WO2010016173A1 - 淡水化装置、及び油濁水再利用システム - Google Patents

淡水化装置、及び油濁水再利用システム Download PDF

Info

Publication number
WO2010016173A1
WO2010016173A1 PCT/JP2009/002187 JP2009002187W WO2010016173A1 WO 2010016173 A1 WO2010016173 A1 WO 2010016173A1 JP 2009002187 W JP2009002187 W JP 2009002187W WO 2010016173 A1 WO2010016173 A1 WO 2010016173A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
concentrator
heat
low
refrigerant
Prior art date
Application number
PCT/JP2009/002187
Other languages
English (en)
French (fr)
Inventor
藤居達郎
望月明
磯上尚志
小松智弘
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to AU2009278708A priority Critical patent/AU2009278708A1/en
Publication of WO2010016173A1 publication Critical patent/WO2010016173A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/22Treatment of water, waste water, or sewage by freezing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0029Use of radiation
    • B01D1/0035Solar energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/007Energy recuperation; Heat pumps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Definitions

  • the present invention relates to a water desalination apparatus and an oily water reuse system including the desalination apparatus.
  • RO membranes reverse osmosis membranes
  • salt water salt water
  • a distillation-type desalination apparatus which obtains fresh water by heating seawater, evaporating a water
  • Solar heat which is natural energy, is a promising candidate as a heat source in such a desalination apparatus.
  • it is effective to maintain the inside of the evaporation container in a vacuum state.
  • Patent Document 1 discloses a desalination apparatus that decompresses a container whose upper part is formed of a convex lens, collects solar heat using a convex lens, and evaporates water of seawater.
  • Patent Document 2 a heat collecting solar panel is used, the inside of the panel is decompressed, water that is a working fluid flowing through the panel is evaporated by solar heat, and returned to a liquid by a condenser.
  • a highly efficient low temperature heat collecting panel for circulating water is disclosed.
  • JP 2004-160301 A (refer to claims 1 and 3 and FIG. 1) JP 2004-156818 A (refer to claim 2, FIG. 1)
  • Patent Literatures 1 and 2 can obtain fresh water by heating raw water such as seawater using solar heat, which is natural energy, as a heat source, and condensing the generated water vapor.
  • areas where the demand for fresh water generated from seawater is large are often areas where the outside air temperature is high, such as the Middle East, and the size of the cooling device increases when the outside air is used as a cooling source for steam. There is a problem of doing.
  • the production amount of fresh water is easily affected by fluctuations in the outside air temperature, and the production amount of fresh water becomes unstable.
  • Patent Document 1 discloses a technology that uses untreated seawater as a water vapor cooling source in a seawater desalination apparatus.
  • a desalination apparatus that desalinates oily water generated in the seawater is sometimes built in an inland area away from the coast, and there is a problem that seawater cannot be used as a cooling source of water vapor.
  • an object of the present invention is to provide a desalination apparatus that does not use seawater as a cooling source, and an oily water reuse system including the desalination apparatus.
  • the present invention includes a desalination apparatus for generating fresh water by condensing water vapor generated from raw water on a cooled surface of an evaporator of an absorption refrigeration cycle, and the desalination apparatus.
  • An oily water reuse system was adopted.
  • FIG. 1 is a configuration diagram of an oily water reuse system according to this embodiment.
  • the oil turbid water reuse system 500 according to the present embodiment is installed in an oil production plant that produces oil using water pressure, such as water flooding, and the oil turbid component contained in the oil turbid water generated in the course of oil production.
  • Fresh water is generated by separating and removing the objects to be removed such as solid pollutants and water-soluble organic matter. And it is a system which utilizes the produced
  • an oily water reuse system 500 includes solid suspended matters such as oily suspended components, algae, fungi, and the like contained in the oily water W1 generated in the oil production process at the oil production site.
  • a flocculated magnetic separator (treated water generating means) 510 that flocculates and separates solid contaminants such as microorganisms and a primary purified water (primary treated water) W2 from which the solid contaminants have been removed by the flocculated magnetic separator 510 are dissolved.
  • COD removal device (COD removal means) 530 that removes the water-soluble organic substances that are present to lower the value of chemical oxygen demand (COD: Chemical Oxygen Demand), and COD from which the water-soluble organic substances have been removed by the COD removal device 530
  • the treated water (secondary treated water) W3 includes a desalination apparatus (salt removal means) 100 that distills using solar heat as a heat source and removes dissolved salt to produce fresh water W6. That.
  • the generated fresh water W6 is introduced into a plant cultivation plant P1 such as a biofuel farm and used as water for cultivating plants.
  • the oily water W1 generated in the course of oil production is injected into the agglomeration magnetic separator 510, and solid contaminants such as solid suspended matters such as oily components, algae, fungi, and microorganisms. Things are removed.
  • the agglomeration magnetic separator 510 removes solid contaminants from the oily water W1 by agglomeration separation using magnetism to generate primary purified water W2.
  • the primary purified water W2 produced by the agglomeration magnetic separator 510 has solid contaminants removed, but contains water-soluble organic matter and salt in a dissolved state.
  • the solid pollutant removed from the oily water W1 by the coagulation magnetic separator 510 is separated as sludge and processed by the sludge treatment facility 560 provided in the oily water reuse system 500. Since the sludge contains heavy metals contained in the oily water W1 and treatment agents (flocculating material, magnetite, etc.) added by the coagulation magnetic separator 510, the sludge treatment facility 560 removes these heavy metals and treatment agents.
  • the components that can be separated and recovered and reused are reused, and the components to be discarded are disposed of after being subjected to necessary processing such as detoxification.
  • the primary purified water W2 produced by the agglomeration magnetic separator 510 is injected into the COD removing device 530, and water-soluble organic substances are removed.
  • the primary purified water W2 may be partially discharged into a river or the like because solid contaminants with a large load on the surrounding environment have been removed.
  • the COD removing device 530 removes the water-soluble organic matter dissolved in the primary purified water W2 generated by the cohesive magnetic separator 510 by utilizing the oxidation action by ozone, and obtains the COD value of the primary purified water W2.
  • the COD treated water W3 is generated.
  • the COD removing device 530 is a device that removes water-soluble organic substances in the primary purified water W2, but when salt is dissolved in the primary purified water W2, the salt cannot be removed.
  • the salt content When the salt content is dissolved in the primary purified water W2, the salt content is derived from seawater and is contained in the oily water W1 in advance.
  • the oily water W1 may contain about 1% of salt even when the oil production site is along the coast or in the inland part of several tens of kilometers from the coastline.
  • the inorganic salt is not removed by the COD removing device 530. Therefore, salt may be dissolved in the COD treated water W3 generated by the COD removing device 530.
  • the dissolved salt content greatly affects plant cultivation. Although it depends on the type of plant to be cultivated, it is known that having a salt concentration of about 1% has a fatal effect on the plant. For this reason, the COD treated water W3 generated by the COD removing apparatus 530 according to the present embodiment cannot be used for plant cultivation.
  • the desalination apparatus 100 removes the salt dissolved in the COD treated water W3 generated by the COD removal apparatus 530, and generates fresh water W6.
  • the COD treated water W3 injected into the desalination apparatus 100 is distilled using solar heat as a heat source and separated into fresh water W6 and concentrated water W9.
  • the concentrated water W9 separated by the desalination apparatus 100 may be treated at a treatment plant by depositing a salt content, for example, in a salt field. Or since the solid pollutant which affects surrounding environment is removed, you may discharge to a river etc.
  • the fresh water W6 produced by the desalination apparatus 100 can be used for various applications since the solid pollutant, water-soluble organic matter, and salt are removed.
  • the fresh water W6 generated by the desalination apparatus 100 is guided to a plant cultivation plant P1 such as a biofuel farm, and used as water for plant cultivation.
  • biofuel can be produced from a biofuel plant such as Jatropha that is cultivated in a plant cultivation plant P1 such as a biofuel farm.
  • the fresh water W6 obtained by purifying the oily water W1 can be reused for the production of biofuel by the oily water reuse system 500 according to the present embodiment.
  • Jatropha is not an edible plant, as it can produce biofuels from the oil extracted from its seeds. Therefore, unlike corn, sugarcane, etc., it can be cultivated only for the production of biofuel without affecting the supply of food. Furthermore, since the amount of water necessary for cultivation may be relatively small, it is a plant that is relatively easy to grow even in dry regions with low precipitation, such as the Middle East region, which is an oil producing region. Jatropha is a crop that can be cultivated even in an area where edible plants such as corn and sugar cane cannot be cultivated, and can be cultivated without reducing the acreage of corn and sugar cane. Therefore, by cultivating jatropha, biofuel can be produced without affecting the supply of corn and sugarcane.
  • FIG. 2 is a diagram showing the structure of the desalination apparatus.
  • the desalination apparatus 100 includes an absorption refrigeration cycle unit 1 that generates solar heat using solar heat H as a heat source, and water that generates raw water W6 and concentrated water W9 by heating raw water using solar heat H as a heat source.
  • a processing unit 6 a processing unit 6.
  • the thick line of FIG. 2 shows the circulation of the liquid
  • the thin line shows the circulation of the gas.
  • the refrigerant circulates while changing phase between liquid and gas.
  • the liquid refrigerant is vaporized in a vacuum environment, and the object to be cooled is cooled by the heat of vaporization at that time.
  • the vaporized refrigerant is absorbed by the absorption liquid and circulates.
  • the refrigerant evaporates.
  • the gaseous refrigerant evaporated from the absorbing liquid is cooled by air or the like and condensed into a liquid refrigerant.
  • the liquid refrigerant is vaporized in a vacuum environment to cool the object to be cooled.
  • the absorption liquid after being heated by the solar heat H and evaporating the refrigerant is concentrated and easily absorbs the refrigerant, and absorbs the vaporized refrigerant in a vacuum environment.
  • the refrigerant circulates in the absorption refrigeration cycle unit 1 to cool the object to be cooled.
  • the absorption liquid is a solution having a high ability to absorb the refrigerant.
  • a configuration is known in which water is used as the refrigerant and a lithium bromide solution is used as the absorption liquid.
  • the water treatment unit 6 heats raw water with solar heat H to generate water vapor, and introduces the generated water vapor into the absorption refrigeration cycle unit 1 as an object to be cooled.
  • the introduced water vapor is cooled and condensed by heat of vaporization when the liquid refrigerant is vaporized to generate fresh water W ⁇ b> 6.
  • the raw water that has not evaporated when heated by solar heat H is concentrated to produce concentrated water W9.
  • the water treatment unit 6 generates fresh water W6 and concentrated water W9.
  • the absorption refrigeration cycle unit 1 includes a solar heat regenerator (regenerator) 10, an air-cooled condenser (condenser) 20, an evaporator 40, an air-cooled absorber (absorber) 30, a solution heat exchanger 50, And a treated water preheater (preheater) 70.
  • the solar heat regenerator 10 and the air-cooled absorber 30 are connected via a pipe so that the absorbing liquid circulates. And the circulation pump 35 for circulating absorption liquid is provided.
  • the solar heat regenerator 10, the air-cooled condenser 20, the evaporator 40, and the treated water preheater 70 are connected via a pipe, and the refrigerant circulates while changing phase between gas and liquid.
  • the air-cooled absorber 30 is connected to the evaporator 40 so that the internal spaces communicate with each other, and the refrigerant flows through the communicated internal space.
  • a gaseous refrigerant is referred to as a refrigerant vapor
  • a liquid refrigerant is referred to as a refrigerant liquid.
  • the inside of these each apparatus and the piping inside which connects each apparatus are comprised in the vacuum state.
  • the inside of the air-cooled absorber 30 and the inside of the evaporator 40 are preferably configured to have a higher degree of vacuum than the inside of the solar heat regenerator 10, the inside of the air-cooled condenser 20, and the inside of the treated water preheater 70. It is. With this configuration, the refrigerant liquid can be evaporated at a lower temperature inside the evaporator 40.
  • the solar heat regenerator 10 heats the absorbing liquid (dilute solution L2), which is introduced from the air-cooled absorber 30 via the solution heat exchanger 50 and has a low concentration by absorbing the refrigerant, with solar heat H. Since the inside of the solar heat regenerator 10 is configured in a vacuum state and the evaporation temperature of the refrigerant is low, the refrigerant contained in the heated diluted solution L2 evaporates and is separated as a high-temperature refrigerant vapor C1. On the other hand, the dilute solution L2 is concentrated by the separation of the refrigerant vapor C1, and a high concentration absorbent (concentrated solution L1) is generated. The diluted solution L2 in a state where the absorbing liquid has absorbed the refrigerant has a reduced ability to absorb the refrigerant, but the concentrated solution L1 generated by the solar heat regenerator 10 has a higher ability to absorb the refrigerant.
  • the high-temperature refrigerant vapor C1 separated from the dilute solution L2 branches into two systems, one being introduced into the air-cooled condenser 20 and the other being introduced into the treated water preheater 70.
