WO2010012850A1 - Péptidos con capacidad de penetración celular y sus usos - Google Patents

Péptidos con capacidad de penetración celular y sus usos Download PDF

Info

Publication number
WO2010012850A1
WO2010012850A1 PCT/ES2009/070213 ES2009070213W WO2010012850A1 WO 2010012850 A1 WO2010012850 A1 WO 2010012850A1 ES 2009070213 W ES2009070213 W ES 2009070213W WO 2010012850 A1 WO2010012850 A1 WO 2010012850A1
Authority
WO
WIPO (PCT)
Prior art keywords
lys
peptide
gly
amino acids
seq
Prior art date
Application number
PCT/ES2009/070213
Other languages
English (en)
French (fr)
Inventor
David ANDREU MARTÍNEZ
Beatriz GARCÍA DE LA TORRE
Gandhi RÁDIS BAPTISTA
Original Assignee
Universitat Pompeu Fabra
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Pompeu Fabra filed Critical Universitat Pompeu Fabra
Publication of WO2010012850A1 publication Critical patent/WO2010012850A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent

Definitions

  • the present invention relates to peptides that have the ability to penetrate and translocate through the cell membrane.
  • Such peptides can be used, conjugated to a second molecule, as cell release or nucleolus targeting systems.
  • CPP cell penetration peptides
  • peptide sequences generally of reduced length (15 to 25 amino acids), of cationic nature and amphipathic structure, with a high affinity for lipid membranes and for membrane surface proteoglycans.
  • Members of this class of active biological peptides are capable of translocating cell membranes, being located in different cell compartments and, in most cases, mediating intracellular release of cargoes such as diagnostic imaging agents, polymeric biomolecules (nucleic acids, oligonucleotides , polypeptides), liposomes, drugs or nanoparticles. That is why these peptides are of interest in sectors such as pharmaceutical or diagnostic, among others.
  • the first cell penetration peptides recognized were the transcription transactivator from the HIV-1 virus, called Tat protein, and the homeodomain Antennapedia (Antp) from Drosophila. Later that shorter fragments of the protein Tat (eg 17-57 and Tat 48- TaI the 6th) and a fragment of 16 amino acids of Antp (Antp 43-5 8, called “Penetratin”) had the capacity to translocate demonstrated through of the plasma membrane (cf. Derossi D. et al., "The third helix of the Antennapedia homeodomain translocates through biological membranes", J. Biol. Chem., 1994, vol. 269 (14), p. 10444-10450) .
  • antimicrobial peptides 5 share some properties with CPPs, such as The strong interaction with components of the lipid bilayers, cell penetration capacity and addressing to cellular compartments. For example, it has recently been published that the human histatin 5 antimicrobial peptide translocates in the Leishmania cytoplasm and accumulates in the mitochondria, where it exerts its biological effect.
  • the inventors have designed new peptides, which have the ability to translocate and penetrate the cell membrane. Furthermore, surprisingly, when a second molecule is conjugated to said peptides, it is transported specifically to the nucleus and, in particular, to the nucleolus.
  • the present invention refers to a peptide, or a pharmaceutically or biologically acceptable salt thereof, which comprises the amino acid sequence of formula (I):
  • amino acids that constitute the peptide are L-amino acids, said amino acids being positioned in the peptide sequence in the order indicated in The formula (I) or in the reverse order.
  • the peptide of the present invention comprises the amino acid sequence N (t) -Tyr-Lys-Gln- (aa 3 ) - (aai) -Lys-Lys-Gly-Gly- (aa 2 ) n -Lys -Lys-Gly- Ser-Gly-C (t) (corresponding to the order indicated in formula (I)) or amino acid sequence N (t) -Gly-Ser-Gly-Lys-Lys- (aa 2 ) n -Gly-Gly-Lys-Lys- (aai) - (aa 3 ) -Gln-Lys-Tyr-C (t) (corresponding to the amino acid sequence of formula (I) but in the reverse order).
  • the peptides described herein can be prepared by any of the known methods including, but not limited to, solid phase synthesis, solution synthesis, protein expression by a transformed host, cleavage of a synthetic, semi-synthetic or derived polypeptide of Ia nature or a combination of these techniques.
  • the peptides according to the present invention can also be obtained by known methods in the form of their salts pharmaceutically and / or biologically acceptable, such as sodium salt, potassium salt, calcium salt, magnesium salt and acid addition salts.
  • salts include salts of inorganic acids (eg hydrochloric acid, sulfuric acid and phosphoric acid) and organic acids (eg acetic acid, propionic acid, citric acid, tartaric acid, methyl acid and methanesulfonic acid) .
  • the peptide comprises the amino acid sequence of formula (II):
  • aai is histidine or isoleucine
  • aa 2 represents a spacer amino acid
  • n 0 or 1
  • the amino acids that constitute the peptide are L-amino acids, said amino acids being positioned in the peptide sequence in the order indicated in formula (I) or in the reverse order.
  • Peptides comprising or consisting of the sequence of amino acids (I) and (II), in the order indicated in the formulas or in the reverse order, subject to additions or substitutions of one or more amino acids by others are part of the present invention.
  • amino acids selected from among the natural and known non-natural / modified amino acids.
  • the amino acid substitution can be conservative (ie one or more amino acids are substituted by one or more amino acids with similar physicochemical properties) or non-conservative (ie one or more amino acids are substituted by one or more amino acids with different physicochemical properties) , but without involving a substantive alteration of the primary structure.
  • said substitutions or additions should not affect the properties of nucleolar penetration, translocation and specificity characteristic of the peptides described herein.
  • the peptides of the present invention have Ia ability to translocate cell membranes, be located in the nucleolide different cell compartments and, in most cases, mediate the intracellular release of cargoes such as diagnostic imaging agents, polymeric biomolecules (nucleic acids, oligonucleotides, polypeptides), liposomes, drugs or nanoparticles . That is why these peptides are of interest in sectors such as pharmaceutical or diagnostic, among others.
  • cargoes such as diagnostic imaging agents, polymeric biomolecules (nucleic acids, oligonucleotides, polypeptides), liposomes, drugs or nanoparticles . That is why these peptides are of interest in sectors such as pharmaceutical or diagnostic, among others.
  • spacer amino acid is meant a non-natural or modified, straight chain aminoá-amino acid of up to 6 carbon atoms, with the amino group on the carbon farthest from the carboxyl group. Said spacer amino acid is intercalated in the peptide sequence of formula (I).
  • Illustrative and non-limiting examples of spacer amino acids are ⁇ -alanine (3-aminopropionic acid), 4-aminobutyric acid, 5-aminopentanoic acid, or 6-aminohexanoic acid (6-aminocaproic acid), among others).
  • the spacer amino acid is aminohexanoic acid.
  • the peptide has a sequence selected from the group consisting of:
  • SEQ ID NO. 1 N (t) Tyr-Lys-Gln-Cys-His-Lys-Lys-Gly-Gly-Lys-Lys-Gly-Ser-GlyC (t);
  • SEQ ID NO. 2 N (t) Tyr-Lys-Gln-Cys-His-Lys-Lys-Gly-Gly-Ahx-Lys-Lys-Gly-Ser-GlyC (t);
  • SEQ ID NO. 3 N (t) Gly-Ser-Gly-Lys-Lys-Ahx-Gly-Gly-Lys-Lys-His-Cys-Gln-Lys-TyrC (t);
  • the present invention refers to a conjugate comprising the peptide according to the first aspect of the invention together with a second molecule, which it is desired to transport into the cell.
  • the second molecule conjugated to the peptide according to the present invention may have pharmaceutical and / or biological activity.
  • Said molecule may be a pharmaceutical active ingredient, nucleic acid (eg oligonucleotide, double stranded DNA, single stranded DNA, circular DNA, RNA and RNA signal interference - "signal interfering", siRNA -), nucleic acid peptide ("PNAs"), nanoparticle, antibody and radioactive and fluorescent label or probe (eg carboxyfluorescein and derivatives, lucifer yellow, rhodamine and texas red).
  • Said second molecule can also be a peptide, a protein, a carbohydrate, a lipid or a steral. Examples of pharmaceutical active ingredients are dopamine, doxorubicin, daunomycin, paclitaxel and therapeutic peptides and proteins.
  • the peptide of the present invention can be conjugated to the second molecule either directly (eg, by suitable functional groups, such as an amine or carboxylic acid group to form, for example, an amine, an imine, an amide, a ester or other carbon-carbon bond) or indirectly through a linker group (eg, aliphatic chains (eg amino acids and polyethylene glycol) or aromatic chains, a polyamine, a polycarboxylic acid, a polyolefin or suitable combinations thereof ).
  • linker group eg, aliphatic chains (eg amino acids and polyethylene glycol) or aromatic chains, a polyamine, a polycarboxylic acid, a polyolefin or suitable combinations thereof.
  • conjugate as used herein also encompasses non-covalent interactions, includes, but is not limited to, ionic, affinity or complexation interactions.
  • said second molecule is selected from the group consisting of: nucleic acids, nucleosides, glycosidic residues, detectable markers (including metals, isotopes, radioisotopes, chromophores, fluorophores and the like) and drugs. More preferably, said second molecule is a detectable marker.
