WO2010016415A1 - シリコン製造装置 - Google Patents

シリコン製造装置 Download PDF

Info

Publication number
WO2010016415A1
WO2010016415A1 PCT/JP2009/063497 JP2009063497W WO2010016415A1 WO 2010016415 A1 WO2010016415 A1 WO 2010016415A1 JP 2009063497 W JP2009063497 W JP 2009063497W WO 2010016415 A1 WO2010016415 A1 WO 2010016415A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction tube
reaction
tube
silicon
disposed
Prior art date
Application number
PCT/JP2009/063497
Other languages
English (en)
French (fr)
Inventor
浩男 能美
若松 智
信昭 義松
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to EP09804899.4A priority Critical patent/EP2308801B1/en
Priority to US13/055,766 priority patent/US8486343B2/en
Publication of WO2010016415A1 publication Critical patent/WO2010016415A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/03Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of silicon halides or halosilanes or reduction thereof with hydrogen as the only reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/029Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of monosilane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00139Controlling the temperature using electromagnetic heating
    • B01J2219/00141Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00139Controlling the temperature using electromagnetic heating
    • B01J2219/00148Radiofrequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state

Definitions

  • the present invention relates to a silicon manufacturing apparatus capable of stably supporting a reaction tube formed of a material having a high coefficient of thermal expansion in a silicon reaction vessel.
  • Polycrystalline silicon is currently used as a raw material for semiconductors and solar power generation batteries, which are currently used in various fields and are expected to develop and demand in the future. Efficiently produce high-purity polycrystalline silicon. Is required.
  • a conventional method for producing polycrystalline silicon for example, the surface of a silicon rod disposed inside a bell jar is heated, and chlorosilanes such as trichlorosilane (SiHCl 3 ) and monosilane (SiH 4 ) are mixed with hydrogen. Examples thereof include a Siemens method in which polycrystalline silicon is deposited by contacting a silicon deposition source gas containing a reducing gas.
  • the Siemens method is characterized in that high-purity silicon can be obtained, but since the deposition is batch-type, the main silicon rod installation, energization heating, deposition, cooling, removal, and bell jar cleaning are extremely There is a problem that complicated procedures must be performed.
  • a silicon deposition source gas is supplied into a cylindrical reaction vessel heated to a temperature below the melting point of silicon to produce silicon. After depositing, the inner surface of the cylindrical reaction vessel is heated to a temperature equal to or higher than the melting point temperature of silicon, and the deposited silicon is dropped and recovered by melting part or all of the deposited silicon.
  • a manufacturing method and a silicon manufacturing apparatus used in the method have been proposed (see Patent Document 1).
  • FIG. 6 and 7 show an example of a conventional silicon manufacturing apparatus
  • FIG. 6 is a sectional view of the silicon manufacturing apparatus
  • FIG. 7 is a partially enlarged sectional view of a reaction part of the silicon manufacturing apparatus.
  • the silicon production apparatus 51 includes a reaction unit 52 located above and a recovery unit 53 located below, and supplies chlorosilanes and hydrogen, which are silicon raw materials, to the central part of the ceiling wall of the reaction vessel main body 54.
  • a gas supply pipe 55 is provided.
  • a reaction tube 56 is disposed around the outer periphery of the gas supply tube 55 with a space therebetween.
  • a high frequency heating coil 61 is wound around the outer periphery of the reaction tube 56 with a heat insulating material 64 interposed.
  • a partition wall 65 is disposed below the reaction tube 56 with a gap.
  • the heat insulating material 64 uses carbon graphite having heat resistance.
  • the recovery container 58 is placed on the support floor wall 59 of the recovery part 53, and the recovery part is disassembled to take out the recovery container 58. Yes.
  • a cooling jacket 60 is disposed on the support floor wall 59, and a supply port and a discharge port of a cooling means (not shown) can be connected to the cooling jacket 60 to circulate cooling water.
  • a gas discharge pipe 63 is disposed between the reaction unit 52 and the recovery unit 53, and the gas discharge pipe 63 is connected to the downstream gas processing facility.
  • the reaction tube 56 when a voltage is applied to the high frequency heating coil 61, the reaction tube 56 is heated by the eddy current due to the high frequency of the high frequency heating coil 61, and the inner surface of the reaction tube 56 exceeds the melting point of silicon. Heated to temperature. Chlorosilanes and hydrogen are supplied from the gas supply pipe 55, and these gases are brought into contact with the inner surface of the reaction pipe 56 to precipitate silicon in a molten state.
  • the silicon solution deposited in the molten state falls so as to travel along the lower end portion of the reaction tube 56, flows down from the opening at the lower end portion of the reaction tube 56, and is recovered in the recovery container 58 positioned immediately below.
  • the silicon recovered in the recovery container 58 is taken out of the reaction container main body 54 together with the recovery container 58 in a cooled and solidified state by the cooling water of the cooling jacket 60 before the recovery container 58 is taken out.
  • the reaction tube 56 As the material of the reaction tube 56, heat resistant graphite is used. Graphite thermally expands about 100 mm when the length of graphite is 7 m at 1000 ° C. Therefore, as shown in FIGS. 6 and 7, the lower opening side of the reaction tube 56 must be in a free state. As described above, the conventional reaction tube 56 is suspended in the reaction section 52 to solve the problem of thermal expansion. However, in the case of the suspension type reaction tube 56, since there is a hanging part on the upper side, the center of gravity of the reactor main body is located at the upper part, and it is necessary to form the reaction vessel main body firmly. The work also takes time. Furthermore, when the reaction tube is enlarged, its own weight is applied to the reaction tube itself, which makes it difficult to increase the size of the apparatus.
  • the present invention can follow the thermal expansion of the reaction tube without suspending the reaction tube, and stably supports the reaction tube with respect to the support structure of the reaction tube. It is another object of the present invention to provide a silicon production apparatus equipped with a novel reaction tube that can reduce the sealing gas.
  • the silicon production apparatus of the present invention has a gas supply pipe for supplying chlorosilanes and hydrogen to a reaction chamber in a reaction vessel, deposits silicon from the chlorosilanes and hydrogen, and performs thermal expansion.
  • a reaction tube made of a material to be heated, a heating unit disposed on the outer peripheral side of the reaction tube to melt the deposited silicon, and a heat insulating material provided between the reaction tube and the heating unit.
  • an intermediate wall projecting toward the center of the reaction vessel is formed between the reaction chamber and the recovery portion, and the reaction tube is placed on the intermediate wall. I tried to support it.
  • an elastic material that expands and contracts in the vertical direction can be airtightly disposed between the upper end of the reaction tube and the ceiling of the reaction chamber.
  • a support wall may be formed on the upper surface of the intermediate wall, and the reaction tube may be supported via the support wall.
  • the reaction tube of the silicon production apparatus includes an outer tube reaction tube and an inner tube reaction tube disposed at an interval on the inner surface of the outer tube reaction tube, and the inner surface of the outer tube reaction tube Are formed with a plurality of projecting portions projecting inward of the reaction vessel at intervals in the circumferential direction of the inner peripheral surface, the outer cylindrical reaction tube is supported by the intermediate wall, and the inner cylindrical reaction tube is The protrusion can be supported by the outer tube reaction tube.
  • the lower end portion of the reaction tube of the silicon production apparatus has an annular flat portion formed on the outer peripheral side of the lower end portion of the reaction tube, and from the inner peripheral side of the flat portion toward the lower side in the radial direction of the reaction tube.
  • a frustoconical portion having a tapered diameter can be formed, and the flat portion can be supported by the support wall so that the frustoconical portion protrudes inward from the support wall.
  • an intermediate wall projecting toward the center of the reaction vessel is formed between the reaction chamber and the recovery unit, and the reaction tube is supported by the intermediate wall. Since the system has been changed to a stationary system, the support structure of the reaction tube can be stabilized. Since the load applied to the reaction tube is changed from the tensile force to the compressive force, it is structurally strong and the reaction tube can be made large. Since an elastic material that expands and contracts in the vertical direction is hermetically disposed between the upper end of the reaction tube of the silicon production apparatus and the ceiling of the reaction chamber, no sealing gas is required.
  • the lower end portion of the reaction tube of the silicon production apparatus has an annular flat portion formed on the outer peripheral side of the lower end portion of the reaction tube, and from the inner peripheral side of the flat portion toward the lower side in the radial direction of the reaction tube.
  • a tapered frustoconical portion is formed, and the flat portion is supported by the support wall so that the frustoconical portion protrudes inward from the support wall. Can be stably supported, and silicon can flow down without touching the partition wall from the lower end of the trapezoidal cone.
  • FIG. 1 shows a silicon production apparatus 1 according to the present invention.
  • This silicon production apparatus 1 includes a reaction unit 3 occupying an upper part of a reaction vessel main body 2 having a cylindrical outer wall, and a recovery unit 4 occupying a lower part. It has.
