WO2010015117A1 - 槽型等离子体显示板用驱动电路 - Google Patents

槽型等离子体显示板用驱动电路 Download PDF

Info

Publication number
WO2010015117A1
WO2010015117A1 PCT/CN2008/071865 CN2008071865W WO2010015117A1 WO 2010015117 A1 WO2010015117 A1 WO 2010015117A1 CN 2008071865 W CN2008071865 W CN 2008071865W WO 2010015117 A1 WO2010015117 A1 WO 2010015117A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
output
chip
driving
display panel
Prior art date
Application number
PCT/CN2008/071865
Other languages
English (en)
French (fr)
Inventor
郑姚生
王保平
朱立锋
汤勇明
李霞
Original Assignee
南京华显高科有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京华显高科有限公司 filed Critical 南京华显高科有限公司
Priority to PCT/CN2008/071865 priority Critical patent/WO2010015117A1/zh
Publication of WO2010015117A1 publication Critical patent/WO2010015117A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes

Definitions

  • the present invention relates to a circuit for image display driving applied to a slot type plasma display panel (SMPDP), and more particularly to a SCN electrode driving circuit for a groove type plasma display panel.
  • SMPDP slot type plasma display panel
  • the plasma flat panel display (PDP) that emerged in the early 1990s has received wide attention due to its advantages of digitization, large screen, high resolution, high definition, wide viewing angle, thin thickness and light weight.
  • the existing PDP screen adopts a three-electrode AC plasma flat panel display (AC-PDP), three electrodes are orthogonally distributed on the front and rear substrates, and discharge is performed between the two substrates, and the front substrate is horizontally distributed.
  • the sustain electrode (X electrode) and the scan electrode (Y electrode) are collectively referred to as a display electrode, and an address electrode (A electrode) is vertically disposed on the rear substrate, and the X electrode and the Y electrode are parallel to each other and to the A electrode Orthogonal.
  • the X electrode and the Y electrode are alternately applied with a high voltage, so that a cell that has accumulated wall charges during the address period generates a discharge.
  • SMPDP Slotted plasma display panel
  • SCN electrode scan electrode
  • D electrode address electrode
  • S electrode metal mesh plate electrode
  • the S electrode is in the entire groove type plasma display panel.
  • the auxiliary electrode in the driving process it can be controlled by applying a pulse signal or in a floating state.
  • the SCN is an alternating current opposite discharge mode of the sustain electrode (X electrode) on the front substrate and the address electrode (A electrode) on the rear substrate.
  • the X electrode and the AD electrode are orthogonal.
  • the SMPDP display during the sustain period, only the positive and negative alternating high voltages are applied to the XSCN electrode to cause the cells to accumulate wall charges during the address period to generate discharge, while the D electrode is grounded and the S electrode is suspended. status. Thereby achieving image display.
  • the image display driving method of the conventional groove type plasma display panel employs the inventors' invention and proposes a "bipolar energy recovery holding drive device" (Chinese Patent Application Laid-Open No. 200410014442. 8).
  • the present inventors have invented and proposed a "bipolar asymmetric sustain pulse drive circuit and its driving method" for the problem of discharge asymmetry (Chinese Patent Application Laid-Open No. 200610038283. 4).
  • the scanning pulse and the canceling pulse are invented and proposed by the inventors of the present invention.
  • “Image display driving circuit and driving method of the groove type plasma display panel” (Chinese Patent Application Laid-Open No. 200410064870.
  • the display quality of the display panel it is urgent to provide a new drive circuit that can improve the display quality of the SMPDP plasma display panel, meet the initialization waveform requirements of the SMPDP screen, and reduce the voltage resistance requirements of the MOS switch tube during the circuit design process.
  • the object of the present invention is to solve the problem that the initial waveform of the drive circuit for the slot type plasma display panel does not take into account the pressure resistance of the MOS switch tube, thereby affecting the quality of the display panel, and inventing a brand new The drive circuit for a groove type plasma display panel which satisfies not only the initialization waveform requirements but also the display quality.
  • a driving circuit for a groove type plasma display panel characterized in that it is mainly composed of a voltage control circuit 1 and a positive voltage sustaining voltage pulse generator 2 connected thereto, a positive voltage energy recovery holding circuit 3, and a negative voltage sustaining voltage pulse generator 4.
  • the negative voltage energy recovery holding circuit 5 and the PDP high voltage driving IC chip 6 are formed, and the voltage control circuit 1 respectively supplies a positive voltage maintaining voltage pulse generator 2, a positive voltage energy recovery holding circuit 3, and a negative voltage maintaining voltage pulse generator 4,
  • the negative voltage energy recovery holding circuit 5 and the PDP high voltage driving IC chip 6 transmit a pulse signal; the output of the positive voltage maintaining voltage pulse generator 2 is connected to the PDP high voltage driving IC chip 6, and the output terminal of the positive voltage energy recovery holding circuit 3 and the positive voltage
  • the positive voltage holding end of the sustain voltage pulse generator 2 is connected, the output of the negative voltage maintaining voltage pulse generator 4 is also connected to the PDP high voltage driving IC chip 6, and the output terminal of the negative voltage energy recovery holding circuit 5 is connected to the negative voltage maintaining voltage pulse
  • the negative voltage holding terminal of 4 the output of the PDP high voltage driving IC chip 6 is connected to the slot
  • the plasma display panel 7 is used to complete the supply of the bipolar sustaining pulse voltage during the sustain period of the channel type plasma display panel, ensuring that the channel type plasma display panel can operate normally.
  • the voltage control circuit 1 is mainly composed of a programmable logic chip and a FET driving chip, and the pulse signal generated by the programmable logic chip is amplified by the FET driving chip to generate a FET capable of driving the subsequent circuits.
  • the positive voltage sustaining voltage pulse generator 2 is mainly composed of field effect transistors M1, M2, M3, M4, diodes D1, D2, D7, Zener diode ZD1, resistors R1, R2, and a positive voltage sustaining voltage pulse generator 3
  • the input from the gates of M1, M2, and M4 is connected to the output of the voltage control circuit 1, that is, the output of the FET driver chip, and the FET is driven by the FET.
  • the chips output XEFH, XEFL, and XG1H to the corresponding field effect transistors M1, M2, and M4 under the control of the programmable logic chip, and the outputs thereof are connected from the source of M3 to the ground of the PDP high voltage driving IC chip 6.
  • the positive voltage energy recovery and holding circuit 3 is mainly composed of field effect transistors M3, M4, M7, M8, inductor L1, diodes D2, D3, M, D7, Zener diode ZD1, capacitor Cl, resistors Rl, R2,
  • the input of the voltage energy recovery and holding circuit 4 is output from the gates of M4, M7, and M8 to the output of the FET driving chip, and the output of the FET driving chip is outputted by the FET driving chip under the control of the programmable logic chip.
  • the XG1H, XNEL, and XNEH pulse signals are supplied to the corresponding field effect transistors M4, M7, and M8, and the output thereof is led from one end of L1 to the positive voltage protection terminal of the positive voltage sustaining voltage pulse generator 3, that is, the inverting input terminal of D1.
  • the negative voltage sustaining voltage pulse generator 4 is mainly composed of field effect transistors M2, M3, M4, M6, Mil, diodes D2, D7, Zener diode ZD1, resistors R1, R2, and a negative voltage sustaining voltage pulse generator 5