  • the inventors have verified that when the peptides of the invention are Conjugate to a second molecule of interest, such as an image agent (as an example of a detectable marker), it is verified that the peptide is directed directly to the nucleolus, so that the image agent is detected only in said compartment.
  • a second molecule of interest such as an image agent (as an example of a detectable marker)
  • the nucleoli have a great biological interest - and therapeutic potential - since, apart from the bodies of Cajal and the "splicing speckles", they constitute the most important cytological and functional structure of the nucleus. It is well documented that its function is associated with the transcription of three ribosomal RNAs and, consequently, with the biogenesis of the ribosomes. From the pathophysiological point of view, the nucleoli intervene in the control of viral infections, the regulation of the suppression of tumors and the oncogenic activity, in the control of the maturation and modulation of the activity of the telomerase, or as stress sensors ( cf. Zimber A.
  • the peptides of the invention are located in both associated and dissociated nucleoli, as well as in perichromosomal regions of metaphase chromosomes. In addition, they are also unique among all known cell penetration peptides since they appear to penetrate the cells during the G2 / M phase (just before starting mitosis). The latter is of special interest since, for example, the peptides of the invention conjugated to fluorescent compounds could be used to investigate the dynamics and nucleolar organization throughout the cell cycle; to conduct chemical inhibitors or to increase the efficacy of drugs that act in the G2 / M transition in the treatment of cancer (cf. Bucher N. et al., "G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cancer" Br J Cancer, 2008; vol. 98 (3): p. 523-538).
  • the peptides of the present invention are a tool useful for the specific addressing of substances as well as in the study of the transit of biomolecules in subnuclear bodies. In this way, they could serve not only to investigate the self-organization of this subnuclear organelle during cell cycle transitions (for example by confocal imaging in vivo), but also for the release of drugs in order to modulate the functions of this nuclear body.
  • the present invention relates to a method of visualizing cells, tissues and organs that comprises administering an effective amount of a peptide according to the first aspect of the invention, conjugated to a detectable label or an image agent.
  • a detectable label or an image agent.
  • the present invention refers to the use of a peptide as defined in the first aspect of the invention, as a system for addressing the nucleolus of a second molecule, which is conjugated to said peptide as described above. .
  • FIG. 1 shows the penetration of the peptide sequence SEQ ID NO: 1 into live cells of the HeLa line and its location in the nucleolus, after one hour of incubation of the peptide at a concentration of 15 ⁇ M with live cells of the HeLa line.
  • Panels A, C and E show the phase contrast images (differential interference contrast, DIC), and panels B, D and F the images of confocal microscopy The panels represent different levels of increase; in all of them, the scale bar corresponds to 50 ⁇ m.
  • (+) indicates metaphase chromosomes and dissociated nucleoli, (*>) cells in mitosis, (W) reassociated nucleoli, (i) cytokinesis and (*) interphase nucleoli.
  • FIG. 2 shows the nucleolar location of the peptide SEQ ID NO. 1 and the integrity of the nuclear envelope. Photographs taken after 1 hour of incubation of the cells with the peptide at a concentration of 15 ⁇ M followed by the addition of Draq5 to visualize the nucleus. Panel A: DIC image; panel B: confocal fluorescence; Panel C: Drainage of intact nuclei with Draq5, superimposed with panel B. In B and C, the symbols indicate: cytokinesis (i), re-associated nucleoli (F), and interphase nucleoli (*). The nucleoli, the nuclear envelope and the metaphase chromosomes are clearly visible. The 3 panels have the same magnification and the scale bar corresponds to 50 ⁇ m.
  • FIG. 3 shows the penetration of the sequence SEQ ID NO. 2 in living cells of the HeLa line and its location in the nucleolus. Photograph taken after 1 hour of incubation of the cells with the peptide at a concentration of 15 ⁇ M.
  • A DIC image
  • B confocal fluorescence. The 2 panels have identical magnification and the scale bar corresponds to 50 ⁇ m.
  • FIG. 4 shows the nucleolar location of the peptide SEQ ID NO. 3. Photographs taken after 1 h of incubation with the peptide at a concentration of 50 ⁇ M. The 2 panels have identical magnification and the scale bar corresponds to 50 ⁇ m.
  • FIG. 5 shows the nucleolar location of the peptide SEQ ID NO. 4, as well as the integrity of the nuclear envelope (not visualized by the addition of Draq5). Photographs taken after 1 h incubation of HeLa cells with the peptide at a concentration of 50 ⁇ M. Panels A and C: DIC image; panels B and D: confocal fluorescence. The panels represent two levels of increase; in all of them, the scale bar corresponds to 50 ⁇ m.
  • FIG. 6 shows the internalization and nucleolar location of the peptide SEQ ID NO. 5. Photographs taken after 1 h of incubation with the peptide at concentration of 25 ⁇ M (Panel A) or 100 ⁇ M (Panel B). The scale bar corresponds to 50 ⁇ m.
  • FIG. 7 shows the internalization and nucleolar location of the peptide SEQ ID NO. 1 versus three additional tumor cell lines.
  • Panel A pancreatic human adenocarcinoma (BxPC-3);
  • panel B colorectal human adenocarcinoma (Caco2);
  • panel C human breast ductal carcinoma (BT-474). Photographs taken after 1 h of incubation with the peptide at a concentration of 50 ⁇ M.
  • the peptides were synthesized in an Applied Biosystems model 433 synthesizer using Fmoc chemistry, in particular the manufacturer's 0.1 mmol FastMoc protocol, on a Fmoc-Rink-amide (MBHA) resin, and using an 8-fold excess of the corresponding Fmoc-L- amino acid and HBTU [2- (1 H-benzothazol-1-yl) -1, 1, 3,3-tetramethyluronium) / HOBt (1- hydroxybenzotriazole) hexafluorophosphate as a coupling reagent (peptide bond formation), in N , N-dimethylformamide as solvent.
  • the protected peptidyl resin and with its free ⁇ / -terminal end was divided into two parts. One of them was transferred to a polypropylene syringe equipped with a porous filter disk, to then proceed to the manual incorporation of rhodamine B, which was coupled by N, IST-diisopropylcarbodiimide in dichloromethane (1: 1, excess of 8 times).
  • Total deprotection and de-anchoring of the resin peptides was carried out with trifluoroacetic acid-water-ethanedithiol-triisopropylsilane (94: 2.5: 2.5: 1 v / v) for 90 minutes at room temperature.
  • the peptides were precipitated by adding cold tert-butylmethyl ether; The precipitate was solubilized in 0.1 M acetic acid and lyophilized.
  • HeLa human epithelial adenocarcinoma
  • BxPC-3 pancreatic human adenocarcinoma
  • Caco2 human colorectal adenocarcinoma
  • BT-474 human breast ductal carcinoma
  • DMEM Dulbecco-modified Eagle medium
  • the cells were propagated in circular sample holders (25 mm diameter) in standard culture medium, until they reached 50-60% confluence. Then washed with phosphate buffered saline (PBS) buffer and mounted in a growth chamber Leica TCS-SP2, where they were maintained at 37 0 C in 5% CO 2 in 2 ml of DMEM / F12 without phenol red, but supplemented with 10% (v / v) heat-inactivated bovine fetal serum, 2 mM L-glutamine, 100 ⁇ g / ml of streptomycin and 10 U / ml penicillin. The necessary volume of a 500 ⁇ M solution of the peptide was added to obtain the desired concentrations in the culture chamber (15 to 50 ⁇ M)
  • PBS phosphate buffered saline
  • DIC and fluorescence images were captured every 30 seconds, in periods of 60 and / or 90 minutes, with a Leica TCS-SP2 confocal microscope, using an argon laser as a source of excitation.
  • Optimized three-dimensional snapshots (Z-stack) of each sample were obtained and the DIC images were superimposed with fluorescence using the corresponding tools of the Leica Confocal software package (LCS software).
  • HeLa cells were dispersed in DMEM / F12 medium and distributed in a 96-well plate at a rate of 10 4 cells / well. After 96 hours of culture (5% CO 2 , 37 0 C), they were incubated with concentrations 100 50, 25, 12.5, 6.25, 3.12, 1.56 and 0.78 ⁇ M of each of the sequence peptides SEQ ID NO. 1-5 for 4 hours, each concentration in triplicate. Wells with identical amount of cells and a half, but without peptide were used as control.
  • sequence SEQ ID NO. 1 that incorporated the rhodamine in the N-terminal was incubated with HeLa cells in a confluence state of 60% under standard cell culture conditions. It was observed that the penetration into live HeLa cells was about 30-40%, using as a control (100% penetration) a Tat peptide (sequence GRKKRRQRRPP (SEQ ID NO. 6), cf. Derossi et al., Supra), synthesized by the standard procedure described previously labeled with fluorescein isocyanate (FITC) which, on the other hand, does not have a preferred nucleolar location.
  • FITC fluorescein isocyanate
  • FIG. 1 D The integrity of the nuclear envelope is also evident in these photographs.
  • the peptide SEQ ID NO. 1 appears to bind to premitotic nucleoli, metaphase chromosomes, reorganized self-organized nucleoli and nucleoli of cells in the cytokinesis process (FIG. 1 D and 1 F; FIG. 2B and 2C).

Abstract

Péptidos con capacidad de penetración celular y sus usos Los péptidos,o sales farmacéutica o biológicamente aceptables de los mismos, comprende la secuenciade aminoácidos de fórmula (I) donde: aa1 es histidina o isoleucina, aa2 representa un aminoácido espaciador, aa3 es cisteína o serina, n= 0 ó 1, y los aminoácidos que constituyen el péptido son L-aminoácidos, estando dichos aminoácidos posicionados en la secuencia peptídica en el orden indicado en la fórmula (I) o bien en el orden inverso. Dichos péptidos translocan y penetran la membrana celular, dirigiéndose de manera específica al nucléolo. Estas propiedades lo hacen útil como sistema de direccionamiento de una segunda molécula al nucléolo. Tyr-Lys-Gln-(aa3 )-(aa1 )-Lys-Lys-Gly-Gly-(aa2 ) n -Lys-Lys-Gly-Ser-Gly (I)

Description

Péptidos con capacidad de penetración celular y sus usos
La presente invención se refiere a péptidos que tienen Ia capacidad de penetrar y translocarse a través de Ia membrana celular. Dichos péptidos se pueden usar, conjugados a una segunda molécula, como sistemas de liberación celular o de direccionamiento al nucléolo.
ESTADO DE LA TÉCNICA ANTERIOR
Los denominados péptidos de penetración celular (de aquí en adelante también referidos como "CPP") son secuencias peptídicas, generalmente de longitud reducida (15 a 25 aminoácidos), de naturaleza catiónica y estructura anfipática, con una elevada afinidad por las membranas lipídicas y por los proteoglicanos de superficie de membrana. Los miembros de esta clase de péptidos biológicos activos son capaces de translocar membranas celulares, localizarse en diferentes compartimentos celulares y, en Ia mayoría de casos, mediar Ia liberación intracelular de cargamentos tales como agentes de diagnóstico por imagen, biomoléculas poliméricas (ácidos nucleicos, oligonucleótidos, polipéptidos), liposomas, fármacos o nanopartículas. Es por esto que dichos péptidos son de interés en sectores tales como el farmacéutico o diagnóstico, entre otros.
Los primeros péptidos de penetración celular reconocidos fueron el transactivador de transcripción procedente del virus HIV-1 , denominado proteína Tat, y el homeodominio Antennapedia (Antp) procedente de Drosophila. Más tarde se demostró que fragmentos cortos de Ia proteína Tat (p.e. TaI17-57 y Tat48- 6o) y un fragmento de 16 aminoácidos de Antp (Antp43-58, denominado 'Penetratina') tenían Ia capacidad de translocar a través de Ia membrana plasmática (cf. Derossi D. et al., "The third helix of the Antennapedia homeodomain translocates through biological membranes", J. Biol. Chem., 1994, vol. 269(14), p. 10444-10450). A partir de entonces, se ha identificado un número elevado de péptidos naturales y sintéticos que se utilizan para translocar y liberar en el citoplasma celular y en el núcleo distintos tipos de moléculas, ya sea In vitro o In vivo. Por otro lado, debido a sus características físico-químicas (longitud corta, carga catiónica, naturaleza antipática y estructuras secundarias ordenadas), y al mecanismo general de captación celular, los péptidos antimicrobianos (AMPs) 5 comparten algunas propiedades con los CPPs, tales como Ia fuerte interacción con componentes de las bicapas lipídicas, capacidad de penetración celular y direccionamiento a compartimentos celulares. Por ejemplo, se ha publicado recientemente que el péptido antimicrobiano humano histatina 5 transloca en el citoplasma de Leishmania y se acumula en Ia mitocondria, donde ejerce su 10 efecto biológico.
Las secuencias peptídicas con tales características de penetración y de direccionamiento celular ofrecen interesantes posibilidades de aplicación como sistemas de administración direccionables de fármacos para el tratamiento de
15 enfermedades relacionadas con Ia angiogénesis, como el cáncer (cf. Murphy E. A. et al., "Nanoparticle-mediated drug delivery to tumor vasculature suppresses metástasis", Proc. Nati. Acad. Sci. U S A., 2008, vol. 105 (27), p. 9343-9348) o Ia artritis (cf. Szekanecz Z. et al., "Mechanisms of Disease: angiogénesis in inflammatory diseases", Nat. Clin. Pract. Rheumatol., 2007, vol. 3(11 ), p. 635-
20 643).
Aunque Ia carga catiónica y el carácter anfipático son dos requisitos físico- químicos determinantes de Ia capacidad de penetración celular a través de Ia membrana bien reconocidos de los CPPs, sigue siendo aun difícil predecir si 25 una secuencia determinada podrá translocar o no Ia membrana (cf. Hansen M. et al., "Predicting cell-penetrating peptides", Adv. Drug DeNv. Rev., 2008, vol. 60(4-5), p. 572-579).
Además, existe todavía Ia necesidad de secuencias peptídicas translocadoras 30 que permitan el direccionamiento hacia compartimentos celulares específicos.
EXPLICACIÓN DE LA INVENCIÓN
Los inventores han diseñado nuevos péptidos, los cuales tienen Ia capacidad de translocarse y penetrar Ia membrana celular. Además, sorprendentemente, cuando se conjuga una segunda molécula a dichos péptidos, ésta es transportada de manera específica al núcleo y, en particular al nucléolo.
Así, en un primer aspecto Ia presente invención se refiere a un péptido, o a una sal farmacéutica o biológicamente aceptable del mismo, que comprende Ia secuencia de aminoácidos de fórmula (I):
Tyr-Lys-Gln-(aa3)-(aai)-Lys-Lys-Gly-Gly-(aa2)n-Lys-Lys-Gly-Ser-Gly (I)
donde aai histidina ó isoleucina, aa2 es cisteína o serina, aa3 un aminoácido espaciador, n= 0 ó 1 , y los aminoácidos que constituyen el péptido son L-aminoácidos, estando dichos aminoácidos posicionados en Ia secuencia peptídica en el orden indicado en Ia fórmula (I) o bien en el orden inverso.
De esta manera, el péptido de Ia presente invención comprende Ia secuencia de aminoácidos N(t)-Tyr-Lys-Gln-(aa3)-(aai)-Lys-Lys-Gly-Gly-(aa2)n-Lys-Lys-Gly- Ser-Gly-C(t) (que corresponde al orden indicado en Ia fórmula (I)) o bien Ia secuencia de aminoácidos N(t)-Gly-Ser-Gly-Lys-Lys-(aa2)n-Gly-Gly-Lys-Lys- (aai)-(aa3)-Gln-Lys-Tyr-C(t) (que corresponde a Ia secuencia de aminoácidos de fórmula (I) pero en el orden inverso).
Los péptidos descritos en el presente documento se pueden preparar mediante cualquiera de los procedimientos conocidos incluyendo, pero no limitándose a, síntesis en fase sólida, síntesis en solución, expresión de proteína mediante un hospedador transformado, escisión de un polipéptido sintético, semisintético o derivado de Ia naturaleza o una combinación de estas técnicas.
Los péptidos según Ia presente invención también pueden obtenerse por métodos conocidos en forma de sus sales farmacéutica y/o biológicamente aceptables, como Ia sal sódica, Ia sal potásica, Ia sal calcica, Ia sal magnésica y sales de adición con ácidos. Ejemplos de sales incluyen las sales de ácidos inorgánicos (p.ej. ácido clorhídrico, ácido sulfúrico y ácido fosfórico) y de ácidos orgánicos (p.ej. ácido acético, ácido propiónico, ácido cítrico, ácido tartárico, ácido mélico y ácido metanosulfónico).
En una realización preferida del primer aspecto de Ia invención, el péptido comprende Ia secuencia de aminoácidos de fórmula (II):
Tyr-Lys-Gln-Cys-(aai)-Lys-Lys-Gly-Gly-(aa2)n-Lys-Lys-Gly-Ser-Gly (II)
donde aai es histidina o isoleucina, aa2 representa un aminoácido espaciador, n= 0 ó 1 , y los aminoácidos que constituyen el péptido son L-aminoácidos, estando dichos aminoácidos posicionados en Ia secuencia peptídica en el orden indicado en Ia fórmula (I) o bien en el orden inverso.
Forman parte de Ia presente invención péptidos que comprendan o consistan en Ia secuencia de aminoácidos (I) y (II), en el orden indicado en las fórmulas o bien en el orden inverso, sujetos a adiciones o sustituciones de uno o más aminoácidos por otros aminoácidos seleccionados de entre los aminoácidos naturales y los no naturales/modificados conocidos. La sustitución de aminoácidos puede ser conservativa (i.e. se sustituye uno o más aminoácidos por uno o más aminoácidos con propiedades físico-químicas similares) o no conservativa (i.e. se sustituye uno o más aminoácidos por uno o más aminoácidos con propiedades físico-químicas diferentes), pero sin que comporte una alteración sustantiva de Ia estructura primaria. En todo caso, dichas sustituciones o adiciones no deben afectar a las propiedades de penetración, translocación y especificidad nucleolar características de los péptidos descritos en el presente documento.
Tal y como se ilustra más abajo, los péptidos de Ia presente invención tienen Ia capacidad de translocar membranas celulares, localizarse en el nucléolodiferentes compartimentos celulares y, en Ia mayoría de casos, mediar Ia liberación intracelular de cargamentos tales como agentes de diagnóstico por imagen, biomoléculas poliméricas (ácidos nucleicos, oligonucleótidos, polipéptidos), liposomas, fármacos o nanopartículas. Es por esto que dichos péptidos son de interés en sectores tales como el farmacéutico o diagnóstico, entre otros.
Por "aminoácido espaciador" se entiende un ω-aminoácido no natural o modificado, de cadena lineal de hasta 6 átomos de carbono, con el grupo amino en el carbono más alejado del grupo carboxilo. Dicho aminoácido espaciador se encuentra intercalado en Ia secuencia peptídica de fórmula (I). Ejemplos ilustrativos y no limitativos de aminoácidos espaciadores son Ia β-alanina (ácido 3-aminopropiónico), el ácido 4-aminobutírico, el ácido 5-aminopentanoico, o el ácido 6-aminohexanoico (ácido 6-aminocaproico), entre otros). Preferiblemente, el aminoácido espaciador es el ácido aminohexanoico.
En otra realización preferida del primer aspecto de Ia invención, el péptido tiene una secuencia seleccionada del grupo que consiste en:
SEC ID NO. 1 : N(t)Tyr-Lys-Gln-Cys-His-Lys-Lys-Gly-Gly-Lys-Lys-Gly-Ser-GlyC(t);
SEC ID NO. 2: N(t)Tyr-Lys-Gln-Cys-His-Lys-Lys-Gly-Gly-Ahx-Lys-Lys-Gly-Ser-GlyC(t);
SEC ID NO. 3: N(t)Gly-Ser-Gly-Lys-Lys-Ahx-Gly-Gly-Lys-Lys-His-Cys-Gln-Lys-TyrC(t);
SEC ID NO. 4:
N(t)Gly-Ser-Gly-Lys-Lys-Ahx-Gly-Gly-Lys-Lys-lle-Cys-Gln-Lys-TyrC(t) ; y
SEC ID NO. 5: N(t)Tyr-Lys-Gln-Ser-His-Lys-Lys-Gly-Gly-Lys-Lys-Gly-Ser-GlyC(t). En un segundo aspecto, Ia presente invención se refiere a un conjugado que comprende el péptido según el primer aspecto de Ia invención junto a una segunda molécula, que se desea transportar al interior de Ia célula.
La segunda molécula conjugada al péptido según Ia presente invención, puede tener actividad farmacéutica y/o biológica. Dicha molécula puede ser un principio activo farmacéutico, ácido nucleico (p.ej. oligonucleótido, ADN de cadena doble, ADN de cadena simple, ADN circular, ARN y ARN de interferencia de señal - "signal interfering", siRNA -), ácido nucleico peptídico ("PNAs"), nanopartícula, anticuerpo y marcador o sonda radioactivo y fluorescente (p.ej. carboxifluoresceína y derivados, amarillo lucifer, rodamina y rojo texas). Dicha segunda molécula también puede ser un péptido, una proteína, un carbohidrato, un lípido o un esteral. Ejemplos de principios activos farmacéuticos son Ia dopamina, Ia doxorubicina, Ia daunomicina, el paclitaxel y péptidos y proteínas terapéuticas.
El péptido de Ia presente invención se puede conjugar a Ia segunda molécula ya sea de manera directa (p.e., mediante grupos funcionales adecuados, tales como un grupo amina o ácido carboxílico pata formar, por ejemplo, una amina, una imina, una amida, un éster u otro enlace carbono-carbono) o indirectamente a través de un grupo de engarce (p.e., cadenas alifáticas (p.ej. aminoácidos y polietilenglicol) o cadenas aromáticas , una poliamina, un ácido policarboxílico, una poliolefina o combinaciones adecuadas de los mismos). Además, el término "conjugado" tal y como se utiliza aquí también engloba las interacciones no covalentes, incluye, pero no se limitan a, interacciones iónicas, de afinidad o interacciones de complejación.
En una realización preferida del segundo aspecto de Ia invención, dicha segunda molécula se selecciona del grupo que consiste en: ácidos nucleicos, nucleósidos, residuos glicosídicos, marcadores detectables (incluyendo metales, isótopos, radioisótopos, cromóforos, fluoróforos y similares) y fármacos. Más preferiblemente, dicha segunda molécula es un marcador detectable.
Los inventores han comprobado que cuando los péptidos de Ia invención se conjugan a una segunda molécula de interés, como puede ser un agente de imagen (como ejemplo de marcador detectable), se comprueba que el péptido se dirige directamente al nucléolo, de manera que el agente de imagen se detecta únicamente en dicho compartimiento.
Los nucléolos tienen un gran interés biológico -y potencial terapéutico- ya que, aparte de los cuerpos de Cajal y los "splicing speckles", constituyen Ia estructura citológica y funcional más importante del núcleo. Está bien documentado que su función está asociada a Ia transcripción de tres ARN ribosomales y, en consecuencia, con Ia biogénesis de los ribosomas. Desde el punto de vista fisiopatológico, los nucléolos intervienen en el control de infecciones víricas, Ia regulación de Ia supresión de tumores y Ia actividad oncogénica, en el control de Ia maduración y modulación de Ia actividad de Ia telomerasa, o como sensores de estrés (cf. Zimber A. et al., "Nuclear bodies and compartments: functional roles and cellular signalling in health and disease", CeII Signal, 2004, vol. 16(10): p. 1085-1104). Todas estas funciones están relacionadas con el movimiento de los componentes nucleolares, Ia captura de proteínas celulares reguladoras dependientes del ciclo celular y el tránsito de proteínas que abandonan el núcleo tras desempeñar su función.
Como se ilustra más abajo, los péptidos de Ia invención se localizan en nucléolos tanto asociados como disociados, así como en regiones pericromosomales de cromosomas metafásicos. Además, son también únicos entre todos los péptidos de penetración celular conocidos ya que parece que penetran las células durante Ia fase G2/M (justo antes de iniciar Ia mitosis). Esto último es de especial interés ya que, por ejemplo, se podrían utilizar los péptidos de Ia invención conjugados a compuestos fluorescentes para investigar Ia dinámica y organización nucleolar a Io largo del ciclo celular; para conducir inhibidores químicos o para aumentar Ia eficacia de fármacos que actúan en Ia transición G2/M en el tratamiento de cáncer (cf. Bucher N. et al., "G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cáncer". Br J Cáncer, 2008;vol. 98(3): p. 523-538).
Por todo Io anterior, los péptidos de Ia presente invención son una herramienta útil para el direccionamiento específico de sustancias así como en el estudio del tránsito de biomoléculas en cuerpos subnucleares. De esta manera, podrían servir no solo para investigar Ia auto-organización de este orgánulo subnuclear durante las transiciones del ciclo celular (por ejemplo mediante microscopia por imagen confocal in vivo), sino también para Ia liberación de fármacos con el fin de modular las funciones de este cuerpo nuclear.
En un tercer aspecto, Ia presente invención se refiere a un procedimiento de visualización de células, tejidos y órganos que comprende administrar una cantidad efectiva de un péptido según el primer aspecto de Ia invención, conjugado a una etiqueta detectable o un agente de imagen. En los ejemplos incluidos, a continuación, se ilustra cómo se pueden visualizar las células mediante una etiqueta detectable.
En un cuarto aspecto, Ia presente invención se refiere al uso de un péptido según se define en el primer aspecto de Ia invención, como sistema de direccionamiento al nucléolo de una segunda molécula, Ia cual se encuentra conjugada a dicho péptido tal como se describió anteriormente.
A Io largo de Ia descripción y las reivindicaciones Ia palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en Ia materia, otros objetos, ventajas y características de Ia invención se desprenderán en parte de Ia descripción y en parte de Ia práctica de Ia invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de Ia presente invención.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
FIG. 1 muestra Ia penetración de Ia secuencia peptídica SEQ ID NO: 1 en células vivas de Ia línea HeLa y su localización en el nucléolo, tras una hora de incubación del péptido a una concentración de 15 μM con células vivas de Ia línea HeLa. Los paneles A, C y E muestran las imágenes de contraste de fases (differential interference contrast, DIC), y los paneles B, D y F las imágenes de microscopia confocal. Los paneles representan distintos niveles de aumento; en todos ellos, Ia barra de escala corresponde a 50 μm. En el panel D, (+) indica cromosomas metafásicos y nucléolos disociados, (*>) células en mitosis, (W) nucléolos reasociados, (i) citoquinesis y (*) nucléolos interfásicos.
FIG. 2 muestra Ia localización nucleolar del péptido SEC ID NO. 1 y Ia integridad de Ia envoltura nuclear. Fotografías tomadas tras 1 hora de incubación de las células con el péptido a una concentración 15 μM seguida de Ia adición de Draq5 para visualizar el núcleo. Panel A: imagen DIC; panel B: fluorescencia confocal; panel C: mareaje de núcleos intactos con Draq5, superpuesto con panel B. En B y C, los símbolos indican: citoquinesis (i), nucléolos reasociados (F), y nucléolos interfásicos (*). Los nucléolos, Ia envoltura nuclear y los cromosomas metafásicos son claramente visibles. Los 3 paneles tienen idéntica magnificación y Ia barra de escala corresponde a 50 μm.
FIG. 3 muestra Ia penetración de Ia secuencia SEC ID NO. 2 en células vivas de Ia línea HeLa y su ubicación en el nucléolo. Fotografía tomada tras 1 hora de incubación de las células con el péptido a una concentración 15 μM. (A) imagen DIC; (B) fluorescencia confocal. Los 2 paneles tienen idéntica magnificación y Ia barra de escala corresponde a 50 μm.
FIG. 4 muestra Ia localización nucleolar del péptido SEC ID NO. 3. Fotografías tomadas tras 1 h de incubación con el péptido a una concentración 50 μM. Los 2 paneles tienen idéntica magnificación y Ia barra de escala corresponde a 50 μm.
FIG. 5 muestra Ia localización nucleolar del péptido SEC ID NO. 4, así como Ia integridad de Ia envoltura nuclear (no visualizada por adición de Draq5). Fotografías tomadas tras 1 h de incubación de las células HeLa con el péptido a una concentración 50 μM. Paneles A y C: imagen DIC; paneles B y D: fluorescencia confocal. Los paneles representan dos niveles de aumento; en todos ellos, Ia barra de escala corresponde a 50 μm.
FIG. 6 muestra Ia internalización y localización nucleolar del péptido SEC ID NO. 5. Fotografías tomadas tras 1 h de incubación con el péptido a una concentración de 25 μM (Panel A) o 100 μM (Panel B). La barra de escala corresponde a 50 μm.
FIG. 7 muestra Ia internalización y localización nucleolar del péptido SEC ID NO. 1 frente a tres líneas celulares tumorales adicionales. Panel A: adenocarcinoma humano pancreático (BxPC-3); panel B: adenocarcinoma humano colorectal (Caco2); panel C: carcinoma ductal mamario humano (BT- 474). Fotografías tomadas tras 1 h de incubación con el péptido a una concentración 50 μM.
EJEMPLOS
a) Síntesis en fase sólida
Los péptidos se sintetizaron en un sintetizador Applied Biosystems modelo 433 empleando química Fmoc, en concreto el protocolo 0.1 mmol FastMoc del fabricante, sobre una resina Fmoc-Rink-amida (MBHA), y utilizando un exceso de 8 veces del correspondiente Fmoc-L-aminoácido y de HBTU [hexafluorofosfato de 2-(1 H-benzothazol-1-il)-1 ,1 ,3,3-tetrametiluronio) /HOBt (1- hidroxibenzotriazol) como reactivo de acoplamiento (formación de enlace peptídico), en N,N-dimetilformamida como disolvente. Una vez ensamblada Ia secuencia deseada, Ia peptidil-resina protegida y con su extremo Λ/-terminal libre, se dividió en dos partes. Una de ellas fue transferida a una jeringa de polipropileno dotada de un disco poroso filtrante, para proceder seguidamente a Ia incorporación manual de rodamina B, que se acopló mediante N, IST- diisopropilcarbodiimida en diclorometano (1 :1 , exceso de 8 veces). La desprotección total y desanclaje de los péptidos de Ia resina se llevó a cabo con ácido trifluoroacético-agua-etanoditiol-triisopropilsilano (94:2.5:2.5:1 v/v) durante 90 minutos a temperatura ambiente. Los péptidos se precipitaron adicionando tert-butilmetil éter frío; el precipitado se solubilizó en ácido acético 0.1 M y se liofilizó. B) Análisis y purificación
El análisis por HPLC de fase inversa se realizó en una columna de C18 (4.6 x 50 mm, 3 μm), empleando 0.045% TFA en H2O como eluyente A, y 0.036% TFA en ACN como eluyente B, a un flujo de 1 mL/min y con detección UV a 220 nm. Para Ia elución se emplearon gradientes lineales de B en A durante 15 minutos. Para Ia purificación por HPLC a escala preparativa se utilizó una columna de C18 (21.2 x 250 mm, 10 μm), con 0.1 % TFA en H2O como eluyente A, y 0.1 % TFA en ACN como eluyente B, a un flujo de 25 mL/min. Las fracciones de pureza adecuada (por HPLC analítico) y de Ia masa esperada (MALDI-TOF, Voyager DE-STR, Applied Biosystems, Foster City, CA, matriz de ácido α- hidroxicinámico, modo reflector) se combinaron y se liofilizaron, para ser utilizadas a continuación en los experimentos de internalización.
C) Cultivos celulares
Los ensayos de penetración y localización se realizaron en células de adenocarcinoma humano epitelial (HeLa), de adenocarcinoma humano pancreático (BxPC-3), de adenocarcinoma humano colorectal (Caco2), y de carcinoma ductal mamario humano (BT-474), obtenidas todas ellas del
Repositorio de Líneas Celulares Tumorales (Cáncer CeII Line Repository) del Instituto Municipal de Investigación Médica, de Barcelona. Las células se propagaron en todos los casos en condiciones de cultivo estándar: medio Eagle modificado por Dulbecco (DMEM), suplementado con 10% (v/v) de suero fetal bovino inactivado por calor, 2 mM de L-glutamina,100 μg/ml de estreptomicina y 10 U/ml de penicilina, en atmósfera con 5% CO2, a 370C. D) Microscopia confocal
Las células se propagaron en portamuestras circulares (25 mm diámetro) en medio de cultivo estándar, hasta que alcanzaron un 50-60% de confluencia. Seguidamente se lavaron con tampón fosfato salino (PBS) y se montaron en una cámara de cultivo Leica TCS-SP2, donde se mantuvieron a 370C, en 5% de CO2, en 2 mi de medio DMEM/F12 sin rojo fenol, pero suplementado con 10% (v/v) de suero fetal bovino inactivado por calor, 2 mM de L-glutamina,100 μg/ml de estreptomicina y 10 U/ml de penicilina. Se adicionó el volumen necesario de una solución 500 μM del péptido para obtener las concentraciones deseadas en Ia cámara de cultivo (15 a 50 μM)
Las imágenes DIC y de fluorescencia se capturaron cada 30 segundos, en periodos de 60 y/o 90 minutos, con un microscopio confocal Leica TCS-SP2, empleando un láser de argón como fuente de excitación. Se obtuvieron instantáneas tridimensionales (snapshots) optimizadas (Z-stack) de cada muestra y se superpusieron las imágenes DIC con fluorescencia mediante las correspondientes herramientas del paquete Leica Confocal software (LCS software).
E) Ensayo de citotoxicidad
Las células HeLa se dispersaron en medio DMEM/F12 y se distribuyeron en una placa de 96 pocilios a razón de 104 células/pocilio. Tras 96 horas de cultivo (5% CO2, 370C), se incubaron con concentraciones 100 50, 25, 12.5, 6.25, 3.12, 1.56 y 0.78 μM de cada uno de los péptidos de secuencia SEC ID NO. 1-5 durante 4 horas, cada concentración por triplicado. Se emplearon como control pocilios con idéntica cantidad de células y medio, pero sin péptido. A continuación se añadió a cada pocilio 20 μL de bromuro de 3-(4,5-dimetiltiazol-2-il)-2,5- difeniltetrazolio (MTT), a concentración 5 mg/ml en medio RPMI sin rojo fenol. El medio que contenía los péptidos y el MTT se eliminó, los cristales púrpura de formazano se disolvieron en 100 μL de dimetilsulfóxido (DMSO), y se midió Ia densidad óptica en un lector de microplacas BioRad modelo M680.
F) Conclusiones
La secuencia SEC ID NO. 1 que llevaba incorporada Ia rodamina en el N- terminal se incubó con células HeLa en un estado de confluencia del 60% en condiciones estándar de cultivo celular. Se observó que Ia penetración en células HeLa vivas era alrededor de un 30-40%, empleando como control (100% penetración) un péptido Tat (secuencia GRKKRRQRRPP (SEC ID NO. 6), cf. Derossi et al., supra), sintetizado mediante el procedimiento estándar descrito previamente, marcado con isocianato de fluoresceína (FITC) que, por otra parte, no tiene una localización nucleolar preferente. En las FIG. 1 y 2 se observa claramente Ia interacción del péptido de secuencia SEC ID NO. 1 con los nucléolos en células HeLa, incluyéndose una instantánea de los nucléolos en proceso de autoensamblaje (FIG. 1 D). También es evidente en estas fotografías Ia integridad de Ia envoltura nuclear. El péptido SEC ID NO. 1 parece unirse a nucléolos premitóticos, cromosomas metafásicos, nucléolos autoorganizados reasociados y nucléolos de células en proceso de citoquinesis (FIG. 1 D y 1 F; FIG. 2B y 2C).
El mismo ensayo se repitió con Ia secuencia SEC ID NO. 2 que llevaba incorporada Ia rodamina en el N-terminal. El patrón de penetración y localización en los nucléolos volvía a repetirse. En fotomicrografías tomadas cada 30 segundos en un microscopio confocal, se pudieron observar regiones discretas de fluorescencia en Ia membrana después de 15 minutos. Entre 45 y 60 minutos se observó que el péptido atravesaba Ia membrana celular de manera repentina, concentrándose principalmente en el núcleo y en concreto en los nucléolos de las células HeLa vivas (FIG. 3). Se determinó que tanto Ia penetración como Ia ubicación nucleolar eran procesos dependientes de Ia concentración y del tiempo.
Para investigar con mayor detalle el proceso de penetración celular y compartimentación nucleolar, se sintetizaron también los péptidos de SEC ID NO. 3 y SEC ID NO 4. En este caso también se observó penetración por parte de ambos péptidos (FIG. 4 y 5). Sin embargo, cabe resaltar el perfil de penetración de SEC ID NO. 4, .que transloca de manera masiva y se localiza en el nucléolo en un tiempo sorprendentemente corto (< 1 hora).
El mismo ensayo, realizado con Ia SEC ID NO. 5 marcada con rodamina en el N- terminal frente a células HeLa (FIG. 6), dio lugar a un patrón de internalización y localización nucleolar totalmente similar al observado para el péptido SEC ID NO. 1 inicialmente investigado.
Para evaluar Ia penetración y localización de los péptidos en otras líneas celulares, se ensayaron otras tres líneas celulares tumorales adicionales: adenocarcinoma humano pancreático (BxPC-3), de adenocarcinoma humano colorectal (Caco2), y de carcinoma ductal mamario humano (BT-474). En todos los casos, frente al péptido SEC ID NO. 1 , representativo de los restantes miembros de esta familia (SEC ID NOS 2-5), se observó internalización y localización en el nucléolo con un patrón totalmente similar al observado para las células HeLa (FIG. 7A-C).
Por último, se evaluó Ia citotoxicidad de algunos de los péptidos de Ia invención. Empleando el ensayo colorimétrico MTT, en el que este reactivo se reduce a formazano por acción de las mitocondhas (de células vivas), se verificó que SEC ID NO. 1 , SEC ID NO. 2 y SEC ID NO. 5 no son citotóxicos a concentraciones de hasta 100 μM, mientras que para SEC ID NO. 3 el umbral de citotoxicidad se situó en 80 μM.

Claims

REIVINDICACIONES
1. Péptido, o una sal farmacéutica o biológicamente aceptable del mismo, que comprende Ia secuencia de aminoácidos de fórmula (I):
Tyr-Lys-Gln-(aa3)-(aai)-Lys-Lys-Gly-Gly-(aa2)n-Lys-Lys-Gly-Ser-Gly (I)
donde aai histidina o isoleucina, aa2 un aminoácido espaciador, aa3 es cisteína o serina, n= 0 ó 1 , y los aminoácidos que constituyen el péptido son L-aminoácidos, estando dichos aminoácidos posicionados en Ia secuencia peptídica en el orden indicado en Ia fórmula (I) o bien en el orden inverso.
2. Péptido según Ia reivindicación 1 que comprende Ia secuencia de aminoácidos de fórmula (I):
Tyr-Lys-Gln-Cys-(aai)-Lys-Lys-Gly-Gly-(aa2)n-Lys-Lys-Gly-Ser-Gly (I)
donde aai es histidina o isoleucina, aa2 representa un aminoácido espaciador, n= 0 ó 1 , y los aminoácidos que constituyen el péptido son L-aminoácidos, estando dichos aminoácidos posicionados en Ia secuencia peptídica en el orden indicado en Ia fórmula (I) o bien en el orden inverso.
3. Péptido según cualquiera de las reivindicaciones 1-2, en donde aa2 es el ácido aminohexanoico.
4. Péptido según cualquiera de las reivindicaciones anteriores que tiene una secuencia seleccionada del grupo que consiste en: SEC ID NO. 1 , SEC ID NO. 2, SEC ID NO. 3 y SEC ID NO. 4.
5. Péptido según cualquiera de las reivindicaciones 1-3 que tiene Ia secuencia SEC ID NO. 5.
6. Conjugado que comprende el péptido según se define en cualquiera de las reivindicaciones 1 a 5 unido a una segunda molécula.
7. Conjugado según Ia reivindicación 6, en donde dicha segunda molécula se selecciona del grupo que consiste en: ácidos nucleicos, nucleósidos, residuos glicosídicos, marcadores detectables y fármacos.
8. Conjugado según Ia reivindicación 7, en donde dicha segunda molécula es un marcador detectable.
9. Procedimiento de visualización de células, tejidos y órganos que comprende administrar una cantidad efectiva de un péptido según cualquiera de las reivindicaciones 1-5, conjugado a una etiqueta detectable o un agente de imagen.
10. Uso de un péptido según se define en cualquiera de las reivindicaciones 1 a 5, como sistema de direccionamiento al nucléolo de una segunda molécula, Ia cual se encuentra conjugada a dicho péptido.
PCT/ES2009/070213 2008-07-29 2009-06-09 Péptidos con capacidad de penetración celular y sus usos WO2010012850A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200802334 2008-07-29
ES200802334A ES2334315B1 (es) 2008-07-29 2008-07-29 Peptidos con capacidad de penetracion celular y sus usos.

Publications (1)

Publication Number Publication Date
WO2010012850A1 true WO2010012850A1 (es) 2010-02-04

Family

ID=41609990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070213 WO2010012850A1 (es) 2008-07-29 2009-06-09 Péptidos con capacidad de penetración celular y sus usos

Country Status (2)

Country Link
ES (1) ES2334315B1 (es)
WO (1) WO2010012850A1 (es)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046481A1 (ko) * 2012-09-19 2014-03-27 주식회사 카엘젬백스 세포 투과성 펩티드, 그를 포함한 컨쥬게이트 및 그를 포함한 조성물
US9540419B2 (en) 2012-05-11 2017-01-10 Gemvax & Kael Co., Ltd. Anti-inflammatory peptides and composition comprising the same
US9572858B2 (en) 2013-10-23 2017-02-21 Gemvax & Kael Co., Ltd. Composition for treating and preventing benign prostatic hyperplasia
US9572900B2 (en) 2012-09-19 2017-02-21 Gemvax & Kael Co., Ltd. Cell penetrating peptide, conjugate comprising same, and composition comprising conjugate
US9730984B2 (en) 2012-05-11 2017-08-15 Gemvax & Kael Co., Ltd. Composition for preventing or treating rheumatoid arthritis
US9907838B2 (en) 2013-04-19 2018-03-06 Gemvax & Kael Co., Ltd. Composition and methods for treating ischemic damage
US9937240B2 (en) 2014-04-11 2018-04-10 Gemvax & Kael Co., Ltd. Peptide having fibrosis inhibitory activity and composition containing same
US10034922B2 (en) 2013-11-22 2018-07-31 Gemvax & Kael Co., Ltd. Peptide having angiogenesis inhibitory activity and composition containing same
WO2018156892A1 (en) 2017-02-23 2018-08-30 Adrx, Inc. Peptide inhibitors of transcription factor aggregation
WO2018226992A1 (en) 2017-06-07 2018-12-13 Adrx, Inc. Tau aggregation inhibitors
WO2019036725A2 (en) 2017-08-18 2019-02-21 Adrx, Inc. PEPTIDE INHIBITORS OF TAU AGGREGATION
US10383926B2 (en) 2013-06-07 2019-08-20 Gemvax & Kael Co., Ltd. Biological markers useful in cancer immunotherapy
US10463708B2 (en) 2014-12-23 2019-11-05 Gemvax & Kael Co., Ltd. Peptide for treating ocular diseases and composition for treating ocular diseases comprising same
US10561703B2 (en) 2013-06-21 2020-02-18 Gemvax & Kael Co., Ltd. Method of modulating sex hormone levels using a sex hormone secretion modulator
US10662223B2 (en) 2014-04-30 2020-05-26 Gemvax & Kael Co., Ltd. Composition for organ, tissue, or cell transplantation, kit, and transplantation method
US10676507B2 (en) 2015-05-26 2020-06-09 Gemvax & Kael Co., Ltd. Peptide and composition containing the same for anti-inflammation, anti-fibrosis, wound healing, and anticancer treatment
US10835582B2 (en) 2015-02-27 2020-11-17 Gemvax & Kael Co. Ltd. Peptide for preventing hearing loss, and composition comprising same
US10898540B2 (en) 2016-04-07 2021-01-26 Gem Vax & KAEL Co., Ltd. Peptide having effects of increasing telomerase activity and extending telomere, and composition containing same
US10967000B2 (en) 2012-07-11 2021-04-06 Gemvax & Kael Co., Ltd. Cell-penetrating peptide, conjugate comprising same and composition comprising same
US11015179B2 (en) 2015-07-02 2021-05-25 Gemvax & Kael Co., Ltd. Peptide having anti-viral effect and composition containing same
US11058744B2 (en) 2013-12-17 2021-07-13 Gemvax & Kael Co., Ltd. Composition for treating prostate cancer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045020A1 (en) * 1998-03-04 1999-09-10 Bio-Technology General Corp. Isolation of tissue specific peptide ligands and their use for targeting pharmaceuticals to organs
WO2002031109A2 (en) * 2000-10-13 2002-04-18 University Of Lausanne Intracellular delivery of biological effectors by novel transporter peptide sequences
US20050101762A1 (en) * 1999-09-27 2005-05-12 Sarlan Ltd. Conjugates of membrane translocating agents and pharmaceutically active agents
WO2006085583A1 (ja) * 2005-02-10 2006-08-17 Osaka University 細胞透過性ペプチド

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045020A1 (en) * 1998-03-04 1999-09-10 Bio-Technology General Corp. Isolation of tissue specific peptide ligands and their use for targeting pharmaceuticals to organs
US20050101762A1 (en) * 1999-09-27 2005-05-12 Sarlan Ltd. Conjugates of membrane translocating agents and pharmaceutically active agents
WO2002031109A2 (en) * 2000-10-13 2002-04-18 University Of Lausanne Intracellular delivery of biological effectors by novel transporter peptide sequences
WO2006085583A1 (ja) * 2005-02-10 2006-08-17 Osaka University 細胞透過性ペプチド

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZORKO M. ET AL.: "Cell-penetrating peptides: mechanism and kinetics of cargo delivery", ADVANCED DRUG DELIVERY REVIEWS., vol. 57, no. 4, 28 February 2005 (2005-02-28), pages 529 - 545 *
ZORKO M. ET AL.: "Cell-penetrating peptides: mechanism and kinetics of cargo delivery", ADVANCED DRUG DELIVERY REVIEWS., vol. 57, no. 4, 28 February 2005 (2005-02-28), pages 529 - 545. *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9907837B2 (en) 2012-05-11 2018-03-06 Gemvax & Kael Co., Ltd. Composition for preventing or treating cachexia
US9540419B2 (en) 2012-05-11 2017-01-10 Gemvax & Kael Co., Ltd. Anti-inflammatory peptides and composition comprising the same
US11857607B2 (en) 2012-05-11 2024-01-02 Gemvax & Kael Co., Ltd. Anti-inflammatory peptides and composition comprising the same
US11369665B2 (en) 2012-05-11 2022-06-28 Gemvax & Kael Co., Ltd. Anti-inflammatory peptides and composition comprising the same
US10960056B2 (en) 2012-05-11 2021-03-30 Gemvax & Kael Co., Ltd. Anti-inflammatory peptides and composition comprising the same
US9730984B2 (en) 2012-05-11 2017-08-15 Gemvax & Kael Co., Ltd. Composition for preventing or treating rheumatoid arthritis
US9844584B2 (en) 2012-05-11 2017-12-19 Gemvax & Kael Co., Ltd. Composition for preventing or treating sepsis
US10039811B2 (en) 2012-05-11 2018-08-07 Gemvax & Kael Co., Ltd. Anti-inflammatory peptides and composition comprising the same
US10967000B2 (en) 2012-07-11 2021-04-06 Gemvax & Kael Co., Ltd. Cell-penetrating peptide, conjugate comprising same and composition comprising same
US9631184B2 (en) 2012-09-19 2017-04-25 Gemvax & Kael Co., Ltd. Cell penetrating peptide, conjugate comprising same, and composition comprising conjugate
US11844845B2 (en) 2012-09-19 2023-12-19 Gemvax & Kael Co., Ltd. Cell penetrating peptide, conjugate comprising same, and composition comprising conjugate
US9572900B2 (en) 2012-09-19 2017-02-21 Gemvax & Kael Co., Ltd. Cell penetrating peptide, conjugate comprising same, and composition comprising conjugate
US10245327B2 (en) 2012-09-19 2019-04-02 Gemvax & Kael Co., Ltd. Cell penetrating peptide, conjugate comprising same, and composition comprising conjugate
WO2014046481A1 (ko) * 2012-09-19 2014-03-27 주식회사 카엘젬백스 세포 투과성 펩티드, 그를 포함한 컨쥬게이트 및 그를 포함한 조성물
US9907838B2 (en) 2013-04-19 2018-03-06 Gemvax & Kael Co., Ltd. Composition and methods for treating ischemic damage
US10383926B2 (en) 2013-06-07 2019-08-20 Gemvax & Kael Co., Ltd. Biological markers useful in cancer immunotherapy
US10561703B2 (en) 2013-06-21 2020-02-18 Gemvax & Kael Co., Ltd. Method of modulating sex hormone levels using a sex hormone secretion modulator
US9572858B2 (en) 2013-10-23 2017-02-21 Gemvax & Kael Co., Ltd. Composition for treating and preventing benign prostatic hyperplasia
US10034922B2 (en) 2013-11-22 2018-07-31 Gemvax & Kael Co., Ltd. Peptide having angiogenesis inhibitory activity and composition containing same
US11058744B2 (en) 2013-12-17 2021-07-13 Gemvax & Kael Co., Ltd. Composition for treating prostate cancer
US9937240B2 (en) 2014-04-11 2018-04-10 Gemvax & Kael Co., Ltd. Peptide having fibrosis inhibitory activity and composition containing same
US10662223B2 (en) 2014-04-30 2020-05-26 Gemvax & Kael Co., Ltd. Composition for organ, tissue, or cell transplantation, kit, and transplantation method
US10463708B2 (en) 2014-12-23 2019-11-05 Gemvax & Kael Co., Ltd. Peptide for treating ocular diseases and composition for treating ocular diseases comprising same
US11077163B2 (en) 2014-12-23 2021-08-03 Gemvax & Kael Co., Ltd. Peptide for treating ocular diseases and composition for treating ocular diseases comprising same
US10835582B2 (en) 2015-02-27 2020-11-17 Gemvax & Kael Co. Ltd. Peptide for preventing hearing loss, and composition comprising same
US10676507B2 (en) 2015-05-26 2020-06-09 Gemvax & Kael Co., Ltd. Peptide and composition containing the same for anti-inflammation, anti-fibrosis, wound healing, and anticancer treatment
US11015179B2 (en) 2015-07-02 2021-05-25 Gemvax & Kael Co., Ltd. Peptide having anti-viral effect and composition containing same
US10898540B2 (en) 2016-04-07 2021-01-26 Gem Vax & KAEL Co., Ltd. Peptide having effects of increasing telomerase activity and extending telomere, and composition containing same
US11117930B2 (en) 2017-02-23 2021-09-14 Adrx, Inc. Peptide inhibitors of transcription factor aggregation
WO2018156892A1 (en) 2017-02-23 2018-08-30 Adrx, Inc. Peptide inhibitors of transcription factor aggregation
WO2018226992A1 (en) 2017-06-07 2018-12-13 Adrx, Inc. Tau aggregation inhibitors
WO2019036725A2 (en) 2017-08-18 2019-02-21 Adrx, Inc. PEPTIDE INHIBITORS OF TAU AGGREGATION

Also Published As

Publication number Publication date
ES2334315A1 (es) 2010-03-08
ES2334315B1 (es) 2011-02-28

Similar Documents

Publication Publication Date Title
ES2334315B1 (es) Peptidos con capacidad de penetracion celular y sus usos.
Fonseca et al. Recent advances in the use of cell-penetrating peptides for medical and biological applications
Foged et al. Cell-penetrating peptides for drug delivery across membrane barriers
Braun et al. A biological transporter for the delivery of peptide nucleic acids (PNAs) to the nuclear compartment of living cells
Traboulsi et al. Macrocyclic cell penetrating peptides: A study of structure-penetration properties
Vivès et al. Cell-penetrating and cell-targeting peptides in drug delivery
Mäe et al. Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery
Tung et al. Arginine containing peptides as delivery vectors
Zhao et al. Intracellular cargo delivery using tat peptide and derivatives
ES2802253T3 (es) Péptido de penetración celular, conjugado que comprende el mismo y composición que comprende el conjugado
ES2692166T3 (es) Péptidos que se unen específicamente al receptor de HGF (cMet) y usos de los mismos
ES2361621T3 (es) Péptidos de lactoferrina útiles como péptidos de penetración celular.
Fei et al. Tumor targeting of a cell penetrating peptide by fusing with a pH-sensitive histidine-glutamate co-oligopeptide
Jha et al. CyLoP-1: a novel cysteine-rich cell-penetrating peptide for cytosolic delivery of cargoes
JP5635512B2 (ja) 遺伝子調節化合物の改良された送達のための化学的に修飾された細胞透過性ペプチド
US20110182920A2 (en) Identification of a novel cysteine-rich cell penetrating peptide
Kersemans et al. Cell penetrating peptides for in vivo molecular imaging applications
ES2901232T3 (es) Péptido diana de tumor maligno
ES2710463T3 (es) Acido poli(beta málico) con tripéptido colgante Leu-Leu-Leu para la administración eficaz del fármaco citoplasmático
Neves et al. Novel peptides derived from Dengue virus capsid protein translocate reversibly the blood–brain barrier through a receptor-free mechanism
EP1850876A1 (en) Transport of nano- and macromolecular structures into cytoplasm and nucleus of cells
Grunwald et al. TAT peptide and its conjugates: proteolytic stability
Zahid et al. Protein transduction domains: applications for molecular medicine
Zaro et al. Recombinant peptide constructs for targeted cell penetrating peptide-mediated delivery
Medina et al. Cancer cell surface induced peptide folding allows intracellular translocation of drug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09802537

Country of ref document: EP

Kind code of ref document: A1