  • a cylindrical gas supply pipe 6 for supplying chlorosilanes, which are silicon raw materials, and hydrogen is provided at the center of the top wall 2a of the reaction vessel main body 2.
  • the gas supply pipe 6 is attached so as to penetrate the top wall 2a with its axis directed in the vertical direction.
  • the gas supply pipe 6 is connected to a gas supply means that can supply chlorosilanes and hydrogen (not shown) to the upper end side.
  • An annular intermediate wall 8 is provided between the reaction unit 3 and the recovery unit 4, and a cylindrical support wall 10 is disposed on the upper surface of the intermediate wall 8.
  • the support wall 10 is a heat-resistant material and is formed of ceramics in this embodiment.
  • a cylindrical reaction tube 7 is disposed above the support wall 10, and the reaction tube 7 is disposed so as to form an annular gap with the gas supply tube 6. As shown in FIG. 2, the reaction tube 7 is disposed in close contact with the support wall 10 and is disposed concentrically with the gas supply tube 6.
  • a flat placement portion 7 a that is placed on the support wall 10 is formed, and the placement portion 7 a is placed on the upper end surface of the flat support wall 10. It is supported.
  • the inner peripheral side of the mounting portion 7 a is protruded radially inward with respect to the support wall 10.
  • the diameter of the support wall 10 is tapered so as to decrease from the inner peripheral side of the flat portion at the upper end portion toward the lower side in the radial direction of the reaction tube 7. That is, an inverted frustoconical surface 7c that is inclined radially inward and downward of the reaction tube 7 is formed, and its lower end side tip portion 7b protrudes toward the lower recovery portion 4 side. It is arrange
  • the reaction tube 7 is preferably formed of a carbon material such as graphite that is resistant at the melting point of silicon, and the inner surface in contact with silicon is coated with silicon nitride, silicon carbide or the like to improve the durability of the reaction tube 7. Can do.
  • the reaction tube 7 can be formed by integral molding. However, since the molding die becomes large, the reaction tube 7 can be divided and formed. For example, it can be divided into a plurality of annular shapes and stacked in the axial direction of the reaction tube 7, and can be divided into four in the circumferential direction, for example, every 90 °. It can be changed as appropriate depending on the size and weight of the reaction tube 7. In such a case, it is necessary to fill the dividing line with a seal member.
  • An upper end portion of the reaction tube 7 has a U-shaped cross section and an annular heat insulating material 12 is disposed.
  • the heat insulating material 12 is formed of stainless steel or the like.
  • a lower end portion of a cylindrical expansion / contraction member 13 is attached to the upper portion of the heat insulating material 12, and an upper end portion of the expansion / contraction member 13 is attached to the top wall 2a.
  • the expandable member 13 can be expanded and contracted in the vertical direction, and specifically includes a structure in which two or more cylindrical members having different diameters are joined, a bellows structure, and the like.
  • the material of the elastic member 13 can be silicon or the like in addition to stainless steel.
  • the reaction vessel main body 2 is provided with a heating means, and the heating means is a high-frequency heating coil 11 in this embodiment, and is wound around the outer periphery of the heat insulating member 9.
  • the high frequency heating coil 11 is connected to a high frequency power source (not shown).
  • the position where the high frequency heating coil 11 is disposed is disposed from the reaction tube 7 to the periphery of the lower support wall 10.
  • the heat insulating member 9 is supported on the upper surface of the intermediate wall 8 with a space from the outer peripheral surface of the reaction tube 7 and the support wall 10.
  • the heat insulating member 9 insulates heat generated by the reaction tube 7 when the high-frequency heating coil 11 is operated.
  • a felt-like carbon fiber, a ceramic sintered body, or the like is used. Carbon fiber is used.
  • a cooling jacket 17 is provided at the lower part of the intermediate wall 8. The cooling jacket 17 is supplied with cooling water from a supply pipe (not shown), and discharges the cooling water from the drain pipe.
  • the collection unit 4 located at the lower part of the reaction vessel main body 2 is provided with a bottomed cylindrical collection vessel 14.
  • the collection container 14 is located immediately below the reaction tube 7 and has an opening 14 a formed at a position sufficiently larger than the inner diameter of the reaction tube 7.
  • the collection container 14 is placed on a support floor wall 16 disposed in the horizontal direction on the lower side of the reaction container body 2.
  • the material of the collection container 14 is made of carbon resistant to heat.
  • a cooling jacket 18 that cools the collection container 14 is disposed below the support floor wall 16 disposed at the bottom of the collection container 14.
  • a supply pipe (not shown) through which cooling water flows is connected to the cooling jacket 18, and the supply pipe is connected to a cooling water supply means (not shown) to discharge the cooling water from a drain pipe (not shown).
  • An exhaust pipe 29 is formed in the lower part of the intermediate wall 8 of the reaction unit 3 so that the internal gas can be discharged to an external post-treatment process.
  • the operation of the silicon manufacturing apparatus of this embodiment will be described.
  • the reaction tube 7 is heated by the eddy current due to the high frequency of the high-frequency heating coil 11. Is heated to a temperature exceeding the melting point of silicon.
  • chlorosilanes and hydrogen are supplied, and these gases are brought into contact with the inner surface of the reaction pipe 7 to precipitate silicon in a molten state.
  • chlorosilanes used in the reaction include trichlorosilane (SiHCl 3 , silicon tetrachloride (SiCl 4 ), dichlorosilane (SiH 2 Cl 2 ), monochlorosilane (SiH 3 Cl), or hexachlorodisilane (Si 2 Cl 6). ) And chlorotrisilanes such as octachlorotrisilane (Si 3 Cl 8 ).
  • the silicon solution precipitated in the molten state flows down from the opening at the lower end of the reaction tube 7 so as to travel from the inner surface to the lower end of the reaction tube 7 and is recovered in the recovery container 14 positioned immediately below.
  • the tip 7 b of the reaction tube 7 is protruded radially inward of the reaction vessel main body 2 so as not to contact the support wall 10, so that the silicon solution flows down to the collection vessel 14 without contacting the support wall 10.
  • Unreacted chlorosilane gas, hydrochloric acid gas, hydrogen gas and the like inside the reaction vessel main body 2 are discharged through the exhaust pipe 29.
  • the cooling jacket 17 disposed on the intermediate wall 8 can prevent the temperature of the reaction unit 3 from rising and can prevent the temperature of the recovery unit 4 from rising.
  • the reaction tube 7 is at a temperature of 1000 ° C. or higher, and the expandable and contractible elastic member 13 is disposed on the upper portion of the reaction tube 7.
  • the stretchable member 13 absorbs this elongation, and the reaction tube 7 is not damaged.
  • the expansion member 13 absorbs the elongation of the reaction tube 7 so that the sealing performance is maintained.
  • the reaction tube 56 and the partition wall 65 It is not necessary to form a space that becomes a gas flow path (see gap s in FIG. 7). Therefore, unreacted chlorosilane gas, hydrochloric acid gas, hydrogen gas, and the like do not enter the outer peripheral side of the reaction tube 56. Therefore, it is not necessary to supply nitrogen gas from the seal gas supply pipe 67 (see FIG. 7). Therefore, conventionally, in the reaction section, a gas flow has occurred between the inside and outside of the reaction tube for the structural reasons of the silicon manufacturing apparatus. In the present embodiment, such a gas flow is generated in the reaction section 3. It can be lost. Therefore, the quality of silicon production can be improved, and further, the facility of the silicon manufacturing apparatus can be simplified by eliminating the nitrogen gas supply facility such as the seal gas supply pipe 67.
  • the silicon recovered in the recovery container 14 is cooled by the cooling water of the cooling jacket 18 before the recovery container 14 is taken out and solidified from the molten state, and then the recovery unit 4 is disassembled in the solidified state to recover the recovery container 14. Part 4 can be taken out.
  • the temperature of the reaction tube 7 is lowered, and the length of the reaction tube 7 is contracted by thermal contraction. By stretching, the expansion member 13 can absorb the contraction of the reaction tube 7.
  • the conventional reaction tube is suspended from the support wall 10 formed on the intermediate wall 8, it is possible to follow the thermal expansion of the reaction tube 7.
  • the reaction chamber can be kept sealed.
  • the reaction tube 7 itself can be solid and the life can be extended.
  • carbon graphite is used for the heat insulating material 64 shown in FIG. 7, when hydrogen enters from between the reaction tube 56 and the partition wall 65, when the temperature of hydrogen is high, carbon graphite and There is a risk of methanation by contact with hydrogen. Therefore, a seal gas is required.
  • the expansion member 13 since the upper part of the reaction tube is located away from the high-heat part, the influence is small even if the seal gas is not flowed. Moreover, since methanation of hydrogen can be prevented by using low-temperature hydrogen, the elastic member 13 is not necessarily required in this sense (for the elastic members 13 and 41 of the second embodiment). Is the same).
  • FIG. 3 shows a silicon manufacturing apparatus 1 according to the present embodiment.
  • the silicon manufacturing apparatus 1 includes a reaction unit 3 that occupies an upper part of a reaction vessel main body 2 having a cylindrical outer wall, and a recovery unit 4 that occupies a lower part. It has.
  • the top surface wall 2a of the reaction vessel main body 2 is provided with an annular gas supply pipe 33 for supplying a silicon raw material, and the gas supply pipe 33 has its axis directed in the vertical direction so as to penetrate the top surface wall 2a. Installed.
