WO2022126671A1 - 通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置 - Google Patents

通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置 Download PDF

Info

Publication number
WO2022126671A1
WO2022126671A1 PCT/CN2020/137848 CN2020137848W WO2022126671A1 WO 2022126671 A1 WO2022126671 A1 WO 2022126671A1 CN 2020137848 W CN2020137848 W CN 2020137848W WO 2022126671 A1 WO2022126671 A1 WO 2022126671A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
concentrated brine
lithium bromide
concentrated
brine
Prior art date
Application number
PCT/CN2020/137848
Other languages
English (en)
French (fr)
Inventor
徐宝安
Original Assignee
淄博环能海臣环保技术服务有限公司
徐宝安
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淄博环能海臣环保技术服务有限公司, 徐宝安 filed Critical 淄博环能海臣环保技术服务有限公司
Publication of WO2022126671A1 publication Critical patent/WO2022126671A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide

Definitions

  • the invention belongs to the field of high-salt-containing water treatment technology and environmental protection, and particularly relates to a treatment device for concentrating, crystallization, and desalination of high-salt-containing wastewater through a lithium bromide unit.
  • high-salt wastewater seeps into the soil system, which will cause soil organisms and plants to die due to dehydration, resulting in the destruction of the soil ecosystem. collapse.
  • high-salt wastewater usually contains other high-concentration organic matter or nutrients. If it is directly discharged without treatment, it will bring more pressure to the water environment and accelerate the process of eutrophication of rivers and lakes.
  • salt-containing industrial wastewater it is certain that with the development of industry and the shortage of water resources, the pollution concentration of high-salt production wastewater produced by some industrial industries is getting higher and higher, and the composition is getting higher and higher. The more complex, the bigger the emissions, the bigger the environmental pressure. Therefore, the research on high-salinity industrial wastewater treatment technology is imminent, and exploring effective high-salinity organic wastewater treatment technology has become one of the hot spots in wastewater treatment.
  • inverted electrodialysis device or nanofiltration pretreatment is used to reduce the possibility of scaling on the surface of the electrodialysis concentrated water side membrane.
  • inverted electrodialysis requires complex pipelines and control systems, and at the same time reduces the recovery rate of water in the electrodialysis system; on the one hand, nanofiltration is used as pretreatment to add new treatment equipment, while nanofiltration membranes still have scaling problems.
  • the recovery rate of the system is low; and some disclosed technologies treat the fresh water of electrodialysis to a lower degree and use it as fresh water for the process, which increases the cost of electrodialysis treatment.
  • Some disclosed technologies treat the fresh water of electrodialysis to a lower degree and use it as fresh water for the process, which increases the cost of electrodialysis treatment.
  • the invention provides a treatment device for concentrating, crystallization and desalination of high-salt-containing wastewater through a lithium bromide unit, which has good treatment effect, simple process flow and stable operation, and is suitable for the treatment of most industrial high-salt water.
  • the high-salt-containing wastewater is concentrated, crystallized, and desalinated by a lithium bromide unit, including a single-effect lithium bromide unit, a brine-containing negative pressure evaporation and concentration condenser as a desalination device, and a hot-air evaporation concentrated brine crystallization and salt-containing device. It is characterized by: single-effect lithium bromide
  • the concentrated lithium bromide solution in the absorber of the unit absorbs the water vapor evaporated by the evaporator and then heats up, and is cooled by circulating water.
  • the cooled and cooled dilute lithium bromide solution is pressurized by the solution pump, then enters the generator through the heat exchanger, heated and concentrated by the heat source, and the concentrated lithium bromide solution enters the heat exchanger for cooling and then enters the absorber to complete the solution cycle.
  • the steam generated by the boiling and concentration of the dilute lithium bromide solution in the generator enters the condenser and is cooled and condensed by circulating water.
  • the refrigerant water formed by condensation enters the evaporator after throttling and decompression, and evaporates here, absorbs the heat in the cold water to cool the cold water, and releases the heat from the cold water to achieve the purpose of refrigeration.
  • the refrigerant vapor formed by evaporation enters the absorber and is absorbed by the concentrated solution to form a dilute solution to complete the refrigerant cycle.
  • the hot circulating water heated by the absorber and condenser of the single-effect lithium bromide unit is used as the heat source.
  • the thermal circulating water heater of the single-effect lithium bromide unit has at least two stages. The first stage is for heating the concentrated brine, and the second stage is for heating the air, which constitutes the cooling of the thermal circulating water of the single-effect lithium bromide unit, and serves as the evaporation, concentration and crystallization of the concentrated brine. the heat source.
  • the cooled single-effect lithium bromide unit heat circulating water is heated by the absorber and the condenser to form a cycle.
  • the refrigerant circulating water evaporated and cooled by the evaporator of the single-effect lithium bromide unit is used as the condensing cold source of the condensing water chamber for spraying evaporated water vapor.
  • the refrigerant circulating water that absorbs heat and heats up enters the evaporation device of the single-effect lithium bromide unit, and then enters the water vapor condensation chamber after exothermic cooling.
  • the cold circulating water heat exchanger of the single-effect lithium bromide unit is at least one stage, which condenses the negative pressure steam in the steam condensation chamber.
  • the single-effect lithium bromide unit condensing circulating water heat exchanger absorbs the heat of water vapor and provides the refrigerant water evaporation heat for the single-effect lithium bromide unit, so that the single-effect lithium bromide unit has a high-efficiency thermal cycle.
  • Brine negative pressure evaporation, condensation, condensation and desalination device connected with single-effect lithium bromide unit including concentrated brine evaporation chamber and water vapor condensation chamber which are isolated and communicated with each other through partitions and water collectors, or two separate chambers, communicated through pipes
  • the two chambers communicate with each other.
  • the top of the concentrated brine evaporation chamber is provided with a hot brine spray evaporation device.
  • the concentrated brine evaporation chamber is provided with a concentrated brine collection tank at the bottom, and the concentrated brine collection tank is connected to a concentrated brine discharge pipe and a concentrated brine circulation outlet pipe. connect.
  • the concentrated brine circulation outlet pipe is mixed with the newly replenished brine, and is pumped into the brine heater through the brine circulation pump for heating.
  • the heated brine passes through the pipeline and is connected to the brine spray evaporation device at the top of the brine evaporation chamber. It is input into the spray device in the concentrated brine evaporator, and the concentrated brine is sprayed and evaporated.
  • the upper part of the two chambers is provided with a partition through the water collector as an isolation device, and the partition of the water collector collects the recovered brine into the concentrated brine pool at the bottom of the concentrated brine evaporation chamber.
  • the single-effect lithium bromide unit condensing heat exchanger device is installed in the condensed water chamber connected to the negative pressure chamber, and the condensed water is obtained by condensing the evaporated steam in the concentrated brine evaporation chamber.
  • the concentrated brine is treated by de-hardening, which not only removes the temporary and permanent hardness in the concentrated brine, so that the calcium carbonate salts that are easy to scale, as well as the calcium sulfate salts and magnesium carbonate salts that are easy to scale, are released in advance and converted into difficult
  • de-hardening which not only removes the temporary and permanent hardness in the concentrated brine, so that the calcium carbonate salts that are easy to scale, as well as the calcium sulfate salts and magnesium carbonate salts that are easy to scale, are released in advance and converted into difficult
  • the scaled sodium sulfate, sodium nitrate and sodium chloride salts will not cause scaling on the heat exchange surface during the concentration process, and even if crystallization occurs, it can be dissolved and removed by diluting the concentrated brine.
  • the water collector which separates the concentrated brine evaporation chamber and the water vapor condensation chamber collects the recovered brine into the concentrated brine pool at the bottom of the concentrated brine evaporation chamber.
  • the single-effect lithium bromide unit refrigerant heat exchanger is installed in the water vapor condensing chamber. The water vapor generated by the spray evaporation of concentrated brine collects the water mist through the water collector, and then enters the water vapor condensing chamber equipped with the single-effect lithium bromide unit refrigerant heat exchanger.
  • the water vapor condenses on the surface of the evaporator to generate condensed water flow, which is collected in the bottom catchment pool of the refrigerant heat exchanger of the single-effect lithium bromide unit, and pumped out through the water pump.
  • the hot-air evaporation and concentrated brine crystallization of the desalination water treatment device includes air heaters, induced fans, concentrated brine sprayers, concentrated brine water lifters, concentrated brine pools, and concentrated brine. It is composed of water collector, air chimney or induced draft fan.
  • the concentrated brine discharge pipe of the concentrated brine evaporation chamber is connected with the concentrated brine sprayer of the hot air evaporation brine crystallization salt-containing device through the water pump.
  • the draft fan draws the air through the air heater to heat the air, and the hot air evaporates the concentrated brine lifted by the sprayer and the water lifter, and the concentrated brine crystallizes.
  • the concentrated brine sprayed with water will increase in concentration due to evaporation, and finally generate crystalline salt, which can be recycled.
  • the hot circulating water of the single-effect lithium bromide unit is introduced into the concentrated brine heater, the concentrated brine is heated, and the hot circulating water is exothermic in the high temperature section.
  • the air heated by the air heat exchanger enters the concentrated brine evaporation pond composed of the spray device and the water lifting device connected by the concentrated brine pump, and evaporates the concentrated brine, so that the concentrated brine evaporates and crystallizes.
  • the hot and humid air with salt water is discharged into the atmosphere through the chimney or induced draft fan after the concentrated salt water is intercepted by the concentrated salt water collector.
  • the humid and hot air containing evaporated water vapor is passed through a fan or through a chimney device to make use of the difference in specific gravity of the cold and hot air to carry out convective diffusion evaporation.
  • the single-effect lithium bromide unit can achieve high efficiency and energy saving, evaporate water, and achieve zero discharge of concentrated salt water, so as to prevent the saline-alkali pollution caused by the concentrated salt water to the natural water body, so that it does not cause land irrigation due to the concentrated salt water. salinization, and maximize the use of water resources.
  • the lithium bromide unit is used to concentrate, crystallize, and desalinate the high-salt wastewater.
  • the concentrated lithium bromide solution in the absorber of the single-effect lithium bromide unit absorbs the water vapor evaporated by the evaporator, then heats up, and is cooled by circulating water.
  • the cooled and cooled dilute lithium bromide solution is pressurized by the solution pump, then enters the generator through the heat exchanger, heated and concentrated by the heat source, and the concentrated lithium bromide solution enters the heat exchanger for cooling and then enters the absorber to complete the solution cycle.
  • the steam generated by the boiling and concentration of the dilute lithium bromide solution in the generator enters the condenser and is cooled and condensed by circulating water.
  • the refrigerant water formed by condensation enters the evaporator after throttling and decompression, and evaporates here, absorbs the heat in the cold water to cool the cold water, and releases the heat from the cold water to achieve the purpose of refrigeration.
  • the refrigerant vapor formed by evaporation enters the absorber and is absorbed by the concentrated solution to form a dilute solution to complete the refrigerant cycle.
  • the hot circulating water heated by the absorber and condenser of the single-effect lithium bromide unit is used as the heat source.
  • the thermal circulating water heater of the single-effect lithium bromide unit has three stages. The first stage is used to heat the concentrated brine, the second stage is used for the secondary heating of the spray concentrated brine, and the third stage is used to heat the air, which constitutes the thermal circulating water for the single-effect lithium bromide set. cooling, and as a heat source for the evaporative concentration and crystallization of concentrated brine.
  • the cooled single-effect lithium bromide unit heat circulating water is heated by the absorber and the condenser to form a cycle.
  • the refrigerant circulating water evaporated and cooled by the evaporator of the single-effect lithium bromide unit is used as the condensing cold source of the condensing water chamber for spraying evaporated water vapor.
  • the refrigerant circulating water that absorbs heat and heats up enters the evaporation device of the single-effect lithium bromide unit, and then enters the water vapor condensation chamber after exothermic cooling.
  • the cold circulating water heat exchanger of the single-effect lithium bromide unit is at least one stage, which condenses the negative pressure steam in the steam condensation chamber.
  • the single-effect lithium bromide unit condensing circulating water heat exchanger absorbs the heat of water vapor and provides the refrigerant water evaporation heat for the single-effect lithium bromide unit, so that the single-effect lithium bromide unit has a high-efficiency thermal cycle.
  • Brine negative pressure evaporation, condensation, condensation and desalination device connected with single-effect lithium bromide unit including concentrated brine evaporation chamber and water vapor condensation chamber which are isolated and communicated with each other through partitions and water collectors, or two separate chambers, communicated through pipes
  • the two chambers communicate with each other.
  • the top of the concentrated brine evaporation chamber is provided with a hot brine spray evaporation device.
  • the concentrated brine evaporation chamber is provided with a concentrated brine spray heater as a secondary heating and evaporation device for the concentrated brine.
  • the concentrated brine evaporation chamber is provided with a concentrated brine collection tank at the bottom, and the concentrated brine collection tank is connected to a concentrated brine discharge pipe and a concentrated brine circulation outlet pipe. connect.
  • the concentrated brine circulation outlet pipe is mixed with the newly replenished brine, and is pumped into the brine heater through the brine circulation pump for heating.
  • the heated brine passes through the pipeline and is connected to the brine spray evaporation device at the top of the brine evaporation chamber. It is input into the spray device in the concentrated brine evaporator, and the concentrated brine is sprayed and evaporated.
  • the upper part of the two chambers is provided with a partition through the water collector as an isolation device, and the partition of the water collector collects the recovered brine into the concentrated brine pool at the bottom of the concentrated brine evaporation chamber.
  • the single-effect lithium bromide unit condensing heat exchanger device is installed in the condensed water chamber connected to the negative pressure chamber, and the condensed water is obtained by condensing the evaporated steam in the concentrated brine evaporation chamber.
  • the concentrated brine is treated by de-hardening, which not only removes the temporary and permanent hardness in the concentrated brine, so that the calcium carbonate salts that are easy to scale, as well as the calcium sulfate salts and magnesium carbonate salts that are easy to scale, are released in advance and converted into difficult
  • de-hardening which not only removes the temporary and permanent hardness in the concentrated brine, so that the calcium carbonate salts that are easy to scale, as well as the calcium sulfate salts and magnesium carbonate salts that are easy to scale, are released in advance and converted into difficult
  • the scaled sodium sulfate, sodium nitrate and sodium chloride salts will not cause scaling on the heat exchange surface during the concentration process, and even if crystallization occurs, it can be dissolved and removed by diluting the concentrated brine.
  • the water collector which separates the concentrated brine evaporation chamber and the water vapor condensation chamber collects the recovered brine into the concentrated brine pool at the bottom of the concentrated brine evaporation chamber.
  • the single-effect lithium bromide unit refrigerant heat exchanger is installed in the water vapor condensing chamber. The water vapor generated by the spray evaporation of concentrated brine collects the water mist through the water collector, and then enters the water vapor condensing chamber equipped with the single-effect lithium bromide unit refrigerant heat exchanger.
  • the water vapor condenses on the surface of the evaporator to generate condensed water flow, which is collected in the bottom catchment pool of the refrigerant heat exchanger of the single-effect lithium bromide unit, and pumped out through the water pump.
  • the hot-air evaporation and concentrated brine crystallization of the desalination water treatment device includes air heaters, induced fans, concentrated brine sprayers, concentrated brine water lifters, concentrated brine pools, and concentrated brine. It is composed of water collector, air chimney or induced draft fan.
  • the concentrated brine discharge pipe of the concentrated brine evaporation chamber is connected with the concentrated brine sprayer of the hot air evaporation brine crystallization salt-containing device through the water pump.
  • the draft fan draws the air through the air heater to heat the air, and the hot air evaporates the concentrated brine lifted by the sprayer and the water lifter, and the concentrated brine crystallizes.
  • the concentrated brine sprayed with water will increase in concentration due to evaporation, and finally generate crystalline salt, which can be recycled.
  • the hot circulating water of the single-effect lithium bromide unit is introduced into the concentrated brine heater, the concentrated brine is heated, and the hot circulating water is exothermic in the high temperature section.
  • the air heated by the air heat exchanger enters the concentrated brine evaporation pond composed of the spray device and the water lifting device connected by the concentrated brine pump, and evaporates the concentrated brine, so that the concentrated brine evaporates and crystallizes.
  • the hot and humid air with salt water is discharged into the atmosphere through the chimney or induced draft fan after the concentrated salt water is intercepted by the concentrated salt water collector.
  • the humid and hot air containing evaporated water vapor is passed through a fan or through a chimney device to make use of the difference in specific gravity of the cold and hot air to carry out convective diffusion evaporation.
  • the single-effect lithium bromide unit can achieve high efficiency and energy saving, evaporate water, and achieve zero discharge of concentrated salt water, so as to prevent the saline-alkali pollution caused by the concentrated salt water to the natural water body, so that it does not cause land irrigation due to the concentrated salt water. salinization, and maximize the use of water resources.
  • the high-salt-containing wastewater is concentrated, crystallized, and desalinated by a lithium bromide unit, including a double-effect lithium bromide unit, a brine-containing negative pressure evaporation and concentration condenser as a desalination device, and a hot-air evaporation concentrated brine crystallization and salt-containing device.
  • the concentrated lithium bromide solution in the absorber of the double-effect lithium bromide unit absorbs the water vapor evaporated by the evaporator, then heats up, and is cooled by circulating water.
  • the dilute solution in the absorber After the dilute solution in the absorber is pressurized by the solution pump, it enters the high-pressure generator through the low-temperature heat exchanger and the high-temperature heat exchanger, and is heated and concentrated by the heat source.
  • the concentrated intermediate solution enters the high-temperature heat exchanger and then enters the low-pressure generator. It is heated and concentrated by the refrigerant vapor from the high pressure generator, and the concentrated concentrated solution enters the absorber after passing through the low temperature heat exchanger to complete the solution cycle.
  • the water vapor produced by the boiling and concentration of the dilute lithium bromide solution in the low-pressure generator enters the condenser, and is cooled and condensed by circulating water.
  • the solution in the high-pressure generator is heated, and the first-effect refrigerant vapor generated enters the low-pressure generator, which acts as a heat source to heat the solution in the low-pressure generator, and generates a second-effect refrigerant vapor that enters the condenser.
  • the first-effect refrigerant vapor is generated at low pressure.
  • the mixture of refrigerant vapor and refrigerant water formed in the condenser also flows into the condenser after being throttled and decompressed, and is condensed by cooling water together with the second-effect refrigerant vapor.
  • the refrigerant water formed by condensation enters the evaporator after throttling and decompression, and evaporates here, absorbs the heat in the cold water to cool the cold water, and releases the heat from the cold water to achieve the purpose of refrigeration.
  • the refrigerant vapor formed by evaporation enters the absorber and is absorbed by the concentrated solution to form a dilute solution to complete the refrigerant cycle.
  • the hot circulating water heated by the absorber and condenser of the double-effect lithium bromide unit is used as the heat source.
  • the thermal circulating water heater of the double-effect lithium bromide unit has at least two stages. The first stage is for heating the concentrated brine, and the second stage is for heating the air, which constitutes the cooling of the thermal circulating water of the double-effect lithium bromide unit, and serves as the evaporation, concentration and crystallization of the concentrated brine. the heat source.
  • the cooled double-effect lithium bromide unit heat circulating water is heated by the absorber and the condenser to form a cycle.
  • the refrigerant circulating water evaporated and cooled by the evaporator of the double-effect lithium bromide unit is used as the condensing cold source of the condensing water chamber for spraying evaporated water vapor.
  • the refrigerant circulating water that absorbs heat and heats up enters the evaporation device of the double-effect lithium bromide unit, and then enters the water vapor condensation chamber after exothermic cooling.
  • the cold circulating water heat exchanger of the double-effect lithium bromide unit is at least one stage, which condenses the negative pressure steam in the steam condensation chamber.
  • the condensing circulating water heat exchanger of the double-effect lithium bromide unit absorbs the heat of water vapor, and provides the refrigerant water evaporation heat for the double-effect lithium bromide unit, so that the double-effect lithium bromide unit has a high-efficiency thermal cycle.
  • the negative pressure evaporating, condensing, condensing and desalting device connected with the double-effect lithium bromide unit includes a concentrated brine evaporating chamber and a water vapor condensing chamber which are isolated and communicated with each other through a partition plate and a water collector, or two separate chambers, which are communicated through pipes The two chambers communicate with each other.
  • the top of the concentrated brine evaporation chamber is provided with a hot brine spray evaporation device.
  • the concentrated brine evaporation chamber is provided with a concentrated brine collection tank at the bottom, and the concentrated brine collection tank is connected to a concentrated brine discharge pipe and a concentrated brine circulation outlet pipe. connect.
  • the concentrated brine circulation outlet pipe is mixed with the newly replenished brine, and is pumped into the brine heater through the brine circulation pump for heating.
  • the heated brine passes through the pipeline and is connected to the brine spray evaporation device on the top of the brine evaporation chamber. It is input into the spray device in the concentrated brine evaporator, and the concentrated brine is sprayed and evaporated.
  • the upper part of the two chambers is provided with a partition through the water collector as an isolation device, and the partition of the water collector collects the recovered brine into the concentrated brine pool at the bottom of the concentrated brine evaporation chamber.
  • the double-effect lithium bromide unit condensing heat exchanger device is installed in the condensed water chamber connected to the negative pressure chamber, and the condensed water is obtained by condensing the evaporated steam in the concentrated brine evaporation chamber.
  • the concentrated brine is treated by de-hardening, which not only removes the temporary and permanent hardness in the concentrated brine, so that the calcium carbonate salts that are easy to scale, as well as the calcium sulfate salts and magnesium carbonate salts that are easy to scale, are released in advance and converted into difficult
  • de-hardening which not only removes the temporary and permanent hardness in the concentrated brine, so that the calcium carbonate salts that are easy to scale, as well as the calcium sulfate salts and magnesium carbonate salts that are easy to scale, are released in advance and converted into difficult
  • the scaled sodium sulfate, sodium nitrate and sodium chloride salts will not cause scaling on the heat exchange surface during the concentration process, and even if crystallization occurs, it can be dissolved and removed by diluting the concentrated brine.
  • the water collector which separates the concentrated brine evaporation chamber and the water vapor condensation chamber collects the recovered brine into the concentrated brine pool at the bottom of the concentrated brine evaporation chamber.
  • the refrigerant heat exchanger of the double-effect lithium bromide unit is installed in the water vapor condensing chamber, and the water vapor generated by the spray evaporation of concentrated brine collects the water mist through the water collector, and then enters the water vapor condensing chamber equipped with the refrigerant heat exchanger of the double-effect lithium bromide unit.
  • the water vapor condenses on the surface of the evaporator to generate a condensed water flow, which is collected in the sink pool at the bottom of the refrigerant heat exchanger of the double-effect lithium bromide unit, and pumped out through a water pump.
  • the hot-air evaporation and concentrated brine crystallization of the desalination water treatment device includes air heaters, induced fans, concentrated brine sprayers, concentrated brine water lifters, concentrated brine pools, and concentrated brine. It is composed of water collector, air chimney or induced draft fan.
  • the concentrated brine discharge pipe of the concentrated brine evaporation chamber is connected with the concentrated brine sprayer of the hot air evaporation brine crystallization salt-containing device through the water pump.
  • the draft fan draws the air through the air heater to heat the air, and the hot air evaporates the concentrated brine lifted by the sprayer and the water lifter, and the concentrated brine crystallizes.
  • the concentrated brine sprayed with water will increase in concentration due to evaporation, and finally generate crystalline salt, which can be recycled.
  • the hot circulating water of the double-effect lithium bromide unit is introduced into the concentrated brine heater, the concentrated brine is heated, and the hot circulating water is exothermic in the high temperature section.
  • the air heated by the air heat exchanger enters the concentrated brine evaporation pond composed of the spray device and the water lifting device connected by the concentrated brine pump, and evaporates the concentrated brine, so that the concentrated brine evaporates and crystallizes.
  • the hot and humid air with salt water is discharged into the atmosphere through the chimney or induced draft fan after the concentrated salt water is intercepted by the concentrated salt water collector.
  • the humid and hot air containing evaporated water vapor is passed through a fan or through a chimney device to make use of the difference in specific gravity of the cold and hot air to carry out convective diffusion evaporation.
  • the double-effect lithium bromide unit can achieve high efficiency and energy saving, evaporate water, and realize zero discharge of concentrated salt water, so as to prevent the saline-alkali pollution caused by the concentrated salt water to the natural water body, so that it will not cause land irrigation due to the concentrated salt water. salinization, and maximize the use of water resources.
  • the high-salt-containing wastewater is concentrated, crystallized, and desalinated by a lithium bromide unit, including a double-effect lithium bromide unit, a brine-containing negative pressure evaporation and concentration condenser as a desalination device, and a hot-air evaporation concentrated brine crystallization and salt-containing device.
  • the concentrated lithium bromide solution in the absorber of the double-effect lithium bromide unit absorbs the water vapor evaporated by the evaporator, then heats up, and is cooled by circulating water.
  • the dilute solution in the absorber After the dilute solution in the absorber is pressurized by the solution pump, it enters the high-pressure generator through the low-temperature heat exchanger and the high-temperature heat exchanger, and is heated and concentrated by the heat source.
  • the concentrated intermediate solution enters the high-temperature heat exchanger and then enters the low-pressure generator. It is heated and concentrated by the refrigerant vapor from the high pressure generator, and the concentrated concentrated solution enters the absorber after passing through the low temperature heat exchanger to complete the solution cycle.
  • the water vapor produced by the boiling and concentration of the dilute lithium bromide solution in the low-pressure generator enters the condenser, and is cooled and condensed by circulating water.
  • the solution in the high-pressure generator is heated, and the first-effect refrigerant vapor generated enters the low-pressure generator, which acts as a heat source to heat the solution in the low-pressure generator, and generates a second-effect refrigerant vapor that enters the condenser, and the first-effect refrigerant vapor is generated at low pressure.
  • the mixture of refrigerant vapor and refrigerant water formed in the condenser also flows into the condenser after being throttled and decompressed, and is condensed by cooling water together with the second-effect refrigerant vapor.
  • the refrigerant water formed by condensation enters the evaporator after throttling and decompression, and evaporates here, absorbs the heat in the cold water to cool the cold water, and releases the heat from the cold water to achieve the purpose of refrigeration.
  • the refrigerant vapor formed by evaporation enters the absorber and is absorbed by the concentrated solution to form a dilute solution to complete the refrigerant cycle.
  • the hot circulating water heated by the absorber and condenser of the double-effect lithium bromide unit is used as the heat source.
  • the thermal circulating water heater of the double-effect lithium bromide unit has three stages. The first stage heats the concentrated brine, the second stage is used for the secondary heating of the spray concentrated brine, and the third stage is for heating the air, which constitutes the thermal circulating water for the double-effect lithium bromide unit. cooling, and as a heat source for the evaporative concentration and crystallization of concentrated brine.
  • the cooled double-effect lithium bromide unit heat circulating water is heated by the absorber and the condenser to form a cycle.
  • the refrigerant circulating water evaporated and cooled by the evaporator of the double-effect lithium bromide unit is used as the condensing cold source of the condensing water chamber for spraying evaporated water vapor.
  • the refrigerant circulating water that absorbs heat and heats up enters the evaporation device of the double-effect lithium bromide unit, and then enters the water vapor condensation chamber after exothermic cooling.
  • the cold circulating water heat exchanger of the double-effect lithium bromide unit is at least one stage, which condenses the negative pressure steam in the steam condensation chamber.
  • the condensing circulating water heat exchanger of the double-effect lithium bromide unit absorbs the heat of water vapor, and provides the refrigerant water evaporation heat for the double-effect lithium bromide unit, so that the double-effect lithium bromide unit has a high-efficiency thermal cycle.
  • the negative pressure evaporating, condensing, condensing and desalting device connected with the double-effect lithium bromide unit includes a concentrated brine evaporating chamber and a water vapor condensing chamber which are isolated and communicated with each other through a partition plate and a water collector, or two separate chambers, which are communicated through pipes The two chambers communicate with each other.
  • the top of the concentrated brine evaporation chamber is provided with a hot brine spray evaporation device.
  • the concentrated brine evaporation chamber is provided with a concentrated brine spray heater as a secondary heating and evaporation device for the concentrated brine.
  • the concentrated brine evaporation chamber is provided with a concentrated brine collection tank at the bottom, and the concentrated brine collection tank is connected to a concentrated brine discharge pipe and a concentrated brine circulation outlet pipe. connect.
  • the concentrated brine circulation outlet pipe is mixed with the newly replenished brine, and is pumped into the brine heater through the brine circulation pump for heating.
  • the heated brine passes through the pipeline and is connected to the brine spray evaporation device at the top of the brine evaporation chamber. It is input into the spray device in the concentrated brine evaporator, and the concentrated brine is sprayed and evaporated.
  • the upper part of the two chambers is provided with a partition through the water collector as an isolation device, and the partition of the water collector collects the recovered brine into the concentrated brine pool at the bottom of the concentrated brine evaporation chamber.
  • the double-effect lithium bromide unit condensing heat exchanger device is installed in the condensed water chamber connected to the negative pressure chamber, and the condensed water is obtained by condensing the evaporated steam in the concentrated brine evaporation chamber.
  • the concentrated brine is treated by de-hardening, which not only removes the temporary and permanent hardness in the concentrated brine, so that the calcium carbonate salts that are easy to scale, as well as the calcium sulfate salts and magnesium carbonate salts that are easy to scale, are released in advance and converted into difficult
  • de-hardening which not only removes the temporary and permanent hardness in the concentrated brine, so that the calcium carbonate salts that are easy to scale, as well as the calcium sulfate salts and magnesium carbonate salts that are easy to scale, are released in advance and converted into difficult
  • the scaled sodium sulfate, sodium nitrate and sodium chloride salts will not cause scaling on the heat exchange surface during the concentration process, and even if crystallization occurs, it can be dissolved and removed by diluting the concentrated brine.
  • the water collector which separates the concentrated brine evaporation chamber and the water vapor condensation chamber collects the recovered brine into the concentrated brine pool at the bottom of the concentrated brine evaporation chamber.
  • the refrigerant heat exchanger of the double-effect lithium bromide unit is installed in the water vapor condensing chamber, and the water vapor generated by the spray evaporation of concentrated brine collects the water mist through the water collector, and then enters the water vapor condensing chamber equipped with the refrigerant heat exchanger of the double-effect lithium bromide unit.
  • the water vapor condenses on the surface of the evaporator to generate a condensed water flow, which is collected in the sink pool at the bottom of the refrigerant heat exchanger of the double-effect lithium bromide unit, and pumped out through a water pump.
  • the hot-air evaporation and concentrated brine crystallization of the desalination water treatment device includes air heaters, induced fans, concentrated brine sprayers, concentrated brine water lifters, concentrated brine pools, and concentrated brine. It is composed of water collector, air chimney or induced draft fan.
  • the concentrated brine discharge pipe of the concentrated brine evaporation chamber is connected with the concentrated brine sprayer of the hot air evaporation brine crystallization salt-containing device through the water pump.
  • the draft fan draws the air through the air heater to heat the air, and the hot air evaporates the concentrated brine lifted by the sprayer and the water lifter, and the concentrated brine crystallizes.
  • the concentrated brine sprayed with water will increase in concentration due to evaporation, and finally generate crystalline salt, which can be recycled.
  • the hot circulating water of the double-effect lithium bromide unit is introduced into the concentrated brine heater, the concentrated brine is heated, and the hot circulating water is exothermic in the high temperature section.
  • the air heated by the air heat exchanger enters the concentrated brine evaporation pond composed of the spray device and the water lifting device connected by the concentrated brine pump, and evaporates the concentrated brine, so that the concentrated brine evaporates and crystallizes.
  • the hot and humid air with salt water is discharged into the atmosphere through the chimney or induced draft fan after the concentrated salt water is intercepted by the concentrated salt water collector.
  • the humid and hot air containing evaporated water vapor is passed through a fan or through a chimney device to make use of the difference in specific gravity of the cold and hot air to carry out convective diffusion evaporation.
  • the double-effect lithium bromide unit can achieve high efficiency and energy saving, evaporate water, and realize zero discharge of concentrated salt water, so as to prevent the saline-alkali pollution caused by the concentrated salt water to the natural water body, so that it will not cause land irrigation due to the concentrated salt water. salinization, and maximize the use of water resources.
  • the high-salt wastewater is concentrated, crystallized and desalinated by the lithium bromide unit.
  • the concentrated brine water collector includes a folding plate type and a passive fan type.
  • the high-salt wastewater is concentrated, crystallized, and desalinated by the lithium bromide unit, which is installed in the wind stack or is equipped with a cold air device to condense the water vapor in the humid air and recover the condensed water.
  • the high-salt wastewater is concentrated, crystallized, and desalinated by the lithium bromide unit.
  • the air secondary evaporator of the lithium bromide unit is installed in the wind stack to condense the water vapor in the hot and humid air and recover the condensed water.
  • the high-salt wastewater is concentrated, crystallized and desalinated by a lithium bromide unit.
  • the concentrated brine is a concentrated brine mainly composed of sodium salt after chemical de-hardening treatment.
  • the main softening drug of the concentrated brine is sodium carbonate.
  • concentrated brine is a concentrated brine mainly composed of sodium salt that has undergone physical heating and dehardening treatment.
  • the physical dehardening of concentrated brine is to pass the concentrated brine through the heat exchanger and the final stage heater, and heat the concentrated brine mixed with sand and gravel abrasives to 125. degrees Celsius except hard.
  • the high-salt wastewater is concentrated, crystallized and desalinated by the lithium bromide unit.
  • the evaporation device of the lithium bromide unit is a second-level, and the evaporation device of the first-level lithium bromide unit is used to condense the steam evaporated by negative pressure.
  • the evaporation device of the second-level lithium bromide unit is Partial condensation is carried out by the hot and humid air discharged by the induced draft fan, and the condensed water is recovered.
  • the high-salt wastewater is concentrated, crystallized and desalinated by the lithium bromide unit.
  • the lithium bromide unit is used to concentrate and crystallize high-salt wastewater into a desalination water treatment device, and the high energy efficiency ratio of the lithium bromide unit is used to realize the concentration of concentrated brine, the preparation of condensed water, and the concentration and crystallization of high-salt wastewater, so as to achieve zero discharge of concentrated brine.
  • the lithium bromide unit is used to concentrate and crystallize the high-salt wastewater, and the desalination water treatment device has reliable performance, high energy efficiency, and high utilization rate of the high-salt wastewater.
  • Fig. 1 shows the schematic diagram of the first embodiment of the combined system of the device for concentrating, crystallization, and desalination of high-salt wastewater by using a lithium bromide unit according to the present invention.
  • Fig. 2 shows a schematic diagram of the second embodiment of the combined system of the device for concentrating, crystallization, and desalination of high-salt wastewater by means of a lithium bromide unit according to the present invention.
  • FIG. 3 shows a schematic diagram of the third embodiment of the combined system of the device for concentrating, crystallization, and desalination of high-salt wastewater by using a lithium bromide unit according to the present invention.
  • FIG. 4 shows a schematic diagram of the fourth embodiment of the combined system of the device for concentrating, crystallization, and desalination of high-salt wastewater by using a lithium bromide unit according to the present invention.
  • FIG. 5 shows a schematic diagram of the fifth embodiment of the combined system of the device for concentrating, crystallization, and desalination of high-salt wastewater by using a lithium bromide unit according to the present invention.
  • FIG. 6 shows a schematic diagram of the sixth embodiment of the combined system of the device for concentrating, crystallization, and desalination of high-salt wastewater by means of a lithium bromide unit according to the present invention.
  • Fig. 7 shows a schematic diagram of the seventh embodiment of the combined system of the device for concentrating, crystallization, and desalination of high-salt wastewater by means of a lithium bromide unit according to the present invention.
  • FIG. 8 shows a schematic diagram of the eighth embodiment of the combined system of the device for concentrating, crystallization, and desalination of high-salt wastewater by using a lithium bromide unit according to the present invention.
  • FIG. 9 shows a schematic diagram of the ninth embodiment of the combined system of the device for concentrating, crystallization, and desalination of high-salt wastewater by using a lithium bromide unit according to the present invention.
  • FIG. 10 shows a schematic diagram of the tenth embodiment of the combined system of the device for concentrating, crystallization, and desalination of high-salt wastewater by using a lithium bromide unit according to the present invention.
  • FIG. 11 shows a schematic diagram of the eleventh embodiment of the combined system of the device for concentrating, crystallization, and desalination of high-salt wastewater by using a lithium bromide unit according to the present invention.
  • FIG. 12 shows a schematic diagram of the twelfth embodiment of the combined system of the device for concentrating, crystallization, and desalination of high-salt wastewater by using a lithium bromide unit according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

一种通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,包括溴化锂机组、浓盐水蒸发室和水蒸气冷凝室,热风蒸发浓盐水结晶含盐装置构成。经溴化锂机组吸收器(23)和冷凝器(21)加热的热循环水作为热源,对浓盐水和空气加热,构成对溴化锂机组热循环水的冷却,并作为对浓盐水的蒸发浓缩结晶的热源。冷却的循环水,通过吸收器(23)和冷凝器(21)装置加热构成循环。用溴化锂机组蒸发冷却的冷媒循环水,作为喷淋蒸发水蒸汽的冷凝冷源。吸热升温的冷媒循环水,进入溴化锂机组蒸发器(37)内放热冷却后,输入水蒸汽冷凝室,对水蒸汽冷凝室的负压蒸汽进行冷凝。引风扇(4)引风通过空气加热器加热空气,热空气对喷淋和撩水器(1)撩起的浓盐水蒸发,最终生成结晶盐。

Description

通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置 技术领域
本发明属于高含盐水处理技术及环境保护领域,尤其涉及通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置。
背景技术
随着我国工业化进程的加快,诸多工矿生产领域会产生高含盐废水,如热力发电厂排放的高含盐污水、印染、造纸、化工、农药、采油、海产品加工等。工艺水中盐分的逐步浓缩,使得废水含盐量较高,如果得不到很好处置,必然带来水体及土壤生态环境污染。因此对此高盐度的盐水进行经济高效的浓缩处理,已成为液体零排放工艺经济性及可行性的关键问题。此类废水通常会含有高浓度有机污染物,直接排放对环境造成严重污染及破坏,如高含盐废水渗流入土壤系统中,会使土壤生物、植物因脱水而死亡,造成了土壤生态系统的瓦解。而且,高盐废水中通常含有其它高浓度有机物或营养物,若未经处理直接排放,将给水体环境带来更大的压力,加速江河湖泊的富营养化进程。虽然目前还没有含盐工业废水方面的统计数据,但可以肯定的是,随着工业的发展和水资源的紧缺,一些工业行业所产生的高盐生产废水污染浓度越来越高,成分越来越复杂,排放量越来越大,所带来的环境压力也越来越大。因此,对高盐工业废水处理技术的研究迫在眉睫,探索行之有效的高盐度有机废水处理技术已经成为目前废水处理的热点之一。
技术问题
通过电渗析及反渗透进行盐水浓缩而后进行分盐、结晶已经成为工业高盐水处理的重要方案。而高盐废水普遍存在高硬度的特征,现有技术电渗析工序或采用倒极电渗析器、或采用纳滤预处理,以减小电渗析浓水侧膜表面结垢可能性,但此类方法中倒极电渗析需要复杂的管路与控制系统,同时降低电渗析系统水的回收率;以纳滤作为预处理一方面增加了新的处理设备,同时纳滤膜仍存在结垢问题,因此其系统回收率较低;而某些公开技术将电渗析淡水处理至较低程度作为工艺用淡水使用,增加了电渗析处理成本。也有简单采用电渗析脱盐水循环浓缩形式,但增加了硬度等的浓缩危险性。
技术解决方案
本发明提供通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,处理效果好、工艺流程简单、运行平稳、适用于大部分工业高含盐水的处理。
通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,包括单效溴化锂机组、含盐水负压蒸发浓缩冷凝器作为淡化装置、热风蒸发浓盐水结晶含盐装置构成,其特征是:单效溴化锂机组吸收器中的浓溴化锂溶液吸收蒸发器蒸发的水蒸汽后升温,经循环水冷却降温。
冷却降温的稀溴化锂溶液经溶液泵加压后,经热交换器进入发生器,由热源加热并浓缩,浓缩后的溴化锂溶液进入热交换器冷却后进入吸收器,完成溶液循环。发生器稀溴化锂溶液沸腾浓缩产生的水蒸汽,进入冷凝器经循环水冷却放热冷凝。
经冷凝形成的冷剂水再经过节流减压后进入蒸发器,并在这里进行蒸发,吸收冷水中的热量使冷水降温,冷水放出热量,达到制冷目的。而蒸发形成的冷剂蒸汽再进入吸收器中被浓溶液吸收形成稀溶液,完成冷剂循环。
经单效溴化锂机组吸收器和冷凝器加热的热循环水作为热源。单效溴化锂机组的热循环水加热器至少两级,一级为对浓盐水加热,二级为对空气加热,构成对单效溴化锂机组热循环水的冷却,并作为对浓盐水的蒸发浓缩结晶的热源。冷却的单效溴化锂机组热循环水,通过吸收器和冷凝器装置加热构成循环。用单效溴化锂机组蒸发器蒸发冷却的冷媒循环水,作为喷淋蒸发水蒸汽冷凝水室的冷凝冷源。
吸热升温的冷媒循环水,进入单效溴化锂机组蒸发装置内放热冷却后,输入水蒸汽冷凝室。单效溴化锂机组的冷循环水换热器至少为一级,对水蒸汽冷凝室的负压蒸汽进行冷凝。单效溴化锂机组冷凝循环水换热器吸收水蒸汽热量,为单效溴化锂机组提供冷剂水蒸发热量,使单效溴化锂机组有高效率的热循环。
单效溴化锂机组连接的含盐水负压蒸发浓缩冷凝淡化装置,包括通过隔板和收水器相互隔离联通的浓盐水蒸发室和水蒸气冷凝室,或为单独的两个腔室,通过管道连通器连通的两腔室。浓盐水蒸发室的顶部设有热浓盐水喷淋蒸发装置。浓盐水蒸发室底部设有浓盐水汇集池、浓盐水汇集池上连接浓盐水排放管和浓盐水循环出水管,浓盐水排放管和浓盐水循环出水管或为同一管接出,通过三通管件分流连接。浓盐水循环出水管和新补入的浓盐水混合,通过浓盐水循环泵泵入浓盐水加热器加热,加热的浓盐水通过管道,与浓盐水蒸发室顶部的浓盐水喷淋蒸发装置连接。输入到浓盐水蒸发器内的喷淋装置中,对浓盐水进行喷淋蒸发。
两个腔室的上部设有通过收水器作为隔离装置的隔段,收水器隔段将回收的含盐水汇流到浓盐水蒸发室底部的浓盐水池中。单效溴化锂机组冷凝换热器装置,设于联通负压腔室的冷凝水室内,通过对浓盐水蒸发室蒸发蒸汽的冷凝,获得冷凝水。
水蒸汽冷凝室内设有真空抽气管,通过真空抽气装置,实现对水蒸汽冷凝室及浓盐水蒸发室的抽真空,降低浓盐水的蒸发温度。
浓盐水是经过除硬处理的,既除去浓盐水中的暂硬和永硬,使容易结垢的碳酸钙盐,以及容易结垢的硫酸钙盐、碳酸镁盐、提前释出,转化成不易结垢的硫酸钠盐、硝酸钠盐和氯化钠盐,使之在浓缩过程中对换热表面不产生结垢,而即使产生结晶,也可以通过对浓盐水的稀释使之溶解脱除。
将浓盐水蒸发室和水蒸汽冷凝室隔开的收水器,把回收的含盐水汇流到浓盐水蒸发室底部的浓盐水池中。单效溴化锂机组冷媒换热器设于水蒸汽冷凝室内,浓盐水喷淋蒸发产生的水蒸汽,通过收水器收集水雾后,进入设有单效溴化锂机组冷媒换热器的水蒸汽冷凝室内,水蒸汽在蒸发器的表面上冷凝,产生冷凝水下流,汇集于单效溴化锂机组冷媒换热器底部汇水池内,并通过水泵泵出。
通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的热风蒸发浓盐水结晶含盐装置,包括空气加热器、引风扇、浓盐水喷淋器、浓盐水撩水器、浓盐水池、浓盐水收水器、风囱或引风机构成。浓盐水蒸发室的浓盐水排放管,通过水泵与热风蒸发浓盐水结晶含盐装置的浓盐水喷淋器连接。引风扇引风通过空气加热器加热空气,热空气对喷淋和撩水器撩起的浓盐水蒸发,浓盐水结晶。撩水喷淋的浓盐水,因蒸发而浓度变大 ,最终生成结晶盐,此盐可以回收利用。
单效溴化锂机组的热循环水,导入浓盐水加热器内,对浓盐水进行加热,对热循环水进行高温段部分的放热,之后,将热循环水导入空气换热器,对风扇引风进行加热,被空气换热器加热的空气,进入通过浓盐水泵连接的喷淋装置和撩水装置组成的浓盐水蒸发池,对浓盐水进行蒸发,使浓盐水蒸发并结晶。带盐水的湿热空气经过浓盐水收水器截流浓盐水后,经风囱或引风机排入大气。含有蒸发水蒸汽的湿热空气,通过风扇或者通过风囱装置,使其利用冷热空气比重不同进行对流扩散蒸发。
单效溴化锂机组作为热源,可实现高效节能,对水进行蒸发,实现对浓盐水的零排放,以防止其因浓盐水对自然水体造成的盐碱污染,使其不因浓盐水而造成土地灌溉盐碱化,并可最大限度的利用水资源。
通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,包括单效溴化锂机组、含盐水负压蒸发浓缩冷凝器作为淡化装置、热风蒸发浓盐水结晶含盐装置构成。单效溴化锂机组吸收器中的浓溴化锂溶液吸收蒸发器蒸发的水蒸汽后升温,经循环水冷却降温。
冷却降温的稀溴化锂溶液经溶液泵加压后,经热交换器进入发生器,由热源加热并浓缩,浓缩后的溴化锂溶液进入热交换器冷却后进入吸收器,完成溶液循环。发生器稀溴化锂溶液沸腾浓缩产生的水蒸汽,进入冷凝器经循环水冷却放热冷凝。
经冷凝形成的冷剂水再经过节流减压后进入蒸发器,并在这里进行蒸发,吸收冷水中的热量使冷水降温,冷水放出热量,达到制冷目的。而蒸发形成的冷剂蒸汽再进入吸收器中被浓溶液吸收形成稀溶液,完成冷剂循环。
经单效溴化锂机组吸收器和冷凝器加热的热循环水作为热源。单效溴化锂机组的热循环水加热器为三级,一级对浓盐水加热,二级作为对喷淋浓盐水的二次加热,三级为对空气加热,构成对单效溴化锂机组热循环水的冷却,并作为对浓盐水的蒸发浓缩结晶的热源。冷却的单效溴化锂机组热循环水,通过吸收器和冷凝器装置加热构成循环。用单效溴化锂机组蒸发器蒸发冷却的冷媒循环水,作为喷淋蒸发水蒸汽冷凝水室的冷凝冷源。
吸热升温的冷媒循环水,进入单效溴化锂机组蒸发装置内放热冷却后,输入水蒸汽冷凝室。单效溴化锂机组的冷循环水换热器至少为一级,对水蒸汽冷凝室的负压蒸汽进行冷凝。单效溴化锂机组冷凝循环水换热器吸收水蒸汽热量,为单效溴化锂机组提供冷剂水蒸发热量,使单效溴化锂机组有高效率的热循环。
单效溴化锂机组连接的含盐水负压蒸发浓缩冷凝淡化装置,包括通过隔板和收水器相互隔离联通的浓盐水蒸发室和水蒸气冷凝室,或为单独的两个腔室,通过管道连通器连通的两腔室。浓盐水蒸发室的顶部设有热浓盐水喷淋蒸发装置。同时,浓盐水蒸发室内设有浓盐水喷淋加热器作为浓盐水二次加热蒸发装置。
浓盐水蒸发室底部设有浓盐水汇集池、浓盐水汇集池上连接浓盐水排放管和浓盐水循环出水管,浓盐水排放管和浓盐水循环出水管或为同一管接出,通过三通管件分流连接。浓盐水循环出水管和新补入的浓盐水混合,通过浓盐水循环泵泵入浓盐水加热器加热,加热的浓盐水通过管道,与浓盐水蒸发室顶部的浓盐水喷淋蒸发装置连接。输入到浓盐水蒸发器内的喷淋装置中,对浓盐水进行喷淋蒸发。
两个腔室的上部设有通过收水器作为隔离装置的隔段,收水器隔段将回收的含盐水汇流到浓盐水蒸发室底部的浓盐水池中。单效溴化锂机组冷凝换热器装置,设于联通负压腔室的冷凝水室内,通过对浓盐水蒸发室蒸发蒸汽的冷凝,获得冷凝水。
水蒸汽冷凝室内设有真空抽气管,通过真空抽气装置,实现对水蒸汽冷凝室及浓盐水蒸发室的抽真空,降低浓盐水的蒸发温度。
浓盐水是经过除硬处理的,既除去浓盐水中的暂硬和永硬,使容易结垢的碳酸钙盐,以及容易结垢的硫酸钙盐、碳酸镁盐、提前释出,转化成不易结垢的硫酸钠盐、硝酸钠盐和氯化钠盐,使之在浓缩过程中对换热表面不产生结垢,而即使产生结晶,也可以通过对浓盐水的稀释使之溶解脱除。
将浓盐水蒸发室和水蒸汽冷凝室隔开的收水器,把回收的含盐水汇流到浓盐水蒸发室底部的浓盐水池中。单效溴化锂机组冷媒换热器设于水蒸汽冷凝室内,浓盐水喷淋蒸发产生的水蒸汽,通过收水器收集水雾后,进入设有单效溴化锂机组冷媒换热器的水蒸汽冷凝室内,水蒸汽在蒸发器的表面上冷凝,产生冷凝水下流,汇集于单效溴化锂机组冷媒换热器底部汇水池内,并通过水泵泵出。
通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的热风蒸发浓盐水结晶含盐装置,包括空气加热器、引风扇、浓盐水喷淋器、浓盐水撩水器、浓盐水池、浓盐水收水器、风囱或引风机构成。浓盐水蒸发室的浓盐水排放管,通过水泵与热风蒸发浓盐水结晶含盐装置的浓盐水喷淋器连接。引风扇引风通过空气加热器加热空气,热空气对喷淋和撩水器撩起的浓盐水蒸发,浓盐水结晶。撩水喷淋的浓盐水,因蒸发而浓度变大 ,最终生成结晶盐,此盐可以回收利用。
单效溴化锂机组的热循环水,导入浓盐水加热器内,对浓盐水进行加热,对热循环水进行高温段部分的放热,之后,将热循环水导入空气换热器,对风扇引风进行加热,被空气换热器加热的空气,进入通过浓盐水泵连接的喷淋装置和撩水装置组成的浓盐水蒸发池,对浓盐水进行蒸发,使浓盐水蒸发并结晶。带盐水的湿热空气经过浓盐水收水器截流浓盐水后,经风囱或引风机排入大气。含有蒸发水蒸汽的湿热空气,通过风扇或者通过风囱装置,使其利用冷热空气比重不同进行对流扩散蒸发。
单效溴化锂机组作为热源,可实现高效节能,对水进行蒸发,实现对浓盐水的零排放,以防止其因浓盐水对自然水体造成的盐碱污染,使其不因浓盐水而造成土地灌溉盐碱化,并可最大限度的利用水资源。
通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,包括双效溴化锂机组、含盐水负压蒸发浓缩冷凝器作为淡化装置、热风蒸发浓盐水结晶含盐装置构成。双效溴化锂机组吸收器中的浓溴化锂溶液吸收蒸发器蒸发的水蒸汽后升温,经循环水冷却降温。吸收器中的稀溶液经溶液泵加压后,经低温热交换器、高温热交换器进入高压发生器,由热源加热并浓缩,浓缩后的中间溶液进入高温热交换器后进入低压发生器,被来自高压发生器的冷剂蒸汽加热并浓缩,浓缩后的浓溶液,经低温热交换器后进入吸收器,完成溶液循环。
低压发生器稀溴化锂溶液沸腾浓缩产生的水蒸汽进入冷凝器,经循环水冷却放热冷凝。
高压发生器中的溶液被加热,所产生的一效冷剂蒸汽进入低压发生器,作为热源加热低压发生器中的溶液,产生二效冷剂蒸汽进入冷凝器,一效冷剂蒸汽在低压发生器中形成冷剂蒸汽与冷剂水的混合体经节流减压后也流到冷凝器中,与二效冷剂蒸汽一起被冷却水冷凝。经冷凝形成的冷剂水再经过节流减压后进入蒸发器,并在这里进行蒸发,吸收冷水中的热量使冷水降温,冷水放出热量,达到制冷目的。而蒸发形成的冷剂蒸汽再进入吸收器中被浓溶液吸收形成稀溶液,完成冷剂循环。
经双效溴化锂机组吸收器和冷凝器加热的热循环水作为热源。双效溴化锂机组的热循环水加热器至少两级,一级为对浓盐水加热,二级为对空气加热,构成对双效溴化锂机组热循环水的冷却,并作为对浓盐水的蒸发浓缩结晶的热源。冷却的双效溴化锂机组热循环水,通过吸收器和冷凝器装置加热构成循环。用双效溴化锂机组蒸发器蒸发冷却的冷媒循环水,作为喷淋蒸发水蒸汽冷凝水室的冷凝冷源。
吸热升温的冷媒循环水,进入双效溴化锂机组蒸发装置内放热冷却后,输入水蒸汽冷凝室。双效溴化锂机组的冷循环水换热器至少为一级,对水蒸汽冷凝室的负压蒸汽进行冷凝。双效溴化锂机组冷凝循环水换热器吸收水蒸汽热量,为双效溴化锂机组提供冷剂水蒸发热量,使双效溴化锂机组有高效率的热循环。
双效溴化锂机组连接的含盐水负压蒸发浓缩冷凝淡化装置,包括通过隔板和收水器相互隔离联通的浓盐水蒸发室和水蒸气冷凝室,或为单独的两个腔室,通过管道连通器连通的两腔室。浓盐水蒸发室的顶部设有热浓盐水喷淋蒸发装置。浓盐水蒸发室底部设有浓盐水汇集池、浓盐水汇集池上连接浓盐水排放管和浓盐水循环出水管,浓盐水排放管和浓盐水循环出水管或为同一管接出,通过三通管件分流连接。浓盐水循环出水管和新补入的浓盐水混合,通过浓盐水循环泵泵入浓盐水加热器加热,加热的浓盐水通过管道,与浓盐水蒸发室顶部的浓盐水喷淋蒸发装置连接。输入到浓盐水蒸发器内的喷淋装置中,对浓盐水进行喷淋蒸发。
两个腔室的上部设有通过收水器作为隔离装置的隔段,收水器隔段将回收的含盐水汇流到浓盐水蒸发室底部的浓盐水池中。双效溴化锂机组冷凝换热器装置,设于联通负压腔室的冷凝水室内,通过对浓盐水蒸发室蒸发蒸汽的冷凝,获得冷凝水。
水蒸汽冷凝室内设有真空抽气管,通过真空抽气装置,实现对水蒸汽冷凝室及浓盐水蒸发室的抽真空,降低浓盐水的蒸发温度。
浓盐水是经过除硬处理的,既除去浓盐水中的暂硬和永硬,使容易结垢的碳酸钙盐,以及容易结垢的硫酸钙盐、碳酸镁盐、提前释出,转化成不易结垢的硫酸钠盐、硝酸钠盐和氯化钠盐,使之在浓缩过程中对换热表面不产生结垢,而即使产生结晶,也可以通过对浓盐水的稀释使之溶解脱除。
将浓盐水蒸发室和水蒸汽冷凝室隔开的收水器,把回收的含盐水汇流到浓盐水蒸发室底部的浓盐水池中。双效溴化锂机组冷媒换热器设于水蒸汽冷凝室内,浓盐水喷淋蒸发产生的水蒸汽,通过收水器收集水雾后,进入设有双效溴化锂机组冷媒换热器的水蒸汽冷凝室内,水蒸汽在蒸发器的表面上冷凝,产生冷凝水下流,汇集于双效溴化锂机组冷媒换热器底部汇水池内,并通过水泵泵出。
通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的热风蒸发浓盐水结晶含盐装置,包括空气加热器、引风扇、浓盐水喷淋器、浓盐水撩水器、浓盐水池、浓盐水收水器、风囱或引风机构成。浓盐水蒸发室的浓盐水排放管,通过水泵与热风蒸发浓盐水结晶含盐装置的浓盐水喷淋器连接。引风扇引风通过空气加热器加热空气,热空气对喷淋和撩水器撩起的浓盐水蒸发,浓盐水结晶。撩水喷淋的浓盐水,因蒸发而浓度变大 ,最终生成结晶盐,此盐可以回收利用。
双效溴化锂机组的热循环水,导入浓盐水加热器内,对浓盐水进行加热,对热循环水进行高温段部分的放热,之后,将热循环水导入空气换热器,对风扇引风进行加热,被空气换热器加热的空气,进入通过浓盐水泵连接的喷淋装置和撩水装置组成的浓盐水蒸发池,对浓盐水进行蒸发,使浓盐水蒸发并结晶。带盐水的湿热空气经过浓盐水收水器截流浓盐水后,经风囱或引风机排入大气。含有蒸发水蒸汽的湿热空气,通过风扇或者通过风囱装置,使其利用冷热空气比重不同进行对流扩散蒸发。
双效溴化锂机组作为热源,可实现高效节能,对水进行蒸发,实现对浓盐水的零排放,以防止其因浓盐水对自然水体造成的盐碱污染,使其不因浓盐水而造成土地灌溉盐碱化,并可最大限度的利用水资源。
通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,包括双效溴化锂机组、含盐水负压蒸发浓缩冷凝器作为淡化装置、热风蒸发浓盐水结晶含盐装置构成。双效溴化锂机组吸收器中的浓溴化锂溶液吸收蒸发器蒸发的水蒸汽后升温,经循环水冷却降温。吸收器中的稀溶液经溶液泵加压后,经低温热交换器、高温热交换器进入高压发生器,由热源加热并浓缩,浓缩后的中间溶液进入高温热交换器后进入低压发生器,被来自高压发生器的冷剂蒸汽加热并浓缩,浓缩后的浓溶液,经低温热交换器后进入吸收器,完成溶液循环。
低压发生器稀溴化锂溶液沸腾浓缩产生的水蒸汽进入冷凝器,经循环水冷却放热冷凝。
高压发生器中的溶液被加热,所产生的一效冷剂蒸汽进入低压发生器,作为热源加热低压发生器中的溶液,产生二效冷剂蒸汽进入冷凝器,一效冷剂蒸汽在低压发生器中形成冷剂蒸汽与冷剂水的混合体经节流减压后也流到冷凝器中,与二效冷剂蒸汽一起被冷却水冷凝。经冷凝形成的冷剂水再经过节流减压后进入蒸发器,并在这里进行蒸发,吸收冷水中的热量使冷水降温,冷水放出热量,达到制冷目的。而蒸发形成的冷剂蒸汽再进入吸收器中被浓溶液吸收形成稀溶液,完成冷剂循环。
经双效溴化锂机组吸收器和冷凝器加热的热循环水作为热源。双效溴化锂机组的热循环水加热器为三级,一级对浓盐水加热,二级作为对喷淋浓盐水的二次加热,三级为对空气加热,构成对双效溴化锂机组热循环水的冷却,并作为对浓盐水的蒸发浓缩结晶的热源。冷却的双效溴化锂机组热循环水,通过吸收器和冷凝器装置加热构成循环。用双效溴化锂机组蒸发器蒸发冷却的冷媒循环水,作为喷淋蒸发水蒸汽冷凝水室的冷凝冷源。
吸热升温的冷媒循环水,进入双效溴化锂机组蒸发装置内放热冷却后,输入水蒸汽冷凝室。双效溴化锂机组的冷循环水换热器至少为一级,对水蒸汽冷凝室的负压蒸汽进行冷凝。双效溴化锂机组冷凝循环水换热器吸收水蒸汽热量,为双效溴化锂机组提供冷剂水蒸发热量,使双效溴化锂机组有高效率的热循环。
双效溴化锂机组连接的含盐水负压蒸发浓缩冷凝淡化装置,包括通过隔板和收水器相互隔离联通的浓盐水蒸发室和水蒸气冷凝室,或为单独的两个腔室,通过管道连通器连通的两腔室。浓盐水蒸发室的顶部设有热浓盐水喷淋蒸发装置。同时,浓盐水蒸发室内设有浓盐水喷淋加热器作为浓盐水二次加热蒸发装置。
浓盐水蒸发室底部设有浓盐水汇集池、浓盐水汇集池上连接浓盐水排放管和浓盐水循环出水管,浓盐水排放管和浓盐水循环出水管或为同一管接出,通过三通管件分流连接。浓盐水循环出水管和新补入的浓盐水混合,通过浓盐水循环泵泵入浓盐水加热器加热,加热的浓盐水通过管道,与浓盐水蒸发室顶部的浓盐水喷淋蒸发装置连接。输入到浓盐水蒸发器内的喷淋装置中,对浓盐水进行喷淋蒸发。
两个腔室的上部设有通过收水器作为隔离装置的隔段,收水器隔段将回收的含盐水汇流到浓盐水蒸发室底部的浓盐水池中。双效溴化锂机组冷凝换热器装置,设于联通负压腔室的冷凝水室内,通过对浓盐水蒸发室蒸发蒸汽的冷凝,获得冷凝水。
水蒸汽冷凝室内设有真空抽气管,通过真空抽气装置,实现对水蒸汽冷凝室及浓盐水蒸发室的抽真空,降低浓盐水的蒸发温度。
浓盐水是经过除硬处理的,既除去浓盐水中的暂硬和永硬,使容易结垢的碳酸钙盐,以及容易结垢的硫酸钙盐、碳酸镁盐、提前释出,转化成不易结垢的硫酸钠盐、硝酸钠盐和氯化钠盐,使之在浓缩过程中对换热表面不产生结垢,而即使产生结晶,也可以通过对浓盐水的稀释使之溶解脱除。
将浓盐水蒸发室和水蒸汽冷凝室隔开的收水器,把回收的含盐水汇流到浓盐水蒸发室底部的浓盐水池中。双效溴化锂机组冷媒换热器设于水蒸汽冷凝室内,浓盐水喷淋蒸发产生的水蒸汽,通过收水器收集水雾后,进入设有双效溴化锂机组冷媒换热器的水蒸汽冷凝室内,水蒸汽在蒸发器的表面上冷凝,产生冷凝水下流,汇集于双效溴化锂机组冷媒换热器底部汇水池内,并通过水泵泵出。
通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的热风蒸发浓盐水结晶含盐装置,包括空气加热器、引风扇、浓盐水喷淋器、浓盐水撩水器、浓盐水池、浓盐水收水器、风囱或引风机构成。浓盐水蒸发室的浓盐水排放管,通过水泵与热风蒸发浓盐水结晶含盐装置的浓盐水喷淋器连接。引风扇引风通过空气加热器加热空气,热空气对喷淋和撩水器撩起的浓盐水蒸发,浓盐水结晶。撩水喷淋的浓盐水,因蒸发而浓度变大 ,最终生成结晶盐,此盐可以回收利用。
双效溴化锂机组的热循环水,导入浓盐水加热器内,对浓盐水进行加热,对热循环水进行高温段部分的放热,之后,将热循环水导入空气换热器,对风扇引风进行加热,被空气换热器加热的空气,进入通过浓盐水泵连接的喷淋装置和撩水装置组成的浓盐水蒸发池,对浓盐水进行蒸发,使浓盐水蒸发并结晶。带盐水的湿热空气经过浓盐水收水器截流浓盐水后,经风囱或引风机排入大气。含有蒸发水蒸汽的湿热空气,通过风扇或者通过风囱装置,使其利用冷热空气比重不同进行对流扩散蒸发。
双效溴化锂机组作为热源,可实现高效节能,对水进行蒸发,实现对浓盐水的零排放,以防止其因浓盐水对自然水体造成的盐碱污染,使其不因浓盐水而造成土地灌溉盐碱化,并可最大限度的利用水资源。
通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,其浓盐水收水器包括折板式,被动风扇式。
通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,其在风囱内或设置引入冷风装置,冷凝湿空气中的水蒸气,回收冷凝水。
通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,其在风囱内或设置溴化锂机组空气二级蒸发器,将湿热空气中的水蒸气冷凝并回收冷凝水。
通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,其浓盐水是经过化学除硬处理的以钠盐为主的浓盐水,浓盐水的主要软化药品为碳酸钠。或浓盐水是经过物理加热除硬处理的以钠盐为主的浓盐水,浓盐水的物理除硬是将浓盐水通过换热器和末级加热器,将混合有沙砾磨料的浓盐水加热到125摄氏度除硬。
通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,其溴化锂机组的蒸发装置为二级,一级溴化锂机组的蒸发装置,对负压蒸发的蒸汽进行冷凝,二级溴化锂机组的蒸发装置为通过引风机排放的湿热空气进行部分冷凝,回收冷凝水。
通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,其抽真空装置包括冷凝水抽水泵与喷射水抽气器组成的真空泵、水环真空泵、机械真空泵、蒸汽喷射真空泵。
有益效果
通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,利用溴化锂机组的高能效比,实现对浓盐水的浓缩、制取冷凝水、对高含盐废水浓缩结晶,实现浓盐水的零排放,最大限度的回收了水资源,而且最大限度的利用了低品位热能。通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置性能可靠,能效高,高含盐废水利用率高。
附图说明
图1示出了本发明通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的组合系统第一实施例示意图。
图2示出了本发明通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的组合系统第二实施例示意图。
图3示出了本发明通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的组合系统第三实施例示意图。
图4示出了本发明通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的组合系统第四实施例示意图。
图5示出了本发明通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的组合系统第五实施例示意图。
图6示出了本发明通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的组合系统第六实施例示意图。
图7示出了本发明通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的组合系统第七实施例示意图。
图8示出了本发明通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的组合系统第八实施例示意图。
图9示出了本发明通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的组合系统第九实施例示意图。
图10示出了本发明通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的组合系统第十实施例示意图。
图11示出了本发明通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的组合系统第十一实施例示意图。
图12示出了本发明通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的组合系统第十二实施例示意图。
图中:1撩水器、2撩水器支架、3风冷换热器、4引风扇、5电机、6循环水管道、7浓水喷淋器、8浓水进水管、9浓水喷淋泵、10浓水混合调整三通阀、11浓水排放管、12浓水循环水泵、13浓水积水池、14浓水加热器换热器盘管、15收水器、16浓水喷淋蒸发器、17浓水喷淋管、18高温循环水管、19循环水泵、20循环水箱、21冷剂水蒸气冷凝器、22吸收器盘管、23吸收器、24循环水冷却盘管、25冷凝水输出管、26水蒸气冷凝器、27冷凝水输水泵、28进排气装置、29冷凝水箱、30冷凝水集水器、31真空抽气管、32冷凝水泵、33喷射器、34风囱、35收水器、36浓水蒸发池、37蒸发器、38冷循环水膨胀水箱、39冷循环水盘管、40溶液泵、41冷剂水泵、42溴化锂溶液热交换器、43热源加热器盘管、44发生器、45冷循环水泵、46风扇支架、47冷风进风套管、48风扇、49回收冷凝水箱、50湿热空气冷却器、51湿空气冷凝水汇水器、52浓水喷淋二次加热盘管、53低效发生器加热盘管、54低效发生器、55溴化锂溶液高效换热器。

Claims (10)

  1. 通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,包括单效溴化锂机组、含盐水负压蒸发浓缩冷凝器作为淡化装置、热风蒸发浓盐水结晶含盐装置构成,其特征是:单效溴化锂机组吸收器中的浓溴化锂溶液吸收蒸发器蒸发的水蒸汽后升温,经循环水冷却降温;
    冷却降温的稀溴化锂溶液经溶液泵加压后,经热交换器进入发生器,由热源加热并浓缩,浓缩后的溴化锂溶液进入热交换器冷却后进入吸收器,完成溶液循环;发生器稀溴化锂溶液沸腾浓缩产生的水蒸汽,进入冷凝器经循环水冷却放热冷凝;
    经冷凝形成的冷剂水再经过节流减压后进入蒸发器,并在这里进行蒸发,吸收冷水中的热量使冷水降温,冷水放出热量,达到制冷目的;而蒸发形成的冷剂蒸汽再进入吸收器中被浓溶液吸收形成稀溶液,完成冷剂循环;
    经单效溴化锂机组吸收器和冷凝器加热的热循环水作为热源;单效溴化锂机组的热循环水加热器至少两级,一级为对浓盐水加热,二级为对空气加热,构成对单效溴化锂机组热循环水的冷却,并作为对浓盐水的蒸发浓缩结晶的热源;冷却的单效溴化锂机组热循环水,通过吸收器和冷凝器装置加热构成循环;用单效溴化锂机组蒸发器蒸发冷却的冷媒循环水,作为喷淋蒸发水蒸汽冷凝水室的冷凝冷源;
    吸热升温的冷媒循环水,进入单效溴化锂机组蒸发装置内放热冷却后,输入水蒸汽冷凝室;单效溴化锂机组的冷循环水换热器至少为一级,对水蒸汽冷凝室的负压蒸汽进行冷凝;单效溴化锂机组冷凝循环水换热器吸收水蒸汽热量,为单效溴化锂机组提供冷剂水蒸发热量,使单效溴化锂机组有高效率的热循环;
    单效溴化锂机组连接的含盐水负压蒸发浓缩冷凝淡化装置,包括通过隔板和收水器相互隔离联通的浓盐水蒸发室和水蒸气冷凝室,或为单独的两个腔室,通过管道连通器连通的两腔室;浓盐水蒸发室的顶部设有热浓盐水喷淋蒸发装置;浓盐水蒸发室底部设有浓盐水汇集池、浓盐水汇集池上连接浓盐水排放管和浓盐水循环出水管,浓盐水排放管和浓盐水循环出水管或为同一管接出,通过三通管件分流连接;浓盐水循环出水管和新补入的浓盐水混合,通过浓盐水循环泵泵入浓盐水加热器加热,加热的浓盐水通过管道,与浓盐水蒸发室顶部的浓盐水喷淋蒸发装置连接;输入到浓盐水蒸发器内的喷淋装置中,对浓盐水进行喷淋蒸发;
    两个腔室的上部设有通过收水器作为隔离装置的隔段,收水器隔段将回收的含盐水汇流到浓盐水蒸发室底部的浓盐水池中;单效溴化锂机组冷凝换热器装置,设于联通负压腔室的冷凝水室内,通过对浓盐水蒸发室蒸发蒸汽的冷凝,获得冷凝水;
    水蒸汽冷凝室内设有真空抽气管,通过真空抽气装置,实现对水蒸汽冷凝室及浓盐水蒸发室的抽真空,降低浓盐水的蒸发温度;
    浓盐水是经过除硬处理的,既除去浓盐水中的暂硬和永硬,使容易结垢的碳酸钙盐,以及容易结垢的硫酸钙盐、碳酸镁盐、提前释出,转化成不易结垢的硫酸钠盐、硝酸钠盐和氯化钠盐,使之在浓缩过程中对换热表面不产生结垢,而即使产生结晶,也可以通过对浓盐水的稀释使之溶解脱除;
    将浓盐水蒸发室和水蒸汽冷凝室隔开的收水器,把回收的含盐水汇流到浓盐水蒸发室底部的浓盐水池中;单效溴化锂机组冷媒换热器设于水蒸汽冷凝室内,浓盐水喷淋蒸发产生的水蒸汽,通过收水器收集水雾后,进入设有单效溴化锂机组冷媒换热器的水蒸汽冷凝室内,水蒸汽在蒸发器的表面上冷凝,产生冷凝水下流,汇集于单效溴化锂机组冷媒换热器底部汇水池内,并通过水泵泵出;
    通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的热风蒸发浓盐水结晶含盐装置,包括空气加热器、引风扇、浓盐水喷淋器、浓盐水撩水器、浓盐水池、浓盐水收水器、风囱或引风机构成;浓盐水蒸发室的浓盐水排放管,通过水泵与热风蒸发浓盐水结晶含盐装置的浓盐水喷淋器连接;引风扇引凤通过空气加热器加热空气,热空气对喷淋和撩水器撩起的浓盐水蒸发,浓盐水结晶;撩水喷淋的浓盐水,因蒸发而浓度变大 ,最终生成结晶盐,此盐可以回收利用;
    单效溴化锂机组的热循环水,导入浓盐水加热器内,对浓盐水进行加热,对热循环水进行高温段部分的放热,之后,将热循环水导入空气换热器,对风扇引风进行加热,被空气换热器加热的空气,进入通过浓盐水泵连接的喷淋装置和撩水装置组成的浓盐水蒸发池,对浓盐水进行蒸发,使浓盐水蒸发并结晶;带盐水的湿热空气经过浓盐水收水器截流浓盐水后,经风囱或引风机排入大气;含有蒸发水蒸汽的湿热空气,通过风扇或者通过风囱装置,使其利用冷热空气比重不同进行对流扩散蒸发;
    单效溴化锂机组作为热源,可实现高效节能,对水进行蒸发,实现对浓盐水的零排放,以防止其因浓盐水对自然水体造成的盐碱污染,使其不因浓盐水而造成土地灌溉盐碱化,并可最大限度的利用水资源。
  2. 通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,包括单效溴化锂机组、含盐水负压蒸发浓缩冷凝器作为淡化装置、热风蒸发浓盐水结晶含盐装置构成,其特征是:单效溴化锂机组吸收器中的浓溴化锂溶液吸收蒸发器蒸发的水蒸汽后升温,经循环水冷却降温;
    冷却降温的稀溴化锂溶液经溶液泵加压后,经热交换器进入发生器,由热源加热并浓缩,浓缩后的溴化锂溶液进入热交换器冷却后进入吸收器,完成溶液循环;发生器稀溴化锂溶液沸腾浓缩产生的水蒸汽,进入冷凝器经循环水冷却放热冷凝;
    经冷凝形成的冷剂水再经过节流减压后进入蒸发器,并在这里进行蒸发,吸收冷水中的热量使冷水降温,冷水放出热量,达到制冷目的;而蒸发形成的冷剂蒸汽再进入吸收器中被浓溶液吸收形成稀溶液,完成冷剂循环;
    经单效溴化锂机组吸收器和冷凝器加热的热循环水作为热源;单效溴化锂机组的热循环水加热器为三级,一级对浓盐水加热,二级作为对喷淋浓盐水的二次加热,三级为对空气加热,构成对单效溴化锂机组热循环水的冷却,并作为对浓盐水的蒸发浓缩结晶的热源;冷却的单效溴化锂机组热循环水,通过吸收器和冷凝器装置加热构成循环;用单效溴化锂机组蒸发器蒸发冷却的冷媒循环水,作为喷淋蒸发水蒸汽冷凝水室的冷凝冷源;
    吸热升温的冷媒循环水,进入单效溴化锂机组蒸发装置内放热冷却后,输入水蒸汽冷凝室;单效溴化锂机组的冷循环水换热器至少为一级,对水蒸汽冷凝室的负压蒸汽进行冷凝;单效溴化锂机组冷凝循环水换热器吸收水蒸汽热量,为单效溴化锂机组提供冷剂水蒸发热量,使单效溴化锂机组有高效率的热循环;
    单效溴化锂机组连接的含盐水负压蒸发浓缩冷凝淡化装置,包括通过隔板和收水器相互隔离联通的浓盐水蒸发室和水蒸气冷凝室,或为单独的两个腔室,通过管道连通器连通的两腔室;浓盐水蒸发室的顶部设有热浓盐水喷淋蒸发装置;同时,浓盐水蒸发室内设有浓盐水喷淋加热器作为浓盐水二次加热蒸发装置;
    浓盐水蒸发室底部设有浓盐水汇集池、浓盐水汇集池上连接浓盐水排放管和浓盐水循环出水管,浓盐水排放管和浓盐水循环出水管或为同一管接出,通过三通管件分流连接;浓盐水循环出水管和新补入的浓盐水混合,通过浓盐水循环泵泵入浓盐水加热器加热,加热的浓盐水通过管道,与浓盐水蒸发室顶部的浓盐水喷淋蒸发装置连接;输入到浓盐水蒸发器内的喷淋装置中,对浓盐水进行喷淋蒸发;
    两个腔室的上部设有通过收水器作为隔离装置的隔段,收水器隔段将回收的含盐水汇流到浓盐水蒸发室底部的浓盐水池中;单效溴化锂机组冷凝换热器装置,设于联通负压腔室的冷凝水室内,通过对浓盐水蒸发室蒸发蒸汽的冷凝,获得冷凝水;
    水蒸汽冷凝室内设有真空抽气管,通过真空抽气装置,实现对水蒸汽冷凝室及浓盐水蒸发室的抽真空,降低浓盐水的蒸发温度;
    浓盐水是经过除硬处理的,既除去浓盐水中的暂硬和永硬,使容易结垢的碳酸钙盐,以及容易结垢的硫酸钙盐、碳酸镁盐、提前释出,转化成不易结垢的硫酸钠盐、硝酸钠盐和氯化钠盐,使之在浓缩过程中对换热表面不产生结垢,而即使产生结晶,也可以通过对浓盐水的稀释使之溶解脱除;
    将浓盐水蒸发室和水蒸汽冷凝室隔开的收水器,把回收的含盐水汇流到浓盐水蒸发室底部的浓盐水池中;单效溴化锂机组冷媒换热器设于水蒸汽冷凝室内,浓盐水喷淋蒸发产生的水蒸汽,通过收水器收集水雾后,进入设有单效溴化锂机组冷媒换热器的水蒸汽冷凝室内,水蒸汽在蒸发器的表面上冷凝,产生冷凝水下流,汇集于单效溴化锂机组冷媒换热器底部汇水池内,并通过水泵泵出;
    通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的热风蒸发浓盐水结晶含盐装置,包括空气加热器、引风扇、浓盐水喷淋器、浓盐水撩水器、浓盐水池、浓盐水收水器、风囱或引风机构成;浓盐水蒸发室的浓盐水排放管,通过水泵与热风蒸发浓盐水结晶含盐装置的浓盐水喷淋器连接;引风扇引凤通过空气加热器加热空气,热空气对喷淋和撩水器撩起的浓盐水蒸发,浓盐水结晶;撩水喷淋的浓盐水,因蒸发而浓度变大 ,最终生成结晶盐,此盐可以回收利用;
    单效溴化锂机组的热循环水,导入浓盐水加热器内,对浓盐水进行加热,对热循环水进行高温段部分的放热,之后,将热循环水导入空气换热器,对风扇引风进行加热,被空气换热器加热的空气,进入通过浓盐水泵连接的喷淋装置和撩水装置组成的浓盐水蒸发池,对浓盐水进行蒸发,使浓盐水蒸发并结晶;带盐水的湿热空气经过浓盐水收水器截流浓盐水后,经风囱或引风机排入大气;含有蒸发水蒸汽的湿热空气,通过风扇或者通过风囱装置,使其利用冷热空气比重不同进行对流扩散蒸发;
    单效溴化锂机组作为热源,可实现高效节能,对水进行蒸发,实现对浓盐水的零排放,以防止其因浓盐水对自然水体造成的盐碱污染,使其不因浓盐水而造成土地灌溉盐碱化,并可最大限度的利用水资源。
  3. 通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,包括双效溴化锂机组、含盐水负压蒸发浓缩冷凝器作为淡化装置、热风蒸发浓盐水结晶含盐装置构成,其特征是:双效溴化锂机组吸收器中的浓溴化锂溶液吸收蒸发器蒸发的水蒸汽后升温,经循环水冷却降温;吸收器中的稀溶液经溶液泵加压后,经低温热交换器、高温热交换器进入高压发生器,由热源加热并浓缩,浓缩后的中间溶液进入高温热交换器后进入低压发生器,被来自高压发生器的冷剂蒸汽加热并浓缩,浓缩后的浓溶液,经低温热交换器后进入吸收器,完成溶液循环; 
    低压发生器稀溴化锂溶液沸腾浓缩产生的水蒸汽进入冷凝器,经循环水冷却放热冷凝;
    高压发生器中的溶液被加热,所产生的一效冷剂蒸汽进入低压发生器,作为热源加热低压发生器中的溶液,产生二效冷剂蒸汽进入冷凝器,一效冷剂蒸汽在低压发生器中形成冷剂蒸汽与冷剂水的混合体经节流减压后也流到冷凝器中,与二效冷剂蒸汽一起被冷却水冷凝;经冷凝形成的冷剂水再经过节流减压后进入蒸发器,并在这里进行蒸发,吸收冷水中的热量使冷水降温,冷水放出热量,达到制冷目的;而蒸发形成的冷剂蒸汽再进入吸收器中被浓溶液吸收形成稀溶液,完成冷剂循环;
    经双效溴化锂机组吸收器和冷凝器加热的热循环水作为热源;双效溴化锂机组的热循环水加热器至少两级,一级为对浓盐水加热,二级为对空气加热,构成对双效溴化锂机组热循环水的冷却,并作为对浓盐水的蒸发浓缩结晶的热源;冷却的双效溴化锂机组热循环水,通过吸收器和冷凝器装置加热构成循环;用双效溴化锂机组蒸发器蒸发冷却的冷媒循环水,作为喷淋蒸发水蒸汽冷凝水室的冷凝冷源;
    吸热升温的冷媒循环水,进入双效溴化锂机组蒸发装置内放热冷却后,输入水蒸汽冷凝室;双效溴化锂机组的冷循环水换热器至少为一级,对水蒸汽冷凝室的负压蒸汽进行冷凝;双效溴化锂机组冷凝循环水换热器吸收水蒸汽热量,为双效溴化锂机组提供冷剂水蒸发热量,使双效溴化锂机组有高效率的热循环;
    双效溴化锂机组连接的含盐水负压蒸发浓缩冷凝淡化装置,包括通过隔板和收水器相互隔离联通的浓盐水蒸发室和水蒸气冷凝室,或为单独的两个腔室,通过管道连通器连通的两腔室;浓盐水蒸发室的顶部设有热浓盐水喷淋蒸发装置;浓盐水蒸发室底部设有浓盐水汇集池、浓盐水汇集池上连接浓盐水排放管和浓盐水循环出水管,浓盐水排放管和浓盐水循环出水管或为同一管接出,通过三通管件分流连接;浓盐水循环出水管和新补入的浓盐水混合,通过浓盐水循环泵泵入浓盐水加热器加热,加热的浓盐水通过管道,与浓盐水蒸发室顶部的浓盐水喷淋蒸发装置连接;输入到浓盐水蒸发器内的喷淋装置中,对浓盐水进行喷淋蒸发;
    两个腔室的上部设有通过收水器作为隔离装置的隔段,收水器隔段将回收的含盐水汇流到浓盐水蒸发室底部的浓盐水池中;双效溴化锂机组冷凝换热器装置,设于联通负压腔室的冷凝水室内,通过对浓盐水蒸发室蒸发蒸汽的冷凝,获得冷凝水;
    水蒸汽冷凝室内设有真空抽气管,通过真空抽气装置,实现对水蒸汽冷凝室及浓盐水蒸发室的抽真空,降低浓盐水的蒸发温度;
    浓盐水是经过除硬处理的,既除去浓盐水中的暂硬和永硬,使容易结垢的碳酸钙盐,以及容易结垢的硫酸钙盐、碳酸镁盐、提前释出,转化成不易结垢的硫酸钠盐、硝酸钠盐和氯化钠盐,使之在浓缩过程中对换热表面不产生结垢,而即使产生结晶,也可以通过对浓盐水的稀释使之溶解脱除;
    将浓盐水蒸发室和水蒸汽冷凝室隔开的收水器,把回收的含盐水汇流到浓盐水蒸发室底部的浓盐水池中;双效溴化锂机组冷媒换热器设于水蒸汽冷凝室内,浓盐水喷淋蒸发产生的水蒸汽,通过收水器收集水雾后,进入设有双效溴化锂机组冷媒换热器的水蒸汽冷凝室内,水蒸汽在蒸发器的表面上冷凝,产生冷凝水下流,汇集于双效溴化锂机组冷媒换热器底部汇水池内,并通过水泵泵出;
    通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的热风蒸发浓盐水结晶含盐装置,包括空气加热器、引风扇、浓盐水喷淋器、浓盐水撩水器、浓盐水池、浓盐水收水器、风囱或引风机构成;浓盐水蒸发室的浓盐水排放管,通过水泵与热风蒸发浓盐水结晶含盐装置的浓盐水喷淋器连接;引风扇引凤通过空气加热器加热空气,热空气对喷淋和撩水器撩起的浓盐水蒸发,浓盐水结晶;撩水喷淋的浓盐水,因蒸发而浓度变大 ,最终生成结晶盐,此盐可以回收利用;
    双效溴化锂机组的热循环水,导入浓盐水加热器内,对浓盐水进行加热,对热循环水进行高温段部分的放热,之后,将热循环水导入空气换热器,对风扇引风进行加热,被空气换热器加热的空气,进入通过浓盐水泵连接的喷淋装置和撩水装置组成的浓盐水蒸发池,对浓盐水进行蒸发,使浓盐水蒸发并结晶;带盐水的湿热空气经过浓盐水收水器截流浓盐水后,经风囱或引风机排入大气;含有蒸发水蒸汽的湿热空气,通过风扇或者通过风囱装置,使其利用冷热空气比重不同进行对流扩散蒸发;
    双效溴化锂机组作为热源,可实现高效节能,对水进行蒸发,实现对浓盐水的零排放,以防止其因浓盐水对自然水体造成的盐碱污染,使其不因浓盐水而造成土地灌溉盐碱化,并可最大限度的利用水资源。
  4. 通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,包括双效溴化锂机组、含盐水负压蒸发浓缩冷凝器作为淡化装置、热风蒸发浓盐水结晶含盐装置构成,其特征是:双效溴化锂机组吸收器中的浓溴化锂溶液吸收蒸发器蒸发的水蒸汽后升温,经循环水冷却降温;吸收器中的稀溶液经溶液泵加压后,经低温热交换器、高温热交换器进入高压发生器,由热源加热并浓缩,浓缩后的中间溶液进入高温热交换器后进入低压发生器,被来自高压发生器的冷剂蒸汽加热并浓缩,浓缩后的浓溶液,经低温热交换器后进入吸收器,完成溶液循环; 
    低压发生器稀溴化锂溶液沸腾浓缩产生的水蒸汽进入冷凝器,经循环水冷却放热冷凝;
    高压发生器中的溶液被加热,所产生的一效冷剂蒸汽进入低压发生器,作为热源加热低压发生器中的溶液,产生二效冷剂蒸汽进入冷凝器,一效冷剂蒸汽在低压发生器中形成冷剂蒸汽与冷剂水的混合体经节流减压后也流到冷凝器中,与二效冷剂蒸汽一起被冷却水冷凝;经冷凝形成的冷剂水再经过节流减压后进入蒸发器,并在这里进行蒸发,吸收冷水中的热量使冷水降温,冷水放出热量,达到制冷目的;而蒸发形成的冷剂蒸汽再进入吸收器中被浓溶液吸收形成稀溶液,完成冷剂循环;
    经双效溴化锂机组吸收器和冷凝器加热的热循环水作为热源;双效溴化锂机组的热循环水加热器为三级,一级对浓盐水加热,二级作为对喷淋浓盐水的二次加热,三级为对空气加热,构成对双效溴化锂机组热循环水的冷却,并作为对浓盐水的蒸发浓缩结晶的热源;冷却的双效溴化锂机组热循环水,通过吸收器和冷凝器装置加热构成循环;用双效溴化锂机组蒸发器蒸发冷却的冷媒循环水,作为喷淋蒸发水蒸汽冷凝水室的冷凝冷源;
    吸热升温的冷媒循环水,进入双效溴化锂机组蒸发装置内放热冷却后,输入水蒸汽冷凝室;双效溴化锂机组的冷循环水换热器至少为一级,对水蒸汽冷凝室的负压蒸汽进行冷凝;双效溴化锂机组冷凝循环水换热器吸收水蒸汽热量,为双效溴化锂机组提供冷剂水蒸发热量,使双效溴化锂机组有高效率的热循环;
    双效溴化锂机组连接的含盐水负压蒸发浓缩冷凝淡化装置,包括通过隔板和收水器相互隔离联通的浓盐水蒸发室和水蒸气冷凝室,或为单独的两个腔室,通过管道连通器连通的两腔室;浓盐水蒸发室的顶部设有热浓盐水喷淋蒸发装置;同时,浓盐水蒸发室内设有浓盐水喷淋加热器作为浓盐水二次加热蒸发装置;
    浓盐水蒸发室底部设有浓盐水汇集池、浓盐水汇集池上连接浓盐水排放管和浓盐水循环出水管,浓盐水排放管和浓盐水循环出水管或为同一管接出,通过三通管件分流连接;浓盐水循环出水管和新补入的浓盐水混合,通过浓盐水循环泵泵入浓盐水加热器加热,加热的浓盐水通过管道,与浓盐水蒸发室顶部的浓盐水喷淋蒸发装置连接;输入到浓盐水蒸发器内的喷淋装置中,对浓盐水进行喷淋蒸发;
    两个腔室的上部设有通过收水器作为隔离装置的隔段,收水器隔段将回收的含盐水汇流到浓盐水蒸发室底部的浓盐水池中;双效溴化锂机组冷凝换热器装置,设于联通负压腔室的冷凝水室内,通过对浓盐水蒸发室蒸发蒸汽的冷凝,获得冷凝水;
    水蒸汽冷凝室内设有真空抽气管,通过真空抽气装置,实现对水蒸汽冷凝室及浓盐水蒸发室的抽真空,降低浓盐水的蒸发温度;
    浓盐水是经过除硬处理的,既除去浓盐水中的暂硬和永硬,使容易结垢的碳酸钙盐,以及容易结垢的硫酸钙盐、碳酸镁盐、提前释出,转化成不易结垢的硫酸钠盐、硝酸钠盐和氯化钠盐,使之在浓缩过程中对换热表面不产生结垢,而即使产生结晶,也可以通过对浓盐水的稀释使之溶解脱除;
    将浓盐水蒸发室和水蒸汽冷凝室隔开的收水器,把回收的含盐水汇流到浓盐水蒸发室底部的浓盐水池中;双效溴化锂机组冷媒换热器设于水蒸汽冷凝室内,浓盐水喷淋蒸发产生的水蒸汽,通过收水器收集水雾后,进入设有双效溴化锂机组冷媒换热器的水蒸汽冷凝室内,水蒸汽在蒸发器的表面上冷凝,产生冷凝水下流,汇集于双效溴化锂机组冷媒换热器底部汇水池内,并通过水泵泵出;
    通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置的热风蒸发浓盐水结晶含盐装置,包括空气加热器、引风扇、浓盐水喷淋器、浓盐水撩水器、浓盐水池、浓盐水收水器、风囱或引风机构成;浓盐水蒸发室的浓盐水排放管,通过水泵与热风蒸发浓盐水结晶含盐装置的浓盐水喷淋器连接;引风扇引凤通过空气加热器加热空气,热空气对喷淋和撩水器撩起的浓盐水蒸发,浓盐水结晶;撩水喷淋的浓盐水,因蒸发而浓度变大 ,最终生成结晶盐,此盐可以回收利用;
    双效溴化锂机组的热循环水,导入浓盐水加热器内,对浓盐水进行加热,对热循环水进行高温段部分的放热,之后,将热循环水导入空气换热器,对风扇引风进行加热,被空气换热器加热的空气,进入通过浓盐水泵连接的喷淋装置和撩水装置组成的浓盐水蒸发池,对浓盐水进行蒸发,使浓盐水蒸发并结晶;带盐水的湿热空气经过浓盐水收水器截流浓盐水后,经风囱或引风机排入大气;含有蒸发水蒸汽的湿热空气,通过风扇或者通过风囱装置,使其利用冷热空气比重不同进行对流扩散蒸发;
    双效溴化锂机组作为热源,可实现高效节能,对水进行蒸发,实现对浓盐水的零排放,以防止其因浓盐水对自然水体造成的盐碱污染,使其不因浓盐水而造成土地灌溉盐碱化,并可最大限度的利用水资源。
  5. 根据权利要求1、2、3或4所述的通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,其特征是:浓盐水收水器包括折板式,被动风扇式。
  6. 根据权利要求1、2、3或4所述的通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,其特征是:在风囱内或设置引入冷风装置,冷凝湿空气中的水蒸气,回收冷凝水。
  7. 根据权利要求1、2、3或4所述的通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,其特征是:在风囱内或设置溴化锂机组空气二级蒸发器,将湿热空气中的水蒸气冷凝并回收冷凝水。
  8. 根据权利要求1、2、3或4所述的通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,其特征是:浓盐水是经过化学除硬处理的以钠盐为主的浓盐水,浓盐水的主要软化药品为碳酸钠;或浓盐水是经过物理加热除硬处理的以钠盐为主的浓盐水,浓盐水的物理除硬是将浓盐水通过换热器和末级加热器,将混合有沙砾磨料的浓盐水加热到125摄氏度除硬。
  9. 根据权利要求1、2、3或4所述的通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,其特征是:溴化锂机组的蒸发装置为二级,一级溴化锂机组的蒸发装置,对负压蒸发的蒸汽进行冷凝,二级溴化锂机组的蒸发装置为通过引风机排放的湿热空气进行部分冷凝,回收冷凝水。
  10. 根据权利要求1、2、3或4所述的通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置,其特征是:抽真空装置包括冷凝水抽水泵与喷射水抽气器组成的真空泵、水环真空泵、机械真空泵、蒸汽喷射真空泵。
PCT/CN2020/137848 2020-12-16 2020-12-21 通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置 WO2022126671A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011494148.7 2020-12-16
CN202011494148.7A CN117185389A (zh) 2020-12-16 2020-12-16 通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置

Publications (1)

Publication Number Publication Date
WO2022126671A1 true WO2022126671A1 (zh) 2022-06-23

Family

ID=82059850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137848 WO2022126671A1 (zh) 2020-12-16 2020-12-21 通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置

Country Status (2)

Country Link
CN (1) CN117185389A (zh)
WO (1) WO2022126671A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115108670A (zh) * 2022-06-30 2022-09-27 光大绿色环保管理(深圳)有限公司 耦合太阳能的浓液蒸发和循环利用系统及其控制方法
CN116789210A (zh) * 2023-06-25 2023-09-22 济南森华工程技术有限公司 一种火电厂脱硫废水零排放系统
US11795071B2 (en) 2019-08-22 2023-10-24 Saline Water Conversion Corporation Multi-valent ion concentration using multi-stage nanofiltration
US11806668B2 (en) 2021-12-14 2023-11-07 Saline Water Conversion Corporation Method and system for extraction of minerals based on divalent cations from brine
US11884567B2 (en) 2019-04-01 2024-01-30 Saline Water Conversion Corporation Desalination brine concentration system and method
CN118108369A (zh) * 2024-03-25 2024-05-31 湖北仁者机械科技有限公司 带有液体分离机构的蒸发结晶器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1538128A (zh) * 2003-04-15 2004-10-20 徐宝安 一种太阳能热能溴化锂吸收式中央空调海水淡化装置
CN1778690A (zh) * 2004-11-19 2006-05-31 天津市朗明通信科技有限公司 雾化海水淡化法
US20060130487A1 (en) * 2004-12-16 2006-06-22 Yefim Kashler System for augmented electric power generation with distilled water output
CN101344298A (zh) * 2007-11-15 2009-01-14 上海海事大学 空调和海水淡化联合运行系统
CN102344179A (zh) * 2011-09-29 2012-02-08 中国科学院广州能源研究所 一种带回热循环的太阳能吸收式海水淡化装置
CN103058306A (zh) * 2013-01-23 2013-04-24 中国电子工程设计院 一种太阳能空调海水淡化系统
CN103466736A (zh) * 2013-09-23 2013-12-25 凯姆德(北京)能源环境科技有限公司 一种高浓度含盐废水的循环处理系统及工艺

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191402971A (en) * 1914-02-05 1915-07-29 Karl Schrempp Improvements in a Method of Softening Water.
JPS5539286A (en) * 1978-09-13 1980-03-19 Sanyo Electric Co Ltd Sea water desalting apparatus
JPS5888002A (ja) * 1981-11-18 1983-05-26 Hitachi Ltd 蒸留装置
JPS6411604A (en) * 1987-07-03 1989-01-17 Yutaka Takeuchi Solvent-treating apparatus
KR20000059247A (ko) * 2000-04-07 2000-10-05 이만희 변기용 악취제거 장치
CN100465548C (zh) * 2003-03-27 2009-03-04 北京环能海臣科技有限公司 一种空调器
CN101070194A (zh) * 2006-12-25 2007-11-14 魏仕英 旋转射流闪蒸-压缩式海水淡化方法和系统
JP5676464B2 (ja) * 2009-10-28 2015-02-25 中山 吉央 蒸留水生成システム
CN102603023B (zh) * 2012-03-23 2013-12-25 郭朝军 利用太阳能和空气对含盐水进行蒸发浓缩的方法和设备
CN202860146U (zh) * 2012-03-26 2013-04-10 郭朝军 一种对含盐水进行浓缩的组合设备
CN203170033U (zh) * 2013-04-13 2013-09-04 郭朝军 一种利用空气对含盐水进行蒸发处理的多级蒸发塔
CN204198442U (zh) * 2014-10-24 2015-03-11 天津商业大学 太阳能溴化锂海水淡化系统
CN105923676B (zh) * 2016-04-27 2018-10-23 武汉凯迪工程技术研究总院有限公司 高效太阳能海水淡化与空调制冷联合运行方法与系统
CN205748040U (zh) * 2016-06-22 2016-11-30 山东华鲁恒升化工股份有限公司 循环水冷却塔蒸发水汽回收除雾装置
CN210012624U (zh) * 2019-06-11 2020-02-04 哈尔滨汽轮机厂辅机工程有限公司 一种余热利用mvc海水淡化集成系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1538128A (zh) * 2003-04-15 2004-10-20 徐宝安 一种太阳能热能溴化锂吸收式中央空调海水淡化装置
CN1778690A (zh) * 2004-11-19 2006-05-31 天津市朗明通信科技有限公司 雾化海水淡化法
US20060130487A1 (en) * 2004-12-16 2006-06-22 Yefim Kashler System for augmented electric power generation with distilled water output
CN101344298A (zh) * 2007-11-15 2009-01-14 上海海事大学 空调和海水淡化联合运行系统
CN102344179A (zh) * 2011-09-29 2012-02-08 中国科学院广州能源研究所 一种带回热循环的太阳能吸收式海水淡化装置
CN103058306A (zh) * 2013-01-23 2013-04-24 中国电子工程设计院 一种太阳能空调海水淡化系统
CN103466736A (zh) * 2013-09-23 2013-12-25 凯姆德(北京)能源环境科技有限公司 一种高浓度含盐废水的循环处理系统及工艺

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11884567B2 (en) 2019-04-01 2024-01-30 Saline Water Conversion Corporation Desalination brine concentration system and method
US11795071B2 (en) 2019-08-22 2023-10-24 Saline Water Conversion Corporation Multi-valent ion concentration using multi-stage nanofiltration
US11806668B2 (en) 2021-12-14 2023-11-07 Saline Water Conversion Corporation Method and system for extraction of minerals based on divalent cations from brine
CN115108670A (zh) * 2022-06-30 2022-09-27 光大绿色环保管理(深圳)有限公司 耦合太阳能的浓液蒸发和循环利用系统及其控制方法
CN116789210A (zh) * 2023-06-25 2023-09-22 济南森华工程技术有限公司 一种火电厂脱硫废水零排放系统
CN116789210B (zh) * 2023-06-25 2024-03-08 济南森华工程技术有限公司 一种火电厂脱硫废水零排放系统
CN118108369A (zh) * 2024-03-25 2024-05-31 湖北仁者机械科技有限公司 带有液体分离机构的蒸发结晶器

Also Published As

Publication number Publication date
CN117185389A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
WO2022126671A1 (zh) 通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置
CN105923676B (zh) 高效太阳能海水淡化与空调制冷联合运行方法与系统
US4209364A (en) Process of water recovery and removal
CN103466736B (zh) 一种高浓度含盐废水的循环处理系统及工艺
WO2017124215A1 (zh) 一种双效错流mvr蒸发浓缩系统
CN203741071U (zh) 蒸发浓缩设备
WO2016041292A1 (zh) 液隙多效膜蒸馏工艺及其装置
CN106673097B (zh) 一种太阳能耦合热泵海水淡化装置
CN103043735B (zh) 热泵式小型海水淡化装置
CN109179824A (zh) 一种高盐废水零排放的系统及工艺
CN103806964A (zh) 汽轮机乏汽潜热综合利用的方法与系统
WO2022126670A1 (zh) 一种通过热泵将高含盐废水浓缩结晶含盐淡化水处理装置
CN104190260A (zh) 减压组合气隙膜蒸馏方法及其装置
CN111392791A (zh) 一种与热泵结合的多效蒸馏海水淡化系统
CN204848322U (zh) 高盐水处理系统
CN113735209A (zh) 一种全量化垃圾渗滤液处理装置及工艺
US20210402322A1 (en) Apparatus and method for crystallisation
TWI815464B (zh) 用於處理凝結水的分離塔及其方法
CN110451711A (zh) 一种利用空气气提来实现高盐废水浓缩结晶的系统及方法
CN216073129U (zh) 一种高浓垃圾渗滤液处理装置
CN203568872U (zh) 水溶液相变分离系统
JP3524582B2 (ja) 非共沸混合流体サイクルプラント
CN105174331B (zh) 一种热泵循环式海水淡化装置及其使用方法
CN211871444U (zh) 含盐废水的蒸发浓缩系统
CN106629937B (zh) 一种废水处理工艺及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965684

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/11/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20965684

Country of ref document: EP

Kind code of ref document: A1