WO2016041292A1 - 液隙多效膜蒸馏工艺及其装置 - Google Patents
液隙多效膜蒸馏工艺及其装置 Download PDFInfo
- Publication number
- WO2016041292A1 WO2016041292A1 PCT/CN2015/000318 CN2015000318W WO2016041292A1 WO 2016041292 A1 WO2016041292 A1 WO 2016041292A1 CN 2015000318 W CN2015000318 W CN 2015000318W WO 2016041292 A1 WO2016041292 A1 WO 2016041292A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane distillation
- stage
- heat exchange
- water
- heat pump
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 196
- 238000004821 distillation Methods 0.000 title claims abstract description 179
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 128
- 238000000034 method Methods 0.000 claims abstract description 55
- 239000012530 fluid Substances 0.000 claims abstract description 46
- 230000008569 process Effects 0.000 claims description 44
- 239000007788 liquid Substances 0.000 claims description 14
- 230000008859 change Effects 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 238000010612 desalination reaction Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 239000013535 sea water Substances 0.000 claims description 3
- 239000008399 tap water Substances 0.000 claims description 3
- 235000020679 tap water Nutrition 0.000 claims description 3
- 230000000712 assembly Effects 0.000 abstract 8
- 238000000429 assembly Methods 0.000 abstract 8
- 238000005516 engineering process Methods 0.000 description 9
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 6
- 230000004907 flux Effects 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000001223 reverse osmosis Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000009285 membrane fouling Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/36—Pervaporation; Membrane distillation; Liquid permeation
- B01D61/364—Membrane distillation
- B01D61/3641—Membrane distillation comprising multiple membrane distillation steps
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Definitions
- the invention relates to a membrane distillation device and a distillation method, in particular to a liquid gap multi-effect membrane distillation process and a device thereof applied in the fields of water purification treatment and chemical separation and concentration.
- Membrane distillation technology is a new liquid separation technology combining membrane technology with traditional distillation technology. Compared with common evaporators, one of the most remarkable features of membrane distillation is that the effective evaporation area per unit volume is large, so that the device can be at normal pressure. Efficient operation in the lower temperature evaporation process, and the equipment is made of plastic material, avoiding the corrosion problem of metal materials under high salinity. Compared with reverse osmosis, membrane distillation is a heat-driven process with low operating pressure, so equipment costs are low, and membrane distillation has low operating pressure, high desalination rate, light membrane fouling, and low pretreatment requirements.
- Membrane distillation is a membrane separation process using a hydrophobic microporous membrane with a vapor pressure difference across the membrane as a mass transfer driving force. Driven by the vapor pressure difference across the microporous hydrophobic membrane, water vapor passes through the hydrophobic membrane from the heated raw water side and is then condensed into a liquid separation process. Due to the hydrophobicity of the membrane, only water vapor can penetrate the pores of the membrane, and the raw water and the non-volatile solutes dissolved in it cannot pass through the pores of the membrane. Therefore, the membrane distillation process can theoretically target ions, macromolecules, colloids, cells and other non- The volatiles achieved 100% removal.
- microporous hydrophobic membrane acts as a barrier between the two phases during the membrane distillation process.
- both heat transfer and mass transfer processes occur simultaneously, and temperature difference polarization and temperature difference polarization phenomenon are also generated at the same time, which adversely affects the membrane distillation process.
- the membrane distillation process can treat an aqueous solution with a very high concentration. If the solute is a substance that is easily crystallized, the solution can be concentrated to a supersaturated state to effect membrane distillation crystallization, which is a membrane process that can directly separate the crystalline product from the solution, and only the membrane The proper temperature difference can be maintained on both sides, and the membrane distillation process can be carried out, and energy sources such as solar energy, geothermal heat, hot springs, factory waste heat and warm industrial waste water can be utilized.
- Membrane distillation technology has low operating pressure, 99.9% desalination rate and good operating strip
- the phase change heat of water vapor during membrane distillation is about 2600kJ/kg, which is much larger than the specific heat of water 4kJ/kg.K. Therefore, the membrane distillation process requires a large amount of additional cooling water to condense the vapor of the membrane distillation. If the raw water is used as the cooling water, the water vapor generated in the membrane distillation process is directly exchanged with the raw water through the heat exchanger, such as air gap membrane distillation. The raw water cannot completely absorb the latent heat of steam. In order to increase the water generation ratio, the temperature difference between the membrane filament and the heat exchange tube must be lowered, resulting in a low membrane distillation flux. Therefore, recovering the phase change heat of water vapor during membrane distillation in an appropriate manner is one of the key problems that need to be solved in the industrialization application of membrane distillation technology.
- the main object of the present invention is to overcome the above disadvantages of the prior art, and to provide a liquid-gap multi-effect membrane distillation process and a device thereof, which can couple the water vapor condensation in the membrane distillation process with the raw water heating process, and recover the membrane distillation process.
- the phase change heat of the water vapor realizes the industrialization of the membrane distillation technology.
- the liquid-gap multi-effect membrane distillation apparatus of the present invention comprises a multi-stage membrane distillation module, a multi-stage heat exchange module, a heat pump and a connecting pipeline; wherein the tube between the multi-stage membrane distillation module and the multi-stage heat exchange component The process or the shell process is alternately piped to form a raw water flow; the hot end outlet of the heat pump is connected in series with the shell side or the tube process of each heat exchange component to form a hot fluid flow; the final heat exchange component and the heat pump The hot end inlet pipe is connected; the cold end outlet of the heat pump is connected in series with the shell side or the tube process of each membrane distillation module to form a cold fluid process, and the final membrane distillation module is connected to the cold end inlet of the heat pump.
- the membrane distillation module is provided with a concentrated water discharge port; the raw water water pipe inlet is connected with the raw water source, the raw water water pipe outlet is connected with the first-stage heat exchange component tube or the shell-side pipe, and the raw water is alternately piped through the heat exchanger components of each stage. Or the shell side (that is, not in the same process as the hot fluid) and the tube or shell side of the membrane distillation unit of each stage (ie, not in the same process as the cold fluid), the remaining liquid is discharged as a membrane distilled concentrated water from the concentrated water discharge port, and the membrane is distilled.
- the effluent is discharged from a production port provided on the connecting pipe between the cold end outlet of the heat pump and the first stage membrane distillation module.
- liquid gap multi-effect membrane distillation apparatus wherein: the raw water flow line, the hot fluid flow, and the cold fluid flow line are respectively provided with a pipe mixer.
- liquid-gap multi-effect membrane distillation apparatus wherein: the multi-stage membrane distillation module and the multi-stage heat exchange component are alternately pipe-connected, including a series-stage sequential multi-stage heat exchange between the multi-stage membrane distillation modules
- the shells of the modules are connected in series, the tube sections of each membrane distillation module and the tube sections of the heat exchange components are alternately connected in series; the shell process is alternately connected in series with the multi-stage membrane distillation module and the multi-stage heat exchanger components, and each The tube distillation module tube process and the heat exchange unit tube courses are alternately connected in series.
- the liquid gap multi-effect membrane distillation process method of the invention is characterized in that the raw water is alternately piped through the tube process or the shell side of the heat exchange components of each stage and the tube or shell side of each membrane distillation module is increased due to membrane distillation.
- the volume of the cold fluid as the membrane distillation produced water is discharged from the produced water port provided on the connecting pipe between the cold pump outlet end of the heat pump and the first stage membrane distillation module, and the unvaporized raw water is discharged as concentrated water from the concentrated water discharge port;
- the low-temperature pure water flowing out from the cold end of the heat pump is discharged as the produced water of the membrane distillation unit, and the rest is used as the cold fluid, which flows through the shell or tube of each membrane distillation unit in sequence (ie, it is not in the same process as the raw water).
- the high-temperature pure water flowing out from the hot end of the heat pump flows through the shell side or the tube process of the heat exchange components of each stage in turn, (ie, not in the same process as the raw water), the raw water of the heat transfer module tube or shell side is heated, and the pure water cooled down is returned to the hot end of the heat pump, and is heated again by the heat pump, thereby circulating.
- liquid gap multi-effect membrane distillation process wherein the raw water is tap water, sea water, hot water discharged from a cooling system, or a chemical product solution requiring concentration or desalination treatment.
- the beneficial effects of the liquid-gap multi-effect membrane distillation process and the device thereof of the present invention realize that the raw water is heated and heated under the process conditions of the cold and hot fluid respectively under a relatively high temperature difference.
- Membrane distillation occurs and the temperature is lowered, the temperature is raised by heating, the membrane is distilled, and the temperature is lowered... and sequentially, thereby achieving a multi-effect evaporation process. Under the condition of high membrane distillation flux, it has a higher heat recovery effect.
- FIG. 1 is a schematic view showing the process flow of a two-stage multi-effect membrane distillation apparatus of the present invention.
- FIG. 2 is a schematic view showing the process flow of the five-stage multi-effect membrane distillation apparatus of the present invention.
- 21 is a raw water inlet pipe
- 22 is a first-stage heat exchange component
- 23 is a connection pipe of a first-stage heat exchange component tube process and a second-stage membrane distillation module tube process
- 24 is a second-stage membrane distillation component.
- 25 is the connecting pipe of the second-stage membrane distillation module tube section and the second-stage heat exchange component tube section
- 26 is the second-stage heat exchange component
- 27 is the first-stage membrane distillation module tube section and the second-stage heat exchanger component
- Pipe connection pipe 28 is the first stage membrane distillation module
- 29 is the membrane distillation concentrated water discharge pipe
- 30 is the heat pump
- 31 is the membrane distillation water production pipe.
- 32 is a connecting pipe of the cold water outlet of the heat pump and the shell inlet of the first stage membrane distillation module
- 33 is a connecting pipe of the shell side outlet of the first stage membrane distillation module and the shell inlet of the second stage membrane distillation module
- 34 is the second The connection pipe between the shell inlet of the membrane distillation module and the inlet of the cold end of the heat pump
- 35 is the connection pipe of the hot end outlet of the heat pump and the shell inlet of the first stage heat exchange component
- 36 is the shell side outlet of the first stage heat exchange component and the second
- 37 is the connecting pipe of the shell-side outlet of the second-stage heat-exchange component and the hot-end inlet of the heat pump
- a concentrated water, B produces water, and C raw water.
- Fig. 2 41 is a raw water inlet pipe, and 42, 43, 44, 45, and 46 are first, second, third, fourth, and fifth-stage membrane distillation modules, respectively, and the shell side is sequentially connected in series; 51, 52, 53, 54 55 is the first, second, third, fourth and fifth heat exchange components, and the shell side is connected in series; the membrane distillation unit tube and the heat exchanger unit are alternately connected in series; 47 is the membrane distillation concentrated water discharge tube 40 is a heat pump and 48 is a membrane distillation water production pipe.
- 60 is a pipe mixer, A concentrated water, B produces water, C raw water.
- a multi-stage membrane distillation module and a heat exchange component can be provided according to actual needs, but at least two stages are required.
- 1 and 2 illustrate the process flow of the two-stage and five-stage liquid-gap multi-effect membrane distillation apparatus of the present invention, respectively.
- the raw water C enters the tube of the first-stage heat exchange unit 22 from the inlet pipe 21, enters the tube of the second-stage membrane distillation unit 24 from the connecting tube 23, and enters the second-stage heat exchange unit from the connecting tube 25.
- the tube of 26 is further passed through the connecting tube 27 to the first stage membrane distillation unit 28, and the discharge tube 29 is used to discharge the membrane distilled water A out of the membrane distillation unit.
- the cold fluid from the cold end of the heat pump 30 enters the shell side of the first-stage membrane distillation module 28 from the connecting pipe 32, absorbs the water produced by the first-stage membrane distillation module 28, and is slightly heated, and then connected by the connecting pipe 33.
- the shell side of the second-stage membrane distillation module 24 is introduced, and the water-producing B of the second-stage membrane distillation module 24 is absorbed, and then returned to the heat pump by the connecting pipe 34 to be cooled, and the membrane distillation process is performed as a cold fluid circulation.
- the cold fluid which absorbs the increase in water vapor, that is, the membrane distilled water B, is discharged from the membrane distillation water producing pipe 31.
- the hot fluid generated by the heat pump enters the first-stage heat exchange component 22 from the hot-end outlet through the connecting pipe 35, and then enters the second-stage heat exchange component 26 from the connecting pipe 36, and then is returned to the heat pump by the connecting pipe 37 to be heated.
- the membrane distillation process is carried out as a hot fluid cycle.
- the raw water C enters the tube of the first-stage heat exchange unit 22 from the inlet pipe 21, enters the tube of the second-stage membrane distillation unit 24 from the connecting tube 23, and enters the second-stage heat exchange unit from the connecting tube 25.
- the tube of 26 is then passed through the connecting tube 27 to the first stage membrane distillation unit 28, and the discharge tube 29 is used to distill the membrane distilled water out of the membrane distillation unit.
- the cold fluid from the cold end of the heat pump 30 enters the shell side of the second-stage membrane distillation module 24 from the connecting pipe 34, absorbs the water produced by the second-stage membrane distillation module 24, and is slightly heated, and then connected by the pipe 33.
- the shell side of the first-stage membrane distillation module 28 is introduced, and the water produced by the first-stage membrane distillation module 28 is absorbed, and then returned to the heat pump by the connecting pipe 33 to be cooled, and the membrane distillation process is performed as a cold fluid circulation.
- the cold fluid which absorbs the increase in water vapor, that is, the membrane distilled water B, is discharged from the membrane distillation water producing pipe 31.
- the hot fluid generated by the heat pump enters the second-stage heat exchange component 26 from the hot-end outlet through the connecting pipe 37, and then enters the first-stage heat exchange component 22 from the connecting pipe 36, and then is returned to the heat pump by the connecting pipe 35, and is heated.
- the membrane distillation process is carried out as a hot fluid cycle.
- the present invention may be a plurality of countercurrent and cocurrent arrangements, the present invention
- the content is not limited to the above two types of countercurrent and cocurrent arrangements.
- the raw water C sequentially alternates from the high temperature end through the connecting pipe 41 into the heat exchange unit 51, the membrane distillation unit 42, the heat exchange unit 52, the membrane distillation unit 43, the heat exchange unit 53, the membrane distillation unit 44, and the heat exchange unit. 54.
- the tube distillation unit 45, the heat exchange unit 55, and the tube distillation unit 46, the membrane distillation concentrated water is discharged from the membrane distillation unit by the discharge tube 47.
- the hot fluid produced by the heat pump 40 sequentially enters the shell side of the heat exchange modules 51, 52, 53, 54, 55, respectively, and heats the raw water, and then returns to the heat pump for heating, and performs a film distillation process as a hot fluid cycle.
- the cold fluid produced by the heat pump sequentially enters the shell side of the membrane distillation modules 42, 43, 44, 45, 46, respectively, absorbs the water vapor, and then returns to the heat pump for cooling, and performs a membrane distillation process as a cold fluid circulation.
- the cold fluid added by the membrane distillation that is, the membrane distillation produced water, is discharged from the membrane distillation unit by the line 48.
- a plurality of pipe mixers may be respectively disposed in the cold fluid, the hot fluid, and the raw water pipeline, as shown in FIG.
- the raw water C is sequentially alternately introduced from the low temperature end into the heat exchange unit 55, the membrane distillation unit 46, the heat exchange unit 54, the membrane distillation unit 45, the heat exchange unit 53, the membrane distillation unit 44, and the heat exchange unit through the connecting pipe 41'.
- the tube 52 of the module 52, the membrane distillation unit 43, the heat exchange unit 51, and the membrane distillation unit 42 is discharged from the membrane distillation unit by the discharge tube 47'.
- the hot fluid produced by the heat pump 40 sequentially enters the shell side of the heat exchange modules 51, 52, 53, 54, 55, respectively, and heats the raw water, and then returns to the heat pump for heating, and performs a film distillation process as a hot fluid cycle.
- the cold fluid produced by the heat pump sequentially enters the shell side of the membrane distillation modules 42, 43, 44, 45, 46, absorbs the water vapor, and then returns to the heat pump.
- the temperature is lowered and the membrane distillation process is carried out as a cold fluid cycle.
- the cold fluid added by the membrane distillation that is, the membrane distillation produced water B, is discharged from the membrane distillation unit by the line 48.
- the entry of raw water from the high temperature end into the heat exchange component means that the raw water enters the heat exchange component process and first exchanges heat with the high temperature hot fluid from the heat pump.
- the entry of raw water from the low temperature end into the heat exchange component means that the raw water enters the heat exchange component process and first exchanges heat with the lower temperature hot fluid that is to be returned to the heat pump.
- the raw water may be a liquid that requires concentration or desalination treatment such as tap water, sea water, hot water discharged from a cooling system, or a chemical product solution.
Landscapes
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
一种液隙多效膜蒸馏装置和方法,包括多级膜蒸馏组件、多级换热组件、热泵(30)以及连接管路;其中,多级膜蒸馏组件与多级换热组件之间的管程或者壳程交错顺次管接,构成原水流程;热泵(30)的热端出口与各级换热组件的壳程或管程顺次串联管接,构成热流体流程;末级换热组件与热泵(30)的热端入口管接;热泵(30)的冷端出口与各级膜蒸馏组件的壳程或管程顺次串联管接,构成冷流体流程,末级膜蒸馏组件与热泵(30)的冷端入口管接,第一级膜蒸馏组件(28)设有浓水排出口;原水水管(21)进口与原水水源连接,原水水管(21)出口与第一级换热组件(22)管程或壳程管接,原水依次交替管接流过各级换热组件管程或壳程以及各级膜蒸馏组件管程或壳程,膜蒸馏浓水(A)由浓水排出口排出,膜蒸馏产出水(B)由设置在热泵(30)冷端出口与第一级膜蒸馏组件(28)之间的连接管(32)上的产出水口排出。
Description
本发明涉及膜蒸馏装置与蒸馏方法,尤其涉及一种应用于水净化处理和化工分离浓缩领域的液隙多效膜蒸馏工艺及其装置。
膜蒸馏技术是膜技术与传统蒸馏技术相结合的新型液体分离技术,与普通蒸发器比较,膜蒸馏的一个最显著的特征是单位体积内的有效蒸发面积大,因而可以使装置在常压、较低温度的蒸发过程中高效地运行,且设备采用塑料材料,避免了金属材料在高盐度下的腐蚀问题。与反渗透相比,膜蒸馏是热驱动过程,操作压力低,因此设备费用也低,而且,膜蒸馏的操作压力低,脱盐率高,膜污染程度轻,对预处理的要求低。膜蒸馏是一种采用疏水微孔膜,以膜两侧蒸汽压力差为传质驱动力的膜分离过程。在微孔疏水膜两侧的蒸汽压差的驱动下,水蒸汽从被加热的原水一侧穿过疏水膜后再被冷凝为液态的分离过程。由于膜的疏水性,只有水蒸汽能透过膜孔,原水以及溶解在其中的非挥发性溶质无法穿过膜孔,所以膜蒸馏过程理论上可以对离子、大分子、胶体、细胞和其它非挥发物实现100%的脱除。微孔疏水膜在膜蒸馏过程中起两相之间的隔离作用。在膜蒸馏的过程中,同时发生传热与传质两种过程,温差极化与温差极化现象也会同时产生,从而对膜蒸馏的过程产生不利的影响。
膜蒸馏过程可以处理浓度极高的水溶液,如果溶质是容易结晶的物质,可以把溶液浓缩到过饱和状态而实现膜蒸馏结晶,是可以从溶液中直接分离出结晶产物的膜过程,且只要膜两侧维持适当的温差,膜蒸馏过程就可以进行,可以利用太阳能、地热、温泉、工厂余热和温热的工业废水等廉价能源。
膜蒸馏技术具有操作压力低,可得到99.99%的脱盐率和在良好操作条
件下高于反渗透的水通量,显示了它作为反渗透技术的替代(大规模纯水制备)或补充技术(如用于船舶饮用水等)的应用潜力,在降低投资和运行费用,提高水的利用率,减少浓水排放方面,可望取得显著的经济效益和社会效益。
目前已经发展出五种常见的膜蒸馏操作方式,有直接接触式膜蒸馏、气隙式膜蒸馏、气扫式膜蒸馏、减压膜蒸馏和吸收膜蒸馏。但是,至今为止,膜蒸馏技术都存在能耗高、疏水膜润湿后难以干燥等问题。如直接接触式膜蒸馏虽然工艺设备简单,但由于冷热源直接接触,使设备运行能耗较高;减压膜蒸馏虽然膜通量较大,但对疏水膜强度要求较高,并且容易产生疏水膜亲水化渗漏问题;气隙式膜蒸馏和气流吹扫式膜蒸馏则通量较低;吸收膜蒸馏则存在吸收剂的再利用等问题。
膜蒸馏过程中水蒸气的相变热约为2600kJ/kg,远大于水的比热4kJ/kg.K。因此,膜蒸馏过程需要大量的外加冷却水来冷凝膜蒸馏的蒸汽,若以原水作为冷却水,将膜蒸馏过程中产生的水蒸气通过换热器与原水直接交换,如气隙式膜蒸馏,则原水不能完全吸收蒸汽潜热,为了提高造水比,必须降低膜丝与换热管间的温度差,则导致膜蒸馏通量低。因此,以适当方式回收膜蒸馏过程中水蒸气的相变热,是膜蒸馏技术实现工业化应用需要解决的关键问题之一。
发明内容
本发明的主要目的在于克服现有产品存在的上述缺点,而提供一种液隙多效膜蒸馏工艺及其装置,可将膜蒸馏过程中的水蒸汽冷凝与原水加热过程耦合,回收膜蒸馏过程中水蒸气的相变热,实现膜蒸馏技术的工业化。
本发明的目的是由以下技术方案实现的。
本发明液隙多效膜蒸馏装置,其特征在于,包括多级膜蒸馏组件、多级换热组件、热泵以及连接管路;其中,多级膜蒸馏组件与多级换热组件之间的管程或者壳程交错顺次管接,构成原水流程;热泵的热端出口与各级换热组件的壳程或管程顺次串联管接,构成热流体流程;该末级换热组件与热泵的热端入口管接;热泵的冷端出口与各级膜蒸馏组件的壳程或管程顺次串联管接,构成冷流体流程,该末级膜蒸馏组件与热泵的冷端入口管接,第一级
膜蒸馏组件设有浓水排出口;原水水管进口与原水水源连接,原水水管出口与第一级换热组件管程或壳程管接,原水依次交替管接流过各级换热组件管程或壳程(即与热流体不在同程)以及各级膜蒸馏组件管程或壳程(即与冷流体不在同程),剩余液体作为膜蒸馏浓水由浓水排出口排出,膜蒸馏产出水由设置在热泵冷端出口与第一级膜蒸馏组件之间连接管上的产出水口排出。
前述的液隙多效膜蒸馏装置,其中:所述膜蒸馏组件由2至20级构成,换热组件由2至20级构成,该膜蒸馏组件与换热组件级数相同。
前述的液隙多效膜蒸馏装置,其中:所述原水流程管路、热流体流程和冷流体流程管路上分别设置管道混合器。
前述的液隙多效膜蒸馏装置,其中:所述多级膜蒸馏组件与多级换热组件之间交错顺次管接包括多级膜蒸馏组件之间壳程顺次串联、多级换热组件之间壳程顺次串联、各膜蒸馏组件管程与各换热组件管程交替顺次串联;还包括多级膜蒸馏组件与多级换热组件之间壳程交错顺次串联、各膜蒸馏组件管程与各换热组件管程交替顺次串联。
本发明液隙多效膜蒸馏工艺方法,其特征在于,原水依次交替管接流过各级换热组件管程或壳程以及各级膜蒸馏组件管程或壳程,由于膜蒸馏而增加的冷流体体积量作为膜蒸馏产出水由设置在热泵冷端出口与首级膜蒸馏组件之间的连接管上的产出水口排出,未蒸发的原水作为浓水由浓水排出口排出;从热泵冷端流出的低温纯水,体积增加的部分作为膜蒸馏装置产出水排出,其余部分作为冷流体,依次流过各级膜蒸馏组件的壳程或者管程,(即与原水不在同程),吸收水蒸气的相变热后,返回热泵冷端入口,被热泵降温,由此循环进行;从热泵热端流出的高温纯水,依次流过各级换热组件壳程或管程,(即与原水不在同程),对换热组件管程或者壳程的原水进行加热,被降温后的纯水,返回热泵热端入口,被热泵再次升温,由此循环进行。
前述的液隙多效膜蒸馏工艺方法,其中,所述所述低温纯水温度为5至35℃;所述所述高温纯水温度为65至95℃。
前述的液隙多效膜蒸馏工艺方法,其中,所述原水是自来水、海水、冷却系统排出的热水或者需要浓缩或淡化处理的化工产品溶液。
本发明液隙多效膜蒸馏工艺及其装置的有益效果,通过本发明的膜蒸馏工艺及其装置,实现了原水分别与冷、热流体在较高温度差的工艺条件下,被加热升温、发生膜蒸馏并降温、被加热升温、发生膜蒸馏并降温……,顺次进行,从而实现多效蒸发过程。在具有较高的膜蒸馏通量条件下,兼具有较高的热量回收效果。
图1是本发明的两级多效膜蒸馏装置工艺流程示意图。
图2是本发明的五级多效膜蒸馏装置工艺流程示意图。
图1中,21为原水进水管,22为第一级换热组件,23为第一级换热组件管程与第二级膜蒸馏组件管程的连接管,24为第二级膜蒸馏组件,25为第二级膜蒸馏组件管程与第二级换热组件管程的连接管,26为第二级换热组件,27为第一级膜蒸馏组件管程与第二级换热组件管程的连接管,28为第一级膜蒸馏组件,29为膜蒸馏浓水排出管,30为热泵,31为膜蒸馏产水管。32为热泵冷端出水口与第一级膜蒸馏组件壳程入口的连接管,33为第一级膜蒸馏组件壳程出口与第二级膜蒸馏组件壳程入口的连接管,34为第二级膜蒸馏组件壳程入口与热泵冷端入口的连接管,35为热泵热端出口与第一级换热组件壳程入口的连接管,36为第一级换热组件壳程出口与第二级换热组件壳程入口的连接管,37为第二级换热组件壳程出口与热泵热端入口的连接管,A浓水,B产出水,C原水。
图2中,41为原水进水管,42、43、44、45、46分别为第一、二、三、四、五级膜蒸馏组件,其壳程顺次串联;51、52、53、54、55分别为第一、二、三、四、五级换热组件,其壳程顺次串联;膜蒸馏组件管程与换热组件管程交替顺次串联;47为膜蒸馏浓水排出管;40为热泵,48为膜蒸馏产水管,。60为管道混合器,A浓水,B产出水,C原水。
本发明提出的液隙多效膜蒸馏方法,依据实际需要,可以设置多级膜蒸馏组件与换热组件,但至少需要两级。图1、图2分别就本发明的两级、五级液隙多效膜蒸馏装置工艺流程进行说明。
按照图1所示工艺,仅以原水均流过膜蒸馏组件与换热组件的管程为例,存在有多种并流与逆流流向方式。
逆流方式之一:
原水C由进水管21,进入第一级换热组件22的管程,再由连接管23,进入第二级膜蒸馏组件24的管程,再由连接管25,进入第二级换热组件26的管程,再由连接管27,进入第一级膜蒸馏组件28,再由排出管29,将膜蒸馏浓水A排出膜蒸馏装置。将热泵30冷端出来的冷流体,由连接管32,进入第一级膜蒸馏组件28的壳程,吸收第一级膜蒸馏组件28的产水后,稍有升温,再由连接管33,进入第二级膜蒸馏组件24的壳程,吸收第二级膜蒸馏组件24的产水B,再由连接管34,返回热泵进行降温,作为冷流体循环进行膜蒸馏过程。吸收水蒸气增加的冷流体,即膜蒸馏产水B,由膜蒸馏产水管31排出。热泵产生的热流体,从热端出口由连接管35,进入第一级换热组件22,再由连接管36,进入第二级换热组件26,再由连接管37,返回热泵进行加热,作为热流体循环进行膜蒸馏过程。
并流方式之一:
原水C由进水管21,进入第一级换热组件22的管程,再由连接管23,进入第二级膜蒸馏组件24的管程,再由连接管25,进入第二级换热组件26的管程,再由连接管27,进入第一级膜蒸馏组件28,再由排出管29,将膜蒸馏浓水排出膜蒸馏装置。将热泵30冷端出来的冷流体,由连接管34,进入第二级膜蒸馏组件24的壳程,吸收第二级膜蒸馏组件24的产水后,稍有升温,再由连接管33,进入第一级膜蒸馏组件28的壳程,吸收第一级膜蒸馏组件28的产水,再由连接管33,返回热泵进行降温,作为冷流体循环进行膜蒸馏过程。吸收水蒸气增加的冷流体,即膜蒸馏产水B,由膜蒸馏产水管31排出。
热泵产生的热流体,从热端出口由连接管37,进入第二级换热组件26,再由连接管36,进入第一级换热组件22,再由连接管35,返回热泵进行加热,作为热流体循环进行膜蒸馏过程。
依据实际需要,在第一、二级膜蒸馏组件和第一、二级换热组件之间,即原水、冷流体、热流体之间,可以有多种逆流、并流排列方式,本发明的内容并不仅限于上述两种逆流、并流排列方式。
按照图2所示工艺图,仅以原水均流过膜蒸馏组件与换热组件的管程为例,存在有多种并流与逆流流向方式。
逆流方式之一:
如图2,原水C通过连接管41从高温端顺次交替进入换热组件51、膜蒸馏组件42、换热组件52、膜蒸馏组件43、换热组件53、膜蒸馏组件44、换热组件54、膜蒸馏组件45、换热组件55、膜蒸馏组件46的管程,膜蒸馏浓水由排出管47排出膜蒸馏装置。热泵40产出的热流体,顺次分别进入换热组件51、52、53、54、55的壳程,对原水进行加热,然后,返回热泵进行加热,作为热流体循环进行膜蒸馏过程。热泵产出的冷流体,顺次分别进入膜蒸馏组件42、43、44、45、46的壳程,吸收水蒸气,然后,返回热泵进行降温,作为冷流体循环进行膜蒸馏过程。膜蒸馏增加的冷流体,即膜蒸馏产水,由管路48排出膜蒸馏装置。
为了强化流体温度的均匀性,可以在冷流体、热流体、原水管路中,分别设置多个管道混合器,如图2中的60。
并流方式之一:
如图2,原水C通过连接管41’从低温端顺次交替进入换热组件55、膜蒸馏组件46、换热组件54、膜蒸馏组件45、换热组件53、膜蒸馏组件44、换热组件52、膜蒸馏组件43、换热组件51、膜蒸馏组件42的管程,膜蒸馏浓水由排出管47’排出膜蒸馏装置。热泵40产出的热流体,顺次分别进入换热组件51、52、53、54、55的壳程,对原水进行加热,然后,返回热泵进行加热,作为热流体循环进行膜蒸馏过程。热泵产出的冷流体,顺次分别进入膜蒸馏组件42、43、44、45、46的壳程,吸收水蒸气,然后,返回热泵进行
降温,作为冷流体循环进行膜蒸馏过程。膜蒸馏增加的冷流体,即膜蒸馏产水B,由管路48排出膜蒸馏装置。
原水从高温端进入换热组件是指原水进入换热组件流程时,首先与从热泵出来的高温热流体进行换热。原水从低温端进入换热组件是指原水进入换热组件流程时,首先与即将返回热泵的较低温度的热流体进行换热。
依据实际需要,在原水、冷流体、热流体之间,可以有多种逆流、并流排列方式,本发明的内容并不仅限于上述两种逆流、并流排列方式。
在本发明的膜蒸馏装置中,原水可以是自来水、海水、冷却系统排出的热水或化工产品溶液等需要浓缩或淡化处理的液体。
本发明实施例中为进行说明的内容为现有技术,故,不再进行赘述。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
Claims (7)
- 一种液隙多效膜蒸馏装置,其特征在于,包括多级膜蒸馏组件、多级换热组件、热泵以及连接管路;其中,多级膜蒸馏组件与多级换热组件之间的管程或者壳程交错顺次管接,构成原水流程;热泵的热端出口与各级换热组件的壳程或管程顺次串联管接,构成热流体流程;该末级换热组件与热泵的热端入口管接;热泵的冷端出口与各级膜蒸馏组件的壳程或管程顺次串联管接,构成冷流体流程,该末级膜蒸馏组件与热泵的冷端入口管接,第一级膜蒸馏组件设有浓水排出口;原水水管进口与原水水源连接,原水水管出口与第一级换热组件管程或壳程管接,原水依次交替管接流过各级换热组件管程或壳程以及各级膜蒸馏组件管程或壳程,膜蒸馏浓水由浓水排出口排出,膜蒸馏产出水由设置在热泵冷端出口与第一级膜蒸馏组件之间的连接管上的产出水口排出。
- 根据权利要求1所述的液隙多效膜蒸馏装置,其特征在于:所述膜蒸馏组件由2至20级构成,换热组件由2至20级构成,该膜蒸馏组件与换热组件级数相同。
- 根据权利要求1所述的液隙多效膜蒸馏装置,其特征在于:所述原水流程管路、热流体流程和冷流体流程管路上分别设置管道混合器。
- 根据权利要求1所述的液隙多效膜蒸馏装置,其特征在于:所述多级膜蒸馏组件与多级换热组件之间交错顺次管接包括多级膜蒸馏组件之间壳程顺次串联、多级换热组件之间壳程顺次串联、各膜蒸馏组件管程与各换热组件管程交替顺次串联;还包括多级膜蒸馏组件与多级换热组件之间壳程交错顺次串联、各膜蒸馏组件管程与各换热组件管程交替顺次串联。
- 一种液隙多效膜蒸馏工艺方法,其特征在于,原水依次交替管接流过各级换热组件管程或壳程以及各级膜蒸馏组件管程或壳程,由于膜蒸馏而增加的冷流体体积量作为膜蒸馏产出水由设置在热泵冷端出口与首级膜蒸馏组件之间的连接管上的产出水口排出,未蒸发的原水作为浓水由浓水排出口排 出;从热泵冷端流出的低温纯水,体积增加的部分作为膜蒸馏装置产出水排出,其余部分作为冷流体,依次流过各级膜蒸馏组件的壳程或者管程,吸收水蒸气的相变热后,返回热泵冷端入口,被热泵降温,由此循环进行;从热泵热端流出的高温纯水,依次流过各级换热组件壳程或管程,对换热组件管程或者壳程的原水进行加热,被降温后的纯水,返回热泵热端入口,被热泵再次升温,由此循环进行。
- 根据权利要求5所述的液隙多效膜蒸馏工艺方法,其特征在于,所述低温纯水温度为5至35℃;所述所述高温纯水温度为65至95℃。
- 根据权利要求5所述的液隙多效膜蒸馏工艺方法,其特征在于,所述原水是自来水、海水、冷却系统排出的热水或者需要浓缩或淡化处理的化工产品溶液。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410478587.7 | 2014-09-18 | ||
CN201410478587.7A CN104190258B (zh) | 2014-09-18 | 2014-09-18 | 液隙多效膜蒸馏工艺及其装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016041292A1 true WO2016041292A1 (zh) | 2016-03-24 |
Family
ID=52075710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/000318 WO2016041292A1 (zh) | 2014-09-18 | 2015-05-11 | 液隙多效膜蒸馏工艺及其装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104190258B (zh) |
WO (1) | WO2016041292A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108246106A (zh) * | 2018-03-08 | 2018-07-06 | 中国科学院理化技术研究所 | 一种真空式多效膜蒸馏系统 |
CN109107210A (zh) * | 2017-06-26 | 2019-01-01 | 河北金牛旭阳化工有限公司 | 精馏设备 |
US10569223B2 (en) * | 2016-06-23 | 2020-02-25 | New Jersey Institute Of Technology | Systems and methods for maximizing recovery in membrane distillation |
CN111111451A (zh) * | 2020-01-17 | 2020-05-08 | 吕剑阳 | 一种减压多效膜蒸馏方法及其装置 |
CN111252860A (zh) * | 2020-03-07 | 2020-06-09 | 山西大学 | 一种基于虹吸循环的负压式膜蒸馏装置及方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104190258B (zh) * | 2014-09-18 | 2016-05-25 | 天津工业大学 | 液隙多效膜蒸馏工艺及其装置 |
CN106517391A (zh) * | 2016-10-25 | 2017-03-22 | 中国中轻国际工程有限公司 | 一种利用自然热冷能蒸发苦咸水工艺 |
CN108619915B (zh) * | 2017-03-15 | 2020-09-15 | 中国石油化工股份有限公司 | 一种气源式热泵太阳能膜蒸馏复合系统 |
CN110330066A (zh) * | 2019-08-06 | 2019-10-15 | 山东泰开高压开关有限公司 | 一种浓水蒸发设备及方法 |
CN110921745A (zh) * | 2019-12-13 | 2020-03-27 | 成都恩承科技股份有限公司 | 一种高含盐废水处理系统 |
CN110921744A (zh) * | 2019-12-13 | 2020-03-27 | 成都恩承科技股份有限公司 | 一种高含盐废水处理方法 |
CN116639767B (zh) * | 2023-06-19 | 2023-11-21 | 北京中科瑞升资源环境技术有限公司 | 集成浓缩系统和方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006320798A (ja) * | 2005-05-17 | 2006-11-30 | Kochi Univ | 高濃度塩水の製造方法および海水の濃縮システム |
CN101865489B (zh) * | 2009-04-16 | 2012-07-04 | 中国科学院生态环境研究中心 | 一种应用热泵-膜蒸馏的地热供暖-除盐的方法 |
CN103316588A (zh) * | 2012-03-20 | 2013-09-25 | 天津工业大学 | 多效膜蒸馏装置与方法 |
CN104190258A (zh) * | 2014-09-18 | 2014-12-10 | 天津工业大学 | 液隙多效膜蒸馏工艺及其装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH029490A (ja) * | 1988-06-28 | 1990-01-12 | Takuma Co Ltd | 純水製造装置 |
JPH0352627A (ja) * | 1989-07-19 | 1991-03-06 | Hitachi Ltd | 膜蒸留装置 |
CN102107119B (zh) * | 2009-12-23 | 2013-07-31 | 吕晓龙 | 多效膜蒸馏装置与方法 |
-
2014
- 2014-09-18 CN CN201410478587.7A patent/CN104190258B/zh not_active Expired - Fee Related
-
2015
- 2015-05-11 WO PCT/CN2015/000318 patent/WO2016041292A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006320798A (ja) * | 2005-05-17 | 2006-11-30 | Kochi Univ | 高濃度塩水の製造方法および海水の濃縮システム |
CN101865489B (zh) * | 2009-04-16 | 2012-07-04 | 中国科学院生态环境研究中心 | 一种应用热泵-膜蒸馏的地热供暖-除盐的方法 |
CN103316588A (zh) * | 2012-03-20 | 2013-09-25 | 天津工业大学 | 多效膜蒸馏装置与方法 |
CN104190258A (zh) * | 2014-09-18 | 2014-12-10 | 天津工业大学 | 液隙多效膜蒸馏工艺及其装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10569223B2 (en) * | 2016-06-23 | 2020-02-25 | New Jersey Institute Of Technology | Systems and methods for maximizing recovery in membrane distillation |
CN109107210A (zh) * | 2017-06-26 | 2019-01-01 | 河北金牛旭阳化工有限公司 | 精馏设备 |
CN109107210B (zh) * | 2017-06-26 | 2023-11-14 | 河北金牛旭阳化工有限公司 | 精馏设备 |
CN108246106A (zh) * | 2018-03-08 | 2018-07-06 | 中国科学院理化技术研究所 | 一种真空式多效膜蒸馏系统 |
CN111111451A (zh) * | 2020-01-17 | 2020-05-08 | 吕剑阳 | 一种减压多效膜蒸馏方法及其装置 |
CN111252860A (zh) * | 2020-03-07 | 2020-06-09 | 山西大学 | 一种基于虹吸循环的负压式膜蒸馏装置及方法 |
CN111252860B (zh) * | 2020-03-07 | 2024-05-28 | 山西大学 | 一种基于虹吸循环的负压式膜蒸馏装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104190258A (zh) | 2014-12-10 |
CN104190258B (zh) | 2016-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016041292A1 (zh) | 液隙多效膜蒸馏工艺及其装置 | |
Zhang et al. | Review of thermal efficiency and heat recycling in membrane distillation processes | |
CN103387308B (zh) | 多效膜蒸馏‐多级闪蒸海水淡化系统 | |
CN104190260B (zh) | 减压组合气隙膜蒸馏方法及其装置 | |
WO2020056847A1 (zh) | 一种集成半导体热泵的多级膜组件及其在膜蒸馏中的应用 | |
CN102861512A (zh) | 一种耦合式膜蒸馏组件装置及方法 | |
CN104190259A (zh) | 减压多效膜蒸馏方法及其装置 | |
WO2022126671A1 (zh) | 通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置 | |
CN203990317U (zh) | 一种常压抗污堵节能型膜蒸馏器 | |
CN101318716A (zh) | 一种膜蒸发浓缩液体处理系统及处理方法 | |
CN112010380B (zh) | 一种热纯净水的制备装置及其制备方法 | |
CN103316588A (zh) | 多效膜蒸馏装置与方法 | |
CN102107119B (zh) | 多效膜蒸馏装置与方法 | |
CN201834781U (zh) | 单级真空蒸馏海水淡化装置 | |
CN114887340A (zh) | 一种双效mvr强制逆流循环降膜蒸发结晶系统 | |
CN102949936A (zh) | 一种高效耦合式膜蒸馏组件装置及方法 | |
CN106365227B (zh) | 双潜多级循环膜蒸馏方法与系统 | |
CN107982943B (zh) | 一种硫酸钴溶液蒸发系统及其工艺 | |
CN104724776A (zh) | 压力蒸发二次蒸汽掺入压力水中的装置及其方法 | |
CN108636121A (zh) | 一种膜蒸馏耦合mvr浓缩强腐蚀性溶液系统及方法 | |
US11465068B2 (en) | Multi-stage flash (MSF) reversal system and method | |
Karhe et al. | A solar desalination system using humidification-dehumidification process-A review of recent research | |
CN110451711A (zh) | 一种利用空气气提来实现高盐废水浓缩结晶的系统及方法 | |
TWI815464B (zh) | 用於處理凝結水的分離塔及其方法 | |
KR20200095696A (ko) | 믹싱 밸브와 사이클론이 부착된 히트 펌프를 이용하는 해수 담수화 시스템 및 그의 동작 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15841788 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15841788 Country of ref document: EP Kind code of ref document: A1 |