  • the gas supply pipe 33 is connected to gas supply means for supplying chlorosilanes and hydrogen (not shown).
  • An annular intermediate wall 8 is provided between the reaction unit 3 and the recovery unit 4, and a cylindrical support wall 10 is disposed on the upper surface of the intermediate wall 8.
  • the support wall 10 is made of heat-resistant ceramic.
  • a cylindrical outer tube reaction tube 35 is disposed on the support wall 10 so as to be positioned on the outer peripheral side of the gas supply tube 33. As shown in FIG. 4, the outer tube reaction tube 35 is disposed in close contact with the support wall 10, and is disposed on the concentric axis with the gas supply tube 33.
  • a flat placement portion 35 a that is placed on the support wall 10 is formed, and the placement portion 35 a is placed on the upper end surface of the flat support wall 10. It is supported in this way.
  • the inner peripheral side of the mounting portion 35 a is protruded radially inward with respect to the support wall 10.
  • An inverted frustoconical surface 35c that is inclined radially inward and downward from the upper end portion of the support wall 10 is formed, and the lower end side tip portion 35b protrudes toward the lower recovery portion 4 side.
  • the distal end portion 35 b of the outer cylinder reaction tube 35 is disposed at a position sufficiently lower than the lower end position of the gas supply tube 33.
  • the outer tube reaction tube 35 is preferably formed of a carbon material such as graphite that is resistant to the melting point of silicon, and the inner surface that comes into contact with silicon is covered with silicon nitride, silicon carbide, or the like to improve the durability of the reaction tube 35. Can be made.
  • the outer tube reaction tube 35 can be divided into a plurality of annular shapes and stacked in the axial direction of the reaction tube 35, and can also be divided into four in the circumferential direction, for example, every 90 °. It can be changed as appropriate depending on the size and weight of the outer tube reaction tube 35.
  • a heat insulating material 12 having a U-shaped cross section is disposed at the upper end of the outer tube reaction tube 35, and the heat insulating material 12 is formed of stainless steel or the like.
  • a lower end portion of the elastic member 13 is attached to the upper portion of the heat insulating material 12, and an upper end portion of the elastic member 13 is attached to the top wall 2a.
  • the connection between the outer tube reaction tube 35 and the support wall 10 is also airtight, the gas flow between the inner periphery side of the outer tube reaction tube 35 and the outer periphery portion side of the outer tube reaction tube 35 occurs. Is cut off.
  • the stretchable member 13 can be stretched in the vertical direction, and the material can be silicon or the like in addition to stainless steel.
  • a projecting portion 38 that protrudes in the horizontal direction is formed on the center side of the reaction vessel main body 2 on the inner peripheral surface on the lower end side of the outer tube reaction tube 35.
  • the plurality of protrusions 38 (four locations) are integrally attached to the outer cylinder reaction tube 35 and, as shown in FIG. 5, are arranged at 90 ° intervals in the circumferential direction of the outer cylinder reaction tube 35 as shown in FIG. Yes.
  • a bottomed cylindrical inner tube reaction tube 36 is supported on the tip of the upper surface of the protrusion 38, and the distance between the tips of the protrusions 38 facing each other can support the inner tube reaction tube 36. Thus, it is formed sufficiently smaller than the outer diameter of the inner cylinder reaction tube 36.
  • the material of the inner cylinder reaction tube 36 is formed of a carbon material such as graphite, like the outer cylinder reaction tube 35. As shown in FIG. 5, a gap 39 is formed between adjacent protrusions 38. The gap 39 communicates the reaction space 40 (FIG. 4) provided between the inner peripheral surface of the outer cylindrical reaction tube 35 and the outer peripheral surface of the inner cylindrical reaction tube 36 and the interior of the lower recovery unit 4. (FIGS. 3 and 4).
  • a lower end portion of a telescopic member 41 that is vertically expandable and contractible is attached to an upper end portion of the inner cylinder reaction tube 36, and an upper end portion of the expandable member 41 is attached to the top wall 2a.
  • These extension members 41 and the top wall 2a, and the attachment portions of the extension member 41 and the upper end portion of the inner tube reaction tube 36 are airtightly connected, and these are fixed by bolts (not shown). Therefore, an annular space between the inner circumferential surface of the outer cylinder reaction tube 35 and the reaction space 40 between the outer circumferential surface of the inner cylinder reaction tube 36 is formed airtight, and the reaction space 40 and the outer cylinder reaction tube 35 are formed.
  • the flow of gas other than the gas from the gas supply pipe 33 is interrupted on the outer peripheral side of the inner tube and the inner peripheral part of the inner tube reaction tube 36.
  • the material of the elastic member 41 silicon or the like can be used in addition to stainless steel.
  • the reaction vessel main body 2 is provided with a heating means, and the heating means is a high-frequency heating coil 11 in this embodiment, and is wound around the outer periphery of the heat insulating member 9.
  • the high frequency heating coil 11 is connected to a high frequency power source (not shown).
  • the position where the high-frequency heating coil 11 is disposed is disposed from the reaction tube 35 to the periphery of the lower support wall 10.
  • the heat insulating member 9 is supported on the upper surface of the intermediate wall 8 with a space from the outer peripheral surface of the reaction tube 35 and the support wall 10. The heat insulating member 9 insulates the heat generated by the reaction tube 35 when the high-frequency heating coil 11 is in operation.
  • a cooling jacket 17 is provided at the lower part of the intermediate wall 8.
  • the cooling jacket 17 is supplied with cooling water from a supply pipe (not shown), and discharges the cooling water from the drain pipe.
  • a supply pipe not shown
  • recovery part 4 it is the same as the said 1st Embodiment mentioned above.
  • the operation of the silicon manufacturing apparatus of the second embodiment will be described.
  • a voltage is applied to the high-frequency heating coil 11 of the reaction vessel main body 2 in the silicon manufacturing apparatus 1
  • the outer cylinder and the inner cylinder reaction tubes 35 and 36 are heated by the eddy current due to the high frequency of the high-frequency heating coil 11.
  • the inner surface of 36 is heated to a temperature above the melting point of silicon.
  • Chlorosilanes and hydrogen are supplied from the annular gas supply pipe 33, and these gases come into contact with the inner peripheral surface of the outer cylindrical reaction tube 35 and the outer peripheral surface of the inner cylindrical reaction tube 36 to precipitate silicon in a molten state.
  • the silicon solution deposited in the molten state flows down from the inner peripheral surface of the outer cylindrical reaction tube 35 and the outer peripheral surface of the inner cylindrical reaction tube 36 to the lower end, flows down from the lower ends of the reaction tubes 35 and 36, and directly below It is recovered in the recovery container 14 located in the position.
  • the reaction tubes 35 and 36 have a temperature of 1000 ° C. or more and extend in the vertical direction.
  • the expansion / contraction member 13 is disposed on the upper part of the outer cylinder reaction tube 35 and the expansion / contraction member 41 is disposed on the upper part of the inner cylinder reaction tube 36, the expansion and contraction members 13 and 41 are contracted, whereby the reaction tube
  • the stretchable members 13 and 41 absorb the elongation of 35 and 36, and the reaction tubes 35 and 36 are not damaged.
  • the expansion members 13 and 41 absorb even a slight extension of the reaction tubes 35 and 36 in the radial direction, they are not damaged.
  • the expansion member 13 absorbs the extension of the outer tube reaction tube 35, so that the sealing performance is maintained.
  • the partition wall 65 see FIG. 7
  • unreacted chlorosilane gas, hydrochloric acid gas, hydrogen gas and the like do not go around to the outer peripheral side of the reaction tube 5. Therefore, it is not necessary to supply nitrogen gas from the seal gas supply pipe 67 (see FIG. 7).
  • the expansion and contraction member 41 absorbs the extension of the inner cylinder reaction tube 36, so that the sealing performance is maintained.
  • the silicon recovered in the recovery container 14 is cooled by the cooling water of the cooling jacket 18 before the recovery container 14 is taken out and solidified from the molten state, and then the recovery unit 4 is disassembled in the solidified state to recover the recovery container 14. Part 4 can be taken out.
  • the temperature of the reaction tubes 35 and 36 decreases.
  • the lengths of the reaction tubes 35 and 36 are contracted by thermal contraction.
  • the expansion members 13 and 41 extend, and the expansion members 13 and 41 absorb the contraction of the reaction tubes 35 and 36.
  • any one of the outer tube reaction tube 35 and the inner tube reaction tube 36 can be stationary. .
  • reaction tubes 35 and 36 have a structure capable of following the thermal expansion and maintaining the sealing of the reaction part. Also, by changing the outer cylinder reaction tube 35 from a suspended structure to a stationary structure, the load on itself is changed from the tensile force to its own weight due to the compression force, so that the strength increases and the outer cylinder reaction tube 35 is connected to the inner cylinder reaction tube 35. 36 can be supported.
  • the present invention can of course be modified or changed in various ways based on the technical idea of the present invention.
  • the above-described heat insulating material 12 is not necessarily essential, and the heat insulating material may be omitted as long as the material of the elastic member 13 has sufficient heat resistance.
  • the gas of the inside and outside of the reaction tube 7 is sealed.
  • the support wall 10 is provided on the intermediate wall 8, and the reaction tubes 7 and 35 are supported on the support wall 10.
  • the reaction tubes 7 and 35 are directly mounted on the intermediate wall 8. A structure to be placed is also possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)