  • the input from the gate of M2, M4, M6, Mil is connected to the output of the voltage control circuit 1, that is, the output of the FET driver chip, and the FET driver chip outputs XEFL, XG1H, respectively under the control of the programmable logic chip.
  • the XPZL and XG2H are supplied to the corresponding field effect transistors M2, M4, M6, and Mil, and the output thereof is connected from the drain of the silicon to the power supply terminal of the PDP high voltage driving IC chip 6.
  • the negative voltage energy recovery and holding circuit 5 is mainly composed of field effect transistors M9, M10, Mil, inductor L2, diodes D5, D6, and capacitor C2, and the input of the negative voltage energy recovery and holding circuit 4 is gated from M9, M10, and Mil.
  • the output of the pole-connected voltage control circuit 1 is the output of the FET driver chip, and the FET driver chip outputs XAEH, XAEL, XG2H pulse signals to the corresponding FETs M9 and M10 under the control of the programmable logic chip.
  • the driving method of the driving circuit for the slot type plasma display panel (SMPDP) of the present invention is to maintain the voltage of the positive voltage sustaining voltage pulse generator and the negative voltage sustaining voltage pulse generator in the driving circuit.
  • the output terminal of the field effect transistor M6 in the control circuit is directly connected to the input end of the field effect transistor T2 in the PDP row high voltage driving IC chip, and is now changed to the output terminal of the field effect transistor M6 in the sustain period voltage control circuit.
  • the source of the field effect transistor Mil, the drain of the field effect transistor Mil is directly connected to the input end of the field effect transistor T2 in the PDP row high voltage driving IC chip; the output terminal of the field effect transistor M5 in the sustain period voltage control circuit
  • the control terminal of the field effect transistor M3, the output terminal of the field effect transistor M4 is connected to the resistor R1, the other end of the resistor R1 is connected, the anode of the fast recovery diode D2 is fast, and the cathode of the fast recovery diode D2 is connected to the control terminal of the field effect transistor M3;
  • the anode of the pole tube M and the anode of the fast recovery diode D3 are connected to the inductor L1, and the other end of the inductor L1 is connected to the field effect transistor M2; the positive voltage sustaining voltage pulse generators M1 and M2, L1 and M3 are connected to the D pole.
  • the groove type plasma display panel is plated with a front substrate printed with a row electrode, a rear substrate printed with a column electrode, and a metal plate with a large number of mesh holes or a surface plated with a metal conductive
  • the medium plate of the layer is composed by arranging a plurality of subfields in a time period for displaying one frame of image, each subfield consisting of a scanning period, a sustaining period and an erasing period, and the scanning period sequentially completes the ignition of each pixel of the full screen;
  • the maintenance period uses a bipolar energy recovery and holding drive circuit for the slot type plasma display panel and a driving method of the new slot type plasma display panel (SMPDP) driving circuit, and the bipolar energy recovery keeps the driving circuit according to the sustain pulse.
  • SMPDP new slot type plasma display panel
  • the driving method of the new grooved plasma display panel (SMPDP) driving circuit is to be in the maintenance period
  • the output terminal of the FET M6 in the voltage control circuit is directly connected to the FET of the field effect transistor T2 in the high voltage driving IC chip of the PDP.
  • the input terminal is connected in such a manner that a field effect transistor M11 is added to the output end of the field effect transistor M6 in the sustain period voltage control circuit, and is connected to the source of the field effect transistor Mil, and the drain of the field effect transistor Mil is directly
  • the input terminals of the field effect transistor T2 in the PDP row high voltage driving IC chip are connected; to reduce the withstand voltage requirement of the field effect transistor M6, to ensure the normal operation of the SMPDP during the maintenance period.
  • a bipolar energy recovery and sustaining driving circuit scheme for the groove type plasma display panel is adopted.
  • the internal plate capacitance Cp and the energy recovery capacitor Cs of the circuit pass the external inductance L.
  • the sustain drive circuit uses the series response between Cp, L, and Cs to charge and discharge the internal plate capacitor, that is, the energy released from the energy recovery capacitor Cs is used to charge the internal plate capacitor Cp from the internal plate capacitor Cp.
  • the energy released in the medium is also temporarily stored in the energy recovery capacitor Cs. Achieve energy recovery.
  • the erasing period uses a composite integrated waveform to complete the neutralization of the charged particles in the discharge space.
  • a field effect transistor M11 is added to the output terminal of the field effect transistor M6 in the sustain period voltage control circuit, and is connected to the source of the field effect transistor Mil, and the drain of the field effect transistor Mil is directly connected to the PDP row high voltage driving IC.
  • the input terminals of the FET T2 in the chip are connected; to reduce the withstand voltage requirement of the FET M6.
  • the erase period uses the row electrodes to generate a composite integral erase pulse, and the column electrodes are grounded to erase.
  • the focus of the present invention is to add a field effect transistor M11 to the output terminal of the field effect transistor M6 in the sustain period voltage control circuit, and to the source of the field effect transistor Mil, the drain of the field effect transistor Mil is directly
  • the input terminals of the field effect transistor T2 in the PDP row high voltage driving IC chip are connected; to reduce the withstand voltage requirement of the field effect transistor M6. Reduce circuit cost and improve the reliability of the slot type plasma display.
  • the sustain period voltage control circuit Since the image display driving circuit of the existing groove type plasma display panel is in a sustain period, the sustain period voltage control circuit The output end of the FET M6 is directly connected to the input terminal of the FET T2 in the PDP row high voltage driving IC chip, which causes the FET M6 to operate during the positive sustaining pulse voltage and the positive composite integral erase pulse. It will withstand more than 2 times the withstand voltage of the sustain voltage, and the high voltage field effect transistor for PDP is relatively expensive, and the present invention adds a field effect transistor Mi l through the output terminal of the field effect transistor M6 in the sustain period voltage control circuit. The voltage requirement of the FET M6 is reduced, thereby greatly reducing the overall cost of the SMPDP and further improving the reliability of the SMPDP display.
  • FIG. 1 is a block diagram showing the structure of a driving circuit for a slot type plasma display panel (SMPDP) of the present invention.
  • 1 is voltage control drive circuit
  • 2 is positive voltage maintenance voltage pulse generator
  • 3 is positive voltage energy recovery and hold circuit
  • 4 is negative voltage maintenance voltage pulse generator
  • 5 is negative voltage energy recovery and hold circuit
  • 6 is PDP high voltage
  • the row driving IC chips 6, 7 are slot type plasma display panels (SMPDP screens).
  • Fig. 2 is an electrical schematic diagram of a drive circuit for a slot type plasma display panel (SMPDP) of the present invention.
  • SMPDP slot type plasma display panel
  • VS is the positive voltage pulse voltage
  • VXG is the negative sustain voltage pulse voltage
  • VF is the FET driving voltage.
  • Fig. 3 is a schematic diagram showing the operation waveform of the sustain pulse circuit for the slot type plasma display panel (SMPDP).
  • the above-mentioned slot type plasma display panel uses a driving circuit mainly composed of a voltage control circuit 1, a positive voltage sustaining voltage pulse generator 2, a positive voltage energy recovery holding circuit 3, a negative voltage sustaining voltage pulse generator 4, and a negative
  • the voltage energy recovery holding circuit 5 and the PDP high voltage driving IC chip 6 are composed.
  • the output terminals of the voltage control circuit 1 are respectively a positive voltage maintaining voltage pulse generator 2, a positive voltage energy recovery holding circuit 3, a negative voltage maintaining voltage pulse generator 4, a negative voltage energy recovery holding circuit 5, and a PDP high voltage driving IC chip 6,
  • the output end of the voltage energy recovery holding circuit 3 is connected to the positive voltage maintaining voltage pulse generator 2
  • the output terminal of the negative voltage energy recovery holding circuit 5 is connected to the negative voltage maintaining voltage pulse generator 4, the positive voltage maintaining voltage pulse generator 2, the negative voltage
  • the output terminal of the voltage pulse generator 5 is held by the PDP high voltage driving IC chip 6, and the output end of the PDP high voltage driving IC chip 6 is connected to the X electrode of the groove type plasma display panel 7, as shown in FIG.
  • the voltage control circuit 1 generates a driving FET pulse signal "XEFH, XEFL, XG1H, XSU, XPZL, and a voltage control pulse composed of a programmable logic chip (model EP1S25F672C7) and a FET driver chip (model can be IR2113).
  • XNEL, X brain, XAEH, XAEL, XG2H respectively correspond to the gates of each field effect transistor "Ml, M2, M4, M5, M6, M7, M8, M9, M10, Mi l", according to different time constants , control the opening and closing of each FET Together, it ensures the realization of the new sophisticated circuit functions of the plasma display.
  • the positive voltage sustain voltage pulse generator 2 and the negative voltage sustain voltage pulse generator 4 function to maintain the minimum bipolar sustain pulse voltage required for full-screen illumination; ensure that the PDP screen is illuminated on the PDP screen after the ignition pulse has elapsed. Consistently lit.
  • the positive voltage energy recovery holding circuit 3 and the negative voltage energy recovery holding circuit 5 are for storing the on-screen charge on the energy recovery capacitor before the reset period of the PDP screen, and storing it on the energy recovery capacitor before the sustain voltage pulse is generated.
  • the charge is supplied to the PDP panel and the MOSFET providing the sustain voltage, ensuring that the voltage difference of Vds is zero when the MOSFET is turned on.
  • the PDP maintenance driver generally includes a charge and discharge circuit and a voltage control circuit.
  • the PDP equivalent capacitance is related to the size and resolution of the panel.
  • circuit diagram of this embodiment is shown in Fig. 2.
  • the voltage control circuit 1 is mainly composed of a programmable logic chip and a FET driving chip.
  • the pulse signal generated by the programmable logic chip is amplified by the FET driving chip to generate a pulse signal capable of driving the FET in the subsequent circuits: XEFH, XEFL, XG1H, XSU, XPZL, XNEH, XNEL, XAEH, XAEL, XG2H, which are positive voltage control pulse signal, zero return control pulse signal, open M3 control pulse signal, ignition pulse control signal, negative voltage control signal Positive voltage storage capacitor discharge start signal, positive voltage storage capacitor charging open signal, negative voltage storage capacitor charging open signal, negative voltage storage capacitor discharge open signal, open Mil control pulse signal.
  • the positive voltage maintaining voltage pulse generator 2 is mainly composed of field effect transistors M1, M2, M3, M4, diodes D1, D2, D7, Zener diode ZD1, resistors R1, R2, and the input of the positive voltage sustaining voltage pulse generator 3 is
  • the output of the gate of the M1, M2, and M4 is connected to the output of the FET driver chip, and the output of the FET driver chip is outputted by the FET driver chip under the control of the programmable logic chip to the corresponding field.
  • the effect transistors M1, M2, M4 have their outputs drawn from the source of M3 to the ground of the PDP high voltage drive IC chip 6.
  • the positive voltage energy recovery and holding circuit 3 is mainly composed of field effect transistors M3, M4, M7, M8, inductor L1, diodes D2, D3, M, D7, Zener diode ZD1, capacitor Cl, resistors Rl, R2, positive voltage energy recovery
  • the input of the holding circuit 4 is output from the gates of M4, M7, and M8 to the output of the FET driving chip, and the output of the FET driving chip is outputted by the FET driving chip under the control of the programmable logic chip.
  • XG1H, XNEL are respectively output.
  • the XNEH pulse signal is sent to the corresponding FETs M4, M7, M8, and the output thereof is led from one end of L1 to the positive voltage protection terminal of the positive voltage sustaining voltage pulse generator 3, that is, the reverse input terminal of D1.
  • the negative voltage sustain voltage pulse generator 4 is mainly composed of field effect transistors M2, M3, M4, M6, Mil, diodes D2, D7, Zener diode ZD1, resistors R1, R2, and the input of the negative voltage sustain voltage pulse generator 5 is
  • the output of the gate of the M2, M4, M6, and Mil is connected to the output of the voltage control circuit 1, that is, the output of the FET driver chip, and the FET is driven by the FET.
  • XEFL, XG1H, XPZL, and XG2H are respectively output to the corresponding field effect transistors M2, M4, M6, and Mil, and the output thereof is taken out from the drain of the drain of the PDP high voltage driving IC chip 6.
  • the negative voltage energy recovery and holding circuit 5 is mainly composed of field effect transistors M9, M10, Mil, inductor L2, diodes D5, D6, and capacitor C2, and the input of the negative voltage energy recovery and holding circuit 4 is taken out from the gates of M9, M10, and Mil.
  • the output of the voltage control circuit 1 is the output of the FET driving chip, and the FET driver chip outputs XAEH, XAEL, XG2H pulse signals to the corresponding FETs M9, M10, Mil under the control of the programmable logic chip.
  • the output is connected from the end of L2 to the negative voltage protection terminal of the negative voltage sustaining voltage generator 5, that is, the drain of M6 and the source of the field effect transistor Mil, and then the PDP high voltage driving IC is connected from the drain of the field effect transistor Mil.
  • the working process of the invention is:
  • the working principle of the drive circuit driving method for the slot type plasma display panel is as follows:
  • the bipolar energy recovery sustaining drive circuit is employed during the sustain period, so that the power consumption of the grooved plasma display panel image display is reduced.
  • the sustain drive contains two separate charging and discharging processes.
  • the internal plate capacitor Cp and the energy recovery capacitor Cs are connected in series through the external inductor L.
  • the sustain drive circuit charges and discharges the internal plate capacitor by using the series response between the internal plate capacitor Cp, the external inductor L, and the energy recovery capacitor Cs.
  • the energy released from the energy recovery capacitor Cs is used to charge the internal panel capacitor Cp, and the energy released from the internal panel capacitor Cp is also temporarily stored in the energy recovery capacitor Cs. This method is used to achieve energy recovery.
  • the bipolar energy recovery maintains the driving circuit as follows:
  • the drive circuit charges and discharges the energy recovery capacitor Cp.
  • the process is divided into four processes: Before TO, the output of the control IC is connected to the high-voltage power ground of the IC, M2, M3, M4 are open, and other Mos switches They are all turned off. The output voltage Vp is equal to zero.
  • the negative voltage energy recovery and maintenance circuit is also divided into four processes: Cp charge and discharge:
  • the output of the control IC is connected to the high voltage power supply of the IC, M2, M3, M4, Mil are turned on, while others
  • the Mos switch is turned off.
  • the output voltage Vp is equal to zero.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)

Description

说明书
槽型等离子体显示板用驱动电路 技术领域
本发明涉及一种应用于槽型等离子体显示板 (SMPDP ) 的图象显示驱动的电路, 具体 地说是一种槽型等离子体显示板用 SCN电极驱动电路。
20世纪 90年代初兴起的等离子体平板显示器 (PDP), 以其数字化, 大屏幕, 高分辨 率, 高清晰度, 宽视角以及厚度薄, 重量轻等优点受到广泛关注。
目前现有的 PDP屏都采用三电极交流等离子体平板显示器 (AC-PDP ) , 3个电极呈正 交状分布于前后基板上, 放电则在两个基板之间进行, 前基板上水平分布着维持电极 (X 电极) 和扫描电极 (Y 电极), 两者一起被称为显示电极, 在后基板上竖直分布着寻址电 极(A电极), X电极和 Y电极相互平行并与 A电极正交。 在 AC-PDP显示中, 在维持期, X 电极和 Y电极交替加上高压,使在寻址期积累了壁电荷的单元产生放电。从而实现图像的 显示。 采用的是表面放电模式。 槽型等离子体显示板 (SMPDP ) 是一种新型显示器件, 用 金属网板代替了传统 PDP中的障蔽, 其中的槽型等离子体显示板 (SMPDP ) 中它采用的是 三二个电极对向放电模式, 三个电极分别是前基板上的扫描电极 (SCN 电极), 后基板上 的寻址电极 (D电极) 和金属网板电极 (S电极), S电极在整个槽型等离子体显示板的驱 动过程中作为辅助电极, 可以对其施加脉冲信号进行控制, 也可以处于悬浮状态。 SCN分 别是前基板上的维持电极(X电极),后基板上的寻址电极(A电极)的交流对向放电模式。 X电极和 AD电极正交, 在 SMPDP显示中, 在维持期, 只在 XSCN电极上加正负交替的高压 使寻址期积累了壁电荷的单元产生放电, 而 D电极接地, S电极处于悬浮状态。 从而实现 图像显示。
现有的槽型等离子体显示板的图象显示驱动方法采用的是本发明人发明和提出了一 种《双极性能量恢复保持驱动装置》(中国专利申请公开 No. 200410014442. 8)。 针对放电 不对称的问题,采用本发明人发明和提出了一种《双极性非对称维持脉冲驱动电路及其驱 动方法》(中国专利申请公开 No. 200610038283. 4)。 该扫描脉冲和消除脉冲与本发明人发 明和提出了《槽型等离子显示板的图像显示驱动电路和驱动方法》 (中国专利申请公开 No。 200410064870. 1 )或《槽形等离子体显示板的高电压扫描维持驱动电路及其驱动方法》 (中 国专利申请公开 No。 200410064950. 7 ) 中公布的脉冲相同。 这里不作详细说明。 但是在 以上维持驱动电路设计过程中没有考虑 M0S开关管的高耐压问题,使得电路的设计受到开 关管耐压的影响, 不能有效地提供槽型等离子体显示板所需的初始化波形, 影响了 SMPDP 等离子体显示板的显示质量, 因此急需提供一种能提高 SMPDP 等离子体显示板的显示质 量,满足 SMPDP屏的初始化波形的要求, 降低电路设计过程中对 M0S开关管耐压性要求的 新的驱动电路。 发明内容
本发明的目的是针对现有的槽型等离子体显示板用驱动电路未考虑到 M0S 开关管耐 压性问题而带来的初始化波形不理想,从而影响到显示板质量的问题,发明一种全新的不 仅能满足初始化波形要求, 而且有利于提高显示质量的槽型等离子体显示板用驱动电路。
本发明的技术方案是:
一种槽型等离子体显示板用驱动电路,其特征是它主要由电压控制电路 1及与其相连 的正电压维持电压脉冲发生器 2、 正电压能量恢复保持电路 3、 负电压维持电压脉冲发生 器 4、 负电压能量恢复保持电路 5、 PDP高压驱动 IC芯片 6组成, 电压控制电路 1分别向 正电压维持电压脉冲发生器 2、 正电压能量恢复保持电路 3、 负电压维持电压脉冲发生器 4、 负电压能量恢复保持电路 5、 PDP高压驱动 IC芯片 6发送脉冲信号; 正电压维持电压 脉冲发生器 2的输出接 PDP高压行驱动 IC芯片 6, 正电压能量恢复保持电路 3的输出端 与正电压维持电压脉冲发生器 2的正电压保持端相连,负电压维持电压脉冲发生器 4的输 出也接 PDP高压驱动 IC芯片 6, 负电压能量恢复保持电路 5的输出端接负电压维持电压 脉冲发生器 4的负电压保持端, PDP高压驱动 IC芯片 6的输出则接槽型等离子体显示板 7, 用于完成槽型等离子体显示板在维持期双极性维持脉冲电压的提供,确保槽型等离子体显 示板能够正常工作。
所述的电压控制电路 1主要由可编程逻辑芯片和场效应管驱动芯片组成,可编程逻辑 芯片产生的脉冲信号经场效应管驱动芯片放大后产生能驱动后续各电路中的场效应管工 作的脉冲信号: XEFH、 XEFL、 XG1H、 XSU、 XPZL、 X腦、 XNEL、 XAEH、 XAEL、 XG2H, 它们 分别为正电压控制脉冲信号、 归零控制脉冲信号、 打开 M3控制脉冲信号、 点火脉冲控制 信号、 负电压控制信号、 正电压储能电容放电开启信号、 正电压储能电容充电开启信号、 负电压储能电容充电开启信号、 负电压储能电容放电开启信号、 打开 Mi l控制脉冲信号。
所述的正电压维持电压脉冲发生器 2主要由场效应管 Ml、 M2、 M3、 M4、 二极管 Dl、 D2、 D7、 稳压管 ZD1、 电阻 Rl、 R2组成, 正电压维持电压脉冲发生器 3的输入从 Ml、 M2、 M4的栅极引出接电压控制电路 1的输出即场效应管驱动芯片的输出, 由场效应管驱动芯 片在可编程逻辑芯片的控制下分别输出 XEFH、 XEFL、 XG1H给对应的场效应管 Ml、 M2、 M4, 其输出从 M3的源极引出接 PDP高压驱动 IC芯片 6的接地端。
所述的正电压能量恢复保持电路 3主要由场效应管 M3、 M4、 M7、 M8、 电感 Ll、 二极 管 D2、 D3、 M、 D7、 稳压管 ZD1、 电容 Cl、 电阻 Rl、 R2组成, 正电压能量恢复保持电路 4的输入从 M4、 M7、 M8的栅极引出接电压控制电路 1的输出即场效应管驱动芯片的输出, 由场效应管驱动芯片在可编程逻辑芯片的控制下分别输出 XG1H、 XNEL、 XNEH脉冲信号给 对应的场效应管 M4、 M7、 M8, 其输出从 L1的一端引出接正电压维持电压脉冲发生器 3的 正电压保护端即 D1的反向输入端。
所述的负电压维持电压脉冲发生器 4主要由场效管 M2、 M3、 M4、 M6、 Mil ,二极管 D2、 D7、 稳压管 ZD1、 电阻 Rl、 R2组成, 负电压维持电压脉冲发生器 5的输入从 M2、 M4、 M6、 Mil的栅极引出接电压控制电路 1的输出即场效应管驱动芯片的输出, 由场效应管驱动芯 片在可编程逻辑芯片的控制下分别输出 XEFL、 XG1H、 XPZL、 XG2H给对应的场效应管 M2、 M4、 M6、 Mil , 其输出从 Mil的漏极引出接 PDP高压驱动 IC芯片 6的电源端。
所述的负电压能量恢复保持电路 5主要由场效应管 M9、 M10、 Mil , 电感 L2、 二极管 D5、 D6、 电容 C2组成, 负电压能量恢复保持电路 4的输入从 M9、 M10、 Mil的栅极引出接 电压控制电路 1的输出即场效应管驱动芯片的输出,由场效应管驱动芯片在可编程逻辑芯 片的控制下分别输出 XAEH、 XAEL、 XG2H脉冲信号给对应的场效应管 M9、 M10、 Mil , 其输 出从 L2的一端引出接负电压维持电压脉冲发生器 5的负电压保护端即 M6的漏极和场效应 管 Mil的源极, 再从场效应管 Mil的漏极引出接 PDP高压驱动 IC芯片 6的电源端。
本发明的槽型等离子体显示板 (SMPDP) 用驱动电路的驱动方法是在维持驱动电路中 的正电压维持电压脉冲发生器和负电压维持电压脉冲发生器的驱动方法上,原在维持期电 压控制电路中的场效应管 M6的输出端直接与 PDP行高压驱动 IC芯片中的场效应管 T2的 输入端相接, 现在改为在维持期电压控制电路中的场效应管 M6的输出端接场效应管 Mil 的源极,场效应管 Mil的漏极直接与 PDP行高压驱动 IC芯片中的场效应管 T2的输入端相 接; 维持期电压控制电路中的场效应管 M5的输出端接场效应管 M3的控制端 , 场效应管 M4的输出端接电阻 Rl, 电阻 R1的另一端接, 快恢复二极管 D2的正极, 快恢复二极管 D2 的负极接场效应管 M3的控制端; 场效应管 M3的输出端接 PDP行高压驱动 IC芯片中的场 效应管 T1的输入端; 负电压能量恢复保持电路中的场效应管 M9、 M10的输出端分别接快 恢复二极管 D5正极、 D6的负极, 快恢复二极管 D5负极、 D6的正极接电感 L2, 电感 L2 的另一端接接场效应管 Mil的源极; 正电压能量恢复保持电路中的场效应管 M7的输出端 接快恢复二极管 D3的负极,场效应管 M8的输出端接快恢复二极管 M的正极 ,快恢复二 极管 M的负极和快恢复二极管 D3的正极接电感 Ll, 电感 L1的另一端接场效应管 M2; 正 电压维持电压脉冲发生器 Ml和 M2、 L1及 M3的 D极相连。
针对槽型等离子体显示板的维持脉冲驱动电路, 槽型等离子体显示屏由印有行电极 的前基板、 印有列电极的后基板和带有大量网孔的金属板或表面镀有金属导电层的介质 板组成, 显示方式是在显示一帧图像的时间内安排若干个子场, 每个子场由扫描期,维持 期和擦除期组成, 扫描期依次完成对全屏各像素点的点火; 在维持期采用了对槽型等离 子体显示板的双极性能量恢复保持驱动电路方式和全新槽型等离子体显示板 (SMPDP) 驱 动电路的驱动方法, 双极性能量恢复保持驱动电路根据维持脉冲的正负极性, 产生正负 交替的脉冲波形, 使在扫描期被点火的像素点保持气体放电状态并发光; 全新槽型等离 子体显示板 (SMPDP) 驱动电路的驱动方法是将原来在维持期电压控制电路中的场效应管 M6的输出端直接与 PDP行高压驱动 IC芯片中的场效应管 T2的输入端相接的方式, 改为 在维持期电压控制电路中的场效应管 M6的输出端增加一个场效应管 Mll, 并接到场效应 管 Mil的源极, 场效应管 Mil的漏极直接与 PDP行高压驱动 IC芯片中的场效应管 T2的 输入端相接; 以降低场效应管 M6的耐压要求, 以确保在维持期, SMPDP的正常工作。
维持期采用了对槽型等离子体显示板的双极性能量恢复保持驱动电路方案, 利用维 持驱动电路中两个独立的充电和放电电路, 电路内部平板电容 Cp和能量恢复电容 Cs通 过外部电感 L串联, 维持驱动电路是利用 Cp, L, Cs之间的串联响应来给内部平板电容 充放电的, 即从能量恢复电容 Cs中释放的能量用于给内部平板电容 Cp充电, 从内部平 板电容 Cp中释放的能量也暂时被存储在能量恢复电容 Cs 中。 实现能量恢复。 并产生正 负交替的双极性维持脉冲波形, 使在扫描期被点火的像素点保持气体放电状态并发光,擦 除期利用一复合积分波形完成对放电空间带电粒子的中和。 在维持期, 在维持期电压控 制电路中的场效应管 M6的输出端增加一个场效应管 Mll, 并接到场效应管 Mil的源极, 场效应管 Mil的漏极直接与 PDP行高压驱动 IC芯片中的场效应管 T2的输入端相接; 以 降低场效应管 M6的耐压要求。 擦除期利用行电极产生复合积分擦除脉冲, 而列电极保持 接地状态的方式进行擦除。
由此可见, 本发明的重点是在维持期电压控制电路中的场效应管 M6的输出端增加一 个场效应管 Mll, 并接到场效应管 Mil的源极, 场效应管 Mil的漏极直接与 PDP行高压驱 动 IC芯片中的场效应管 T2的输入端相接; 以降低场效应管 M6的耐压要求。 降低电路成 本, 提高槽型等离子体显示屏的可靠性。
本发明的有益效果:
由于现有的槽型等离子体显示板的图象显示驱动电路在维持期,维持期电压控制电路 中的场效应管 M6的输出端直接与 PDP行高压驱动 IC芯片中的场效应管 T2的输入端相接, 这就造成在正维持脉冲电压和正复合积分擦除脉冲工作时, 场效应管 M6将承受 2倍以上 的维持电压的耐压,而 PDP用的高压场效应管比较昂贵,而本发明通过在维持期电压控制 电路中的场效应管 M6的输出端增加一个场效应管 Mi l,降低了对场效应管 M6的耐压要求, 从而可大大降低 SMPDP的整机成本, 进一步提高 SMPDP显示器的可靠性。 附图说明
图 1是本发明槽型等离子体显示板 (SMPDP) 用驱动电路结构框图。 其中 1为电压控 制驱动电路、 2为正电压维持电压脉冲发生器、 3为正电压能量恢复保持电路、 4为负电 压维持电压脉冲发生器、 5为负电压能量恢复保持电路、 6为 PDP高压行驱动 IC芯片 6、 7为槽型等离子体显示板 (SMPDP屏)。
图 2是本发明槽型等离子体显示板(SMPDP)用驱动电路的电原理图。 图中 VS是正维 持电压脉冲电压; VXG是负维持电压脉冲电压; VF是场效应管驱动电压。
图 3是槽型等离子体显示板 (SMPDP) 用维持脉冲电路工作波形示意图。
下面结合附图和实施例对本发明作进一步的说明。
如图 1、 2所示。
上种槽型等离子体显示板 (SMPDP) 用驱动电路, 它主要由电压控制电路 1、 正电压 维持电压脉冲发生器 2、 正电压能量恢复保持电路 3、 负电压维持电压脉冲发生器 4、 负 电压能量恢复保持电路 5、 PDP高压驱动 IC芯片 6组成。
电压控制电路 1的输出端分别正电压维持电压脉冲发生器 2、正电压能量恢复保持电 路 3、 负电压维持电压脉冲发生器 4、 负电压能量恢复保持电路 5、 PDP高压驱动 IC芯片 6, 正电压能量恢复保持电路 3的输出端接正电压维持电压脉冲发生器 2, 负电压能量恢 复保持电路 5的输出端接负电压维持电压脉冲发生器 4, 正电压维持电压脉冲发生器 2、 负电压维持电压脉冲发生器 5的输出端 PDP高压驱动 IC芯片 6, PDP高压驱动 IC芯片 6 的输出端接槽型等离子体显示板 7的 X电极, 如图 1所示。
电压控制电路 1 由可编程逻辑芯片 (型号可为 EP1S25F672C7 ) 和场效应管驱动芯片 (型号可为 IR2113 )组成的电压控制脉冲产生驱动场效应管脉冲信号 "XEFH、XEFL、XG1H、 XSU、 XPZL、 XNEL、 X腦、 XAEH、 XAEL、 XG2H", 分别对应接各场效应管 "Ml、 M2、 M4、 M5、 M6、 M7、 M8、 M9、 M10、 Mi l "的栅极, 根据不同的时间常数, 控制各场效应管的开启与闭 合时间, 确保等离子体显示屏的新型老练电路功能的实现。
正电压维持电压脉冲发生器 2和负电压维持电压脉冲发生器 4的作用是保持全屏点亮 时所需要的最低双极性维持脉冲电压; 保证 PDP屏在点火脉冲过后, PDP屏上被点亮一 致处于点亮状态。
正电压能量恢复保持电路 3和负电压能量恢复保持电路 5是为了在 PDP屏在归零期前 将屏上电荷存储到能量恢复电容上,在维持电压脉冲产生前再将存储在能量恢复电容上的 电荷提给 PDP屏和提供维持电压的 M0S管, 确保 M0S管在开启时 Vds的压差为零。 PDP维 持驱动一般包括一个充放电电路和一个电压控制电路。而 PDP等效电容和平板大小和分辨 率的高低有关。
本实施例的电路图如图 2所示。
其中:
电压控制电路 1主要由可编程逻辑芯片和场效应管驱动芯片组成,可编程逻辑芯片产 生的脉冲信号经场效应管驱动芯片放大后产生能驱动后续各电路中的场效应管工作的脉 冲信号: XEFH、 XEFL、 XG1H、 XSU、 XPZL、 XNEH, XNEL、 XAEH、 XAEL、 XG2H, 它们分别为 正电压控制脉冲信号、 归零控制脉冲信号、 打开 M3控制脉冲信号、 点火脉冲控制信号、 负电压控制信号、正电压储能电容放电开启信号、正电压储能电容充电开启信号、负电压 储能电容充电开启信号、 负电压储能电容放电开启信号、 打开 Mil控制脉冲信号。
正电压维持电压脉冲发生器 2主要由场效应管 Ml、 M2、 M3、 M4、 二极管 Dl、 D2、 D7、 稳压管 ZD1、 电阻 Rl、 R2组成, 正电压维持电压脉冲发生器 3的输入从 Ml、 M2、 M4的栅 极引出接电压控制电路 1的输出即场效应管驱动芯片的输出,由场效应管驱动芯片在可编 程逻辑芯片的控制下分别输出 XEFH、 XEFL、 XG1H给对应的场效应管 Ml、 M2、 M4, 其输出 从 M3的源极引出接 PDP高压驱动 IC芯片 6的接地端。
正电压能量恢复保持电路 3主要由场效应管 M3、 M4、 M7、 M8、 电感 Ll、 二极管 D2、 D3、 M、 D7、 稳压管 ZD1、 电容 Cl、 电阻 Rl、 R2组成, 正电压能量恢复保持电路 4的输 入从 M4、 M7、 M8的栅极引出接电压控制电路 1的输出即场效应管驱动芯片的输出, 由场 效应管驱动芯片在可编程逻辑芯片的控制下分别输出 XG1H、 XNEL、 XNEH脉冲信号给对应 的场效应管 M4、 M7、 M8, 其输出从 L1的一端引出接正电压维持电压脉冲发生器 3的正电 压保护端即 D1的反向输入端。
负电压维持电压脉冲发生器 4主要由场效管 M2、 M3、 M4、 M6、 Mil , 二极管 D2、 D7、 稳压管 ZD1、 电阻 Rl、 R2组成, 负电压维持电压脉冲发生器 5的输入从 M2、 M4、 M6、 Mil 的栅极引出接电压控制电路 1的输出即场效应管驱动芯片的输出,由场效应管驱动芯片在 可编程逻辑芯片的控制下分别输出 XEFL、 XG1H、 XPZL、 XG2H给对应的场效应管 M2、 M4、 M6、 Mil , 其输出从 Mil的漏极引出接 PDP高压驱动 IC芯片 6的电源端。
负电压能量恢复保持电路 5主要由场效应管 M9、 M10、 Mil , 电感 L2、 二极管 D5、 D6、 电容 C2组成, 负电压能量恢复保持电路 4的输入从 M9、 M10、 Mil的栅极引出接电压控制 电路 1的输出即场效应管驱动芯片的输出,由场效应管驱动芯片在可编程逻辑芯片的控制 下分别输出 XAEH、 XAEL、 XG2H脉冲信号给对应的场效应管 M9、 M10、 Mil , 其输出从 L2 的一端引出接负电压维持电压脉冲发生器 5的负电压保护端即 M6的漏极和场效应管 Mil 的源极, 再从场效应管 Mil的漏极引出接 PDP高压驱动 IC芯片 6的电源端。
本发明的工作过程为:
槽型等离子体显示板 (SMPDP) 用驱动电路驱动方法的工作原理如下:
在维持期里采用了双极性能量恢复维持驱动电路,使得槽型等离子体显示板图像显示 时的功耗得以降低。
维持驱动包含有两个独立的充电和放电过程。 电路内部平板电容 Cp和能量恢复电容 Cs通过外部电感 L串联, 维持驱动电路是利用电路内部平板电容 Cp, 外部电感 L, 能量 恢复电容 Cs之间的串联响应来给内部平板电容充放电的,即从能量恢复电容 Cs中释放的 能量用于给内部平板电容 Cp充电,从内部平板电容 Cp中释放的能量也暂时被存储在能量 恢复电容 Cs中。 就是利用这种方法来实现能量恢复。
双极性能量恢复维持驱动电路的工作过程如下:
对正电压能量恢复维持驱动电路对能量恢复电容 Cp充放电被分为 4个过程: 在 TO前, 控制 IC的输出端与 IC的高压电源地相通, M2、 M3、 M4打开, 而其他 Mos 开关都被关掉。 输出电压 Vp等于 0。
在 TO— T1过程中, 首先 M2被关掉, M3、 M4、 M8被打开, 而其他 Mos 开关都被关掉, 这样就形成了一个 LC回路。 正维持脉冲电压储能电容 C1上的电压等于 Vs/2, 处于等待 状态, 在 T1一 T2过程最后输出电压 Vp被充电到 Vs。 在输出电压 Vp等于 Vs后, 先打开
Ml , 再关掉 M8。
在 T2— T3过程中, Cp放电, 开关 Ml关掉, M7打开。 Cp的放电电流流经 M3、 Ll, 二极管 D3和 M7到达 Cl, 这样 C1就被充电。 Cp—直放电直到输出电压 Vp等于 0。
在 T3— T4 过程中, M7关掉, M2打开。 而其他 Mos 开关状态都不变, 输出电压 Vp 等于 0。
对负电压能量恢复维持电路对 Cp充放电同样被分为 4个过程:
在 T5前, 控制 IC的输出端与 IC的高压电源相通, M2、 M3、 M4、 Mil打开, 而其他
- 1 - Mos 开关都被关掉。 输出电压 Vp等于 0。
在 T4一 T5过程中, 首先 M2 、 M3、 M4被关掉, M10被打开, 除 Mi l 以外的而其他 Mos 开关都被关掉,这样就形成了一个 LC回路。负维持脉冲电压储能电容 C2上的电压等 于 Vxe/2, 处于等待状态, 在 T5— T6过程最后输出电压 Vp被充电到 Vxe。 在输出电压 Vp 等于 VM后, 先打开 M6, 再关掉 M10。
在 T6-T7过程中, Cp放电, 开关 M6关掉, M9打开。 Cp的放电电流流经 Ml l、 L2, 二极管 D5和 M9到达 C2, 这样 C2就被充电。 Cp—直放电直到输出电压 Vp等于 0。
在 T7-T0 过程中, 关掉 M9、 Mi l , 打开 M2、 M3、 M4, 而其他 Mos 开关都被关掉。 输 出电压 Vp等于 0。
上述的 Cp当相于整个显示板的等效电容。

Claims

权利要求书 、 一种槽型等离子体显示板用驱动电路, 其特征是它主要由电压控制电路(1 )及与其相 连的正电压维持电压脉冲发生器 (2)、 正电压能量恢复保持电路 (3 )、 负电压维持电 压脉冲发生器 (4)、 负电压能量恢复保持电路 (5)、 PDP高压驱动 IC芯片 (6) 组成, 电压控制电路(1 ) 分别向正电压维持电压脉冲发生器(2)、 正电压能量恢复保持电路
( 3 )、 负电压维持电压脉冲发生器 (4)、 负电压能量恢复保持电路 (5)、 PDP 高压驱 动 IC芯片 (6) 发送脉冲信号; 正电压维持电压脉冲发生器 (2) 的输出接 PDP高压行 驱动 IC芯片 (6), 正电压能量恢复保持电路 (3) 的输出端与正电压维持电压脉冲发 生器 (2) 的正电压保持端相连, 负电压维持电压脉冲发生器 (4) 的输出也接 PDP高 压驱动 IC芯片 (6), 负电压能量恢复保持电路 (5) 的输出端接负电压维持电压脉冲 发生器 (4) 的负电压保持端, PDP高压驱动 IC芯片 (6) 的输出则接槽型等离子体显 示板 (7), 用于完成槽型等离子体显示板在维持期双极性维持脉冲电压的提供, 确保 槽型等离子体显示板能够正常工作。
、 根据权利要求 1所述的槽型等离子体显示板用驱动电路, 其特征是所述的电压控制电 路(1 )主要由可编程逻辑芯片和场效应管驱动芯片组成, 可编程逻辑芯片产生的脉冲 信号经场效应管驱动芯片放大后产生能驱动后续各电路中的场效应管工作的脉冲信 号: XEFH、 XEFL、 XG1H、 XSU、 XPZL、 X腦、 XNEL、 XAEH、 XAEL、 XG2H, 它们分别为正 电压控制脉冲信号、 归零控制脉冲信号、 打开 M3控制脉冲信号、 点火脉冲控制信号、 负电压控制信号、 正电压储能电容放电开启信号、 正电压储能电容充电开启信号、 负 电压储能电容充电开启信号、 负电压储能电容放电开启信号、 打开 Mil控制脉冲信号。 、 根据权利要求 1所述的槽型等离子体显示板用驱动电路, 其特征是所述的正电压维持 电压脉冲发生器 (2) 主要由场效应管 Ml、 M2、 M3、 M4、 二极管 Dl、 D2、 D7、 稳压管 ZD1、 电阻 Rl、 R2组成, 正电压维持电压脉冲发生器 3的输入从 Ml、 M2、 M4的栅极引 出接电压控制电路 1 的输出即场效应管驱动芯片的输出, 由场效应管驱动芯片在可编 程逻辑芯片的控制下分别输出 XEFH、 XEFL、 XG1H给对应的场效应管 Ml、 M2、 M4, 其 输出从 M3的源极引出接 PDP高压驱动 IC芯片 6的接地端。
、 根据权利要求 1所述的槽型等离子体显示板用驱动电路, 其特征是所述的正电压能量 恢复保持电路 (3) 主要由场效应管 M3、 M4、 M7、 M8、 电感 Ll、 二极管 D2、 D3、 D4、 D7、 稳压管 ZD1、 电容 Cl、 电阻 Rl、 R2组成, 正电压能量恢复保持电路 (4) 的输入 从 M4、 M7、 M8的栅极引出接电压控制电路 (1 ) 的输出即场效应管驱动芯片的输出, 由场效应管驱动芯片在可编程逻辑芯片的控制下分别输出 XG1H、 XNEL、 XNEH脉冲信号 给对应的场效应管 M4、 M7、 M8, 其输出从 LI 的一端引出接正电压维持电压脉冲发生 器 3的正电压保护端即 D1的反向输入端。
、 根据权利要求 1所述的槽型等离子体显示板用驱动电路, 其特征是所述的负电压维持 电压脉冲发生器 (4) 主要由场效管 M2、 M3、 M4、 M6、 Mil , 二极管 D2、 D7、 稳压管 ZD1、 电阻 Rl、 R2组成, 负电压维持电压脉冲发生器 (5) 的输入从 M2、 M4、 M6、 Mil 的栅极引出接电压控制电路(1 ) 的输出即场效应管驱动芯片的输出, 由场效应管驱动 芯片在可编程逻辑芯片的控制下分别输出 XEFL、 XG1H、 XPZL、 XG2H给对应的场效应管 M2、 M4、 M6、 Mil , 其输出从 Mil的漏极引出接 PDP高压驱动 IC芯片 6的电源端。 、 根据权利要求 1所述的槽型等离子体显示板用驱动电路, 其特征是所述的负电压能量 恢复保持电路 (5) 主要由场效应管 M9、 M10、 Mil , 电感 L2、 二极管 D5、 D6、 电容 C2 组成, 负电压能量恢复保持电路 (4) 的输入从 M9、 M10、 Mil 的栅极引出接电压控制 电路 1 的输出即场效应管驱动芯片的输出, 由场效应管驱动芯片在可编程逻辑芯片的 控制下分别输出 XAEH、 XAEL、 XG2H脉冲信号给对应的场效应管 M9、 M10、 Mil , 其输 出从 L2的一端引出接负电压维持电压脉冲发生器(5) 的负电压保护端即 M6的漏极和 场效应管 Mil的源极, 再从场效应管 Mil的漏极引出接 PDP高压驱动 IC芯片 (6) 的 电源端。
PCT/CN2008/071865 2008-08-04 2008-08-04 槽型等离子体显示板用驱动电路 WO2010015117A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/071865 WO2010015117A1 (zh) 2008-08-04 2008-08-04 槽型等离子体显示板用驱动电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/071865 WO2010015117A1 (zh) 2008-08-04 2008-08-04 槽型等离子体显示板用驱动电路

Publications (1)

Publication Number Publication Date
WO2010015117A1 true WO2010015117A1 (zh) 2010-02-11

Family

ID=41663277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071865 WO2010015117A1 (zh) 2008-08-04 2008-08-04 槽型等离子体显示板用驱动电路

Country Status (1)

Country Link
WO (1) WO2010015117A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060125728A1 (en) * 2004-12-14 2006-06-15 Lg Electronics Inc. Plasma display apparatus and driving method thereof
US20060187150A1 (en) * 2005-02-23 2006-08-24 Lg Electronics, Inc. Plasma display
CN1828704A (zh) * 2006-02-14 2006-09-06 东南大学 双极性非对称维持脉冲驱动电路及其驱动方法
CN101000742A (zh) * 2006-12-20 2007-07-18 南京华显高科有限公司 槽型等离子体显示板用驱动电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060125728A1 (en) * 2004-12-14 2006-06-15 Lg Electronics Inc. Plasma display apparatus and driving method thereof
US20060187150A1 (en) * 2005-02-23 2006-08-24 Lg Electronics, Inc. Plasma display
CN1828704A (zh) * 2006-02-14 2006-09-06 东南大学 双极性非对称维持脉冲驱动电路及其驱动方法
CN101000742A (zh) * 2006-12-20 2007-07-18 南京华显高科有限公司 槽型等离子体显示板用驱动电路

Similar Documents

Publication Publication Date Title
JP2976923B2 (ja) 容量性負荷の駆動装置
TW548620B (en) Plasma display and method of driving the same
JPH1185093A (ja) 表示パネル駆動装置
JPH05265397A (ja) 交流駆動型プラズマディスプレイパネル用ドライバ及びその制御方法
CN100472590C (zh) 等离子显示设备及其驱动方法
US7719490B2 (en) Plasma display apparatus
US7692608B2 (en) Energy recovery circuit and energy recovering method using the same
US20060250327A1 (en) Energy recovery device for plasma display panel
JP2005331956A (ja) プラズマディスプレイ装置及びその駆動方法
JP2005338842A (ja) プラズマディスプレイ装置
US20060097648A1 (en) Plasma display apparatus and driving method thereof
US20060033683A1 (en) Plasma display apparatus and driving method thereof
US8106855B2 (en) Energy recovery circuit and driving apparatus of display panel
WO2010015117A1 (zh) 槽型等离子体显示板用驱动电路
CN100535970C (zh) 双极性非对称维持脉冲驱动电路及其驱动方法
JP4172539B2 (ja) プラズマディスプレイパネルの駆動方法および駆動装置
KR100676756B1 (ko) 플라즈마 디스플레이 패널의 집적된 어드레스 구동 회로모듈, 구동 장치 및 구동방법
KR100676755B1 (ko) 플라즈마 디스플레이 패널의 집적된 스캔/서스테인 구동회로 모듈, 구동 장치 및 구동 방법
US20050007310A1 (en) Apparatus and method for energy recovery
CN100487771C (zh) 槽型等离子体显示板用驱动电路
KR100502348B1 (ko) 플라즈마 디스플레이 패널의 어드레스 구동회로를 위한전력 회생 회로
KR100658685B1 (ko) 플라즈마 표시 장치와 그 구동 방법
KR100839425B1 (ko) 플라즈마 표시 장치 및 그 구동 방법
KR100710217B1 (ko) 플라즈마 디스플레이 패널의 구동장치
KR100440971B1 (ko) Pdp의 y 구동 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08783858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08783858

Country of ref document: EP

Kind code of ref document: A1