JP5098422B2 - Thin film electronic components - Google Patents

Thin film electronic components Download PDF

Info

Publication number
JP5098422B2
JP5098422B2 JP2007118947A JP2007118947A JP5098422B2 JP 5098422 B2 JP5098422 B2 JP 5098422B2 JP 2007118947 A JP2007118947 A JP 2007118947A JP 2007118947 A JP2007118947 A JP 2007118947A JP 5098422 B2 JP5098422 B2 JP 5098422B2
Authority
JP
Japan
Prior art keywords
thin film
layer
electrode layer
film electrode
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007118947A
Other languages
Japanese (ja)
Other versions
JP2008277520A (en
Inventor
健 稲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2007118947A priority Critical patent/JP5098422B2/en
Publication of JP2008277520A publication Critical patent/JP2008277520A/en
Application granted granted Critical
Publication of JP5098422B2 publication Critical patent/JP5098422B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は電子部品に関し、詳しくは、薄膜電極層と、それを被覆する絶縁層と、絶縁層を経て薄膜電極層と導通する引出電極とを備えた構造を有する薄膜電子部品に関する。   The present invention relates to an electronic component, and more particularly to a thin film electronic component having a structure including a thin film electrode layer, an insulating layer covering the thin film electrode layer, and an extraction electrode that is electrically connected to the thin film electrode layer through the insulating layer.

電子機器に広く使用される電子部品の一つにキャパシタがあり、電子機器の小型化にともなって、例えば、図12に示すような構成を有する薄膜キャパシタが提案されている(特許文献1参照)。   One of electronic parts widely used in electronic equipment is a capacitor. As electronic equipment is miniaturized, for example, a thin film capacitor having a configuration as shown in FIG. 12 has been proposed (see Patent Document 1). .

この薄膜キャパシタ60は、例えばシリコン基板などの基板51上に、キャパシタ構造体61を設けたものであり、キャパシタ構造体61は、基板51の側から順に、例えばPt電極などの下部薄膜電極層52、例えば(BaSrY)TiO3層などの誘電体層53、Pt電極などの上部薄膜電極層54を備えている。   The thin film capacitor 60 is obtained by providing a capacitor structure 61 on a substrate 51 such as a silicon substrate. The capacitor structure 61 is formed in order from the substrate 51 side, for example, a lower thin film electrode layer 52 such as a Pt electrode. For example, a dielectric layer 53 such as a (BaSrY) TiO 3 layer and an upper thin film electrode layer 54 such as a Pt electrode are provided.

そして、キャパシタ構造体61の上面は、例えばエポキシ樹脂のような絶縁性樹脂から形成された絶縁層55で保護されている。さらに、絶縁層55にはコンタクトホール56及び66が開口されており、それぞれのコンタクトホール56,66には導体金属、例えば銅(Cu)が充填されている。そして、コンタクトホール56及び66の最上面には、それぞれ、引出電極として機能する電極パッド56a及び66aが配設されている。   The upper surface of the capacitor structure 61 is protected by an insulating layer 55 formed of an insulating resin such as an epoxy resin. Further, contact holes 56 and 66 are opened in the insulating layer 55, and the contact holes 56 and 66 are filled with a conductor metal, for example, copper (Cu). Electrode pads 56a and 66a functioning as lead electrodes are disposed on the uppermost surfaces of the contact holes 56 and 66, respectively.

ところで、このような構造を採用した場合、薄型の薄膜キャパシタを得ることが可能になるが、下部薄膜電極層52,誘電体層53、上部薄膜電極層54、絶縁層55、電極パッド56a、66aの各層の熱膨張係数などの差によって発生する応力が、下部薄膜電極層52及び上部薄膜電極層54の特定の部分、具体的には電極パッド56a,66aと下部薄膜電極層52及び上部薄膜電極層54の接合部の外周部(すなわち電極パッド56a,66aの外周下端部)と絶縁層55の境界部Aおよびその近傍に集中して発生する。そして、この応力集中により、下部薄膜電極層52、上部薄膜電極層54、下部薄膜電極層52と上部薄膜電極層54の間に位置する誘電体層53などが損傷する場合が生じるとともに、耐湿性や耐熱衝撃性の低下が生じるという問題点がある。   By the way, when such a structure is adopted, a thin thin film capacitor can be obtained, but the lower thin film electrode layer 52, the dielectric layer 53, the upper thin film electrode layer 54, the insulating layer 55, and the electrode pads 56a and 66a. The stress generated by the difference in the coefficient of thermal expansion of each of the layers is a specific portion of the lower thin film electrode layer 52 and the upper thin film electrode layer 54, specifically, the electrode pads 56a and 66a and the lower thin film electrode layer 52 and the upper thin film electrode. It is concentrated on the outer peripheral portion of the bonding portion of the layer 54 (that is, the lower end portion of the outer periphery of the electrode pads 56a and 66a) and the boundary portion A of the insulating layer 55 and its vicinity. This stress concentration may cause damage to the lower thin film electrode layer 52, the upper thin film electrode layer 54, the dielectric layer 53 positioned between the lower thin film electrode layer 52 and the upper thin film electrode layer 54, and moisture resistance. And there is a problem that the thermal shock resistance is lowered.

この応力集中に対する耐性を高めるためには薄膜電極層の厚さを厚くすることが有効であるが、例えば、上記のような薄膜キャパシタの場合、薄膜誘電体層を成膜するときの高温酸化雰囲気に耐えられるように電極材料として、通常は、Ptなどの貴金属が用いられるため、薄膜電極層の厚さを厚くすると材料コストが増大するという問題点がある。   In order to increase the resistance to this stress concentration, it is effective to increase the thickness of the thin film electrode layer. For example, in the case of the thin film capacitor as described above, a high temperature oxidizing atmosphere is used when forming the thin film dielectric layer. In general, a noble metal such as Pt is used as the electrode material so that it can withstand the temperature, and therefore, there is a problem that the material cost increases when the thickness of the thin film electrode layer is increased.

また、引出電極との接続部だけ下部薄膜電極層及び上部薄膜電極層の厚さを厚くすることも考えられるが、その場合には厚さを厚くした部分、すなわち構造変化のある部分に応力集中が生じ、根本的な問題の解決にはならないという問題点がある。
特開2004−281446号公報
It is also conceivable to increase the thickness of the lower thin film electrode layer and the upper thin film electrode layer only at the connection with the extraction electrode, but in that case, stress concentration is applied to the thickened portion, that is, the portion where the structure has changed. The problem is that it does not solve the fundamental problem.
JP 2004-281446 A

本発明は、上記課題を解決するものであり、引出電極と薄膜電極層の接続部及びその近傍への応力の集中を抑制することが可能で、薄膜電極層などがダメージを受けるおそれが少なく信頼性の高い薄膜電子部品を提供することを目的とする。   The present invention solves the above-described problems, and can suppress the concentration of stress at the connection portion between the extraction electrode and the thin film electrode layer and the vicinity thereof, and the thin film electrode layer is less likely to be damaged and is reliable. An object of the present invention is to provide a thin film electronic component having high performance.

上記課題を解決するために、本発明の第1の薄膜電子部品は、薄膜電極層と、前記薄膜電極層上に配設され、所定の位置に前記薄膜電極層にまで達する貫通孔を備えた絶縁層と、導電性を有する材料からなり、前記貫通孔の底部となる前記薄膜電極層の露出部に配設され、外周面が傾斜して裾広がりのテーパ形状を有する緩衝層と、前記絶縁層の上面から、前記貫通孔の内周面を経て前記緩衝層にまで達し、前記緩衝層を介して前記薄膜電極層と電気的に接続する引出電極とを具備し、前記緩衝層の外周面と底面のなす角度が30°以下であり、かつ、前記緩衝層の厚みが200nm以下であることを特徴としている。 In order to solve the above problems, a first thin-film electronic component of the present invention includes a thin-film electrode layer and a through-hole disposed on the thin-film electrode layer and reaching the thin-film electrode layer at a predetermined position. An insulating layer, and a buffer layer made of a conductive material, disposed at an exposed portion of the thin film electrode layer that forms the bottom of the through-hole, and has a tapered shape with an inclined outer peripheral surface and an expanded hem; and the insulation An extraction electrode that reaches from the upper surface of the layer to the buffer layer through the inner peripheral surface of the through hole and is electrically connected to the thin film electrode layer through the buffer layer, and the outer peripheral surface of the buffer layer And the bottom surface has an angle of 30 ° or less, and the buffer layer has a thickness of 200 nm or less .