Abstract

本発明は、シリコン製造装置の反応管を吊り下げることなく、反応管の熱膨張に追従することができる新規な反応管の取付構造を提供する。シリコン製造装置1の反応容器本体2内の反応部3内には、クロロシラン類及び水素を供給するガス供給管6と、シリコンを析出させる反応管7と、該反応管7の外周側に配設され析出したシリコンを溶融する高周波コイル11と、反応管7と高周波コイル11との間に設けられた断熱材9と、反応部3の下部に設けられ断熱材9を支持する中間壁8とを備えている。該中間壁8の上面には、反応管7を支持させるようにした。

Description

シリコン製造装置
 本発明は、シリコンの反応容器において、熱膨張率の大きな材料で形成された反応管を安定させて支持することができるシリコン製造装置に関する。
 現在、様々な分野において利用され、今後さらなる発展および需要が見込まれる半導体や太陽光発電用電池などの原料として、多結晶シリコンが用いられており、高純度の多結晶シリコンを効率良く製造することが求められている。
 従来の多結晶シリコンの製造方法としては、たとえば、ベルジャー内部に配置されたシリコン棒の表面を加熱し、これにトリクロロシラン(SiHCl3)やモノシラン(SiH4)などのクロロシラン類と、水素等の還元性ガスとを含むシリコン析出用原料ガスを接触させて多結晶シリコンを析出させるシーメンス法などが挙げられる。
 上記シーメンス法は、高純度なシリコンが得られることを特徴としているが、析出がバッチ式であるため、主となるシリコン棒の設置、通電加熱、析出、冷却、取り出し、ベルジャーの洗浄などの極めて煩雑な手順を行なわなければならないという問題点がある。
 このような問題点を解決するために、シリコンを効率的に製造できる方法およびその装置として、シリコンの融点未満の温度に加熱した筒状反応容器内にシリコン析出用原料ガスを供給してシリコンを析出させた後、該筒状反応容器の内表面をシリコンの融点温度以上に加熱して、析出したシリコンの一部または全部を溶融することにより、析出したシリコンを落下させて回収する多結晶シリコン製造方法および該方法に用いられるシリコン製造装置が提案されている(特許文献1参照)。
 図6、図7は、従来のシリコン製造装置の一例を示し、図6はシリコン製造装置の断面図、図7は該シリコン製造装置の反応部の部分拡大断面図である。
 シリコン製造装置51は、上方に位置する反応部52と、下方に位置する回収部53とを備え、反応容器本体54の天井壁の中央部には、シリコンの原料であるクロロシラン類と水素を供給するガス供給管55を設けている。ガス供給管55の外周囲には、間隔を空けて反応管56を配設している。反応管56のさらに外側の周囲には断熱材64を介在させて、高周波加熱コイル61が巻装されている。そして、反応管56の下部には、隙間を空けて仕切壁65が配設されている。断熱材64は、耐熱性のあるカーボングラファイトを使用している。
 反応容器本体54の下端部に位置する回収部53には、回収容器58が回収部53の支持床壁59に載置され、回収部を解体して回収容器58の取り出しをする構造になっている。支持床壁59には、冷却ジャケット60を配設し、該冷却ジャケット60には、図示しない冷却手段の供給口及び排出口を接続し、冷却水を循環させることができる。反応部52と回収部53との間には、ガスの排出配管63が配設され、ガス排出配管63は後流側のガス処理設備に接続されている。
 このような構造のシリコン製造装置51は、高周波加熱コイル61に電圧を印加させると、反応管56が高周波加熱コイル61の高周波による渦電流によって加熱され、反応管56の内面がシリコンの融点を超える温度に加熱される。ガス供給管55からは、クロロシラン類と水素とが供給され、これらのガスが反応管56の内面に接触させてシリコンを溶融状態で析出させる。溶融状態で析出したシリコン溶液は、反応管56の下端部を伝わるように落下し、反応管56の下端部の開口から流下し、直下に位置する回収容器58に回収される。
 回収容器58に回収されたシリコンは、回収容器58の取り出し前に冷却ジャケット60の冷却水によって、冷却され固化した状態で回収容器58と共に反応容器本体54の外側へ取り出される。
WO02/100777号公報
 反応管56の材料は、熱に耐性のあるグラファイトを使用している。グラファイトは、1000℃でグラファイトの長さが7mであると約100mm程度熱膨張する。そのため、図6及び図7に示すように、反応管56の下部の開口側をフリー状態にしなければならない。このように、従来の反応管56は、反応部52において吊り下げることによって、熱膨張の問題を解決するようにしている。
 しかしながら、吊り下げ方式の反応管56であると、上方に吊り下げ部があるので、反応器本体の重心が上部に位置し、反応容器本体を強固に形成する必要があり、設置時における組付け作業にも手間がかかり、さらには、反応管を大型化すると自重が反応管自体にかかり、装置の大型化が困難であった。
 また、反応管56の下端が熱膨張のため支持できないため、反応管56と仕切壁65との間の隙間sから、クロロシランや、水素ガスが浸入してしまう。すると、それらのガスが反応管56の外周部側の温度の低い部分に回り込んでしまうことがあり、それを防止するために、シールガス供給管67から窒素ガスをシールガスとして充填するようにしている。
 本発明は、このような事情を踏まえた上で、反応管を吊り下げることなく、反応管の熱膨張に追従することができ、反応管の支持構造についても、反応管を安定して支持することができ、さらにはシールガスを減らすことができる新規な反応管を備えたシリコン製造装置を提供することを目的とする。
 本発明のシリコン製造装置は、上記課題を解決することを目的として、反応容器内の反応室にクロロシラン類及び水素を供給するガス供給管と、前記クロロシラン類及び水素からシリコンを析出させ且つ熱膨張する材質の反応管と、該反応管の外周側に配設され析出したシリコンを溶融する加熱手段と、前記反応管と加熱手段との間に設けられた断熱材とを備え、前記反応管の下端部から溶融シリコンを下方の回収部に流下させるシリコン製造装置において、前記反応室と前記回収部の間に反応容器の中心側へ突出する中間壁を形成し、該中間壁に前記反応管を支持させるようにした。
 上記シリコン製造装置は、前記反応管の上端部と前記反応室の天井部との間には、上下方向に伸縮する伸縮材を気密に配設することができる。
 上記シリコン製造装置は、前記中間壁の上面に支持壁を形成し前記反応管を前記支持壁を介して支持させることができる。
 上記シリコン製造装置の前記反応管は、外筒反応管と該外筒反応管の内周面に間隔を空けて配設された内筒反応管とを備え、前記外筒反応管の内周面には該内周面の周方向に間隔を空けて前記反応容器の内側へ突出する複数の突出部を形成し、該外筒反応管は前記中間壁によって支持させ、前記内筒反応管は前記突出部によって前記外筒反応管に支持させることができる。
 上記シリコン製造装置の前記反応管の下端部は、該反応管の下端部の外周側に形成した環状の平坦部と、該平坦部の内周側から前記反応管の半径方向下側に向かってテーパ状に減径する円錐台形部とを形成し、前記支持壁に前記平坦部を支持させて前記円錐台形部を前記支持壁よりも内方へ突出させることができる。
