the signal processing device A1 (31c), the signal processing device A2 (32c), the signal processing device A3 (33c), the signal processing device A4 (34c), and the signal processing device A5 (35c) Since the signal processing device A6 (36c) and the signal processing device A7 (37c) have the same configuration, only the signal processing device A0 (30c) will be described here, and description of other processing will be omitted.
  • the base station apparatus (100a) performs signal processing on a reference signal determined for each base station apparatus, and includes a signal processing apparatus B0 (30d), a signal processing apparatus B1 (31d), and a signal processing apparatus B2 (32d). And a signal processing device B3 (33d).
  • a signal processing apparatus B0 (30d), the signal processing device B1 (31d), the signal processing device B2 (32d), and the signal processing device B3 (33d) have the same configuration, here, the signal processing device B0 ( Only the description about 30d) will be given, and the description of the other processes will be omitted.
  • the signal processing device A0 (30c) includes a reference signal determined for each base station device for a resource block, a reference signal determined for each mobile station device, a data signal arrangement, a reference signal determined for each base station device, and a mobile station The arrangement of reference signals and data signals determined for each mobile station apparatus with respect to the resource block based on a signal arrangement pattern comprising information for adjusting the reference signal and data signal power determined for each apparatus, and the mobile station A signal placement unit (30c-1) for adjusting the power of the reference signal and data signal determined for each device, and the weight control unit 1 (31a) for the reference signal and data signal determined for the mobile station device Transmit beamforming unit (30c-2) for applying controlled weight, inverse fast Fourier transform, cyclic prefix insertion, It performs digital-to-analog conversion and analog signal processing, etc., to the mobile station device (200a), comprising transmitting unit that transmits a downlink signal through the antenna A0 (30c-4) and (30c-3).
  • the signal processing device B0 (30d) based on the signal arrangement pattern, a signal arrangement unit that performs arrangement of the reference signal determined for each base station apparatus with respect to the resource block and adjustment of the power of the reference signal defined for each base station apparatus (30d-1), inverse fast Fourier transform, cyclic prefix insertion, digital / analog conversion, analog signal processing, etc. are performed to mobile station apparatus (200a) via antenna B0 (30d-4). And a transmission unit (30d-3) that transmits a downlink signal.
  • the base station device (100a) is divided into three systems.
  • One is a system A that controls the weight for performing communication by beam forming, one is a system B that performs signal processing on a data signal input from the outside, and one is a reference signal determined for each base station apparatus.
  • System C that performs signal processing.
  • system A it is assumed that an uplink signal is transmitted from the mobile station apparatus (200a) to the base station apparatus (100a).
  • the arrival direction estimation unit (30a) first transmits an uplink signal transmitted from the mobile station apparatus (200a) to the antenna A0 (30c-4), the antenna A1 (31c-4), the antenna A2 (32c-4), and the antenna A3. (33c-4), antenna A4 (34c-4), antenna A5 (35c-4), antenna A6 (36c-4), and antenna A7 (37c-4). Next, the arrival direction of the uplink signal is estimated from the received uplink signal, and the estimated arrival direction is output to the weight control unit 1 (31a).
  • the weight control unit 1 (31a) first controls the weight of each antenna for directing the beam with respect to the estimated arrival direction for each resource block. Next, the weight for the antenna A0 (30c-4) is output to the signal processing device A0 (30c), the weight for the antenna A1 (31c-4) is output to the signal processing device A1 (31c), and the antenna A2 ( 32c-4) is output to the signal processing device A2 (32c), the weight for the antenna A3 (33c-4) is output to the signal processing device A3 (33c), and the weight for the antenna A4 (34c-4) is output.
  • the weight is output to the signal processing device A4 (34c), the weight for the antenna A5 (35c-4) is output to the signal processing device A5 (35c), and the weight for the antenna A6 (36c-4) is output to the signal processing device A6. (36c) and the weight for the antenna A7 (37c-4) is output to the signal processing device A7 (37c).
  • system B it is assumed that a reference signal and a data signal determined for each mobile station apparatus are input from the outside to the base station apparatus (100a).
  • the modulation unit (30b) performs quadrature amplitude modulation on the input data signal, and performs signal processing device A0 (30c), signal processing device A1 (31c), signal processing device A2 (32c), and signal processing device A3 (33c). And the signal processor A4 (34c), the signal processor A5 (35c), the signal processor A6 (36c), and the signal processor A7 (37c).
  • signal processing device A0 (30c) the signal processing device A0 (30c)
  • description of other processing will be omitted.
  • the data signal input to the signal processing device A0 (30c) is input to the signal arrangement unit (30c-1).
  • FIG. 8A illustrates the arrangement of reference signals determined for each base station apparatus with respect to resource blocks, reference signals and data signals determined for each mobile station apparatus, reference signals determined for each base station apparatus and each mobile station apparatus. It is a figure which shows an example of the signal arrangement pattern which consists of the information for performing the adjustment of the electric power of the defined reference signal and data signal.
  • the signal arrangement unit A0 (30c-1) is determined for each mobile station apparatus and the arrangement of reference signals and data signals determined for each mobile station apparatus for the resource block. The power of the reference signal and the data signal is adjusted. Next, this resource block is output to the transmission beamforming unit (30c-2) in units of OFDM symbols.
  • the transmission beamforming unit (30c-2) first determines the weight output from the weight control unit 1 (31a) for each mobile station apparatus included in the OFDM symbol output from the signal allocation unit (30c-1). It acts on the reference signal and the data signal. Next, the weighted OFDM symbol is output to the transmission unit (30c-3).
  • the transmission unit (30c-3) performs inverse fast Fourier transform, cyclic prefix insertion, digital / analog conversion, analog signal processing, and the like, and transmits to the mobile station apparatus (200a) via the antenna A0 (30c-4). In response, a downlink signal is transmitted.
  • system C it is assumed that a reference signal determined for each base station apparatus is input from the outside to the base station apparatus (100a).
  • the reference signal determined for each base station device is first input to the signal processing device B0 (30d), the signal processing device B1 (31d), the signal processing device B2 (32d), and the signal processing device B3 (33d).
  • the signal processing device B0 (30d) will be described, and description of other processing will be omitted.
  • the reference signal determined for each base station device input to the signal processing device B0 (30d) is first output to the signal arrangement unit (30d-1). Based on the signal arrangement pattern as shown in FIG. 8A, the signal arrangement unit (30d-1) arranges the reference signal arrangement determined for each base station apparatus with respect to the resource block and the power of the reference signal defined for each base station apparatus. Make adjustments. Next, this resource block is output to the transmission unit (30d-3) in units of OFDM symbols.
  • the transmission unit (30d-3) performs inverse fast Fourier transform, cyclic prefix insertion, digital / analog conversion, analog signal processing, and the like, and transmits to the mobile station apparatus (200a) via the antenna B0 (30d-4). In response, a downlink signal is transmitted.
  • FIG. 9 is a diagram illustrating a configuration example of the mobile station apparatus (200a).
  • the mobile station apparatus (200a) transmits a measurement signal for transmitting, via the antenna (20a-1), an uplink signal used by the base station apparatus (100a) to direct a beam toward the mobile station apparatus (200a).
  • a transmission unit (20d) is provided. Furthermore, a receiving unit (20a-2) that receives a downlink signal transmitted from the base station apparatus (100a) via the antenna (20a-1), and an equalizing unit (20a-3) that performs equalization processing And a demodulator (20c) that performs quadrature amplitude demodulation, and a weight controller 2 (for controlling the weight used in the equalization process from the reference signal determined for each mobile station apparatus output from the receiver (20a-2)). 20b).
  • the mobile station device (200a) is divided into two systems.
  • One is a system A in which the base station apparatus (100a) transmits an uplink signal used to direct a beam to the mobile station apparatus (200a), and one is transmitted from the base station apparatus (100a).
  • This is a system B that receives a downlink signal and reproduces a data signal by signal processing.
  • the measurement signal transmission unit (20d) transmits, via the antenna (20a-1), an uplink signal used by the base station apparatus (100a) to direct the beam in the direction in which the mobile station apparatus (200a) is located. To send.
  • system B it is assumed that a downlink signal is transmitted from the base station apparatus (100a) to the mobile station apparatus (200a).
  • the reception unit (20a-2) receives a downlink signal transmitted from the base station apparatus (100a) via the antenna (20a-1).
  • the received downlink signal is subjected to analog signal processing, analog / digital conversion, cyclic prefix removal, fast Fourier transform, etc., and a data signal is output to the equalization unit (20a-3).
  • the reference signal determined for each mobile station apparatus is output to the weight control unit 2 (20b).
  • the weight control unit 2 (20b) performs channel estimation using the input reference signal determined for each mobile station apparatus, controls the weight used in the equalization processing of the equalization unit (20a-3), and the weight Is output to the equalization unit (20a-3).
  • the equalization unit (20a-3) applies the input weight to the input data signal for equalization, and outputs the equalized data signal to the demodulation unit (20c).
  • the demodulator (20c) performs quadrature amplitude demodulation on the input data signal and outputs the demodulated data signal to the outside.
  • the signal arrangement pattern of FIG. 8A has been described as an example, but the signal arrangement pattern of FIG. 8B may be used.
  • the signal arrangement pattern of FIG. 8B has a feature that accuracy is improved when channel estimation is performed using a reference signal determined for each mobile station apparatus, compared to the case of using the signal arrangement pattern shown in FIG. 8A.
  • the power of the data signal is reduced to improve the cell coverage and cell edge throughput, and the power of the reference signal determined for each base station apparatus using the reduced power. Is raised.
  • the power of the reference signal determined for each mobile station apparatus is the same as the power of the data signal in the OFDM symbol including the reference signal determined for each mobile station apparatus.
  • the arrangement of reference signals determined for each base station apparatus based on a signal arrangement pattern as shown in FIG. 10, the arrangement of reference signals determined for each base station apparatus, the arrangement of reference signals defined for each mobile station apparatus, the arrangement of data signals, and the base station Adjustment of the power of the reference signal determined for each device, adjustment of the power of the reference signal determined for each mobile station device, and adjustment of the power of the data signal are performed.
  • the rest is the same as in the case of the first embodiment and the second embodiment. According to the present embodiment, since the power of the data signal is not lowered more than necessary, the reproduction accuracy of the data signal can be increased.
  • Non-Patent Document 5 By using a signal arrangement pattern as shown in FIG. 11, as shown in Non-Patent Document 5, in an OFDM symbol in which a reference signal defined for each base station device and a reference signal defined for each mobile station device are mixed, Since the power of the reference signal determined for each mobile station device is larger than the power of the data signal, the channel characteristics are improved. For this reason, it is possible to improve the reproduction quality of the data signal whose power in the OFDM symbol is reduced.
  • the reference signal defined for each base station apparatus for the resource block, the arrangement of the reference signal and data signal defined for each mobile station apparatus, and the base station The power of the reference signal determined for each device, the reference signal determined for each mobile station device, and the data signal is adjusted.
  • the rest is the same as in the case of the first embodiment and the second embodiment.
  • it is allowed to reduce the power of a data signal more than necessary, and data in an OFDM symbol in which a reference signal determined for each base station apparatus and a reference signal determined for each mobile station apparatus are mixed. Signal reproduction accuracy can be increased.
  • the power of the reference signal determined for each base station apparatus is increased by using the signal arrangement pattern as shown in FIG. 12, the power of the data signal in the OFDM symbol including only the reference signal determined for each base station apparatus Can be suppressed more than necessary.
  • the reference signal defined for each base station apparatus for the resource block the arrangement of the reference signal and data signal defined for each mobile station apparatus, and the base station
  • the power of the reference signal determined for each device, the reference signal determined for each mobile station device, and the data signal is adjusted. The rest is the same as in the case of the first embodiment and the second embodiment.
  • FIG. 13 and FIG. 14 are diagrams showing examples of signal arrangement patterns according to this embodiment.
  • an unused resource element is set in an OFDM symbol in which a reference signal defined for each base station apparatus and a reference signal defined for each mobile station apparatus are mixed.
  • the power of the reference signal determined for each base station apparatus is increased using the power allocated to the unused resource elements, and the power of the data signal is decreased for the other OFDM symbols. Is used to increase the power of the reference signal determined for each base station apparatus.
  • the power of the data signal is reduced, and the power of the reference signal determined for each base station apparatus is increased using the reduced power.
  • the power of the reference signal determined for each mobile station apparatus is equal in the resource block. In this case, the power of the data signal in the OFDM symbol in which the reference signal defined for each base station device and the reference signal defined for each mobile station device are mixed differs from the power of the data signal in the other OFDM symbol. .
  • the power of the OFDM symbol in which the reference signal determined for each base station apparatus and the reference signal determined for each mobile station apparatus are mixed and other OFDM symbols By making this adjustment different, it is possible to suppress a phenomenon in which the power of the data signal in the OFDM symbol including the reference signal determined for each base station apparatus falls more than necessary.
  • the reference signal defined for each base station apparatus for the resource block the arrangement of the reference signal and the data signal defined for each mobile station apparatus, The power of the reference signal determined for each base station device, the reference signal determined for each mobile station device, and the data signal is adjusted.
  • the rest is the same as in the case of the first embodiment and the second embodiment.
  • the power of the data signal is reduced to improve the cell coverage and cell edge throughput, and the power of the reference signal determined for each base station apparatus using the reduced power. Is raised.
  • the power of the reference signal determined for each mobile station apparatus is the same as the power of the data signal in the OFDM symbol including the reference signal determined for each base station apparatus.
  • the power of the reference signal determined for each base station apparatus is increased by using the signal arrangement pattern as shown in FIG. 10, the power of the data signal in the OFDM symbol including only the reference signal determined for each base station apparatus Can be suppressed more than necessary.
  • the arrangement of reference signals determined for each base station apparatus based on a signal arrangement pattern as shown in FIG. 10, the arrangement of reference signals determined for each base station apparatus, the arrangement of reference signals defined for each mobile station apparatus, the arrangement of data signals, and the base station Adjustment of the power of the reference signal determined for each device, adjustment of the power of the reference signal determined for each mobile station device, and adjustment of the power of the data signal are performed.
  • the rest is the same as in the case of the first embodiment and the second embodiment. According to the present embodiment, since the power of the data signal is not lowered more than necessary, the reproduction accuracy of the data signal can be increased.
  • the first to seventh embodiments have been exemplarily shown.
  • a plurality of signal arrangement patterns are shown.
  • the signal arrangement pattern shown in the embodiment is an example. Signal arrangement patterns similar to these are also included in the scope of the present invention.
  • a program for realizing the functions described in the present embodiment is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed to execute processing of each unit. May be performed.
  • the “computer system” here includes an OS and hardware such as peripheral devices.
  • the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case is also used to hold a program for a certain period of time.
  • the program may be a program for realizing a part of the above-described functions, or may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the program may be acquired via a transmission medium such as the Internet.
  • the present invention can be used for communication devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

リソースブロックの1OFDMシンボル内に基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在せず、移動局装置毎に定められる参照信号が含まれるOFDMシンボルが時間軸上に等間隔に並んでいる。このような信号配置パターンを用いることにより、上記非特許文献1における、1OFDMシンボルに基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在することによる問題点を回避することができる。これによりリソースブロックの1OFDMシンボル内に基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とを混在させないようにすることが可能になる。

Description

無線通信システム、基地局装置、移動局装置、通信方法
 本発明は、無線通信システム、基地局装置、移動局装置、通信方法に関する。
 現在、OFDMA(Orthogonal Frequency Division Multiple Access:直交周波数分割多元接続)方式を用いた移動体通信において、ビームフォーミングによる通信を行う場合に、リソースブロックには、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号とが配置されている。ここで、基地局装置毎に定められる参照信号は、主として制御信号の再生およびチャネル品質の測定等のために用いられ、移動局装置毎に定められる参照信号は主としてデータ信号の再生に用いられる。尚、本発明では、制御信号の再生およびチャネル品質の測定等は特徴部分ではないため、制御信号およびチャネル品質の測定についての説明は省略することにする。
 一方、リソースブロックの1OFDM(Orthogonal Frequency Division Multiplexing)シンボル内に、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在する場合に、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とを周波数シフトする際の制限が厳しくなるという問題がある。
 また、基地局装置毎に定められる参照信号の電力はリソースブロック内で一定であり、基地局装置毎に定められる参照信号が含まれるOFDMシンボル内のデータ信号の電力はリソースブロック内で一定であるという条件下で、セルカバレッジおよびセルエッジのスループット改善等のため、基地局装置毎に定められる参照信号の電力を上げる場合、図1Aに示すとおり、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在するOFDMシンボルのデータ信号の数が基地局装置毎に定められる参照信号を含むOFDMシンボル内のデータ信号の数より少ないため、基地局装置毎に定められる参照信号のみを含むOFDMシンボル内のデータ信号の電力は必要以上に下がってしまうという問題がある。例えば、図1Aの矢印で示すように、3OFDMシンボル目の総電力は24aであるのに対し、4OFDM目の総電力は20aであるため、4OFDMシンボル目では、データ信号が4a分余計に下がってしまっている。
 はじめに、非特許文献1では、リソースブロックの1OFDMシンボル内に基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在する場合に、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とを周波数シフトする際の制限が厳しくなるという問題が示されている。
 非特許文献1では、この問題を回避するため、図1Bに示すように、1OFDMシンボル内に、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在しないよう、8OFDMシンボル目の移動局装置毎に定められる参照信号を9OFDMシンボル目に移動することが提案されている。
 次に、非特許文献2では、移動局装置毎に定められる参照信号の電力とデータ信号の電力との関係が説明されている。
 非特許文献2では、移動局装置毎に定められる参照信号の電力は、その移動局装置毎に定められる参照信号と同一のリソースブロックの、基地局装置毎に定められる参照信号を含まないOFDMシンボル内のデータ信号の電力と同一であるとしている。
 次に、非特許文献3では、セルカバレッジおよびセルエッジのスループット改善等のため、基地局装置毎に定められる参照信号の電力を上げる方法について提案されている。
 非特許文献3では、図2に示すように、SFBC(Space Freqency Block Code)+FSTD(Frequency Switched Transmit Diversity)符号化処理時についての検討がなされている。リソースブロックの1OFDMシンボル内の基地局装置毎に定められる参照信号の電力を上げるため、その基地局装置毎に定められる参照信号と同一のOFDMシンボル内のデータ信号の電力を下げることが提案されている。
 非特許文献3では、データ信号の電力が下がるため、ダイバーシティゲインが下がり、スループット特性等が劣化する。
 次に、非特許文献4では、セルカバレッジおよびセルエッジのスループット改善等のため、基地局装置毎に定められる参照信号の電力を上げている。ここでは図3に示すように、SFBC(Space Freqency Block Code)+FSTD(Frequency Switched Transmit Diversity)符号化時についての検討がなされており、リソースブロックの1OFDMシンボル内の基地局装置毎に定められる参照信号の電力を上げるために、その基地局装置毎に定められる参照信号と同一のOFDMシンボル内に、未使用のサブキャリアを設定することが提案されている。
 非特許文献4では、データ信号の電力は下がらないため、このことを原因としたスループット特性等の劣化はないが、未使用のサブキャリアに配置され得るデータ信号分だけスループット特性等が劣化することが懸念される。
 次に、非特許文献5では、図4に示すとおり、ビームフォーミングによる通信をおこなう場合、移動局装置毎に定められる参照信号の電力を上げることで(例えば2aから5aなど)、チャネル推定の精度が改善されることを示している。これに伴い、電力を上げる移動局装置毎に定められる参照信号と同一のリソースブロックのOFDMシンボル内のデータ信号の電力を下げる。
 非特許文献5では、図5に示すような結果を示している。図5では、変調方式が、64QAM(Quadrature Amplitude Modulation)の場合とQPSK(Quadrature Phase Shift Keying)の場合とを比較して、移動局装置毎に定められる参照信号の電力の大きさが、スループット特性に与える影響を示す図である。
 図5に示すように、移動局装置毎に定められる参照信号の電力を0.5[dB]上げた場合のスループットが最も良いことがわかる。その理由は、データ信号の電力を下げることにより、ビームフォーミングゲインが下がるためと考えられる。
 従って、ビームフォーミングによる通信を行う場合において、スループットを改善しようとしても、その改善は移動局装置毎に定められる参照信号の電力として0.5[dB]上げた程度までが限界となっている。
3GPP TSG RAN1 #47bis、R1-082508、"Modification on UE-Specific RS for Extended CP" 3GPP TSG RAN1 #52bis、R1-082607、"Way forward on DRS EPRE" 3GPP TSG RAN1 #46bis、R1-062608、"Issues of non-overlapping DL reference signal with power boosting" 3GPP TSG RAN1 #47bis、R1-070250、"Downlink transmit power boosting" 3GPP TSG RAN1 #53、R1-081779、"DRS Power Boosting"
 はじめに、リソースブロックの1OFDMシンボル内に基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在する場合に、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とを周波数シフトする際のパターンの制限が厳しくなるということが問題となっている。従って、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが1OFDMシンボル内に混在しないようにすることが課題として挙げられる。
 上記非特許文献1では、図1Bに示すように、8OFDMシンボル目の移動局装置毎に定められる参照信号を9OFDMシンボル目に移動することによって、1OFDMシンボル内に基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在しないようにしている。しかしながら、5OFDMシンボル目の移動局装置毎に定められる参照信号と9OFDMシンボル目の移動局装置毎に定められる参照信号との間に3OFDMシンボル分の間が空くため、移動局装置が高速に移動する場合、チャネル推定の精度が劣化することが予測される。よって、これを回避する手法を検討する必要がある。
 次に、基地局装置毎に定められる参照信号の電力を上げるため、データ信号の電力を下げた場合、図1Aに示すとおり、基地局装置毎に定められる参照信号のみを含むOFDMシンボル内のデータ信号の電力は必要以上に下がってしまうという問題がある。
 また、データ信号の電力が下がることにより、セルエッジのスループット等が劣化する。よって、セルエッジのスループット改善等の手法が望まれる。
 次に、非特許文献2に示すような、移動局装置毎に定められる参照信号の電力は、基地局装置毎に定められる参照信号を含まないOFDMシンボル内のデータ信号の電力に等しいという条件下において、いかにして基地局装置毎に定められる参照信号の電力を上げるかも課題となる。
 本発明は、リソースブロックの1OFDMシンボル内に基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とを混在させないようにすることと、リソースブロックの1OFDMシンボル内に基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在するOFDMシンボル内の参照信号の電力を大きくする際の課題の解決を目的とする。
 本発明の一観点によれば、基地局装置と移動局装置とを有する無線通信システムであって、前記基地局装置が備える信号配置部は、前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とが、同一リソースブロックの同一OFDMシンボル内に混在することを回避する手段、もしくは、前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とが、同一リソースブロックの同一OFDMシンボル内に混在し、かつ前記基地局装置毎に定められる参照信号の電力を上げるための手段、を具備することを特徴とする無線通信システムが提供される。前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とが、同一リソースブロックの同一OFDMシンボル内に混在することを回避する手段により、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号との周波数シフトする際のパターンの制限および基地局装置毎に定められる参照信号の電力をあげることによる影響等をなくすことが可能となる。また、前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とが、同一リソースブロックの同一OFDMシンボル内に混在していても、前記基地局装置毎に定められる参照信号の電力を上げるための手段を設けることで、セルカバレッジおよびセルエッジにおけるスループット改善等のため、基地局装置毎に定められる参照信号の電力を上げることによる影響を低減することができる。
 前記信号配置部は、リソースブロックに対する前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とデータ信号の配置と、前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とデータ信号の電力の調整とを行うための情報からなる信号配置パターンに基づいて、リソースブロックに対する前記移動局装置毎に定められる参照信号と前記基地局装置毎に定められる参照信号とデータ信号の配置と、前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とデータ信号の電力の調整とを行うことが好ましい。
 前記信号配置パターンは、同一リソースブロックの同一OFDMシンボル内に前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とが混在しないようにすることが好ましい。或いは、前記信号配置パターンは、同一リソースブロックの同一OFDMシンボル内に前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とが混在する場合、当該OFDMシンボル内の前記移動局装置毎に定められる参照信号の電力は、当該OFDMシンボル内のデータ信号の電力と等しいとするようにしても良い。或いは、前記信号配置パターンは、同一リソースブロックの同一OFDMシンボル内に前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とが混在し、かつ前記基地局装置毎に定められる参照信号の電力を上げる場合、当該OFDMシンボルに未使用のリソースエレメントを設定するようにしても良い。
 或いは、前記信号配置パターンは、同一リソースブロックの同一OFDMシンボル内に前記移動局装置毎に定められる参照信号と前記基地局装置毎に定められる参照信号とが混在し、かつ前記基地局装置毎に定められる参照信号の電力を上げる場合、当該OFDMシンボルの前記移動局装置毎に定められる参照信号の電力をデータ信号の電力よりも大きくするようにしても良い。或いは、前記信号配置パターンは、同一リソースブロックの同一OFDMシンボル内に前記移動局装置毎に定められる参照信号と前記基地局装置毎に定められる参照信号とが混在する場合、当該OFDMシンボルと他のOFDMシンボルとの電力の調整の手法を異なるものとするようにしても良い。或いは、前記信号配置パターンは、同一リソースブロックの同一OFDMシンボル内に前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とが混在する場合、当該OFDMシンボル内の前記移動局装置毎に定められる参照信号の電力は、当該リソースブロックの基地局装置毎に定められる参照信号が含まれるOFDMシンボルのデータ信号の電力と等しいものとしても良い。また、前記基地局装置は、外部から入力されたデータ信号を変調する変調部と、電波の到来方向を推定する到来方向推定部と、信号の到来方向に対して電波を指向させるための重みを制御する第1の重み制御部と、電波を指向するための重み付けを施す送信ビームフォーミング部と、移動局装置に対して信号を送信する送信部とを備えることが好ましい。
 本発明は、上記に記載の無線通信システムにおける基地局装置において、前記変調部は、外部から入力されたデータ信号に対して直交振幅変調を行うことを特徴とする基地局装置であっても良い。また、上記に記載の無線通信システムにおける基地局装置であって、前記第1の重み制御部は、到来方向推定部で推定された信号の到来方向に対して電波を指向させるための重みを制御することを特徴とする基地局装置であっても良い。また、本発明は、前記送信ビームフォーミング部は、第1の重み制御部で推定した電波の到来方向に電波を指向するための重みを用いて、リソースブロックに重み付けをおこない、重み付けをおこなったリソースブロックを送信部へ出力することを特徴とする基地局装置であっても良い。
 さらに、本発明は、前記到来方向推定部は、移動局装置から送信された電波からその電波の到来方向を推定し、推定した電波の到来方向を第1の重み制御部へ出力することを特徴とする基地局装置であっても良い。また、本発明は、前記送信部は、送信ビームフォーミング部から出力されたビームフォーミングを適用するリソースブロックを移動局装置に対して送信することを特徴とする基地局装置であっても良い。
 また、上記に記載の無線通信システムにおいて、前記移動局装置は、リソースブロックを受信する受信部と、リソースブロックに配置されている参照信号を用いてチャネル推定を行い、リソースブロックに配置されているデータ信号を等化するための重みを制御する第2の重み制御部と、リソースブロックに配置されているデータ信号に、そのデータ信号を等化するための重みを作用させる等化部と、等化したデータ信号を復調する復調部と、前記基地局装置に対して前記基地局装置が信号の到来方向を推定するために用いる信号を送信する測定用信号送信部と、を備えることが好ましい。上記に記載の無線通信システムにおける移動局装置の、前記受信部は、前記基地局装置の前記送信部から送信されたリソースブロックを受信することを特徴とする。また、前記第2の重み制御部は、リソースブロックに配置されている参照信号を用いてチャネルを推定し、推定したチャネルからリソースブロックに配置されているデータ信号を等化するための重みを制御することを特徴とする移動局装置であっても良い。また、前記等化部は、リソースブロックに配置されているデータ信号に対して第2の重み制御部から出力された重みを作用させることを特徴とする移動局装置であっても良い。また、前記復調部は、等化されたデータ信号に対して直交振幅復調を行うことを特徴とする移動局装置であっても良い。さらに、前記測定用信号送信部は、前記基地局装置の前記到来方向推定部が、前記移動局装置から送信される信号の到来方向を推定するために用いる信号を送信することを特徴とする移動局装置であっても良い。
 さらに、本発明は、前記移動局装置と通信する前記基地局装置の通信方法であって、外部から入力されたデータ信号を変調する第1の過程と、信号配置パターンに基づいて、リソースブロックに対して電力の調整を行った基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号との配置と、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の電力の調整とを行う第2の過程と、移動局装置から送信される信号の到来方向を推定する第3の過程と、信号の到来方向に対して電波を指向させるための重みを制御する第4の過程と、リソースブロックに電波を指向させるための重みを作用させる第5の過程と、前記移動局装置に対してリソースブロックを送信する第6の過程と、を備えることを特徴とする通信方法である。
 或いは、上記に記載の無線通信システムにおいて、前記基地局装置と通信する移動局装置の通信方法であって、リソースブロックを受信する第1の過程と、リソースブロックに配置されている参照信号を用いてチャネル推定を行い、リソースブロックに配置されているデータ信号を等化するための重みを制御する第2の過程と、リソースブロックに配置されているデータ信号に、そのデータ信号を等化するための重みを作用させる第3の過程と、等化したデータ信号を復調する第4の過程と、前記基地局装置に対して前記基地局装置が信号の到来方向を推定するために用いる信号を送信する第5の過程とを備えることを特徴とする通信方法である。
 また、本発明は、周波数と時間で規定された第一の領域を周波数方向に複数配置して構成した第二の領域を複数使用して、基地局から移動局にデータを送信する通信方法であって前記第一の領域のそれぞれには、前記データ、前記基地局毎に定められる参照信号、前記移動局毎に定められる参照信号のいずれかを配置して、前記第一の領域毎の電力を基地局が調整するに際し、前記基地局毎に定められる参照信号が配置された前記第一の領域と前記データが配置された前記第一の領域の送信電力の比を設定する制御を含む通信方法において、前記移動局毎に定められる参照信号を含む前記第二の領域内では、前記移動局毎に定められる参照信号が配置された前記第一の領域と前記データが配置された前記第一の領域の送信電力の比は等しいことを特徴とする通信方法である。
 前記データが配置された前記第一の領域の送信電力と、前記移動局毎に定められる参照信号が配置された前記第一の領域の送信電力の比を、前記移動局毎に定められる参照信号が配置された複数の前記第二の領域間で等しくすることが好ましい。前記データが配置された前記第一の領域の送信電力と、前記移動局毎に定められる参照信号が配置された前記第一の領域の送信電力を、前記移動局毎に定められる参照信号が配置された前記第二の領域内で等しくするようにしても良い。
 また、前記基地局毎に定められる参照信号が配置された前記第一の領域の送信電力と前記基地局毎に定められる参照信号を含む前記第二の領域内における前記データが配置された前記第一の領域の送信電力の比は、前記基地局毎に定められる参照信号が配置された前記第一の領域の送信電力と前記基地局毎に定められる参照信号を含まない前記第二の領域内における前記データが配置された前記第一の領域の送信電力の比と異なることが好ましい。前記基地局は前記移動局に対してビームフォーミングを行うことが好ましい。
 また、本発明は、周波数と時間で規定された第一の領域を周波数方向に複数配置して構成した第二の領域を複数使用して、基地局から移動局にデータを送信する通信方法であって、前記第一の領域のそれぞれには、前記データ、前記基地局毎に定められる参照信号、前記移動局毎に定められる参照信号のいずれかを配置して、前記第一の領域毎の電力を基地局が決定するに際し、前記基地局毎に定められる参照信号が配置された前記第一の領域と前記データが配置された前記第一の領域の送信電力の比を設定する制御を含む通信方法において、前記移動局毎に定められる参照信号が配置された前記第一の領域と前記データが配置された前記第一の領域の送信電力の比は等しいことを特徴とする通信方法である。
 本発明は、上記に記載の方法をコンピュータに実行させるためのプログラムであっても良いし、該プログラムを記録するコンピュータ読みとり可能な記憶媒体であっても良い。
 また、本発明の各構成要件は、独立して発明として成立するものである。例えば、システムの発明に、基地局装置と移動局装置との構成を記載した場合には、それぞれの装置の構成に基づいて、基地局装置の発明と移動局装置の発明とを抽出することができる。
 リソースブロックの1OFDMシンボル内に基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とを混在させないことにより、セルカバレッジおよびセルエッジにおけるスループット改善等のため、基地局装置毎に定められる参照信号の電力を上げることに関係する様々な問題点および、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とを周波数シフトする際のパターンの制限が緩和する。
 リソースブロックの1OFDMシンボル内に基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在する場合においても、セルカバレッジおよびセルエッジにおけるスループット改善等のため、基地局装置毎に定められる参照信号の電力を上げることに関係する様々な問題を解決することが可能となる。
基地局装置毎に定められる参照信号の電力を上げる場合の手法を示す図である。 非特許文献1の提案であって、1OFDMシンボル内に、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在しないよう、8OFDMシンボル目の移動局装置毎に定められる参照信号を9OFDMシンボル目に移動する手法を示す図である。 非特許文献3の提案であって、SFBC(Space Freqency Block Code)+FSTD(Frequency Switched Transmit Diversity)符号化時に、リソースブロックの1OFDMシンボル内の基地局装置毎に定められる参照信号の電力を上げるため、その基地局装置毎に定められる参照信号と同一のOFDMシンボル内のデータ信号の電力を下げる手法を示す図である。 非特許文献4の提案であって、SFBC(Space Freqency Block Code)+FSTD(Frequency Switched Transmit Diversity)符号化時に、リソースブロックの1OFDMシンボル内の基地局装置毎に定められる参照信号の電力を上げるため、その基地局装置毎に定められる参照信号と同一のOFDMシンボル内に未使用のサブキャリアを設定する手法を示す図である。 非特許文献5の提案であって、ビームフォーミングによる通信をおこなう場合、移動局装置毎に定められる参照信号の電力を上げることで(例えば2aから5a等)、チャネル推定の精度を改善する手法を示す図である。 非特許文献5の提案であって、変調方式が、64QAM(Quadrature Amplitude Modulation)の場合とQPSK(Quadrature Phase Shift Keying)の場合とを比較して、移動局装置毎に定められる参照信号の電力の大きさが、スループット特性に与える影響を示す図である 本発明の第1の実施の形態による無線通信システムの一構成例を示す図である。 基地局装置の一構成例を示す機能ブロック図である。 本実施の形態による信号配置パターンの一例を示す図である。 本実施の形態による信号配置パターンの一例を示す図である。 移動局装置の一構成例を示す機能ブロック図である。 本発明の第3の実施の形態による信号配置パターンの一例を示す図である。 本発明の第4の実施の形態による信号配置パターンの一例を示す図である。 本発明の第5の実施の形態による信号配置パターンの一例を示す図である。 本発明の第6の実施の形態による信号配置パターンの一例を示す図である。 本発明の第6の実施の形態による信号配置パターンの別の一例を示す図である。 本発明の第2の実施の形態による基地局装置の一構成例を示す機能ブロック図である。
10a…到来方向推定部、10c-4~17c-4…アンテナ0~アンテナ7、10b…変調部、10c~17c…信号処理装置0~信号処理装置7、10c-1~17c-1…信号配置部、10c-2~17c-2…送信ビームフォーミング部、10c-3~17c-3…送信部、11a…重み制御部1、100a…基地局装置、20a-1…アンテナ、20a-2…受信部、20a-3…等化部、20b…重み制御部2、20c…復調部、20d…送信部、200a…移動局装置、30a…到来方向推定部、30c-4~37c-4…アンテナA0~アンテナA7、30b…変調部、30c~37c…信号処理装置Å0~信号処理装置A7、30c-1~37c-1…信号配置部、30c-2~37c-2…送信ビームフォーミング部、30c-3~37c-3…送信部、31a…重み制御部1、30d-4~33d-4…アンテナB0~アンテナB3、30d~33d…信号処理装置B0~信号処理装置B3、30d-1~33d-1…信号配置部、30d-3~33d-3…送信部。
 以下、図面を参照しながら、本発明の実施の形態による通信技術について説明を行う。尚、以下においては、第1の実施の形態から第7の実施の形態までの各実施の形態について説明を行っている。
(第1の実施の形態)
 まず、本発明の第1の実施の形態による通信技術について説明を行う。本実施の形態による通信システムは、基地局装置が8アンテナを備え、移動局(端末局)装置が1アンテナを備えている場合を例にして説明する。
 図8Aは、本実施の形態によるリソースブロックの信号配置パターンの一例を示す図である。図8Aに示すように、第1の実施の形態では、リソースブロックの1OFDMシンボル内に基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在せず、移動局装置毎に定められる参照信号が含まれるOFDMシンボルが時間軸上に等間隔に並んでいる。このような信号配置パターンを用いることにより、上記非特許文献1に示される、リソースブロックの1OFDMシンボル内に基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在することによる問題点を回避し、かつ、移動局が高速で移動する際の、チャネル推定の劣化を抑制することができる。
 図6は、本実施の形態による無線通信システムの一構成例を示す図である。図6に示すように、無線通信システムは、基地局装置(100a)と移動局装置(200a)とを有している。
 基地局装置(100a)は、まず、移動局装置(200a)が送信するアップリンク信号を用い、1.アップリンク信号の到来方向、すなわち移動局装置が位置する方向を推定する。
 次に、2.リソースブロックに対する基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の配置と、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の電力の調整とを行う。
 次に、3.推定した到来方向に対して、ビームを指向させる重みを制御し、その重みを作用させ、ビームの指向制御を行い、4.移動局装置(200a)にダウンリンク信号を送信する。
 移動局装置(200a)は、基地局装置(100a)から送信されるダウンリンク信号を受信し、1.ダウンリンク信号に含まれる参照信号を用いてチャネル推定する。2.推定したチャネルの特性を用いて等化処理をおこない、等化した信号からデータ信号を再生する。
 次に、基地局装置(100a)と移動局装置(200a)との詳細な構成について説明する。はじめに、基地局装置(100a)の構成について説明する。図7は、基地局装置(100a)の一構成例を示す機能ブロック図である。
 図7に示すように、基地局装置(100a)は、移動局装置(200a)から送信されるアップリンク信号を、アンテナ0(10c-4)とアンテナ1(11c-4)とアンテナ2(12c-4)とアンテナ3(13c-4)とアンテナ4(14c-4)とアンテナ5(15c-4)とアンテナ6(16c-4)とアンテナ7(17c-4)との8本のアンテナを介して受信する。受信したアップリンク信号を用いてアップリンク信号の到来方向を推定する到来方向推定部(10a)と、ビームフォーミングが適用されるリソースブロック毎に、推定した到来方向に対し、ビームを指向させるための重みを制御する重み制御部1(11a)と、を備える。さらに、外部から入力されるデータ信号に対し、直交振幅変調を行うための変調部(10b)と、直交振幅変調されたデータ信号に対し信号処理を行う、信号処理装置0(10c)と信号処理装置1(11c)と信号処理装置2(12c)と信号処理装置3(13c)と信号処理装置4(14c)と信号処理装置5(15c)と信号処理装置6(16c)と信号処理装置7(17c)と、を備える。但し、信号処理装置0(10c)と信号処理装置1(11c)と信号処理装置2(12c)と信号処理装置3(13c)と信号処理装置4(14c)と信号処理装置5(15c)と信号処理装置6(16c)と信号処理装置7(17c)との構成は同一であるため、ここでは、信号処理装置0(10c)に関する説明のみ行い、他の処理については説明を省略する。
 信号処理装置0(10c)は、リソースブロックに対する基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の配置と、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の電力の調整とをおこなうための情報からなる信号配置パターンに基づいて、リソースブロックに対する基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の配置と、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の電力の調整とをおこなう信号配置部(10c-1)と、データ信号および移動局装置に定められる参照信号に対し、重み制御部1(11a)で制御した重みを作用させる送信ビームフォーミング部(10c-2)と、逆高速フーリエ変換、サイクリック・プレフィックスの挿入、ディジタル・アナログ変換およびアナログ信号処理等を行い、移動局装置(200a)に対し、アンテナ(10c-4)を介してダウンリンク信号を送信する送信部(10c-3)とを備える。
 次に、基地局装置(100a)の処理の流れの詳細について説明する。
 基地局装置(100a)は、2系統に分かれている。一つが、ビームフォーミングによる通信を行うための重みを制御する系統Aで、もう一つが、外部から入力されるデータ信号に信号処理を行う系統Bである。
 はじめに、系統Aの処理の流れに関する説明を行う。系統Aでは、基地局装置(100a)に対し、移動局装置(200a)からアップリンク信号が送信されていることを想定している。
 到来方向推定部(10a)は、はじめに移動局装置(200a)から送信されたアップリンク信号をアンテナ0(10c-4)とアンテナ1(11c-4)とアンテナ2(12c-4)とアンテナ3(13c-4)とアンテナ4(14c-4)とアンテナ5(15c-4)とアンテナ6(16c-4)とアンテナ7(17c-4)とを介して受信する。次に、受信したアップリンク信号からアップリンク信号の到来方向を推定し、その推定された到来方向を重み制御部1(11a)に出力する。
 重み制御部1(11a)は、はじめにリソースブロック毎に、推定した到来方向に対し、ビームを指向させるための各アンテナの重みを制御する。次に、アンテナ0(10c-4)用の重みを信号処理装置0(10c)に出力し、アンテナ1(11c-4)用の重みを信号処理装置1(11c)に出力し、アンテナ2(12c-4)用の重みを信号処理装置2(12c)に出力し、アンテナ3(13c-4)用の重みを信号処理装置3(13c)に出力し、アンテナ4(14c-4)用の重みを信号処理装置4(14c)に出力し、アンテナ5(15c-4)用の重みを信号処理装置5(15c)に出力し、アンテナ6(16c-4)用の重みを信号処理装置6(16c)に出力し、アンテナ7(17c-4)用の重みを信号処理装置7(17c)に出力する。
 次に、系統Bの処理の流れに関する説明を行う。系統Bでは、基地局装置(100a)に対し、外部から基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号とが入力されていることを想定している。
 変調部(10b)は、入力されたデータ信号に直交振幅変調を行い、信号処理装置0(10c)と信号処理装置1(11c)と信号処理装置2(12c)と信号処理装置3(13c)と信号処理装置4(14c)と信号処理装置5(15c)と信号処理装置6(16c)と信号処理装置7(17c)とに同一信号を出力する。ここでは、前述の理由より、信号処理装置0(10c)の処理の流れに関する説明のみ行い、他の処理については説明を省略する。
 信号処理装置0(10c)に入力されたデータ信号は、信号配置部(10c-1)に入力される。
 図8Aは、リソースブロックに対する基地局装置毎に定められる参照信号と移動局装置毎に定められている参照信号とデータ信号の配置と、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の電力の調整と、をおこなうための情報からなる信号配置パターンの一例を示す図である。
 信号配置部(10c-1)は、図8Aに示すような信号配置パターンに基づいて、リソースブロックに対する基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の配置と、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の電力の調整とを行う。次に、このリソースブロックを、OFDMシンボルを単位として送信ビームフォーミング部(10c-2)に出力する。
 送信ビームフォーミング部(10c-2)は、はじめに重み制御部1(11a)より出力された重みを、信号配置部(10c-1)より出力されたOFDMシンボルに含まれるデータ信号と移動局装置毎に定められる参照信号とに作用させる。次に、重みを作用させたOFDMシンボルを送信部(10c-3)へ出力する。
 送信部(10c-3)は、逆高速フーリエ変換、サイクリック・プレフィックスの挿入、ディジタル・アナログ変換およびアナログ信号処理等を行い、アンテナ0(10c-4)を介して移動局装置(200a)に対してダウンリンク信号を送信する。
 次に、移動局装置(200a)の一構成例について説明する。図9は、移動局装置(200a)の一構成例を示す図である。
 移動局装置(200a)は、基地局装置(100a)が移動局装置(200a)に対してビームを指向させるために用いるアップリンク信号を、アンテナ(20a-1)を介して送信する測定用信号送信部(20d)を備える。さらに、基地局装置(100a)から送信されるダウンリンク信号を、アンテナ(20a-1)を介して受信する受信部(20a-2)と、等化処理を行う等化部(20a-3)と、直交振幅復調を行う復調部(20c)と、受信部(20a―2)から出力された移動局装置毎に定められる参照信号から等化処理で用いられる重みを制御する重み制御部2(20b)とを備える。
 次に、移動局装置(200a)の処理の流れの詳細について説明する。
 移動局装置(200a)は、2系統に分かれている。一つが、基地局装置(100a)が移動局装置(200a)に対し、ビームを指向させるために用いるアップリンク信号を送信する系統Aであり、一つが、基地局装置(100a)から送信されたダウンリンク信号を受信し、信号処理によりデータ信号を再生する系統Bである。
 はじめに、系統Aの処理の流れに関する説明を行う。
 測定用信号送信部(20d)は、基地局装置(100a)が移動局装置(200a)の位置する方向に対してビームを指向するために用いるアップリンク信号をアンテナ(20a-1)を介して送信する。
 次に、系統Bの処理の流れに関する説明を行う。系統Bでは、移動局装置(200a)に対し、基地局装置(100a)からダウンリンク信号が送信されていることを想定している。
 受信部(20a-2)は、はじめに、基地局装置(100a)から送信されるダウンリンク信号をアンテナ(20a-1)を介して受信する。次に、受信したダウンリンク信号に対し、アナログ信号処理、アナログ・ディジタル変換、サイクリック・プレフィックスの除去および高速フーリエ変換等をおこない、等化部(20a-3)に対してデータ信号を出力し、重み制御部2(20b)に対して移動局装置毎に定められる参照信号を出力する。
 重み制御部2(20b)は、入力された移動局装置毎に定められる参照信号を用いてチャネル推定を行い、等化部(20a-3)の等化処理で用いる重みを制御し、その重みを等化部(20a-3)に出力する。
 等化部(20a-3)は、入力されたデータ信号に対して入力された重みを作用させて等化し、この等化したデータ信号を復調部(20c)に出力する。
 復調部(20c)は、入力されたデータ信号に直交振幅復調を行い、復調されたデータ信号を外部に出力する。
 本実施の形態では、リソースブロックの1OFDMシンボル内に基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在することに伴う問題点を回避できる。
 また、ここでは図8Aの信号配置パターンを例に説明をおこなったが、図8Bの信号配置パターンを用いてもよい。図8Bの信号配置パターンでは、移動局装置毎に定められる参照信号を用いてチャネル推定をおこなった場合、図8Aに示す信号配置パターンを用いた場合より精度が改善される特徴を有する。一方、移動局装置毎に定められる参照信号の数が多くなることによるスループットの低下が懸念される。
(第2の実施の形態)
 次に、本発明の第2の実施の形態による通信技術について説明を行う。本実施の形態による通信システムについて、基地局装置が、ビームフォーミングによる通信に用いられる8アンテナと基地局装置毎に定められる参照信号の送信に用いられる4アンテナとを備え、移動局(端末局)装置が1アンテナを備えている場合を例にして説明する。
 本実施の形態では、移動局装置(200a)が基地局装置(100a)から送信されるダウンリンク信号を受信する場合、OFDMシンボルの電力がすべて同一となるように電力を調整する。このようにすることにより、移動局装置(200a)のアナログ信号処理における負荷を低減することが可能である。
 図8Aは、本実施の形態によるリソースブロックの信号配置パターンの一例を示す図である。図8Aに示すように、第2の実施の形態では、リソースブロックの1OFDMシンボル内に基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在せず、移動局装置毎に定められる参照信号が含まれるOFDMシンボルが時間軸上に等間隔に並んでいる。このような信号配置パターンを用いることにより、上記非特許文献1に示される、リソースブロックの1OFDMシンボル内に基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在することによる問題点を回避し、かつ、移動局が高速で移動する際の、チャネル推定の劣化を抑制することができる。
 図6は、本実施の形態による無線通信システムの一構成例を示す図である。図6に示すように、無線通信システムは、基地局装置(100a)と移動局装置(200a)とを有している。
 基地局装置(100a)は、まず、移動局装置(200a)が送信するアップリンク信号を用い、1.アップリンク信号の到来方向、すなわち移動局装置が位置する方向を推定する。
 次に、2.リソースブロックに対する基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の配置と、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の電力の調整とを行う。
 次に、3.推定した到来方向に対して、ビームを指向させる重みを制御し、その重みを作用させ、ビームの指向制御を行い、4.移動局装置(200a)にダウンリンク信号を送信する。
 移動局装置(200a)は、基地局装置(100a)から送信されるダウンリンク信号を受信し、1.ダウンリンク信号に含まれる参照信号を用いてチャネル推定する。2.推定したチャネルの特性を用いて等化処理をおこない、等化した信号からデータ信号を再生する。
 次に、基地局装置(100a)と移動局装置(200a)との詳細な構成について説明する。はじめに、基地局装置(100a)の構成について説明する。図15は、基地局装置(100a)の一構成例を示す機能ブロック図である。
 図15に示すように、基地局装置(100a)は、移動局装置(200a)から送信されるアップリンク信号を、アンテナA0(30c-4)とアンテナA1(31c-4)とアンテナA2(32c-4)とアンテナA3(33c-4)とアンテナA4(34c-4)とアンテナA5(35c-4)とアンテナA6(36c-4)とアンテナA7(37c-4)との8本のアンテナを介して受信する。受信したアップリンク信号を用いてアップリンク信号の到来方向を推定する到来方向推定部(30a)と、ビームフォーミングが適用されるリソースブロック毎に、推定した到来方向に対し、ビームを指向させるための重みを制御する重み制御部1(31a)と、を備える。さらに、外部から入力されるデータ信号に対し、直交振幅変調を行うための変調部(30b)と、直交振幅変調されたデータ信号に対し信号処理を行う、信号処理装置A0(30c)と信号処理装置A1(31c)と信号処理装置A2(32c)と信号処理装置A3(33c)と信号処理装置A4(34c)と信号処理装置A5(35c)と信号処理装置A6(36c)と信号処理装置A7(37c)と、を備える。但し、信号処理装置A0(30c)と信号処理装置A1(31c)と信号処理装置A2(32c)と信号処理装置A3(33c)と信号処理装置A4(34c)と信号処理装置A5(35c)と信号処理装置A6(36c)と信号処理装置A7(37c)との構成は同一であるため、ここでは、信号処理装置A0(30c)に関する説明のみ行い、他の処理については説明を省略する。
 また、基地局装置(100a)は、基地局装置毎に定められる参照信号に対し信号処理を行う、信号処理装置B0(30d)と信号処理装置B1(31d)と信号処理装置B2(32d)と信号処理装置B3(33d)とを備える。但し、信号処理装置B0(30d)と信号処理装置B1(31d)と信号処理装置B2(32d)と信号処理装置B3(33d)との構成は同一であるため、ここでは、信号処理装置B0(30d)に関する説明のみ行い、他の処理については説明を省略する。
 信号処理装置A0(30c)は、リソースブロックに対する基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の配置と、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の電力の調整とをおこなうための情報からなる信号配置パターンに基づいて、リソースブロックに対する移動局装置毎に定められる参照信号とデータ信号の配置と、移動局装置毎に定められる参照信号とデータ信号の電力の調整とをおこなう信号配置部(30c-1)と、移動局装置に定められる参照信号とデータ信号とに対し、重み制御部1(31a)で制御した重みを作用させる送信ビームフォーミング部(30c-2)と、逆高速フーリエ変換、サイクリック・プレフィックスの挿入、ディジタル・アナログ変換およびアナログ信号処理等を行い、移動局装置(200a)に対し、アンテナA0(30c-4)を介してダウンリンク信号を送信する送信部(30c-3)とを備える。
 信号処理装置B0(30d)は、信号配置パターンに基づいて、リソースブロックに対する基地局装置毎に定められる参照信号の配置と基地局装置毎に定められる参照信号の電力の調整とをおこなう信号配置部(30d-1)と、逆高速フーリエ変換、サイクリック・プレフィックスの挿入、ディジタル・アナログ変換およびアナログ信号処理等を行い、移動局装置(200a)に対し、アンテナB0(30d-4)を介してダウンリンク信号を送信する送信部(30d-3)とを備える。
 次に、基地局装置(100a)の処理の流れの詳細について説明する。
 基地局装置(100a)は、3系統に分かれている。一つが、ビームフォーミングによる通信を行うための重みを制御する系統Aで、一つが、外部から入力されるデータ信号に信号処理を行う系統Bで、一つが、基地局装置毎に定められる参照信号に信号処理をおこなう系統Cである。
 はじめに、系統Aの処理の流れに関する説明を行う。系統Aでは、基地局装置(100a)に対し、移動局装置(200a)からアップリンク信号が送信されていることを想定している。
 到来方向推定部(30a)は、はじめに移動局装置(200a)から送信されたアップリンク信号をアンテナA0(30c-4)とアンテナA1(31c-4)とアンテナA2(32c-4)とアンテナA3(33c-4)とアンテナA4(34c-4)とアンテナA5(35c-4)とアンテナA6(36c-4)とアンテナA7(37c-4)とを介して受信する。次に、受信したアップリンク信号からアップリンク信号の到来方向を推定し、その推定された到来方向を重み制御部1(31a)に出力する。
 重み制御部1(31a)は、はじめにリソースブロック毎に、推定した到来方向に対し、ビームを指向させるための各アンテナの重みを制御する。次に、アンテナA0(30c-4)用の重みを信号処理装置A0(30c)に出力し、アンテナA1(31c-4)用の重みを信号処理装置A1(31c)に出力し、アンテナA2(32c-4)用の重みを信号処理装置A2(32c)に出力し、アンテナA3(33c-4)用の重みを信号処理装置A3(33c)に出力し、アンテナA4(34c-4)用の重みを信号処理装置A4(34c)に出力し、アンテナA5(35c-4)用の重みを信号処理装置A5(35c)に出力し、アンテナA6(36c-4)用の重みを信号処理装置A6(36c)に出力し、アンテナA7(37c-4)用の重みを信号処理装置A7(37c)に出力する。
 次に、系統Bの処理の流れに関する説明を行う。系統Bでは、基地局装置(100a)に対し、外部から移動局装置毎に定められる参照信号とデータ信号とが入力されていることを想定している。
 変調部(30b)は、入力されたデータ信号に直交振幅変調を行い、信号処理装置A0(30c)と信号処理装置A1(31c)と信号処理装置A2(32c)と信号処理装置A3(33c)と信号処理装置A4(34c)と信号処理装置A5(35c)と信号処理装置A6(36c)と信号処理装置A7(37c)とに同一信号を出力する。ここでは、前述の理由より、信号処理装置A0(30c)の処理の流れに関する説明のみ行い、他の処理については説明を省略する。
 信号処理装置A0(30c)に入力されたデータ信号は、信号配置部(30c-1)に入力される。
 図8Aは、リソースブロックに対する基地局装置毎に定められる参照信号と移動局装置毎に定められている参照信号とデータ信号の配置と、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の電力の調整と、をおこなうための情報からなる信号配置パターンの一例を示す図である。
 信号配置部A0(30c-1)は、図8Aに示すような信号配置パターンに基づいて、リソースブロックに対する移動局装置毎に定められる参照信号とデータ信号の配置と、移動局装置毎に定められる参照信号とデータ信号の電力の調整とを行う。次に、このリソースブロックを、OFDMシンボルを単位として送信ビームフォーミング部(30c-2)に出力する。
 送信ビームフォーミング部(30c-2)は、はじめに重み制御部1(31a)より出力された重みを、信号配置部(30c-1)より出力されたOFDMシンボルに含まれる移動局装置毎に定められる参照信号とデータ信号とに作用させる。次に、重みを作用させたOFDMシンボルを送信部(30c-3)へ出力する。
 送信部(30c-3)は、逆高速フーリエ変換、サイクリック・プレフィックスの挿入、ディジタル・アナログ変換およびアナログ信号処理等を行い、アンテナA0(30c-4)を介して移動局装置(200a)に対してダウンリンク信号を送信する。
 次に、系統Cの処理の流れに関する説明を行う。系統Cでは、基地局装置(100a)に対し、外部から基地局装置毎に定められる参照信号が入力されていることを想定している。
 基地局装置毎に定められる参照信号は、はじめに信号処理装置B0(30d)と信号処理装置B1(31d)と信号処理装置B2(32d)と信号処理装置B3(33d)とに入力される。ここでは、前述の理由により、信号処理装置B0(30d)に関する説明のみ行い、他の処理については説明を省略する。
 信号処理装置B0(30d)に入力された基地局装置毎に定められる参照信号は、はじめに信号配置部(30d-1)に出力される。信号配置部(30d-1)は、図8Aに示すような信号配置パターンに基づいて、リソースブロックに対する基地局装置毎に定められる参照信号の配置と基地局装置毎に定められる参照信号の電力の調整とを行う。次に、このリソースブロックを、OFDMシンボルを単位として送信部(30d-3)に出力する。
 送信部(30d-3)は、逆高速フーリエ変換、サイクリック・プレフィックスの挿入、ディジタル・アナログ変換およびアナログ信号処理等を行い、アンテナB0(30d-4)を介して移動局装置(200a)に対してダウンリンク信号を送信する。
 次に、移動局装置(200a)の一構成例について説明する。図9は、移動局装置(200a)の一構成例を示す図である。
 移動局装置(200a)は、基地局装置(100a)が移動局装置(200a)に対してビームを指向させるために用いるアップリンク信号を、アンテナ(20a-1)を介して送信する測定用信号送信部(20d)を備える。さらに、基地局装置(100a)から送信されるダウンリンク信号を、アンテナ(20a-1)を介して受信する受信部(20a-2)と、等化処理を行う等化部(20a-3)と、直交振幅復調を行う復調部(20c)と、受信部(20a―2)から出力された移動局装置毎に定められる参照信号から等化処理で用いられる重みを制御する重み制御部2(20b)とを備える。
 次に、移動局装置(200a)の処理の流れの詳細について説明する。
 移動局装置(200a)は、2系統に分かれている。一つが、基地局装置(100a)が移動局装置(200a)に対し、ビームを指向させるために用いるアップリンク信号を送信する系統Aであり、一つが、基地局装置(100a)から送信されたダウンリンク信号を受信し、信号処理によりデータ信号を再生する系統Bである。
 はじめに、系統Aの処理の流れに関する説明を行う。
 測定用信号送信部(20d)は、基地局装置(100a)が移動局装置(200a)の位置する方向に対してビームを指向するために用いるアップリンク信号を、アンテナ(20a-1)を介して送信する。
 次に、系統Bの処理の流れに関する説明を行う。系統Bでは、移動局装置(200a)に対し、基地局装置(100a)からダウンリンク信号が送信されていることを想定している。
 受信部(20a-2)は、はじめに、基地局装置(100a)から送信されるダウンリンク信号をアンテナ(20a-1)を介して受信する。次に、受信したダウンリンク信号に対し、アナログ信号処理、アナログ・ディジタル変換、サイクリック・プレフィックスの除去および高速フーリエ変換等をおこない、等化部(20a-3)に対してデータ信号を出力し、重み制御部2(20b)に対して移動局装置毎に定められる参照信号を出力する。
 重み制御部2(20b)は、入力された移動局装置毎に定められる参照信号を用いてチャネル推定を行い、等化部(20a-3)の等化処理で用いる重みを制御し、その重みを等化部(20a-3)に出力する。
 等化部(20a-3)は、入力されたデータ信号に対して入力された重みを作用させて等化し、この等化したデータ信号を復調部(20c)に出力する。
 復調部(20c)は、入力されたデータ信号に直交振幅復調を行い、復調されたデータ信号を外部に出力する。
 本実施の形態では、リソースブロックの1OFDMシンボル内に基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在することに伴う問題点を回避できる。
 また、ここでは図8Aの信号配置パターンを例に説明をおこなったが、図8Bの信号配置パターンを用いてもよい。図8Bの信号配置パターンでは、移動局装置毎に定められる参照信号を用いてチャネル推定をおこなった場合、図8Aに示す信号配置パターンを用いた場合より精度が改善される特徴を有する。一方、移動局装置毎に定められる参照信号の数が多くなることによるスループットの低下が懸念される。
(第3の実施の形態)
 以下に、本発明の第3の実施の形態による通信技術について説明を行う。本実施の形態では、図10に示すように、セルカバレッジおよびセルエッジのスループット改善等のため、データ信号の電力を下げ、その下げ分の電力を用いて基地局装置毎に定められる参照信号の電力を上げている。但し、移動局装置毎に定められる参照信号の電力をその移動局装置毎に定められる参照信号が含まれるOFDMシンボル内のデータ信号の電力と同一とする。
 図10に示すような信号配置パターンを用いることにより、基地局装置毎に定められる参照信号の電力を上げた場合、OFDMシンボル内のデータ信号の電力が必要以上に下がる現象を抑制できる。
 本実施の形態では、図10に示すような信号配置パターンに基づいて、基地局装置毎に定められる参照信号の配置と移動局装置毎に定められる参照信号の配置とデータ信号の配置と基地局装置毎に定められる参照信号の電力の調整と移動局装置毎に定められる参照信号の電力の調整とデータ信号の電力の調整とを行う。それ以外は、第1の実施の形態および第2の実施の形態の場合と同一である。本実施の形態によれば、データ信号の電力を必要以上に下がることがなくなるため、データ信号の再生精度を上げることができる。
(第4の実施の形態)
 次に、本発明の第4の実施の形態について説明を行う。図11に示すように、セルカバレッジおよびセルエッジのスループット改善等のため、データ信号の電力を下げ、その下げ分の電力を用いて基地局装置毎に定められる参照信号の電力を上げている。但し、上記非特許文献2に示すように、移動局装置毎に定められる参照信号の電力と基地局装置毎に定められる参照信号を含まないOFDMシンボル内のデータ信号の電力とを同一とする。
 図11に示すような信号配置パターンを用いることにより、上記非特許文献5に示すとおり、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在するOFDMシンボルでは、移動局装置毎に定められる参照信号の電力がデータ信号の電力より大きくなるため、チャネル特性が改善される。このため、このOFDMシンボル内の電力が下がったデータ信号の再生品質を改善することができる。
 本実施の形態では、図11に示すような信号配置パターンに基づいて、リソースブロックに対する基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の配置と、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の電力の調整とを行う。それ以外は、第1の実施の形態および第2の実施の形態の場合と同一である。本実施の形態によれば、データ信号の電力を必要以上に下げることを許容し、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在するOFDMシンボル内のデータ信号の再生精度を上げることができる。
(第5の実施の形態)
 次に、本発明の第5の実施の形態について説明する。図12に示すように、セルカバレッジおよびセルエッジのスループット改善等のため、未使用のリソースエレメントを設定し、その未使用のリソースエレメントに割り当てられている電力を用いて基地局装置毎に定められる参照信号の電力を上げている。
 図12に示すような信号配置パターンを用いることにより、基地局装置毎に定められる参照信号の電力を上げた場合、基地局装置毎に定められる参照信号のみ含まれるOFDMシンボル内のデータ信号の電力が必要以上に下がる現象を抑制できる。
 また、データ信号の電力は下がることはないため、データ信号の再生品質に影響はない。
 本実施の形態では、図12に示すような信号配置パターンに基づいて、リソースブロックに対する基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の配置と、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の電力の調整とを行う。それ以外は、第1の実施の形態および第2の実施の形態の場合と同一である。
(第6の実施の形態)
 次に、本発明の第6の実施の形態による通信技術について説明する。本実施の形態では、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在するOFDMシンボルと他のOFDMシンボルとの電力の調整の手法を異なるものとしている。
 図13および図14は、本実施の形態による信号配置パターンの例を示す図である。
 図13では、セルカバレッジおよびセルエッジのスループット改善等のため、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在するOFDMシンボルでは、未使用のリソースエレメントを設定し、その未使用のリソースエレメントに割り当てられている電力を用いて基地局装置毎に定められる参照信号の電力を上げ、それ以外のOFDMシンボルについては、データ信号の電力を下げ、その下げ分の電力を用いて基地局装置毎に定められる参照信号の電力を上げている。
 図14では、セルカバレッジおよびセルエッジのスループット改善等のため、データ信号の電力を下げ、その下げ分の電力を用いて基地局装置毎に定められる参照信号の電力を上げている。但し、移動局装置毎に定められる参照信号の電力はリソースブロック内で等しいものとする。この場合、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在するOFDMシンボル内のデータ信号の電力と、それ以外のOFDMシンボル内のデータ信号の電力とが異なる。
 図13および図14に示すような信号配置パターンを用いることにより、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とが混在するOFDMシンボルと他のOFDMシンボルとの電力の調整を別とすることにより、基地局装置毎に定められる参照信号が含まれるOFDMシンボル内のデータ信号の電力が必要以上に下がる現象を抑制することができる。
 本実施の形態では、図13および図14に示すような信号配置パターンに基づいて、リソースブロックに対する基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の配置と、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の電力の調整とを行う。それ以外は、第1の実施の形態および第2の実施の形態の場合と同一である。
(第7の実施の形態)
 以下に、本発明の第7の実施の形態による通信技術について説明を行う。本実施の形態では、図10に示すように、セルカバレッジおよびセルエッジのスループット改善等のため、データ信号の電力を下げ、その下げ分の電力を用いて基地局装置毎に定められる参照信号の電力を上げている。但し、移動局装置毎に定められる参照信号の電力は、基地局装置毎に定められる参照信号が含まれるOFDMシンボル内のデータ信号の電力と同一とする。
 図10に示すような信号配置パターンを用いることにより、基地局装置毎に定められる参照信号の電力を上げた場合、基地局装置毎に定められる参照信号のみ含まれるOFDMシンボル内のデータ信号の電力が必要以上に下がる現象を抑制できる。
 本実施の形態では、図10に示すような信号配置パターンに基づいて、基地局装置毎に定められる参照信号の配置と移動局装置毎に定められる参照信号の配置とデータ信号の配置と基地局装置毎に定められる参照信号の電力の調整と移動局装置毎に定められる参照信号の電力の調整とデータ信号の電力の調整とを行う。それ以外は、第1の実施の形態および第2の実施の形態の場合と同一である。本実施の形態によれば、データ信号の電力を必要以上に下がることがなくなるため、データ信号の再生精度を上げることができる。
 以上のように、本発明の実施の形態による通信技術では、第1から第7までの実施の形態について例示的に示してきたが、これらの実施の形態においては、複数の信号配置パターンが示されている。しかしながら、実施形態で示されている信号配置パターンは一例であり。これらに類似した信号配置パターンも本発明の範囲に含まれるものである。
 また、具体的な構成は、上述の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更がされた場合などにおいても特許請求の範囲に含まれるのは言うまでもない。
 また、上記の実施の形態において、添付図面に図示されている構成等については、これらに限定されるものではなく、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。
 また、本実施の形態で説明した機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。尚、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また前記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。プログラムは、インターネットなどの伝送媒体を介して取得するものであっても良い。
 本発明は、通信装置に利用可能である。

Claims (30)

  1.  基地局装置と移動局装置とを有する無線通信システムであって、前記基地局装置が備える信号配置部は、前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とが、同一リソースブロックの同一OFDMシンボル内に混在することを回避する手段、もしくは、前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とが、同一リソースブロックの同一OFDMシンボル内に混在し、かつ前記基地局装置毎に定められる参照信号の電力を上げるための手段、を具備することを特徴とする無線通信システム。
  2.  前記信号配置部は、リソースブロックに対する前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とデータ信号の配置と、前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とデータ信号の電力の調整とを行うための情報からなる信号配置パターンに基づいて、リソースブロックに対する前記移動局装置毎に定められる参照信号と前記基地局装置毎に定められる参照信号とデータ信号の配置と、前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とデータ信号の電力の調整とを行うことを特徴とする請求項1に記載の無線通信システム。
  3.  前記信号配置パターンは、同一リソースブロックの同一OFDMシンボル内に前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とが混在しないことを特徴とする請求項1又は請求項2に記載の無線通信システム。
  4.  前記信号配置パターンは、同一リソースブロックの同一OFDMシンボル内に前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とが混在する場合、当該OFDMシンボル内の前記移動局装置毎に定められる参照信号の電力は、当該OFDMシンボル内のデータ信号の電力と等しいとすることを特徴とする請求項1又は請求項2に記載の無線通信システム。
  5.  前記信号配置パターンは、同一リソースブロックの同一OFDMシンボル内に前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とが混在し、かつ前記基地局装置毎に定められる参照信号の電力を上げる場合、当該OFDMシンボルに未使用のリソースエレメントを設定することを特徴とする請求項1又は請求項2に記載の無線通信システム。
  6.  前記信号配置パターンは、同一リソースブロックの同一OFDMシンボル内に前記移動局装置毎に定められる参照信号と前記基地局装置毎に定められる参照信号とが混在し、かつ前記基地局装置毎に定められる参照信号の電力を上げる場合、当該OFDMシンボルの前記移動局装置毎に定められる参照信号の電力をデータ信号の電力よりも大きくすることを特徴とする請求項1又は請求項2に記載の無線通信システム。
  7.  前記信号配置パターンは、同一リソースブロックの同一OFDMシンボル内に前記移動局装置毎に定められる参照信号と前記基地局装置毎に定められる参照信号とが混在する場合、当該OFDMシンボルと他のOFDMシンボルとの電力の調整の手法を異なるものとすることを特徴とする請求項1又は請求項2に記載の無線通信システム。
  8.  前記信号配置パターンは、同一リソースブロックの同一OFDMシンボル内に前記基地局装置毎に定められる参照信号と前記移動局装置毎に定められる参照信号とが混在する場合、当該OFDMシンボル内の前記移動局装置毎に定められる参照信号の電力は、当該リソースブロックの基地局装置毎に定められる参照信号が含まれるOFDMシンボル内のデータ信号の電力と等しいとすることを特徴とする請求項1又は請求項2に記載の無線通信システム。
  9.  前記基地局装置は、外部から入力されたデータ信号を変調する変調部と、前期信号配置部と、電波の到来方向を推定する到来方向推定部と、信号の到来方向に対して電波を指向させるための重みを制御する第1の重み制御部と、電波を指向するための重み付けを施す送信ビームフォーミング部と、移動局装置に対して信号を送信する送信部とを備えることを特徴とする請求項1から請求項8までのいずれか1項に記載の無線通信システム。
  10.  請求項1から請求項9までのいずれか1項に記載の無線通信システムにおける基地局装置であって、前記変調部は、外部から入力されたデータ信号に対して直交振幅変調を行うことを特徴とする基地局装置。
  11.  請求項1から請求項9までのいずれか1項に記載の無線通信システムにおける基地局装置であって、前記第1の重み制御部は、到来方向推定部で推定された信号の到来方向に対して電波を指向させるための重みを制御することを特徴とする基地局装置。
  12.  請求項1から請求項9までのいずれか1項に記載の無線通信システムにおける基地局装置であって、前記送信ビームフォーミング部は、第1の重み制御部で推定した電波の到来方向に電波を指向するための重みを用いて、リソースブロックに重み付けをおこない、重み付けをおこなったリソースブロックを送信部へ出力することを特徴とする基地局装置。
  13.  請求項1から請求項9までのいずれか1項に記載の無線通信システムにおける基地局装置であって、前記到来方向推定部は、移動局装置から送信された電波からその電波の到来方向を推定し、推定した電波の到来方向を第1の重み制御部へ出力することを特徴とする基地局装置。
  14.  請求項1から請求項9までのいずれか1項に記載の無線通信システムにおける基地局装置であって、前記送信部は、送信ビームフォーミング部から出力されたビームフォーミングを適用するリソースブロックを移動局装置に対して送信することを特徴とする基地局装置。
  15.  前記移動局装置は、リソースブロックを受信する受信部と、リソースブロックに配置されている参照信号を用いてチャネル推定を行い、リソースブロックに配置されているデータ信号を等化するための重みを制御する第2の重み制御部と、リソースブロックに配置されているデータ信号に、そのデータ信号を等化するための重みを作用させる等化部と、等化したデータ信号を復調する復調部と、前記基地局装置に対して前記基地局装置が信号の到来方向を推定するために用いる信号を送信する測定用信号送信部とを備えることを特徴とする請求項1から請求項8までのいずれか1項に記載の無線通信システム。
  16.  請求項1から請求項8までと請求項15とのいずれか1項に記載の無線通信システムにおける移動局装置であって、前記受信部は、前記基地局装置の前記送信部から送信されたリソースブロックを受信することを特徴とする移動局装置。
  17.  請求項1から請求項8までと請求項15とのいずれか1項に記載の無線通信システムにおける移動局装置であって、前記第2の重み制御部は、リソースブロックに配置されている参照信号を用いてチャネルを推定し、推定したチャネルからリソースブロックに配置されているデータ信号を等化するための重みを制御することを特徴とする移動局装置。
  18.  請求項1から請求項8までと請求項15とのいずれか1項に記載の無線通信システムにおける移動局装置であって、前記等化部は、リソースブロックに配置されているデータ信号に対して第2の重み制御部から出力された重みを作用させることを特徴とする移動局装置。
  19.  請求項1から請求項8までと請求項15とのいずれか1項に記載の無線通信システムにおける移動局装置であって、前記復調部は、等化されたデータ信号に対して直交振幅復調を行うことを特徴とする移動局装置。
  20.  請求項1から請求項8までと請求項15とのいずれか1項に記載の無線通信システムにおける移動局装置であって、前記測定用信号送信部は、前記基地局装置の前記到来方向推定部が、前記移動局装置から送信される信号の到来方向を推定するために用いる信号を送信することを特徴とする移動局装置。
  21.  請求項1から請求項9までのいずれか1項に記載の無線通信システムにおいて、前記移動局装置と通信する前記基地局装置の通信方法であって、外部から入力されたデータ信号を変調する第1の過程と、信号配置パターンに基づいて、リソースブロックに対して電力の調整を行った基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号とを配置と、基地局装置毎に定められる参照信号と移動局装置毎に定められる参照信号とデータ信号の電力の調整とを行う第2の過程と、移動局装置から送信される信号の到来方向を推定する第3の過程と、信号の到来方向に対して電波を指向させるための重みを制御する第4の過程と、ビームフォーミングが適用されるリソースブロックに電波を指向させるための重みを作用させる第5の過程と、前記移動局装置に対してビームフォーミングが適用されるリソースブロックを送信する第6の過程と、を備えることを特徴とする通信方法。
  22.  請求項1から請求項8までと請求項15とのいずれか1項に記載の無線通信システムにおいて、前記基地局装置と通信する移動局装置の通信方法であって、ビームフォーミングが適用されるリソースブロックを受信する第1の過程と、ビームフォーミングが適用されるリソースブロックに配置されている参照信号を用いてチャネル推定を行い、リソースブロックに配置されているデータ信号を等化するための重みを制御する第2の過程と、ビームフォーミングが適用されるリソースブロックに配置されているデータ信号に、そのデータ信号を等化するための重みを作用させる第3の過程と、等化したデータ信号を復調する第4の過程と、前記基地局装置に対して前記基地局装置が信号の到来方向を推定するために用いる信号を送信する第5の過程とを備えることを特徴とする通信方法。
  23.  請求項21又は請求項22のいずれか1項に記載の方法をコンピュータに実行させるためのプログラム。
  24.  請求項23に記載のプログラムを記録するコンピュータ読みとり可能な記憶媒体。
  25.  周波数と時間で規定された第一の領域を周波数方向に複数配置して構成した第二の領域を複数使用して、基地局から移動局にデータを送信する通信方法であって前記第一の領域のそれぞれには、前記データ、前記基地局毎に定められる参照信号、前記移動局毎に定められる参照信号のいずれかを配置して、前記第一の領域毎の電力を基地局が調整するに際し、
     前記基地局毎に定められる参照信号が配置された前記第一の領域と前記データが配置された前記第一の領域の送信電力の比を設定する制御を含む通信方法において、
     前記移動局毎に定められる参照信号を含む前記第二の領域内では、前記移動局毎に定められる参照信号が配置された前記第一の領域と前記データが配置された前記第一の領域の送信電力の比は等しいことを特徴とする通信方法。
  26.  前記データが配置された前記第一の領域の送信電力と、前記移動局毎に定められる参照信号が配置された前記第一の領域の送信電力の比を、前記移動局毎に定められる参照信号が配置された複数の前記第二の領域間で等しくすることを特徴とする請求項25に記載の通信方法。
  27.  前記データが配置された前記第一の領域の送信電力と、前記移動局毎に定められる参照信号が配置された前記第一の領域の送信電力を、前記移動局毎に定められる参照信号が配置された前記第二の領域内で等しくすることを特徴とする請求項25又は26に記載の通信方法。
  28.  前記基地局毎に定められる参照信号が配置された前記第一の領域の送信電力と前記基地局毎に定められる参照信号を含む前記第二の領域内における前記データが配置された前記第一の領域の送信電力の比は、前記基地局毎に定められる参照信号が配置された前記第一の領域の送信電力と前記基地局毎に定められる参照信号を含まない前記第二の領域内における前記データが配置された前記第一の領域の送信電力の比と異なることを特徴とする請求項25から27までのいずれか1項に記載の通信方法。
  29.  前記基地局は前記移動局に対してビームフォーミングを行うことを特徴とする請求項25から28までのいずれか1項に記載の通信方法。
  30.  周波数と時間で規定された第一の領域を周波数方向に複数配置して構成した第二の領域を複数使用して、基地局から移動局にデータを送信する通信方法であって、
     前記第一の領域のそれぞれには、前記データ、前記基地局毎に定められる参照信号、前記移動局毎に定められる参照信号のいずれかを配置して、前記第一の領域毎の電力を基地局が決定するに際し、
     前記基地局毎に定められる参照信号が配置された前記第一の領域と前記データが配置された前記第一の領域の送信電力の比を設定する制御を含む通信方法において、
     前記移動局毎に定められる参照信号が配置された前記第一の領域と前記データが配置された前記第一の領域の送信電力の比は等しいことを特徴とする通信方法。
PCT/JP2009/063796 2008-08-05 2009-08-04 無線通信システム、基地局装置、移動局装置、通信方法 WO2010016481A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BRPI0917098-7A BRPI0917098B1 (pt) 2008-08-05 2009-08-04 Sistema de comunicação sem fio, dispositivo de estação base, dispositivo de estação móvel, e método de comunicação
CA2732975A CA2732975C (en) 2008-08-05 2009-08-04 Wireless communication system, base station device, mobile station device, and communication method
MX2011001292A MX2011001292A (es) 2008-08-05 2009-08-04 Sistema de radiocomunicacion, dispositivo de estacion de base, dispositivo de estacion movil y metodo de comunicacion.
AU2009278433A AU2009278433B2 (en) 2008-08-05 2009-08-04 Wireless communication system, base station device, mobile station device, and communication method
EP09804964A EP2312779A4 (en) 2008-08-05 2009-08-04 RADIO COMMUNICATION SYSTEM, BASE STATION DEVICE, MOBILE STATION DEVICE, AND COMMUNICATION METHOD
US13/057,723 US9020516B2 (en) 2008-08-05 2009-08-04 Wireless communication system, base station device, mobile station device, and communication method
CN200980139448.9A CN102171959B (zh) 2008-08-05 2009-08-04 无线通信系统、基站装置、移动站装置、通信方法
JP2010523859A JP4684371B2 (ja) 2008-08-05 2009-08-04 無線通信システム、基地局装置、移動局装置、通信方法
ZA2011/01692A ZA201101692B (en) 2008-08-05 2011-03-04 Wireless communication system, base station device, mobile station device, and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008201657 2008-08-05
JP2008-201657 2008-08-05

Publications (1)

Publication Number Publication Date
WO2010016481A1 true WO2010016481A1 (ja) 2010-02-11

Family

ID=41663698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063796 WO2010016481A1 (ja) 2008-08-05 2009-08-04 無線通信システム、基地局装置、移動局装置、通信方法

Country Status (12)

Country Link
US (1) US9020516B2 (ja)
EP (1) EP2312779A4 (ja)
JP (1) JP4684371B2 (ja)
KR (1) KR101565194B1 (ja)
CN (1) CN102171959B (ja)
AU (1) AU2009278433B2 (ja)
BR (1) BRPI0917098B1 (ja)
CA (1) CA2732975C (ja)
MX (1) MX2011001292A (ja)
TW (1) TWI481294B (ja)
WO (1) WO2010016481A1 (ja)
ZA (1) ZA201101692B (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011054148A1 (zh) * 2009-11-06 2011-05-12 华为技术有限公司 一种资源配置方法和装置
US9241287B2 (en) * 2011-09-13 2016-01-19 Qualcomm Incorporated Narrow bandwidth operation in LTE
WO2013141584A1 (ko) * 2012-03-19 2013-09-26 엘지전자 주식회사 참조 신호를 전송하는 방법 및 이러한 방법을 사용하는 장치
WO2014101040A1 (zh) 2012-12-27 2014-07-03 华为技术有限公司 信号处理方法和设备
EP3174348B1 (en) * 2014-07-24 2019-04-03 LG Electronics Inc. Method and apparatus for controlling transmission power
US10396873B2 (en) 2014-09-24 2019-08-27 Mediatek Inc. Control signaling in a beamforming system
US9866299B2 (en) 2014-09-24 2018-01-09 Mediatek Inc. Synchronization in a beamforming system
WO2018078794A1 (ja) * 2016-10-28 2018-05-03 三菱電機株式会社 無線制御装置
US10404426B2 (en) 2016-12-08 2019-09-03 Nxp Usa, Inc. Signal transmission method and transmitting device
US20230055133A1 (en) * 2020-03-02 2023-02-23 Nippon Telegraph And Telephone Corporation Wireless communication system, wireless communication method, and transmission device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103961A (ja) * 2006-10-18 2008-05-01 Sanyo Electric Co Ltd 受信方法ならびにそれを利用した受信装置および無線装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440509B2 (en) * 2001-06-21 2008-10-21 Motorola, Inc. Method and system for interference averaging in a wireless communication system
US9338767B2 (en) * 2005-12-22 2016-05-10 Qualcomm Incorporated Methods and apparatus of implementing and/or using a dedicated control channel
EP1998484B1 (en) * 2006-03-20 2019-01-02 Fujitsu Limited Base station and its mimo-ofdm communication method
MX2008013080A (es) * 2006-04-12 2009-01-14 Lg Electronics Inc Metodo para asignar señales de referencia en sistema de mimo.
JP5006001B2 (ja) * 2006-08-22 2012-08-22 株式会社エヌ・ティ・ティ・ドコモ 下りリンクmimo伝送制御方法および基地局装置
US8213541B2 (en) * 2006-09-12 2012-07-03 Hera Wireless S.A. Receiving method for receiving signals by a plurality of antennas, and a receiving apparatus and a radio apparatus using the same
KR101355313B1 (ko) * 2006-10-12 2014-01-23 엘지전자 주식회사 Mimo 시스템에서의 참조신호 배치 방법
MY154923A (en) * 2006-11-01 2015-08-28 Qualcomm Inc Reference signal design for cell search in an orthogonal wireless communication system
JP5159274B2 (ja) * 2006-11-30 2013-03-06 パナソニック株式会社 無線送信装置及び無線送信方法
CN101636994B (zh) * 2007-03-21 2014-02-19 交互数字技术公司 基于专用参考信号模式传输并解码资源块结构的mimo无线通信方法和设备
KR101414611B1 (ko) * 2007-04-19 2014-07-07 엘지전자 주식회사 다중 안테나 시스템에서 신호 송신 방법
CN101682384A (zh) * 2007-05-31 2010-03-24 松下电器产业株式会社 无线通信移动台装置和循环延迟分集模式判定方法
US8369450B2 (en) * 2007-08-07 2013-02-05 Samsung Electronics Co., Ltd. Pilot boosting and traffic to pilot ratio estimation in a wireless communication system
EP2288064A4 (en) 2008-05-13 2017-01-25 NTT DoCoMo, Inc. Base station, user device, and method
US8102935B2 (en) * 2008-05-19 2012-01-24 Qualcomm Incorporated Estimation of data-to-pilot ratio in a wireless communication system
JP5189460B2 (ja) * 2008-10-30 2013-04-24 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおける基地局装置、ユーザ装置及び方法
US8611277B2 (en) * 2009-06-22 2013-12-17 Motorola Mobility Llc Reselection in a wireless communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103961A (ja) * 2006-10-18 2008-05-01 Sanyo Electric Co Ltd 受信方法ならびにそれを利用した受信装置および無線装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "On the conflict between UE specific RS with P/S-SCH and P-BCH", RL-081443, 3GPP, 21 March 2008 (2008-03-21), XP050109860, Retrieved from the Internet <URL:URL:http:/www.3gpp.org/ftp/tsg-ran/WGlRLl/TSGRl-52b/Docs/Rl-081443.zip> *
NORTEL: "Modification on UE-Specific RS for Extended CP", RL-082508, 3GPP, 30 June 2008 (2008-06-30), XP050110775, Retrieved from the Internet <URL:URL:http://www.3gpp.org/ftp/tsg_ran/WG1RL1/TSGRl_53b/Docs/Rl-082508.zip> *
SAMSUNG: "Power Scaling and DL RS boosting", RL-081231, 3GPP, 31 March 2008 (2008-03-31), XP050109675, Retrieved from the Internet <URL:URL:http://<URL:http://www.3gpp.org/ftp/tsg_ran/WGl_RLl/TSGRl_52b/Docs/Rl-081231.zip> *
See also references of EP2312779A4 *

Also Published As

Publication number Publication date
KR20110044278A (ko) 2011-04-28
CN102171959B (zh) 2015-06-03
TW201108844A (en) 2011-03-01
EP2312779A1 (en) 2011-04-20
CA2732975C (en) 2016-03-15
US20110182376A1 (en) 2011-07-28
BRPI0917098B1 (pt) 2018-07-03
JPWO2010016481A1 (ja) 2012-01-26
AU2009278433B2 (en) 2015-09-17
TWI481294B (zh) 2015-04-11
BRPI0917098A2 (pt) 2016-02-16
CN102171959A (zh) 2011-08-31
AU2009278433A1 (en) 2010-02-11
JP4684371B2 (ja) 2011-05-18
KR101565194B1 (ko) 2015-11-02
EP2312779A4 (en) 2011-08-31
CA2732975A1 (en) 2010-02-11
US9020516B2 (en) 2015-04-28
ZA201101692B (en) 2012-05-30
MX2011001292A (es) 2011-04-04

Similar Documents

Publication Publication Date Title
JP4684371B2 (ja) 無線通信システム、基地局装置、移動局装置、通信方法
EP2342834B1 (en) Beam forming method, apparatus and system
KR101265632B1 (ko) 참조 신호 전송, 참조 신호 전송 패턴 설정, 자원 블록설정 및 할당을 위한 방법 및 장치
KR100955446B1 (ko) 셀룰러 시스템에서의 적응 섹터화
US7634014B2 (en) Adaptive pilot allocation method and apparatus for use in a communication system
US7948960B2 (en) Radio transmission device
US8520598B2 (en) Data transmission apparatus using multiple antennas and method thereof
KR20080074004A (ko) 피드백 정보를 이용한 상향링크의 가상 다중 안테나 전송방법 및 이를 지원하는 이동 단말
US8731077B2 (en) Wireless communication system, control station apparatus and terminal apparatus
US20110116566A1 (en) Wireless communication system, transmitter and receiver
KR20070114388A (ko) 하향링크 채널용의 송신장치 및 송신방법
US9674828B2 (en) Terminal apparatus
JPWO2005004361A1 (ja) マルチキャリア無線伝送システム、送信装置及び受信装置
US20130301514A1 (en) Systems and methods for wireless communication system channel allocation using intentional delay distortion
JP4279646B2 (ja) 通信装置
JP2010041587A (ja) マルチキャリア送信装置、受信装置、通信システム、送信方法、受信方法及びプログラム
JP5425576B2 (ja) 移動局装置、送信電力調整方法および通信システム
US9225414B2 (en) Transmission device and method using space-frequency transmission diversity
JP2011066771A5 (ja)
US20110281606A1 (en) Radio communication system, base station apparatus and mobile station apparatus
KR20050110409A (ko) 다중 안테나를 가진 통신 시스템의 채널 품질 지시자 채널전송 시스템 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980139448.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804964

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010523859

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009278433

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2732975

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/001292

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 13057723

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009804964

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009278433

Country of ref document: AU

Date of ref document: 20090804

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117005254

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0917098

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110207