  • the refrigerant vapor C1 introduced into the air-cooled condenser 20 is cooled and condensed by the air Air, and a refrigerant liquid C2 is generated.
  • the air Air that has cooled the refrigerant vapor C ⁇ b> 1 by the air-cooled condenser 20 is exhausted to the outside of the desalination apparatus 100 by the cooling fan 27 provided in the air-cooled condenser 20.
  • the refrigerant liquid C2 generated by the air-cooled condenser 20 is introduced into the evaporator 40 via a throttle 26 such as an orifice.
  • a throttle 26 is disposed between the air-cooled condenser 20 and the evaporator 40, and the air-cooled condenser 20. And the pressure difference between the evaporator 40 is maintained.
  • the evaporator 40 is provided with a refrigerant dropping device 43 that drops the introduced cooling liquid C2 onto the surface of the evaporation heat transfer pipe 44 piped therein, and the refrigerant liquid C2 introduced into the evaporator 40 is supplied with the refrigerant dropping device. 43 is dropped on the surface of the evaporation heat transfer tube 44.
  • a concentrated solution L1 generated by the solar heat regenerator 10 is introduced into the air-cooled absorber 30 by the circulation pump 35, and the concentrated solution L1 is cooled by air Air inside the air-cooled absorber 30. Then, the concentrated solution L1 whose temperature has been lowered sufficiently absorbs the refrigerant vapor C3 introduced into the air-cooled absorber 30, and a diluted solution L2 is generated.
  • the air Air that has cooled the concentrated solution L ⁇ b> 1 by the air-cooled absorber 30 is exhausted to the outside of the desalination apparatus 100 by the cooling fan 37 provided in the air-cooled absorber 30.
  • steam C3 is absorbed by the concentrated solution L1 with the air-cooling absorber 30, the pressure inside the evaporator 40 connected to the inside of the air-cooling absorber 30 is reduced, and a high degree of vacuum can be maintained. The evaporation temperature inside the evaporator 40 can be kept low.
  • the dilute solution L2 produced by the air-cooled absorber 30 is introduced into the solar heat regenerator 10 via the solution heat exchanger 50 by the circulation pump 35.
  • the solution heat exchanger 50 heat exchange is performed between the low-temperature dilute solution L2 cooled by the air-cooled absorber 30 and the high-temperature concentrated solution L1 heated by the solar heat regenerator 10, thereby increasing the temperature of the dilute solution L2.
  • the temperature of the concentrated solution L1 is lowered.
  • both the heating load on the dilute solution L2 of the solar heat regenerator 10 and the cooling load on the concentrated solution L1 of the air-cooled absorber 30 can be reduced. Therefore, the solar heat regenerator 10 and the air-cooled absorber 30 can be reduced in size, and the desalination apparatus 100 can be reduced in size.
  • the water treatment unit 6 includes a solar heat concentrator (heating concentrator) 80, a concentrated water pump 85, a treated water heat exchanger 81, a fresh water pump 46, and an evaporator 40 provided in the absorption refrigeration cycle unit 1. And an evaporative heat transfer tube 44 to be piped.
  • COD treated water W3 injected into the desalination apparatus 100 from the COD removing apparatus 530 (see FIG. 1) is introduced into the treated water preheater 70 provided in the absorption refrigeration cycle unit 1.
  • the treated water preheater 70 exchanges heat between the COD treated water W3 flowing through the cooling pipe 70a piped therein and the refrigerant vapor C1 generated by the solar heat regenerator 10 of the absorption refrigeration cycle unit 1 to perform COD processing.
  • the temperature of the water W3 is raised to generate high-temperature preheat-treated water W4.
  • This preheated water W4 becomes raw water.
  • the refrigerant vapor C1 cooled by exchanging heat with the COD treated water W3 is condensed to produce a refrigerant liquid C4.
  • the refrigerant liquid C4 merges with the refrigerant liquid C2 upstream of the throttle 26 and is introduced into the evaporator 40 via the throttle 26.
  • the preheat-treated water W4 generated by the treated water preheater 70 is further heat-exchanged with the high-temperature concentrated water W9 discharged from the solar heat concentrator 80 in the treated water heat exchanger 81, and the temperature further rises. 80.
  • the heating load with respect to the preheated water W4 of the solar heat concentrator 80 can be reduced by raising the temperature of the preheated water W4 before being introduced into the solar heat concentrator 80.
  • the preheated water W4 introduced into the solar heat concentrator 80 is further heated by the solar heat H, and a part thereof is evaporated and vaporized to generate water vapor St. Further, the remaining preheat-treated water W4 that has not been vaporized becomes concentrated concentrated water W9 that is pressurized to atmospheric pressure or higher by the concentration pump 85, and passes through the treated water heat exchanger 81 to produce the desalination apparatus 100. Is discharged outside.
  • the steam St generated by the solar heat concentrator 80 is introduced into the evaporation heat transfer tube 44 via the steam header 41 provided in the evaporator 40 of the absorption refrigeration cycle unit 1.
  • the steam header 41 has a function of distributing the steam St to the plurality of evaporation heat transfer tubes 44.
  • the evaporator 40 is provided with the refrigerant dropping device 43, and the refrigerant liquid C ⁇ b> 2 (C ⁇ b> 4) is dropped on the surface of the evaporation heat transfer tube 44.
  • the inside of the evaporator 40 is configured in a vacuum state, and a vacuum environment is formed so that the evaporation temperature of water is about 5 ° C. to 15 ° C. Therefore, when water is used as the refrigerant, the evaporation temperature of the refrigerant liquid C ⁇ b> 2 inside the evaporator 40 can be made lower than the condensation temperature of the water vapor St flowing inside the evaporation heat transfer tube 44.
  • the steam St introduced into the evaporation heat transfer tube 44 is cooled and condensed by the evaporation heat transfer tube 44, and fresh water W6 is generated.
  • the refrigerant vapor C3 generated in the evaporator 40 is guided to the inside of the air-cooled absorber 30 communicating with the inside of the evaporator 40.
  • the remaining refrigerant liquid C ⁇ b> 2 that has not vaporized in the evaporator 40 is again introduced into the refrigerant dropping device 43 by the evaporator pump 45 and dropped onto the surface of the evaporation heat transfer tube 44.
  • the fresh water W6 generated by the evaporator 40 is pressurized to the atmospheric pressure or higher by the fresh water pump 46 via the fresh water header 42 provided in the evaporator 40, and is discharged outside the desalination apparatus 100.
  • the fresh water header 42 has a function of collecting fresh water W 6 generated by each of the evaporation heat transfer tubes 44.
  • the desalination apparatus 100 can produce the fresh water W6 by distilling the COD treated water W3 using the solar heat H as a heat source.
  • FIG. 3 is a diagram showing an operating temperature cycle in the absorption refrigeration cycle unit, and includes a solar heat regenerator 10 (see FIG. 2), an air-cooled condenser 20 (see FIG. 2), and air-cooled absorption constituting the absorption refrigeration cycle unit 1.
  • the vessel 30 (see FIG. 2) and the evaporator 40 (see FIG. 2) are shown on the Dueling diagram, with the ordinate indicating the condensation temperature and the abscissa indicating the solution temperature.
  • the treated water preheater 70 (see FIG. 2) is connected to the solar heat regenerator 10 and the air-cooled condenser 20, and the refrigerant vapor C1 is cooled and condensed by the COD treated water W3.
  • the temperature TE shown in FIG. 3 is the evaporation temperature of the refrigerant liquid C2 (C4) in the evaporator 40.
  • the temperature TE is substantially equal to the condensation temperature of the water vapor St generated by the solar heat concentrator 80.
  • the temperature TA is the temperature (outside air temperature) of the operating environment of the air-cooled condenser 20 and the air-cooled absorber 30, and corresponds to the condensation temperature of the water vapor St when the outside air is directly used as a cooling source.
  • a temperature difference between the temperature TE and the temperature TA is ⁇ T.
  • the condensation temperature TS 1 is the condensation temperature of the refrigerant in the evaporator 40 and the air-cooled absorber 30, the refrigerant vaporizes and becomes condensing temperature TS 1 or more in the evaporator 40 and the air-cooled absorber 30. That is, it is equal to the temperature TE which is the evaporation temperature of the refrigerant liquid C2 (C4) in the evaporator 40.
  • Condensation temperature TS 2 is a condensing temperature of the refrigerant in the solar regenerator 10 and the air-cooled condenser 20, the refrigerant vaporizes and becomes condensation temperature TS 2 or more in a solar regenerator 10 and the air-cooled condenser 20.
  • the degree of vacuum inside the evaporator 40 and the inside of the air-cooled absorber 30 is higher than the degree of vacuum inside the solar regenerator 10 and inside the air-cooled condenser 20, the evaporator 40, and The condensation temperature TS 1 of the air-cooled absorber 30 is lower than the condensation temperature TS 2 of the solar regenerator 10 and the air-cooled condenser 20.
  • the condensation temperature TS 2 is substantially equal to the temperature TA (ambient temperature).
  • the air-cooled condenser 20 can cool the refrigerant vapor C1 with air Air and condense it to generate the refrigerant liquid C2.
  • the refrigerant vapor C1 evaporated from the dilute solution L2 heated by the solar heat regenerator 10 is heated to the temperature T1 by the solar heat H and introduced into the air-cooled condenser 20.
  • the refrigerant vapor C1 introduced into the air-cooled condenser 20 is cooled to the outside air temperature TA by the air Air and condensed to generate a refrigerant liquid C2. Then, the refrigerant liquid C2 is introduced into the evaporator 40.
  • the refrigerant liquid C2 introduced into the evaporator 40 is vaporized by taking the heat of vaporization from the surroundings, and refrigerant vapor C3 is generated.
  • the temperature of the refrigerant vapor C3 becomes a temperature TE lower by the temperature difference ⁇ T than the outside air temperature TA.
  • steam C3 is guide
  • the desalination apparatus 100 cools the water vapor St generated by the solar heat concentrator 80 directly to the evaporation heat transfer tube 44 that is the surface to be cooled of the absorption refrigeration cycle unit 1.
  • the water vapor St can be condensed at a temperature TE lower than the outside air temperature TA by a temperature difference ⁇ T.
  • the oil turbid water reuse system 500 (see FIG. 1) according to the present embodiment is used in a region where the outside air temperature is high such as the Middle East region, the water vapor St can be condensed at a low temperature, Water vapor St generated by the solar heat concentrator 80 (see FIG. 2) can be efficiently condensed. This produces an excellent effect that the fresh water W6 can be generated efficiently and stably.
  • the oily water reuse system 500 according to the present embodiment does not use seawater for cooling the water vapor St, and therefore can be used even in inland areas away from the coastline.
  • the desalination apparatus 100 of the oil turbid water reuse system 500 includes a treated water preheater 70, and a COD removal apparatus 530 (see FIG. 1). Since the COD treated water W3 produced in (1) is preheated, the heating load of the solar heat concentrator 80 that heats and concentrates the COD treated water W3 can be reduced. Therefore, the solar heat concentrator 80 can be reduced in size. Further, in the heat transfer mode of the treated water preheater 70, the refrigerant vapor St side is condensed heat conduction, and the COD treated water W3 side is forced convection heat conduction, and the heat transfer coefficient is higher than that of the solar heat concentrator 80. Therefore, for example, since the treated water preheater 70 can be reduced in size, the oily water reuse system 500 can be reduced in size, and the installation area can be reduced.
  • the refrigerant vapor C1 generated in the solar regenerator 10 of the absorption refrigeration cycle unit 1 is condensed to generate the refrigerant liquid C4. Therefore, when the temperature of the COD treated water W3 is lower than the atmospheric temperature TA, the pressure of the refrigerant vapor C1 is reduced, and the generation amount of the refrigerant vapor C1 in the solar heat regenerator 10 is increased, so that the absorption refrigeration cycle unit 1 The cooling capacity and the amount of fresh water W6 produced can be increased.
  • the treated water before the hot concentrated water W9 compressed by the concentrated water pump 85 is introduced into the treated water heat exchanger 81 and introduced into the solar heat concentrator 80.
  • the temperature of the preheated water W4 preheated by the preheater 70 is further increased.
  • the heating load in the solar heat concentrator 80 can be further reduced, and for example, the solar heat concentrator 80 can be downsized.
  • the desalination apparatus 100 which concerns on this embodiment is the structure which introduces the concentrated water W9 compressed with the concentrated water pump 85 to the treated water heat exchanger 81, for example, several solar heat
  • the concentrator 80 is configured in series, and the concentrated water W9 having the highest concentration produced by the solar heat concentrator 80 provided at the most downstream side and the preheated water W4 supplied to the solar heat concentrator 80 provided at the most upstream side. It is good also as a structure which heat-exchanges.
  • the oil turbid water reuse system uses an absorption refrigeration cycle using solar heat as a heat source, and directs water vapor to the cooled surface of the evaporator to efficiently condense water vapor at a temperature lower than the atmospheric temperature. It was characterized by that. Therefore, there is no need for cooling with the outside air or seawater, and for example, there is an excellent effect that fresh water can be efficiently generated even in the inland region of the Middle East region where the atmospheric temperature is high and it is difficult to obtain seawater.
  • FIG. 4 is a diagram illustrating a configuration example of a double-effect desalination apparatus.
  • the configuration of the absorption refrigeration cycle unit 1 of the desalination apparatus 100a shown in FIG. 4 is the same as the configuration of the absorption refrigeration cycle unit 1 of the desalination apparatus 100 shown in FIG. 2, and detailed illustration and description thereof will be omitted. .
  • symbol is attached
  • the thick line in FIG. 4 indicates the flow of liquid, and the thin line indicates the flow of gas.
  • the water treatment unit 6 a of the double-effect desalination apparatus 100 a is configured by including a low-pressure concentrator 60 between the solar heat concentrator 80 and the evaporation heat transfer tube 44.
  • the inside of the low-pressure concentrator 60 is maintained in a vacuum state, and a heat transfer pipe 64 through which water vapor generated in the solar heat concentrator 80 (hereinafter referred to as first water vapor S1) flows is piped and introduced into the low-pressure concentrator 60.
  • a dropping device 60 a is provided for dropping the preheated water W4 to be dropped into the low-pressure concentrator 60.
  • 4 shows a single heat transfer tube 64, a plurality of heat transfer tubes 64 are provided, and the steam header 60c distributes the first steam S1 to the plurality of heat transfer tubes 64. It may be.
  • second steam S2 a pipe that leads to vaporized vapor
  • second steam S2 which is a part of the preheat-treated water W4 dropped from the dropping device 60a, is evaporated and evaporated into the low pressure concentrator 60.
  • An intermediate concentrated water pump 65 for introducing the accumulated intermediate concentrated water W8 into the solar heat concentrator 80 is provided.
  • the intermediate concentrated water W8 is generated by being concentrated without evaporating a part of the preheat-treated water W4 dropped from the dropping device 60a.
  • the COD treated water W3 introduced into the treated water preheater 70 from the COD removing apparatus 530 (see FIG. 1) is heated by the treated water preheater 70 to be preheated water.
  • W4 is generated. This preheated water W4 becomes raw water.
  • the preheated water W4 is further heated by heat exchange with the concentrated water W9 in the treated water heat exchanger 81, and then introduced into the dropping device 60a of the low pressure concentrator 60.
  • the preheat water W4 is dropped into the low-pressure concentrator 60 by the dropping device 60a, heated by heat exchange with the first steam S1 flowing through the heat transfer pipe 64, partially evaporated and vaporized, and the second steam S2 Is generated.
  • circulates the heat exchanger tube 64 is condensed with the heat of vaporization of the preheat-treated water W4, and the fresh water W6a is produced
  • the preheated water W4 that has not been vaporized is concentrated to produce intermediate concentrated water W8.
  • the second water vapor S2 generated by the low-pressure concentrator 60 is introduced into the evaporation heat transfer pipe 44 piped to the evaporator 40 of the absorption refrigeration cycle unit 1 and the heat of vaporization of the refrigerant liquid C2 dripping inside the evaporator 40.
  • the water is cooled and condensed to produce fresh water W6b.
  • the fresh water W6b is pressurized to atmospheric pressure or higher by a fresh water pump 46 via a fresh water header 42 provided in the evaporator 40.
  • the intermediate concentrated water W8 produced by the low pressure concentrator 60 is introduced into the solar heat concentrator 80 by the intermediate concentrated water pump 65.
  • the intermediate concentrated water W8 introduced into the solar heat concentrator 80 is heated by the solar heat H, part of which is evaporated and vaporized, and the first water vapor S1 is generated. Further, the remaining intermediate concentrated water W8 that has not been vaporized becomes further concentrated water W9 that is pressurized to atmospheric pressure or higher by the concentration pump 85 and passes through the treated water heat exchanger 81 to obtain a desalination apparatus. It is discharged to the outside of 100a.
  • the first water vapor S1 generated by the solar heat concentrator 80 is introduced into the heat transfer pipe 64 piped inside the low-pressure concentrator 60 via the vapor header 60c and preliminarily dropped inside the low-pressure concentrator 60.
  • a part of the heat-treated water W4 is condensed by the heat of vaporization when vaporized, and fresh water W6a is generated.
  • the preheat treatment is performed. A part of the water W4 is evaporated and vaporized. Then, the first water vapor S1 introduced into the heat transfer pipe 64 is deprived of heat of vaporization to cool and condense the first water vapor S1.
  • the fresh water W6a generated by the low-pressure concentrator 60 is pressurized to the atmospheric pressure or higher by the fresh water pump 66 via the fresh water header 60b provided in the low-pressure concentrator 60, and merges with the fresh water W6b pressurized by the fresh water pump 46. Into the fresh water W6 and discharged to the outside of the desalination apparatus 100a.
  • the double-effect desalination apparatus 100a concentrates the raw water (preheat-treated water W4), steam (first steam S1, second steam S2) and fresh water (W6a, W6b). Is generated in two stages.
  • the double-effect desalination apparatus 100a By employing the double-effect desalination apparatus 100a, the amount of fresh water W6 produced can be increased, and the fresh water W6 can be obtained efficiently.
  • the solar heat concentrator 80 (see FIG. 4) occupying most of the installation area.
  • the area of the heat receiving surface can be reduced.
  • the double-effect desalination apparatus 100a (see FIG. 4) generates the same amount of fresh water W6 in half the area of the heat receiving surface of the solar heat concentrator 80 provided in the desalination apparatus 100 shown in FIG. Can do. Therefore, the oily water reuse system 500 (see FIG. 1) provided with the double-effect desalination apparatus 100a can be reduced in size, and the installation effect of the oily water reuse system 500 can be reduced. Play.
  • the technique for making the multiple effect of the evaporation and concentration operation is a conventional means and a widely known technique, particularly in the field of chemical plants, but in order to maximize the effect of the multiple effect, the condensation at the bottom stage is performed.
  • the temperature and pressure need to be sufficiently low. Therefore, in the Middle East region where the outside air temperature is high, which is the main oil production area, if the direct cooling method using outside air is used, the entire system will become larger as the size of the cooling device increases and the temperature of the solar heat concentrator located in the uppermost stage increases. The size is increased, and the adverse effect of adopting the multiple utility method occurs.
  • the desalination apparatus 100a (refer FIG. 4) which concerns on this embodiment has employ
  • the feature of the double-effect desalination apparatus 100a is that the preheated water W4 (see FIG. 4) is adopted by adopting the absorption refrigeration cycle system. It is in the point which can exhibit the effect of multiple effect (double effect) in concentration, ie, the production
  • FIG. 5 is a diagram illustrating a configuration example of a quadruple effect type desalination apparatus.
  • the configuration of the absorption refrigeration cycle unit 1 of the quadruple effect desalination apparatus 100b shown in FIG. 5 is the same as the configuration of the absorption refrigeration cycle unit 1 of the desalination apparatus 100 shown in FIG.
  • the water treatment unit 6b of the quadruple effect desalination apparatus 100b includes an intermediate concentrating unit 90 between the solar heat concentrator 80 and the evaporation heat transfer tube 44, and the intermediate concentrating unit 90 includes One upper low-pressure concentrator 91, one middle low-pressure concentrator 92, and one lower low-pressure concentrator 93 are included.
  • the inside of the upper stage low pressure concentrator 91, the inside of the middle stage low pressure concentrator 92, and the inside of the lower stage low pressure concentrator 93 are each maintained in a vacuum state, and the upper stage low pressure concentrator 91, the middle stage low pressure concentrator 92, and the lower stage low pressure concentrator 92 are maintained.
  • the concentrator 93 is preferably a low-pressure concentrator.
  • At least one heat transfer pipe 91c is piped inside the upper-stage low-pressure concentrator 91, and the first water vapor S1 generated by the solar heat concentrator 80 is introduced into the heat transfer pipe 91c via the steam header 91b. . Further, the intermediate concentrated water W8 introduced from the intermediate low pressure concentrator 92 disposed in the subsequent stage is dropped onto the surface of the heat transfer pipe 91c, and a part of the intermediate concentrated water W8 is vaporized to generate the third steam S3. And the 1st water vapor
  • the inside of the upper low-pressure concentrator 91 is maintained in a vacuum state. That is, since the evaporation temperature inside the upper low-pressure concentrator 91 is low, when the intermediate concentrated water W8 comes into contact with the heat transfer pipe 91c through which the high-temperature first steam S1 heated by the solar heat H flows, the intermediate concentrated water A part of W8 is evaporated and vaporized. And heat of vaporization is taken from the 1st water vapor
  • the fresh water W6c generated in the upper low-pressure concentrator 91 is pressurized to atmospheric pressure or higher by the fresh water pump 91d via the fresh water header 91a.
  • At least one heat transfer pipe 92c is piped inside the middle-stage low-pressure concentrator 92, and the third steam S3 generated by the upper-stage low-pressure concentrator 91 disposed in the previous stage is connected to the steam header 92b. Introduced via. Further, the intermediate concentrated water W8 introduced from the lower low pressure concentrator 93 disposed in the subsequent stage is dropped on the surface of the heat transfer tube 92c, and a part of the intermediate concentrated water W8 is vaporized to generate the fourth steam S4. And the 3rd water vapor
  • the inside of the middle-stage low-pressure concentrator 92 is maintained in a vacuum state. That is, since the evaporation temperature is low inside the intermediate low pressure concentrator 92, when the intermediate concentrated water W8 comes into contact with the heat transfer pipe 92c through which the third steam S3 flows, the intermediate concentrated water W8 is heated by the heat of the third steam S3. A part of it evaporates and vaporizes. Then, heat of vaporization is taken from the third steam S3 introduced into the heat transfer tube 92c, and the third steam S3 is cooled.
  • the fresh water W6d generated by the middle-stage low-pressure concentrator 92 is pressurized to atmospheric pressure or higher by the fresh water pump 92d via the fresh water header 92a.
  • the intermediate concentrated water W8 that has not evaporated and accumulated in the middle low pressure concentrator 92 is introduced into the upper low pressure concentrator 91 disposed in the preceding stage by the intermediate concentrated water pump 65.
  • At least one heat transfer pipe 93c is piped inside the lower-stage low-pressure concentrator 93, and the fourth steam S4 generated by the middle-stage low-pressure concentrator 92 is introduced into the heat transfer pipe 93c via the steam header 93b.
  • the preheated water W4 is dropped on the surface of the heat transfer tube 93c, and a part of the preheated water W4 is vaporized to generate the second steam S2.
  • circulates the heat exchanger tube 93c is condensed with the heat of vaporization of the preheat-treated water W4, and the fresh water W6e is produced
  • the inside of the lower-stage low-pressure concentrator 93 is maintained in a vacuum state. That is, since the evaporation temperature is low inside the lower-stage low-pressure concentrator 93, when the preheated water W4 comes into contact with the heat transfer pipe 93c through which the fourth steam S4 flows, the heat of the fourth steam S4 is used. A part of it evaporates and vaporizes. And heat of vaporization is taken from the 4th water vapor
  • the fresh water W6e generated by the lower low-pressure concentrator 93 is pressurized to atmospheric pressure or higher by the fresh water pump 93d via the fresh water header 93a.
  • the preheated water W4 accumulated in the lower low-pressure concentrator 93 without evaporating becomes the concentrated intermediate concentrated water W8 and is introduced into the middle-stage low-pressure concentrator 92 disposed in the previous stage by the intermediate concentrated water pump 65.
  • the second steam S2 generated in the lower low-pressure concentrator 93 is introduced into the evaporation heat transfer pipe 44 piped to the evaporator 40 of the absorption refrigeration cycle unit 1 via the steam header 41. And in the evaporator 40, it cools and condenses with the heat of vaporization of the refrigerant
  • the fresh water W6b is pressurized to atmospheric pressure or higher by a fresh water pump 46 via a fresh water header 42 provided in the evaporator 40.
  • the fresh water W6c, W6d, and W6e generated in the intermediate concentration unit 90 merge with the fresh water W6b generated in the evaporator 40 to become fresh water W6, and are discharged to the outside of the desalination apparatus 100b.
  • the intermediate concentrated water W8 accumulated in the upper-stage low-pressure concentrator 91 is introduced into the solar heat concentrator 80 by the intermediate concentrated water pump 65.
  • the intermediate concentrated water W8 introduced into the solar heat concentrator 80 is heated by the solar heat H, part of which is evaporated and vaporized, and the first water vapor S1 is generated.
  • the remaining intermediate concentrated water W8 that has not been vaporized becomes further concentrated water W9, which is pressurized to a pressure higher than the atmospheric pressure by the concentration pump 85, and passes through the treated water heat exchanger 81 to obtain a desalination apparatus. It is discharged to the outside of 100b.
  • the quadruple effect desalination apparatus 100b can generate fresh water (W6b, W6c, W6d, W6e) in four stages, and can increase the amount of fresh water W6 generated. Therefore, the fresh water W6 can be obtained efficiently.
  • the area of the heat receiving surface of the solar heat concentrator 80 (see FIG. 5) is set to the double effect type desalination apparatus 100a shown in FIG.
  • the intermediate-stage low-pressure concentrator 92 is not provided in the intermediate concentrating unit 90 shown in FIG. 5 (triple effect type)
  • the lower-stage low-pressure concentrator 93 is vaporized by a part of the preheated water W4 to evaporate, so The third water vapor S3 produced by the concentrator 91 is condensed to produce fresh water W6e.
  • the middle-stage low-pressure concentrator 92 (the former-stage middle-low-pressure concentrator) is generated by the heat of vaporization that vaporizes part of the intermediate concentrated water W8 generated in the lower-stage low-pressure concentrator 93.
  • the fourth water vapor S4 produced in the vessel is condensed to produce fresh water.
  • a multi-effect desalination apparatus can be freely configured. And by providing a multi-effect type desalination apparatus, the production amount of fresh water W6 can be increased, and the production efficiency of fresh water W6 in the oil-spent water reuse system 500 (see FIG. 1) can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

 冷却源として海水を使用しない淡水化装置と、この淡水化装置を備える油濁水再利用システムを提供することを課題とする。  予熱処理水W4を太陽熱Hで加熱して水蒸気Stを生成する太陽熱濃縮器80を有する水処理部6と、太陽熱Hを熱源とする吸収式冷凍サイクル部1とを含んで構成される淡水化装置100とした。そして、吸収式冷凍サイクル部1に備わる蒸発器40に、水蒸気Stを導入して凝縮し、淡水W6を生成することを特徴とした。

Description

淡水化装置、及び油濁水再利用システム
 本発明は、水の淡水化装置と、この淡水化装置を備える油濁水再利用システムに関する。
 現在、塩水(海水)から淡水を生成する手段としてRO膜(逆浸透膜)が広く用いられているが、膜の耐久性や淡水の生成量の面で問題がある。このため、海水を加熱して水分を蒸発させ、再度凝縮させることによって淡水を得る蒸留式の淡水化装置がある。このような淡水化装置における熱源として、自然のエネルギである太陽熱が有力な候補である。さらに、効率よく蒸発させるためには、蒸発容器の内部を真空状態に維持することが有効である。
 そこで、太陽熱パネルと筐体とで真空容器を形成して蒸発容器とし、この内部に海水を循環させて水分を蒸発させ、水蒸気を生成するシステムが提案されている。
 例えば、特許文献1には、上部が凸レンズで形成された容器を減圧し、太陽熱を凸レンズで集熱して、海水の水分を蒸発させる淡水化装置が開示されている。また、例えば特許文献2には、集熱ソーラパネルを用いるとともにパネル内を減圧し、パネル内を流通する作動流体である水を太陽熱で蒸発させ、凝縮器で液体に戻すことで、パネル内に水を循環させる高効率低温集熱パネルが開示されている。
特開2004-160301号公報(請求項1、3、図1参照) 特開2004-156818号公報(請求項2、図1参照)
 例えば特許文献1、2に記載された技術は、自然のエネルギである太陽熱を熱源として海水などの原水を加熱し、生成した水蒸気を凝縮させて淡水を得ることができる。
 しかしながら、海水から生成される淡水の需要が大きな地域は、例えば中東地域などのように外気温度が高い地域であることが多く、外気を水蒸気の冷却源に使用する場合には冷却装置が大型化するという問題がある。さらに、外気温度の変動によって淡水の生産量が影響を受けやすく、淡水の生産量が不安定になるという問題がある。
 また、例えば特許文献1には、海水の淡水化装置における水蒸気の冷却源として、処理前の海水を利用する技術が開示されているが、例えば中東地域などの石油生産地域において、石油生産の際に発生する油濁水を淡水化する淡水化装置は、海岸から離れた内陸部に建設される場合があり、水蒸気の冷却源として海水を利用できないという問題がある。
 そこで、本発明は、冷却源として海水を使用しない淡水化装置と、この淡水化装置を備える油濁水再利用システムを提供することを課題とする。
 前記課題を解決するため、本発明は、原水から生成される水蒸気を、吸収式冷凍サイクルの蒸発器の被冷却面で凝縮させて淡水を生成する淡水化装置、及びこの淡水化装置を備えた油濁水再利用システムとした。
 本発明によると、冷却源として海水を使用しない淡水化装置と、この淡水化装置を備える油濁水再利用システムを提供することができる。
本実施形態に係る油濁水再利用システムの構成図である。 淡水化装置の構造を示す図である。 吸収式冷凍サイクル部における作動温度サイクルを示す図である。 二重効用型の淡水化装置の構成例を示す図である。 四重効用型の淡水化装置の構成例を示す図である。
 以下、本発明を実施するための最良の形態について、適宜図を参照して詳細に説明する。
 図1は、本実施形態に係る油濁水再利用システムの構成図である。
 本実施形態に係る油濁水再利用システム500は、例えば水攻法など、水圧を用いて石油を生産する石油生産プラントに設置され、石油生産の過程で発生する油濁水に含まれる油濁成分などの固形汚濁物や水溶性有機物などの被除去物を分離、除去して淡水を生成する。そして、生成される淡水を、例えば植物栽培プラントに利用するシステムである。
 図1に示すように、本実施形態に係る油濁水再利用システム500は、石油生産現場における石油生産の過程で発生した油濁水W1に含まれる油濁成分などの固形浮遊物、藻類、菌類、微生物などの固形汚濁物を凝集分離する凝集磁気分離機(処理水生成手段)510と、凝集磁気分離機510によって固形汚濁物が除去された1次浄化水(1次処理水)W2に溶解している水溶性有機物を除去して、化学的酸素要求量(COD:Chemical Oxygen Demand)の値を下げるCOD除去装置(COD除去手段)530と、COD除去装置530によって水溶性有機物が除去されたCOD処理水(2次処理水)W3を、太陽熱を熱源として蒸留し、溶解している塩分を除去して淡水W6を生成する淡水化装置(塩分除去手段)100と、を含んで構成される。
 そして、生成される淡水W6をバイオ燃料農場などの植物栽培プラントP1に導水し、植物を栽培するための水として利用する。
 このような油濁水再利用システム500において、石油生産の過程で発生した油濁水W1は、凝集磁気分離機510に注入され、油濁成分などの固形浮遊物、藻類、菌類、微生物などの固形汚濁物が除去される。
 凝集磁気分離機510は、磁気を利用した凝集分離によって、油濁水W1から固形汚濁物を除去して1次浄化水W2を生成する。凝集磁気分離機510で生成される1次浄化水W2は、固形汚濁物は除去されているが、水溶性有機物や塩分は溶解した状態で含まれている。
 なお、凝集磁気分離機510で油濁水W1から除去された固形汚濁物は汚泥として分離され、油濁水再利用システム500に備わる汚泥処理設備560で処理される。
 汚泥は、油濁水W1に含まれる重金属や、凝集磁気分離機510で加えられる処理剤(凝集材やマグネタイトなど)を含有していることから、汚泥処理設備560では、これらの重金属や処理剤を分離回収し、再利用可能な成分は再利用するとともに、廃棄する成分は、無毒化などの必要な処理を施して廃棄する。
 凝集磁気分離機510で生成される1次浄化水W2は、COD除去装置530に注入され、水溶性有機物が除去される。
 なお、1次浄化水W2は、周囲環境に与える負荷の大きな固形汚濁物が除去されていることから、その一部を河川等に放流してもよい。
 COD除去装置530は、凝集磁気分離機510で生成される1次浄化水W2に溶解している水溶性有機物を、オゾンによる酸化作用を利用して除去して1次浄化水W2のCOD値を下げ、COD処理水W3を生成する。
 COD除去装置530は、1次浄化水W2の水溶性有機物を除去する装置であるが、1次浄化水W2に塩分が溶解している場合、この塩分を除去することができない。
 1次浄化水W2に塩分が溶解している場合、その塩分は海水に由来するものであり、油濁水W1に予め含まれているものである。
 石油生産現場が海岸沿いにある場合はもちろん、海岸線から数十キロメートルの内陸部にある場合であっても、油濁水W1には1%程度の塩分が含まれていることがある。しかしながら、無機物である塩分はCOD除去装置530で除去されない。したがって、COD除去装置530で生成されるCOD処理水W3には塩分が溶解している場合がある。
 図1に示すように、油濁水W1を浄化して植物栽培プラントP1における植物栽培用の水として利用する場合、溶解している塩分は植物の栽培に大きな影響を与える。
 栽培する植物の種類にもよるが、1%程度の塩分濃度を有すると、植物に致命的な影響を与えることが知られている。このことから、本実施形態に係るCOD除去装置530で生成されるCOD処理水W3は、植物の栽培には利用できない。
 しかしながら、COD処理水W3は、水溶性有機物が除去されているので、蒸留手段で蒸留して塩分を除去することができる。したがって、本実施形態に係る油濁水再利用システム500においては、淡水化装置100で、COD除去装置530で生成されるCOD処理水W3に溶解する塩分を除去し、淡水W6を生成する。
 淡水化装置100に注入されたCOD処理水W3は、太陽熱を熱源として蒸留され、淡水W6と濃縮水W9に分離される。
 なお、淡水化装置100で分離される濃縮水W9は、例えば塩田等で塩分を析出させ、処理場で処理すればよい。または、周囲環境に影響を与える固形汚濁物が除去されていることから、河川等に放流してもよい。
 淡水化装置100で生成される淡水W6は、固形汚濁物、水溶性有機物、及び塩分が除去されていることから、様々な用途に利用できる。
 本実施形態に係る油濁水再利用システム500においては、淡水化装置100で生成される淡水W6を、例えばバイオ燃料農場等の植物栽培プラントP1に導水し、植物栽培用の水として利用する。
 そして、バイオ燃料農場等の植物栽培プラントP1で栽培される、ジャトロファなどのバイオ燃料用植物からは、バイオ燃料を生産できる。
 このように、本実施形態に係る油濁水再利用システム500によって、油濁水W1を浄化して得られる淡水W6をバイオ燃料の生産に再利用できる。
 ジャトロファは、その種子から抽出される油分でバイオ燃料を生成できるうえ、食用の植物ではない。したがって、トウモロコシやサトウキビなどとは異なり、食糧の供給に影響を与えることなく、バイオ燃料の生産のためだけに栽培できることから、その栽培量の増加が見込まれる植物である。さらに、栽培に必要な水分の量も比較的少なくてよいことから、例えば石油生産地域である中東地域のような、降水量の少ない乾燥した地域でも比較的栽培しやすい植物である。
 また、ジャトロファは、トウモロコシやサトウキビなど食用となる植物を栽培できない地域でも栽培可能な作物であり、トウモロコシやサトウキビなどの作付面積を減少させることなく栽培することができる。したがって、ジャトロファを栽培することで、トウモロコシやサトウキビの供給に影響を与えることなく、バイオ燃料を生産できる。
 図2は、淡水化装置の構造を示す図である。図2に示すように、淡水化装置100は、太陽熱Hを熱源として冷熱を発生する吸収式冷凍サイクル部1と、太陽熱Hを熱源として原水を加熱し、淡水W6と濃縮水W9を生成する水処理部6と、を含んで構成される。
 なお、図2の太線は液体の流通を示し、細線は気体の流通を示す。
 吸収式冷凍サイクル部1には、冷媒が液体と気体の間で相変化しながら循環している。
 液体の冷媒は、真空環境下で気化し、そのときの気化熱で被冷却物を冷却する。気化した冷媒は、吸収液に吸収されて流通し、太陽熱Hで加熱されると吸収液から蒸発する。吸収液から蒸発した、気体の冷媒は、空気などによって冷却され、液体の冷媒に凝縮される。そして液体の冷媒は、真空環境下で気化して被冷却物を冷却する。
 一方、太陽熱Hで加熱され、冷媒が蒸発した後の吸収液は、濃縮されて冷媒を吸収しやすい状態になり、真空環境下で気化した冷媒を吸収する。
 このように、吸収式冷凍サイクル部1には冷媒が循環し、被冷却物を冷却する。
 なお、吸収液は、冷媒を吸収する能力の高い溶液で、例えば冷媒として水を使用し、吸収液として臭化リチウム溶液を使用する構成が知られている。
 水処理部6は、原水を太陽熱Hで加熱して水蒸気を発生し、発生した水蒸気を、被冷却物として吸収式冷凍サイクル部1に導入する。
 吸収式冷凍サイクル部1では、導入された水蒸気を、液体の冷媒が気化するときの気化熱で冷却して凝縮させ、淡水W6を生成する。
 一方、太陽熱Hで加熱したときに蒸発しなかった原水は濃縮され、濃縮水W9が生成される。
 このように、水処理部6では、淡水W6と濃縮水W9が生成される。
 吸収式冷凍サイクル部1は、太陽熱再生器(再生器)10と、空冷凝縮器(凝縮器)20と、蒸発器40と、空冷吸収器(吸収器)30と、溶液熱交換器50と、処理水予熱器(予熱器)70と、を含んで構成される。
 太陽熱再生器10と空冷吸収器30は配管を介して連結され、吸収液が循環するように構成される。そして、吸収液を循環させるための循環ポンプ35が備わる。
 また、太陽熱再生器10、空冷凝縮器20、蒸発器40、及び処理水予熱器70は、配管を介して連結され、冷媒が気体と液体の間を相変化しながら循環する。
 さらに、空冷吸収器30は、蒸発器40に、互いの内部空間が連通するように接続され、連通した内部空間を冷媒が流通するように構成される。
 以下、気体の冷媒を冷媒蒸気、液体の冷媒を冷媒液と称する。
 そして、これらの各機器の内部、及び各機器を連結する配管内部は真空状態に構成されている。
 さらに、空冷吸収器30の内部、及び蒸発器40の内部は、太陽熱再生器10の内部、空冷凝縮器20の内部、及び処理水予熱器70の内部より高い真空度に構成されることが好適である。
 この構成によって、蒸発器40の内部では、より低温で冷媒液を蒸発させることができる。
 太陽熱再生器10は、空冷吸収器30から溶液熱交換器50を経由して導入される、冷媒を吸収して低濃度になった吸収液(希溶液L2)を太陽熱Hで加熱する。太陽熱再生器10の内部は真空状態に構成されて冷媒の蒸発温度が低いことから、加熱された希溶液L2に含まれる冷媒が蒸発し、高温の冷媒蒸気C1として分離する。一方、希溶液L2は、冷媒蒸気C1が分離したことで濃縮され、高濃度の吸収液(濃溶液L1)が生成される。
 吸収液が冷媒を吸収した状態の希溶液L2は、冷媒を吸収する能力が低下しているが、太陽熱再生器10で生成される濃溶液L1は、冷媒を吸収する能力が高くなっている。
 希溶液L2から分離した、高温の冷媒蒸気C1は2系統に分岐し、一方は空冷凝縮器20に導入され、他方は処理水予熱器70に導入される。
 空冷凝縮器20に導入された冷媒蒸気C1は、空気Airによって冷却されて凝縮され、冷媒液C2が生成される。
 なお、空冷凝縮器20で冷媒蒸気C1を冷却した空気Airは、空冷凝縮器20に備わる冷却ファン27で淡水化装置100の外部に排気される。
 空冷凝縮器20で生成される冷媒液C2は、オリフィス等の絞り26を経由して蒸発器40に導入される。
 前記したように、蒸発器40の内部の真空度は空冷凝縮器20の内部の真空度より高いことから、空冷凝縮器20と蒸発器40の間に絞り26を配設し、空冷凝縮器20と蒸発器40の間の圧力差を維持する。
 蒸発器40には、導入された冷却液C2を、内部に配管される蒸発伝熱管44の表面に滴下する冷媒滴下装置43が備わり、蒸発器40に導入された冷媒液C2は、冷媒滴下装置43によって蒸発伝熱管44の表面に滴下される。
 空冷吸収器30には、循環ポンプ35によって、太陽熱再生器10で生成される濃溶液L1が導入され、濃溶液L1は空冷吸収器30の内部で空気Airによって冷却される。
 そして、温度が低くなった濃溶液L1は、空冷吸収器30に導入された冷媒蒸気C3をよく吸収し、希溶液L2が生成される。
 なお、空冷吸収器30で濃溶液L1を冷却した空気Airは、空冷吸収器30に備わる冷却ファン37によって淡水化装置100の外部に排気される。
 また、冷媒蒸気C3が、空冷吸収器30で濃溶液L1に吸収されることから、空冷吸収器30の内部と連通する蒸発器40の内部の圧力が減圧されて高い真空度を維持することができ、蒸発器40の内部の蒸発温度を低く維持できる。
 空冷吸収器30で生成される希溶液L2は、循環ポンプ35によって、溶液熱交換器50を経由して太陽熱再生器10に導入される。
 溶液熱交換器50では、空冷吸収器30で冷却された低温の希溶液L2と、太陽熱再生器10で加熱された高温の濃溶液L1とで熱交換をして、希溶液L2の温度を上げる一方で濃溶液L1の温度を下げる。このことによって、太陽熱再生器10の希溶液L2に対する加熱負荷、及び空冷吸収器30の濃溶液L1に対する冷却負荷を共に軽減することができる。したがって、太陽熱再生器10及び空冷吸収器30を小型化することができ、淡水化装置100を小型化できる。
 次に、水処理部6の動作を説明する。
 水処理部6は、太陽熱濃縮器(加熱濃縮器)80と、濃縮水ポンプ85と、処理水熱交換器81と、淡水ポンプ46と、吸収式冷凍サイクル部1に備わる蒸発器40の内部に配管される蒸発伝熱管44と、を含んで構成される。
 COD除去装置530(図1参照)から淡水化装置100に注入されたCOD処理水W3は、吸収式冷凍サイクル部1に備わる処理水予熱器70に導入される。
 処理水予熱器70は、内部に配管される冷却管70aを流通するCOD処理水W3と、吸収式冷凍サイクル部1の太陽熱再生器10で生成される冷媒蒸気C1とで熱交換し、COD処理水W3の温度を上げて、高温の予熱処理水W4を生成する。この予熱処理水W4が原水になる。
 なお、処理水予熱器70では、COD処理水W3と熱交換をして冷却された冷媒蒸気C1が凝縮されて冷媒液C4が生成される。そして、冷媒液C4は、絞り26の上流で冷媒液C2と合流し、絞り26を経由して蒸発器40に導入される。
 処理水予熱器70で生成される予熱処理水W4は、処理水熱交換器81において、太陽熱濃縮器80から排出される高温の濃縮水W9と熱交換して温度がさらに上昇し、太陽熱濃縮器80に導入される。このように、太陽熱濃縮器80に導入される前に予熱処理水W4の温度を上げることで、太陽熱濃縮器80の予熱処理水W4に対する加熱負荷を軽減できる。
 太陽熱濃縮器80に導入された予熱処理水W4は、太陽熱Hによってさらに加熱され、その一部が蒸発して気化し、水蒸気Stが生成される。また、気化しなかった残りの予熱処理水W4は、濃縮された濃縮水W9となって、濃縮ポンプ85によって大気圧以上に加圧され、処理水熱交換器81を経由して淡水化装置100の外部に排出される。
 一方、太陽熱濃縮器80で生成される水蒸気Stは、吸収式冷凍サイクル部1の蒸発器40に備わる蒸気ヘッダ41を経由して蒸発伝熱管44に導入される。
 図2に示す蒸発器40には、1つの蒸発伝熱管44が示されているが、蒸発器40には複数の蒸発伝熱管44が配管される構成であってもよい。
 この構成のとき、蒸気ヘッダ41は、水蒸気Stを複数の蒸発伝熱管44に配分する機能を有する。
 前記したように、蒸発器40の内部には冷媒滴下装置43が備わり、冷媒液C2(C4)が蒸発伝熱管44の表面に滴下される。
 蒸発器40の内部は真空状態に構成され、水の蒸発温度が5℃~15℃程度になるように真空環境が形成されている。したがって、冷媒として水を使用する場合、蒸発伝熱管44の内部を流通する水蒸気Stの凝縮温度より、蒸発器40の内部における冷媒液C2の蒸発温度を低くできる。この構成によって、水蒸気Stが蒸発伝熱管44に導入されたときに、蒸発伝熱管44の表面温度が、水蒸気Stの温度に上昇していると、蒸発伝熱管44の表面に滴下された冷媒液C2の一部は蒸発して気化し、冷媒蒸気C3が発生する。そして、蒸発伝熱管44の表面は、冷媒液C2の気化熱で冷却される。このことから、蒸発伝熱管44の表面は、被冷却面となる。
 蒸発伝熱管44の表面が冷媒液C2(C4)の気化熱で冷却されると、蒸発伝熱管44に導入された水蒸気Stは、蒸発伝熱管44によって冷却されて凝縮され、淡水W6が生成される。
 このとき蒸発器40で発生した冷媒蒸気C3は、蒸発器40の内部と連通する空冷吸収器30の内部に導かれる。
 一方、蒸発器40で気化しなかった残りの冷媒液C2は、蒸発器ポンプ45によって冷媒滴下装置43に再度導入され、蒸発伝熱管44の表面に滴下される。
 蒸発器40で生成される淡水W6は、蒸発器40に備わる淡水ヘッダ42を経由し、淡水ポンプ46によって大気圧以上に加圧され、淡水化装置100の外部に排出される。
 蒸発器40に複数の蒸発伝熱管44が配管される構成の場合、淡水ヘッダ42は、それぞれの蒸発伝熱管44で生成される淡水W6を集める機能を有する。
 以上のように、本実施形態に係る淡水化装置100は、太陽熱Hを熱源としてCOD処理水W3を蒸留し、淡水W6を生成できる。
 図3は、吸収式冷凍サイクル部における作動温度サイクルを示す図であり、吸収式冷凍サイクル部1を構成する太陽熱再生器10(図2参照)、空冷凝縮器20(図2参照)、空冷吸収器30(図2参照)、及び蒸発器40(図2参照)をデューリング線図上に示したもので、縦軸に凝縮温度、横軸に溶液温度を示したものある。
 なお、処理水予熱器70(図2参照)は、太陽熱再生器10及び空冷凝縮器20と連結して備わり、冷媒蒸気C1がCOD処理水W3によって冷却されて凝縮されることから、作動温度サイクルから見た動作点は、空冷凝縮器20に一致する。
 以下、図3を参照して吸収式冷凍サイクル部1の作動温度サイクルを説明する(適宜、図1、2参照)。
 図3に示す温度TEは、蒸発器40における冷媒液C2(C4)の蒸発温度であり、冷媒として水を使用する場合、太陽熱濃縮器80で生成される水蒸気Stの凝縮温度とほぼ等しい。
 温度TAは、空冷凝縮器20及び空冷吸収器30の動作環境の温度(外気温度)であり、外気を直接冷却源とした場合の水蒸気Stの凝縮温度に相当する。そして、温度TEと温度TAの温度差をΔTとする。
 また、凝縮温度TSは、蒸発器40及び空冷吸収器30における冷媒の凝縮温度であり、冷媒は、蒸発器40及び空冷吸収器30において凝縮温度TS以上になると気化する。すなわち、蒸発器40における冷媒液C2(C4)の蒸発温度である温度TEと等しい。
 凝縮温度TSは、太陽熱再生器10及び空冷凝縮器20における冷媒の凝縮温度であり、冷媒は、太陽熱再生器10及び空冷凝縮器20において凝縮温度TS以上になると気化する。
 前記したように、蒸発器40の内部、及び空冷吸収器30の内部の真空度は、太陽熱再生器10の内部、及び空冷凝縮器20の内部の真空度より高いことから、蒸発器40、及び空冷吸収器30の凝縮温度TSは、太陽熱再生器10、及び空冷凝縮器20の凝縮温度TSより低くなる。
 本実施形態に係る淡水化装置100において、凝縮温度TSは、温度TA(外気温度)と略等しい。この構成により、空冷凝縮器20で冷媒蒸気C1を空気Airで冷却して凝縮させ、冷媒液C2を生成できる。
 太陽熱再生器10で加熱された希溶液L2から蒸発する冷媒蒸気C1は、太陽熱Hによって温度T1に加熱され、空冷凝縮器20に導入される。
 空冷凝縮器20に導入された冷媒蒸気C1は、空気Airによって外気温度TAに冷却されて凝縮され、冷媒液C2が生成される。そして、冷媒液C2は蒸発器40に導入される。
 蒸発器40は、空冷凝縮器20より真空度が高く、凝縮温度が低いことから、蒸発器40に導入された冷媒液C2は、周囲から気化熱を奪って気化し、冷媒蒸気C3が発生する。
 このとき冷媒蒸気C3の温度は、外気温度TAより温度差ΔTだけ低い温度TEになる。そして、冷媒蒸気C3は、蒸発器40と連結する空冷吸収器30に導かれて、空気Airによって外気温度TAに冷却されている濃溶液L1に吸収される。
 以上のように、本実施形態に係る淡水化装置100は、太陽熱濃縮器80で生成される水蒸気Stを、吸収式冷凍サイクル部1の被冷却面である蒸発伝熱管44に直接導いて冷却する構成であり、外気温度TAより温度差ΔTだけ低い温度TEで水蒸気Stを凝縮できる。
 したがって、本実施形態に係る油濁水再利用システム500(図1参照)を、例えば中東地域など外気温度の高い地域で使用する場合であっても、水蒸気Stを低い温度で凝縮させることができ、太陽熱濃縮器80(図2参照)で生成される水蒸気Stを効率よく凝縮できる。
 このことによって、淡水W6を効率よく安定して生成できるという優れた効果を奏する。
 また、本実施形態に係る油濁水再利用システム500は、水蒸気Stの冷却に海水を使用しないことから、海岸線から離れた内陸部でも使用することができる。
 さらに、図2に示すように、本実施形態に係る油濁水再利用システム500(図1参照)の淡水化装置100には、処理水予熱器70を備え、COD除去装置530(図1参照)で生成されるCOD処理水W3を予熱しているので、COD処理水W3を加熱濃縮する太陽熱濃縮器80の加熱負荷を軽減できる。
 したがって、太陽熱濃縮器80を小型化することができる。
 さらに、処理水予熱器70の伝熱形態は、冷媒蒸気Stの側が凝縮熱伝導、COD処理水W3の側が強制対流熱伝導であり、太陽熱濃縮器80に比べて熱伝達率が高い。したがって、例えば処理水予熱器70の小型化を図ることができることから、油濁水再利用システム500を小型化することができ、設置面積を小さくできる。
 また、図2に示すように、処理水予熱器70では、吸収式冷凍サイクル部1の太陽熱再生器10で発生した冷媒蒸気C1を凝縮させて冷媒液C4を生成している。したがって、COD処理水W3の温度が大気温度TAより低い場合には、冷媒蒸気C1の圧力を低減し、太陽熱再生器10における冷媒蒸気C1の発生量を増大させて、吸収式冷凍サイクル部1の冷却能力と淡水W6の生成量を増大させることができる。
 また、図2に示す淡水化装置100においては、濃縮水ポンプ85で圧縮された高温の濃縮水W9を処理水熱交換器81に導入し、太陽熱濃縮器80に導入される前の、処理水予熱器70で予熱された予熱処理水W4の温度をさらに上げる構成とした。この構成によって、太陽熱濃縮器80における加熱負荷をさらに軽減することができ、例えば太陽熱濃縮器80を小型化することができる。
 なお、本実施形態に係る淡水化装置100は、図2に示すように、濃縮水ポンプ85で圧縮された濃縮水W9を処理水熱交換器81に導入する構成であるが、例えば複数の太陽熱濃縮器80を直列に備える構成とし、最も下流に備わる太陽熱濃縮器80で生成される、最も濃度の高い濃縮水W9と、最も上流に備わる太陽熱濃縮器80に供給される予熱処理水W4とで熱交換する構成としてもよい。
 石油生産の過程で発生する油濁水を浄化して淡水を生成する場合、油濁水に塩分が含まれているときには、最終段階で蒸留して塩分を除去する。
 この場合、蒸留時に生成される水蒸気の凝縮手段として、外気や海水による冷却が広く用いられるが、例えば主な石油生産地域である中東地域では外気温度が高く、充分に冷却できない。また、内陸部では海水の使用が困難である。
 本実施形態に係る油濁水再利用システムは、太陽熱を熱源とした吸収式冷凍サイクルを使用し、蒸発器の被冷却面に水蒸気を直接導いて、大気温度より低い温度で効率よく水蒸気を凝縮させることを特徴とした。
 したがって、外気や海水による冷却を必要とせず、例えば大気温度が高く、且つ海水の入手が困難な中東地域の内陸部においても効率よく淡水を生成できるという優れた効果を奏する。
 以上、本実施形態に係る油濁水再利用システム500(図1参照)に備わる、淡水化装置100(図2参照)について説明したが、油濁水再利用システム500に備わる淡水化装置は、例えば、二重効用に低圧濃縮器が配置される二重効用型であってもよい。
 図4は、二重効用型の淡水化装置の構成例を示す図である。
 なお、図4に示す淡水化装置100aの吸収式冷凍サイクル部1の構成は、図2に示す淡水化装置100の吸収式冷凍サイクル部1と同じ構成であり、詳細な図示及び説明は省略する。
 また、図4に示す淡水化装置100aの水処理部6aで、図1に示す淡水化装置100の水処理部6と同じ構成については同じ符号を付し、説明は適宜省略する。
 さらに、図4の太線は液体の流通を示し、細線は気体の流通を示す。
 図4に示すように、二重効用型の淡水化装置100aの水処理部6aは、太陽熱濃縮器80と蒸発伝熱管44の間に、低圧濃縮器60が備わって構成される。
 低圧濃縮器60の内部は真空状態に維持されるとともに、太陽熱濃縮器80で生成される水蒸気(以下、第1水蒸気S1と称する)が流通する伝熱管64が配管され、低圧濃縮器60に導入される予熱処理水W4を、低圧濃縮器60の内部に滴下する滴下装置60aが備わる。
 なお、図4の低圧濃縮器60には、1つの伝熱管64が示されているが、複数の伝熱管64が備わり、蒸気ヘッダ60cが第1水蒸気S1を複数の伝熱管64に配分する構成であってもよい。
 また、滴下装置60aから滴下された予熱処理水W4の一部が蒸発して気化した水蒸気(以下、第2水蒸気S2と称する)を蒸発伝熱管44に導く配管と、低圧濃縮器60の内部に溜った中間濃縮水W8を太陽熱濃縮器80に導入するための中間濃縮水ポンプ65を備える。
 中間濃縮水W8は、滴下装置60aから滴下された予熱処理水W4の一部が蒸発しないで、濃縮されて生成される。
 このように構成される淡水化装置100aにおいては、COD除去装置530(図1参照)から処理水予熱器70に導入されたCOD処理水W3が、処理水予熱器70で加熱されて予熱処理水W4が生成される。この予熱処理水W4が原水になる。
 予熱処理水W4は、処理水熱交換器81における濃縮水W9との熱交換でさらに加熱された後、低圧濃縮器60の滴下装置60aに導入される。予熱処理水W4は滴下装置60aによって低圧濃縮器60の内部に滴下され、伝熱管64を流通する第1水蒸気S1との熱交換で加熱されて一部が蒸発して気化し、第2水蒸気S2が生成される。このとき、伝熱管64を流通する第1水蒸気S1は、予熱処理水W4の気化熱で凝縮され、淡水W6aが生成される。
 そして、気化しなかった予熱処理水W4は濃縮されて、中間濃縮水W8が生成される。
 低圧濃縮器60で生成される第2水蒸気S2は、吸収式冷凍サイクル部1の蒸発器40に配管される蒸発伝熱管44に導入され、蒸発器40の内部を滴下する冷媒液C2の気化熱で冷却されて凝縮されて淡水W6bが生成される。
 淡水W6bは、蒸発器40に備わる淡水ヘッダ42を経由して、淡水ポンプ46によって大気圧以上に加圧される。
 一方、低圧濃縮器60で生成される中間濃縮水W8は、中間濃縮水ポンプ65によって太陽熱濃縮器80に導入される。
 太陽熱濃縮器80に導入された中間濃縮水W8は太陽熱Hによって加熱され、その一部が蒸発して気化し、第1水蒸気S1が生成される。また、気化しなかった残りの中間濃縮水W8は、さらに濃縮された濃縮水W9となって、濃縮ポンプ85によって大気圧以上に加圧され、処理水熱交換器81を経由して淡水化装置100aの外部に排出される。
 太陽熱濃縮器80で生成される第1水蒸気S1は、蒸気ヘッダ60cを経由して、低圧濃縮器60の内部に配管される伝熱管64に導入され、低圧濃縮器60の内部に滴下される予熱処理水W4の一部が気化するときの気化熱で凝縮され、淡水W6aが生成される。
 前記したように、低圧濃縮器60の内部は真空状態に維持され、蒸発温度が低くなっていることから、第1水蒸気S1が導入された伝熱管64に予熱処理水W4が接触すると、予熱処理水W4の一部は蒸発して気化する。そして、伝熱管64に導入された第1水蒸気S1から気化熱を奪って第1水蒸気S1を冷却し、凝縮させる。
 低圧濃縮器60で生成される淡水W6aは、低圧濃縮器60に備わる淡水ヘッダ60bを経由して淡水ポンプ66によって大気圧以上に加圧され、淡水ポンプ46で加圧された淡水W6bと合流して淡水W6となり、淡水化装置100aの外部に排出される。
 このように、二重効用型の淡水化装置100a(図4参照)は、原水(予熱処理水W4)の濃縮、及び水蒸気(第1水蒸気S1、第2水蒸気S2)と淡水(W6a、W6b)の生成を二段階で実行する。
 二重効用型の淡水化装置100aを採用することによって、淡水W6の生成量を増量することができ、効率よく淡水W6を得ることができる。
 また、例えば図2に示す淡水化装置100と同量の淡水W6を得る場合、二重効用型の淡水化装置100aにおいては、設置面積の多くを占有する太陽熱濃縮器80(図4参照)の受熱面(太陽熱を受ける面)の面積を小さくすることができる。
 例えば、二重効用型の淡水化装置100a(図4参照)は、図2に示す淡水化装置100に備わる太陽熱濃縮器80の受熱面の面積の半分で、同量の淡水W6を生成することができる。
 したがって、二重効用型の淡水化装置100aが備わる油濁水再利用システム500(図1参照)全体を小型化することができ、油濁水再利用システム500の設置面積を小さくできるという優れた効果を奏する。
 なお、蒸発及び濃縮操作を多重効用とする技術は、特に化学プラントの分野では常套手段であり広く公知の技術であるが、多重効用の効果を最大限に発揮するためには、最下段における凝縮温度及び圧力を充分に低くする必要がある。したがって、主な石油生産地域である、外気温度の高い中東地域において、外気による直接冷却方式にすると、冷却装置の大型化や、最も上段に位置する太陽熱濃縮器の高温化に伴ってシステム全体が大型化してしまい、多重効用方式を採用することによる弊害が発生する。
 これに対し、本実施形態に係る淡水化装置100a(図4参照)は、最下段の冷却に吸収冷凍サイクル方式を採用していることから、図3に示すように、第1水蒸気S1は、外気温度TAより温度差ΔTだけ低い温度TEで凝縮され、外気温度の高い中東地域であっても多重効用の効果を最大限に発揮できる。
 以上のように、本実施形態に係る、二重効用型の淡水化装置100a(図4参照)の特徴は、吸収式冷凍サイクル方式を採用することで、予熱処理水W4(図4参照)の濃縮、すなわち、淡水W6(図4参照)の生成における多重効用(二重効用)の効果を最大限に発揮できる点にある。
 なお、本実施形態に係る油濁水再利用システム500(図1参照)においては、二重効用型の淡水化装置100a(図4参照)のほか、三重効用に低圧濃縮器が配置される三重効用型、四重効用に低圧濃縮器が配置される四重効用型の淡水化装置備える構成も可能である。
 図5は、四重効用型の淡水化装置の構成例を示す図である。
 図5に示す、四重効用型の淡水化装置100bの吸収式冷凍サイクル部1の構成は、図2に示す淡水化装置100の吸収式冷凍サイクル部1と同じ構成であり、詳細な図示及び説明は省略する。
 また、四重効用型の淡水化装置100bの水処理部6bで、図4に示す二重効用型の淡水化装置100aの水処理部6aと同じ構成については同じ符号を付し、詳細な説明は適宜省略する。
 さらに、図5の太線は液体の流通を示し、細線は気体の流通を示す。
 図5に示すように、四重効用型の淡水化装置100bの水処理部6bは、太陽熱濃縮器80と蒸発伝熱管44の間に中間濃縮部90が備わって構成され、中間濃縮部90は、1台の上段低圧濃縮器91と、1台の中段低圧濃縮器92と、1台の下段低圧濃縮器93を含んでなる。
 なお、上段低圧濃縮器91の内部、中段低圧濃縮器92の内部、及び下段低圧濃縮器93の内部は、それぞれ真空状態に維持され、上段低圧濃縮器91、中段低圧濃縮器92、及び下段低圧濃縮器93は、低圧濃縮器である構成が好ましい。
 上段低圧濃縮器91の内部には、少なくとも1つの伝熱管91cが配管され、伝熱管91cには、太陽熱濃縮器80で生成される第1水蒸気S1が、蒸気ヘッダ91bを経由して導入される。
 さらに、後段に配置される中段低圧濃縮器92から導入される中間濃縮水W8が伝熱管91cの表面に滴下され、中間濃縮水W8の一部は気化して第3水蒸気S3が生成される。
 そして、伝熱管91cを流通する第1水蒸気S1は、中間濃縮水W8の気化熱で凝縮されて、淡水W6cが生成される。
 これは、上段低圧濃縮器91の内部が真空状態に維持されていることによる。
 すなわち、上段低圧濃縮器91の内部は蒸発温度が低くなっていることから、太陽熱Hで加熱された高温の第1水蒸気S1が流通する伝熱管91cに中間濃縮水W8が接触すると、中間濃縮水W8の一部は蒸発して気化する。そして、伝熱管91cに導入された第1水蒸気S1から気化熱を奪って、第1水蒸気S1を冷却する。
 上段低圧濃縮器91で生成される淡水W6cは、淡水ヘッダ91aを経由して淡水ポンプ91dによって、大気圧以上に加圧される。
 中段低圧濃縮器92の内部には、少なくとも1つの伝熱管92cが配管され、伝熱管92cには、前段に配置される上段低圧濃縮器91で生成される第3水蒸気S3が、蒸気ヘッダ92bを経由して導入される。
 さらに、後段に配置される下段低圧濃縮器93から導入される中間濃縮水W8が伝熱管92cの表面に滴下され、中間濃縮水W8の一部は気化して第4水蒸気S4が生成される。
 そして、伝熱管92cを流通する第3水蒸気S3は、中間濃縮水W8の気化熱で凝縮されて、淡水W6dが生成される。
 これは、中段低圧濃縮器92の内部が真空状態に維持されていることによる。
 すなわち、中段低圧濃縮器92の内部は蒸発温度が低くなっていることから、第3水蒸気S3が流通する伝熱管92cに中間濃縮水W8が接触すると、第3水蒸気S3の熱で中間濃縮水W8の一部は蒸発して気化する。そして、伝熱管92cに導入された第3水蒸気S3から気化熱を奪って、第3水蒸気S3を冷却する。
 中段低圧濃縮器92で生成される淡水W6dは、淡水ヘッダ92aを経由して淡水ポンプ92dによって、大気圧以上に加圧される。
 一方、蒸発しないで中段低圧濃縮器92の内部に溜まった中間濃縮水W8は、中間濃縮水ポンプ65によって、前段に配置される上段低圧濃縮器91に導入される。
 下段低圧濃縮器93の内部には、少なくとも1つの伝熱管93cが配管され、伝熱管93cには、中段低圧濃縮器92で生成される第4水蒸気S4が、蒸気ヘッダ93bを経由して導入される。
 さらに、予熱処理水W4が伝熱管93cの表面に滴下され、予熱処理水W4の一部は気化して第2水蒸気S2が生成される。
 そして、伝熱管93cを流通する第4水蒸気S4は、予熱処理水W4の気化熱で凝縮されて、淡水W6eが生成される。
 これは、下段低圧濃縮器93の内部が真空状態に維持されていることによる。
 すなわち、下段低圧濃縮器93の内部は蒸発温度が低くなっていることから、第4水蒸気S4が流通する伝熱管93cに予熱処理水W4が接触すると、第4水蒸気S4の熱で予熱処理水W4の一部は蒸発して気化する。そして、伝熱管93cに導入された第4水蒸気S4から気化熱を奪って、第4水蒸気S4を冷却する。
 下段低圧濃縮器93で生成される淡水W6eは、淡水ヘッダ93aを経由して淡水ポンプ93dによって、大気圧以上に加圧される。
 一方、蒸発しないで下段低圧濃縮器93に溜まった予熱処理水W4は、濃縮された中間濃縮水W8になって、中間濃縮水ポンプ65で、前段に配置される中段低圧濃縮器92に導入される。
 下段低圧濃縮器93で生成される第2水蒸気S2は、吸収式冷凍サイクル部1の蒸発器40に配管される蒸発伝熱管44に、蒸気ヘッダ41を経由して導入される。そして、蒸発器40の内部で、冷媒液C2の気化熱で冷却されて凝縮され、淡水W6bが生成される。
 淡水W6bは、蒸発器40に備わる淡水ヘッダ42を経由して、淡水ポンプ46によって大気圧以上に加圧される。
 中間濃縮部90で生成される淡水W6c、W6d、及びW6eは、蒸発器40で生成される淡水W6bと合流して淡水W6となり、淡水化装置100bの外部に排出される。
 また、上段低圧濃縮器91に溜まっている中間濃縮水W8は、中間濃縮水ポンプ65によって太陽熱濃縮器80に導入される。
 太陽熱濃縮器80に導入された中間濃縮水W8は太陽熱Hによって加熱され、その一部が蒸発して気化し、第1水蒸気S1が生成される。一方、気化しなかった残りの中間濃縮水W8は、さらに濃縮された濃縮水W9となって、濃縮ポンプ85によって大気圧以上に加圧され、処理水熱交換器81を経由して淡水化装置100bの外部に排出される。
 図5に示すように、四重効用型の淡水化装置100bは、淡水(W6b、W6c、W6d、W6e)を4段階で生成することができ、淡水W6の生成量を増量することができる。したがって、効率よく淡水W6を得ることができる。
 また、例えば図2に示す淡水化装置100と同量の淡水W6を得る場合、太陽熱濃縮器80(図5参照)の受熱面の面積を、図4に示す二重効用型の淡水化装置100aの場合よりさらに小さくでき、油濁水再利用システム500(図1参照)全体をさらに小型化することができる。したがって、油濁水再利用システム500の設置面積をさらに小さくできるという優れた効果を奏する。
 なお、図5に示す中間濃縮部90において、中段低圧濃縮器92を備えない場合(三重効用型)、下段低圧濃縮器93では、予熱処理水W4の一部が気化する気化熱で、上段低圧濃縮器91で生成される第3水蒸気S3が凝縮され、淡水W6eが生成される。
 また、図示はしないが、下段低圧濃縮器93と中段低圧濃縮器92の間に、例えば1台の、後段の中段低圧濃縮器を備える場合(五重効用型)、下段低圧濃縮器93と中段低圧濃縮器92の間に備わる後段の中段低圧濃縮器では、下段低圧濃縮器93で生成される中間濃縮水W8の一部が気化する気化熱で、中段低圧濃縮器92(前段の中段低圧濃縮器)で生成される第4水蒸気S4が凝縮され、淡水が生成される。
 このように、中間濃縮部90に備わる中段低圧濃縮器92の台数を変更することによって、多重効用型の淡水化装置を自由に構成できる。そして、多重効用型の淡水化装置を備えることで、淡水W6の生成量を増量することができ、油濁水再利用システム500(図1参照)における淡水W6の生成効率を向上できる。
 1   吸収式冷凍サイクル部
 6、6a、6b 水処理部
 10  太陽熱再生器(再生器)
 20  空冷凝縮器(凝縮器)
 30  空冷吸収器(吸収器)
 40  蒸発器
 44  蒸発伝熱管(被冷却面)
 60  低圧濃縮器
 70  処理水予熱器(予熱器)
 80  太陽熱濃縮器(加熱濃縮器)
 90  中間濃縮部
 91  上段低圧濃縮器(低圧濃縮器)
 92  中段低圧濃縮器(低圧濃縮器)
 93  下段低圧濃縮器(低圧濃縮器)
 100 淡水化装置(塩分除去手段)
 500 油濁水再利用システム
 510 凝集磁気分離機(処理水生成手段)
 530 COD除去装置(COD除去手段)
 St  水蒸気
 S1  第1水蒸気
 S2  第2水蒸気
 S3  第3水蒸気
 S4  第4水蒸気
 W2  1次浄化水(1次処理水)
 W3  COD処理水(2次処理水)
 W4  予熱処理水(原水)
 W6  淡水
 W8  中間濃縮水。

Claims (7)

  1.  再生器、凝縮器、吸収器、及び蒸発器を含んで構成され、冷媒が循環する吸収式冷凍サイクル部と、
     原水を加熱して濃縮する加熱濃縮器で生成される水蒸気を前記蒸発器に導入して前記冷媒と熱交換させる水処理部と、を備え、
     前記蒸発器は、前記凝縮器で凝縮された前記冷媒が気化するときの気化熱で冷却される被冷却面で、前記水蒸気を冷却して凝縮させて淡水を生成することを特徴とする淡水化装置。
  2.  再生器、凝縮器、吸収器、及び蒸発器を含んで構成され、冷媒が循環する吸収式冷凍サイクル部と、
     原水を濃縮して中間濃縮水を生成するときに生成される第2水蒸気を、前記蒸発器に導入して前記冷媒と熱交換させる水処理部と、を備え、
     前記蒸発器は、前記凝縮器で凝縮された前記冷媒が気化するときの気化熱で冷却される被冷却面で、前記第2水蒸気を冷却して凝縮させて淡水を生成する淡水化装置であって、
     前記水処理部は、
     前記中間濃縮水を加熱して第1水蒸気を生成し、前記中間濃縮水をさらに濃縮する加熱濃縮器と、
     前記原水を濃縮して前記第2水蒸気と前記中間濃縮水を生成し、前記第2水蒸気が生成するときの気化熱で前記第1水蒸気を凝縮させて淡水を生成する低圧濃縮器と、を有することを特徴とする淡水化装置。
  3.  再生器、凝縮器、吸収器、及び蒸発器を含んで構成され、冷媒が循環する吸収式冷凍サイクル部と、
     原水を濃縮して中間濃縮水を生成するときに生成される第2水蒸気を前記蒸発器に導入して前記冷媒と熱交換させるとともに、前記中間濃縮水をn回(nは2以上の整数)濃縮する水処理部と、を備え、
     前記蒸発器は、前記凝縮器で凝縮された前記冷媒が気化するときの気化熱で冷却される被冷却面で、前記第2水蒸気を冷却して凝縮させて淡水を生成する淡水化装置において、
     前記水処理部は、
     n-1回濃縮された前記中間濃縮水を加熱して第1水蒸気を生成し、前記中間濃縮水をさらに濃縮する加熱濃縮器と、
     前記加熱濃縮器の後段に配置されるn台の低圧濃縮器を多重効用に配置し、前記中間濃縮水をn-1回濃縮する中間濃縮部と、を含んで構成され、
     前記低圧濃縮器は、
     最前段に配置される1台の上段低圧濃縮器と、最後段に配置される1台の下段低圧濃縮器と、前記上段低圧濃縮器と前記下段低圧濃縮器の間に配置されるn-2台の中段低圧濃縮器と、からなり、
     前記上段低圧濃縮器は、後段に配置される前記低圧濃縮器から導入される前記中間濃縮水をさらに濃縮するとともに第3水蒸気を生成して、前記第3水蒸気が生成するときの気化熱で、前記加熱濃縮器から導入される前記第1水蒸気を凝縮させて淡水を生成し、
     前記中段低圧濃縮器は、後段に配置される前記低圧濃縮器から導入される前記中間濃縮水をさらに濃縮するとともに第4水蒸気を生成して、前記第4水蒸気が生成するときの気化熱で、前段に配置される低圧濃縮器から導入される前記第3水蒸気又は前記第4水蒸気を凝縮させて淡水を生成し、
     前記下段低圧濃縮器は、前記原水を濃縮して前記中間濃縮水を生成するとともに前記第2水蒸気を生成して、前記第2水蒸気が生成するときの気化熱で、前段に配置される前記低圧濃縮器から導入される前記第3水蒸気又は前記第4水蒸気を凝縮させて淡水を生成すること、を特徴とする淡水化装置。
  4.  前記加熱濃縮器は、太陽熱を熱源とすることを特徴とする請求項1乃至請求項3のいずれか1項に記載の淡水化装置。
  5.  前記再生器は、気化した前記冷媒を吸収している吸収液を加熱して、前記吸収液から前記冷媒を分離し、
     前記水処理部は、濃縮される前の前記原水を、前記吸収液から分離された前記冷媒で加熱するための予熱器を備えることを特徴とする請求項1乃至請求項4のいずれか1項に記載の淡水化装置。
  6.  前記再生器は、太陽熱を熱源とすることを特徴とする請求項5に記載の淡水化装置。
  7.  石油生産の際に発生する油濁水から被除去物である油濁成分を除去した1次処理水を生成する処理水生成手段と、
     前記1次処理水から被除去物である水溶性有機物を除去して2次処理水を生成するCOD除去手段と、
     前記2次処理水に含まれる塩分を除去して淡水を生成する塩分除去手段と、を含んで構成され、
     前記塩分除去手段は、請求項1乃至請求項6のいずれか1項に記載の淡水化装置であることを特徴とする油濁水再利用システム。
PCT/JP2009/002187 2008-08-08 2009-05-18 淡水化装置、及び油濁水再利用システム WO2010016173A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2009278708A AU2009278708A1 (en) 2008-08-08 2009-05-18 Desalination device and system for re-utilizing oil-contaminated water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-205846 2008-08-08
JP2008205846A JP2010036174A (ja) 2008-08-08 2008-08-08 淡水化装置、及び油濁水再利用システム

Publications (1)

Publication Number Publication Date
WO2010016173A1 true WO2010016173A1 (ja) 2010-02-11

Family

ID=41663402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002187 WO2010016173A1 (ja) 2008-08-08 2009-05-18 淡水化装置、及び油濁水再利用システム

Country Status (3)

Country Link
JP (1) JP2010036174A (ja)
AU (1) AU2009278708A1 (ja)
WO (1) WO2010016173A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043736A (zh) * 2013-01-23 2013-04-17 林贤华 热泵全能海水淡化系统
CN103043737A (zh) * 2013-01-23 2013-04-17 林贤华 热泵全天候海水淡化系统
JP2013071057A (ja) * 2011-09-28 2013-04-22 Toshiba Corp 水処理装置
CN105402933A (zh) * 2015-12-22 2016-03-16 天津大学 驱动吸附式海水淡化的太阳能和地热能联合低温热源系统
IT202000026503A1 (it) * 2020-11-09 2022-05-09 Quant Co Srls Impianto di demineralizzazione dell'acqua da trattare

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5246515B2 (ja) * 2009-12-18 2013-07-24 株式会社日立プラントテクノロジー 廃水処理装置
JP5457381B2 (ja) 2010-02-22 2014-04-02 東京エレクトロン株式会社 現像処理装置及び現像処理方法
CN103017397B (zh) * 2012-12-18 2015-02-11 中国科学院电工研究所 中高温太阳能蒸汽-吸收制冷-海水淡化-储能耦合系统
US11035581B1 (en) 2020-12-29 2021-06-15 Kuwait Institute For Scientific Research Integrated desalination and air conditioning system
US11407659B1 (en) 2021-07-09 2022-08-09 Kuwait Institute For Scientific Research Desalination and cooling system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054070U (ja) * 1983-09-19 1985-04-16 三洋電機株式会社 太陽熱吸収式冷蔵庫
JPS61271081A (ja) * 1985-05-25 1986-12-01 Hitachi Plant Eng & Constr Co Ltd 海水の淡水化装置
JPH0719644A (ja) * 1993-07-07 1995-01-20 Nippondenso Co Ltd 浄化冷温水器
JPH1199394A (ja) * 1997-07-29 1999-04-13 Japan Organo Co Ltd 水中の有機物除去方法
JP2000304485A (ja) * 1999-04-19 2000-11-02 Hitachi Cable Ltd 流下液膜式熱交換器用伝熱管
JP2001133073A (ja) * 1999-11-01 2001-05-18 Osaka Gas Co Ltd 吸収式冷凍装置
JP2004121995A (ja) * 2002-10-02 2004-04-22 Ebara Corp 真空蒸発式蒸留装置
JP2008521586A (ja) * 2004-11-29 2008-06-26 アクアミル ファイブ スター ピーティーワイ リミテッド 液体処理装置および方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054070U (ja) * 1983-09-19 1985-04-16 三洋電機株式会社 太陽熱吸収式冷蔵庫
JPS61271081A (ja) * 1985-05-25 1986-12-01 Hitachi Plant Eng & Constr Co Ltd 海水の淡水化装置
JPH0719644A (ja) * 1993-07-07 1995-01-20 Nippondenso Co Ltd 浄化冷温水器
JPH1199394A (ja) * 1997-07-29 1999-04-13 Japan Organo Co Ltd 水中の有機物除去方法
JP2000304485A (ja) * 1999-04-19 2000-11-02 Hitachi Cable Ltd 流下液膜式熱交換器用伝熱管
JP2001133073A (ja) * 1999-11-01 2001-05-18 Osaka Gas Co Ltd 吸収式冷凍装置
JP2004121995A (ja) * 2002-10-02 2004-04-22 Ebara Corp 真空蒸発式蒸留装置
JP2008521586A (ja) * 2004-11-29 2008-06-26 アクアミル ファイブ スター ピーティーワイ リミテッド 液体処理装置および方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071057A (ja) * 2011-09-28 2013-04-22 Toshiba Corp 水処理装置
CN103043736A (zh) * 2013-01-23 2013-04-17 林贤华 热泵全能海水淡化系统
CN103043737A (zh) * 2013-01-23 2013-04-17 林贤华 热泵全天候海水淡化系统
CN103043737B (zh) * 2013-01-23 2013-11-27 林贤华 热泵全天候海水淡化系统
CN103043736B (zh) * 2013-01-23 2013-12-04 林贤华 热泵全能海水淡化系统
CN105402933A (zh) * 2015-12-22 2016-03-16 天津大学 驱动吸附式海水淡化的太阳能和地热能联合低温热源系统
IT202000026503A1 (it) * 2020-11-09 2022-05-09 Quant Co Srls Impianto di demineralizzazione dell'acqua da trattare

Also Published As

Publication number Publication date
AU2009278708A1 (en) 2010-02-11
JP2010036174A (ja) 2010-02-18

Similar Documents

Publication Publication Date Title
WO2010016173A1 (ja) 淡水化装置、及び油濁水再利用システム
Zhang et al. Review of thermal efficiency and heat recycling in membrane distillation processes
Saidur et al. An overview of different distillation methods for small scale applications
US7037430B2 (en) System and method for desalination of brackish water from an underground water supply
US5346592A (en) Combined water purification and power of generating plant
US8603223B2 (en) Desalination system and method
US8613839B2 (en) Water distillation method and apparatus
KR101220246B1 (ko) 태양열 병합 담수화 시스템
JP2012525529A (ja) Co2捕捉を備えた発電プラント及び水処理プラント
CN101318716A (zh) 一种膜蒸发浓缩液体处理系统及处理方法
US20110048920A1 (en) Adsorbent - Adsorbate Desalination Unit and Method
CN107324426A (zh) 一种锅炉烟气余热耦合蒸发浓缩脱硫废水系统
CN103806964A (zh) 汽轮机乏汽潜热综合利用的方法与系统
WO2022126671A1 (zh) 通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置
Bahar et al. Desalination: conversion of seawater to freshwater
CN111115735A (zh) 一种垃圾渗滤液两级强制循环蒸发系统及工艺
US11465924B2 (en) Hybrid process and system for recovering water
US11465068B2 (en) Multi-stage flash (MSF) reversal system and method
WO2009157875A1 (en) Apparatus and method for improved desalination
WO2022126670A1 (zh) 一种通过热泵将高含盐废水浓缩结晶含盐淡化水处理装置
CN101525196A (zh) 带预热器的多效蒸馏海水淡化装置
Karhe et al. A solar desalination system using humidification-dehumidification process-A review of recent research
Saleh et al. A novel vacuum wastewater treatment plant integrated with a solar absorption system
KR100465885B1 (ko) 하/폐수용 증발 농축 시스템
JP4261438B2 (ja) 発電及び海水淡水化システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804660

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009278708

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009278708

Country of ref document: AU

Date of ref document: 20090518

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09804660

Country of ref document: EP

Kind code of ref document: A1