 本発明のシリコン製造装置は、反応室と回収部の間に反応容器の中心側へ突出する中間壁を形成し、該中間壁に前記反応管を支持させるようにしたので、反応管が吊り下げ式から据置き式となったので、反応管の支持構造の安定化を図ることができる。反応管に負荷する荷重が引っ張りから圧縮力に変わったので、構造上強くなり、反応管の大きさも大きく形成できる。
 上記シリコン製造装置の前記反応管の上端部と前記反応室の天井部との間には、上下方向に伸縮する伸縮材を気密に配設したので、シールガスを必要としなくなった。
 上記シリコン製造装置は、前記中間壁の上面に支持壁を形成し前記反応管を前記支持壁によって支持させたので、反応管の支持構造の自由度を大きくすることができる。
 上記シリコン製造装置の前記反応管は、外筒反応管と該外筒反応管の内周面に間隔を空けて配設された内筒反応管とを備え、前記外筒反応管の内周面には該内周面の周方向に間隔を空けて前記反応容器の内側へ突出する複数の突出部を形成し、該外筒反応管は前記中間壁によって支持させ、前記内筒反応管は前記突出部によって前記外筒反応管に支持させることができ、2重管の内筒反応管についても、据置構造で支持できるようになった。
 上記シリコン製造装置の前記反応管の下端部は、該反応管の下端部の外周側に形成した環状の平坦部と、該平坦部の内周側から前記反応管の半径方向下側に向かってテーパ状に減径する円錐台形部とを形成し、前記支持壁に前記平坦部を支持させて前記円錐台形部を前記支持壁よりも内方へ突出させたので、前記仕切壁に前記平坦部を安定させて支持させることができ、前記台形円錐部の下端から仕切壁に触れることなくシリコンを流下させることができる。
本発明の第1の実施形態によるシリコン製造装置(単一管構造)の概略断面図である。 図1のシリコン製造装置の反応部の部分拡大断面図である。 本発明の第2の実施形態によるシリコン製造装置(2重管構造)の概略断面図である。 図3のシリコン製造装置の反応部の部分拡大断面図である。 図3の外筒反応管及び内筒反応管を上方から見た断面図である。 従来のシリコン製造装置の概略断面図である。 図6のシリコン製造装置の反応部の部分拡大断面図である。
 以下、本発明の第1の実施形態によるシリコン製造装置について、図面を参照しながら説明する。
 図1は、本発明に係るシリコン製造装置1を示し、このシリコン製造装置1は、円筒状の外壁を有する反応容器本体2の上方部分を占める反応部3と、下方部分を占める回収部4とを備えている。反応容器本体2の天面壁2aの中央部には、シリコンの原料であるクロロシラン類と水素を供給する円筒形状のガス供給管6が設けられている。ガス供給管6はその軸を上下方向に向けて、天面壁2aを貫通するように取付けられている。ガス供給管6の上端部側には、図示しないクロロシラン類と水素を各々供給することができるガス供給手段に接続されている。
 反応部3と回収部4との間には、環状の中間壁8が設けられ、中間壁8の上面には、筒状の支持壁10を配設している。支持壁10は、耐熱を有する材料で本実施形態では、セラミックスによって形成されている。支持壁10の上部には、円筒状の反応管7を配設し、反応管7はガス供給管6との間に円環状の空隙を形成するようにして配設されている。
 図2に示すように、反応管7は支持壁10に密着して配設され、ガス供給管6と同心軸上に配置されている。反応管7の下端部の外周側は、支持壁10に載置される平坦な載置部7aが形成され、載置部7aは平坦な支持壁10の上端面に載置されるようにして支持されている。
 載置部7aよりも内周側は、支持壁10に対して半径方向内側に突出させている。そして、支持壁10の上端部の平坦部の内周側から反応管7の半径方向下側に向かってテーパ状に減径するように形成されている。すなわち、反応管7の半径方向内側にかつ下向きに傾斜する逆円錐台形面7cを形成し、その下端側先端部7bを下方の回収部4側へ突出させ、先端部7bは、ガス供給管6の下端位置よりも十分低い位置に配設されている。反応管7は、シリコンの融点で耐性のあるグラファイトなどの炭素材料で形成することが好ましく、シリコンと接触する内面は、窒化珪素、炭化珪素などで被覆すると反応管7の耐久性を向上させることができる。反応管7は、一体成形で形成することも可能であるが、成形型が大きくなるので、分割して形成することができる。例えば、反応管7の軸方向へ、複数の円環状に分割して積み重ねることができ、周方向に、例えば90°毎に4分割することもできる。適宜、反応管7の大きさ重量などによって、変更することができる。このような場合は、分割ラインにシール部材を充填する必要がある。
 反応管7の上端部は、断面がコ字形状であって円環状の断熱材12が配設され、断熱材12は、ステンレスなどで形成されている。断熱材12の上部には、筒状の伸縮部材13の下端部が取付けられ、伸縮部材13の上端部は、天面壁2aに取付けられている。これらの伸縮部材13と天面壁2a、断熱材12と反応管7の上端部の各取付部は、気密に接続され、これらはボルト30,31によって固定されている。上述したように、反応管7と支持壁10との連結も気密であるので、反応管7の内周部側と該反応管7の外周部側とは、ガスの流れが遮断される。
 伸縮部材13は、上下方向に伸縮が可能であり、具体的には径の異なる2以上の円筒部材のすり合わせ構造、蛇腹構造などが挙げられる。伸縮部材13の材質はステンレスの他にシリコンなどが使用できる。
 反応容器本体2には加熱手段が設けられ、加熱手段は本実施形態では高周波加熱コイル11が使用され、断熱部材9の外周囲に巻装されている。この高周波加熱コイル11は、図示しない高周波電源に接続されている。高周波加熱コイル11を配設する位置は、反応管7から下方の支持壁10の周囲まで配設される。
 断熱部材9は、中間壁8の上面に反応管7及び支持壁10の外周面に対して間隔を空けて支持されている。断熱部材9は、高周波加熱コイル11の稼働時に、反応管7によって発生する熱を断熱させるものであり、例えば、フェルト状のカーボンファイバー、セラミック焼結体等が用いられるが、本実施形態では、カーボンファイバーを使用している。中間壁8の下部には、冷却ジャケット17が設けられ、冷却ジャケット17は図示しない供給管から冷却水が供給され、排水管から冷却水を排出させている。
 図1に示すように、反応容器本体2の下部に位置する回収部4には、有底円筒形状の回収容器14が備えられている。回収容器14は、反応管7の直下方に位置し、反応管7の内径よりも十分に大きく形成された開口14aを上方に有している。回収容器14は、反応容器本体2の下部側に水平方向に配設されている支持床壁16に載置されている。回収容器14の材質は、熱に強いカーボン製である。
 回収容器14の底部に配設されている支持床壁16の下部には、回収容器14を冷却する冷却ジャケット18が配設されている。冷却ジャケット18には、冷却水が流れる図示しない供給管が連結され、供給管には図示しない冷却水の供給手段と連結され、図示しない排水管から冷却水を排出させている。反応部3の中間壁8の下部には、排気管29が形成され、内部ガスを外部の後処理工程に排出することができる。
 次に、本実施形態のシリコン製造装置の作用について説明する。
