WO2010016171A1 - Manufacturing method of dielectric thin-film capacitor and dielectric thin-film capacitor - Google Patents

Manufacturing method of dielectric thin-film capacitor and dielectric thin-film capacitor Download PDF

Info

Publication number
WO2010016171A1
WO2010016171A1 PCT/JP2009/002090 JP2009002090W WO2010016171A1 WO 2010016171 A1 WO2010016171 A1 WO 2010016171A1 JP 2009002090 W JP2009002090 W JP 2009002090W WO 2010016171 A1 WO2010016171 A1 WO 2010016171A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
thin film
layer
capacitor
dielectric
Prior art date
Application number
PCT/JP2009/002090
Other languages
French (fr)
Japanese (ja)
Inventor
野村雅信
竹島裕
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2010523721A priority Critical patent/JP5348565B2/en
Priority to CN2009801311664A priority patent/CN102113113A/en
Publication of WO2010016171A1 publication Critical patent/WO2010016171A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/01Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate comprising only passive thin-film or thick-film elements formed on a common insulating substrate
    • H01L27/016Thin-film circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/236Terminals leading through the housing, i.e. lead-through
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 

Definitions

  • the present invention relates to a dielectric thin film capacitor manufacturing method and a dielectric thin film capacitor. More specifically, the present invention relates to a dielectric thin film capacitor manufacturing method in which external electrodes are formed on both sides of a main surface of a conductive substrate, and the manufacturing method. The present invention relates to a dielectric thin film capacitor manufactured using the same.
  • an oxide having a perovskite structure such as barium titanate is often used in the dielectric portion of the capacitor.
  • a conductive film 102 is in ohmic contact with one surface of a low-resistance silicon substrate 101, and the other surface is almost equal to a titanate-based insulator.
  • the first metal electrode 103 having a lattice constant is interposed through a eutectic prevention film 104 having a predetermined pattern for preventing the first metal electrode 103 and the silicon substrate 101 from being eutectic.
  • 103 is deposited so as to be connected to the silicon substrate 101, a titanate-based insulating film 105 is deposited on the first metal electrode 103, and a second layer is formed on the insulating film 105.
  • a thin film capacitor (dielectric thin film capacitor) having a metal electrode 106 deposited thereon has been proposed.
  • Each of the first metal electrode 103 and the second metal electrode 106 has a three-layer structure of Cr layers 103a and 106a, Pt layers 103b and 106b, and Au layers 103c and 106c, and the insulating film 105 is a dielectric portion of the capacitor. It corresponds to.
  • the first metal electrode 103 has a structure in which the pattern is formed larger than the eutectic prevention film 104 and is in contact with the silicon substrate 101, and the insulating layer 105 is sputtered at 500 to 600 ° C.
  • the first metal electrode 103 and the silicon substrate 101 are eutectic and are in ohmic contact.
  • the crystallinity of the dielectric thin film is improved by heat treatment, thereby improving the dielectric characteristics.
  • Electrodes are formed on both sides of the silicon substrate 101, such as a thin film capacitor in which a conductive film 102 is formed on the lower surface of the silicon substrate 101 as shown in Patent Document 1, the eutectic portion and silicon are formed when heat treatment is performed. Because of the oxidation, the contact resistance between the first metal electrode 103 and the silicon substrate 101 increases, and the equivalent series resistance (hereinafter referred to as “ESR”) of the capacitor may increase.
  • ESR equivalent series resistance
  • the present invention has been made in view of such circumstances, and provides a dielectric thin film capacitor manufacturing method and a dielectric thin film capacitor capable of suppressing an increase in ESR without impairing reliability even when heat treatment is performed. For the purpose.
  • a method of manufacturing a dielectric thin film capacitor according to the present invention includes forming at least one first external electrode on one main surface side of a conductive substrate, and forming the other main electrode of the conductive substrate.
  • a capacitor portion forming step formed on the one main surface of the conductive substrate, and an electrode layer to be one of the electrode layers and the conductive substrate are electrically connected to form a substrate wiring A wiring formation step, and a heat treatment step of heat treating the capacitor portion between the capacitor formation step and the wiring formation step.
  • the dielectric thin film capacitor manufacturing method of the present invention further includes an insulating layer forming step of covering the capacitor portion with an insulating layer between the heat treatment step and the wiring forming step, and at least a part of the substrate wiring. Is formed on the insulating layer.
  • the dielectric thin film capacitor manufacturing method of the present invention includes a thin film resistance forming step for forming a thin film resistor electrically connected to the capacitor portion between the heat treatment step and the wiring forming step. It is characterized by that.
  • the dielectric thin film capacitor manufacturing method of the present invention is characterized in that the thin film resistor forming step forms the thin film resistor in a flat shape.
  • At least one first external electrode is formed on one main surface side of the conductive substrate, and the second main surface side of the conductive substrate is a second one.
  • a dielectric thin film capacitor in which an external electrode is formed, wherein the capacitor portion including at least one capacitance generating portion having electrode layers on both upper and lower surfaces of the dielectric layer is the one main surface of the conductive substrate.
  • An electrode layer that is formed on the electrode layer and is to be one of the electrode layers is electrically connected to the second external electrode via a substrate wiring and the conductive substrate, and the other electrode layer
  • An electrode layer to be a pole is electrically connected to the first external electrode, the capacitor portion is heat-treated, and at least the substrate wiring is formed after the heat treatment.
  • the dielectric thin film capacitor of the present invention is characterized in that the capacitor portion is covered with an insulating layer, and at least a part of the substrate wiring is formed on the insulating layer.
  • the dielectric thin film capacitor of the present invention is characterized in that the thin film resistor is formed so as to be electrically connected to the electrode layer to be the other electrode.
  • the dielectric thin film capacitor of the present invention is characterized in that the thin film resistor is formed on a capacitor portion.
  • the dielectric thin film capacitor of the present invention is characterized in that the thin film resistor is formed in a flat shape.
  • the substrate wiring is formed after the capacitor portion is heat-treated, the substrate wiring is not exposed to the heat treatment atmosphere and oxidized. Accordingly, even if heat treatment is performed, the reliability of the capacitor portion is not impaired, and an increase in ESR can be suppressed.
  • the substrate wiring can be made sufficiently thick.
  • a low resistance conductive material such as Au or Cu, and it is possible to sufficiently reduce the resistance between the electrode layer to be the one electrode and the second external electrode. is there. That is, it is possible to obtain a high-capacity, high-reliability, low-ESR dielectric thin film capacitor with a high degree of freedom in selecting the material and shape of the wiring and adjusting the length.
  • the capacitor portion is covered with an insulating layer before the substrate wiring is formed, it is possible to prevent deterioration of the capacitor characteristics due to etching during wiring formation.
  • the thin film resistor is formed on the capacitor portion, it is possible to avoid the increase in size of the element as much as possible even when the thin film resistor is provided.
  • the thin film resistor is formed in a flat shape, it is possible to suppress variation in the resistance value of the thin film resistor.
  • FIG. 1 is a sectional view showing an embodiment (first embodiment) of a dielectric thin film capacitor manufactured by the manufacturing method of the present invention.
  • a diffusion prevention layer 2 made of SiO 2 or the like is formed on one main surface of a conductive substrate 1 made of a semiconductor such as Si, and on the surface of the diffusion prevention layer 2.
  • An adhesion layer 3 is formed, and a capacitor portion 4 is formed on the surface of the adhesion layer 3.
  • the diffusion prevention layer 2 has a function of preventing elements contained in the conductive substrate 1 from diffusing into the capacitor portion 4.
  • the capacitor unit 4 includes a first electrode layer 5 formed on the adhesion layer 3, a dielectric layer 6 formed on the first electrode layer 5, and a first electrode formed on the dielectric layer 6. 2 electrode layers 7.
  • the dielectric layer 6 includes, for example, (Ba, Sr) TiO 3 (hereinafter referred to as “BST”), BaTiO 3 , SrTiO 3, etc., Pb (Zr, Ti) O 3 , SrBi 4 Ti 4 O 15, etc.
  • BST Ba, Sr TiO 3
  • BaTiO 3 BaTiO 3
  • SrTiO 3 etc.
  • SrBi 4 Ti 4 O 15 etc.
  • the bismuth layered compound can be used.
  • the capacitor part 4 is preferably heat-treated in an oxygen-containing atmosphere
  • the first and second electrode layers 5 and 7 are resistant to heat treatment such as Pt, Au, and Ru.
  • a material having properties is preferably used.
  • the adhesion layer 3 a material having the same composition as that of the dielectric layer 6 or a material having the same composition can be used.
  • the capacitor unit 4 is entirely covered with an insulating layer 8.
  • the insulating layer 8 includes an inorganic insulating layer 9 and an organic insulating layer 10.
  • the inorganic insulating layer 9 has a function of preventing moisture from the outside from entering the capacitor unit 4 and is made of, for example, SiN x or SiO 2 .
  • SiN x as the inorganic insulating layer 9, the molar ratio of Si and N 3: Other 4 stoichiometry having a composition Si 3 N 4, and deviates from the stoichiometric composition as required Compounds can be used.
  • the organic insulating layer 10 is formed of a polyimide resin or an epoxy resin, and absorbs mechanical stress from electrode wiring and substrate wiring described later.
  • the first electrode layer 5 is connected to the substrate wiring 11, and the second electrode layer 7 is connected to the electrode wiring 12.
  • the substrate wiring 11 penetrates the insulating layer 8 (the inorganic insulating layer 9 and the organic insulating layer 1) from the upper surface of the first electrode layer 5, and extends from the organic insulating layer 10 to the side surface of the insulating layer 8. And electrically connected to the first connection electrode 14 that is in ohmic contact with the conductive substrate 1.
  • the electrode wiring 12 is formed so as to penetrate the insulating layer 8 (inorganic insulating layer 9 and organic insulating layer 1) from the upper surface of the second electrode layer 7 and to be disposed on the organic insulating layer 10. .
  • An upper external electrode (first external electrode) 15 is formed on the upper surface of the electrode wiring 12, and the second electrode layer 7 is electrically connected to the upper external electrode 15 through the electrode wiring 12. .
  • the upper surface side of the conductive substrate 1 is covered with a protective resin 18 except for the upper external electrode 15.
  • a second connection electrode 16 is formed on the other main surface of the conductive substrate 1, and a lower external electrode (second external electrode) 17 is formed on the second connection electrode 16. .
  • first and second connection electrodes 14 and 16 are preferably formed of Au because it is necessary to lower the ESR by making ohmic contact with the conductive substrate 1.
  • the upper external electrode 15 and the lower external electrode 17 preferably have a multilayer structure, and for example, Au / Cu, Au / Ni, Sn / Cu can be used.
  • the lower external electrode 17 is electrically connected to the first electrode layer 5 via the second connection electrode 16, the conductive substrate 1, the first connection electrode 14, and the substrate wiring 11.
  • the upper external electrode 15 is electrically connected to the second electrode layer 7 through the electrode wiring 12.
  • a conductive substrate 1 made of, for example, a p-type conductive Si substrate having a thickness of 525 ⁇ m is prepared.
  • the diffusion prevention layer 2 and the adhesion layer 3 are sequentially formed.
  • the diffusion prevention layer 2 made of SiO 2 or the like having a thickness of 700 nm is formed by a thermal oxidation method.
  • an adhesion layer 3 of, eg, a 100 nm-thickness is formed on the diffusion prevention layer 2 by a chemical solution deposition (hereinafter referred to as “CSD”) method or the like.
  • CSD chemical solution deposition
  • BST SrTiO 3 , BaTiO 3 , perovskite compounds such as Pb (Zr, Ti) O 3 , bismuth layered compounds such as SrBi 4 Ti 4 O 15, etc.
  • BST chemical solution deposition
  • this film forming raw material solution is applied onto the diffusion preventing layer 2, dried on a hot plate at 300 to 400 ° C., and subjected to crystallization at high temperature heating treatment at a temperature of 650 ° C. for 30 minutes.
  • the adhesion layer 3 is formed.
  • a first electrode layer 5, a dielectric layer 6, and a second electrode layer 7 are sequentially formed.
  • the first electrode layer 5 made of Pt having a film thickness of 200 nm is formed by RF magnetron sputtering or the like, and then the dielectric layer having a film thickness of 100 nm made of BST or the like by the CSD method or the like, similar to the adhesion layer 3. 6 is formed, and then, similarly to the first electrode layer 5, a second electrode layer 6 made of Pt having a thickness of 200 nm is formed by an RF magnetron sputtering method or the like.
  • the adhesion layer 3, the first electrode layer 5, the dielectric layer 6, and the second electrode layer 7 are formed by using a well-known photolithography technique, an argon ion milling method, or the like. Is etched into a predetermined pattern to form the capacitor portion 4. That is, after a photoresist is applied and prebaked, the photoresist is irradiated with ultraviolet light through a photomask, and exposure, development, and postbaking are performed to transfer the photomask pattern to the resist pattern.
  • argon ions are collided with the etching surface by an argon ion milling method to etch predetermined regions of the second electrode layer 7, the dielectric layer 6, the first electrode layer 5, and the adhesion layer 3, and thereby the capacitor portion 4 is produced.
  • the capacitor portion 4 is heat-treated to improve the dielectric characteristics of the dielectric layer 6.
  • This heat treatment is performed to improve the crystallinity of the dielectric layer 6, and is performed at a temperature of, for example, 850 ° C. for 30 minutes.
  • the heat treatment is preferably performed in an oxygen-containing atmosphere.
  • an insulating layer 8 including an inorganic insulating layer 9 and an organic insulating layer 10 is formed so as to cover the entire capacitor unit 4. That is, for example, the inorganic insulating layer 9 made of SiN x or the like having a thickness of 500 nm is formed by sputtering. Next, a photosensitive polyimide is applied so as to cover the upper surface of the inorganic insulating layer 9, and then heated at a temperature of 125 ° C. for 5 minutes, exposed and developed, and then heated at 350 ° C. for about 1 hour. For example, the organic insulating layer 10 having a predetermined pattern with a film thickness of 5000 nm is formed.
  • the organic insulating layer 10 made of photosensitive polyimide is used as a mask, the inorganic insulating layer 9 is processed by reactive ion etching to form holes 19 and 20, and the first Then, a part of the second electrode layers 5 and 7 is exposed on the surface.
  • a part of the diffusion preventing layer 2 is dissolved and removed with buffered hydrofluoric acid to expose a part of the conductive substrate 1 on the surface.
  • Au having a film thickness of, for example, 300 nm is deposited on the surface exposed portion of the conductive substrate 1 by a vacuum deposition method, and the photoresist is removed by a lift-off method, and as shown in FIG. Form.
  • the substrate wiring 11 is formed from the inner surface of the hole 20 to the upper surface and side surfaces of the organic insulating layer 10 and further to the first connection electrode 14, and from the inner surface of the hole 19.
  • An electrode wiring 12 is formed over the upper surface of the organic insulating layer 10. Thereafter, an upper external electrode 15 is formed on the electrode wiring 12.
  • the substrate wiring 11, the electrode wiring 12, and the upper external electrode 15 are specifically produced as follows.
  • a Ti layer having a thickness of 100 nm is formed on the surface by sputtering, and a Cu layer having a thickness of 500 nm is formed on the Ti layer.
  • a photoresist is applied on the Cu layer so as to have an opening on the Cu layer to form a predetermined resist pattern, and then electrolytic plating is performed to form a Ni layer having a thickness of 2000 nm in the opening.
  • an Au layer having a thickness of 1000 nm is sequentially formed.
  • the photoresist is removed to form an upper external electrode 15 having a two-layer structure composed of an Au layer and a Ni layer.
  • a predetermined resist pattern is formed by applying a photoresist on the Cu layer so that the portion to be the electrode wiring 12 and the portion to be the substrate wiring 11 are separated from each other, and then wet etching is performed. Etch Cu layer and Ti layer. Thereafter, the photoresist is removed, and an electrode wiring 12 and a substrate wiring 11 having a two-layer structure composed of a Cu layer and a Ti layer are formed.
  • the portion excluding the upper external electrode 15 on the conductive substrate 1 is covered with a protective resin layer 18.
  • a photosensitive resin such as photosensitive polyimide is applied to the upper surface, and then heated at 125 ° C. for 5 minutes, exposed and developed, and then heated at 350 ° C. for about 1 hour.
  • a protective resin layer 18 having a predetermined pattern of 5000 nm is formed.
  • the second connection electrode 16 is formed on the other main surface of the conductive substrate 1, and the lower external electrode 17 is formed on the second connection electrode 16.
  • the back surface of the conductive substrate 1 is ground to a predetermined thickness, treated with buffered hydrofluoric acid, and a second connection electrode 16 made of Au having a thickness of 300 nm is formed by vacuum deposition.
  • electrolytic plating is performed to sequentially form a 2000 nm thick Ni layer and a 1000 nm thick Au layer, thereby forming a lower external electrode 17 having a two-layer structure.
  • heat treatment is performed at a temperature of 350 ° C. to stabilize the interface between the lower external electrode 17 and the conductive substrate 1, thereby obtaining a dielectric thin film capacitor.
  • the substrate wiring 11 is formed after the capacitor portion 4 is heat-treated, the substrate wiring 11 is not exposed to the heat treatment atmosphere and oxidized. Therefore, even if heat treatment is performed, the increase in ESR can be suppressed without impairing the reliability of the capacitor unit 4.
  • the substrate wiring 11 can be made sufficiently thick, A low resistance conductive material such as Au or Cu can be used for the wiring 11, and the resistance between the second electrode layer 7 and the second external electrode 17 can be sufficiently reduced. It is. That is, it is possible to obtain a high-capacity, high-reliability, low-ESR dielectric thin film capacitor with a high degree of freedom in selecting the material and shape of the wiring and adjusting the length.
  • the capacitor portion 4 is covered with the insulating layer 8 before the substrate wiring 11 is formed, deterioration of the capacitor characteristics due to etching during wiring formation can be prevented.
  • FIG. 5 is a cross-sectional view of a dielectric thin film capacitor showing a second embodiment of the present invention.
  • the second embodiment has two capacitors on one main surface side of the conductive substrate 1.
  • the portions 21a and 21b are formed, and the capacitor portions 21a and 21b are alternately laminated with electrode layers and dielectric layers, and have a plurality of capacitance generating portions.
  • two adhesion layers 23 a and 23 b are formed on the diffusion prevention layer 2 formed on the conductive substrate 1 with the inorganic insulating layer 22 interposed therebetween.
  • the first electrode layers 24a, 24b, the first dielectric layers 25a, 25b, the second electrode layers 26a, 26b, the second dielectric layers 27a, 27b, Third electrode layers 28a and 28b, third dielectric layers 29a and 29b, and fourth electrode layers 30a and 30b are sequentially stacked to form capacitor portions 21a and 21b.
  • the fourth dielectric layers 31a and 31b are formed on the surfaces of the uppermost fourth electrode layers 30a and 30b of the capacitor portions 21a and 21b.
  • the inorganic insulating layer 22 is covered with an organic insulating layer 32.
  • the substrate wirings 33a and 33b and the electrode wirings 35a and 35b are formed so as to have substantially the same shape as in the first embodiment, and the substrate wirings 33a and 33b are in ohmic contact with the conductive substrate 1.
  • One connection electrode 34a, 34b is electrically connected.
  • the first electrode layers 24 a and 24 b are electrically connected to the lower external electrode 17 through the substrate wirings 33 a and 33 b, the first connection electrodes 34 a and 34 b, the conductive substrate 1, and the second connection electrode 16.
  • the fourth electrode layers 30a and 30b are electrically connected to the upper external electrodes 36a and 36b via the electrode wirings 35a and 35b.
  • the entire capacitor substrate 21a, 21b side of the conductive substrate 1 is covered with a protective resin layer 37 except for the upper external electrodes 36a, 36b.
  • the heat treatment of the capacitor portions 21a and 21b is performed before the substrate wirings 33a and 33b are formed, thereby increasing the ESR without impairing the reliability of the capacitor portions. Suppressed.
  • the capacitor portions 21a and 21b have a plurality of capacitance generating portions, a thin film capacitor with improved withstand voltage can be obtained. Further, since the fourth dielectric layers 31a and 31b are formed on the capacitor portions 21a and 21b, it is possible to prevent deterioration of the capacitor during the formation of the inorganic insulating layer 22, and to suppress the leakage current. It becomes possible.
  • FIG. 6 is a cross-sectional view of a dielectric thin film capacitor showing a third embodiment of the present invention.
  • the dielectric thin film capacitor is formed on the diffusion prevention layer 2 formed on the conductive substrate 1.
  • An adhesion layer 23, a first electrode layer 24, and a first dielectric layer 25 are sequentially formed, and electrode layers and dielectric layers are alternately stacked on the first dielectric layer 25 to form a capacitor portion. Forming.
  • the second electrode layers 26a and 26b, the second dielectric layers 27a and 27b, the third electrode layers 28a and 28b, and the third electrode layer are interposed via the inorganic insulating layer 22.
  • the dielectric layers 29a, 29b and the fourth electrode layers 30a, 30b are sequentially stacked.
  • the first to fourth dielectric layers 25, 27a, 27b, 29a, 29b and the first electrode layers 24, 26a, 26b, 28a, 28b, 30a, 30b form a capacitor portion.
  • heat treatment of the capacitor portion is performed before the formation of the substrate wirings 33a and 33b, thereby suppressing an increase in ESR without impairing the reliability of the capacitor portion. Yes.
  • the third embodiment also includes a capacitor section having a plurality of capacitance generating sections, as in the second embodiment, a thin film capacitor with improved withstand voltage can be formed.
  • the fourth dielectric layers 31a and 31b are formed on the capacitor portion, it is possible to prevent the capacitor from being deteriorated when the inorganic insulating layer 22 is formed, and to suppress the leakage current.
  • the first and second embodiments except that the number of laminated dielectric layers and electrode layers and the formation pattern of the dielectric layers, electrode layers, electrode wirings, and substrate wirings are adjusted as appropriate. It can be manufactured in the same manner as in the embodiment.
  • FIG. 7 is a cross-sectional view of a dielectric thin film capacitor showing a fourth embodiment of the present invention.
  • a thin film resistor 42 is formed flat on the organic insulating layer 10.
  • the second electrode layer 7 is electrically connected to the thin film resistor 42 via the electrode wiring 12.
  • the electrode wiring 12 also serves as an upper external electrode, and the thin film resistor 42 is electrically connected to another upper external electrode 41.
  • a diffusion prevention layer 2 made of SiO 2 or the like is formed on one main surface of the conductive substrate 1, and the diffusion prevention layer is formed.
  • An adhesion layer 3 is formed on the surface 2, and a capacitor portion 4 including a first electrode layer 5, a dielectric layer 6, and a second electrode layer 7 is formed on the surface of the adhesion layer 3. .
  • the capacitor portion 4 is covered with an insulating layer 8 composed of an inorganic insulating layer 9 and an organic insulating layer 10 as in the first embodiment.
  • the substrate wiring 11 and the electrode wiring 12 are also formed in substantially the same shape as in the first embodiment, and the first electrode layer 5 is connected to the substrate wiring 11 and the second electrode layer 7 is an electrode. It is connected to the wiring 12.
  • the electrode wiring 12 also serves as the upper external electrode as described above.
  • an upper external electrode 41 is formed on the surface of the organic insulating layer 10, and the upper external electrode 41 and the electrode wiring 12 are electrically connected via a thin film resistor 42.
  • the conductive substrate 1 is entirely covered with a protective resin layer 43 except for the electrode wiring 12 and the upper external electrode 41.
  • the diffusion prevention layer 2, the adhesion layer 3, the first electrode layer 5, the dielectric layer 6, and the second electrode layer 6 are sequentially formed on the conductive substrate 1,
  • the capacitor portion 4 is formed by etching into a predetermined pattern using a known photolithography technique and an argon ion milling method. And in order to improve the dielectric characteristic of the dielectric material layer 6, the capacitor
  • an insulating layer 8 composed of an inorganic insulating layer 9 and an organic insulating layer 10 is formed so as to cover the capacitor portion 4, and the inorganic insulating layer 9 is processed by a reactive ion etching method.
  • the holes 19 and 20 are formed and a part of 1st and 2nd electrode layers 5 and 7 are surface-exposed.
  • a thin film layer made of TaN or Ni—Cr alloy having a film thickness of 40 to 60 nm is formed by sputtering.
  • a predetermined region is etched away by reactive ion etching to form a thin film resistor 42, and then the photoresist is dissolved and removed.
  • a part of the diffusion preventing layer 2 is dissolved and removed with buffered hydrofluoric acid, and a part of the conductive substrate 1 is exposed on the surface.
  • a 100 nm thick Ti layer and a 500 nm thick Au layer are formed by sputtering, then a photoresist is applied to form a resist pattern, and the Au layer and Ti layer are processed by wet etching. The photoresist is removed, thereby forming the substrate wiring 11, the electrode wiring 12, and the upper external electrode 41 as shown in FIG. 9D. Thereafter, heat treatment is performed in air at 370 ° C. for 30 minutes to oxidize the thin film resistor 42 and perform stabilization treatment.
  • the protective resin layer 43 is covered so as to cover the whole except for the upper external electrode 41 and the electrode wiring 12 by the same method and procedure as in the first embodiment.
  • the second connection electrode 16 is formed on the other main surface of the conductive substrate 1 by the same method and procedure as in the first embodiment, and the second A lower external electrode 17 is formed on the connection electrode 16.
  • a thin film resistor 42 is added, so that a thin film having a high capacity, high reliability, and low ESR combined with a resistance function.
  • a capacitor can be realized.
  • the thin film resistor is formed on the capacitor portion 4, it is possible to avoid the increase in the size of the element as much as possible.
  • the thin film resistor 42 is formed in a flat shape, it is possible to suppress variation in the resistance value.
  • FIG. 10 is a cross-sectional view of a dielectric thin film capacitor showing a fifth embodiment.
  • the thin film resistor 46 is formed on the diffusion preventing layer 2, and the electrode wiring 47 and the upper external electrode 45 are electrically connected to the thin film resistor 46 on the surface of the diffusion preventing layer 2. It is connected.
  • the thin film resistor 46 is formed on the diffusion prevention layer 2 as in the fifth embodiment, the thin film resistor 46 is added in addition to the function and effect of the first embodiment. It is possible to realize a high-capacity, high-reliability, low-ESR thin-film capacitor that combines functions.
  • the thin film resistor 46 is formed in a flat shape, it is possible to suppress variation in resistance value.
  • FIG. 11 is a cross-sectional view of a dielectric thin film capacitor showing a sixth embodiment.
  • the capacitor section has a structure substantially similar to that of the third embodiment.
  • the adhesion layer 48, the first electrode layer 49, and the first dielectric layer 50 are sequentially formed on the diffusion prevention layer 2 formed on the conductive substrate 1, and the first dielectric layer 50 is formed on the first dielectric layer 50. Electrode layers and dielectric layers are alternately stacked to form a capacitor portion.
  • the dielectric layers 55a and 55b, the fourth electrode layers 56a and 56b, the fourth dielectric layers 57a and 57b, and the fifth electrode layers 58a and 58b are sequentially stacked, and the first to fourth dielectric layers are sequentially stacked.
  • the body layers 50, 53a, 53b, 55a, 55b, 57a, 57b and the first to fifth electrode layers 49, 52a, 52b, 54a, 54b, 56a, 56b, 58a, 58b form a capacitor portion.
  • fifth dielectric layers 59 a and 59 b are formed on the fifth electrode layers 58 a and 58 b, and the upper surface of the inorganic insulating layer 51 is covered with the organic insulating layer 60.
  • the substrate wiring 61 and the electrode wirings 62 and 63 have substantially the same shape as that of the fourth embodiment, and the first electrode layer 49 is connected to the first connection electrode 14 via the substrate wiring 11.
  • the fifth electrode layers 58a and 58b are electrically connected to electrode wirings 63 and 62 that also serve as upper external electrodes, respectively.
  • a thin film resistor 64 is formed on the organic insulating layer 60, and the electrode wiring 63 and the upper external electrode 65 are electrically connected to the thin film resistance 64, whereby the fifth electrode layer 58 is connected to the electrode wiring 63 and the thin film.
  • the upper external electrode 65 is electrically connected through the resistor 64.
  • the thin film resistor 64 in addition to the function and effect of the first embodiment, by adding the thin film resistor 64, the high-capacity, high reliability, and low ESR combined with the resistance function are achieved.
  • a thin film capacitor can be realized.
  • the thin film resistor 64 is formed on the capacitor portion, it is possible to avoid the increase in size of the element as much as possible.
  • the thin film resistor 64 is formed in a flat shape, it is possible to suppress the variation in the resistance value.
  • the present invention is not limited to the above embodiment. Although the present invention can be modified in various ways as described above, the film formation method, film formation conditions, film thickness, etc. described in the above embodiments are exemplifications. It is not limited. Needless to say, when a plurality of parts are manufactured together, they may be divided individually by dicing or the like.

Abstract

Disclosed is a manufacturing method of a dielectric thin-film capacitor which forms an upper external electrode (15) on one main surface of a conductive substrate (1) and forms a lower external electrode (17) on the other main surface of the conductive substrate (1). The method includes a capacitor forming process which forms a capacitor (4), which is formed from first and second electrode layers (5,7) on both the top and bottom surfaces of a dielectric layer (6), on one main surface of the conductive substrate (1); and a wire forming process which forms substrate wires (11) which electrically connect the first electrode layer (5) to the conductive substrate (1); and includes a heat treatment process for heat treating the capacitor (4) between the capacitor forming process and the wire forming process. Thus, a dielectric thin-film capacitor which can suppress an increase in the equivalent series resistance (ESR) without a loss in reliability is implemented.

Description

誘電体薄膜キャパシタの製造方法、及び誘電体薄膜キャパシタDielectric thin film capacitor manufacturing method and dielectric thin film capacitor
 本発明は、誘電体薄膜キャパシタの製造方法、及び誘電体薄膜キャパシタに関し、より詳しくは導電性基板の主面の両側に外部電極が形成された誘電体薄膜キャパシタの製造方法、及びこの製造方法を使用して作製された誘電体薄膜キャパシタに関する。 The present invention relates to a dielectric thin film capacitor manufacturing method and a dielectric thin film capacitor. More specifically, the present invention relates to a dielectric thin film capacitor manufacturing method in which external electrodes are formed on both sides of a main surface of a conductive substrate, and the manufacturing method. The present invention relates to a dielectric thin film capacitor manufactured using the same.
 従来より、この種の誘電体薄膜キャパシタは、チタン酸バリウム等のペロブスカイト構造を有する酸化物がキャパシタの誘電体部分に多く用いられている。 Conventionally, in this type of dielectric thin film capacitor, an oxide having a perovskite structure such as barium titanate is often used in the dielectric portion of the capacitor.
 例えば、特許文献1には、図12に示すように、低抵抗のシリコン基板101の一方の面には導電性被膜102をオーミックコンタクトし、他方の面にはチタン酸系の絶縁物とほぼ等しい格子定数をもつ第1の金属電極103を該第1の金属電極103と前記シリコン基板101とが共晶するのを防ぐ所定パターンの共晶防止膜104を介在してかつ該第1の金属電極103の一部が前記シリコン基板101に接続するように被着形成し、該第1の金属電極103上にチタン酸系の絶縁膜105を被着形成し、さらに該絶縁膜105上に第2の金属電極106を被着形成した薄膜コンデンサ(誘電体薄膜キャパシタ)が提案されている。 For example, in Patent Document 1, as shown in FIG. 12, a conductive film 102 is in ohmic contact with one surface of a low-resistance silicon substrate 101, and the other surface is almost equal to a titanate-based insulator. The first metal electrode 103 having a lattice constant is interposed through a eutectic prevention film 104 having a predetermined pattern for preventing the first metal electrode 103 and the silicon substrate 101 from being eutectic. 103 is deposited so as to be connected to the silicon substrate 101, a titanate-based insulating film 105 is deposited on the first metal electrode 103, and a second layer is formed on the insulating film 105. A thin film capacitor (dielectric thin film capacitor) having a metal electrode 106 deposited thereon has been proposed.
 第1の金属電極103及び第2の金属電極106は、いずれもCr層103a、106a、Pt層103b、106b及びAu層103c、106cの三層構造からなり、絶縁膜105がキャパシタの誘電体部分に相当する。 Each of the first metal electrode 103 and the second metal electrode 106 has a three-layer structure of Cr layers 103a and 106a, Pt layers 103b and 106b, and Au layers 103c and 106c, and the insulating film 105 is a dielectric portion of the capacitor. It corresponds to.
 この特許文献1では、第1の金属電極103は、そのパターンを共晶防止膜104より大きく形成して、シリコン基板101と接触する構造となっており、絶縁層105を500~600℃でスパッタリングする際に、第1の金属電極103とシリコン基板101とが共晶してオーミックコンタクトしている。 In this Patent Document 1, the first metal electrode 103 has a structure in which the pattern is formed larger than the eutectic prevention film 104 and is in contact with the silicon substrate 101, and the insulating layer 105 is sputtered at 500 to 600 ° C. In this case, the first metal electrode 103 and the silicon substrate 101 are eutectic and are in ohmic contact.
特開昭56-83917号公報JP 56-83917 A
 ところで、この種の誘電体薄膜キャパシタでは、通常、スパッタ法やCVD法等により薄膜を堆積させた後、熱処理により誘電体薄膜の結晶性を向上させ、これにより誘電特性の向上を図っている。 By the way, in this type of dielectric thin film capacitor, usually, after depositing a thin film by a sputtering method, a CVD method or the like, the crystallinity of the dielectric thin film is improved by heat treatment, thereby improving the dielectric characteristics.
 しかしながら、特許文献1に示すようなシリコン基板101の下面に導電性被膜102を形成した薄膜コンデンサのように、シリコン基板101の両側に電極を形成する場合、熱処理を行うと共晶部分及びシリコンが酸化されるため、第1の金属電極103とシリコン基板101との間の接触抵抗が大きくなり、キャパシタの等価直列抵抗(以下、「ESR」という。)が増大するおそれがある。 However, when electrodes are formed on both sides of the silicon substrate 101, such as a thin film capacitor in which a conductive film 102 is formed on the lower surface of the silicon substrate 101 as shown in Patent Document 1, the eutectic portion and silicon are formed when heat treatment is performed. Because of the oxidation, the contact resistance between the first metal electrode 103 and the silicon substrate 101 increases, and the equivalent series resistance (hereinafter referred to as “ESR”) of the capacitor may increase.
 一方、接触抵抗を小さくするためには第1の金属電極103の膜厚を厚くすることが考えられるが、この場合は第1の金属電極103の表面が粗くなり、その結果、キャパシタ特性の劣化を招くおそれがある。 On the other hand, in order to reduce the contact resistance, it is conceivable to increase the film thickness of the first metal electrode 103. In this case, however, the surface of the first metal electrode 103 becomes rough, resulting in deterioration of capacitor characteristics. May be incurred.
 本発明はこのような事情に鑑みなされたものであって、熱処理を行っても信頼性を損なうことなく、ESRの増加を抑制できる誘電体薄膜キャパシタの製造方法、及び誘電体薄膜キャパシタを提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a dielectric thin film capacitor manufacturing method and a dielectric thin film capacitor capable of suppressing an increase in ESR without impairing reliability even when heat treatment is performed. For the purpose.
 上記目的を達成するために本発明に係る誘電体薄膜キャパシタの製造方法は、導電性基板の一方の主面側に少なくとも一つの第1の外部電極を形成し、前記導電性基板の他方の主面側に第2の外部電極を形成した誘電体薄膜キャパシタの製造方法であって、誘電体層の上下両面に電極層が形成された少なくとも一つ以上の容量発生部を有するキャパシタ部を前記導電性基板の前記一方の主面上に形成するキャパシタ部形成工程と、前記電極層のうちの一方の極となるべき電極層と前記導電性基板とを電気的に接続して基板配線を形成する配線形成工程とを有し、前記キャパシタ形成工程と前記配線形成工程との間に前記キャパシタ部を熱処理する熱処理工程を含んでいることを特徴としている。 In order to achieve the above object, a method of manufacturing a dielectric thin film capacitor according to the present invention includes forming at least one first external electrode on one main surface side of a conductive substrate, and forming the other main electrode of the conductive substrate. A method of manufacturing a dielectric thin film capacitor in which a second external electrode is formed on a surface side, wherein the capacitor portion having at least one capacitance generating portion having electrode layers formed on both upper and lower surfaces of the dielectric layer is electrically conductive. A capacitor portion forming step formed on the one main surface of the conductive substrate, and an electrode layer to be one of the electrode layers and the conductive substrate are electrically connected to form a substrate wiring A wiring formation step, and a heat treatment step of heat treating the capacitor portion between the capacitor formation step and the wiring formation step.
 また、本発明の誘電体薄膜キャパシタの製造方法は、前記熱処理工程と前記配線形成工程との間に前記キャパシタ部を絶縁層で被覆する絶縁層形成工程を有し、前記基板配線の少なくとも一部を前記絶縁層上に形成することを特徴としている。 The dielectric thin film capacitor manufacturing method of the present invention further includes an insulating layer forming step of covering the capacitor portion with an insulating layer between the heat treatment step and the wiring forming step, and at least a part of the substrate wiring. Is formed on the insulating layer.
 また、本発明の誘電体薄膜キャパシタの製造方法は、前記キャパシタ部と電気的に接続された薄膜抵抗を形成する薄膜抵抗形成工程を前記熱処理工程と前記配線形成工程との間に有していることを特徴としている。 Further, the dielectric thin film capacitor manufacturing method of the present invention includes a thin film resistance forming step for forming a thin film resistor electrically connected to the capacitor portion between the heat treatment step and the wiring forming step. It is characterized by that.
 さらに、本発明の誘電体薄膜キャパシタの製造方法は、前記薄膜抵抗形成工程が、前記薄膜抵抗を平坦状に形成することを特徴としている。 Furthermore, the dielectric thin film capacitor manufacturing method of the present invention is characterized in that the thin film resistor forming step forms the thin film resistor in a flat shape.
 また、本発明に係る誘電体薄膜キャパシタは、導電性基板の一方の主面側に少なくとも一つの第1の外部電極が形成されると共に、前記導電性基板の他方の主面側に第2の外部電極が形成された誘電体薄膜キャパシタであって、誘電体層の上下両面に電極層を有する少なくとも一つ以上の容量発生部を備えたキャパシタ部が、前記導電性基板の前記一方の主面上に形成されると共に、前記電極層のうちの一方の極となるべき電極層が、基板配線及び前記導電性基板を介して前記第2の外部電極と電気的に接続され、かつ、他方の極となるべき電極層が、前記第1の外部電極と電気的に接続され、前記キャパシタ部が熱処理されてなると共に、少なくとも前記基板配線は、前記熱処理後に形成されることを特徴としている。 In the dielectric thin film capacitor according to the present invention, at least one first external electrode is formed on one main surface side of the conductive substrate, and the second main surface side of the conductive substrate is a second one. A dielectric thin film capacitor in which an external electrode is formed, wherein the capacitor portion including at least one capacitance generating portion having electrode layers on both upper and lower surfaces of the dielectric layer is the one main surface of the conductive substrate. An electrode layer that is formed on the electrode layer and is to be one of the electrode layers is electrically connected to the second external electrode via a substrate wiring and the conductive substrate, and the other electrode layer An electrode layer to be a pole is electrically connected to the first external electrode, the capacitor portion is heat-treated, and at least the substrate wiring is formed after the heat treatment.
 また、本発明の誘電体薄膜キャパシタは、前記キャパシタ部は絶縁層で被覆されると共に、前記基板配線の少なくも一部が前記絶縁層上に形成されていることを特徴としている。 The dielectric thin film capacitor of the present invention is characterized in that the capacitor portion is covered with an insulating layer, and at least a part of the substrate wiring is formed on the insulating layer.
 さらに、本発明の誘電体薄膜キャパシタは、薄膜抵抗が、前記他方の極となるべき電極層と電気的に接続されるように形成されていることを特徴としている。 Furthermore, the dielectric thin film capacitor of the present invention is characterized in that the thin film resistor is formed so as to be electrically connected to the electrode layer to be the other electrode.
 また、本発明の誘電体薄膜キャパシタは、前記薄膜抵抗は、キャパシタ部上に形成されていることを特徴としている。 The dielectric thin film capacitor of the present invention is characterized in that the thin film resistor is formed on a capacitor portion.
 また、本発明の誘電体薄膜キャパシタは、薄膜抵抗が、平坦状に形成されていることを特徴としている。 The dielectric thin film capacitor of the present invention is characterized in that the thin film resistor is formed in a flat shape.
 上記誘電体薄膜キャパシタの製造方法、及び薄膜キャパシタによれば、キャパシタ部を熱処理した後に基板配線を形成するため、基板配線が熱処理雰囲気に晒されて酸化されることもない。したがって熱処理を行ってもキャパシタ部の信頼性を損なうことがなく、ESRの増加を抑制することができる。 According to the method for manufacturing a dielectric thin film capacitor and the thin film capacitor, since the substrate wiring is formed after the capacitor portion is heat-treated, the substrate wiring is not exposed to the heat treatment atmosphere and oxidized. Accordingly, even if heat treatment is performed, the reliability of the capacitor portion is not impaired, and an increase in ESR can be suppressed.
 また、一方の極となるべき電極層と導電性基板とを直接に電気的接続させるのではなく、基板配線を介して電気的接続させているので、基板配線を十分に厚くしたり、基板配線にAuやCu等の低抵抗の導電性材料を使用することが可能であり、前記一方の極となるべき電極層から第2の外部電極までの間の抵抗を十分に低減することが可能である。すなわち、配線の材質や形状の選定、長さの調整の自由度の大きい高容量、高信頼性・低ESRの誘電体薄膜キャパシタを得ることができる。 In addition, since the electrode layer to be one pole and the conductive substrate are not directly electrically connected but via the substrate wiring, the substrate wiring can be made sufficiently thick, In addition, it is possible to use a low resistance conductive material such as Au or Cu, and it is possible to sufficiently reduce the resistance between the electrode layer to be the one electrode and the second external electrode. is there. That is, it is possible to obtain a high-capacity, high-reliability, low-ESR dielectric thin film capacitor with a high degree of freedom in selecting the material and shape of the wiring and adjusting the length.
 また、基板配線を形成する前にキャパシタ部を絶縁層で被覆するので、配線形成時のエッチングによるキャパシタ特性の劣化を防ぐことができる。 In addition, since the capacitor portion is covered with an insulating layer before the substrate wiring is formed, it is possible to prevent deterioration of the capacitor characteristics due to etching during wiring formation.
 また、キャパシタ構造に薄膜抵抗を付加するので、抵抗機能を備えた高容量、高信頼性、低ESRの誘電体薄膜キャパシタを得ることができる。 Also, since a thin film resistor is added to the capacitor structure, a high capacity, high reliability, low ESR dielectric thin film capacitor having a resistance function can be obtained.
 また、薄膜抵抗をキャパシタ部上に形成するので、薄膜抵抗を備えている場合であっても素子の大型化を極力回避することができる。 In addition, since the thin film resistor is formed on the capacitor portion, it is possible to avoid the increase in size of the element as much as possible even when the thin film resistor is provided.
 また、薄膜抵抗を平坦状に形成するので、薄膜抵抗の抵抗値にバラツキが生じるのを抑制することができる。 Further, since the thin film resistor is formed in a flat shape, it is possible to suppress variation in the resistance value of the thin film resistor.
本発明の製造方法で製造された誘電体薄膜キャパシタの一実施の形態(第1の実施の形態)を示す断面図である。It is sectional drawing which shows one Embodiment (1st Embodiment) of the dielectric thin film capacitor manufactured with the manufacturing method of this invention. 本発明に係る誘電体薄膜キャパシタの製造方法の一実施の形態を示す製造工程の断面図(1/3)である。It is sectional drawing (1/3) of the manufacturing process which shows one Embodiment of the manufacturing method of the dielectric thin film capacitor which concerns on this invention. 本発明に係る誘電体薄膜キャパシタの製造方法の一実施の形態を示す製造工程の断面図(2/3)である。It is sectional drawing (2/3) of the manufacturing process which shows one Embodiment of the manufacturing method of the dielectric thin film capacitor which concerns on this invention. 本発明に係る誘電体薄膜キャパシタの製造方法の一実施の形態を示す製造工程の断面図(3/3)である。It is sectional drawing (3/3) of the manufacturing process which shows one Embodiment of the manufacturing method of the dielectric thin film capacitor which concerns on this invention. 本発明の第2の実施の形態を示す断面図である。It is sectional drawing which shows the 2nd Embodiment of this invention. 本発明の第3の実施の形態を示す断面図である。It is sectional drawing which shows the 3rd Embodiment of this invention. 本発明の第4の実施の形態を示す断面図である。It is sectional drawing which shows the 4th Embodiment of this invention. 第4の実施の形態の製造工程の要部を示す断面図(1/2)である。It is sectional drawing (1/2) which shows the principal part of the manufacturing process of 4th Embodiment. 第4の実施の形態の製造工程の要部を示す断面図(2/2)である。It is sectional drawing (2/2) which shows the principal part of the manufacturing process of 4th Embodiment. 本発明の第5の実施の形態を示す断面図である。It is sectional drawing which shows the 5th Embodiment of this invention. 本発明の第6の実施の形態を示す断面図である。It is sectional drawing which shows the 6th Embodiment of this invention. 特許文献1に記載された従来例の断面図である。It is sectional drawing of the prior art example described in patent document 1. FIG.
 次に、本発明の実施の形態を添付図面に基づき詳説する。 Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 図1は本発明の製造方法により製造された誘電体薄膜キャパシタの一実施の形態(第1の実施の形態)を示す断面図である。 FIG. 1 is a sectional view showing an embodiment (first embodiment) of a dielectric thin film capacitor manufactured by the manufacturing method of the present invention.
 すなわち、この誘電体薄膜キャパシタは、Si等の半導体で形成された導電性基板1の一方の主面にSiO等からなる拡散防止層2が形成されると共に、該拡散防止層2の表面には密着層3が形成され、さらに、該密着層3の表面にはキャパシタ部4が形成されている。前記拡散防止層2は、導電性基板1に含有される元素がキャパシタ部4に拡散するのを防止する機能を有する。 That is, in this dielectric thin film capacitor, a diffusion prevention layer 2 made of SiO 2 or the like is formed on one main surface of a conductive substrate 1 made of a semiconductor such as Si, and on the surface of the diffusion prevention layer 2. An adhesion layer 3 is formed, and a capacitor portion 4 is formed on the surface of the adhesion layer 3. The diffusion prevention layer 2 has a function of preventing elements contained in the conductive substrate 1 from diffusing into the capacitor portion 4.
 キャパシタ部4は、密着層3上に形成された第1の電極層5と、該第1の電極層5上に形成された誘電体層6と、該誘電体層6上に形成された第2の電極層7とから構成されている。 The capacitor unit 4 includes a first electrode layer 5 formed on the adhesion layer 3, a dielectric layer 6 formed on the first electrode layer 5, and a first electrode formed on the dielectric layer 6. 2 electrode layers 7.
 誘電体層6は、例えば(Ba,Sr)TiO(以下、「BST」という。)、BaTiO,SrTiOなどの他、Pb(Zr,Ti)O系、SrBiTi15等のビスマス層状化合物を用いることができる。 The dielectric layer 6 includes, for example, (Ba, Sr) TiO 3 (hereinafter referred to as “BST”), BaTiO 3 , SrTiO 3, etc., Pb (Zr, Ti) O 3 , SrBi 4 Ti 4 O 15, etc. The bismuth layered compound can be used.
 また、第1及び第2の電極層5、7は、後述するように、キャパシタ部4が好ましくは酸素含有雰囲気で熱処理されてなることから、Pt、Au、Ru等の熱処理に対して耐酸化性を有する材料が好んで使用される。尚、密着層3は、誘電体層6と同一組成系の材料、又は同一組成の材料を使用することができる。 Further, as will be described later, since the capacitor part 4 is preferably heat-treated in an oxygen-containing atmosphere, the first and second electrode layers 5 and 7 are resistant to heat treatment such as Pt, Au, and Ru. A material having properties is preferably used. For the adhesion layer 3, a material having the same composition as that of the dielectric layer 6 or a material having the same composition can be used.
 キャパシタ部4は、全体が絶縁層8で被覆されている。この絶縁層8は、無機絶縁層9と有機絶縁層10とからなる。無機絶縁層9は外部からの水分がキャパシタ部4に浸入するのを防止する機能を有し、例えばSiNやSiOで形成される。尚、無機絶縁層9としてSiNを使用する場合は、SiとNのモル比が3:4の化学量論組成であるSiの他、必要に応じ化学量論組成から偏移した化合物を使用することができる。 The capacitor unit 4 is entirely covered with an insulating layer 8. The insulating layer 8 includes an inorganic insulating layer 9 and an organic insulating layer 10. The inorganic insulating layer 9 has a function of preventing moisture from the outside from entering the capacitor unit 4 and is made of, for example, SiN x or SiO 2 . In the case of using SiN x as the inorganic insulating layer 9, the molar ratio of Si and N 3: Other 4 stoichiometry having a composition Si 3 N 4, and deviates from the stoichiometric composition as required Compounds can be used.
 また、有機絶縁層10は、ポリイミド樹脂やエポキシ樹脂で形成され、後述する電極配線や基板配線からの機械的応力を吸収する。 The organic insulating layer 10 is formed of a polyimide resin or an epoxy resin, and absorbs mechanical stress from electrode wiring and substrate wiring described later.
 第1の電極層5は基板配線11に接続されると共に、第2の電極層7は電極配線12に接続されている。 The first electrode layer 5 is connected to the substrate wiring 11, and the second electrode layer 7 is connected to the electrode wiring 12.
 基板配線11は、具体的には、第1の電極層5の上面から絶縁層8(無機絶縁層9及び有機絶縁層1)を貫通し、有機絶縁層10上から絶縁層8の側面に架けて連設され、導電性基板1上にオーミック接触された第1の接続電極14に電気的に接続されている。 Specifically, the substrate wiring 11 penetrates the insulating layer 8 (the inorganic insulating layer 9 and the organic insulating layer 1) from the upper surface of the first electrode layer 5, and extends from the organic insulating layer 10 to the side surface of the insulating layer 8. And electrically connected to the first connection electrode 14 that is in ohmic contact with the conductive substrate 1.
 また、電極配線12は、第2の電極層7の上面から絶縁層8(無機絶縁層9及び有機絶縁層1)を貫通し、かつ有機絶縁層10上に配されるように形成されている。 The electrode wiring 12 is formed so as to penetrate the insulating layer 8 (inorganic insulating layer 9 and organic insulating layer 1) from the upper surface of the second electrode layer 7 and to be disposed on the organic insulating layer 10. .
 そして、前記電極配線12の上面には上部外部電極(第1の外部電極)15が形成され、第2の電極層7は電極配線12を介して上部外部電極15と電気的に接続されている。 An upper external electrode (first external electrode) 15 is formed on the upper surface of the electrode wiring 12, and the second electrode layer 7 is electrically connected to the upper external electrode 15 through the electrode wiring 12. .
 また、導電性基板1の上面側は、上部外部電極15を除く部分は、保護樹脂18で被覆されている。 Further, the upper surface side of the conductive substrate 1 is covered with a protective resin 18 except for the upper external electrode 15.
 さらに、導電性基板1の他方の主面上には第2の接続電極16が形成され、該第2の接続電極16上には下部外部電極(第2の外部電極)17が形成されている。 Further, a second connection electrode 16 is formed on the other main surface of the conductive substrate 1, and a lower external electrode (second external electrode) 17 is formed on the second connection electrode 16. .
 尚、第1及び第2の接続電極14、16は、導電性基板1とオーミック接触させてESRを下げる必要があることから、Auで形成するのが好ましい。 Note that the first and second connection electrodes 14 and 16 are preferably formed of Au because it is necessary to lower the ESR by making ohmic contact with the conductive substrate 1.
 また、上部外部電極15及び下部外部電極17は複層構造が好ましく、例えばAu/Cu、Au/Ni、Sn/Cuを使用することができる。 Further, the upper external electrode 15 and the lower external electrode 17 preferably have a multilayer structure, and for example, Au / Cu, Au / Ni, Sn / Cu can be used.
 このように本誘電体薄膜キャパシタは、下部外部電極17が、第2の接続電極16、導電性基板1、第1の接続電極14、基板配線11を介して第1の電極層5と電気的に接続され、上部外部電極15は、電極配線12を介して第2の電極層7と電気的に接続されている。そして、上部外部電極15と下部外部電極17との間に電圧が印加されると、キャパシタ部4はキャパシタとしての機能を発揮する。 Thus, in this dielectric thin film capacitor, the lower external electrode 17 is electrically connected to the first electrode layer 5 via the second connection electrode 16, the conductive substrate 1, the first connection electrode 14, and the substrate wiring 11. The upper external electrode 15 is electrically connected to the second electrode layer 7 through the electrode wiring 12. When a voltage is applied between the upper external electrode 15 and the lower external electrode 17, the capacitor unit 4 functions as a capacitor.
 次に、誘電体薄膜キャパシタの製造方法を詳述する。 Next, a method for manufacturing a dielectric thin film capacitor will be described in detail.
 まず、図2(a)に示すように、例えば、厚さが525μmのp型導電性Si基板等からなる導電性基板1を用意する。 First, as shown in FIG. 2A, a conductive substrate 1 made of, for example, a p-type conductive Si substrate having a thickness of 525 μm is prepared.
 次いで、図2(b)に示すように、拡散防止層2及び密着層3を順次成膜する。 Next, as shown in FIG. 2B, the diffusion prevention layer 2 and the adhesion layer 3 are sequentially formed.
 すなわち、例えば、熱酸化法により膜厚700nmのSiO等からなる拡散防止層2を成膜する。 That is, for example, the diffusion prevention layer 2 made of SiO 2 or the like having a thickness of 700 nm is formed by a thermal oxidation method.
 次いで、化学溶液堆積(Chemical Solution Deposition;以下「CSD」という。)法等により拡散防止層2上に、例えば膜厚100nmの密着層3を形成する。密着層3としては、BST、SrTiO、BaTiOや、Pb(Zr,Ti)O等のペロブスカイト化合物、SrBiTi15等のビスマス層状化合物等を使用することができるが、例えば、BSTで密着層3を形成する場合は、以下のようにして作製することができる。 Next, an adhesion layer 3 of, eg, a 100 nm-thickness is formed on the diffusion prevention layer 2 by a chemical solution deposition (hereinafter referred to as “CSD”) method or the like. As the adhesion layer 3, BST, SrTiO 3 , BaTiO 3 , perovskite compounds such as Pb (Zr, Ti) O 3 , bismuth layered compounds such as SrBi 4 Ti 4 O 15, etc. can be used. When the adhesion layer 3 is formed by BST, it can be produced as follows.
 すなわち、まず、Ba、Sr、Tiが、モル比で例えばBa:Sr:Ti=7:3:10に配合された成膜原料溶液を用意する。次いで、この成膜原料溶液を拡散防止層2上に塗布し、300~400℃のホットプレ-ト上で乾燥させ、650℃の温度で30分間、高速昇温熱処理を行って結晶化させ、これにより密着層3を形成する。 That is, first, a film forming raw material solution in which Ba, Sr, and Ti are mixed at a molar ratio of, for example, Ba: Sr: Ti = 7: 3: 10 is prepared. Next, this film forming raw material solution is applied onto the diffusion preventing layer 2, dried on a hot plate at 300 to 400 ° C., and subjected to crystallization at high temperature heating treatment at a temperature of 650 ° C. for 30 minutes. Thus, the adhesion layer 3 is formed.
 次に、図2(c)に示すように、第1の電極層5、誘電体層6、及び第2の電極層7を順次成膜する。 Next, as shown in FIG. 2C, a first electrode layer 5, a dielectric layer 6, and a second electrode layer 7 are sequentially formed.
 すなわち、例えば、RFマグネトロンスパッタ法等により膜厚200nmのPtからなる第1の電極層5を形成し、次いで、密着層3と同様、CSD法等によりBST等からなる膜厚100nmの誘電体層6を形成し、その後、第1の電極層5と同様、RFマグネトロンスパッタ法等により膜厚200nmのPtからなる第2の電極層6を形成する。 That is, for example, the first electrode layer 5 made of Pt having a film thickness of 200 nm is formed by RF magnetron sputtering or the like, and then the dielectric layer having a film thickness of 100 nm made of BST or the like by the CSD method or the like, similar to the adhesion layer 3. 6 is formed, and then, similarly to the first electrode layer 5, a second electrode layer 6 made of Pt having a thickness of 200 nm is formed by an RF magnetron sputtering method or the like.
 次に、図2(d)に示すように、上記密着層3、第1の電極層5、誘電体層6、及び第2の電極層7を、周知のフォトリソグラフィー技術及びアルゴンイオンミリング法等を使用して所定パターンにエッチングし、キャパシタ部4を形成する。すなわち、フォトレジストを塗布してプリベークした後、フォトマスクを介して紫外光をフォトレジストに照射し、露光、現像、ポストベークを行なってフォトマスクパターンをレジストパターンに転写する。次いで、アルゴンイオンミリング法によりアルゴンイオンをエッチング面に衝突させて第2の電極層7、誘電体層6、第1の電極層5、及び密着層3の所定領域をエッチングし、これによりキャパシタ部4を作製する。 Next, as shown in FIG. 2D, the adhesion layer 3, the first electrode layer 5, the dielectric layer 6, and the second electrode layer 7 are formed by using a well-known photolithography technique, an argon ion milling method, or the like. Is etched into a predetermined pattern to form the capacitor portion 4. That is, after a photoresist is applied and prebaked, the photoresist is irradiated with ultraviolet light through a photomask, and exposure, development, and postbaking are performed to transfer the photomask pattern to the resist pattern. Next, argon ions are collided with the etching surface by an argon ion milling method to etch predetermined regions of the second electrode layer 7, the dielectric layer 6, the first electrode layer 5, and the adhesion layer 3, and thereby the capacitor portion 4 is produced.
 次いで、キャパシタ部4を熱処理し、誘電体層6の誘電特性を向上させる。この熱処理は、誘電体層6の結晶性を向上させるために行うものであり、例えば850℃の温度で30分間熱処理を行う。また、誘電体層6に酸素欠陥が多いと、高温時の電圧負荷に耐えられず、信頼性が低下するおそれがあることから、酸素含有雰囲気中で熱処理を行うのが好ましい。 Next, the capacitor portion 4 is heat-treated to improve the dielectric characteristics of the dielectric layer 6. This heat treatment is performed to improve the crystallinity of the dielectric layer 6, and is performed at a temperature of, for example, 850 ° C. for 30 minutes. In addition, if the dielectric layer 6 has a large number of oxygen defects, the dielectric layer 6 cannot withstand a voltage load at a high temperature and the reliability may be lowered. Therefore, the heat treatment is preferably performed in an oxygen-containing atmosphere.
 次に、図3(e)に示すように、キャパシタ部4の全体を覆うように、無機絶縁層9及び有機絶縁層10からなる絶縁層8を形成する。すなわち、例えば、スパッタ法により厚さ500nmのSiN等からなる無機絶縁層9を成膜する。次いで、感光性ポリイミドを前記無機絶縁層9の上面を覆うように塗布し、その後、125℃の温度で5分間加熱し、露光、現像処理を行った後、350℃で1時間程度加熱し、例えば膜厚が5000nmの所定パターンの有機絶縁層10を形成する。 Next, as illustrated in FIG. 3E, an insulating layer 8 including an inorganic insulating layer 9 and an organic insulating layer 10 is formed so as to cover the entire capacitor unit 4. That is, for example, the inorganic insulating layer 9 made of SiN x or the like having a thickness of 500 nm is formed by sputtering. Next, a photosensitive polyimide is applied so as to cover the upper surface of the inorganic insulating layer 9, and then heated at a temperature of 125 ° C. for 5 minutes, exposed and developed, and then heated at 350 ° C. for about 1 hour. For example, the organic insulating layer 10 having a predetermined pattern with a film thickness of 5000 nm is formed.
 次に、図3(f)に示すように、感光性ポリイミドからなる有機絶縁層10をマスクとし、反応性イオンエッチング法により無機絶縁層9を加工して孔19、20を形成し、第1及び第2の電極層5、7の一部を表面露出させる。 Next, as shown in FIG. 3 (f), the organic insulating layer 10 made of photosensitive polyimide is used as a mask, the inorganic insulating layer 9 is processed by reactive ion etching to form holes 19 and 20, and the first Then, a part of the second electrode layers 5 and 7 is exposed on the surface.
 次に、所定のレジストパターンを形成した後、バッファードフッ酸で拡散防止層2の一部を溶解除去し、導電性基板1の一部を表面露出させる。 Next, after forming a predetermined resist pattern, a part of the diffusion preventing layer 2 is dissolved and removed with buffered hydrofluoric acid to expose a part of the conductive substrate 1 on the surface.
 その後、真空蒸着法により導電性基板1の表面露出部分に例えば膜厚300nmのAuを蒸着させ、リフトオフ法によりフォトレジストを除去し、図3(g)に示すように、第1の接続電極14を形成する。 Thereafter, Au having a film thickness of, for example, 300 nm is deposited on the surface exposed portion of the conductive substrate 1 by a vacuum deposition method, and the photoresist is removed by a lift-off method, and as shown in FIG. Form.
 次に、図4(h)に示すように、孔20の内面から有機絶縁層10の上面及び側面さらには第1の接続電極14上に架けて基板配線11を形成し、孔19の内面から有機絶縁層10の上面に架けて電極配線12を形成する。そしてこの後電極配線12の上部に、上部外部電極15を形成する。 Next, as shown in FIG. 4 (h), the substrate wiring 11 is formed from the inner surface of the hole 20 to the upper surface and side surfaces of the organic insulating layer 10 and further to the first connection electrode 14, and from the inner surface of the hole 19. An electrode wiring 12 is formed over the upper surface of the organic insulating layer 10. Thereafter, an upper external electrode 15 is formed on the electrode wiring 12.
 これら基板配線11、電極配線12、及び上部外部電極15は、具体的には以下のようにして作製される。 The substrate wiring 11, the electrode wiring 12, and the upper external electrode 15 are specifically produced as follows.
 すなわち、まず、スパッタ法により膜厚100nmからなるTi層を表面に成膜し、該Ti層上に膜厚500nmからなるCu層を成膜する。次に、Cu層上に開口部を有するように、該Cu層上にフォトレジストを塗布して所定のレジストパターンを形成し、次いで、電解めっきを行って前記開口部に膜厚2000nmのNi層及び膜厚1000nmのAu層を順次形成する。そして、前記フォトレジストを除去してAu層及びNi層からなる二層構造の上部外部電極15を形成する。 That is, first, a Ti layer having a thickness of 100 nm is formed on the surface by sputtering, and a Cu layer having a thickness of 500 nm is formed on the Ti layer. Next, a photoresist is applied on the Cu layer so as to have an opening on the Cu layer to form a predetermined resist pattern, and then electrolytic plating is performed to form a Ni layer having a thickness of 2000 nm in the opening. Then, an Au layer having a thickness of 1000 nm is sequentially formed. Then, the photoresist is removed to form an upper external electrode 15 having a two-layer structure composed of an Au layer and a Ni layer.
 次に、再び、電極配線12となるべき部位と基板配線11となるべき部位とが離間するように、Cu層上にフォトレジストを塗布して所定のレジストパターンを形成し、次いで、ウェットエッチングによりCu層及びTi層をエッチングする。そしてその後、フォトレジストを除去し、Cu層及びTi層からなる二層構造の電極配線12及び基板配線11を形成する。 Next, a predetermined resist pattern is formed by applying a photoresist on the Cu layer so that the portion to be the electrode wiring 12 and the portion to be the substrate wiring 11 are separated from each other, and then wet etching is performed. Etch Cu layer and Ti layer. Thereafter, the photoresist is removed, and an electrode wiring 12 and a substrate wiring 11 having a two-layer structure composed of a Cu layer and a Ti layer are formed.
 次いで、図4(i)に示すように、導電性基板1上の上部外部電極15を除く部分を保護樹脂層18で被覆する。 Next, as shown in FIG. 4 (i), the portion excluding the upper external electrode 15 on the conductive substrate 1 is covered with a protective resin layer 18.
 すなわち、感光性ポリイミド等の感光性樹脂を上面に塗布し、その後、125℃の温度で5分間加熱し、露光、現像処理を行った後、350℃で1時間程度加熱し、例えば膜厚が5000nmの所定パターンの保護樹脂層18を形成する。 That is, a photosensitive resin such as photosensitive polyimide is applied to the upper surface, and then heated at 125 ° C. for 5 minutes, exposed and developed, and then heated at 350 ° C. for about 1 hour. A protective resin layer 18 having a predetermined pattern of 5000 nm is formed.
 次に、図4(j)に示すように、導電性基板1の他方の主面上に第2の接続電極16を形成し、第2の接続電極16上に下部外部電極17を形成する。 Next, as shown in FIG. 4 (j), the second connection electrode 16 is formed on the other main surface of the conductive substrate 1, and the lower external electrode 17 is formed on the second connection electrode 16.
 すなわち、まず、導電性基板1の裏面を所定厚みとなるように研削し、バッファードフッ酸で処理し、真空蒸着法により膜厚300nmのAuからなる第2の接続電極16を形成する。次に、電解めっきを行なって膜厚2000nmのNi層及び膜厚1000nmのAu層を順次成膜し、これにより二層構造の下部外部電極17を形成する。 That is, first, the back surface of the conductive substrate 1 is ground to a predetermined thickness, treated with buffered hydrofluoric acid, and a second connection electrode 16 made of Au having a thickness of 300 nm is formed by vacuum deposition. Next, electrolytic plating is performed to sequentially form a 2000 nm thick Ni layer and a 1000 nm thick Au layer, thereby forming a lower external electrode 17 having a two-layer structure.
 最後に、より確実なオーミック接触を得るために350℃の温度で熱処理を行い、下部外部電極17と導電性基板1との界面を安定化させ、これにより誘電体薄膜キャパシタが得られる。 Finally, in order to obtain a more reliable ohmic contact, heat treatment is performed at a temperature of 350 ° C. to stabilize the interface between the lower external electrode 17 and the conductive substrate 1, thereby obtaining a dielectric thin film capacitor.
 このように本第1の実施の形態では、キャパシタ部4を熱処理した後に基板配線11を形成するため、基板配線11が熱処理雰囲気に晒されて酸化されることもない。したがって熱処理を行ってもキャパシタ部4の信頼性を損なうこともなく、ESRの増加を抑制することができる。 As described above, in the first embodiment, since the substrate wiring 11 is formed after the capacitor portion 4 is heat-treated, the substrate wiring 11 is not exposed to the heat treatment atmosphere and oxidized. Therefore, even if heat treatment is performed, the increase in ESR can be suppressed without impairing the reliability of the capacitor unit 4.
 また、第2の電極層7と導電性基板1とを直接に電気的接続させるのではなく、基板配線11を介して電気的接続させているので、基板配線11を十分に厚くしたり、基板配線11にAuやCu等の低抵抗の導電性材料を使用することが可能であり、前記第2の電極層7から第2の外部電極17までの間の抵抗を十分に低減することが可能である。すなわち、配線の材質や形状の選定、長さの調整の自由度の大きい高容量、高信頼性・低ESRの誘電体薄膜キャパシタを得ることができる。 Further, since the second electrode layer 7 and the conductive substrate 1 are not directly electrically connected but via the substrate wiring 11, the substrate wiring 11 can be made sufficiently thick, A low resistance conductive material such as Au or Cu can be used for the wiring 11, and the resistance between the second electrode layer 7 and the second external electrode 17 can be sufficiently reduced. It is. That is, it is possible to obtain a high-capacity, high-reliability, low-ESR dielectric thin film capacitor with a high degree of freedom in selecting the material and shape of the wiring and adjusting the length.
 また、基板配線11を形成する前にキャパシタ部4を絶縁層8で被覆しているので、配線形成時のエッチングによるキャパシタ特性の劣化を防ぐことができる。 In addition, since the capacitor portion 4 is covered with the insulating layer 8 before the substrate wiring 11 is formed, deterioration of the capacitor characteristics due to etching during wiring formation can be prevented.
 図5は、本発明の第2の実施の形態を示す誘電体薄膜キャパシタの断面図であって、該第2の実施の形態は、導電性基板1の一方の主面側に2個のキャパシタ部21a、21bが形成され、かつ各キャパシタ部21a、21bは電極層と誘電体操とが交互に積層され、複数の容量発生部を有している。 FIG. 5 is a cross-sectional view of a dielectric thin film capacitor showing a second embodiment of the present invention. The second embodiment has two capacitors on one main surface side of the conductive substrate 1. The portions 21a and 21b are formed, and the capacitor portions 21a and 21b are alternately laminated with electrode layers and dielectric layers, and have a plurality of capacitance generating portions.
 すなわち、導電性基板1上に形成された拡散防止層2上には、無機絶縁層22を挟んで2個の密着層23a、23bが形成されている。そして、それぞれの密着層23a、23b上には第1の電極層24a、24b、第1の誘電体層25a、25b、第2の電極層26a、26b、第2の誘電体層27a、27b、第3の電極層28a、28b、第3の誘電体層29a、29b、及び第4の電極層30a、30bが順次積層されてキャパシタ部21a、21bを形成している。そして、キャパシタ部21a、21bの最上層の第4の電極層30a、30bの表面に、第4の誘電体層31a、31bが形成されている。また、無機絶縁層22は有機絶縁層32で被覆されている。 That is, two adhesion layers 23 a and 23 b are formed on the diffusion prevention layer 2 formed on the conductive substrate 1 with the inorganic insulating layer 22 interposed therebetween. The first electrode layers 24a, 24b, the first dielectric layers 25a, 25b, the second electrode layers 26a, 26b, the second dielectric layers 27a, 27b, Third electrode layers 28a and 28b, third dielectric layers 29a and 29b, and fourth electrode layers 30a and 30b are sequentially stacked to form capacitor portions 21a and 21b. The fourth dielectric layers 31a and 31b are formed on the surfaces of the uppermost fourth electrode layers 30a and 30b of the capacitor portions 21a and 21b. The inorganic insulating layer 22 is covered with an organic insulating layer 32.
 また、基板配線33a、33b及び電極配線35a、35bは、第1の実施の形態と略同様の形状を有するように形成され、基板配線33a、33bは、導電性基板1にオーミック接触された第1の接続電極34a、34bに電気的に接続されている。 The substrate wirings 33a and 33b and the electrode wirings 35a and 35b are formed so as to have substantially the same shape as in the first embodiment, and the substrate wirings 33a and 33b are in ohmic contact with the conductive substrate 1. One connection electrode 34a, 34b is electrically connected.
 そして、第1の電極層24a、24bは、基板配線33a、33b、第1の接続電極34a、34b、導電性基板1、及び第2の接続電極16を介して下部外部電極17に電気的に接続されると共に、第4の電極層30a、30bは、電極配線35a、35bを介して上部外部電極36a、36bに電気的に接続されている。また、本誘電体薄膜キャパシタは、導電性基板1のキャパシタ部21a、21b側は、上部外部電極36a、36bを除く全体が保護樹脂層37で被覆されている。 The first electrode layers 24 a and 24 b are electrically connected to the lower external electrode 17 through the substrate wirings 33 a and 33 b, the first connection electrodes 34 a and 34 b, the conductive substrate 1, and the second connection electrode 16. In addition to being connected, the fourth electrode layers 30a and 30b are electrically connected to the upper external electrodes 36a and 36b via the electrode wirings 35a and 35b. Further, in the present dielectric thin film capacitor, the entire capacitor substrate 21a, 21b side of the conductive substrate 1 is covered with a protective resin layer 37 except for the upper external electrodes 36a, 36b.
 そして、本第2の実施の形態においても、基板配線33a、33bを形成する前に、キャパシタ部21a、21bの熱処理が行なわれ、これによりキャパシタ部の信頼性を損なうことなく、ESRの増加を抑制している。 Also in the second embodiment, the heat treatment of the capacitor portions 21a and 21b is performed before the substrate wirings 33a and 33b are formed, thereby increasing the ESR without impairing the reliability of the capacitor portions. Suppressed.
 しかも、本第2の実施の形態では、キャパシタ部21a、21bが複数の容量発生部を有しているので、耐電圧を向上させた薄膜キャパシタを得ることができる。また、第4の誘電体層31a、31bをキャパシタ部21a、21b上に形成しているので、無機絶縁層22の成膜時のキャパシタの劣化を防ぐことができ、リーク電流を抑制することが可能となる。 Moreover, in the second embodiment, since the capacitor portions 21a and 21b have a plurality of capacitance generating portions, a thin film capacitor with improved withstand voltage can be obtained. Further, since the fourth dielectric layers 31a and 31b are formed on the capacitor portions 21a and 21b, it is possible to prevent deterioration of the capacitor during the formation of the inorganic insulating layer 22, and to suppress the leakage current. It becomes possible.
 図6は、本発明の第3の実施の形態を示す誘電体薄膜キャパシタの断面図であって、本第3の実施の形態では、導電性基板1上に形成された拡散防止層2上に密着層23、第1の電極層24、及び第1の誘電体層25が順次形成され、この第1の誘電体層25上に電極層と誘電体層とが交互に積層されてキャパシタ部を形成している。 FIG. 6 is a cross-sectional view of a dielectric thin film capacitor showing a third embodiment of the present invention. In the third embodiment, the dielectric thin film capacitor is formed on the diffusion prevention layer 2 formed on the conductive substrate 1. An adhesion layer 23, a first electrode layer 24, and a first dielectric layer 25 are sequentially formed, and electrode layers and dielectric layers are alternately stacked on the first dielectric layer 25 to form a capacitor portion. Forming.
 すなわち、前記第1の誘電体層25上に無機絶縁層22を介して第2の電極層26a、26b、第2の誘電体層27a、27b、第3の電極層28a、28b、第3の誘電体層29a、29b、及び第4の電極層30a、30bが順次積層され、これら第1~第4の誘電体層25、27a、27b、29a、29b及び第1の電極層24、26a、26b、28a、28b、30a、30bでキャパシタ部を形成している。 That is, on the first dielectric layer 25, the second electrode layers 26a and 26b, the second dielectric layers 27a and 27b, the third electrode layers 28a and 28b, and the third electrode layer are interposed via the inorganic insulating layer 22. The dielectric layers 29a, 29b and the fourth electrode layers 30a, 30b are sequentially stacked. The first to fourth dielectric layers 25, 27a, 27b, 29a, 29b and the first electrode layers 24, 26a, 26b, 28a, 28b, 30a, 30b form a capacitor portion.
 そして、本第3の実施の形態においても、基板配線33a、33bを形成する前に、キャパシタ部の熱処理が行なわれ、これによりキャパシタ部の信頼性を損なうことなく、ESRの増加を抑制している。 Also in the third embodiment, heat treatment of the capacitor portion is performed before the formation of the substrate wirings 33a and 33b, thereby suppressing an increase in ESR without impairing the reliability of the capacitor portion. Yes.
 しかも、本第3の実施の形態においても、第2の実施の形態と同様、複数の容量発生部を有するキャパシタ部を備えているので、耐電圧を向上させた薄膜キャパシタを形成することができる。また、第4の誘電体層31a、31bをキャパシタ部上に形成しているので、無機絶縁層22成膜時のキャパシタ劣化を防ぐことができ、リーク電流を抑制することが可能となる。 Moreover, since the third embodiment also includes a capacitor section having a plurality of capacitance generating sections, as in the second embodiment, a thin film capacitor with improved withstand voltage can be formed. . Further, since the fourth dielectric layers 31a and 31b are formed on the capacitor portion, it is possible to prevent the capacitor from being deteriorated when the inorganic insulating layer 22 is formed, and to suppress the leakage current.
 そして、これら第2及び第3の実施の形態においても、誘電体層や電極層の積層数、及び誘電体層、電極層、電極配線、基板配線の形成パターンを適宜調整する以外は、第1の実施の形態と同様に製造することができる。 In the second and third embodiments, the first and second embodiments except that the number of laminated dielectric layers and electrode layers and the formation pattern of the dielectric layers, electrode layers, electrode wirings, and substrate wirings are adjusted as appropriate. It can be manufactured in the same manner as in the embodiment.
 図7は本発明の第4の実施の形態を示す誘電体薄膜キャパシタの断面図であって、本第4の実施の形態では、有機絶縁層10上に平坦状に薄膜抵抗42が形成されると共に、第2の電極層7は電極配線12を介して薄膜抵抗42と電気的に接続されている。さらに、電極配線12は上部外部電極を兼ねると共に、薄膜抵抗42は、別の上部外部電極41と電気的に接続されている。 FIG. 7 is a cross-sectional view of a dielectric thin film capacitor showing a fourth embodiment of the present invention. In the fourth embodiment, a thin film resistor 42 is formed flat on the organic insulating layer 10. At the same time, the second electrode layer 7 is electrically connected to the thin film resistor 42 via the electrode wiring 12. Further, the electrode wiring 12 also serves as an upper external electrode, and the thin film resistor 42 is electrically connected to another upper external electrode 41.
 すなわち、この第4の実施の形態は、第1の実施の形態と同様、導電性基板1の一方の主面にはSiO等からなる拡散防止層2が形成されると共に、該拡散防止層2の表面には密着層3が形成され、さらに、該密着層3の表面には第1の電極層5、誘電体層6及び第2の電極層7からなるキャパシタ部4が形成されている。 That is, in the fourth embodiment, similarly to the first embodiment, a diffusion prevention layer 2 made of SiO 2 or the like is formed on one main surface of the conductive substrate 1, and the diffusion prevention layer is formed. An adhesion layer 3 is formed on the surface 2, and a capacitor portion 4 including a first electrode layer 5, a dielectric layer 6, and a second electrode layer 7 is formed on the surface of the adhesion layer 3. .
 また、キャパシタ部4は、第1の実施の形態と同様、無機絶縁層9と有機絶縁層10とからなる絶縁層8で被覆されている。 Further, the capacitor portion 4 is covered with an insulating layer 8 composed of an inorganic insulating layer 9 and an organic insulating layer 10 as in the first embodiment.
 また、基板配線11及び電極配線12も、第1の実施の形態と略同様の形状に形成され、第1の電極層5は基板配線11に接続されると共に、第2の電極層7は電極配線12に接続されている。ただし、この第4の実施の形態では、電極配線12は、上述したように上部外部電極を兼ねている。 The substrate wiring 11 and the electrode wiring 12 are also formed in substantially the same shape as in the first embodiment, and the first electrode layer 5 is connected to the substrate wiring 11 and the second electrode layer 7 is an electrode. It is connected to the wiring 12. However, in the fourth embodiment, the electrode wiring 12 also serves as the upper external electrode as described above.
 そして、有機絶縁層10の表面には、別の上部外部電極41が形成され、この上部外部電極41と電極配線12とが薄膜抵抗42を介して電気的に接続されている。 Further, another upper external electrode 41 is formed on the surface of the organic insulating layer 10, and the upper external electrode 41 and the electrode wiring 12 are electrically connected via a thin film resistor 42.
 そして、導電性基板1は、電極配線12及び上部外部電極41の部分を除き、全体が保護樹脂層43で被覆されている。 The conductive substrate 1 is entirely covered with a protective resin layer 43 except for the electrode wiring 12 and the upper external electrode 41.
 次に、上記第4の実施の形態の製造方法を、図8及び図9に基づき詳述する。 Next, the manufacturing method according to the fourth embodiment will be described in detail with reference to FIGS.
 まず、第1の実施の形態と同様、導電性基板1上に拡散防止層2、密着層3、第1の電極層5、誘電体層6、及び第2の電極層6を順次形成し、周知のフォトリソグラフィー技術及びアルゴンイオンミリング法等を使用して所定パターンにエッチングし、キャパシタ部4を形成する。そして、誘電体層6の誘電特性を向上させるためにキャパシタ部4を酸素含有雰囲気中で熱処理する。次いで、キャパシタ部4を被覆するように無機絶縁層9、有機絶縁層10からなる絶縁層8を形成し、反応性イオンエッチング法により無機絶縁層9を加工する。そして、図8(a)に示すように、孔19、20を形成し、第1及び第2の電極層5、7の一部を表面露出させる。 First, as in the first embodiment, the diffusion prevention layer 2, the adhesion layer 3, the first electrode layer 5, the dielectric layer 6, and the second electrode layer 6 are sequentially formed on the conductive substrate 1, The capacitor portion 4 is formed by etching into a predetermined pattern using a known photolithography technique and an argon ion milling method. And in order to improve the dielectric characteristic of the dielectric material layer 6, the capacitor | condenser part 4 is heat-processed in oxygen-containing atmosphere. Next, an insulating layer 8 composed of an inorganic insulating layer 9 and an organic insulating layer 10 is formed so as to cover the capacitor portion 4, and the inorganic insulating layer 9 is processed by a reactive ion etching method. And as shown to Fig.8 (a), the holes 19 and 20 are formed and a part of 1st and 2nd electrode layers 5 and 7 are surface-exposed.
 次に、図8(b)に示すように、スパッタ法により膜厚40~60nmのTaNやNi-Cr合金からなる薄膜層を成膜する。次に、フォトレジストを塗布して所定のレジストパターンを形成した後、反応性イオンエッチングにより所定領域をエッチング除去し、薄膜抵抗42を形成し、その後、フォトレジストを溶解除去する。 Next, as shown in FIG. 8B, a thin film layer made of TaN or Ni—Cr alloy having a film thickness of 40 to 60 nm is formed by sputtering. Next, after applying a photoresist to form a predetermined resist pattern, a predetermined region is etched away by reactive ion etching to form a thin film resistor 42, and then the photoresist is dissolved and removed.
 次いで、再び、フォトレジストを塗布して所定のレジストパターンを形成した後、バッファードフッ酸で拡散防止層2の一部を溶解除去し、導電性基板1の一部を表面露出させる。 Next, after applying a photoresist again to form a predetermined resist pattern, a part of the diffusion preventing layer 2 is dissolved and removed with buffered hydrofluoric acid, and a part of the conductive substrate 1 is exposed on the surface.
 その後、真空蒸着法により導電性基板1の表面露出部分に例えば膜厚300nmのAuを成膜させた後、リフトオフ法によりフォトレジストを除去し、図8(c)に示すように、第1の接続電極14を形成する。 Thereafter, Au having a film thickness of 300 nm, for example, is formed on the surface exposed portion of the conductive substrate 1 by a vacuum deposition method, and then the photoresist is removed by a lift-off method. As shown in FIG. A connection electrode 14 is formed.
 次に、スパッタ法により膜厚100nmのTi層及び膜厚500nmのAu層を成膜し、次いで、フォトレジストを塗布してレジストパターンを形成し、ウェットエッチングによりAu層及びTi層を加工し、フォトレジストを除去し、これにより、図9(d)に示すように、基板配線11、電極配線12及び上部外部電極41を形成する。その後、空気中、370℃で30分間熱処理し、薄膜抵抗42を酸化させ、安定化処理を行なう。 Next, a 100 nm thick Ti layer and a 500 nm thick Au layer are formed by sputtering, then a photoresist is applied to form a resist pattern, and the Au layer and Ti layer are processed by wet etching. The photoresist is removed, thereby forming the substrate wiring 11, the electrode wiring 12, and the upper external electrode 41 as shown in FIG. 9D. Thereafter, heat treatment is performed in air at 370 ° C. for 30 minutes to oxidize the thin film resistor 42 and perform stabilization treatment.
 その後、第1の実施の形態と同様の方法・手順により、図9(e)に示すように、上部外部電極41及び電極配線12を除く全体を覆うように保護樹脂層43で被覆する。 Thereafter, as shown in FIG. 9 (e), the protective resin layer 43 is covered so as to cover the whole except for the upper external electrode 41 and the electrode wiring 12 by the same method and procedure as in the first embodiment.
 次に、第1の実施の形態と同様の方法・手順で、図9(f)に示すように、導電性基板1の他方の主面上に第2の接続電極16を形成し、第2の接続電極16上に下部外部電極17を形成する。 Next, as shown in FIG. 9F, the second connection electrode 16 is formed on the other main surface of the conductive substrate 1 by the same method and procedure as in the first embodiment, and the second A lower external electrode 17 is formed on the connection electrode 16.
 このように本第4の実施の形態では、第1の実施の形態の作用効果に加え、薄膜抵抗42を付加することにより、抵抗機能を複合させた高容量・高信頼性・低ESRの薄膜キャパシタを実現することが可能となる。 As described above, in the fourth embodiment, in addition to the function and effect of the first embodiment, a thin film resistor 42 is added, so that a thin film having a high capacity, high reliability, and low ESR combined with a resistance function. A capacitor can be realized.
 また、薄膜抵抗をキャパシタ部4上に形成しているので、素子の大型化を招くのを極力回避できる。 In addition, since the thin film resistor is formed on the capacitor portion 4, it is possible to avoid the increase in the size of the element as much as possible.
 また、薄膜抵抗42を平坦状に形成しているので、抵抗値にバラツキが生じるのを抑制することができる。 Further, since the thin film resistor 42 is formed in a flat shape, it is possible to suppress variation in the resistance value.
 図10は、第5の実施の形態を示す誘電体薄膜キャパシタの断面図である。 FIG. 10 is a cross-sectional view of a dielectric thin film capacitor showing a fifth embodiment.
 すなわち、この第5の実施の形態では、拡散防止層2上に薄膜抵抗46を形成し、電極配線47と上部外部電極45とが拡散防止層2の面上で前記薄膜抵抗46と電気的に接続されている。 That is, in the fifth embodiment, the thin film resistor 46 is formed on the diffusion preventing layer 2, and the electrode wiring 47 and the upper external electrode 45 are electrically connected to the thin film resistor 46 on the surface of the diffusion preventing layer 2. It is connected.
 この第5の実施の形態のように拡散防止層2上に薄膜抵抗46を形成した場合であっても、第1の実施の形態の作用効果に加え、薄膜抵抗46を付加することにより、抵抗機能を複合させた高容量・高信頼性・低ESRの薄膜キャパシタを実現することが可能となる。 Even in the case where the thin film resistor 46 is formed on the diffusion prevention layer 2 as in the fifth embodiment, the thin film resistor 46 is added in addition to the function and effect of the first embodiment. It is possible to realize a high-capacity, high-reliability, low-ESR thin-film capacitor that combines functions.
 また、第4の実施の形態と同様、薄膜抵抗46を平坦状に形成しているので、抵抗値にバラツキが生じるのを抑制することができる。 Also, as in the fourth embodiment, since the thin film resistor 46 is formed in a flat shape, it is possible to suppress variation in resistance value.
 図11は第6の実施の形態を示す誘電体薄膜キャパシタの断面図である。 FIG. 11 is a cross-sectional view of a dielectric thin film capacitor showing a sixth embodiment.
 本第6の実施の形態は、キャパシタ部が第3の実施の形態と略同様の構造を有している。 In the sixth embodiment, the capacitor section has a structure substantially similar to that of the third embodiment.
 すなわち、導電性基板1上に形成された拡散防止層2上に密着層48、第1の電極層49、及び第1の誘電体層50が順次形成され、この第1の誘電体層50上に電極層と誘電体層とが交互に積層されてキャパシタ部を形成している。 That is, the adhesion layer 48, the first electrode layer 49, and the first dielectric layer 50 are sequentially formed on the diffusion prevention layer 2 formed on the conductive substrate 1, and the first dielectric layer 50 is formed on the first dielectric layer 50. Electrode layers and dielectric layers are alternately stacked to form a capacitor portion.
 すなわち、前記第1の誘電体層50上に、無機絶縁層51を挟んで第2の電極層52a、52b、第2の誘電体層53a、53b、第3の電極層54a、54b、第3の誘電体層55a、55b、及び第4の電極層56a、56b、第4の誘電体層57a、57b、及び第5の電極層58a、58bが順次積層され、これら第1~第4の誘電体層50、53a、53b、55a、55b、57a、57b及び第1~第5の電極層49、52a、52b、54a、54b、56a、56b、58a、58bでキャパシタ部を形成している。そして、第5の電極層58a、58b上に第5の誘電体層59a、59bが形成され、無機絶縁層51は上面が有機絶縁層60で被覆されている。 That is, on the first dielectric layer 50, the second electrode layers 52a, 52b, the second dielectric layers 53a, 53b, the third electrode layers 54a, 54b, the third, with the inorganic insulating layer 51 interposed therebetween. The dielectric layers 55a and 55b, the fourth electrode layers 56a and 56b, the fourth dielectric layers 57a and 57b, and the fifth electrode layers 58a and 58b are sequentially stacked, and the first to fourth dielectric layers are sequentially stacked. The body layers 50, 53a, 53b, 55a, 55b, 57a, 57b and the first to fifth electrode layers 49, 52a, 52b, 54a, 54b, 56a, 56b, 58a, 58b form a capacitor portion. Then, fifth dielectric layers 59 a and 59 b are formed on the fifth electrode layers 58 a and 58 b, and the upper surface of the inorganic insulating layer 51 is covered with the organic insulating layer 60.
 そして、基板配線61及び電極配線62、63は第4の実施の形態と略同様の形状とされ、第1の電極層49が基板配線11を介して第1の接続電極14に接続されると共に、第5の電極層58a、58bが上部外部電極を兼ねる電極配線63、62とそれぞれ電気的に接続されている。 The substrate wiring 61 and the electrode wirings 62 and 63 have substantially the same shape as that of the fourth embodiment, and the first electrode layer 49 is connected to the first connection electrode 14 via the substrate wiring 11. The fifth electrode layers 58a and 58b are electrically connected to electrode wirings 63 and 62 that also serve as upper external electrodes, respectively.
 そして、有機絶縁層60上に薄膜抵抗64が形成され、該薄膜抵抗64には電極配線63及び上部外部電極65が電気的に接続され、これにより第5の電極層58は電極配線63及び薄膜抵抗64を介して上部外部電極65と電気的に接続されている。 A thin film resistor 64 is formed on the organic insulating layer 60, and the electrode wiring 63 and the upper external electrode 65 are electrically connected to the thin film resistance 64, whereby the fifth electrode layer 58 is connected to the electrode wiring 63 and the thin film. The upper external electrode 65 is electrically connected through the resistor 64.
 このように本第6の実施の形態においても、第1の実施の形態の作用効果に加え、薄膜抵抗64を付加することにより、抵抗機能を複合させた高容量・高信頼性・低ESRの薄膜キャパシタを実現することが可能となる。 As described above, also in the sixth embodiment, in addition to the function and effect of the first embodiment, by adding the thin film resistor 64, the high-capacity, high reliability, and low ESR combined with the resistance function are achieved. A thin film capacitor can be realized.
 また、薄膜抵抗64をキャパシタ部上に形成しているので、素子の大型化を招くのを極力回避できる。 Further, since the thin film resistor 64 is formed on the capacitor portion, it is possible to avoid the increase in size of the element as much as possible.
 また、薄膜抵抗64を平坦状に形成しているので、抵抗値にバラツキが生じるのを抑制することができる。 Further, since the thin film resistor 64 is formed in a flat shape, it is possible to suppress the variation in the resistance value.
 尚、本発明は上記実施の形態に限定されるものではない。本発明は上述のように種々の変形例が可能であるが、上記各実施の形態で述べた成膜方法・成膜条件や膜厚等は例示であり、これらの方法・条件・膜厚に限定されるものではない。また、複数個分をまとめて製造する場合には、ダイシング等により個別に分割すればよいのはいうまでもない。 The present invention is not limited to the above embodiment. Although the present invention can be modified in various ways as described above, the film formation method, film formation conditions, film thickness, etc. described in the above embodiments are exemplifications. It is not limited. Needless to say, when a plurality of parts are manufactured together, they may be divided individually by dicing or the like.
 導電性基板の両側に外部電極を有する誘電体薄膜キャパシタであっても、キャパシタとしての信頼性を損なうことなく、ESRの増加を抑制できる。 Even in the case of a dielectric thin film capacitor having external electrodes on both sides of a conductive substrate, an increase in ESR can be suppressed without impairing the reliability of the capacitor.
 1 導電性基板
 4、21a、21b キャパシタ部
 5、7 電極層
 6 誘電体層
 8 絶縁層
 11、33、61 基板配線
 12、47、62、63 電極配線、
 15、41、45 上部外部電極(第1の外部電極)
 17 下部外部電極(第2の外部電極) 
 24、26、28、30 電極層
 25、27、29 誘電体層
 42、46、64 薄膜抵抗
 49、52、54、56、58 電極層
 50、53、55、57、59 誘電体層
DESCRIPTION OF SYMBOLS 1 Conductive substrate 4, 21a, 21b Capacitor part 5, 7 Electrode layer 6 Dielectric layer 8 Insulating layer 11, 33, 61 Substrate wiring 12, 47, 62, 63 Electrode wiring,
15, 41, 45 Upper external electrode (first external electrode)
17 Lower external electrode (second external electrode)
24, 26, 28, 30 Electrode layer 25, 27, 29 Dielectric layer 42, 46, 64 Thin film resistor 49, 52, 54, 56, 58 Electrode layer 50, 53, 55, 57, 59 Dielectric layer

Claims (9)

  1.  導電性基板の一方の主面側に少なくとも一つの第1の外部電極を形成し、前記導電性基板の他方の主面側に第2の外部電極を形成した誘電体薄膜キャパシタの製造方法であって、
     誘電体層の上下両面に電極層が形成された少なくとも一つ以上の容量発生部を有するキャパシタ部を前記導電性基板の前記一方の主面上に形成するキャパシタ部形成工程と、
     前記電極層のうちの一方の極となるべき電極層と前記導電性基板とを電気的に接続する基板配線を形成する配線形成工程とを有し、
     前記キャパシタ形成工程と前記配線形成工程との間に前記キャパシタ部を熱処理する熱処理工程を含んでいることを特徴とする誘電体薄膜キャパシタの製造方法。
    A method of manufacturing a dielectric thin film capacitor in which at least one first external electrode is formed on one main surface side of a conductive substrate and a second external electrode is formed on the other main surface side of the conductive substrate. And
    Forming a capacitor portion having at least one capacitance generating portion having electrode layers formed on both upper and lower surfaces of the dielectric layer on the one main surface of the conductive substrate; and
    A wiring forming step of forming a substrate wiring that electrically connects the electrode layer to be one of the electrode layers and the conductive substrate;
    A method of manufacturing a dielectric thin film capacitor, comprising a heat treatment step of heat treating the capacitor portion between the capacitor formation step and the wiring formation step.
  2.  前記熱処理工程と前記配線形成工程との間に前記キャパシタ部を絶縁層で被覆する絶縁層形成工程を有し、前記基板配線の少なくとも一部を前記絶縁層上に形成することを特徴とする請求項1記載の誘電体薄膜キャパシタの製造方法。 An insulating layer forming step of covering the capacitor portion with an insulating layer between the heat treatment step and the wiring forming step, wherein at least a part of the substrate wiring is formed on the insulating layer. Item 2. A method for producing a dielectric thin film capacitor according to Item 1.
  3.  前記キャパシタ部と電気的に接続された薄膜抵抗を形成する薄膜抵抗形成工程を前記熱処理工程と前記配線形成工程との間に有していることを特徴とする請求項1記載又は請求項2記載の誘電体薄膜キャパシタの製造方法。 The thin film resistor forming step for forming a thin film resistor electrically connected to the capacitor portion is provided between the heat treatment step and the wiring forming step. Of manufacturing a dielectric thin film capacitor.
  4.  前記薄膜抵抗形成工程は、前記薄膜抵抗を平坦状に形成することを特徴とする請求項3記載の誘電体薄膜キャパシタの製造方法。 4. The method of manufacturing a dielectric thin film capacitor according to claim 3, wherein the thin film resistor forming step forms the thin film resistor in a flat shape.
  5.  導電性基板の一方の主面側に少なくとも一つの第1の外部電極が形成されると共に、前記導電性基板の他方の主面側に第2の外部電極が形成された誘電体薄膜キャパシタであって、
     誘電体層の上下両面に電極層を有する少なくとも一つ以上の容量発生部を備えたキャパシタ部が、前記導電性基板の前記一方の主面上に形成されると共に、
     前記電極層のうちの一方の極となるべき電極層が、基板配線及び前記導電性基板を介して前記第2の外部電極と電気的に接続され、かつ、他方の極となるべき電極層が、前記第1の外部電極と電気的に接続され、
     前記キャパシタ部が熱処理されてなると共に、少なくとも前記基板配線は、前記熱処理後に形成されることを特徴とする誘電体薄膜キャパシタ。
    A dielectric thin film capacitor in which at least one first external electrode is formed on one main surface side of a conductive substrate and a second external electrode is formed on the other main surface side of the conductive substrate. And
    A capacitor unit including at least one capacitance generating unit having electrode layers on both upper and lower surfaces of the dielectric layer is formed on the one main surface of the conductive substrate;
    An electrode layer to be one of the electrode layers is electrically connected to the second external electrode through a substrate wiring and the conductive substrate, and an electrode layer to be the other electrode , Electrically connected to the first external electrode,
    The dielectric thin film capacitor, wherein the capacitor portion is heat-treated, and at least the substrate wiring is formed after the heat treatment.
  6.  前記キャパシタ部が絶縁層で被覆されると共に、前記基板配線の少なくも一部が前記絶縁層上に形成されていることを特徴とする請求項5記載の誘電体薄膜キャパシタ。 6. The dielectric thin film capacitor according to claim 5, wherein the capacitor portion is covered with an insulating layer, and at least a part of the substrate wiring is formed on the insulating layer.
  7.  薄膜抵抗が、前記他方の極となるべき電極層と電気的に接続されるように形成されていることを特徴とする請求項5又は請求項6記載の誘電体薄膜キャパシタ。 7. The dielectric thin film capacitor according to claim 5, wherein a thin film resistor is formed so as to be electrically connected to the electrode layer to be the other electrode.
  8.  前記薄膜抵抗は、キャパシタ部上に形成されていることを特徴とする請求項7記載の誘電体薄膜キャパシタ。 8. The dielectric thin film capacitor according to claim 7, wherein the thin film resistor is formed on a capacitor portion.
  9.  前記薄膜抵抗は、平坦状に形成されていることを特徴とする請求項7又は請求項8記載の誘電体薄膜キャパシタ。 9. The dielectric thin film capacitor according to claim 7, wherein the thin film resistor is formed in a flat shape.
PCT/JP2009/002090 2008-08-04 2009-05-13 Manufacturing method of dielectric thin-film capacitor and dielectric thin-film capacitor WO2010016171A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010523721A JP5348565B2 (en) 2008-08-04 2009-05-13 Dielectric thin film capacitor manufacturing method and dielectric thin film capacitor
CN2009801311664A CN102113113A (en) 2008-08-04 2009-05-13 Manufacturing method of dielectric thin-film capacitor and dielectric thin-film capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008200958 2008-08-04
JP2008-200958 2008-08-04

Publications (1)

Publication Number Publication Date
WO2010016171A1 true WO2010016171A1 (en) 2010-02-11

Family

ID=41663400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002090 WO2010016171A1 (en) 2008-08-04 2009-05-13 Manufacturing method of dielectric thin-film capacitor and dielectric thin-film capacitor

Country Status (3)

Country Link
JP (1) JP5348565B2 (en)
CN (1) CN102113113A (en)
WO (1) WO2010016171A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021529A1 (en) * 2014-08-06 2016-02-11 株式会社村田製作所 Composite electronic component
WO2017057422A1 (en) * 2015-10-02 2017-04-06 株式会社村田製作所 Thin film lc component and mounting structure of same
KR20180016228A (en) * 2016-08-05 2018-02-14 삼성전기주식회사 Thin-film ceramic capacitor
JP2019106485A (en) * 2017-12-13 2019-06-27 富士電機株式会社 Resistive element and method for manufacturing the same
US10468187B2 (en) 2016-08-05 2019-11-05 Samsung Electro-Mechanics Co., Ltd. Thin-film ceramic capacitor having capacitance forming portions separated by separation slit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219318B (en) * 2013-04-12 2015-07-08 中国电子科技集团公司第十三研究所 High-temperature-resistant MIM capacitor for microwave internal matching transistor and manufacturing method thereof
WO2018083973A1 (en) * 2016-11-02 2018-05-11 株式会社村田製作所 Capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022464A (en) * 1996-07-03 1998-01-23 Matsushita Electron Corp Semiconductor device and manufacture thereof
JPH1041485A (en) * 1996-07-26 1998-02-13 Hitachi Ltd Semiconductor device and production of the same
JPH10321803A (en) * 1997-05-23 1998-12-04 Mitsubishi Materials Corp Thin film capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022464A (en) * 1996-07-03 1998-01-23 Matsushita Electron Corp Semiconductor device and manufacture thereof
JPH1041485A (en) * 1996-07-26 1998-02-13 Hitachi Ltd Semiconductor device and production of the same
JPH10321803A (en) * 1997-05-23 1998-12-04 Mitsubishi Materials Corp Thin film capacitor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5924461B1 (en) * 2014-08-06 2016-05-25 株式会社村田製作所 Composite electronic components
WO2016021529A1 (en) * 2014-08-06 2016-02-11 株式会社村田製作所 Composite electronic component
US10290425B2 (en) 2014-08-06 2019-05-14 Murata Manufacturing Co., Ltd. Composite electronic component
JP2020145475A (en) * 2015-10-02 2020-09-10 株式会社村田製作所 Thin film lc component and mounting structure of the same
WO2017057422A1 (en) * 2015-10-02 2017-04-06 株式会社村田製作所 Thin film lc component and mounting structure of same
JPWO2017057422A1 (en) * 2015-10-02 2018-04-19 株式会社村田製作所 Thin film type LC component and its mounting structure
JP7052824B2 (en) 2015-10-02 2022-04-12 株式会社村田製作所 Thin-film LC component and its mounting structure
KR20180016228A (en) * 2016-08-05 2018-02-14 삼성전기주식회사 Thin-film ceramic capacitor
US10468187B2 (en) 2016-08-05 2019-11-05 Samsung Electro-Mechanics Co., Ltd. Thin-film ceramic capacitor having capacitance forming portions separated by separation slit
US10720280B2 (en) 2016-08-05 2020-07-21 Samsung Electro-Mechanics Co., Ltd. Thin-film ceramic capacitor having capacitance forming portions separated by separation slit
KR101912282B1 (en) * 2016-08-05 2018-10-29 삼성전기 주식회사 Thin-film ceramic capacitor
JP2019106485A (en) * 2017-12-13 2019-06-27 富士電機株式会社 Resistive element and method for manufacturing the same
JP7039982B2 (en) 2017-12-13 2022-03-23 富士電機株式会社 Resistor element and its manufacturing method

Also Published As

Publication number Publication date
CN102113113A (en) 2011-06-29
JP5348565B2 (en) 2013-11-20
JPWO2010016171A1 (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP4525947B2 (en) Thin film capacitor manufacturing method
JP5348565B2 (en) Dielectric thin film capacitor manufacturing method and dielectric thin film capacitor
US9018732B2 (en) Dielectric thin film element and method for producing the same
US7026680B2 (en) Thin film capacitive element, method for producing same and electronic device
US9460859B2 (en) Dielectric thin film element, antifuse element, and method of producing dielectric thin film element
JPH05299578A (en) Semiconductor device and manufacture thereof
JP5267251B2 (en) Thin film capacitor and method of manufacturing thin film capacitor
JP5299158B2 (en) Dielectric thin film element
JP5803731B2 (en) Thin film element
JP2009010114A (en) Dielectric thin-film capacitor
JP5098422B2 (en) Thin film electronic components
JP4002916B2 (en) Semiconductor device and manufacturing method thereof
JP7238771B2 (en) Thin film capacitor and method for manufacturing thin film capacitor
US11114248B2 (en) Thin film capacitor and manufacturing method thereof
JP2005203680A (en) Method of manufacturing interposer capacitor
JP4864313B2 (en) Thin film capacitor substrate, manufacturing method thereof, and semiconductor device
WO2017094835A1 (en) Thin-film device and method for manufacturing thin-film device
JP2019165069A (en) Thin film capacitor and manufacturing method thereof
JP6232845B2 (en) Wiring connection structure and dielectric thin film capacitor having the wiring connection structure
JP2007221156A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131166.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804658

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010523721

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804658

Country of ref document: EP

Kind code of ref document: A1