また、本発明の第2の薄膜電子部品は、下部薄膜電極層と、前記下部薄膜電極層上に形成された薄膜誘電体層と、前記薄膜誘電層上に形成された上部薄膜電極層と、前記下部薄膜電極層及び前記上部薄膜電極層を覆うように配設され、所定の位置に前記下部薄膜電極層にまで達する第1の貫通孔、及び前記上部部薄膜電極層にまで達する第2の貫通孔とが配設された絶縁層と、導電性を有する材料からなり、前記第1の貫通孔の底部となる前記下部薄膜電極層の露出部に配設され、外周面が傾斜して裾広がりのテーパ形状を有する第1の緩衝層と、導電性を有する材料からなり、前記第2の貫通孔の底部となる前記上部薄膜電極層の露出部に配設され、外周面が傾斜して裾広がりのテーパ形状を有する第2の緩衝層と、前記絶縁層の上面から、前記第1の貫通孔の内周面を経て前記第1の緩衝層にまで達し、前記第1の緩衝層を介して前記下部薄膜電極層と電気的に接続する第1の引出電極、及び前記第2の貫通孔の内周面を経て前記第2の緩衝層にまで達し、前記第2の緩衝層を介して前記上部薄膜電極層と電気的に接続する第2の引出電極とを具備し、前記緩衝層の外周面と底面のなす角度が30°以下であり、かつ、前記第1および第2の緩衝層の厚みが200nm以下であることを特徴としている。 The second thin film electronic component of the present invention includes a lower thin film electrode layer, a thin film dielectric layer formed on the lower thin film electrode layer, an upper thin film electrode layer formed on the thin film dielectric layer, A first through-hole that is disposed so as to cover the lower thin film electrode layer and the upper thin film electrode layer, reaches the lower thin film electrode layer at a predetermined position, and a second reaches the upper thin film electrode layer An insulating layer provided with a through-hole, and a conductive material, and is provided at an exposed portion of the lower thin-film electrode layer that forms the bottom of the first through-hole. A first buffer layer having an expanding taper shape and a conductive material, disposed on the exposed portion of the upper thin-film electrode layer that forms the bottom of the second through hole, and has an inclined outer peripheral surface A second buffer layer having a taper shape spreading from the bottom and an upper surface of the insulating layer; A first extraction electrode that reaches the first buffer layer through an inner peripheral surface of the first through hole, and is electrically connected to the lower thin film electrode layer via the first buffer layer; and reach the second the second buffer layer through the inner peripheral surface of the through hole of the through the second buffer layer and a second lead electrode connected said to upper thin film electrode layer and the electrically The angle between the outer peripheral surface and the bottom surface of the buffer layer is 30 ° or less, and the thicknesses of the first and second buffer layers are 200 nm or less .

また、本発明の第3の薄膜電子部品は、薄膜電極層と、前記薄膜電極層上に配設され、所定の位置に前記薄膜電極層にまで達する貫通孔を備えた絶縁層と、導電性を有する材料からなり、前記貫通孔の底部となる前記薄膜電極層の露出部に配設され、外周面が傾斜して裾広がりのテーパ形状を有する緩衝層と、前記絶縁層の上面から、前記貫通孔の内周面を経て前記緩衝層にまで達し、前記緩衝層を介して前記薄膜電極層と電気的に接続する引出電極とを具備し、前記緩衝層の外周面と底面のなす角度が15°以下であることを特徴としている。  The third thin-film electronic component of the present invention includes a thin-film electrode layer, an insulating layer provided on the thin-film electrode layer, and having a through hole reaching the thin-film electrode layer at a predetermined position; From the upper surface of the insulating layer, the buffer layer having a tapered shape that is disposed in the exposed portion of the thin-film electrode layer that becomes the bottom of the through hole and has an outer peripheral surface that is inclined and has a tapered shape. An extraction electrode that reaches the buffer layer through the inner peripheral surface of the through hole and is electrically connected to the thin film electrode layer through the buffer layer; and an angle formed between the outer peripheral surface and the bottom surface of the buffer layer is It is characterized by being 15 ° or less.

また、本発明の第4の薄膜電子部品は、下部薄膜電極層と、前記下部薄膜電極層上に形成された薄膜誘電体層と、前記薄膜誘電層上に形成された上部薄膜電極層と、前記下部薄膜電極層及び前記上部薄膜電極層を覆うように配設され、所定の位置に前記下部薄膜電極層にまで達する第1の貫通孔、及び前記上部部薄膜電極層にまで達する第2の貫通孔とが配設された絶縁層と、導電性を有する材料からなり、前記第1の貫通孔の底部となる前記下部薄膜電極層の露出部に配設され、外周面が傾斜して裾広がりのテーパ形状を有する第1の緩衝層と、導電性を有する材料からなり、前記第2の貫通孔の底部となる前記上部薄膜電極層の露出部に配設され、外周面が傾斜して裾広がりのテーパ形状を有する第2の緩衝層と、 前記絶縁層の上面から、前記第1の貫通孔の内周面を経て前記第1の緩衝層にまで達し、前記第1の緩衝層を介して前記下部薄膜電極層と電気的に接続する第1の引出電極、及び前記第2の貫通孔の内周面を経て前記第2の緩衝層にまで達し、前記第2の緩衝層を介して前記上部薄膜電極層と電気的に接続する第2の引出電極とを具備し、前記緩衝層の外周面と底面のなす角度が15°以下であることを特徴としている。  The fourth thin film electronic component of the present invention includes a lower thin film electrode layer, a thin film dielectric layer formed on the lower thin film electrode layer, an upper thin film electrode layer formed on the thin film dielectric layer, A first through-hole that is disposed so as to cover the lower thin film electrode layer and the upper thin film electrode layer, reaches the lower thin film electrode layer at a predetermined position, and a second reaches the upper thin film electrode layer An insulating layer provided with a through-hole, and a conductive material, and is provided at an exposed portion of the lower thin-film electrode layer that forms the bottom of the first through-hole. A first buffer layer having an expanding taper shape and a conductive material, disposed on the exposed portion of the upper thin-film electrode layer that forms the bottom of the second through hole, and has an inclined outer peripheral surface A second buffer layer having a taper shape spreading toward the bottom, and an upper surface of the insulating layer. A first extraction electrode that reaches the first buffer layer through an inner peripheral surface of the first through-hole and is electrically connected to the lower thin film electrode layer through the first buffer layer; A second lead electrode that reaches the second buffer layer through the inner peripheral surface of the second through-hole and is electrically connected to the upper thin film electrode layer via the second buffer layer; The angle formed between the outer peripheral surface and the bottom surface of the buffer layer is 15 ° or less.

また、本発明の薄膜電子部品においては、前記薄膜電極層は貴金属からなり、前記緩衝層は卑金属からなるものであることが望ましい。 In the thin film electronic component of the present invention, it is desirable that the thin film electrode layer is made of a noble metal and the buffer layer is made of a base metal.

また、本発明の薄膜電子部品は、薄膜キャパシタとして構成することができる。   The thin film electronic component of the present invention can be configured as a thin film capacitor.

本発明の薄膜電子部品は、薄膜電極層と、その上に配設された、所定の位置に薄膜電極層にまで達する貫通孔を備えた絶縁層と、貫通孔の底部となる薄膜電極層の露出部に配設され、外周面が傾斜して裾広がりのテーパ形状を有する、導電性材料からなる緩衝層と、絶縁層の上面から、貫通孔の内周面を経て緩衝層にまで達し、緩衝層を介して薄膜電極層と電気的に接続する薄膜引出電極とを備えた構成とされていることから、引出電極と薄膜電極層の接合部及びその近傍(例えば、引出電極と薄膜電極層の接合面の外周部の、引出電極と絶縁層の境界部など)への応力の集中を防止するとともに、応力の集中に起因して薄膜電極層や絶縁層が損傷することを防止して、信頼性の高い薄膜電子部品を提供することが可能になる。 The thin-film electronic component of the present invention includes a thin-film electrode layer, an insulating layer having a through-hole reaching the thin-film electrode layer at a predetermined position, and a thin-film electrode layer serving as a bottom of the through-hole. A buffer layer made of a conductive material, which is disposed in the exposed portion and has an outer peripheral surface that is inclined and has a flared taper shape, and reaches the buffer layer from the upper surface of the insulating layer through the inner peripheral surface of the through hole, Since the thin film extraction electrode electrically connected to the thin film electrode layer via the buffer layer is provided, the junction between the extraction electrode and the thin film electrode layer and the vicinity thereof (for example, the extraction electrode and the thin film electrode layer) In addition to preventing stress concentration on the outer periphery of the joint surface of the lead electrode and the insulating layer, etc., and preventing damage to the thin-film electrode layer and insulating layer due to stress concentration, A highly reliable thin film electronic component can be provided.

すなわち、緩衝層がテーパ形状を有している場合、緩衝層の剛性が緩やかに減少していくため、引出電極と薄膜電極層との接合部及びその近傍に、応力が集中することを抑制して、応力集中に起因する薄膜電極層や絶縁層の損傷を防止することが可能になり、信頼性の高い薄膜電子部品を得ることが可能になる。   In other words, when the buffer layer has a tapered shape, the rigidity of the buffer layer gradually decreases, so that stress is prevented from concentrating at the junction between the extraction electrode and the thin film electrode layer and in the vicinity thereof. Thus, it is possible to prevent damage to the thin film electrode layer and the insulating layer due to stress concentration, and it is possible to obtain a highly reliable thin film electronic component.

また、本発明の薄膜電子部品は、薄膜誘電層を挟むように下部薄膜電極層と上部薄膜電極層が配設され、かつ、引出電極が裾広がりのテーパ形状を有する緩衝層を介して下部薄膜電極層及び上部薄膜電極層に接続された構造を有しているので、引出電極と、下側薄膜電極層及び上側薄膜電極層との接合部及びその近傍に応力が集中することを抑制しつつ、下側薄膜電極層及び上側薄膜電極層に引出電極を確実に接続することが可能になり、応力集中に起因する薄膜電極層や絶縁層の損傷を防止して、信頼性の高い薄膜電子部品を得ることが可能になる。   In the thin film electronic component of the present invention, the lower thin film electrode layer and the upper thin film electrode layer are disposed so as to sandwich the thin film dielectric layer, and the leading electrode extends through a buffer layer having a tapered shape. Since it has a structure connected to the electrode layer and the upper thin film electrode layer, it is possible to suppress stress concentration at the junction between the extraction electrode and the lower thin film electrode layer and the upper thin film electrode layer and in the vicinity thereof. It is possible to connect the extraction electrode to the lower thin film electrode layer and the upper thin film electrode layer with certainty, and prevent damage to the thin film electrode layer and the insulating layer due to stress concentration, thereby providing a highly reliable thin film electronic component. Can be obtained.

また、本発明においては、薄膜電極層として貴金属からなるものを用いることにより、高温酸化雰囲気での熱処理に耐えられる信頼性の高い薄膜電極層を形成することが可能になり、また、緩衝層として卑金属からなるものを用いることにより、コストの低減を図ることが可能になる。
なお、緩衝層として卑金属を用いることができるのは、薄膜誘電体層の形成後に緩衝層を形成するため、緩衝層が高温酸化雰囲気にさらされることがないことによる。
また、前記緩衝層としては、Cuを主成分とする材料を用いることが望ましい。これは、Cuを主成分とする材料が比較的安価で、かつ導電率が高いことによる。
Further, in the present invention, by using a thin film electrode layer made of a noble metal, it becomes possible to form a highly reliable thin film electrode layer that can withstand heat treatment in a high temperature oxidizing atmosphere, and as a buffer layer. By using a base metal, the cost can be reduced.
The reason why the base metal can be used as the buffer layer is that the buffer layer is formed after the formation of the thin film dielectric layer, so that the buffer layer is not exposed to a high-temperature oxidizing atmosphere.
In addition, it is desirable to use a material mainly composed of Cu as the buffer layer. This is because a material containing Cu as a main component is relatively inexpensive and has high conductivity.

また、「緩衝層の外周面と底面のなす角度を30°以下にするとともに、緩衝層の厚みを200nm以下とした場合」、あるいは、「緩衝層の外周面と底面のなす角度を15°以下とした場合」、引出電極と薄膜電極層の接合部及びその近傍(例えば、引出電極と薄膜電極層の接合面の外周部の、引出電極と絶縁層の境界部など)への応力の集中を防止するとともに、応力の集中に起因して薄膜電極層や絶縁層が損傷することを防止して、信頼性の高い薄膜電子部品をより確実に得ることが可能になる。すなわち、「緩衝層の外周面と底面のなす角度を30°以下にするとともに、緩衝層の厚みを200nm以下とした場合」、あるいは、「緩衝層の外周面と底面のなす角度を15°以下とした場合」、緩衝層の剛性がより緩やかに減少することになり、応力の集中をさらに確実に緩和することが可能になる。
ただし、緩衝層の外周面の傾斜角度が小さくなると、制約されたエリア(貫通孔の底部)で所定の厚さを有する領域を所定面積だけ備えた緩衝層を形成することが困難になるため、通常、緩衝層の外周面の傾斜角度は7°以上とすることが望ましい。
Further, “when the angle between the outer peripheral surface and the bottom surface of the buffer layer is 30 ° or less and the thickness of the buffer layer is 200 nm or less” or “the angle between the outer peripheral surface and the bottom surface of the buffer layer is 15 ° or less. The concentration of stress on the junction between the extraction electrode and the thin film electrode layer and in the vicinity thereof (for example, the boundary between the extraction electrode and the insulating layer on the outer periphery of the junction surface between the extraction electrode and the thin film electrode layer). In addition to preventing the damage to the thin film electrode layer and the insulating layer due to the concentration of stress, it is possible to obtain a highly reliable thin film electronic component more reliably. That is, “when the angle between the outer peripheral surface and the bottom surface of the buffer layer is 30 ° or less and the thickness of the buffer layer is 200 nm or less” or “the angle between the outer peripheral surface and the bottom surface of the buffer layer is 15 ° or less. In this case, the rigidity of the buffer layer decreases more gently, and the stress concentration can be more reliably mitigated.
However, if the inclination angle of the outer peripheral surface of the buffer layer becomes small, it becomes difficult to form a buffer layer having a predetermined area only in a predetermined area in a restricted area (bottom of the through hole). Usually, the inclination angle of the outer peripheral surface of the buffer layer is preferably 7 ° or more.

また、請求項2,4の要件を備えた薄膜電子部品は、薄膜キャパシタとして構成することが可能であり、それにより、極めて薄くて大きな静電容量を得ることが可能なキャパシタを提供することが可能になる。 In addition, the thin film electronic component having the requirements of claims 2 and 4 can be configured as a thin film capacitor, thereby providing an extremely thin capacitor capable of obtaining a large capacitance. It becomes possible.

以下に、本発明の実施例を示して、本発明の特徴とするところをさらに詳しく説明する。   Hereinafter, the features of the present invention will be described in more detail with reference to examples of the present invention.

図1は本発明の一実施例にかかる薄膜キャパシタを示す断面図である。
この薄膜キャパシタは、図1に示すように、基板10の表面に形成された下部薄膜電極層1aと、下部薄膜電極層1aの上に形成された薄膜誘電体層2と、薄膜誘電体層2の上に形成された上部薄膜電極層1bと、上部薄膜電極層1bの上に配設された絶縁層4と、緩衝層5(5a)を介して下部薄膜電極層1aと導通する第1の引出電極6aと、緩衝層5(5b)を介して上部薄膜電極層1bと導通する第2の引出電極6bとを備えている。
FIG. 1 is a sectional view showing a thin film capacitor according to an embodiment of the present invention.
As shown in FIG. 1, the thin film capacitor includes a lower thin film electrode layer 1a formed on the surface of the substrate 10, a thin film dielectric layer 2 formed on the lower thin film electrode layer 1a, and a thin film dielectric layer 2 The upper thin film electrode layer 1b formed on the upper thin film electrode layer, the insulating layer 4 disposed on the upper thin film electrode layer 1b, and the first thin film electrode layer 1a conducting through the buffer layer 5 (5a). An extraction electrode 6a and a second extraction electrode 6b electrically connected to the upper thin film electrode layer 1b through the buffer layer 5 (5b) are provided.

なお、第1の引出電極6aは、上部薄膜電極層1bを内周面に露出させずに、絶縁層4、上部薄膜電極層1b、及び薄膜誘電体層2とを貫通して下側薄膜電極層1aにまで達する貫通孔16aを経て第1の緩衝層5aに接続されており、また、第2の引出電極6bは、絶縁層4を貫通して、上側薄膜電極層1bにまで達する貫通孔16bを経て第2の緩衝層5bに接続されている。   The first extraction electrode 6a passes through the insulating layer 4, the upper thin film electrode layer 1b, and the thin film dielectric layer 2 without exposing the upper thin film electrode layer 1b to the inner peripheral surface. The second extraction electrode 6b is connected to the first buffer layer 5a via the through hole 16a reaching the layer 1a, and the second extraction electrode 6b penetrates the insulating layer 4 and reaches the upper thin film electrode layer 1b. It is connected to the second buffer layer 5b through 16b.

上述のような構成を有する薄膜キャパシタにおいては、薄膜誘電体層2を挟むように配設された下部薄膜電極層1aと上部薄膜電極1bとの間に静電容量が発生するように構成されている。   The thin film capacitor having the above-described configuration is configured such that a capacitance is generated between the lower thin film electrode layer 1a and the upper thin film electrode 1b disposed so as to sandwich the thin film dielectric layer 2 therebetween. Yes.

ここで、基板10としてはSi基板が好適に用いられ、表面に熱酸化膜を有するものが好ましい。   Here, as the substrate 10, a Si substrate is preferably used, and a substrate having a thermal oxide film on the surface is preferable.

また、下部薄膜電極層1aおよび上部薄膜電極層1bの構成材料としては、薄膜誘電体層2を形成する際の高温酸化雰囲気に耐えうるように、貴金属や導電性酸化物を用いることが好ましく、例えばPtを用いることが好ましい。   Moreover, as a constituent material of the lower thin film electrode layer 1a and the upper thin film electrode layer 1b, it is preferable to use a noble metal or a conductive oxide so as to withstand a high temperature oxidation atmosphere when forming the thin film dielectric layer 2. For example, it is preferable to use Pt.

絶縁層4は、薄膜電極層と外部との短絡の防止、外部からの機械的な衝撃に対する保護、耐湿性の向上などを目的として設けられているものである。この絶縁層4の好ましい構成材料としては、例えば、ポリイミド樹脂を挙げるができる。   The insulating layer 4 is provided for the purpose of preventing a short circuit between the thin film electrode layer and the outside, protecting against mechanical shock from the outside, improving moisture resistance, and the like. As a preferable constituent material of the insulating layer 4, for example, a polyimide resin can be cited.

引出電極6a,6bは、下部薄膜電極層1aおよび上部薄膜電極層1bに対して外部からの電気的接続を可能ならしめる機能を果たすものであり、その構成材料としては、貴金属、卑金属いずれをも用いることが可能であるが、コストを抑制する見地からは、例えばCuを主たる成分とする卑金属材料を用いることが好ましい。なお、引出電極は薄膜誘電体層の成膜時の高温酸化雰囲気にさらされないことから卑金属を用いることができる。   The extraction electrodes 6a and 6b have a function of enabling electrical connection from the outside to the lower thin film electrode layer 1a and the upper thin film electrode layer 1b, and the constituent materials thereof include both noble metals and base metals. Although it can be used, it is preferable to use, for example, a base metal material containing Cu as a main component from the viewpoint of cost reduction. Note that a base metal can be used because the extraction electrode is not exposed to a high-temperature oxidizing atmosphere when the thin film dielectric layer is formed.

薄膜誘電体層2としては、例えば、チタン酸バリウム系の誘電体セラミックや、チタン酸ストロンチウム系の誘電体セラミック、Ba、Sr、Tiを含む複合酸化物などの種々のセラミック誘電体材料を用いることが可能である。
薄膜誘電体層2はスパッタ法、CVD法(Chemical Vapor Deposition法)や、CSD法(Chemical Solution Deposition法)などの公知の種々の薄膜形成方法により成膜することが可能であるが、製造コストの観点からCSD法を用いて成膜することが好ましい。
As the thin film dielectric layer 2, various ceramic dielectric materials such as barium titanate dielectric ceramic, strontium titanate dielectric ceramic, and complex oxides including Ba, Sr, and Ti are used. Is possible.
The thin film dielectric layer 2 can be formed by various known thin film forming methods such as sputtering, CVD (Chemical Vapor Deposition), CSD (Chemical Solution Deposition), etc. From the viewpoint, it is preferable to form a film using the CSD method.

次に、図2を参照しつつ本発明に係る薄膜誘電体層キャパシタの製造方法について説明する。   Next, a method for manufacturing a thin film dielectric layer capacitor according to the present invention will be described with reference to FIG.

(1)まず、例えば、Siからなり表面に表面酸化膜としてSiO2膜が形成された基板(Si基板)10を用意する。そして、図2(a)に示すように、基板10の表面に、下部薄膜電極層1a、薄膜誘電体層2および上部薄膜電極層1bの順で各層を形成する。
なお、このとき、基板10の表面に、下部薄膜電極層1aとの密着性を向上させるための密着層を設けることも可能である。密着層としては、例えばTiなどを用いることができる。
(1) First, a substrate (Si substrate) 10 made of, for example, Si and having a surface formed with a SiO 2 film as a surface oxide film is prepared. Then, as shown in FIG. 2A, the lower thin film electrode layer 1a, the thin film dielectric layer 2, and the upper thin film electrode layer 1b are formed on the surface of the substrate 10 in this order.
At this time, it is also possible to provide an adhesion layer for improving the adhesion with the lower thin film electrode layer 1 a on the surface of the substrate 10. For example, Ti or the like can be used as the adhesion layer.

下部薄膜電極層1aは、例えばRFマグネトロンスパッタ法によって成膜する。この実施例1では、下部薄膜電極層1aとして、Ptからなり、膜厚が200nmの薄膜電極層を形成する。   The lower thin film electrode layer 1a is formed by RF magnetron sputtering, for example. In Example 1, a thin film electrode layer made of Pt and having a thickness of 200 nm is formed as the lower thin film electrode layer 1a.

また、薄膜誘電体層2は次のようにして形成する。まず、例えば、Ba,Sr,Tiの有機化合物をエステル系の有機溶媒に溶解させた前駆体溶液を下部薄膜電極層1a上にスピンコートし、350℃のホットプレート上で乾燥させ、このスピンコートと乾燥を複数回繰り返すことによって、厚さ170nmの前駆体膜を形成する。そして、この前駆体膜を650℃で30分間熱処理して結晶化させることにより薄膜誘電体層2を形成する。   The thin film dielectric layer 2 is formed as follows. First, for example, a precursor solution in which an organic compound of Ba, Sr, Ti is dissolved in an ester organic solvent is spin-coated on the lower thin film electrode layer 1a and dried on a hot plate at 350 ° C. A precursor film having a thickness of 170 nm is formed by repeating and drying a plurality of times. The precursor film is then heat-treated at 650 ° C. for 30 minutes to crystallize, thereby forming the thin film dielectric layer 2.

さらに、例えばRFマグネトロンスパッタ法により、Ptからなり、膜厚が200nmの上部薄膜電極層1bを形成する。   Further, the upper thin film electrode layer 1b made of Pt and having a thickness of 200 nm is formed by, for example, RF magnetron sputtering.

(2)次に、フォトリソグラフィーによって、図2(b)に示すように上部薄膜電極層1bおよび薄膜誘電体層2をパターニングする。
この実施例1では、レジストマスクの形成とArイオンミリングを繰り返して上部薄膜電極層1b、薄膜誘電体層2及び下部薄膜電極層1aを順次パターニングし、図2(b)に示すような構造を得た。それから、800℃で30分間の熱処理を行って薄膜誘電体層2の結晶性を高めることにより、薄膜誘電体層2の誘電特性を向上させた。
(2) Next, as shown in FIG. 2B, the upper thin film electrode layer 1b and the thin film dielectric layer 2 are patterned by photolithography.
In Example 1, the formation of a resist mask and Ar ion milling are repeated to sequentially pattern the upper thin film electrode layer 1b, the thin film dielectric layer 2, and the lower thin film electrode layer 1a, thereby forming a structure as shown in FIG. Obtained. Then, the dielectric properties of the thin film dielectric layer 2 were improved by performing a heat treatment at 800 ° C. for 30 minutes to increase the crystallinity of the thin film dielectric layer 2.

(3)それから、下部薄膜電極層1a、薄膜誘電体層2及び上部薄膜電極層1b上からRFマグネトロンスパッタ法によって、図2(c)に示すように、所定の膜厚のCu膜7を成膜する。   (3) Then, a Cu film 7 having a predetermined thickness is formed on the lower thin film electrode layer 1a, the thin film dielectric layer 2 and the upper thin film electrode layer 1b by RF magnetron sputtering as shown in FIG. Film.

(4)次いで、図2(d)及び図3に示すように、Cu膜7上に、外周面が傾斜して裾広がりのテーパ形状を有する、断面形状が台形状のレジストパターン8を形成する。
このようなテーパ形状のレジストパターンは、例えば、開口率が徐々に変化するフォトマスクを使用して露光した後、現像する方法などの方法により形成することができる。すなわち、開口率が徐々に変化するフォトマスクを使用して、感光の割合を制御することにより、外周面の傾斜角度を制御することが可能である。
(4) Next, as shown in FIGS. 2 (d) and 3, a resist pattern 8 having a trapezoidal cross-sectional shape with a taper shape in which the outer peripheral surface is inclined and spreads at the bottom is formed on the Cu film 7. .
Such a tapered resist pattern can be formed, for example, by a method such as a method of developing after exposure using a photomask whose aperture ratio gradually changes. That is, it is possible to control the inclination angle of the outer peripheral surface by using a photomask whose aperture ratio gradually changes and controlling the exposure ratio.

(5)上述のようにしてテーパ形状のレジストパターン8を形成した後、ドライエッチングによってCu膜のパターニングを行うことにより、図2(e)に示すように、外周面が傾斜して裾広がりのテーパ形状を有する緩衝層(Cu膜)5(5a,5b)を形成する。   (5) After forming the tapered resist pattern 8 as described above, the Cu film is patterned by dry etching, so that the outer peripheral surface is inclined and the skirt spreads as shown in FIG. A buffer layer (Cu film) 5 (5a, 5b) having a tapered shape is formed.

なお、このとき、レジストパターン8の外周面の傾斜角度が同じであっても、エッチングレートを変えることによって緩衝層5(5a,5b)の外周面の傾斜角度を変えることができる。すなわち、レジストパターン8のエッチングレートをr1、Cu膜7のエッチングレートをr2とした場合に、r1/r2の値が大きいほど、Cu膜7の端面の傾斜が緩やかになる。したがって、レジストパターン8の外周面の傾斜角度とエッチングレートの比r1/r2を適宜調整することにより、緩衝層5(5a,5b)の端面の傾斜を所望の角度にすることができる。   At this time, even if the inclination angle of the outer peripheral surface of the resist pattern 8 is the same, the inclination angle of the outer peripheral surface of the buffer layer 5 (5a, 5b) can be changed by changing the etching rate. That is, when the etching rate of the resist pattern 8 is r1 and the etching rate of the Cu film 7 is r2, the inclination of the end face of the Cu film 7 becomes gentler as the value of r1 / r2 is larger. Therefore, the inclination of the end face of the buffer layer 5 (5a, 5b) can be set to a desired angle by appropriately adjusting the ratio r1 / r2 between the inclination angle of the outer peripheral surface of the resist pattern 8 and the etching rate.

(6)続いて感光性樹脂などを用いて絶縁層4を形成した後、露光及び現像を行い、第1の貫通孔16a、第2の貫通孔16bを形成する(図2(f)参照)。
なお、第1の貫通孔16aは、上部薄膜電極層1bを内周面に露出させることなく、絶縁層4、上部薄膜電極層1b、及び薄膜誘電体層2を貫通して、下側薄膜電極層1a上に形成された第1の緩衝層5aにまで達するように形成されている。
また、第2の貫通孔16bは、絶縁層4を貫通して、上部薄膜電極層1b上に形成された第2の緩衝層5bにまで達するように形成されている。
(6) Subsequently, after forming the insulating layer 4 using a photosensitive resin or the like, exposure and development are performed to form the first through hole 16a and the second through hole 16b (see FIG. 2 (f)). .
The first through hole 16a penetrates the insulating layer 4, the upper thin film electrode layer 1b, and the thin film dielectric layer 2 without exposing the upper thin film electrode layer 1b to the inner peripheral surface, so that the lower thin film electrode It is formed so as to reach the first buffer layer 5a formed on the layer 1a.
The second through hole 16b is formed so as to penetrate the insulating layer 4 and reach the second buffer layer 5b formed on the upper thin film electrode layer 1b.

それから、RFマグネトロンスパッタ法によって、膜厚300nmのCu膜を成膜した後、レジストマスクの形成及びArイオンミリングを行ってCu膜をパターニングして、図2(f)に示すように、絶縁層4上から、第1の貫通孔16aの内周面を経て緩衝層5aにまで達し、緩衝層5aを介して下部薄膜電極層1aと電気的に接続する第1の引出電極6aと、絶縁層4上から、第2の貫通孔16bの内周面を経て緩衝層5bにまで達し、緩衝層5bを介して上部薄膜電極層1bと電気的に接続する第2の引出電極6bを形成する。
これにより、図1に示すような構造を有する薄膜キャパシタが得られる。
Then, after a Cu film having a film thickness of 300 nm is formed by RF magnetron sputtering, a resist mask is formed and Ar ion milling is performed to pattern the Cu film. As shown in FIG. 4, the first lead electrode 6a that reaches the buffer layer 5a through the inner peripheral surface of the first through hole 16a and is electrically connected to the lower thin film electrode layer 1a via the buffer layer 5a, and the insulating layer 4, the second lead electrode 6 b that reaches the buffer layer 5 b through the inner peripheral surface of the second through hole 16 b and is electrically connected to the upper thin film electrode layer 1 b through the buffer layer 5 b is formed.
Thereby, a thin film capacitor having a structure as shown in FIG. 1 is obtained.

[評価]
本発明の効果を確認するため、下記の複数種類の試料を作成し、以下に説明するような特性の評価を行った。なお、評価を行うにあたっては、温度が200℃上昇したときの応力を、有限要素法を用い、円筒座標系で2次元の熱応力解析を行い、その結果から評価を行った。
以下、評価結果について説明する。なお、ここでの回折結果の応力は、ミーゼスの相当応力である。
[Evaluation]
In order to confirm the effect of the present invention, the following plural types of samples were prepared, and the characteristics as described below were evaluated. In the evaluation, the stress when the temperature increased by 200 ° C. was subjected to a two-dimensional thermal stress analysis in a cylindrical coordinate system using the finite element method, and the evaluation was performed based on the result.
Hereinafter, the evaluation results will be described. The stress of the diffraction result here is Mises' equivalent stress.

(評価1)
図3に示すように、緩衝層を備えていない従来の構造の薄膜キャパシタを作製し、引出電極6(6a,6b)と薄膜電極層1(1a,1b)の接合領域の外周部と絶縁層4との境界部Aの近傍の、X座標上の位置と、そこにかかる応力の大きさの関係を調べた。なお、境界部Aの位置は、X座標上の0.01mmの位置となる。
ただし、薄膜電極層1(下部薄膜電極層1a及び上部薄膜電極層1b)の厚さは、100nm、200nm、300nm、500nm、及び700nmの範囲で変化させた。その結果を図4に示す。
(Evaluation 1)
As shown in FIG. 3, a thin film capacitor having a conventional structure without a buffer layer is manufactured, and the outer peripheral portion of the junction region between the extraction electrode 6 (6a, 6b) and the thin film electrode layer 1 (1a, 1b) and the insulating layer The relationship between the position on the X-coordinate in the vicinity of the boundary A with 4 and the magnitude of the stress applied thereto was examined. In addition, the position of the boundary part A is a position of 0.01 mm on the X coordinate.
However, the thickness of the thin film electrode layer 1 (the lower thin film electrode layer 1a and the upper thin film electrode layer 1b) was changed in a range of 100 nm, 200 nm, 300 nm, 500 nm, and 700 nm. The result is shown in FIG.

図4に示すように、緩衝層を備えていない薄膜キャパシタの場合、境界部Aの近傍(X座標の0.010mm付近)には大きな応力が加わること、薄膜電極層の厚さが厚くなると応力が小さくなることが確認された。
この結果から、緩衝層がなくても薄膜電極層の厚さを大きくすればある程度応力を抑制できることがわかる。しかしながら、貴金属材料からなる薄膜電極層を厚くすることはコストの増大を招くため好ましくなく、このことは従来技術の問題点として述べたところである。
As shown in FIG. 4, in the case of a thin film capacitor not including a buffer layer, a large stress is applied in the vicinity of the boundary portion A (near 0.010 mm of the X coordinate), and the stress is increased when the thickness of the thin film electrode layer is increased. Was confirmed to be small.
From this result, it can be seen that even if there is no buffer layer, the stress can be suppressed to some extent by increasing the thickness of the thin film electrode layer. However, it is not preferable to increase the thickness of the thin film electrode layer made of a noble metal material because it causes an increase in cost. This has been described as a problem of the prior art.

(評価2)
また、以下の(a),(b),(c)の薄膜キャパシタを作製して、引出電極6(6a,6b)と緩衝層5(5a,5b)の接合領域の外周部と絶縁層4との境界部Aの近傍の、X座標上の位置と、そこにかかる応力の大きさの関係を調べた。なお、この場合も境界部Aの位置は、X座標上の0.01mmの位置となる。
(Evaluation 2)
Further, the following thin film capacitors (a), (b), and (c) are manufactured, and the outer peripheral portion of the junction region between the extraction electrode 6 (6a, 6b) and the buffer layer 5 (5a, 5b) and the insulating layer 4 The relationship between the position on the X coordinate in the vicinity of the boundary portion A and the magnitude of the stress applied thereto was examined. In this case as well, the position of the boundary A is a position of 0.01 mm on the X coordinate.

(a)図3に示すような緩衝層を備えていない薄膜キャパシタ。
ただし、薄膜電極層1(1a,1b)の厚さは200nm。
(b)緩衝層5を備えているが、緩衝層5の外周面の傾斜角度θが90°の薄膜キャパシタ(図5参照)。
ただし、緩衝層5の厚さは300nm、薄膜電極層1の厚さは200nm。
(c)緩衝層5の外周面の傾斜角度θが7°でテーパ形状を有する緩衝層5(5a,5b)を備えた薄膜キャパシタ(図6参照)。ただし、緩衝層5の厚さが300nmで薄膜電極層1の厚さが200nmのものと、緩衝層5の厚さが600nmで薄膜電極層1の厚さが200nmのものを作製した。
(a) A thin film capacitor not provided with a buffer layer as shown in FIG.
However, the thickness of the thin film electrode layer 1 (1a, 1b) is 200 nm.
(b) A thin film capacitor having a buffer layer 5 but having an inclination angle θ of 90 ° on the outer peripheral surface of the buffer layer 5 (see FIG. 5).
However, the thickness of the buffer layer 5 is 300 nm, and the thickness of the thin film electrode layer 1 is 200 nm.
(c) A thin film capacitor including the buffer layer 5 (5a, 5b) having a taper shape with an inclination angle θ of the outer peripheral surface of the buffer layer 5 of 7 ° (see FIG. 6). However, a buffer layer 5 having a thickness of 300 nm and a thin film electrode layer 1 having a thickness of 200 nm and a buffer layer 5 having a thickness of 600 nm and a thin film electrode layer 1 having a thickness of 200 nm were prepared.

上記(a),(b),(c)の各試料について測定したX座標上の位置と、そこにかかる応力の大きさの関係を図7に示す。
図7に示すように、上記(a)の緩衝層を備えていない試料の場合は、境界部Aの近傍(X座標の0.010mm付近)に大きな応力がかかることが確認された。
また、緩衝層を備えていても、上記(b)のように、緩衝層の外周面の傾斜角度θが90°の試料の場合、境界部Aの近傍の、緩衝層の端部Bに対応する位置(X座標の0.011mm付近)に大きな応力がかかることが確認された。
これに対し、上記(c)の傾斜角度θが7°でテーパ形状を有する緩衝層5を備えた試料の場合、境界部Aの近傍(X座標の0.010〜0.015mm付近)にかかる応力が大幅に減少することが確認された。
FIG. 7 shows the relationship between the position on the X coordinate measured for each of the samples (a), (b), and (c) and the magnitude of the stress applied thereto.
As shown in FIG. 7, in the case of the sample not provided with the buffer layer (a), it was confirmed that a large stress was applied in the vicinity of the boundary portion A (near 0.010 mm in the X coordinate).
Further, even if the buffer layer is provided, as shown in the above (b), in the case of the sample having the inclination angle θ of the outer peripheral surface of the buffer layer of 90 °, it corresponds to the end B of the buffer layer near the boundary A. It was confirmed that a large stress was applied to the position (around 0.011 mm of the X coordinate).
On the other hand, in the case of the sample including the buffer layer 5 having the taper shape with the inclination angle θ of 7 ° in the above (c), it is in the vicinity of the boundary portion A (near X coordinate of 0.010 to 0.015 mm). It was confirmed that the stress was greatly reduced.

(評価3)
傾斜角度θが7°、15°、30°、45゜、90°の緩衝層5(5a,5b)を備えた薄膜キャパシタを作製し、引出電極6(6a,6b)と緩衝層5(5a,5b)の接合領域の外周部と絶縁層4との境界部Aの近傍の、X座標上の位置と、そこにかかる応力の大きさの関係を調べた。なお、この場合も境界部Aの位置は、X座標上の0.01mmの位置となる。
その結果を図8に示す。ただし、緩衝層の厚さは300nm一定、薄膜電極層の厚さは200nm一定とした。
図8に示すように、傾斜角度が30°以下になると、傾斜角度が90°のときに比べて、応力を15%以上低減できることが確認された。ただし、傾斜があまり緩やかになると、必要な厚さを有する領域を確保しようとすると省スペース化が妨げられるため、通常は、7°以上とすることが望ましい。
(Evaluation 3)
A thin film capacitor having a buffer layer 5 (5a, 5b) with an inclination angle θ of 7 °, 15 °, 30 °, 45 °, 90 ° is manufactured, and the extraction electrode 6 (6a, 6b) and the buffer layer 5 (5a 5b), the relationship between the position on the X coordinate in the vicinity of the boundary portion A between the outer peripheral portion of the bonding region and the insulating layer 4 and the magnitude of the stress applied thereto was examined. In this case as well, the position of the boundary A is a position of 0.01 mm on the X coordinate.
The result is shown in FIG. However, the thickness of the buffer layer was constant at 300 nm, and the thickness of the thin film electrode layer was constant at 200 nm.
As shown in FIG. 8, it was confirmed that when the tilt angle was 30 ° or less, the stress could be reduced by 15% or more compared to when the tilt angle was 90 °. However, if the inclination is too gentle, space saving will be hindered if an attempt is made to secure a region having a necessary thickness.

(評価4)
傾斜角度が7°で、厚さが、50nm、100nm、200nm、300nmの緩衝層を備えた薄膜キャパシタと、傾斜角度が30°で、厚さが、50nm、100nm、200nm、300nmの緩衝層を備えた薄膜キャパシタを作製し、引出電極6(6a,6b)と緩衝層5(5a,5b)の接合領域の外周部と絶縁層4との境界部Aの近傍の、X座標上の位置と、そこにかかる応力の大きさの関係を調べた。なお、この場合も境界部Aの位置は、X座標上の0.01mmの位置となる。
傾斜角度が7°の試料についての評価結果を図9に示し、傾斜角度が30°の試料についての評価結果を図10に示す。
(Evaluation 4)
A thin film capacitor having a buffer layer with a tilt angle of 7 ° and a thickness of 50 nm, 100 nm, 200 nm, and 300 nm, and a buffer layer with a tilt angle of 30 ° and a thickness of 50 nm, 100 nm, 200 nm, and 300 nm And a position on the X coordinate in the vicinity of the boundary portion A between the outer peripheral portion of the junction region of the extraction electrode 6 (6a, 6b) and the buffer layer 5 (5a, 5b) and the insulating layer 4. Then, the relationship between the magnitude of the stress applied there was investigated. In this case as well, the position of the boundary A is a position of 0.01 mm on the X coordinate.
FIG. 9 shows the evaluation results for a sample with an inclination angle of 7 °, and FIG. 10 shows the evaluation results for a sample with an inclination angle of 30 °.

図9に示すように、緩衝層の外周面の傾斜角度が同じ7°であっても、厚さが異なる緩衝層を備えた薄膜キャパシタの場合、境界部Aの近傍(X座標の0.009〜0.011mm付近)に加わる応力は、緩衝層の厚さが厚いものの方が小さくなることが確認された。ただし、厚さ200nmと300nmの場合、最大応力に顕著な差がないのに対して、100nmと50nmではその差が大きくなっていることがわかる。しかし、緩衝層の厚さが50nmの場合にも、図7に示す、緩衝層を備えていない従来構造の試料の場合に比べると、応力が小さくなっており、一応の効果が得られることがわかる。   As shown in FIG. 9, even when the inclination angle of the outer peripheral surface of the buffer layer is the same 7 °, in the case of a thin film capacitor having a buffer layer having a different thickness, the vicinity of the boundary A (0.009 of the X coordinate) It was confirmed that the stress applied to about 0.011 mm was smaller when the buffer layer was thicker. However, it can be seen that there is no significant difference in the maximum stress when the thickness is 200 nm and 300 nm, whereas the difference is large between 100 nm and 50 nm. However, even when the thickness of the buffer layer is 50 nm, the stress is small compared with the case of the sample having the conventional structure shown in FIG. Recognize.

また、図10に示すように、傾斜角度が30°の場合も、境界部Aの近傍(X座標の0.009〜0.011mm付近)に加わる応力は、緩衝層の厚さが厚いものの方が小さくなることが確認された。一方、緩衝層の厚さが100nmの場合と50nmの場合に、最大応力に大きな差がないことが確認された。   In addition, as shown in FIG. 10, even when the inclination angle is 30 °, the stress applied to the vicinity of the boundary portion A (near 0.009 to 0.011 mm of the X coordinate) is greater when the buffer layer is thicker. Was confirmed to be small. On the other hand, it was confirmed that there was no significant difference in maximum stress between the buffer layer thickness of 100 nm and 50 nm.

また、図9及び図10より、緩衝層の外周面の傾斜角度が7°の場合と30°の場合のいずれの場合においても図8に示す、緩衝層の外周面の傾斜角度45゜の場合の最大応力を下回っており、しかるべき効果が得られることがわかる。
したがって、本発明においては、緩衝層の外周面の傾斜角度にもよるが、通常は緩衝層の厚さが50nm以上であれば、ある程度の効果が得られるものと推測される。
また、上部薄膜電極層および下部薄膜電極層の厚さは、緩衝層の厚さや緩衝層の外周面の傾斜角度などの条件にもよるが、一般的には、100nm以上であることが望ましいものと考えられる。
9 and 10, the case where the inclination angle of the outer peripheral surface of the buffer layer is 45 ° shown in FIG. 8 in both cases where the inclination angle of the outer peripheral surface of the buffer layer is 7 ° and 30 °. It can be seen that an appropriate effect can be obtained.
Therefore, in the present invention, although depending on the inclination angle of the outer peripheral surface of the buffer layer, it is usually estimated that a certain degree of effect can be obtained if the thickness of the buffer layer is 50 nm or more.
In addition, the thickness of the upper thin film electrode layer and the lower thin film electrode layer depends on conditions such as the thickness of the buffer layer and the inclination angle of the outer peripheral surface of the buffer layer. it is conceivable that.

図11は、本発明の他の実施例(実施例2)にかかる薄膜電子部品の構成を示す断面図である。
この実施例2の薄膜電子部品は、基板20と、基板20上に配設された一層の薄膜電極層21と、薄膜電極層21上に配設された、所定の位置に貫通孔26が設けられた絶縁層24と、導電性を有する材料からなり、貫通孔26の底部となる薄膜電極層21の露出部に配設され、外周面が傾斜して裾広がりのテーパ形状を有する緩衝層25とを備えている。
FIG. 11: is sectional drawing which shows the structure of the thin film electronic component concerning the other Example (Example 2) of this invention.
The thin film electronic component of the second embodiment has a substrate 20, a single thin film electrode layer 21 disposed on the substrate 20, and a through hole 26 provided at a predetermined position disposed on the thin film electrode layer 21. The insulating layer 24 and the buffer layer 25 made of a conductive material and disposed on the exposed portion of the thin film electrode layer 21 serving as the bottom of the through hole 26 and having a tapered shape with an inclined outer peripheral surface and a hem. And.

この実施例2の薄膜電子部品の場合にも、上記実施例1の薄膜キャパシタに準じる効果、すなわち、引出電極と薄膜電極層の接合部近傍への応力の集中を抑制、防止して、薄膜電子部品の信頼性を向上させることができるという効果が得られる。なお、この実施例2の構成は、絶縁層により絶縁被覆された回路配線を外部に引き出す場合などに好適に適用することが可能である。   Also in the case of the thin film electronic component of the second embodiment, the effect equivalent to the thin film capacitor of the first embodiment, that is, the concentration of stress in the vicinity of the junction between the extraction electrode and the thin film electrode layer is suppressed and prevented. The effect that the reliability of components can be improved is acquired. Note that the configuration of the second embodiment can be suitably applied to the case where the circuit wiring covered with the insulating layer is drawn out to the outside.

また、この実施例2の薄膜電子部品は、上記実施例1の、図1の薄膜電子部品(薄膜キャパシタ)とは、薄膜誘電体層2と上部薄膜電極層1bとを備えていない点で構成を異にするが、他の部分の構成は実施例1のものと同様であり、実施例1の薄膜キャパシタの製造方法に準じる方法で製造することができる。   The thin film electronic component of Example 2 is different from the thin film electronic component (thin film capacitor) of FIG. 1 in Example 1 in that the thin film dielectric layer 2 and the upper thin film electrode layer 1b are not provided. However, the structure of the other parts is the same as that of Example 1, and can be manufactured by a method according to the method of manufacturing the thin film capacitor of Example 1.

なお、本発明は、引出電極により引き出される対象となる薄膜電極層の層数や配設態様に制約されるものではなく、実施例1の場合のように引出電極により引き出される対象となる薄膜電極層が2層であってもよく、実施例2の場合のように一層であってもよい。   The present invention is not limited by the number of thin film electrode layers to be drawn by the extraction electrode and the arrangement mode, and the thin film electrode to be drawn by the extraction electrode as in the first embodiment. The number of layers may be two, or one as in Example 2.

また、本発明は、複数層の薄膜電極層のうちの所定の薄膜電極層(それが一層であっても複数層であっても構わない)と引出電極を導通させる場合にも適用することが可能である。   The present invention can also be applied to a case where a predetermined thin film electrode layer (which may be a single layer or a plurality of layers) of a plurality of thin film electrode layers is connected to an extraction electrode. Is possible.

本発明はさらにその他の点においても上記実施例に限定されるものではなく、本発明の範囲内において、種々の変形や応用を加えることが可能である。   The present invention is not limited to the above embodiments in other points, and various modifications and applications can be added within the scope of the present invention.

上述のように、本発明によれば、引出電極と薄膜電極層の接続部及びその近傍への応力の集中を抑制することが可能で、信頼性の高い薄膜電子部品を提供することが可能になる。
したがって、本発明は、薄膜キャパシタをはじめとする薄膜電子部品の分野に広く適用することが可能である。
As described above, according to the present invention, it is possible to suppress concentration of stress on the connection portion between the extraction electrode and the thin film electrode layer and the vicinity thereof, and to provide a highly reliable thin film electronic component. Become.
Therefore, the present invention can be widely applied to the field of thin film electronic components including thin film capacitors.

本発明の一実施例にかかる薄膜電子部品(薄膜キャパシタ)の構成を示す断面図である。It is sectional drawing which shows the structure of the thin film electronic component (thin film capacitor) concerning one Example of this invention. (a)〜(f)は本発明の一実施例にかかる薄膜電子部品(薄膜キャパシタ)の製造方法を示す図である。(a)-(f) is a figure which shows the manufacturing method of the thin film electronic component (thin film capacitor) concerning one Example of this invention. 本発明の効果を確認するために比較用に作製した、緩衝層を備えていない従来の構造の薄膜電子部品(試料)の要部構成を示す断面図である。It is sectional drawing which shows the principal part structure of the thin film electronic component (sample) of the conventional structure which was produced for the comparison in order to confirm the effect of this invention and is not equipped with the buffer layer. 図3の比較用の試料について調べた、引出電極と薄膜電極層の接合領域の外周部と絶縁層との境界部近傍の位置と、そこにかかる応力の大きさの関係を示す図である。It is a figure which shows the relationship of the magnitude | size of the stress concerning the position near the boundary part of the outer peripheral part of the joining area | region of an extraction electrode and a thin film electrode layer, and the insulating layer investigated about the sample for a comparison of FIG. 本発明の効果を確認するために比較用に作製した、緩衝層の外周面の傾斜角度が90°の試料の要部構成を示す断面図である。It is sectional drawing which shows the principal part structure of the sample which the inclination angle of the outer peripheral surface of the buffer layer produced for the comparison in order to confirm the effect of this invention is 90 degrees. 本発明の実施例にかかる、緩衝層の外周面の傾斜角度が30℃以下の要件を満たす試料の要部構成を示す断面図である。It is sectional drawing which shows the principal part structure of the sample which satisfy | fills the requirements for the inclination angle of the outer peripheral surface of a buffer layer concerning the Example of this invention to be 30 degrees C or less. 図5に構造を示した緩衝層の外周面の傾斜角度が90°の比較用の試料や本発明の実施例にかかる試料などについて調べた、引出電極と緩衝層の接合領域の外周部と絶縁層との境界部近傍の位置と、そこにかかる応力の大きさの関係を示す図である。FIG. 5 shows the structure of the buffer layer whose outer peripheral surface has an inclination angle of 90 °, a comparative sample, and a sample according to an example of the present invention. It is a figure which shows the relationship between the position near the boundary part with a layer, and the magnitude | size of the stress concerning there. 緩衝層の外周面の傾斜角度を変えた場合の、引出電極と緩衝層の接合領域の外周部と絶縁層との境界部近傍の位置と、そこにかかる応力の大きさの関係を示す図である。FIG. 6 is a diagram showing the relationship between the position near the boundary between the outer peripheral portion of the junction region between the extraction electrode and the buffer layer and the insulating layer and the magnitude of the stress applied thereto when the inclination angle of the outer peripheral surface of the buffer layer is changed. is there. 本発明の実施例にかかる、緩衝層の外周面の傾斜角度が7°の試料について緩衝層の厚さを変えた場合の、引出電極と緩衝層の接合領域の外周部と絶縁層との境界部近傍の位置と、そこにかかる応力の大きさの関係を示す図である。The boundary between the outer peripheral portion of the junction region between the extraction electrode and the buffer layer and the insulating layer when the thickness of the buffer layer is changed for the sample having the inclination angle of the outer peripheral surface of the buffer layer of 7 ° according to the embodiment of the present invention. It is a figure which shows the relationship between the position of a part vicinity, and the magnitude | size of the stress concerning there. 本発明の実施例にかかる、緩衝層の外周面の傾斜角度が30°の試料について緩衝層の厚さを変えた場合の、引出電極と緩衝層の接合領域の外周部と絶縁層との境界部近傍の位置と、そこにかかる応力の大きさの関係を示す図である。The boundary between the outer peripheral portion of the junction region between the extraction electrode and the buffer layer and the insulating layer when the thickness of the buffer layer is changed for the sample having the inclination angle of the outer peripheral surface of the buffer layer of 30 ° according to the embodiment of the present invention. It is a figure which shows the relationship between the position of a part vicinity, and the magnitude | size of the stress concerning there. 本発明の他の実施例にかかる薄膜電子部品の構成を示す断面図である。It is sectional drawing which shows the structure of the thin film electronic component concerning the other Example of this invention. 従来の薄膜キャパシタの構成を示す断面図である。It is sectional drawing which shows the structure of the conventional thin film capacitor.

1 薄膜電極層
1a 下部薄膜電極層
1b 上部薄膜電極層
2 薄膜誘電体層
4 絶縁層
5 緩衝層
5a 第1の緩衝層
5b 第2の緩衝層
5x 緩衝層の外周面(母線)
5y 緩衝層の底面
6 引出電極
6a 第1の引出電極
6b 第2の引出電極
7 Cu膜
8 レジストパターン
10 基板
16a 第1の貫通孔
16b 第2の貫通孔
20 基板
21 薄膜電極層
24 絶縁層
25 緩衝層
26 貫通孔
θ 緩衝層の外周面と底面のなす角度(傾斜角度)
A 引出電極と緩衝層の接合領域の外周部と絶縁層との境界部
B 境界部の近傍の、緩衝層の端部に対応する位置
DESCRIPTION OF SYMBOLS 1 Thin film electrode layer 1a Lower thin film electrode layer 1b Upper thin film electrode layer 2 Thin film dielectric layer 4 Insulating layer 5 Buffer layer 5a 1st buffer layer 5b 2nd buffer layer 5x The outer peripheral surface (bus line) of a buffer layer
5y Bottom of buffer layer
6 extraction electrode 6a first extraction electrode 6b second extraction electrode 7 Cu film 8 resist pattern 10 substrate 16a first through hole 16b second through hole 20 substrate 21 thin film electrode layer 24 insulating layer 25 buffer layer 26 through hole θ Angle formed by the outer peripheral surface and bottom surface of the buffer layer (tilt angle)
A A boundary between the outer peripheral portion of the junction region between the extraction electrode and the buffer layer and the insulating layer B A position corresponding to the end of the buffer layer in the vicinity of the boundary

Claims (6)

薄膜電極層と、
前記薄膜電極層上に配設され、所定の位置に前記薄膜電極層にまで達する貫通孔を備えた絶縁層と、
導電性を有する材料からなり、前記貫通孔の底部となる前記薄膜電極層の露出部に配設され、外周面が傾斜して裾広がりのテーパ形状を有する緩衝層と、
前記絶縁層の上面から、前記貫通孔の内周面を経て前記緩衝層にまで達し、前記緩衝層を介して前記薄膜電極層と電気的に接続する引出電極と
を具備し、
前記緩衝層の外周面と底面のなす角度が30°以下であり、かつ、
前記緩衝層の厚みが200nm以下であること
を特徴とする薄膜電子部品。
A thin film electrode layer;
An insulating layer provided on the thin film electrode layer and having a through hole reaching the thin film electrode layer at a predetermined position;
A buffer layer made of a conductive material, disposed on the exposed portion of the thin film electrode layer that becomes the bottom of the through-hole, and has a tapered shape in which the outer peripheral surface is inclined and spreads at the bottom,
An extraction electrode that reaches from the top surface of the insulating layer to the buffer layer through the inner peripheral surface of the through hole, and is electrically connected to the thin film electrode layer through the buffer layer ;
The angle formed by the outer peripheral surface and the bottom surface of the buffer layer is 30 ° or less, and
The thickness of the buffer layer is 200 nm or less .
下部薄膜電極層と、
前記下部薄膜電極層上に形成された薄膜誘電体層と、
前記薄膜誘電層上に形成された上部薄膜電極層と、
前記下部薄膜電極層及び前記上部薄膜電極層を覆うように配設され、所定の位置に前記下部薄膜電極層にまで達する第1の貫通孔、及び前記上部部薄膜電極層にまで達する第2の貫通孔とが配設された絶縁層と、
導電性を有する材料からなり、前記第1の貫通孔の底部となる前記下部薄膜電極層の露出部に配設され、外周面が傾斜して裾広がりのテーパ形状を有する第1の緩衝層と、
導電性を有する材料からなり、前記第2の貫通孔の底部となる前記上部薄膜電極層の露出部に配設され、外周面が傾斜して裾広がりのテーパ形状を有する第2の緩衝層と、
前記絶縁層の上面から、前記第1の貫通孔の内周面を経て前記第1の緩衝層にまで達し、前記第1の緩衝層を介して前記下部薄膜電極層と電気的に接続する第1の引出電極、及び前記第2の貫通孔の内周面を経て前記第2の緩衝層にまで達し、前記第2の緩衝層を介して前記上部薄膜電極層と電気的に接続する第2の引出電極と
を具備し、
前記緩衝層の外周面と底面のなす角度が30°以下であり、かつ、
前記緩衝層の厚みが200nm以下であること
を特徴とする薄膜電子部品。
A lower thin film electrode layer;
A thin film dielectric layer formed on the lower thin film electrode layer;
An upper thin film electrode layer formed on the thin film dielectric layer;
A first through-hole that is disposed so as to cover the lower thin film electrode layer and the upper thin film electrode layer, reaches the lower thin film electrode layer at a predetermined position, and a second reaches the upper thin film electrode layer An insulating layer provided with a through hole;
A first buffer layer made of a conductive material, disposed at an exposed portion of the lower thin film electrode layer that becomes the bottom of the first through-hole, and has a tapered shape with an inclined outer peripheral surface and a hem ,
A second buffer layer made of a conductive material, disposed at an exposed portion of the upper thin film electrode layer that becomes the bottom of the second through-hole, and has a tapered shape in which the outer peripheral surface is inclined and spreads at the bottom; ,
A first layer extending from the upper surface of the insulating layer to the first buffer layer through the inner peripheral surface of the first through hole and electrically connected to the lower thin film electrode layer through the first buffer layer. A second electrode which reaches the second buffer layer via the one extraction electrode and the inner peripheral surface of the second through hole, and is electrically connected to the upper thin film electrode layer via the second buffer layer; comprising a lead electrode,
The angle formed by the outer peripheral surface and the bottom surface of the buffer layer is 30 ° or less, and
The thickness of the buffer layer is 200 nm or less .
薄膜電極層と、  A thin film electrode layer;
前記薄膜電極層上に配設され、所定の位置に前記薄膜電極層にまで達する貫通孔を備えた絶縁層と、  An insulating layer provided on the thin film electrode layer and having a through hole reaching the thin film electrode layer at a predetermined position;
導電性を有する材料からなり、前記貫通孔の底部となる前記薄膜電極層の露出部に配設され、外周面が傾斜して裾広がりのテーパ形状を有する緩衝層と、  A buffer layer made of a conductive material, disposed on the exposed portion of the thin film electrode layer that becomes the bottom of the through-hole, and has a tapered shape in which the outer peripheral surface is inclined and spreads at the bottom,
前記絶縁層の上面から、前記貫通孔の内周面を経て前記緩衝層にまで達し、前記緩衝層を介して前記薄膜電極層と電気的に接続する引出電極と  An extraction electrode that reaches from the upper surface of the insulating layer to the buffer layer through the inner peripheral surface of the through-hole, and is electrically connected to the thin-film electrode layer through the buffer layer;
を具備し、  Comprising
前記緩衝層の外周面と底面のなす角度が15°以下であること  The angle formed between the outer peripheral surface and the bottom surface of the buffer layer is 15 ° or less.
を特徴とする薄膜電子部品。   Thin film electronic components characterized by
下部薄膜電極層と、  A lower thin film electrode layer;
前記下部薄膜電極層上に形成された薄膜誘電体層と、  A thin film dielectric layer formed on the lower thin film electrode layer;
前記薄膜誘電層上に形成された上部薄膜電極層と、  An upper thin film electrode layer formed on the thin film dielectric layer;
前記下部薄膜電極層及び前記上部薄膜電極層を覆うように配設され、所定の位置に前記下部薄膜電極層にまで達する第1の貫通孔、及び前記上部部薄膜電極層にまで達する第2の貫通孔とが配設された絶縁層と、  A first through-hole that is disposed so as to cover the lower thin film electrode layer and the upper thin film electrode layer, reaches the lower thin film electrode layer at a predetermined position, and a second reaches the upper thin film electrode layer An insulating layer provided with a through hole;
導電性を有する材料からなり、前記第1の貫通孔の底部となる前記下部薄膜電極層の露出部に配設され、外周面が傾斜して裾広がりのテーパ形状を有する第1の緩衝層と、  A first buffer layer made of a conductive material, disposed at an exposed portion of the lower thin film electrode layer that becomes the bottom of the first through-hole, and has a tapered shape with an inclined outer peripheral surface and a hem ,
導電性を有する材料からなり、前記第2の貫通孔の底部となる前記上部薄膜電極層の露出部に配設され、外周面が傾斜して裾広がりのテーパ形状を有する第2の緩衝層と、  A second buffer layer made of a conductive material, disposed at an exposed portion of the upper thin film electrode layer that becomes the bottom of the second through-hole, and has a tapered shape in which the outer peripheral surface is inclined and spreads at the bottom; ,
前記絶縁層の上面から、前記第1の貫通孔の内周面を経て前記第1の緩衝層にまで達し、前記第1の緩衝層を介して前記下部薄膜電極層と電気的に接続する第1の引出電極、及び前記第2の貫通孔の内周面を経て前記第2の緩衝層にまで達し、前記第2の緩衝層を介して前記上部薄膜電極層と電気的に接続する第2の引出電極と  A first layer extending from the upper surface of the insulating layer to the first buffer layer through the inner peripheral surface of the first through hole and electrically connected to the lower thin film electrode layer through the first buffer layer. A second electrode which reaches the second buffer layer via the one extraction electrode and the inner peripheral surface of the second through hole, and is electrically connected to the upper thin film electrode layer via the second buffer layer; Extraction electrode and
を具備し、  Comprising
前記緩衝層の外周面と底面のなす角度が15°以下であること  The angle formed between the outer peripheral surface and the bottom surface of the buffer layer is 15 ° or less.
を特徴とする薄膜電子部品。  Thin film electronic components characterized by
前記薄膜電極層は貴金属からなり、前記緩衝層は卑金属からなることを特徴とする請求項1〜4のいずれかに記載の薄膜電子部品。 The thin film electrode layer comprises a noble metal, thin-film electronic component according to any of claims 1-4 wherein the buffer layer is characterized by comprising a base metal. 薄膜キャパシタであることを特徴とする請求項2または4記載の薄膜電子部品。 Thin film electronic component according to claim 2 or 4, wherein it is a thin film capacitor.
JP2007118947A 2007-04-27 2007-04-27 Thin film electronic components Expired - Fee Related JP5098422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007118947A JP5098422B2 (en) 2007-04-27 2007-04-27 Thin film electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007118947A JP5098422B2 (en) 2007-04-27 2007-04-27 Thin film electronic components

Publications (2)

Publication Number Publication Date
JP2008277520A JP2008277520A (en) 2008-11-13
JP5098422B2 true JP5098422B2 (en) 2012-12-12

Family

ID=40055138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007118947A Expired - Fee Related JP5098422B2 (en) 2007-04-27 2007-04-27 Thin film electronic components

Country Status (1)

Country Link
JP (1) JP5098422B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050531A1 (en) 2008-10-28 2010-05-06 アイコム株式会社 Wireless terminal device, wireless communication method, and wireless communication system and program
JP6822192B2 (en) 2017-02-13 2021-01-27 Tdk株式会社 Board with built-in electronic components
JP6862886B2 (en) 2017-02-13 2021-04-21 Tdk株式会社 Board with built-in electronic components
JP2018137311A (en) 2017-02-21 2018-08-30 Tdk株式会社 Thin film capacitor
JP2018137310A (en) 2017-02-21 2018-08-30 Tdk株式会社 Thin film capacitor
JP7238771B2 (en) 2017-05-31 2023-03-14 Tdk株式会社 Thin film capacitor and method for manufacturing thin film capacitor
JPWO2022239717A1 (en) * 2021-05-10 2022-11-17

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3276351B2 (en) * 1999-12-13 2002-04-22 松下電器産業株式会社 Method for manufacturing semiconductor device
JP2003197878A (en) * 2001-10-15 2003-07-11 Hitachi Ltd Memory semiconductor device and its manufacturing method
JP4948762B2 (en) * 2004-12-27 2012-06-06 富士通株式会社 Semiconductor device
JP4956947B2 (en) * 2005-09-16 2012-06-20 株式会社村田製作所 Thin film capacitor

Also Published As

Publication number Publication date
JP2008277520A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP5344197B2 (en) Dielectric thin film element and manufacturing method thereof
JP5098422B2 (en) Thin film electronic components
JP5093327B2 (en) Thin film capacitor
JP3966208B2 (en) Thin film capacitor and manufacturing method thereof
JP5376186B2 (en) Dielectric thin film element, antifuse element, and method of manufacturing dielectric thin film element
JP5455352B2 (en) Thin film MIM capacitor and manufacturing method thereof
JP5299158B2 (en) Dielectric thin film element
JPWO2006117912A1 (en) Thin film capacitor and manufacturing method thereof
JP5803731B2 (en) Thin film element
JP5924461B1 (en) Composite electronic components
KR100568385B1 (en) Semiconductor device and method for fabricating the same
JPH05299578A (en) Semiconductor device and manufacture thereof
JP2016046454A (en) Thin film electronic component
JP2009010114A (en) Dielectric thin-film capacitor
JP5348565B2 (en) Dielectric thin film capacitor manufacturing method and dielectric thin film capacitor
JP2010225849A (en) Thin film capacitor
JP2001358248A (en) Circuit board incorporating capacitor, and method of manufacturing the same
JP4009078B2 (en) Thin film electronic components
US20200018716A1 (en) Humidity sensor and method of manufacturing same
JP5119058B2 (en) Thin film capacitor
JP2005136074A (en) Capacitor, serial capacitor and variable capacitor
JP6232845B2 (en) Wiring connection structure and dielectric thin film capacitor having the wiring connection structure
JP2021197526A (en) Semiconductor device and manufacturing method of semiconductor device
KR20090080435A (en) Method for fabricating metal line in semiconductor device
JP2003045746A (en) Thin film capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees