WO2010016119A1 - 電子部品ハンドリング装置 - Google Patents

電子部品ハンドリング装置 Download PDF

Info

Publication number
WO2010016119A1
WO2010016119A1 PCT/JP2008/064129 JP2008064129W WO2010016119A1 WO 2010016119 A1 WO2010016119 A1 WO 2010016119A1 JP 2008064129 W JP2008064129 W JP 2008064129W WO 2010016119 A1 WO2010016119 A1 WO 2010016119A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
heat source
temperature
source device
heat
Prior art date
Application number
PCT/JP2008/064129
Other languages
English (en)
French (fr)
Inventor
孝也 狩野
芳幸 増尾
毅 山下
登 増田
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to PCT/JP2008/064129 priority Critical patent/WO2010016119A1/ja
Priority to TW098121957A priority patent/TW201016575A/zh
Publication of WO2010016119A1 publication Critical patent/WO2010016119A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2893Handling, conveying or loading, e.g. belts, boats, vacuum fingers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2865Holding devices, e.g. chucks; Handlers or transport devices
    • G01R31/2867Handlers or transport devices, e.g. loaders, carriers, trays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature

Definitions

  • the present invention relates to an electronic component handling apparatus used for testing an electronic component such as an IC device at a predetermined temperature.
  • test apparatus for testing the finally manufactured electronic parts.
  • a large number of IC devices are accommodated in a test tray by an electronic component handling apparatus called a handler, and external terminals of each IC device are connected to connection terminals of sockets provided on the test head.
  • the test main device (tester) conducts the test in electrical contact. In this way, IC devices are tested and classified into categories such as at least good products and defective products.
  • a test chamber is provided above the test head, and the test is performed while controlling the inside of the test chamber to a predetermined set temperature by air. Accordingly, a constant temperature bath (soak chamber) for bringing the IC device before introduction into the test chamber to a predetermined temperature in advance, and heat removal for returning the IC device discharged from the test chamber to room temperature.
  • a tank an unsoak chamber, an exit chamber
  • a vertical transfer device 110 and a temperature adjusting blower 90 are provided inside the thermostatic chamber 101 and the heat removal tank 103, and the vertical transfer device 110 includes a plurality of IC devices.
  • a plurality of test trays TST loaded with 2 are supported.
  • the temperature adjusting blower 90 includes a fan 92 and a heat source device 94.
  • the fan 92 sucks air inside the casing of the thermostatic bath 101 or the heat removal bath 103 by the fan 92, discharges the air inside the casing through the heat source device 94, and warm air.
  • the temperature is applied to the IC device 2 by convection with cold air.
  • the present invention has been made in view of such a situation, and provides an electronic component handling apparatus capable of shortening the temperature application time for electronic components in a thermostatic bath or a heat removal bath and improving throughput. With the goal.
  • the present invention is an electronic component handling apparatus including a thermostatic chamber for bringing a pre-test electronic component mounted on a tray to a predetermined temperature, An electronic component handling device is provided, wherein a heat source device is provided in the vicinity of the electronic component mounted on the tray (Invention 1).
  • invention 1 since the temperature application with respect to an electronic component can be efficiently performed with the heat-source apparatus provided in the vicinity of an electronic component, the temperature application time with respect to the electronic component in a thermostat is shortened, and throughput is achieved. Can be improved.
  • the said heat-source apparatus may be provided with the heat conduction part which applies temperature to the said electronic component by heat conduction (invention 2), or the radiation which applies temperature to the said electronic component by radiant heat May be provided (invention 3), or a nozzle for injecting a temperature-controlled gas to the electronic component (invention 4).
  • the said heat-source apparatus may apply temperature to the said electronic component from the surface side (package main body side) of the said electronic component (invention 5), or the back surface side of the said electronic component
  • the temperature may be applied to the electronic component from the (external terminal side) (invention 6), or the temperature may be applied to the electronic component from both the front and back surfaces of the electronic component (invention 7).
  • the thermostatic chamber holds a plurality of the trays, and the heat source device is provided in the vicinity of an electronic component mounted on the tray immediately after being introduced into the thermostatic bath.
  • the heat source device is provided in the vicinity of an electronic component mounted on the tray immediately after being introduced into the thermostatic bath.
  • Invention 8 or may be provided in the vicinity of the electronic component mounted on the tray immediately before being discharged from the thermostat (Invention 9), or the tray immediately after being introduced into the thermostat It may be provided in the vicinity of the electronic component mounted on the tray and in the vicinity of the electronic component mounted on the tray immediately before being discharged from the thermostat (Invention 10).
  • the 2nd heat-source apparatus heat source apparatus in the conventional temperature-control air blower which adjusts the temperature of the whole inside of the thermostat is provided.
  • Preferred Invention 11).
  • this invention is an electronic component handling apparatus provided with the heat removal tank which returns the electronic component after the test mounted in the tray to normal temperature (room temperature), Comprising: In the said heat removal tank, it mounts in the said tray
  • an electronic component handling device characterized in that a heat source device is provided in the vicinity of the electronic component (Invention 12).
  • the said heat-source apparatus may be provided with the heat conduction part which applies temperature to the said electronic component by heat conduction (invention 13), or the radiation which applies temperature to the said electronic component by radiant heat May be provided (Invention 14), or a nozzle for injecting a temperature-controlled gas (Invention 15).
  • the said heat-source apparatus may apply temperature to the said electronic component from the surface side of the said electronic component (invention 16), or the said electronic component from the back surface side of the said electronic component. Temperature may be applied (invention 17), or temperature may be applied to the electronic component from both the front and back surfaces of the electronic component (invention 18).
  • the heat removal tank holds a plurality of the trays, and the heat source device is provided in the vicinity of an electronic component mounted on the tray immediately after being introduced into the heat removal tank. May be provided (Invention 19), or may be provided in the vicinity of an electronic component mounted on a tray immediately before being discharged from the heat removal tank (Invention 20), or may be introduced into the heat removal tank. It may be provided in the vicinity of the electronic component mounted on the tray immediately after, and in the vicinity of the electronic component mounted on the tray immediately before being discharged from the heat removal tank (Invention 21).
  • the said heat removal tank is provided with the 2nd heat-source apparatus (heat source apparatus in the conventional temperature control air blower) which adjusts the temperature of the whole inside of the said heat removal tank.
  • the 2nd heat-source apparatus heat source apparatus in the conventional temperature control air blower
  • the present invention it is possible to shorten the temperature application time for the electronic components in the thermostatic bath or the heat removal bath, and to improve the throughput.
  • FIG. 1 is an overall side view of an IC device test apparatus including a handler according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the handler shown in FIG.
  • FIG. 3 is an explanatory view showing a method of handling the IC device.
  • FIG. 4 is an explanatory view showing a transport path of the test tray in the chamber of the handler.
  • 5 (a) and 5 (b) are cross-sectional views in a constant temperature bath (heat removal bath) in the handler.
  • FIG. 6 is a cross-sectional view of a heat source device according to another embodiment.
  • FIG. 7 is a cross-sectional view of a heat source device according to another embodiment.
  • FIG. 8 is a cross-sectional view of a heat source device according to another embodiment.
  • FIG. 1 is an overall side view of an IC device test apparatus including a handler according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the handler shown in FIG.
  • FIG. 9 is a cross-sectional view of a heat source device according to another embodiment.
  • FIG. 10 is a cross-sectional view of a heat source device according to another embodiment.
  • FIG. 11 is a cross-sectional view of a heat source device according to another embodiment.
  • FIG. 12 is a cross-sectional view of a constant temperature bath and a heat removal bath in a conventional handler.
  • the IC device test apparatus 10 includes a handler 1, a test head 5, and a test main apparatus 6.
  • the handler 1 sequentially carries IC devices (an example of electronic components) to be tested to a socket provided in the test head 5, classifies the IC devices that have been tested according to the test results, and stores them in a predetermined tray. To do.
  • the socket provided in the test head 5 is electrically connected to the test main device 6 through the cable 7, and the IC device detachably attached to the socket is connected to the test main device 6 through the cable 7.
  • the test is performed by a test electrical signal from the test main device 6.
  • a control device for mainly controlling the handler 1 is built in the lower part of the handler 1, but a space portion 8 is provided in part.
  • a test head 5 is replaceably disposed in the space portion 8, and an IC device can be attached to a socket on the test head 5 through a through hole formed in the handler 1.
  • the handler 1 is an apparatus for testing an IC device as an electronic component to be tested in a temperature state (high temperature) higher than normal temperature or a low temperature state (low temperature).
  • the chamber 100 includes a constant temperature bath 101, a test chamber 102, and a heat removal bath 103.
  • the upper part of the test head 5 shown in FIG. 1 is inserted into the test chamber 102, where the IC device is tested.
  • FIG. 3 is a view for understanding the method of handling the test IC device in the handler 1 of the present embodiment, and is a portion in which the members arranged in the vertical direction are actually shown in a plan view. There is also. Therefore, the mechanical (three-dimensional) structure can be understood mainly with reference to FIGS.
  • the handler 1 of the present embodiment stores a device storage unit 200 that stores IC devices to be tested from now on, and classifies and stores tested IC devices, and a device storage unit 200.
  • IC devices before being set in the handler 1 are stored in the customer tray, and in that state, the IC devices are supplied to the device storage unit 200 of the handler 1 shown in FIGS. 2 and 3, and from the customer tray, The IC device is transferred to the test tray TST conveyed in the handler 1. Inside the handler 1, as shown in FIG. 3, the IC device moves in a state where it is placed on the test tray TST, and is subjected to a test (inspection) for proper operation under a high temperature or low temperature stress. Categorized according to the test results.
  • the inside of the handler 1 will be described in detail individually.
  • the device storage unit 200 includes a pre-test device stocker 201 that stores pre-test IC devices, and a tested device stocker 202 that stores IC devices classified according to the test results. Is provided.
  • the pre-test device stocker 201 and the tested device stocker 202 include an elevator 204 that raises and lowers the stacked customer trays.
  • pre-test device stocker 201 a customer tray storing IC devices to be tested (pre-test IC devices) is stacked and held.
  • the tested device stocker 202 holds and holds a customer tray in which IC devices (tested IC devices) classified after the test are stored are stacked.
  • the device substrate 105 in the loader unit 300 has three pairs of windows 306 and 306 that are arranged so that the customer tray for supply faces the upper surface of the device substrate 105.
  • a tray set elevator (not shown) for raising and lowering the customer tray is provided below each window 306.
  • a tray transfer arm 205 that can reciprocate in the X-axis direction is provided between the device storage unit 200 and the apparatus substrate 105.
  • the elevator 204 of the pre-test device stocker 201 raises the customer tray stored in the pre-test device stocker 201.
  • the tray transfer arm 205 receives the customer tray from the lifted elevator 204, moves in the X-axis direction, and delivers the customer tray to a predetermined tray set elevator.
  • the tray set elevator raises the received customer tray and makes it appear in the window 306 of the loader unit 300.
  • the IC devices to be tested stored in the customer tray are once transferred to the precursor 305 by the XY transport device 304, where the mutual positions of the IC devices to be tested are corrected. After that, the IC device under test transferred to the precursor 305 is reloaded onto the test tray TST stopped at the loader unit 300 by the XY transport device 304 again.
  • the XY transfer device 304 for transferring the IC devices under test from the customer tray to the test tray TST includes two rails 301 installed on the upper part of the device substrate 105, and these two rails.
  • a movable head 303 is provided in the X direction along the movable arm 302.
  • a plurality of suction pads 307 are mounted downward on the movable head 303 of the XY transport device 304, and the suction pads 307 move while sucking air, so that the IC device under test is moved from the customer tray. And the IC device under test is transferred to the test tray TST.
  • four suction pads 307 are arranged in parallel with the movable head 303 in the X-axis direction, and a maximum of four IC devices to be tested can be transferred to the test tray TST at a time.
  • test tray TST described above is loaded into the chamber 100 after IC devices to be tested are loaded by the loader unit 300, and each IC device is tested in a state of being mounted on the test tray TST.
  • the chamber 100 includes a thermostatic chamber 101 that applies a desired high or low temperature thermal stress to the IC device under test loaded on the test tray TST, and a thermal stress applied to the IC device under test.
  • the test chamber 102 includes a test chamber 102 for subjecting the IC device to a test in a given state, and a heat removal tank 103 that removes a given thermal stress from the IC device tested in the test chamber 102. Details of the inside of the thermostatic chamber 101 will be described later.
  • the test head 5 is disposed at the lower center of the test chamber 102, and the test tray TST is carried on the test head 5. In this case, all the IC devices stored in the test tray TST are brought into electrical contact with the test head 5 to perform the test.
  • the IC device when a high temperature is applied in the constant temperature bath 101, the IC device is cooled to room temperature, and when a low temperature is applied in the constant temperature bath 101, the IC device is heated to prevent condensation. Return to the temperature of.
  • an inlet opening for feeding the test tray TST from the apparatus substrate 105 is formed in the upper part of the constant temperature bath 101, and a test is performed on the apparatus substrate 105 in the upper part of the heat removal tank 103.
  • An outlet opening for feeding out the tray TST is formed.
  • a test tray transfer device 108 for taking in and out the test tray TST from these openings is mounted on the apparatus substrate 105.
  • These test tray conveying devices 108 are constituted by rotating rollers, for example.
  • the test tray TST on which the IC device under test is mounted is introduced into the thermostatic chamber 101 from the inlet opening at the top of the thermostatic chamber 101 by the test tray transporting device 108. Then, it is sequentially transported downward by the vertical transport device, reaches the lowest stage, is discharged from the thermostatic chamber 101, is introduced into the test chamber 102, and the IC device is tested. Thereafter, the test tray TST loaded with the tested IC device is discharged from the test chamber 102 and introduced into the heat removal tank 103. Then, it is sequentially transported upward by the vertical transport device, reaches the uppermost stage, and is then discharged from the outlet opening at the top of the heat removal tank 103. The test tray TST discharged from the heat removal tank 103 is transported to the unloader unit 400 by the test tray transport device 108.
  • 2 and 3 are also provided with XY transport devices 404 and 404 having the same structure as the XY transport device 304 provided in the loader unit 300.
  • the tested IC devices are transferred from the test tray TST carried out to the unloader unit 400 to the customer tray.
  • the device substrate 105 in the unloader unit 400 has two pairs of windows 406 and 406 arranged so that the customer tray conveyed to the unloader unit 400 faces the upper surface of the device substrate 105. It has been established. Below each window 406, a tray set elevator (not shown) for raising and lowering the customer tray is provided.
  • the tray set elevator is lowered with a sorting customer tray (sorted tray) in which tested IC devices to be tested are sorted and stored.
  • the tray transfer arm 205 shown in FIG. 2 receives the sorted tray from the lowered tray set elevator, moves in the X-axis direction, and delivers the sorted tray to the elevator 204 of the predetermined tested device stocker 202. In this way, the sorted tray is stored in the tested device stocker 202.
  • a vertical transfer device 110 is provided inside the thermostatic chamber 101, and a plurality of IC devices 2 to be tested are mounted until the test chamber 102 is empty.
  • the plurality of test trays TST are on standby while being supported by the vertical transfer device 110. During this standby, high or low temperature heat stress is applied to the IC device 2 under test.
  • a plurality of inserts 16 are attached to each test tray TST, and the IC device 2 is accommodated in each insert 16.
  • the test tray TST on which the IC device 2 to be tested is mounted is introduced into the thermostatic chamber 101 from the inlet opening at the top of the thermostatic chamber 101, and then sequentially transported downward by the vertical transport device 110. Then, after reaching the lowest stage, it is discharged from the thermostatic chamber 101 (see FIG. 4).
  • a temperature adjusting blower 90 is provided inside a substantially sealed casing 80 constituting the thermostatic chamber 101.
  • the temperature adjusting blower 90 includes a fan 92 and a heat source device 94 (corresponding to the second heat source device of the present invention).
  • the air inside the casing 80 is sucked by the fan 92 and the casing 80 passes through the heat source device 94.
  • the inside of the casing 80 is brought into a predetermined temperature condition (high temperature or low temperature) by convection and circulation of hot air or cold air.
  • the heat source device 94 of the temperature adjusting blower 90 is constituted by a heat dissipating heat exchanger or an electric heater through which a heating medium flows when the inside of the casing 80 is heated to a high temperature. Keeps the inside of the casing 80 at a high temperature of, for example, room temperature to about 160 ° C. Further, when the inside of the casing 80 is cooled, the heat source device 94 is configured by a heat absorption heat exchanger or the like in which a refrigerant such as liquid nitrogen circulates. The inside is maintained at a low temperature of, for example, ⁇ 60 ° C. to room temperature.
  • the internal temperature of the casing 80 is detected by, for example, a temperature sensor, and the air volume of the fan 92 and the heat volume of the heat source device 94 are controlled so that the inside of the casing 80 is maintained at a predetermined temperature.
  • the thermostat 101 is provided with a heat source device 50 in the vicinity of the IC device 2 to be tested mounted on the uppermost test tray TST, separately from the heat source device 94 of the temperature adjusting blower 90. It has been.
  • the heat source device 50 includes a substrate 51 and a plurality of block-shaped heat conducting portions 52 attached to the lower surface side of the substrate 51, and can be moved up and down by a Z-axis drive device (not shown) (FIG. 5). (See (a) and (b)).
  • the number of heat conducting portions 52 is provided corresponding to the number of IC devices 2 to be tested mounted on the test tray TST.
  • the heat source device 50 in this embodiment includes a heat exchanger for heat dissipation or an electric heater through which a heating medium flows when the IC device 2 to be tested has a high temperature, and when the IC device 2 to be tested has a low temperature.
  • a heat exchanger for heat dissipation or an electric heater through which a heating medium flows when the IC device 2 to be tested has a high temperature, and when the IC device 2 to be tested has a low temperature.
  • the temperature of the heat source device 50 (heat conduction part 52) is higher than the temperature of the heat source device 94 of the temperature adjusting blower 90 when high temperature is applied.
  • the temperature of the heat source device 50 (heat conduction unit 52) is preferably lower than the temperature of the heat source device 94 of the temperature adjusting blower 90.
  • the heat source device 50 When a new test tray TST is introduced into the constant temperature bath 101, the heat source device 50 is positioned on the upper side as shown in FIG. 5A, and the test tray TST is introduced into the constant temperature bath 101 to be vertical.
  • the transfer device 110 When supported by the transfer device 110, the surface of the IC device 2 to be tested mounted on the test tray TST is moved downward as shown in FIG.
  • the IC device 2 under test is heated or cooled by heat conduction.
  • the IC device 2 to be tested just introduced into the thermostat 101 can be raised or lowered to a desired temperature in a short time.
  • test tray TST loaded with the IC device 2 to be tested heated or cooled as described above is moved downward by the vertical transfer device 110, the heat source device 50 moves upward as shown in FIG. . Then, when a new test tray TST is introduced into the thermostat 101 and supported by the vertical transfer device 110, it moves again downward as shown in FIG. The IC device 2 under test is heated or cooled, and this is repeated.
  • the IC device 2 to be tested mounted on the test tray TST moved to the lower stage is maintained at a desired temperature by hot air or cold air from the temperature adjusting blower 90.
  • the temperature application method by the heat conduction of the heat source device 50 is executed, whereby the temperature application to the IC device 2 under test is performed.
  • the time can be shortened and the residence time of the IC device 2 under test in the thermostat 101 can be shortened, thereby improving the test efficiency (throughput).
  • the heat removal bath 103 can also have the same configuration as the thermostatic bath 101 (see FIG. 5).
  • a vertical transfer device 110 is provided inside the heat removal tank 103, and a plurality of test trays TST loaded with a plurality of tested IC devices 2 are supported by the vertical transfer device 110. And transported. The tested IC device 2 mounted on the test tray TST is returned to room temperature during this transport (see FIG. 4).
  • the test tray TST on which the tested IC device 2 is mounted is introduced into the heat removal tank 103 from the inlet opening at the lower part of the heat removal tank 103, and then sequentially lifted by the vertical transfer device 110. And then discharged from the heat removal tank 103.
  • a temperature adjusting blower 90 is provided inside a substantially sealed casing 80 constituting the heat removal tank 103.
  • the temperature adjusting blower 90 includes a fan 92 and a heat source device 94 (corresponding to the second heat source device of the present invention).
  • the air inside the casing 80 is sucked by the fan 92 and the casing 80 passes through the heat source device 94.
  • the inside of the casing 80 is brought into a predetermined temperature condition (high temperature or low temperature) by being discharged into the interior of the casing and circulated and circulated.
  • the heat removal tank 103 has a heat source device 50 in the vicinity of the tested IC device 2 mounted on the uppermost test tray TST, separately from the heat source device 94 of the temperature adjusting blower 90. Is provided.
  • the heat source device 50 includes a substrate 50 and a plurality of block-shaped heat conducting portions 52 attached to the substrate 51, and can be moved up and down by a Z-axis drive device (not shown) (FIG. 5A). , (B)).
  • the heat source device 50 When the test tray TST is discharged from the heat removal tank 103, the heat source device 50 is positioned on the upper side as shown in FIG. 5A, and the second-stage test tray TST from the top moves to the uppermost stage. As shown in FIG. 5 (b), the heat conducting part 52 moved downward is brought into contact with the surface of the tested IC device 2 mounted on the test tray TST to conduct heat conduction. To heat or cool the IC device 2 under test. Thereby, it is possible to reliably raise or lower the temperature of the IC device 2 immediately before being discharged from the heat removal tank 103 to room temperature.
  • the tested IC device 2 mounted on the test tray TST after being introduced into the heat removal tank 103 and moving to the uppermost stage is heated to a desired temperature by hot air or cold air from the temperature adjusting blower 90.
  • the temperature is raised or lowered.
  • the temperature applied to the tested IC device 2 by executing the temperature application method by heat conduction of the heat source device 50 is performed.
  • the application time can be shortened, and the residence time of the tested IC device 2 in the heat removal tank 103 can be shortened, thereby improving the throughput.
  • the IC device 2 is heated or cooled from the surface side of the IC device 2 by the heat source device 50, but the present invention is not limited to this, and the heat source device 50A as shown in FIG.
  • the IC device 2 may be heated or cooled from the back side (external terminal side) of the IC device 2.
  • the heat source device 50A has substantially the same configuration as the heat source device 50, and includes a substrate 51A and a plurality of block-shaped heat conduction portions 52A attached to the upper surface side of the substrate 51A, not shown. It can be moved up and down by a Z-axis drive.
  • the heat source device 50A is preferably provided on the lower side of the lowermost test tray TST in the thermostat 101 due to its configuration.
  • the heat source device 50A when the lowermost test tray TST is discharged from the thermostatic chamber 101, the heat source device 50A is located on the lower side, and moves upward when the second-stage test tray TST moves to the lowermost stage. Then, the heated or cooled heat conducting portion 52A is brought into contact with the back surface of the tested IC device 2 mounted on the test tray TST, and the IC device 2 to be tested is heated or cooled by heat conduction. Thereby, it is possible to reliably raise or lower the temperature of the IC device 2 immediately before being discharged from the thermostat 101 to a desired temperature.
  • the IC device 2 to be tested mounted on the test tray TST from the introduction to the thermostat 101 until it moves to the lowermost stage is heated to a desired temperature by hot air or cold air from the temperature adjusting blower 90. Or the temperature is lowered.
  • the temperature application to the IC device 2 under test is performed by executing the temperature application method by heat conduction of the heat source device 50A.
  • the time can be shortened and the residence time of the IC device 2 under test in the thermostat 101 can be shortened, thereby improving the test efficiency (throughput).
  • the heat source device 50A can also be applied to the heat removal tank 103. Also in this case, the heat source device 50 ⁇ / b> A is preferably provided below the lowermost test tray TST in the heat removal tank 103.
  • the heat source device 50A is positioned on the lower side, and the test tray TST is introduced into the heat removal tank 103.
  • the heat transfer unit 52 is moved upward and brought into contact with the back surface of the tested IC device 2 mounted on the test tray TST.
  • the device 2 is heated or cooled. Thereby, the IC device 2 just introduced into the heat removal tank 103 can be raised or lowered to a desired temperature in a short time.
  • the heat source device 50A moves downward. Then, when the next test tray TST is introduced into the heat removal tank 103 and supported by the vertical transfer device 110, it moves to the upper side again, and heats or cools the IC device 2 by heat conduction of the heat conduction unit 52, Repeat this.
  • the tested IC device 2 mounted on the test tray TST moved to the upper stage is maintained at a desired temperature by hot air or cold air from the temperature adjusting blower 90 after leaving the heat source device 50A.
  • the temperature application time for the IC device 2 can be reduced by executing the temperature application method by heat conduction of the heat source device 50A. This shortens and shortens the residence time of the tested IC device 2 in the heat removal tank 103, thereby improving the throughput.
  • the heat source device 50 and the heat source device 50A may be used in combination in the constant temperature bath 101 and / or the heat removal bath 103.
  • the heat source device 50 may be provided above the uppermost test tray TST, and the heat source device 50A may be provided below the lowermost test tray TST, or as shown in FIG.
  • the heat source device 50 may be provided on the upper side of one test tray TST, and the heat source device 50A may be provided on the lower side.
  • the test tray TST in this case is preferably the uppermost or lowermost test tray TST.
  • the heat source devices 50 and 50A in the above embodiment include the heat conducting portions 52 and 52A that heat or cool the IC device 2 by heat conduction, but the present invention is not limited to this, for example, A heat source device 60 shown in FIG. 9 may be provided with a radiation unit that heats the IC device 2 by radiant heat, or temperature-controlled air (hot air) may be used like the heat source device 70 shown in FIG. Alternatively, a nozzle for spraying cold air) may be provided. The temperature-adjusted air may be guided from the temperature adjusting blower 90 (heat source device 94) or from another heat source (heat exchange unit).
  • the above-mentioned heat source devices 60 and 70 can apply temperature to the IC device 2 without contact with the IC device 2, and need not be moved up and down like the heat source devices 50 and 50A. As shown in FIGS. 9 and 10, the heat source devices 60 and 70 may apply temperature from the front surface side of the IC device 2 or may apply temperature from the back surface side of the IC device 2.
  • the heat source devices 50 and 50A and the heat source devices 60 and 70 may be used in appropriate combination.
  • the heat source device 50 may be provided on the upper side of one test tray TST, the heat source device 70 may be provided on the lower side, or the heat source device 50 may be provided on the upper side of the uppermost test tray TST.
  • the heat source device 70 may be provided below the lower test tray TST.
  • a heat source device 60 may be used instead of the heat source device 70.
  • the heat source device 60 or the heat source device 70 may be provided on the upper side of one test tray TST, the heat source device 50A may be provided on the lower side, or the heat source device 60 or the heat source device 70 may be provided on the upper side of the uppermost test tray TST. And the heat source device 70 may be provided below the lowermost test tray TST.
  • the temperature application from the back side of the IC device uses the heat source devices 60 and 70 that do not contact the external terminal of the IC device in order to prevent damage to the external terminal of the IC device. It is preferable.
  • the temperature adjusting blower 90 or the heat source device 94 in the above embodiment is not essential, and may be omitted if the IC device can be controlled to a desired temperature by the heat source devices 50, 50A, 60, 70. Good.
  • the electronic component handling apparatus of the present invention is useful for shortening the residence time of the electronic component in the thermostatic chamber / heat removal layer and improving the throughput and test efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

 恒温槽101を構成する略密閉されたケーシング80の内部に、ファン92と、熱源装置94(第2の熱源装置)とを有する温度調節用送風装置90を備えるとともに、最上段のテストトレイTSTに搭載された被試験ICデバイス2の近傍に、基板51と、基板51の下面側に取り付けられた複数のブロック状の熱伝導部52とを有する熱源装置50を備えている。かかる恒温槽101によれば、被試験ICデバイス2に対する温度印加時間を短縮し、スループットの向上を図ることができる。

Description

電子部品ハンドリング装置
 本発明は、ICデバイス等の電子部品を所定の温度で試験するのに用いられる電子部品ハンドリング装置に関するものである。
 ICデバイス等の電子部品の製造課程においては、最終的に製造された電子部品を試験する試験装置が必要となる。かかる試験装置においては、ハンドラと称される電子部品ハンドリング装置により、多数のICデバイスをテストトレイに収納して搬送し、各ICデバイスの外部端子をテストヘッド上に設けられたソケットの接続端子に電気的に接触させ、試験用メイン装置(テスタ)に試験を行わせる。このようにしてICデバイスは試験され、少なくとも良品や不良品といったカテゴリに分類される。
 上記試験は、ICデバイスに対して高温または低温の温度ストレスを与えて行うことが多い。そのため、上記ハンドラにおいては、テストヘッドの上部にテストチャンバが設けられており、テストチャンバ内をエアにより所定の設定温度に制御しながら試験を行う。また、それに伴って、テストチャンバ内に導入する前のICデバイスを事前に所定の温度にするための恒温槽(ソークチャンバ)と、テストチャンバから排出されたICデバイスを室温に戻すための除熱槽(アンソークチャンバ,イグジットチャンバ)とがハンドラに設けられている。
 図12に示すように、恒温槽101および除熱槽103の内部には、垂直搬送装置110と、温度調節用送風装置90とが設けられており、垂直搬送装置110には、複数のICデバイス2を搭載した複数のテストトレイTSTが支持されている。温度調節用送風装置90は、ファン92と、熱源装置94とを有し、ファン92により恒温槽101または除熱槽103のケーシング内部の空気を吸い込み、熱源装置94を通してケーシング内部に吐き出して温風または冷風を対流させることで、ICデバイス2に温度を印加している。
 しかしながら、上記のような構成では、ICデバイス2だけではなく、恒温槽101・除熱槽103自体にも温度印加を行うことになり、加熱または冷却の効率が悪い。また、上記のように空気の対流だけを利用する温度印加方法では、ICデバイス2を所望の温度にするまでの温度印加時間が長く、試験効率(スループット)の向上が望めない。
 本発明は、このような実状に鑑みてなされたものであり、恒温槽または除熱槽における電子部品に対する温度印加時間を短縮し、スループットの向上を図ることのできる電子部品ハンドリング装置を提供することを目的とする。
 上記目的を達成するために、第1に本発明は、トレイに搭載された試験前の電子部品を所定の温度にする恒温槽を備えた電子部品ハンドリング装置であって、前記恒温槽内には、前記トレイに搭載された電子部品の近傍に熱源装置が設けられていることを特徴とする電子部品ハンドリング装置を提供する(発明1)。
 上記発明(発明1)によれば、電子部品の近傍に設けられた熱源装置によって、電子部品に対する温度印加を効率良く行うことができるため、恒温槽における電子部品に対する温度印加時間を短縮し、スループットの向上を図ることができる。
 上記発明(発明1)において、前記熱源装置は、熱伝導によって前記電子部品に温度を印加する熱伝導部を備えていてもよいし(発明2)、輻射熱によって前記電子部品に温度を印加する輻射部を備えていてもよいし(発明3)、前記電子部品に対して、温度調節された気体を噴き付けるノズルを備えていてもよい(発明4)。
 また、上記発明(発明1)において、前記熱源装置は、前記電子部品の表面側(パッケージ本体側)から前記電子部品に温度を印加してもよいし(発明5)、前記電子部品の裏面側(外部端子側)から前記電子部品に温度を印加してもよいし(発明6)、前記電子部品の表面および裏面の両側から前記電子部品に温度を印加してもよい(発明7)。
 上記発明(発明1)において、前記恒温槽は、前記トレイを複数保持するものであり、前記熱源装置は、前記恒温槽に導入された直後のトレイに搭載された電子部品の近傍に設けられていてもよいし(発明8)、前記恒温槽から排出される直前のトレイに搭載された電子部品の近傍に設けられていてもよいし(発明9)、前記恒温槽に導入された直後のトレイに搭載された電子部品の近傍、および前記恒温槽から排出される直前のトレイに搭載された電子部品の近傍に設けられていてもよい(発明10)。
 上記発明(発明1)において、前記恒温槽内には、前記恒温槽の内部全体の温度を調節する第2の熱源装置(従来の温度調節用送風装置における熱源装置)が設けられていることが好ましい(発明11)。
 第2に本発明は、トレイに搭載された試験後の電子部品を常温(室温)に戻す除熱槽を備えた電子部品ハンドリング装置であって、前記除熱槽内には、前記トレイに搭載された電子部品の近傍に熱源装置が設けられていることを特徴とする電子部品ハンドリング装置を提供する(発明12)。
 上記発明(発明12)によれば、電子部品の近傍に設けられた熱源装置によって、電子部品に対する温度印加を効率良く行うことができるため、除熱槽における電子部品に対する温度印加時間を短縮し、スループットの向上を図ることができる。
 上記発明(発明12)において、前記熱源装置は、熱伝導によって前記電子部品に温度を印加する熱伝導部を備えていてもよいし(発明13)、輻射熱によって前記電子部品に温度を印加する輻射部を備えていてもよいし(発明14)、温度調節された気体を噴き付けるノズルを備えていてもよい(発明15)。
 また、上記発明(発明12)において、前記熱源装置は、前記電子部品の表面側から前記電子部品に温度を印加してもよいし(発明16)、前記電子部品の裏面側から前記電子部品に温度を印加してもよいし(発明17)、前記電子部品の表面および裏面の両側から前記電子部品に温度を印加してもよい(発明18)。
 上記発明(発明12)において、前記除熱槽は、前記トレイを複数保持するものであり、前記熱源装置は、前記除熱槽に導入された直後のトレイに搭載された電子部品の近傍に設けられていてもよいし(発明19)、前記除熱槽から排出される直前のトレイに搭載された電子部品の近傍に設けられていてもよいし(発明20)、前記除熱槽に導入された直後のトレイに搭載された電子部品の近傍、および前記除熱槽から排出される直前のトレイに搭載された電子部品の近傍に設けられていてもよい(発明21)。
 上記発明(発明12)において、前記除熱槽内には、前記除熱槽の内部全体の温度を調節する第2の熱源装置(従来の温度調節用送風装置における熱源装置)が設けられていることが好ましい(発明22)。
 本発明によれば、恒温槽または除熱槽における電子部品に対する温度印加時間を短縮し、スループットの向上を図ることができる。
図1は、本発明の一実施形態に係るハンドラを含むICデバイス試験装置の全体側面図である。 図2は、図1に示すハンドラの斜視図である。 図3は、ICデバイスの取り廻し方法を示す説明図である。 図4は、同ハンドラのチャンバ内におけるテストトレイの搬送経路を示す説明図である。 図5(a),(b)は、同ハンドラにおける恒温槽(除熱槽)内の断面図である。 図6は、別の実施形態に係る熱源装置の断面図である。 図7は、別の実施形態に係る熱源装置の断面図である。 図8は、別の実施形態に係る熱源装置の断面図である。 図9は、別の実施形態に係る熱源装置の断面図である。 図10は、別の実施形態に係る熱源装置の断面図である。 図11は、別の実施形態に係る熱源装置の断面図である。 図12は、従来のハンドラにおける恒温槽・除熱槽内の断面図である。
符号の説明
1…ハンドラ(電子部品ハンドリング装置)
2…ICデバイス(電子部品)
10…ICデバイス(電子部品)試験装置
16…インサート
50,50A,60,70…熱源装置
52,52A…熱伝導部
90…温度調節用送風装置
92…ファン
94…(第2の)熱源装置
101…恒温槽
103…除熱槽
110…垂直搬送装置
 以下、本発明の実施形態を図面に基づいて説明する。
 まず、本実施形態に係る電子部品ハンドリング装置(以下「ハンドラ」という。)を備えたICデバイス試験装置の全体構成について説明する。図1に示すように、ICデバイス試験装置10は、ハンドラ1と、テストヘッド5と、試験用メイン装置6とを有する。ハンドラ1は、試験すべきICデバイス(電子部品の一例)をテストヘッド5に設けたソケットに順次搬送し、試験が終了したICデバイスをテスト結果に従って分類して所定のトレイに格納する動作を実行する。
 テストヘッド5に設けられたソケットは、ケーブル7を通じて試験用メイン装置6に電気的に接続されており、ソケットに脱着可能に装着されたICデバイスは、ケーブル7を通じて試験用メイン装置6に接続され、試験用メイン装置6からの試験用電気信号によりテストされる。
 ハンドラ1の下部には、主としてハンドラ1を制御する制御装置が内蔵されているが、一部に空間部分8が設けられている。この空間部分8に、テストヘッド5が交換自在に配置されており、ハンドラ1に形成した貫通孔を通してICデバイスをテストヘッド5上のソケットに装着することが可能になっている。
 このハンドラ1は、試験すべき電子部品としてのICデバイスを、常温よりも高い温度状態(高温)または低い温度状態(低温)で試験するための装置であり、ハンドラ1は、図2~図4に示すように、恒温槽101とテストチャンバ102と除熱槽103とで構成されるチャンバ100を有する。図1に示すテストヘッド5の上部は、テストチャンバ102の内部に挿入され、そこでICデバイスの試験が行われるようになっている。
 なお、図3は本実施形態のハンドラ1における試験用ICデバイスの取り廻し方法を理解するための図であって、実際には上下方向に並んで配置されている部材を平面的に示した部分もある。したがって、その機械的(三次元的)構造は、主として図2および図4を参照して理解することができる。
 図2および図3に示すように、本実施形態のハンドラ1は、これから試験を行うICデバイスを格納し、また試験済のICデバイスを分類して格納するデバイス格納部200と、デバイス格納部200から送られる被試験ICデバイスをチャンバ部100に送り込むローダ部300と、テストヘッドを含むチャンバ部100と、チャンバ部100で試験が行われた試験済のICデバイスを取り出して分類するアンローダ部400とから構成されている。ハンドラ1の内部では、ICデバイスは、テストトレイTSTに収納されて搬送される。
 ハンドラ1にセットされる前のICデバイスは、カスタマトレイ内に多数収納されており、その状態で、図2および図3に示すハンドラ1のデバイス格納部200へ供給され、そして、カスタマトレイから、ハンドラ1内で搬送されるテストトレイTSTにICデバイスが載せ替えられる。ハンドラ1の内部では、図3に示すように、ICデバイスは、テストトレイTSTに載せられた状態で移動し、高温または低温の温度ストレスが与えられ、適切に動作するかどうか試験(検査)され、当該試験結果に応じて分類される。以下、ハンドラ1の内部について、個別に詳細に説明する。
 第1に、デバイス格納部200に関連する部分について説明する。
 図2に示すように、デバイス格納部200には、試験前のICデバイスを格納する試験前デバイスストッカ201と、試験の結果に応じて分類されたICデバイスを格納する試験済デバイスストッカ202とが設けられている。これらの試験前デバイスストッカ201および試験済デバイスストッカ202は、積み重ねられたカスタマトレイを昇降させるエレベータ204を具備している。
 図2に示す試験前デバイスストッカ201には、これから試験が行われるICデバイス(試験前ICデバイス)が収納されたカスタマトレイが積層されて保持されている。また、試験済デバイスストッカ202には、試験を終えて分類されたICデバイス(試験済ICデバイス)が収納されたカスタマトレイが積層されて保持されている。
 第2に、ローダ部300に関連する部分について説明する。
 図2に示すように、ローダ部300における装置基板105には、供給用のカスタマトレイが装置基板105の上面に臨むように配置される一対の窓部306,306が三対開設してある。それぞれの窓部306の下側には、カスタマトレイを昇降させるためのトレイセットエレベータ(図示せず)が設けられている。また、図2に示すように、デバイス格納部200と装置基板105との間には、X軸方向に往復移動可能なトレイ移送アーム205が設けられている。
 試験前デバイスストッカ201のエレベータ204は、試験前デバイスストッカ201に格納されているカスタマトレイを上昇させる。トレイ移送アーム205は、上昇したエレベータ204からカスタマトレイを受け取り、X軸方向に移動してそのカスタマトレイを所定のトレイセットエレベータに引き渡す。トレイセットエレベータは、受け取ったカスタマトレイを上昇させて、ローダ部300の窓部306に臨出させる。
 そして、このローダ部300において、カスタマトレイに収納されている被試験ICデバイスは、X-Y搬送装置304によって一旦プリサイサ(preciser)305に移送され、ここで被試験ICデバイスの相互の位置を修正したのち、さらにこのプリサイサ305に移送された被試験ICデバイスは、再びX-Y搬送装置304によって、ローダ部300に停止しているテストトレイTSTに積み替えられる。
 カスタマトレイからテストトレイTSTへ被試験ICデバイスを積み替えるX-Y搬送装置304は、図2に示すように、装置基板105の上部に架設された2本のレール301と、この2本のレール301によってテストトレイTSTとカスタマトレイとの間を往復する(この方向をY方向とする)ことができる可動アーム302と、この可動アーム302によって支持され、可動アーム302に沿ってX方向に移動できる可動ヘッド303とを備えている。
 このX-Y搬送装置304の可動ヘッド303には、複数の吸着パッド307が下向に装着されており、この吸着パッド307が空気を吸引しながら移動することで、カスタマトレイから被試験ICデバイスを吸着し、その被試験ICデバイスをテストトレイTSTに積み替える。こうした吸着パッド307は、可動ヘッド303に対して例えばX軸方向に4個並設されており、一度に最大4個の被試験ICデバイスをテストトレイTSTに積み替えることができる。
 第3に、チャンバ100に関連する部分について説明する。
 上述したテストトレイTSTは、ローダ部300で被試験ICデバイスが積み込まれたのちチャンバ100に送り込まれ、当該テストトレイTSTに搭載された状態で各ICデバイスがテストされる。
 図2~図4に示すように、チャンバ100は、テストトレイTSTに積み込まれた被試験ICデバイスに目的とする高温または低温の熱ストレスを与える恒温槽101と、被試験ICデバイスに熱ストレスを与えた状態で当該ICデバイスを試験に付すテストチャンバ102と、テストチャンバ102で試験されたICデバイスから、与えられた熱ストレスを除去する除熱槽103とで構成されている。恒温槽101の内部の詳細に関しては後述する。
 テストチャンバ102の中央下部には、テストヘッド5が配置され、そのテストヘッド5の上にテストトレイTSTが運ばれる。そこでは、テストトレイTSTに収納された全てのICデバイスをテストヘッド5に電気的に接触させ、試験を行う。
 除熱槽103では、恒温槽101で高温を印加した場合は、ICデバイスを冷却して室温に戻し、また恒温槽101で低温を印加した場合は、ICデバイスを加熱して結露が生じない程度の温度まで戻す。
 図2に示すように、恒温槽101の上部には、装置基板105からテストトレイTSTを送り込むための入口用開口部が形成されており、除熱槽103の上部には、装置基板105へテストトレイTSTを送り出すための出口用開口部が形成されている。装置基板105には、これら開口部からテストトレイTSTを出し入れするためのテストトレイ搬送装置108が装着してある。これらテストトレイ搬送装置108は、例えば回転ローラなどで構成してある。
 図4に示すように、被試験ICデバイスを搭載したテストトレイTSTは、上記テストトレイ搬送装置108によって、恒温槽101の上部の入口用開口部から恒温槽101の内部に導入される。そして、垂直搬送装置によって順次下方に搬送され、最下段に達した後、恒温槽101から排出され、テストチャンバ102の内部に導入されて、当該ICデバイスについて試験が行われる。その後、試験済のICデバイスを搭載したテストトレイTSTは、テストチャンバ102から排出されて、除熱槽103の内部に導入される。そして、垂直搬送装置によって順次上方に搬送され、最上段に達した後、除熱槽103の上部の出口用開口部から排出される。除熱槽103から排出されたテストトレイTSTは、上記テストトレイ搬送装置108によって、アンローダ部400に搬送される。
 第4に、アンローダ部400に関連する部分について説明する。
 図2および図3に示すアンローダ部400にも、ローダ部300に設けられたX-Y搬送装置304と同一構造のX-Y搬送装置404,404が設けられ、このX-Y搬送装置404,404によって、アンローダ部400に運び出されたテストトレイTSTから試験済のICデバイスがカスタマトレイに積み替えられる。
 図2に示すように、アンローダ部400における装置基板105には、当該アンローダ部400へ運ばれたカスタマトレイが装置基板105の上面に臨むように配置される一対の窓部406,406が二対開設してある。それぞれの窓部406の下側には、カスタマトレイを昇降させるためのトレイセットエレベータ(図示せず)が設けられている。
 トレイセットエレベータは、試験済の被試験ICデバイスが仕分けされて収納された仕分用のカスタマトレイ(仕分済トレイ)を載せて下降する。図2に示すトレイ移送アーム205は、下降したトレイセットエレベータから仕分済トレイを受け取り、X軸方向に移動してその仕分済トレイを所定の試験済デバイスストッカ202のエレベータ204に引き渡す。このようにして、仕分済トレイは試験済デバイスストッカ202に格納される。
 ここで、本実施形態における恒温槽101の内部に関して説明する。
 図5(a),(b)に示すように、恒温槽101の内部には、垂直搬送装置110が設けられており、テストチャンバ102が空くまでの間、複数の被試験ICデバイス2を搭載した複数枚のテストトレイTSTがこの垂直搬送装置110に支持されながら待機する。そして、この待機中に、被試験ICデバイス2に高温または低温の熱ストレスが印加される。なお、各テストトレイTSTには、複数のインサート16が取り付けられており、ICデバイス2は各インサート16に収納される。
 本実施形態では、被試験ICデバイス2を搭載したテストトレイTSTは、恒温槽101の上部の入口用開口部から恒温槽101の内部に導入された後、垂直搬送装置110によって順次下方に搬送され、最下段に達した後、恒温槽101から排出される(図4参照)。
 本実施形態に係る恒温槽101においては、恒温槽101を構成する略密閉されたケーシング80の内部に、温度調節用送風装置90が設けられている。温度調節用送風装置90は、ファン92と、熱源装置94(本発明の第2の熱源装置に該当)とを有し、ファン92によりケーシング80の内部の空気を吸い込み、熱源装置94を通してケーシング80の内部に吐き出して温風または冷風を対流・循環させることで、ケーシング80の内部を、所定の温度条件(高温または低温)にする。
 温度調節用送風装置90の熱源装置94は、ケーシング80の内部を高温にする場合には、加熱媒体が流通する放熱用熱交換器または電熱ヒータなどで構成され、これにより温度調節用送風装置90は、ケーシング80の内部を、例えば室温~160℃程度の高温に維持する。また、ケーシング80の内部を低温にする場合には、熱源装置94は、液体窒素などの冷媒が循環する吸熱用熱交換器などで構成され、これにより温度調節用送風装置90は、ケーシング80の内部を、例えば-60℃~室温程度の低温に維持する。ケーシング80の内部温度は、例えば温度センサにより検出され、ケーシング80の内部が所定温度に維持されるように、ファン92の風量および熱源装置94の熱量などが制御される。
 また、本実施形態に係る恒温槽101は、上記温度調節用送風装置90の熱源装置94とは別に、最上段のテストトレイTSTに搭載された被試験ICデバイス2の近傍に熱源装置50が設けられている。熱源装置50は、基板51と、基板51の下面側に取り付けられた複数のブロック状の熱伝導部52とを備えており、図示しないZ軸駆動装置により上下動可能となっている(図5(a),(b)参照)。熱伝導部52は、テストトレイTSTに搭載される被試験ICデバイス2の数に対応する数だけ設けられている。
 本実施形態における熱源装置50は、被試験ICデバイス2を高温にする場合には、加熱媒体が流通する放熱用熱交換器または電熱ヒータなどを備え、被試験ICデバイス2を低温にする場合には、液体窒素などの冷媒が循環する吸熱用熱交換器などを備え、これらの機器によって熱伝導部52を加熱または冷却する。これらの機器は、熱源装置50の内部に設けてもよいし、熱源装置50の外部に設けてもよい。
 被試験ICデバイス2を効率良く温度制御するために、高温印加の場合には、熱源装置50(熱伝導部52)の温度は、上記温度調節用送風装置90の熱源装置94の温度よりも高いことが好ましく、低温印加の場合には、熱源装置50(熱伝導部52)の温度は、上記温度調節用送風装置90の熱源装置94の温度よりも低いことが好ましい。
 新しいテストトレイTSTが恒温槽101内に導入されるとき、熱源装置50は、図5(a)に示すように上側に位置しており、当該テストトレイTSTが恒温槽101内に導入されて垂直搬送装置110に支持されたら、図5(b)に示すように下側に移動して、加熱または冷却された熱伝導部52を当該テストトレイTSTに搭載されている被試験ICデバイス2の表面に接触させ、熱伝導によって被試験ICデバイス2を加熱または冷却する。これにより、恒温槽101内に導入されたばかりの被試験ICデバイス2を、短時間で所望の温度まで昇温または降温することができる。
 上記のようにして加熱または冷却した被試験ICデバイス2を搭載したテストトレイTSTが垂直搬送装置110によって下段に移動するとき、熱源装置50は、図5(a)に示すように上側に移動する。そして、新しいテストトレイTSTが恒温槽101内に導入されて垂直搬送装置110に支持されたら、再度、図5(b)に示すように下側に移動して、熱伝導部52の熱伝導により被試験ICデバイス2を加熱または冷却し、これを繰り返す。
 下段に移動したテストトレイTSTに搭載されている被試験ICデバイス2は、熱源装置50から離れた後は、温度調節用送風装置90からの温風または冷風によって所望の温度に維持される。
 上記のように、温度調節用送風装置90による空気の対流だけを利用する温度印加方法に加えて、熱源装置50の熱伝導による温度印加方法を実行することにより、被試験ICデバイス2に対する温度印加時間を短縮し、被試験ICデバイス2の恒温槽101内における滞在時間を短くすることができ、それにより試験効率(スループット)の向上を図ることができる。
 以上の説明は、恒温槽101に関するものであるが、除熱槽103も上記恒温槽101と同様の構成にすることができる(図5参照)。具体的には、除熱槽103の内部には、垂直搬送装置110が設けられており、複数の試験済のICデバイス2を搭載した複数枚のテストトレイTSTは、この垂直搬送装置110に支持され搬送される。テストトレイTSTに搭載された試験済のICデバイス2は、この搬送中に室温に戻される(図4参照)。
 本実施形態では、試験済のICデバイス2を搭載したテストトレイTSTは、除熱槽103の下部の入口用開口部から除熱槽103の内部に導入された後、垂直搬送装置110によって順次上方に搬送され、最上段に達した後、除熱槽103から排出される。
 本実施形態に係る除熱槽103においては、除熱槽103を構成する略密閉されたケーシング80の内部に、温度調節用送風装置90が設けられている。温度調節用送風装置90は、ファン92と、熱源装置94(本発明の第2の熱源装置に該当)とを有し、ファン92によりケーシング80の内部の空気を吸い込み、熱源装置94を通してケーシング80の内部に吐き出して対流・循環させることで、ケーシング80の内部を、所定の温度条件(高温または低温)にする。
 また、本実施形態に係る除熱槽103は、上記温度調節用送風装置90の熱源装置94とは別に、最上段のテストトレイTSTに搭載された試験済のICデバイス2の近傍に熱源装置50が設けられている。熱源装置50は、基板50と、基板51に取り付けられた複数のブロック状の熱伝導部52とを備えており、図示しないZ軸駆動装置により上下動可能となっている(図5(a),(b)参照)。
 テストトレイTSTが除熱槽103から排出されるとき、熱源装置50は、図5(a)に示すように上側に位置しており、上から2段目のテストトレイTSTが最上段に移動したら、図5(b)に示すように下側に移動して、加熱または冷却された熱伝導部52を当該テストトレイTSTに搭載されている試験済のICデバイス2の表面に接触させ、熱伝導によって被試験ICデバイス2を加熱または冷却する。これにより、除熱槽103から排出される直前のICデバイス2を、確実に室温まで昇温または降温することができる。
 除熱槽103に導入されてから最上段に移動するまでのテストトレイTSTに搭載されている試験済のICデバイス2は、温度調節用送風装置90からの温風または冷風によって、所望の温度まで昇温または降温される。
 上記のように、温度調節用送風装置90の空気の対流だけを利用する温度印加方法に加えて、熱源装置50の熱伝導による温度印加方法を実行することにより、試験済のICデバイス2に対する温度印加時間を短縮し、試験済のICデバイス2の除熱槽103内における滞在時間を短くすることができ、それによりスループットの向上を図ることができる。
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
 例えば、上記実施形態では、熱源装置50によって、ICデバイス2の表面側からICデバイス2を加熱または冷却するようにしたが、これに限定されるものではなく、図6に示すような熱源装置50Aによって、ICデバイス2の裏面側(外部端子側)からICデバイス2を加熱または冷却するようにしてもよい。熱源装置50Aは、上記熱源装置50と略同様の構成を有しており、基板51Aと、基板51Aの上面側に取り付けられた複数のブロック状の熱伝導部52Aとを備えており、図示しないZ軸駆動装置により上下動可能となっている。
 熱源装置50Aは、その構成上、恒温槽101内における最下段のテストトレイTSTの下側に設けられることが好ましい。この場合、最下段のテストトレイTSTが恒温槽101から排出されるとき、熱源装置50Aは下側に位置しており、下から2段目のテストトレイTSTが最下段に移動したら上側に移動して、加熱または冷却された熱伝導部52Aを当該テストトレイTSTに搭載されている試験済のICデバイス2の裏面に接触させ、熱伝導によって被試験ICデバイス2を加熱または冷却する。これにより、恒温槽101から排出される直前のICデバイス2を、確実に所望の温度まで昇温または降温することができる。
 恒温槽101に導入されてから最下段に移動するまでのテストトレイTSTに搭載されている被試験ICデバイス2は、温度調節用送風装置90からの温風または冷風によって、所望の温度まで昇温または降温される。
 上記のように、温度調節用送風装置90の空気の対流だけを利用する温度印加方法に加えて、熱源装置50Aの熱伝導による温度印加方法を実行することにより、被試験ICデバイス2に対する温度印加時間を短縮し、被試験ICデバイス2の恒温槽101内における滞在時間を短くすることができ、それにより試験効率(スループット)の向上を図ることができる。
 上記熱源装置50Aは、除熱槽103にも適用することができる。この場合にも、熱源装置50Aは、除熱槽103内における最下段のテストトレイTSTの下側に設けられることが好ましい。
 試験済のICデバイス2を搭載したテストトレイTSTが除熱槽103内に導入されるとき、熱源装置50Aは下側に位置しており、当該テストトレイTSTが除熱槽103内に導入されて垂直搬送装置110に支持されたら、上側に移動して、加熱または冷却された熱伝導部52を当該テストトレイTSTに搭載されている試験済のICデバイス2の裏面に接触させ、熱伝導によってICデバイス2を加熱または冷却する。これにより、除熱槽103内に導入されたばかりのICデバイス2を、短時間で所望の温度まで昇温または降温することができる。
 上記のようにして加熱または冷却したICデバイス2を搭載したテストトレイTSTが垂直搬送装置110によって上段に移動するとき、熱源装置50Aは下側に移動する。そして、次のテストトレイTSTが除熱槽103内に導入されて垂直搬送装置110に支持されたら、再度上側に移動して、熱伝導部52の熱伝導によりICデバイス2を加熱または冷却し、これを繰り返す。
 上段に移動したテストトレイTSTに搭載されている試験済のICデバイス2は、熱源装置50Aから離れた後は、温度調節用送風装置90からの温風または冷風によって所望の温度に維持される。
 上記のように、温度調節用送風装置90の空気の対流だけを利用する温度印加方法に加えて、熱源装置50Aの熱伝導による温度印加方法を実行することにより、ICデバイス2に対する温度印加時間を短縮し、試験済のICデバイス2の除熱槽103内における滞在時間を短くすることができ、それによりスループットの向上を図ることができる。
 また、本発明では、恒温槽101および/または除熱槽103において、上記熱源装置50と熱源装置50Aとを組み合わせて使用してもよい。例えば、図7に示すように、最上段のテストトレイTSTの上側に熱源装置50を設け、最下段のテストトレイTSTの下側に熱源装置50Aを設けてもよいし、図8に示すように、一つのテストトレイTSTの上側に熱源装置50を設け、下側に熱源装置50Aを設けてもよい。この場合のテストトレイTSTは、最上段または最下段のテストトレイTSTであることが好ましい。
 以上の実施形態における熱源装置50,50Aは、熱伝導によってICデバイス2を加熱または冷却する熱伝導部52,52Aを備えるものであるが、本発明はこれに限定されるものではなく、例えば、図9に示す熱源装置60のように、輻射熱によってICデバイス2を加熱する輻射部を備えるものであってもよいし、図10に示す熱源装置70のように、温度調節されたエア(温風または冷風)を噴き付けるノズルを備えるものであってもよい。温度調節されたエアは、温度調節用送風装置90(熱源装置94)から導いてもよいし、別の熱源(熱交換部)から導いてもよい。
 上記の熱源装置60,70は、ICデバイス2とは非接触でICデバイス2に温度を印加することが可能であり、必ずしも熱源装置50,50Aのように上下動させる必要はない。これらの熱源装置60,70は、図9および図10に示すように、ICデバイス2の表面側から温度印加してもよいし、ICデバイス2の裏面側から温度印加してもよい。
 また、熱源装置50,50Aと、熱源装置60,70とは、適宜組み合わせて使用してもよい。例えば、図11に示すように、一つのテストトレイTSTの上側に熱源装置50、下側に熱源装置70を設けてもよいし、最上段のテストトレイTSTの上側に熱源装置50を設け、最下段のテストトレイTSTの下側に熱源装置70を設けてもよい。また、上記熱源装置70に替えて、熱源装置60を使用してもよい。さらには、一つのテストトレイTSTの上側に熱源装置60または熱源装置70を設け、下側に熱源装置50Aを設けてもよいし、最上段のテストトレイTSTの上側に熱源装置60または熱源装置70を設け、最下段のテストトレイTSTの下側に熱源装置70を設けてもよい。
 なお、いずれの場合であっても、ICデバイスの裏側からの温度印加は、ICデバイスの外部端子の損傷等を防止するために、ICデバイスの外部端子と接触しない熱源装置60,70を使用することが好ましい。
 また、本発明においては、上記実施形態における温度調節用送風装置90または熱源装置94は必須ではなく、熱源装置50,50A,60,70によってICデバイスを所望の温度に制御できれば、省略されてもよい。
 本発明の電子部品ハンドリング装置は、電子部品の恒温槽・除熱層における滞在時間を短くして、スループット、そして試験効率を向上させるのに有用である。

Claims (22)

  1.  トレイに搭載された試験前の電子部品を所定の温度にする恒温槽を備えた電子部品ハンドリング装置であって、
     前記恒温槽内には、前記トレイに搭載された電子部品の近傍に熱源装置が設けられていることを特徴とする電子部品ハンドリング装置。
  2.  前記熱源装置は、熱伝導によって前記電子部品に温度を印加する熱伝導部を備えていることを特徴とする請求項1に記載の電子部品ハンドリング装置。
  3.  前記熱源装置は、輻射熱によって前記電子部品に温度を印加する輻射部を備えていることを特徴とする請求項1に記載の電子部品ハンドリング装置。
  4.  前記熱源装置は、前記電子部品に対して、温度調節された気体を噴き付けるノズルを備えていることを特徴とする請求項1に記載の電子部品ハンドリング装置。
  5.  前記熱源装置は、前記電子部品の表面側から前記電子部品に温度を印加することを特徴とする請求項1に記載の電子部品ハンドリング装置。
  6.  前記熱源装置は、前記電子部品の裏面側から前記電子部品に温度を印加することを特徴とする請求項1に記載の電子部品ハンドリング装置。
  7.  前記熱源装置は、前記電子部品の表面および裏面の両側から前記電子部品に温度を印加することを特徴とする請求項1に記載の電子部品ハンドリング装置。
  8.  前記恒温槽は、前記トレイを複数保持するものであり、
     前記熱源装置は、前記恒温槽に導入された直後のトレイに搭載された電子部品の近傍に設けられていることを特徴とする請求項1に記載の電子部品ハンドリング装置。
  9.  前記恒温槽は、前記トレイを複数保持するものであり、
     前記熱源装置は、前記恒温槽から排出される直前のトレイに搭載された電子部品の近傍に設けられていることを特徴とする請求項1に記載の電子部品ハンドリング装置。
  10.  前記恒温槽は、前記トレイを複数保持するものであり、
     前記熱源装置は、前記恒温槽に導入された直後のトレイに搭載された電子部品の近傍、および前記恒温槽から排出される直前のトレイに搭載された電子部品の近傍に設けられていることを特徴とする請求項1に記載の電子部品ハンドリング装置。
  11.  前記恒温槽内には、前記恒温槽の内部全体の温度を調節する第2の熱源装置が設けられていることを特徴とする請求項1に記載の電子部品ハンドリング装置。
  12.  トレイに搭載された試験後の電子部品を常温に戻す除熱槽を備えた電子部品ハンドリング装置であって、
     前記除熱槽内には、前記トレイに搭載された電子部品の近傍に熱源装置が設けられていることを特徴とする電子部品ハンドリング装置。
  13.  前記熱源装置は、熱伝導によって前記電子部品に温度を印加する熱伝導部を備えていることを特徴とする請求項12に記載の電子部品ハンドリング装置。
  14.  前記熱源装置は、輻射熱によって前記電子部品に温度を印加する輻射部を備えていることを特徴とする請求項12に記載の電子部品ハンドリング装置。
  15.  前記熱源装置は、前記電子部品に対して、温度調節された気体を噴き付けるノズルを備えていることを特徴とする請求項12に記載の電子部品ハンドリング装置。
  16.  前記熱源装置は、前記電子部品の表面側から前記電子部品に温度を印加することを特徴とする請求項12に記載の電子部品ハンドリング装置。
  17.  前記熱源装置は、前記電子部品の裏面側から前記電子部品に温度を印加することを特徴とする請求項12に記載の電子部品ハンドリング装置。
  18.  前記熱源装置は、前記電子部品の表面および裏面の両側から前記電子部品に温度を印加することを特徴とする請求項12に記載の電子部品ハンドリング装置。
  19.  前記除熱槽は、前記トレイを複数保持するものであり、
     前記熱源装置は、前記除熱槽に導入された直後のトレイに搭載された電子部品の近傍に設けられていることを特徴とする請求項12に記載の電子部品ハンドリング装置。
  20.  前記除熱槽は、前記トレイを複数保持するものであり、
     前記熱源装置は、前記除熱槽から排出される直前のトレイに搭載された電子部品の近傍に設けられていることを特徴とする請求項12に記載の電子部品ハンドリング装置。
  21.  前記除熱槽は、前記トレイを複数保持するものであり、
     前記熱源装置は、前記除熱槽に導入された直後のトレイに搭載された電子部品の近傍、および前記除熱槽から排出される直前のトレイに搭載された電子部品の近傍に設けられていることを特徴とする請求項12に記載の電子部品ハンドリング装置。
  22.  前記除熱槽内には、前記除熱槽の内部全体の温度を調節する第2の熱源装置が設けられていることを特徴とする請求項12に記載の電子部品ハンドリング装置。
PCT/JP2008/064129 2008-08-06 2008-08-06 電子部品ハンドリング装置 WO2010016119A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/064129 WO2010016119A1 (ja) 2008-08-06 2008-08-06 電子部品ハンドリング装置
TW098121957A TW201016575A (en) 2008-08-06 2009-06-30 Electronic component handling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/064129 WO2010016119A1 (ja) 2008-08-06 2008-08-06 電子部品ハンドリング装置

Publications (1)

Publication Number Publication Date
WO2010016119A1 true WO2010016119A1 (ja) 2010-02-11

Family

ID=41663349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/064129 WO2010016119A1 (ja) 2008-08-06 2008-08-06 電子部品ハンドリング装置

Country Status (2)

Country Link
TW (1) TW201016575A (ja)
WO (1) WO2010016119A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103302037B (zh) * 2012-03-16 2016-01-13 泰克元有限公司 测试分选机
KR101968984B1 (ko) * 2012-03-16 2019-08-26 (주)테크윙 사이드도킹식 테스트핸들러

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164437A (ja) * 1997-08-22 1999-03-05 Ando Electric Co Ltd Ic加熱装置
JP2000162268A (ja) * 1998-11-27 2000-06-16 Advantest Corp 電子部品の温度印加方法および電子部品試験装置
JP2001033514A (ja) * 1999-07-23 2001-02-09 Advantest Corp 電子部品試験装置用加熱板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164437A (ja) * 1997-08-22 1999-03-05 Ando Electric Co Ltd Ic加熱装置
JP2000162268A (ja) * 1998-11-27 2000-06-16 Advantest Corp 電子部品の温度印加方法および電子部品試験装置
JP2001033514A (ja) * 1999-07-23 2001-02-09 Advantest Corp 電子部品試験装置用加熱板

Also Published As

Publication number Publication date
TW201016575A (en) 2010-05-01

Similar Documents

Publication Publication Date Title
US7049841B2 (en) Heater-equipped pusher, electronic component handling apparatus, and temperature control method for electronic component
JP4152316B2 (ja) 電子部品ハンドリング装置および電子部品の温度制御方法
US9207272B2 (en) Test handler that rapidly transforms temperature and method of testing semiconductor device using the same
US8564317B2 (en) Test socket, and test apparatus with test socket to control a temperature of an object to be tested
JP2005037394A (ja) 半導体デバイステスト装置及び半導体デバイステスト方法
US10605829B2 (en) Transfer unit and prober
WO2010041317A1 (ja) インターフェイス部材、テスト部ユニットおよび電子部品試験装置
JP6681565B2 (ja) プローバ
US20160334462A1 (en) Burn-in test system and method
JPWO2008142754A1 (ja) 電子部品試験装置及び電子部品試験方法
JP7413647B2 (ja) 搬送ユニット
WO2008032397A1 (fr) Appareil de test de composant électronique
WO2010016119A1 (ja) 電子部品ハンドリング装置
JP4082807B2 (ja) 電子部品の温度印加方法および電子部品試験装置
JP3356009B2 (ja) Icデバイスの試験装置
JPH11352183A (ja) 電子部品試験装置
JP2003028920A (ja) 電子部品コンタクト装置
JP2002207063A (ja) プッシャ及びこれを備えた電子部品試験装置
JP2001228206A (ja) 部品試験装置およびそれに用いる部品保持装置
JP2003028924A (ja) 電子部品ハンドリング装置および電子部品の温度制御方法
JPH06174785A (ja) Icデバイスの恒温試験装置
KR102592544B1 (ko) 검사 장치 및 검사 방법
WO2009101706A1 (ja) マッチプレートベース部および本体部、電子部品ハンドリング装置、ならびにマッチプレート本体部およびテスト部ユニットの交換治具および交換方法
WO2010052771A1 (ja) 電子部品ハンドリング装置および電子部品移送方法
WO2004005948A1 (ja) 電子部品コンタクト装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08808741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08808741

Country of ref document: EP

Kind code of ref document: A1