 図1に示すシリコン製造装置1を稼働させるには、反応容器本体2の高周波加熱コイル11に電圧を印加させると、反応管7が高周波加熱コイル11の高周波による渦電流によって加熱され、反応管7の内面がシリコンの融点を超える温度に加熱される。ガス供給管6からは、クロロシラン類と水素とが供給され、これらのガスが反応管7の内面に接触させてシリコンを溶融状態で析出させる。
 反応に使用するクロロシラン類としては、例えば、トリクロロシラン(SiHCl、四塩化ケイ素(SiCl)、ジクロロシラン(SiHCl)、モノクロロシラン(SiHCl)、あるいはヘキサクロロジシラン(SiCl)などのクロロジシラン類、オクタクロロトリシラン(SiCl)などのクロロトリシラン類を挙げることができる。
 溶融状態で析出したシリコン溶液は、反応管7の内面から下端部までを伝わるようにして、反応管7の下端部の開口から流下し、直下に位置する回収容器14に回収される。この際、反応管7の先端部7bを支持壁10に接しないように、反応容器本体2の半径方向内側へ突出させたので、シリコン溶液が支持壁10に接することなく、回収容器14に流下させることができる。
 反応容器本体2の内部の未反応のクロロシランガス、塩酸ガス、水素ガス等は、排気管29によって排出される。中間壁8に配設されている冷却ジャケット17は、反応部3の温度上昇を防止するとともに、回収部4の温度上昇を防止することができる。
 シリコンの生成中では、反応管7は1000℃以上の温度となり、反応管7の上部には、伸縮自在の伸縮部材13が配設されているので、伸縮部材13が縮むことによって、反応管7の伸びを伸縮部材13が吸収し、反応管7が破損することがない。
 本実施形態では、このように、反応管7が伸びても伸縮部材13が反応管7の伸びを吸収してくれるのでシール性が保持され、従来のように、反応管56と仕切壁65との間にガス流路となる空間を形成する必要がない(図7の隙間sを参照)。そのため、未反応のクロロシランガス、塩酸ガス、水素ガスなどが、反応管56の外周部側に回り込むことがなくなる。したがって、シールガス供給管67(図7参照)から窒素ガスを供給する必要がない。そのため、従来では反応部において、シリコン製造装置の構造上の理由から、反応管の内外間におけるガス流の流れが発生していたが、本実施形態では反応部3において、そのようなガス流の流れ無くすことができる。よって、シリコンの生成の質を向上させることができ、さらには、シールガス供給管67のような窒素ガスの供給設備の廃止によって、シリコン製造装置の設備の簡易化を図ることができる。
 回収容器14に回収されたシリコンは、回収容器14の取り出し前に冷却ジャケット18の冷却水によって、冷却され溶融状態から固化され、その後固化した状態で回収部4を解体して回収容器14を回収部4から取り出すことができる。
 シリコンの回収が終了し、高周波コイル11の電源がオフ状態となった後は、反応管7の温度が降下し、反応管7の長さが熱収縮によって縮む状態となるが、伸縮部材13が伸びることによって、反応管7の縮みを伸縮部材13が吸収することができる。
 このように、本発明の実施形態では、従来の反応管を吊り下げる構造から、中間壁8に形成した支持壁10に据置くようにしたので、反応管7の熱膨張に追従することができ、しかも反応室の密閉を維持できる構造となった。また、反応管を吊り下げ構造から据置構造にすることによって、反応管7自体も堅固となり寿命を延ばすことができる。
 なお、従来において、図7に示す断熱材64にカーボングラファイトを使用しているような時に、反応管56と仕切壁65の間から水素が侵入すると、水素の温度が高いときは、カーボングラファイトと水素が接触してメタン化反応するおそれがある。そのため、シールガスを必要とする。上述した伸縮部材13は、用いることが望ましいが、反応管の上部は、高熱部と離れた位置にあるため、シールガスを流さなくても、その影響は少ない。また、低温水素を使用することで、水素のメタン化を防ぐことができるため、この意味では、必ずしも伸縮部材13は必要としない(これについては、第2の実施形態の伸縮部材13,41についても同じである)。
 次に、本発明の第2の実施形態によるシリコン製造装置について、図面を参照しながら説明する。なお、本実施形態では、シリコン製造装置1の反応容器本体2の反応部3の構成が異なり、回収部4は同じ構造であるので、反応部3の構成について説明する。また、上記第1の実施形態と基本的構成が同一であるものは、同一の符合を付して説明する。
 図3は、本実施形態に係るシリコン製造装置1を示し、シリコン製造装置1は、円筒状の外壁を有する反応容器本体2の上方部分を占める反応部3と、下方部分を占める回収部4とを備えている。反応容器本体2の天面壁2aには、シリコンの原料を供給する環状形状のガス供給管33が設けられ、ガス供給管33はその軸を上下方向に向けて、天面壁2aを貫通するように取付けられている。ガス供給管33には、図示しないクロロシラン類と水素を各々供給するガス供給手段に接続されている。
 反応部3と回収部4との間には、環状の中間壁8が設けられ、中間壁8の上面には、筒状の支持壁10を配設している。支持壁10は、耐熱を有するセラミックスによって形成されている。支持壁10の上部には、ガス供給管33の外周側に位置させて、円筒状の外筒反応管35を配設している。
 図4に示すように、外筒反応管35は支持壁10と密着して配設され、ガス供給管33と同心軸上に配置されている。外筒反応管35の下端部の外周側は、支持壁10に載置される平坦な被載置部35aが形成され、被載置部35aは平坦な支持壁10の上端面に載置されるようにして支持されている。
 被載置部35aよりも内周側は、支持壁10に対して半径方向内側に突出させている。支持壁10の上端部から半径方向内側にかつ下向きに傾斜する逆円錐台形面35cを形成し、その下端側先端部35bを下方の回収部4側へ突出させている。外筒反応管35の先端部35bは、ガス供給管33の下端位置よりも十分低い位置に配設されている。外筒反応管35は、シリコンの融点で耐性のあるグラファイトなどの炭素材料で形成することが好ましく、シリコンと接触する内面は、窒化珪素、炭化珪素などで被覆すると反応管35の耐久性を向上させることができる。外筒反応管35は、該反応管35の軸方向へ、複数の円環状に分割して積み重ねることができ、周方向に、例えば90°毎に4分割することもできる。適宜、外筒反応管35の大きさ重量などによって、変更することができる。
 外筒反応管35の上端部は、断面がコ字形状の断熱材12が配設され、断熱材12は、ステンレスなどで形成されている。断熱材12の上部には、伸縮部材13の下端部が取付けられ、伸縮部材13の上端部は、天面壁2aに取付けられている。これらの伸縮部材13と天面壁2a、断熱材12と外筒反応管35の上端部の各取付部は、気密に接続され、これらはボルト30,31によって固定されている。上述したように、外筒反応管35と支持壁10との連結も気密であるので、外筒反応管35の内周部側と該外筒反応管35の外周部側とは、ガスの流れが遮断される。
 伸縮部材13は、上下方向に伸縮が可能であり、材質はステンレスの他にシリコンなどが使用できる。
 図3に示すように、外筒反応管35の下端側内周面には、反応容器本体2の中心側に水平方向へ突出する突部38を形成している。複数の突部38(4個所)は外筒反応管35に一体に取付けられ、図5に示すように、本実施形態では、外筒反応管35の周方向へ90°間隔で配設されている。
 突部38の上面先端部には、有底円筒形状の内筒反応管36が載置されるようにして支持され、向かい合う突部38の先端部間距離は、内筒反応管36を支持できるように、内筒反応管36の外径よりも、十分に小さく形成されている。内筒反応管36の材質は、外筒反応管35と同様にグラファイトなどの炭素材料で形成される。図5に示すように、隣り合う突部38間には、空隙39が形成されている。空隙39は、外筒反応管35の内周面と内筒反応管36の外周面との間に設けられた反応空間40(図4)と、下方の回収部4の室内とを連通している(図3及び図4)。
 内筒反応管36の上端部には、上下方向に伸縮自在の伸縮部材41の下端部が取付けられ、伸縮部材41の上端部は、天面壁2aに取付けられている。これらの伸縮部材41と天面壁2a、及び伸縮部材41と内筒反応管36の上端部の各取付部は、気密に接続され、これらは図示しないボルトによって固定されている。
 したがって、外筒反応管35の内周面と内筒反応管36の外周面との間の反応空間40との間の環状空間は気密に形成され、該反応空間40と、外筒反応管35の外周部側及び内筒反応管36の内周部側は、ガス供給管33からのガス以外のガスの流れが遮断される。
 伸縮部材41の材質はステンレスの他にシリコンなどが使用できる。
 反応容器本体2には加熱手段が設けられ、加熱手段は本実施形態では高周波加熱コイル11が使用され、断熱部材9の外周囲に巻装されている。高周波加熱コイル11は、図示しない高周波電源に接続されている。高周波加熱コイル11を配設する位置は、反応管35から下方の支持壁10の周囲まで配設される。
 断熱部材9は、中間壁8の上面に反応管35及び支持壁10の外周面に対して間隔を空けて支持されている。断熱部材9は、高周波加熱コイル11の稼働時に、反応管35によって発生する熱を断熱させるものであり、例えば、フェルト状のカーボンファイバー、セラミック焼結体等が用いられる。中間壁8の下部には、冷却ジャケット17が設けられ、冷却ジャケット17は図示しない供給管から冷却水が供給され、排水管から冷却水を排出させている。
 回収部4の構成については、上述した上記第1の実施形態と同じである。
 次に、本第2の実施形態のシリコン製造装置の作用について説明する。
 シリコン製造装置1は、反応容器本体2の高周波加熱コイル11に電圧を印加させると、外筒及び内筒反応管35,36が高周波加熱コイル11の高周波による渦電流によって加熱され、反応管35,36の内面がシリコンの融点を超える温度に加熱される。環状のガス供給管33からは、クロロシラン類と水素とが供給され、これらのガスが外筒反応管35の内周面と内筒反応管36の外周面に接触してシリコンを溶融状態で析出させる。このように、反応管を外筒反応管35と内筒反応管36とからなる2重管構造とすることによって、シリコン析出部の表面積が広くなり、シリコンの生産量と製造効率が向上する。
 溶融状態で析出したシリコン溶液は、外筒反応管35の内周面及び内筒反応管36の外周面から下端部に伝わるように流下し、反応管35,36の下端部から流下し、直下に位置する回収容器14に回収される。
 シリコンの生成中では、反応管35,36は1000℃以上の温度となり、上下方向に延びる。外筒反応管35の上部には伸縮部材13が配設され、内筒反応管36の上部には伸縮部材41が配設されているので、各伸縮部材13,41が縮むことによって、反応管35,36の伸びを伸縮部材13,41が吸収し、反応管35,36が破損することがない。また、僅かであるが反応管35,36の径方向の延びに対しても、伸縮部材13,41が吸収するので、互いが破損することがない。
 本実施形態では、このように、外筒反応管35が伸びても伸縮部材13が外筒反応管35の伸びを吸収してくれるのでシール性が保持され、従来のように、反応管56と仕切壁65との間にガス流路となる空間を形成する必要がない(図7参照)。そのため、未反応のクロロシランガス、塩酸ガス、水素ガスなどが、反応管5の外周部側に回り込むことがなくなる。したがって、シールガス供給管67(図7参照)から窒素ガスを供給する必要がない。同様に、内筒反応管36が上方へ伸びると伸縮部材41が内筒反応管36の伸びを吸収してくれるのでシール性が保持される。
 このように、従来では反応部において、シリコン製造装置の構造上の理由から、反応管の内外間におけるガス流の流れが発生していたが、本実施形態では反応部3において、そのようなガス流の流れを無くすことができる。よって、シリコンの生成の質を向上させることができ、シールガス供給管67(図7参照)のような窒素ガスの供給設備の廃止によって、シリコン製造装置の設備の簡易化を図ることができる。
 回収容器14に回収されたシリコンは、回収容器14の取り出し前に冷却ジャケット18の冷却水によって、冷却され溶融状態から固化され、その後固化した状態で回収部4を解体して回収容器14を回収部4から取り出すことができる。
 このようなシリコンの回収が終了し、高周波コイル11の電源がオフ状態となった後は、反応管35,36の温度が降下する。反応管35,36の長さが熱収縮によって縮む状態となるが、このときは、伸縮部材13,41が伸びることによって、反応管35,36の縮みを伸縮部材13、41が吸収する。
 このように、本発明の実施形態では、反応管が2重管構造にあるにも拘わらず、外筒反応管35及び内筒反応管36のいずれの反応管も据え置くことができるようになった。これらの反応管35,36は、熱膨張に追従することができ、しかも反応部の密閉を維持できる構造となった。また、外筒反応管35を吊り下げ構造から据置構造にすることによって、自己に係る負荷が、引張り力から圧縮力による自重に変更したため強度が大きくなり、外筒反応管35に内筒反応管36を支持させることができるようになった。
 以上、本発明の各実施形態について説明したが、本発明の技術的思想に基づいて、勿論、本発明は種々の変形又は変更が可能である。
 例えば、上記した断熱材12は、必ずしも必須ではなく、伸縮部材13の材質について、十分に耐熱性を有するものであれば、断熱材を省略してもよい。
 また、上記実施形態では、反応管7と断熱材12を介して伸縮部材13との間を気密にし、及び反応管7と支持壁10との間を気密にし、反応管7の内外のガスの流れを遮断したが、それらの間を気密にしない場合は、図6に示す従来技術と同様に窒素ガスでシールしてもよい。
 また、上記各実施形態では、中間壁8の上に支持壁10を設け、該支持壁10に反応管7,35を支持させるようにしたが、反応管7,35を直接中間壁8に載置する構造も可能である。
 1 シリコン製造装置
 2 反応容器本体
 2a 天面壁
 3 反応部
 4 回収部
 6 ガス供給管
 7,35,36 反応管
 7a 載置部
 7b 先端部
 7c 円錐台形面
 10 支持壁
 11 高周波加熱コイル
 13,41 伸縮部材
 14 回収容器
 17,18 冷却ジャケット

Claims (6)

  1.  反応容器内の反応室にクロロシラン類及び水素を供給するガス供給管と、
     前記クロロシラン類及び水素からシリコンを析出させ且つ熱膨張する材質の反応管と、
     該反応管の外周側に配設され析出したシリコンを溶融する加熱手段と、
     前記反応管と加熱手段との間に設けられた断熱材とを備え、
     前記反応管の下端部から溶融シリコンを下方の回収部に流下させるシリコン製造装置において、
     前記反応室と前記回収部の間に反応容器の中心側へ突出する中間壁を形成し、該中間壁に前記反応管を支持させるようにしたことを特徴とするシリコン製造装置。
  2.  前記反応管の上端部と前記反応室の天井部との間には、上下方向に伸縮する伸縮材を気密に配設するようにしたことを特徴とする請求項1に記載のシリコン製造装置。
  3.  前記中間壁の上面に支持壁を形成し前記反応管を前記支持壁を介して支持させるようにしたことを特徴とする請求項1に記載のシリコン製造装置。
  4.  前記反応管は、外筒反応管と該外筒反応管の内周面に間隔を空けて配設された内筒反応管とを備え、
     前記外筒反応管の内周面には該内周面の周方向に間隔を空けて前記反応容器の内側へ突出する複数の突出部を形成し、
     該外筒反応管は前記中間壁によって支持させ、前記内筒反応管は前記突出部によって前記外筒反応管に支持させるようにしたことを特徴とする請求項1に記載のシリコン製造装置。
  5.  前記蛇腹部材と前記反応管の間に熱伝導を下げる中間部材を配設したことを特徴とする請求項2に記載のシリコン製造装置。
  6.  前記反応管の下端部は、該反応管の下端部の外周側に形成した環状の平坦部と、該平坦部の内周側から前記反応管の半径方向下側に向かってテーパ状に減径する円錐台形部とを形成し、前記支持壁に前記平坦部を支持させて前記円錐台形部を前記支持壁よりも内方へ突出させるようにしたことを特徴とする請求項3に記載のシリコン製造装置。
PCT/JP2009/063497 2008-08-06 2009-07-29 シリコン製造装置 WO2010016415A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09804899.4A EP2308801B1 (en) 2008-08-06 2009-07-29 Silicon production device
US13/055,766 US8486343B2 (en) 2008-08-06 2009-07-29 Apparatus for producing silicon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008203040A JP5334490B2 (ja) 2008-08-06 2008-08-06 シリコン製造装置
JP2008-203040 2008-08-06

Publications (1)

Publication Number Publication Date
WO2010016415A1 true WO2010016415A1 (ja) 2010-02-11

Family

ID=41663635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063497 WO2010016415A1 (ja) 2008-08-06 2009-07-29 シリコン製造装置

Country Status (5)

Country Link
US (1) US8486343B2 (ja)
EP (1) EP2308801B1 (ja)
JP (1) JP5334490B2 (ja)
MY (1) MY154064A (ja)
WO (1) WO2010016415A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5653857B2 (ja) * 2011-07-25 2015-01-14 株式会社トクヤマ ポリシリコン受け容器
US11844493B2 (en) * 2016-11-17 2023-12-19 Apyx Medical Corporation Electrosurgical apparatus with dynamic leakage current compensation and dynamic RF modulation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029726A (ja) * 2000-05-11 2002-01-29 Tokuyama Corp シリコン生成用反応装置
WO2002100777A1 (fr) 2001-06-06 2002-12-19 Tokuyama Corporation Procede de fabrication de silicium
JP2003054933A (ja) * 2001-06-05 2003-02-26 Tokuyama Corp シリコン生成用反応装置
WO2003106338A1 (ja) * 2002-06-18 2003-12-24 株式会社トクヤマ シリコン製造用反応装置
JP2007210847A (ja) * 2006-02-10 2007-08-23 Tokuyama Corp クロロシラン類の反応装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751067A (en) * 1982-06-22 1988-06-14 Harry Levin Process for making silicon from halosilanes and halosilicons
DE4127819A1 (de) * 1991-08-22 1993-02-25 Wacker Chemitronic Verfahren und vorrichtung zum periodischen abscheiden und aufschmelzen von silicium
US5591415A (en) * 1994-01-27 1997-01-07 Rpc Waste Management Services, Inc. Reactor for supercritical water oxidation of waste
CA2377892C (en) * 2000-05-11 2009-02-03 Tokuyama Corporation Polycrystalline silicon, method and apparatus for producing the same
JP5291282B2 (ja) * 2003-08-13 2013-09-18 株式会社トクヤマ 管型反応容器および該反応容器を用いたシリコンの製造方法
CA2517764C (en) * 2003-08-22 2009-10-13 Tokuyama Corporation Silicon production apparatus
US7727483B2 (en) * 2004-08-19 2010-06-01 Tokuyama Corporation Reactor for chlorosilane compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029726A (ja) * 2000-05-11 2002-01-29 Tokuyama Corp シリコン生成用反応装置
JP2003054933A (ja) * 2001-06-05 2003-02-26 Tokuyama Corp シリコン生成用反応装置
WO2002100777A1 (fr) 2001-06-06 2002-12-19 Tokuyama Corporation Procede de fabrication de silicium
WO2003106338A1 (ja) * 2002-06-18 2003-12-24 株式会社トクヤマ シリコン製造用反応装置
JP2007210847A (ja) * 2006-02-10 2007-08-23 Tokuyama Corp クロロシラン類の反応装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2308801A4 *

Also Published As

Publication number Publication date
EP2308801A4 (en) 2014-08-20
US8486343B2 (en) 2013-07-16
JP5334490B2 (ja) 2013-11-06
US20110123408A1 (en) 2011-05-26
EP2308801B1 (en) 2016-10-05
JP2010037159A (ja) 2010-02-18
EP2308801A1 (en) 2011-04-13
MY154064A (en) 2015-04-30

Similar Documents

Publication Publication Date Title
US8580203B2 (en) Fluidized bed reactor
US9764960B2 (en) Method and apparatus for preparation of granular polysilicon
KR100813131B1 (ko) 유동층 반응기를 이용한 다결정 실리콘의 지속 가능한제조방법
US20090155140A1 (en) Apparatus for Producing Trichlorosilane
US8377208B2 (en) System and method for manufacturing polycrystal silicon
JP5291282B2 (ja) 管型反応容器および該反応容器を用いたシリコンの製造方法
EP2514517A1 (en) Fluidized bed reactor
US8034300B2 (en) Apparatus for producing trichlorosilane
EP2514521A1 (en) Polycrystal silicon manufacturing apparatus
JP5334490B2 (ja) シリコン製造装置
US8580204B2 (en) Fluidized bed reactor
CA2576665C (en) Silicon manufacturing apparatus
KR101302971B1 (ko) 자켓과 이를 사용한 반응기
WO2008066027A1 (fr) Appareil de fabrication de trichlorosilane
CN220126178U (zh) 一种冷氢化流化床反应器及冷氢化流化床反应系统
KR101626645B1 (ko) 폴리실리콘의 제조 장치 및 이를 이용한 폴리실리콘 제조방법
US9168502B2 (en) Apparatus for producing trichlorosilane
KR101938772B1 (ko) 폴리실리콘 제조용 반응 장치 및 그에 의한 폴리실리콘 제조 방법
KR101871019B1 (ko) 폴리실리콘의 제조 장치 및 이를 이용한 폴리실리콘 제조방법
JP2022166478A (ja) 多結晶シリコンの製造装置
JP2009161366A (ja) シリコン製造装置
KR20130124810A (ko) 유동층 반응기
KR20130064988A (ko) 반응관을 포함하는 유동층 반응기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804899

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009804899

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13055766

Country of ref document: US

Ref document number: 2009804899

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE