WO2010012411A1 - Cable a couches gomme in situ pour armature carcasse de pneumatique - Google Patents

Cable a couches gomme in situ pour armature carcasse de pneumatique Download PDF

Info

Publication number
WO2010012411A1
WO2010012411A1 PCT/EP2009/005343 EP2009005343W WO2010012411A1 WO 2010012411 A1 WO2010012411 A1 WO 2010012411A1 EP 2009005343 W EP2009005343 W EP 2009005343W WO 2010012411 A1 WO2010012411 A1 WO 2010012411A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
rubber
wires
cables
layer
Prior art date
Application number
PCT/EP2009/005343
Other languages
English (en)
Inventor
Thibaud Pottier
Henri Barguet
Original Assignee
Societe De Technolgie Michelin
Michelin Recherche Et Technique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe De Technolgie Michelin, Michelin Recherche Et Technique S.A. filed Critical Societe De Technolgie Michelin
Priority to JP2011520359A priority Critical patent/JP5276717B2/ja
Priority to CN200980129607.7A priority patent/CN102105634B/zh
Priority to KR1020117004769A priority patent/KR101547377B1/ko
Priority to US13/057,127 priority patent/US8869851B2/en
Priority to BRPI0916700A priority patent/BRPI0916700A2/pt
Priority to EP09777384.0A priority patent/EP2326765B1/fr
Priority to EA201170279A priority patent/EA018029B1/ru
Publication of WO2010012411A1 publication Critical patent/WO2010012411A1/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • D07B1/0626Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration the reinforcing cords consisting of three core wires or filaments and at least one layer of outer wires or filaments, i.e. a 3+N configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0613Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the rope configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/165Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber inlay
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/104Rope or cable structures twisted
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2006Wires or filaments characterised by a value or range of the dimension given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2023Strands with core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2025Strands twisted characterised by a value or range of the pitch parameter given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2027Compact winding
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2027Compact winding
    • D07B2201/2028Compact winding having the same lay direction and lay pitch
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2029Open winding
    • D07B2201/2031Different twist pitch
    • D07B2201/2032Different twist pitch compared with the core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2038Strands characterised by the number of wires or filaments
    • D07B2201/2039Strands characterised by the number of wires or filaments three to eight wires or filaments respectively forming a single layer
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2046Strands comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/2061Cores characterised by their structure comprising wires resulting in a twisted structure
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/2062Cores characterised by their structure comprising wires comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2065Cores characterised by their structure comprising a coating
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2075Fillers
    • D07B2201/2079Fillers characterised by the kind or amount of filling
    • D07B2201/2081Fillers characterised by the kind or amount of filling having maximum filling
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2046Tire cords
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B7/00Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
    • D07B7/02Machine details; Auxiliary devices
    • D07B7/14Machine details; Auxiliary devices for coating or wrapping ropes, cables, or component strands thereof
    • D07B7/145Coating or filling-up interstices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S57/00Textiles: spinning, twisting, and twining
    • Y10S57/902Reinforcing or tire cords

Definitions

  • the present invention relates to two-layered metal cables, 3 + N construction, used in particular for the reinforcement of rubber articles.
  • tires and carcass reinforcement also called “carcasses”, of these tires, in particular to reinforcement of tire carcasses for industrial vehicles such as heavy goods vehicles.
  • a radial tire comprises in known manner a tread, two inextensible beads, two flanks connecting the beads to the tread and a belt circumferentially disposed between the carcass reinforcement and the tread.
  • This carcass reinforcement is constituted in known manner by at least one ply (or “layer”) of rubber reinforced by reinforcement elements (“reinforcements”) such as cords or monofilaments, generally of the metal type in the case of pneumatic tires for industrial vehicles.
  • layered cords consisting of a central core and one or more layers of steel are generally used. concentric wires arranged around this soul.
  • the most widely used layered cables are essentially M + N or M + N + P construction cables, formed of a core of M wire (s) surrounded by at least one layer of N wires which may itself be surrounded by an outer layer of P son, the M, N or P son having generally the same diameter for reasons of simplification and cost.
  • the layered cables must first have good flexibility and a high endurance in flexion, which implies in particular that their son have a relatively small diameter, preferably less than 0, 30 mm, more preferably less than 0.20 mm, generally smaller than that of the son used in conventional cables for tire crown reinforcement.
  • These layered cables are, on the other hand, subjected to considerable stresses during the rolling of the tires, in particular to repeated flexures or variations of curvature inducing at the level of the strands of friction, in particular as a result of the contacts between adjacent layers, and therefore of the wear, as well as fatigue; they must therefore have a high resistance to phenomena known as "fatigue-fretting".
  • the two-layer cables most used today in the tire carcass reinforcement are essentially 3 + N construction cables consisting of a core or inner layer of 3 wires and of an outer layer of N son (for example, 8 or 9 son), the assembly may be optionally shrunk by an outer hoop thread wound helically around the outer layer.
  • This type of construction promotes, as is known, the external penetrability of the cable by the tire calendering rubber or other rubber article during the cooking of the latter, and consequently improves the endurance of the cables. fatigue-fretting- corrosion. Moreover, a good penetration of the cable by rubber makes it possible in a known manner, thanks to a volume of air trapped in the cable which is less, to reduce the cooking times of the tires (reduced "time in press").
  • construction cables 3 + N have the disadvantage that they are not penetrable to the core because of the presence of a channel or capillary in the center of the three core wires, which remains empty after external impregnation with rubber and therefore conducive, by a kind of "wicking" effect, to the propagation of corrosive media such as water.
  • This disadvantage of construction cables 3 + N is well known, it has been exposed for example in patent applications WO 01/00922, WO 01/49926, WO 2005/071157, WO 2006/013077.
  • the method described in this application consists of individually sheathing (ie, single, "wire to wire”) with raw rubber, upstream of the point of assembly of the three wires (or torsion point ), one or preferably each of the three son to obtain an inner layer sheathed with rubber, before the subsequent introduction of the N son of the outer layer by wiring around the inner layer and sheathed.
  • calendering consists in transforming the cable, by incorporation between two layers of rubber in the green state, into a rubberized metal fabric used as a semi-finished product for any subsequent manufacture, for example for making a tire. .
  • a first object of the invention is a two-layer (Ci, Ce) metal cable of construction 3 + N, gummed in situ, comprising an inner layer (Ci) consisting of three core wires of diameter di wound helical assembly according to a pitch p, and an outer layer (Ce) of N wires, N varying from 6 to 12, of diameter d 2 wound together in a helix in a pitch p 2 around the inner layer (Ci), said cable characterized in that it has the following characteristics (d 1, d 2 , p 1 , p 2 are expressed in mm):
  • the inner layer is sheathed by a diene rubber composition called "filling rubber" which, for any cable length of 2 cm or more, is present in the central channel formed by the three core wires and in each of the interstices located between the three core wires and the N wires of the outer layer (Ce); the rate of filling rubber in the cable is between 5 and 35 mg per gram of cable.
  • filling rubber a diene rubber composition which, for any cable length of 2 cm or more, is present in the central channel formed by the three core wires and in each of the interstices located between the three core wires and the N wires of the outer layer (Ce); the rate of filling rubber in the cable is between 5 and 35 mg per gram of cable.
  • the invention also relates to the use of such a cable for the reinforcement of articles or semi-finished products of rubber, for example webs, pipes, belts, conveyor belts, tires.
  • the cable of the invention is particularly intended to be used as reinforcing element of a tire carcass reinforcement intended for industrial vehicles such as vans and vehicles known as "HGVs", that is to say vehicles metros, buses, road transport vehicles such as trucks, tractors, trailers, or off-the-road vehicles, agricultural or civil engineering machinery, and any other type of transport or handling vehicle.
  • the invention further relates to these articles or semi-finished rubber products themselves when reinforced by a cable according to the invention, in particular tires for industrial vehicles such as vans or HGVs.
  • a construction cable 3 + 9 according to the invention in cross-section, a construction cable 3 + 9 according to the invention, of the compact type (FIG 1); in cross-section, a conventional 3 + 9 construction cable, also of the compact type (Fig. 2); - In cross section, a construction cable 3 + 9 according to the invention, the type with cylindrical layers ( Figure 3); in cross-section, a conventional 3 + 9 construction cable, also of the cylindrical layer type (Fig. 4); an example of an in situ twisting and scrubbing facility suitable for manufacturing compact type cables in accordance with the invention (Fig. 5); in radial section, a heavy-duty pneumatic tire with a radial carcass reinforcement, conforming or not to the invention in this general representation (FIG 6).
  • the breaking force measurements denoted Fm (maximum load in N), tensile strength Rm (in MPa) and elongation at break denoted At (total elongation in %) are made in tension according to ISO 6892 of 1984.
  • the modulus measurements are carried out in tension, unless otherwise indicated according to ASTM D 412 of 1998 (test piece “C"): it is measured in second elongation (ie after one cycle).
  • the secant modulus "true” i.e., reduced to the actual section of the specimen
  • ElO normal conditions of temperature and hygrometry according to ASTM D 1349 of 1999.
  • This test makes it possible to determine the longitudinal permeability to the air of the cables tested, by measuring the volume of air passing through a specimen under constant pressure for a given time.
  • the principle of such a test is to demonstrate the effectiveness of the treatment of a cable to make it impermeable to air; it has been described for example in ASTM D2692-98.
  • the test is here performed either on raw manufacturing cables, or on cables extracted from tires or rubber sheets they reinforce, so already coated with rubber in the cooked state.
  • the raw manufacturing cables must first be coated from the outside with a so-called coating gum.
  • a series of 10 cables arranged in parallel (inter-cable distance: 20 mm) is placed between two skims (two rectangles of 80 x 200 mm) of a rubber composition in the raw state, each skim having a thickness 3.5 mm; the whole is then locked in a mold, each of the cables being kept under a sufficient tension (for example 2 daN) to ensure its straightness during the establishment in the mold, using clamping modules; then the vulcanization (baking) is carried out for 40 min at a temperature of 140 ° C. and under a pressure of 15 bar (rectangular piston of 80 ⁇ 200 mm). After that, the assembly is demolded and cut 10 pieces of cables thus coated, for example in the form of parallelepipeds of dimensions 7x7x20 mm, for characterization.
  • the test is carried out for example on 2 cm of cable length, thus coated by its surrounding rubber composition (or coating gum), in the following manner: air is sent to the cable entry, under a pressure of 1 bar, and measure the volume of air at the outlet, using a flowmeter (calibrated for example from 0 to 500 cmVmin).
  • a flowmeter calibrated for example from 0 to 500 cmVmin.
  • the cable sample is locked in a compressed seal (eg a dense foam or rubber seal) in such a way that only the amount of air passing through the cable from one end to the other, along its longitudinal axis, is taken into account by the measure; the tightness of the seal is checked beforehand with the aid of a solid rubber specimen, that is to say without cable.
  • a compressed seal eg a dense foam or rubber seal
  • the average air flow measured (average of the 10 specimens) is even lower than the longitudinal imperviousness of the cable is high.
  • the measured values less than or equal to 0.2 cm 3 / min are considered as zero; they correspond to a cable that can be described as airtight (totally airtight) along its axis (ie, in its longitudinal direction).
  • the amount of filling compound is measured by difference between the weight of the initial cable (thus erased in situ) and the weight of the cable (and therefore that of its threads) whose filling rubber has been eliminated by a suitable electrolytic treatment.
  • a sample of cable (length 1 m), wound on itself to reduce its bulk, constitutes the cathode of an electrolyzer (connected to the negative terminal of a generator), while the anode (connected to the positive terminal ) consists of a platinum wire.
  • the electrolyte consists of an aqueous solution (demineralized water) comprising 1 mole per liter of sodium carbonate.
  • the sample immersed completely in the electrolyte, is energized for 15 min under a current of 300 mA.
  • the cable is then removed from the bath, rinsed thoroughly with water. This treatment allows the rubber to be easily detached from the cable (if it is not the case, we continue the electrolysis for a few minutes).
  • the eraser is carefully removed, for example by simply wiping with an absorbent cloth, while detaching one by one the son of the cable.
  • the threads are again rinsed with water and then immersed in a beaker containing a mixture of deionized water (50%) and ethanol (50%); the beaker is immersed in an ultrasonic tank for 10 minutes. The threads thus devoid of any trace of gum are removed from the beaker, dried under a stream of nitrogen or air, and finally weighed.
  • the filling rate in the cable expressed in mg (milligram) of filling rubber per g (gram) of initial cable, is calculated and averaged over 10 measurements (i.e. total cable meters).
  • the "belt” test is a known fatigue test which has been described, for example, in EP-A-0 648 891 or WO98 / 41682, the steel test cables being incorporated in a rubber article which is vulcanized.
  • the rubber article is an endless belt made with a known rubber-based mixture, similar to those commonly used for radial tire carcasses.
  • the axis of each cable is oriented in the longitudinal direction of the belt and the cables are separated from the faces of the latter by a gum thickness of about 1 mm.
  • the cable forms a helical winding of the same axis as this cylinder (for example, no helix equal to about 2.5 mm).
  • This belt is then subjected to the following stresses: the belt is rotated around two rollers, so that each elementary portion of each cable is subjected to a tension of 12% of the initial breaking force and undergoes cycles of a variation of curvature that changes it from an infinite radius of curvature to a radius of curvature of 40 mm and this for 50 million cycles.
  • the test is carried out under a controlled atmosphere, the temperature and humidity of the air in contact with the belt being maintained at about 20 ° C. and 60% relative humidity.
  • the duration of the stresses for each belt is of the order of 3 weeks.
  • the cables are extracted from the belts, by shelling, and the residual breaking strength of the tired cable wires is measured.
  • a belt is identical to the previous one and it is peeled in the same way as before but this time without subjecting the cables to the fatigue test. The initial breaking strength of the non-fatigued cables is thus measured.
  • the force-failure decay after fatigue (denoted ⁇ Fm and expressed in%) is calculated by comparing the residual breaking force with the initial breaking force.
  • This decay ⁇ Fm is in a known manner due to the fatigue and the wear of the wires caused by the joint action of the stresses and the water coming from the ambient air, these conditions being comparable to those which are subjected the cables of reinforcement in tire carcasses.
  • heavy-duty tires are manufactured whose carcass reinforcement consists of a single rubberized web reinforced by the cables to be tested. These tires are mounted on suitable known rims and inflated to the same pressure (with a su ⁇ ression relative to the nominal pressure) with air saturated with moisture. These tires are then rolled on an automatic rolling machine, under a very high load (overload with respect to the nominal load) and at the same speed, for a determined number of kilometers. At the end of rolling, the cables are extracted from the carcass of the tire, by shelling, and the residual breaking force is measured both on the yarns and on the cables thus fatigued.
  • the force-failure decay after fatigue (denoted ⁇ Fm and expressed in%) is calculated by comparing the residual breaking force with the initial breaking force.
  • This decay ⁇ Fm is due to the fatigue and the wear (reduction of section) of the wires caused by the joint action of the various mechanical stresses, in particular of the intense work of the contact forces between the wires, and of the water from the ambient air, in other words to the fatigue-fretting- corrosion experienced by the cable inside the tire, when driving.
  • any range of values designated by the expression "between a and b" represents the range of values from more than a to less than b (i.e. terminals a and b excluded) while any range of values designated by the term “from a to b” means the range from a to b (i.e., including the strict limits a and b).
  • the two-layer metal cable (Ci, Ce) of the invention, of construction 3 + N therefore comprises: an inner layer (Ci) consisting of three core wires of diameter d, wound together in a helix in a pitch pi; and an outer layer (Ce) of N wires, N varying from 6 to 12, of diameter d 2 wound together helically in a pitch p 2 around the inner layer (Ci).
  • the inner layer is sheathed by a diene rubber composition called "filling rubber" which, for any cable length of 2 cm or more, is present in the central channel formed by the three core wires and in each of the interstices located between the three core wires and the N wires of the outer layer (Ce); the rate of filling rubber in the cable is between 5 and 35 mg per gram of cable.
  • filling rubber a diene rubber composition which, for any cable length of 2 cm or more, is present in the central channel formed by the three core wires and in each of the interstices located between the three core wires and the N wires of the outer layer (Ce); the rate of filling rubber in the cable is between 5 and 35 mg per gram of cable.
  • This cable of the invention can thus be described as gummed cable in situ: its inner layer Ci and its outer layer Ce are separated radially by a filling rubber sheath which fills, at least in part, each of the interstices or cavities present between the inner layer Ci and the outer layer Ce.
  • a filling rubber sheath which fills, at least in part, each of the interstices or cavities present between the inner layer Ci and the outer layer Ce.
  • its central capillary formed by the three wires of the inner layer is also penetrated by the filling rubber.
  • the cable of the invention has another essential feature that its filling rubber level is between 5 and 35 mg of gum per g of cable.
  • the level of filling gum be between 5 and 30 mg, for example in a range of 10 to 25 mg per g of cable.
  • the following characteristic is verified: on any cable length of 2 cm or more, the cable is sealed or almost airtight in the longitudinal direction. In other words, each gap
  • the (or cavity) of the cable 3 + N, including the central channel formed by the three core wires comprises at least one plug (or internal partition) of filling rubber every 2 cm, so that said cable (or when externally coated with a polymer such as rubber) is sealed or substantially airtight in its longitudinal direction.
  • a 3 + N "airtight" cable is characterized by an average airflow of less than or equal to 0.2 cmVmin.
  • a cable 3 + N said "almost airtight” is characterized by an average air flow less than 2 cmVmin, more preferably less than 1 cm 3 / min.
  • the cable of the invention is devoid of or substantially free of filling rubber at its periphery.
  • no particle of filling compound is visible, with the naked eye, at the periphery of the cable, that is to say that the person skilled in the art does not make any difference , with the naked eye and at a distance of two meters or more, between a 3 + N cable coil which is in accordance with the invention and a conventional 3 + N cable coil not gummed in situ, at the output of manufacture.
  • the diameters of the wires of the layers Ci and Ce, whether these wires have an identical diameter or not from one layer to another verify the following relationships:
  • the following relationship is satisfied: 0.5 ⁇ pi / p 2 ⁇ 1.
  • the pitch "p" represents the length, measured parallel to the axis of the cable, at the end of which a wire having this pitch performs a complete revolution about said axis of the cable.
  • the two layers Ci and Ce have the other characteristic of being wound in the same direction of torsion (S / S or Z / Z).
  • the compactness is such that virtually no distinct layer of wires is visible;
  • the cross-section of such cables has a contour which is polygonal and non-cylindrical, as illustrated for example in FIG. 1 (compact cable 3 + 9 according to the invention) or in FIG. 2 (compact cable 3+ 9 witness, that is, not erased in situ).
  • the outer layer Ce has the preferential characteristic of being a saturated layer, that is to say that, by definition, there is not enough room in this layer to add at least one (N ma ⁇ + 1 y) yarn diameter d 2 , N max representing the maximum number of windable son in a layer around the inner layer Ci.
  • This construction has the advantage of limiting the risk of overflow of filling rubber at its periphery and to offer, for a given diameter of the cable, a higher resistance.
  • the number N of wires can vary to a very large extent according to the particular embodiment of the invention, for example from 6 to 12 wires, it being understood that the maximum number of wires N max will be increased if their diameter d 2 is reduced compared to the diameter of the core son, in order to preferentially keep the outer layer in a saturated state.
  • N 10: 1.0 ⁇ (d, / d 2 ) ⁇ 1, 3.
  • Particularly selected from the above cables are those consisting of wires having substantially the same diameter from one layer to another (ie d
  • d 2 ).
  • the outer layer has 9 wires.
  • the 3 + N cable of the invention can be of two types, namely of the compact type or the type with cylindrical layers.
  • all the wires of the layers Ci and Ce are wound in the same direction of torsion, that is to say either in the direction S (arrangement "S / S"), or in the direction Z (disposition "Z / Z ").
  • the winding in the same direction of the layers Ci and Ce advantageously makes it possible to minimize the friction between these two layers and therefore the wear of the wires which constitute them.
  • the construction of the cable of the invention advantageously allows the removal of the wire hoop, thanks to a better penetration of the rubber in its structure and self-hooping resulting.
  • wire rope is meant by definition in the present application a cable formed of son constituted mainly (that is to say for more than 50% in number of these son) or integrally (for 100% son) a metallic material.
  • the wires of the layer Ci are preferably made of steel, more preferably of carbon steel.
  • the wires of the layer Ce are themselves made of steel, preferably carbon steel. But it is of course possible to use other steels, for example a stainless steel, or other alloys.
  • carbon steel When carbon steel is used, its carbon content is preferably between
  • Another advantageous embodiment of the invention may also consist, depending on the applications concerned, of using steels with a low carbon content, for example between 0.2% and 0.5%, in particular because of a cost lower and easier to draw.
  • the metal or steel used may itself be coated with a metal layer improving, for example, the properties of implementation of the wire rope and / or its constituent elements, or the properties of use of the cable and / or the tire themselves, such as adhesion properties, corrosion resistance or resistance to aging.
  • the steel used is covered with a layer of brass (Zn-Cu alloy) or zinc; it is recalled that during the wire manufacturing process, the coating of brass or zinc facilitates the drawing of the wire, as well as the bonding of the wire with the rubber.
  • the son could be covered with a thin metal layer other than brass or zinc, for example having the function of improving the resistance to corrosion of these son and / or their adhesion to rubber, for example a thin layer of Co, Ni, Al, an alloy of two or more compounds Cu, Zn, Al, Ni, Co, Sn.
  • a thin metal layer other than brass or zinc for example having the function of improving the resistance to corrosion of these son and / or their adhesion to rubber, for example a thin layer of Co, Ni, Al, an alloy of two or more compounds Cu, Zn, Al, Ni, Co, Sn.
  • the cables of the invention are preferably carbon steel and have a tensile strength (Rm) preferably greater than 2500 MPa, more preferably greater than 3000 MPa.
  • the total elongation at break (At) of the cable, the sum of its structural, elastic and plastic elongations, is preferably greater than 2.0%, more preferably at least 2.5%.
  • the diene elastomer (or indistinctly "rubber”, both of which are considered synonymous) of the filling compound is preferably a diene elastomer chosen from the group consisting of polybutadienes (BR), natural rubber (NR), polyisoprenes of synthesis (IR), the various butadiene copolymers, the various isoprene copolymers, and the mixtures of these elastomers.
  • BR polybutadienes
  • NR natural rubber
  • IR polyisoprenes of synthesis
  • Such copolymers are more preferably chosen from the group consisting of butadiene-styrene copolymers (SBR), whether the latter are prepared by emulsion polymerization (ESBR) or in solution (SSBR), the isoprene-butadiene copolymers (BIR ), isoprene-styrene copolymers (SIR) and isoprene-butadiene-styrene copolymers (SBIR).
  • SBR butadiene-styrene copolymers
  • ESBR emulsion polymerization
  • SSBR solution
  • BIR isoprene-butadiene copolymers
  • SIR isoprene-styrene copolymers
  • SBIR isoprene-butadiene-styrene copolymers
  • a preferred embodiment consists in using an "isoprene" elastomer, that is to say a homopolymer or a copolymer of isoprene, in other words a diene elastomer chosen from the group consisting of natural rubber (NR). , the synthetic polyisoprenes (IR), the various isoprene copolymers and the mixtures of these elastomers.
  • the isoprene elastomer is preferably natural rubber or a synthetic polyisoprene of the type cis-1,4.
  • polyisoprenes having a content (mol%) of cis-1,4 bonds greater than 90%, more preferably still greater than 98%, are preferably used.
  • the diene elastomer may consist, in whole or in part, of another diene elastomer such as, for example, an SBR elastomer used in or with another elastomer, for example type BR.
  • the filling rubber may contain one or more diene elastomer (s), which may be used in combination with any type of synthetic elastomer other than diene, or with polymers other than elastomers.
  • the filling rubber is of the crosslinkable type, that is to say that it generally comprises a crosslinking system adapted to allow the crosslinking of the composition during its baking (i.e., its hardening).
  • the system for crosslinking the rubber sheath is a so-called vulcanization system, that is to say based on sulfur (or a sulfur-donor agent) and a primary vulcanization accelerator.
  • vulcanization system that is to say based on sulfur (or a sulfur-donor agent) and a primary vulcanization accelerator.
  • sulfur or a sulfur-donor agent
  • a primary vulcanization accelerator To this basic vulcanization system may be added various known secondary accelerators or vulcanization activators.
  • the sulfur is used at a preferential rate of between 0.5 and 10 phr, more preferably between 1 and 8 phr
  • the primary vulcanization accelerator for example a sulfenamide
  • the invention also applies to cases where the filling gum is free of sulfur and even of any other crosslinking system, it being understood that could be sufficient, for its own crosslinking, the crosslinking or vulcanization system already present in the matrix. rubber that the cable of the invention is intended to reinforce, and capable of migrating by contact of said surrounding matrix to the filling rubber.
  • the filling rubber may also comprise, in addition to said crosslinking system, all or part of the additives normally used in rubber matrices intended for the manufacture of tires, such as, for example, reinforcing fillers such as carbon black or inorganic fillers such as silica, coupling agents, anti-aging agents, antioxidants, plasticizing agents or extension oils, whether the latter are of aromatic or non-aromatic nature, especially very low or non-aromatic oils, for example of the type naphthenic or paraffinic, high or preferably low viscosity, MES or TDAE oils, plasticizing resins with high Tg greater than 30 0 C, agents facilitating the implementation (processability) of the compositions in the green state, tackifying resins, anti-eversion agents, methylene acceptors and donors such as, for example, HMT (hexamethylenethane) ethanol) or H3M (hexamethoxymethylmelamine), reinforcing resins (such as resorcinol or bismaleimide), known adh
  • the level of reinforcing filler is preferably greater than 50 phr, for example between 60 and 140 phr. It is more preferably greater than 70 phr, for example between 70 and 120 phr.
  • carbon blacks for example, all carbon blacks are suitable, in particular blacks of the HAF, ISAF, SAF type conventionally used in tires (so-called pneumatic grade blacks). Among the latter, mention will be made more particularly of carbon blacks of (ASTM) grade 300, 600 or 700 (for example N326, N330, N347, N375, N683, N772).
  • Suitable reinforcing inorganic fillers are, in particular, mineral fillers of the silica (SiO 2) type, in particular precipitated or pyrogenic silica having a BET surface area of less than 450 m 2 / g, preferably 30 to 400 m 2 / g.
  • the formulation of the filling rubber can be chosen to be identical to the formulation of the rubber matrix that the cable of the invention is intended to reinforce; thus, there is no problem of compatibility between the respective materials of the filling rubber and said rubber matrix.
  • the formulation of the filling gum may be chosen different from the formulation of the rubber matrix that the cable of the invention is intended to reinforce.
  • the formulation of the filling gum may be adjusted by using a relatively high quantity of adhesion promoter, typically for example from 5 to 15 phr of a metal salt such as a cobalt salt, a nickel salt or a lanthanide salt such as neodymium (see in particular application WO 2005/113666), and advantageously reducing the amount of said promoter (or even completely eliminating it) in the surrounding rubber matrix.
  • a relatively high quantity of adhesion promoter typically for example from 5 to 15 phr of a metal salt such as a cobalt salt, a nickel salt or a lanthanide salt such as neodymium (see in particular application WO 2005/113666), and advantageously reducing the amount of said promoter (or even completely eliminating it) in the surrounding rubber matrix.
  • the filling rubber has, in the crosslinked state, a secant modulus in extension ElO (at 10% elongation) which is between 2 and 25 MPa, more preferably between 3 and 20 MPa, in particular included in a range of 3 to 15 MPa.
  • the invention relates of course to the previously described cable both in the green state (its filling rubber then being uncured) than in the cooked state (its filling rubber then being vulcanized).
  • Figure 1 shows schematically, in section perpendicular to the axis of the cable (assumed rectilinear and at rest), an example of a preferred cable 3 + 9 according to the invention.
  • This type of construction has the consequence that the inner (10) and outer (11) wires form two concentric layers which each have a substantially polygonal contour (represented in dotted lines) (triangular for the Ci, hexagonal layer for the Ce layer), and not cylindrical as in the case of cables with cylindrical layers which will be described later.
  • the filling rubber (12) fills the central capillary (13) (symbolized by a triangle) formed, delimited by the three core wires (10) by spreading them very slightly, while completely covering the internal layer Ci formed by the three wires (10). It also fills each interstice or cavity (also symbolized by a triangle) formed, delimited either by a core wire (10) and the two external wires (11) which are immediately adjacent to it, or by two core wires (10). ) and the outer wire (11) adjacent thereto; in total, 12 interstices are thus present in this cable 3 + 9, to which is added the central capillary (13).
  • the filling rubber extends in a continuous manner around the layer Ci it covers.
  • Figure 2 recalls the section of a cable 3 + 9 (noted C-2) conventional (i.e., not gummed in situ), also of the compact type.
  • C-2 conventional (i.e., not gummed in situ), also of the compact type.
  • the absence of filling rubber makes practically all the son (20, 21) in contact with each other, which leads to a particularly compact structure, also very difficult to penetrate (not to say impenetrable) from the outside by rubber.
  • the characteristic of this type of cable is that the three core wires (20) form a central channel or capillary (23) which is empty and closed and thus conducive, by "wicking" effect, to the propagation of corrosive media such as that water.
  • FIG 3 shows another example of a preferred cable 3 + 9 according to the invention.
  • this type of construction has the consequence that the wires are arranged in two adjacent and concentric, tubular layers (Ci and Ce), giving the cable (and the two layers) a cylindrical and non-polygonal contour (shown in dotted lines). .
  • the filling rubber (32) fills the central capillary (33) (symbolized by a triangle) formed by the three core wires (30) slightly apart, while completely covering the inner layer Ci formed by the three wires ( 30). It also fulfills, at least in part (here, in this example, totally) each interstice or cavity formed, delimited either by a core wire (30) and the two external wires (31) which are immediately adjacent thereto (the most close), or by two core wires (30) and the outer wire (31) adjacent thereto.
  • Figure 4 recalls the section of a cable 3 + 9 (noted C-4) conventional (i.e., not gummed in situ), also of the type with two cylindrical layers.
  • C-4 conventional (i.e., not gummed in situ), also of the type with two cylindrical layers.
  • the absence of filling rubber causes the three wires (40) of the inner layer (Ci) to come into close contact with each other, which leads to a central, empty and closed capillary 43, which is impenetrable. on the outside by rubber and propitious on the other hand to the propagation of corrosive media.
  • the cable of the invention could be provided with an outer hoop, constituted for example by a single wire, metallic or not, helically wound around the cable in a shorter pitch than that of the outer layer, and a sense of winding opposite or identical to that of this outer layer.
  • the cable of the invention already self-shrunk, generally does not require the use of an external hoop, which advantageously solves the wear problems between the hoop and son the outermost layer of the cable.
  • a hoop wire in the general case where the son of the outer layer are carbon steel, then one can advantageously choose a stainless steel wire hoop to reduce the fretting wear of these son carbon steel in contact with the stainless steel hoop, as taught for example in the application WO-A-98/41682, the stainless steel wire may optionally be replaced, in an equivalent manner, by a composite yarn which only the skin is made of stainless steel and the carbon steel core, as described for example in the document EP-A-976 541. It is also possible to use a hoop consisting of a polyester or a thermotropic aromatic polyester-amide, such as described in WO-A-03/048447. II-2. Manufacture of the cable 3 + N of the invention
  • the cable of the invention of construction 3 + N previously described can be manufactured according to a method comprising the following four steps operated online:
  • the wires are not twisted around their own axis, due to a synchronous rotation before and after the assembly point; either by twisting: in such a case, the son undergo both a collective twist and an individual twist around their own axis, which generates a torque of detorsion on each son.
  • An essential feature of the above method is to use, both for the assembly of the inner layer and for that of the outer layer, a twisting step.
  • the three core wires are twisted together (direction S or Z) to form the inner layer Ci, in a manner known per se; the son are delivered by feeding means such as coils, a distribution grid, coupled or not to a connecting grain, intended to converge the core son in a common point of torsion (or point of assembly).
  • the inner layer (Ci) thus formed is then sheathed with filling gum in the green state, provided by an extrusion screw at an appropriate temperature.
  • the filling rubber can thus be delivered at a fixed point, unique and compact, by means of a single extrusion head, without using an individual sheathing son upstream of the assembly operations, before forming the inner layer, as described in the prior art.
  • This method has the significant advantage of not slowing down the conventional assembly process. It enables the complete initial twisting, scrubbing and final twisting operation in one step, irrespective of the type of cable produced (compact cable as cable to cylindrical layers), all this at high speed.
  • the above method can be implemented at a speed (running speed of the cable on the twisting-scrub line) greater than 50 m / min, preferably greater than 70 m / min.
  • the tension exerted on the three son is preferably between 10 and 25% of the breaking force of the son.
  • the extrusion head may comprise one or more dies, for example an upstream guide die and a downstream die calibration. It is possible to add continuous measurement and control means of the diameter of the cable connected to the extruder.
  • the extrusion temperature of the filling rubber is between 60 ° C. and 120 ° C., more preferably between 60 ° C. and 100 ° C.
  • the extrusion head thus defines a cladding zone having the shape of a cylinder of revolution whose diameter is preferably between 0.15 mm and 0.8 mm, more preferably between 0.2 and 0.6 mm, and whose length is preferably between 4 and 10 mm.
  • the amount of filling gum delivered by the extrusion head can be adjusted easily so that in the final 3 + N cable this amount is between 5 and 35 mg, preferably between 5 and 30 mg, especially in a range of 10 to 25 mg per g of cable.
  • the inner layer Ci at any point of its periphery, is covered with a minimum thickness of filling rubber which is preferably greater than 5 ⁇ m, more preferably greater than 10 ⁇ m, by example between 10 and 50 microns.
  • the final assembly is carried out, always by twisting (S or Z direction), of the N wires of the outer layer (Ce) around the inner layer (Ci) and sheathed.
  • twisting S or Z direction
  • the N son come to rely on the eraser, to become embedded in the latter.
  • the filling rubber moving under the pressure exerted by these external son, then naturally tends to fill, at least in part, each of the interstices or cavities left empty by the son, between the inner layer (Ci) and the layer external (Ce).
  • the cable 3 + N of the invention is not finished: its central channel, delimited by the three core wires, is not yet filled with filling rubber, in any case insufficiently for obtaining acceptable air impermeability.
  • the next essential step is to route the cable through torsion balancing means.
  • torsion balancing is meant here in known manner the cancellation of the residual torsional torques (or of the detorsion springback) exerted on each wire of the cable, in the inner layer as in the outer layer.
  • Torsion balancing tools are well known to those skilled in the art of twisting; they may consist for example of "trainers” and / or “twisters” and / or “twisting-trainers” consisting of either pulleys for the twisters, or small diameter rollers for trainers, pulleys or rollers through which circulates the cable, in a single plane or preferably in at least two different planes.
  • the torsion exerted on the three core wires is sufficient to force, to drive the filling gum in the raw state (ie, not crosslinked uncured), still hot and relatively fluid, from the outside to the heart of the cable, even inside the central channel formed by the three son, ultimately offering the cable of the invention the excellent property of air impermeability that characterizes it.
  • the additional training function provided by the use of a trainer tool, would have the advantage that the contact of the rollers of the trainer with the son of the outer layer will exert additional pressure on the filling rubber further promoting its penetration into the central capillary formed by the three souls.
  • the method described above exploits the twisting of the three core wires, in the final stage of manufacture of the cable, to distribute, naturally, the filling rubber in and around the inner layer (Ci), while perfectly controlling the amount of filling compound provided.
  • Those skilled in the art will in particular be able to adjust the arrangement, the diameter of the pulleys and / or rollers of the torsion-balancing means, in order to vary the intensity of the radial pressure acting on the various wires.
  • the manufacture of the cable 3 + N of the invention is complete.
  • This cable can be wound on a receiving reel, for storage, before being processed, for example, through a calendering installation, for preparing a metal-rubber composite fabric.
  • the method described above makes it possible to manufacture cables in accordance with the invention which may advantageously be devoid of (or almost free of) filling rubber at their periphery.
  • the method described above is of course applicable to the manufacture of compact type cables (for recall and by definition, those whose layers Ci and Ce are wound at the same pitch and in the same direction) as cables of the type with cylindrical layers (As a reminder and by definition, those whose layers Ci and Ce are wound either in different steps or in opposite directions, or in different steps and in opposite directions).
  • An assembly and scrubbing device that can be used for implementing the method described above is a device comprising from upstream to downstream, according to the direction of advancement of a cable being formed:
  • feed means for feeding the three core threads; means for assembling by twisting the three core wires for forming the inner layer; means for sheathing the inner layer; at the outlet of the cladding means, means for assembling N external threads around the inner layer thus sheathed, for forming the outer layer; finally, torsion balancing means.
  • supply means (510) deliver three core wires (51) through a distribution grid (52) (axisymmetric splitter), coupled or not to a connecting grain (53), beyond which converge the three core son at an assembly point (54) for forming the inner layer (Ci).
  • the inner layer Ci once formed, then passes through a cladding zone consisting for example of a single extrusion head (55) through which is intended to circulate the inner layer.
  • the distance between the point of convergence (54) and the sheathing point (55) is for example between 50 cm and 1 m.
  • the final cable 3 + N thus formed is finally collected on a rotary reception (59), after crossing the torsion balancing means (58) consisting for example of a trainer or twister-trainer.
  • the cable of the invention is particularly intended for a tire carcass reinforcement for industrial vehicles such as trucks.
  • FIG. 6 schematically represents a radial section of a tire with a metal carcass reinforcement that may or may not conform to the invention, in this general representation.
  • This tire 1 has a crown 2 reinforced by a crown reinforcement or belt 6, two sidewalls 3 and two beads 4, each of these beads 4 being reinforced with a rod 5.
  • the crown 2 is surmounted by a tread not shown in this schematic figure.
  • a carcass reinforcement 7 is wound around the two rods 5 in each bead 4, the upturn 8 of this armature 7 being for example disposed towards the outside of the tire 1 which is shown here mounted on its rim 9.
  • the carcass reinforcement 7 is in known manner constituted by at least one sheet reinforced by so-called "radial” metal cables, that is to say that these cables are arranged substantially parallel to each other and extend from a bead to the other so as to form an angle between 80 ° and 90 ° with the median circumferential plane (plane perpendicular to the axis of rotation of the tire which is located midway between the two beads 4 and passes through the middle of the crown frame 6).
  • the tire according to the invention is characterized in that its carcass reinforcement 7 comprises at least, as reinforcement of at least one carcass ply, a metal cable according to the invention.
  • this tire 1 further comprises, in a known manner, a layer of rubber or inner elastomer (commonly known as
  • the density of the cables according to the invention is preferably between 40 and 150 cables per dm (decimetre) of carcass ply, more preferably between 70 and 120 cables per dm of ply, the distance between two adjacent cables, axis to axis, being preferably between 0.7 and 2.5 mm, more preferably between 0.75 and 2.2 mm.
  • the cables according to the invention are preferably arranged in such a way that the width (denoted Lc) of the rubber bridge between two adjacent cables is between 0.25 and 1.5 mm.
  • This width Lc represents, in known manner, the difference between the calendering pitch (no laying of the cable in the rubber fabric) and the diameter of the cable.
  • the rubber bridge which is too narrow, risks being degraded mechanically during the working of the sheet, in particular during the deformations undergone in its own plane by extension or shearing. Beyond the maximum indicated, one is exposed to the risk of appearance of appearance defects on the sidewalls of the tires or penetration of objects, by perforation, between the cables. More preferably, for these same reasons, the width Lc is chosen between 0.35 and 1.25 mm.
  • the rubber composition used for the fabric of the carcass reinforcement ply has, in the vulcanized state (ie, after curing), a secant modulus in extension ElO which is between 2 and 25 MPa, more preferably between 3 and 20 MPa, especially in a range of 3 to 15 MPa, when the fabric is intended to form a carcass reinforcement ply.
  • 3 + 9 layered cables as shown diagrammatically in FIG. 1, are used, made of fine brass-coated carbon steel wires.
  • the carbon steel wires are prepared in a known manner, for example starting from machine wires (diameter 5 to 6 mm) that are first cold-rolled, by rolling and / or drawing, up to an intermediate diameter of about 1 mm.
  • the steel used is a known carbon steel (USA AISI 1069 standard) with a carbon content of 0.70%.
  • the intermediate diameter son undergo a degreasing treatment and / or pickling, before further processing.
  • a degreasing treatment and / or pickling After deposition of a brass coating on these intermediate son, is carried on each wire a so-called “final” work hardening (ie, after the last patenting heat treatment), by cold drawing in a moist medium with a drawing lubricant which is for example in the form of an aqueous emulsion or dispersion.
  • the steel wires thus drawn have the following diameter and mechanical properties:
  • the brass coating that surrounds the son has a very small thickness, significantly less than one micrometer, for example of the order of 0.15 to 0.30 microns, which is negligible compared to the diameter of the steel son.
  • the composition of the wire steel in its various elements eg C, Cr, Mn
  • the rate of filling rubber, measured according to the method indicated previously in paragraph 1-3, is about 24 mg per gram of cable. This filling gum fills the channel or central capillary formed by the three core wires slightly apart, while completely covering the inner layer Ci formed by the three son.
  • This cable C-1 of the invention is devoid of external hoop wire.
  • the filling compound is a conventional rubber composition for a tire carcass reinforcement, having the same formulation as that of the rubber sheet. of carcass that the cable C-1 is intended to reinforce in the following test. This composition was extruded at a temperature of about 82 ° C. through a 0.410 mm calibration die.
  • the control cable 3 + 9 (C-2), as shown diagrammatically in FIG. 2, is formed of 12 wires in total diameter 0.18 mm. It comprises an inner layer Ci of 3 wires wound together in a helix (direction S) in a pitch pi equal to about 6.3 mm, this layer Ci being in contact with a cylindrical outer layer of 9 wires themselves wound together in helix (S direction) around the core in a double pitch p2 equal to about 12.5 mm. It also comprises a unitary external hoop wire of small diameter (0.15 mm diameter, no 3.5 mm helix), not shown in FIG. 2 for simplification, designed in particular, in a known manner, to increase the resistance. buckling of the cable and in particular the endurance of the carcass in rolling under low pressure; this control cable is not penetrable from the outside to its center, it is devoid of filling rubber.
  • This composition is based on natural rubber (peptized) and carbon black N330 (55 phr); it also comprises the following usual additives: sulfur (6 phr), sulfenamide accelerator (1 phr), ZnO (9 phr), stearic acid (0.7 phr), antioxidant (1.5 phr), cobalt naphthenate (1 phr) pce); the ElO modulus of the composition is about 6 MPa.
  • the composite and calendered fabrics thus comprise a rubber matrix formed of two thin layers (approximately 0.6 mm thick) of rubber superimposed on both sides of the cables.
  • the calender pitch (no laying of the cables in the rubber fabric) is about 1.5 mm.
  • the thickness of rubber on the back of the cables is between 0.15 and 0.25 mm approximately.
  • This cable C-3 has the properties shown in Table 4 which follows.
  • the C-2 and C-3 layered cords are then calendered to rubberized rubber skims (skims) as described previously in Test 2, followed by two sets of rolling tests.
  • heavy vehicle tires (noted respectively P-2 and P-3), of dimensions 225/90 Rl 7.5, with in each series of tires intended for driving, others for shearing on a new tire.
  • the carcass reinforcement of these tires consists of a single radial ply consisting of the rubberized fabrics above.
  • the tires P-3 reinforced by the C-3 cables of the invention are therefore the tires according to the invention.
  • the tires P-2 reinforced by the control cables C-2 constitute the control tires of the prior art; these P-2 tires constitute, because of their recognized performance, a control of choice for this test.
  • the tires P-2 and P-3 are therefore identical with the exception of the cables C-2 and C-3 which reinforce their carcass reinforcement 7.
  • Their crown reinforcement or belt 6 in particular, is in a manner known per se consisting of two triangulation half-plies reinforced with metal cables inclined by 65 degrees, surmounted by two "superimposed” working plies crossed. These working plies are reinforced by known metal cables arranged substantially parallel to each other and inclined by 26 degrees (radially internal ply) and 18 degrees (radially external ply). The two working plies are furthermore covered by a protective ply reinforced with conventional metal cables (high elongation) inclined at 18 degrees. All angles of inclination indicated are measured relative to the median circumferential plane.
  • the average decay ⁇ Fm is given in% in Table 5 below; it is calculated both for the wires of the inner layer Ci and for the wires of the outer layer Ce. Global ⁇ Fm decays are also measured on the cables themselves. Table 5
  • the use of the cable C-3 according to the invention makes it possible to increase the longevity of the carcass quite sensibly, which is already excellent in the control tire reinforced by the cable C-2.
  • the cables of the invention make it possible to significantly reduce the phenomena of fatigue-fretting-corrosion of the cables in the carcass reinforcement of the tires, in particular of the heavy-duty tires, and to improve the longevity of these tires.
  • the cables C-1 of the invention have moreover been subjected to the air permeability test described in FIG. paragraph 1-2, measuring the air volume (in cm 3 ) passing through the cables in 1 minute (average of 10 measurements for each cable tested).
  • In situ control gummed cables of the same construction as the CI compact cables of the invention, were prepared by individually sheathing either a single wire, or each of the three wires of the inner layer Ci. This sheathing was made at the same time. using extrusion dies of variable diameter (230 to 300 microns) arranged this time upstream of the assembly point (sheathing and in-line twisting) as described in the prior art; for a rigorous comparison, the amount of filling rubber was adjusted in such a way that the rate of filling rubber in the final cables (between 4 and 30 mg / g of cable, measured according to the method of the paragraph 1-3), which is close to that of the cables of the invention.
  • the cable of the invention could be used for reinforcing articles other than tires, for example pipes, belts, conveyor belts; advantageously, it could also be used for reinforcing parts of tires other than their carcass reinforcement, in particular for reinforcing the crown reinforcement of tires for industrial vehicles such as heavy goods vehicles.
  • the invention also relates to any multi-strand steel cable whose structure incorporates at least, as elementary strand, a layered cable according to the invention.
  • multi-strand cables according to the invention which can be used, for example, in tires for industrial vehicles of the civil engineering type, in particular in their carcass or crown reinforcement, mention may be made of multi-strand cables of known general construction. in itself:
  • each elementary strand (or at least a part of them) constituted by a layered cable 3 + N, in particular 3 + 8 or 3 + 9, of the compact type or of the type with cylindrical layers, is a cable 3 + N according to the invention, gummed in situ.
  • Such multi-strand steel cables in particular of the type (1 + 6) (3 + 8), (1 + 6) (3 + 9), (3 + 9) (3 + 8) or (3 + 9) ) (3 + 9), could be themselves erased in situ during their manufacture, that is to say that in this case the central strand is itself, or the strands of the center if they are several are themselves, sheathed with unvulcanized filling rubber (this filling compound being of identical or different formulation to that used for the in situ scrubbing of the elementary strands) before the wiring is put in place by the peripheral strands forming the outer layer.

Landscapes

  • Ropes Or Cables (AREA)

Abstract

Câble métallique (C-1) à deux couches (Ci, Ce) de construction 3+N, gommé in situ, comportant une couche interne (Ci) constituée de trois fils (10) d'âme de diamètre d1 enroulés ensemble en hélice selon un pas p1 et une couche externe (Ce) de N fils (11), N variant de 6 à 12, de diamètre d2 enroulés ensemble en hélice selon un pas p2 autour de la couche interne (Ci), ledit câble étant caractérisé en ce qu'il présente les caractéristiques suivantes (d1, d2, p1, p2 étant en mm) : - 0,08 12 = 0,20; - p1 / p2 = 1; - 3 1 2 < 30; la couche interne est gainée par une composition de caoutchouc diénique dite "gomme de remplissage" (12) qui, pour toute longueur de câble de 2 cm ou plus, est présente dans le canal central (13) formé par les trois fils d'âme et dans chacun des interstices situés entre les trois fils (10) d'âme et les N fils (11) de la couche externe (Ce); le taux de gomme de remplissage dans le câble est compris entre 5 et 35 mg par g de câble. Câble multitorons comportant au moins un câble à deux couches selon l'invention, destiné notamment à des pneumatiques pour véhicules industriels du type génie civil.

Description

CABLE A COUCHES GOMME IN SITU POUR ARMATURE CARCASSE DE PNEUMATIQUE
La présente invention est relative aux câbles métalliques à deux couches, de construction 3+N, utilisables notamment pour le renforcement d'articles en caoutchouc.
Elle est également relative aux câbles métalliques du type « gommés in situ », c'est-à-dire gommés de l'intérieur, pendant leur fabrication même, par du caoutchouc à l'état cru, avant incorporation de ces derniers aux articles en caoutchouc tels que pneumatiques qu'ils sont destinés à renforcer.
Elle se rapporte également aux pneumatiques et aux armatures de carcasse, encore appelées « carcasses », de ces pneumatiques, en particulier au renforcement des carcasses de pneumatiques pour véhicules industriels tels que véhicules Poids-lourds.
Un pneumatique radial comporte de manière connue une bande de roulement, deux bourrelets inextensibles, deux flancs reliant les bourrelets à la bande de roulement et une ceinture disposée circonférentiellement entre l'armature de carcasse et la bande de roulement. Cette armature de carcasse est constituée de manière connue d'au moins une nappe (ou "couche") de caoutchouc renforcée par des éléments de renforcement ("renforts") tels que des câblés ou des monofilaments, généralement du type métalliques dans le cas de pneumatiques pour véhicules industriels.
Pour le renforcement des armatures de carcasse ci-dessus, on utilise généralement des câbles d'acier ("steel cords") dits "à couches" ("layered cords") constitués d'une âme centrale et d'une ou plusieurs couches de fils concentriques disposées autour de cette âme. Les câbles à couches les plus utilisés sont essentiellement des câbles de construction M+N ou M+N+P, formés d'une âme de M fil(s) entourée d'au moins une couche de N fils éventuellement elle- même entourée d'une couche externe de P fils, les M, N voire P fils ayant généralement le même diamètre pour des raisons de simplification et de coût.
Pour remplir leur fonction de renforcement des carcasses de pneumatiques, les câbles à couches doivent tout d'abord présenter une bonne flexibilité et une endurance élevée en flexion, ce qui implique notamment que leurs fils présentent un diamètre relativement faible, de préférence inférieur à 0,30 mm, plus préférentiellement inférieur à 0,20 mm, plus petit généralement que celui des fils utilisés dans les câbles conventionnels pour les armatures de sommet des pneumatiques. Ces câbles à couches sont d'autre part soumis à des contraintes importantes lors du roulage des pneumatiques, notamment à des flexions ou variations de courbure répétées induisant au niveau des fils des frottements, notamment par suite des contacts entre couches adjacentes, et donc de l'usure, ainsi que de la fatigue ; ils doivent donc présenter une haute résistance aux phénomènes dits de "fatigue-fretting".
Il est important enfin qu'ils soient imprégnés autant que possible par le caoutchouc, que cette matière pénètre dans tous les espaces entre les fils constituant les câbles. En effet, si cette pénétration est insuffisante, il se forme alors des canaux vides, le long des câbles, et les agents corrosifs, par exemple l'eau, susceptibles de pénétrer dans les pneumatiques par exemple à la suite de coupures, cheminent le long de ces canaux jusque dans la carcasse du pneumatique. La présence de cette humidité joue un rôle important en provoquant de la corrosion et en accélérant les processus de dégradation ci-dessus (phénomènes dits de "fatigue-corrosion"), par rapport à une utilisation en atmosphère sèche.
Tous ces phénomènes de fatigue que l'on regroupe généralement sous le terme générique de "fatigue-fretting-corrosion" sont à l'origine d'une dégénérescence progressive des propriétés mécaniques des câbles et peuvent affecter, pour les conditions de roulage les plus sévères, la durée de vie de ces derniers.
D'autre part, la disponibilité en aciers au carbone de plus en plus résistants et endurants fait que les manufacturiers de pneumatiques s'orientent aujourd'hui, autant que possible, vers l'emploi de câbles ayant seulement deux couches, afin notamment de simplifier la fabrication de ces câbles, diminuer l'épaisseur des nappes composites de renforcement et ainsi l'hystérèse des pneumatiques, en fin de compte diminuer les coûts des pneumatiques eux-mêmes et réduire la consommation d'énergie des véhicules équipés de tels pneumatiques.
Pour toutes les raisons exposées ci-dessus, les câbles à deux couches les plus utilisés aujourd'hui dans les armatures de carcasse de pneumatiques sont essentiellement des câbles de construction 3+N constitués d'une âme ou couche interne de 3 fils et d'une couche externe de N fils (par exemple, de 8 ou 9 fils), l'ensemble pouvant être éventuellement fretté par un fil de frette externe enroulé en hélice autour de la couche externe.
Ce type de construction favorise, on le sait, la pénétrabilité externe du câble par la gomme de calandrage du pneumatique ou autre article en caoutchouc lors de la cuisson de ces derniers, et par voie de conséquence permet d'améliorer l'endurance des câbles en fatigue-fretting- corrosion. Par ailleurs, une bonne pénétration du câble par du caoutchouc permet de manière connue, grâce à un volume d'air emprisonné dans le câble qui est moindre, de réduire les temps de cuisson des pneumatiques ("durée sous presse" réduite).
Les câbles de construction 3+N ont toutefois pour inconvénient qu'ils ne sont pas pénétrables jusqu'à cœur à cause de la présence d'un canal ou capillaire au centre des trois fils d'âme, qui reste vide après imprégnation externe par du caoutchouc et donc propice, par une sorte d'effet "de mèche", à la propagation de milieux corrosifs tels que l'eau. Cet inconvénient des câbles de construction 3+N est bien connu, il a été exposé par exemple dans les demandes de brevet WO 01/00922, WO 01/49926, WO 2005/071157, WO 2006/013077.
Pour résoudre ce problème de pénétrabilité jusqu'à cœur des câbles 3+N, la demande de brevet US 2002/160213 a proposé la réalisation de câbles du type gommés in situ.
Le procédé décrit dans cette demande consiste à gainer individuellement (c'est-à-dire isolément, "fil à fil") avec du caoutchouc à l'état cru, en amont du point d'assemblage des trois fils (ou point de torsion), un seul ou préférentiellement chacun des trois fils pour l'obtention d'une couche interne gainée de caoutchouc, avant la mise en place ultérieure des N fils de la couche externe par câblage autour de la couche interne ainsi gainée.
Ce procédé pose de nombreux problèmes. Tout d'abord le gainage d'un seul fil sur trois (comme illustré par exemple aux figures 11 et 12 de ce document), ne permet pas de garantir un remplissage suffisant par la gomme du câble final, et donc d'obtenir une résistance à la corrosion et une endurance optimales. Ensuite, le gainage fil à fil de chacun trois fils (comme illustré par exemple aux figures 2 et 5 de ce document), s'il conduit effectivement à un remplissage du câble, conduit à l'emploi d'une quantité trop importante de gomme. Le débordement de gomme à la périphérie du câble final devient alors rédhibitoire dans des conditions de câblage et gommage industrielles.
En raison du très fort pouvoir collant du caoutchouc à l'état cru, le câble ainsi gommé devient inutilisable en raison d'un effet collant parasite sur les outils de fabrication ou entre les spires de câble lors de l'enroulage de ce dernier sur une bobine de réception, sans parler de l'impossibilité finale de calandrer correctement le câble. On rappelle ici que le calandrage consiste à transformer le câble, par incorporation entre deux couches de caoutchouc à l'état cru, en un tissu caoutchouté métallique servant de produit semi-fini pour toute fabrication ultérieure, par exemple pour la confection d'un pneumatique.
Un autre problème posé par le gainage isolé de chacun des trois fils est l'encombrement important imposé par l'emploi de trois têtes d'extrusion. En raison d'un tel encombrement, la fabrication de câbles à couches cylindriques (c'est-à-dire à pas pi et p2 différents d'une couche à l'autre, ou à pas pi et P2 identiques mais avec des sens de torsion différents d'une couche à l'autre) doit être nécessairement réalisée en deux opérations discontinues : (i) gainage individuel des fils puis câblage et enroulage de la couche interne dans un premier temps, (ii) câblage de la couche externe autour de la couche interne dans un deuxième temps. Toujours en raison du fort pouvoir collant du caoutchouc à l'état cru, l'enroulement et le stockage intermédiaire de la couche interne exigent l'emploi d'intercalaires ainsi que des pas de trancannage importants lors de l'enroulement sur bobine intermédiaire, pour éviter un collage parasite entre les couches bobinées ou entre les spires d'une même couche.
Toutes les contraintes ci-dessus sont fortement pénalisantes du point de vue industriel et antinomiques de la recherche de cadences de fabrication élevées.
Poursuivant leurs recherches, les Demanderesses ont découvert un câble à couches 3+N nouveau, gommé in situ, dont la structure spécifique combinée à un procédé de fabrication particulier, permet de pallier les inconvénients précités.
En conséquence, un premier objet de l'invention est un câble métallique à deux couches (Ci, Ce) de construction 3+N, gommé in situ, comportant une couche interne (Ci) constitué de trois fils d'âme de diamètre di enroulés ensemble en hélice selon un pas p, et une couche externe (Ce) de N fils, N variant de 6 à 12, de diamètre d2 enroulés ensemble en hélice selon un pas p2 autour de la couche interne (Ci), ledit câble étant caractérisé en ce qu'il présente les caractéristiques suivantes (d,, d2, pi, p2 sont exprimés en mm) :
- 0,08 < d, < 0,30 ; - 0,08 < d2 < 0,20 ;
Figure imgf000006_0001
- 6 < p2 < 30 ; la couche interne est gainée par une composition de caoutchouc diénique dite "gomme de remplissage" qui, pour toute longueur de câble de 2 cm ou plus, est présente dans le canal central formé par les trois fils d'âme et dans chacun des interstices situés entre les trois fils d'âme et les N fils de la couche externe (Ce) ; le taux de gomme de remplissage dans le câble est compris entre 5 et 35 mg par g de câble.
L'invention concerne également l'utilisation d'un tel câble pour le renforcement d'articles ou de produits semi-finis en caoutchouc, par exemple des nappes, des tuyaux, des courroies, des bandes transporteuses, des pneumatiques. Le câble de l'invention est tout particulièrement destiné à être utilisé comme élément de renforcement d'une armature de carcasse de pneumatique destiné à des véhicules industriels tels que camionnettes et véhicules dits "Poids-lourds", c'est-à-dire véhicules métro, bus, engins de transport routier tels que camions, tracteurs, remorques, ou encore véhicules hors- la-route, engins agricoles ou de génie civil, et tout autre type de véhicules de transport ou de manutention.
L'invention concerne en outre ces articles ou produits semi-finis en caoutchouc eux-mêmes lorsqu'ils sont renforcés par un câble conforme à l'invention, en particulier les pneumatiques destinés aux véhicules industriels tels que camionnettes ou Poids-lourds.
L'invention ainsi que ses avantages seront aisément compris à la lumière de la description et des exemples de réalisation qui suivent, ainsi que des figures 1 à 6 relatives à ces exemples qui schématisent, respectivement :
en coupe transversale, un câble de construction 3+9 conforme à l'invention, du type compact (Fig. 1) ; en coupe transversale, un câble de construction 3+9 conventionnel, également du type compact (Fig. 2) ; - en coupe transversale, un câble de construction 3+9 conforme à l'invention, du type à couches cylindriques (Fig. 3) ; en coupe transversale, un câble de construction 3+9 conventionnel, également du type à couches cylindriques (Fig. 4) ; un exemple d'installation de retordage et gommage in situ utilisable pour la fabrication de câbles du type compacts conformes à l'invention (Fig. 5) ; en coupe radiale, une enveloppe de pneumatique poids lourd à armature de carcasse radiale, conforme ou non à l'invention dans cette représentation générale (Fig. 6).
I. MESURES ET TESTS
I- 1. Mesures dynamométriques
Pour ce qui concerne les fils et câbles métalliques, les mesures de force à la rupture notée Fm (charge maximale en N), de résistance à la rupture notée Rm (en MPa) et d'allongement à la rupture noté At (allongement total en %) sont effectuées en traction selon la norme ISO 6892 de 1984. Concernant les compositions de caoutchouc, les mesures de module sont effectuées en traction, sauf indication différente selon la norme ASTM D 412 de 1998 (éprouvette "C") : on mesure en seconde élongation (c'est-à-dire après un cycle d'accommodation) le module sécant "vrai" (c'est-à-dire ramené à la section réelle de l'éprouvette) à 10% d'allongement, noté ElO et exprimé en MPa (conditions normales de température et d'hygrométrie selon la norme ASTM D 1349 de 1999).
1-2. Test de perméabilité à l'air
Ce test permet de déterminer la perméabilité longitudinale à l'air des câbles testés, par mesure du volume d'air traversant une éprouvette sous pression constante pendant un temps donné. Le principe d'un tel test, bien connu de l'homme du métier, est de démontrer l'efficacité du traitement d'un câble pour le rendre imperméable à l'air ; il a été décrit par exemple dans la norme ASTM D2692-98.
Le test est ici réalisé soit sur des câbles bruts de fabrication, soit sur des câbles extraits des pneumatiques ou des nappes de caoutchouc qu'ils renforcent, donc déjà enrobés de caoutchouc à l'état cuit.
Dans le premier cas, les câbles bruts de fabrication doivent être préalablement enrobés de l'extérieur par une gomme dite d'enrobage. Pour cela, une série de 10 câbles disposés parallèlement (distance inter-câble : 20 mm) est placée entre deux skims (deux rectangles de 80 x 200 mm) d'une composition de caoutchouc à l'état cru, chaque skim ayant une épaisseur de 3,5 mm ; le tout est alors bloqué dans un moule, chacun des câbles étant maintenu sous une tension suffisante (par exemple 2 daN) pour garantir sa rectitude lors de la mise en place dans le moule, à l'aide de modules de serrage ; puis on procède à la vulcanisation (cuisson) pendant 40 min à une température de 14O0C et sous une pression de 15 bar (piston rectangulaire de 80 x 200 mm). Après quoi, on démoule l'ensemble et on découpe 10 éprouvettes de câbles ainsi enrobés, par exemple sous forme de parallélépipèdes de dimensions 7x7x20 mm, pour caractérisation.
On utilise comme gomme d'enrobage une composition de caoutchouc conventionnelle pour pneumatique, à base de caoutchouc naturel (peptisé) et de noir de carbone N330 (65 pce), comportant en outre les additifs usuels suivants: soufre (7 pce), accélérateur sulfénamide (1 pce), ZnO (8 pce), acide stéarique (0,7 pce), antioxydant (1,5 pce), naphténate de cobalt (1,5 pce) ; le module ElO de la gomme d'enrobage est de 10 MPa environ.
Le test est réalisé par exemple sur 2 cm de longueur de câble, enrobé donc par sa composition de caoutchouc (ou gomme d'enrobage) environnante, de la manière suivante : on envoie de l'air à l'entrée du câble, sous une pression de 1 bar, et on mesure le volume d'air à la sortie, à l'aide d'un débitmètre (calibré par exemple de 0 à 500 cmVmin). Pendant la mesure, l'échantillon de câble est bloqué dans un joint étanche comprimé (par exemple un joint en mousse dense ou en caoutchouc) de telle manière que seule la quantité d'air traversant le câble d'une extrémité à l'autre, selon son axe longitudinal, est prise en compte par la mesure ; l'étanchéité du joint étanche est contrôlée préalablement à l'aide d'une éprouvette de caoutchouc pleine, c'est-à-dire sans câble.
Le débit d'air moyen mesuré (moyenne sur les 10 éprouvettes) est d'autant plus faible que l'imperméabilité longitudinale du câble est élevée. La mesure étant faite avec une précision de ± 0,2 cm3 /min, les valeurs mesurées inférieures ou égales à 0,2 cm3 /min sont considérées comme nulles ; elles correspondent à un câble qui peut être qualifié d'étanche (totalement étanche) à l'air selon son axe (i.e., dans sa direction longitudinale).
1-3. Taux de gomme de remplissage
La quantité de gomme de remplissage est mesurée par différence entre le poids du câble initial (donc gommé in situ) et le poids du câble (donc celui de ses fils) dont la gomme de remplissage a été éliminée par un traitement électrolytique approprié.
Un échantillon de câble (longueur 1 m), bobiné sur lui-même pour réduire son encombrement, constitue la cathode d'un électrolyseur (reliée à la borne négative d'un générateur), tandis que l'anode (reliée à la borne positive) est constituée d'un fil de platine. L'électrolyte consiste en une solution aqueuse (eau déminéralisée) comportant 1 mole par litre de carbonate de sodium.
L'échantillon, plongé complètement dans l'électrolyte, est mis sous tension pendant 15 min sous un courant de 300 mA. Le câble est ensuite retiré du bain, rincé abondamment avec de l'eau. Ce traitement permet à la gomme de se détacher facilement du câble (si ce n'est pas le cas, on continue l'électrolyse pendant quelques minutes). On élimine soigneusement la gomme, par exemple par simple essuyage à l'aide d'un tissu absorbant, tout en détordant un à un les fils du câble. Les fils sont de nouveau rincés à l'eau puis plongés dans un bêcher contenant un mélange d'eau déminéralisée (50%) et d'éthanol (50%) ; le bêcher est plongé dans une cuve à ultrasons pendant 10 min. Les fils ainsi dépourvus de toute trace de gomme sont retirés du bêcher, séchés sous un courant d'azote ou d'air, et enfin pesés.
On en déduit par le calcul le taux de gomme de remplissage dans le câble, exprimé en mg (milligramme) de gomme de remplissage par g (gramme) de câble initial, et moyenne sur 10 mesures (c'est-à-dire sur 10 mètres de câble au total).
1-4. Test courroie Le test "courroie" est un test de fatigue connu qui a été décrit par exemple dans les demandes EP-A-O 648 891 ou WO98/41682, les câbles d'acier à tester étant incorporés dans un article en caoutchouc que l'on vulcanise.
Son principe est le suivant: l'article en caoutchouc est une courroie sans fin réalisée avec un mélange connu à base de caoutchouc, semblable à ceux qui sont couramment utilisés pour les carcasses des pneumatiques radiaux. L'axe de chaque câble est orienté selon la direction longitudinale de la courroie et les câbles sont séparés des faces de cette dernière par une épaisseur de gomme d'environ 1 mm. Lorsque la courroie est disposée de façon à former- un cylindre de révolution, le câble forme un enroulement en hélice de même axe que ce cylindre (par exemple, pas de l'hélice égal à environ 2,5 mm).
On fait ensuite subir à cette courroie les sollicitations suivantes : on fait tourner la courroie autour de deux galets, de telle sorte que chaque portion élémentaire de chaque câble soit soumise à une tension de 12% de la force-rupture initiale et subisse des cycles de variation de courbure qui la font passer d'un rayon de courbure infini à un rayon de courbure de 40 mm et ceci pendant 50 millions de cycles. Le test est réalisé sous une atmosphère contrôlée, la température et l'humidité de l'air au contact de la courroie étant maintenues à environ 200C et 60% d'humidité relative. La durée des sollicitations pour chaque courroie est de l'ordre de 3 semaines. A la fin de ces sollicitations, on extrait les câbles des courroies, par décorticage, et on mesure la force rupture résiduelle des fils des câbles fatigués.
On réalise d'autre part une courroie identique à la précédente et on la décortique de la même façon que précédemment mais cette fois sans soumettre les câbles au test de fatigue. On mesure ainsi la force rupture initiale des fils des câbles non fatigués.
On calcule finalement la déchéance de force-rupture après fatigue (notée ΔFm et exprimée en %), en comparant la force-rupture résiduelle à la force-rupture initiale. Cette déchéance ΔFm est de manière connue due à la fatigue et à l'usure des fils causées par l'action conjointe des sollicitations et de l'eau provenant de l'air ambiant, ces conditions étant comparables à celles auxquelles sont soumis les câbles de renforcement dans des carcasses de pneumatiques.
1-5 Test d'endurance en pneumatique
L'endurance des câbles en fatigue-fretting-corrosion est évaluée dans des nappes carcasse de pneumatiques poids-lourd par un test de roulage de très longue durée.
On fabrique pour cela des pneumatiques Poids-lourds dont l'armature de carcasse est constituée d'une seule nappe caoutchoutée renforcée par les câbles à tester. On monte ces pneumatiques sur des jantes connues adaptées et on les gonfle à la même pression (avec une suφression par rapport à la pression nominale) avec de l'air saturé en humidité. On fait ensuite rouler ces pneumatiques sur une machine de roulage automatique, sous une charge très élevée (surcharge par rapport à la charge nominale) et à la même vitesse, pendant un nombre déterminé de kilomètres. A la fin du roulage, on extrait les câbles de la carcasse du pneumatique, par décorticage, et on mesure la force rupture résiduelle à la fois sur les fils et sur les câbles ainsi fatigués.
On réalise d'autre part des pneumatiques identiques aux précédents et on les décortique de la même façon que précédemment, mais cette fois sans les soumettre au roulage. On mesure ainsi, après décorticage, la force rupture initiale des fils et des câbles non fatigués.
On calcule finalement la déchéance de force-rupture après fatigue (notée ΔFm et exprimée en %), en comparant la force-rupture résiduelle à la force-rupture initiale. Cette déchéance ΔFm est due à la fatigue et à l'usure (diminution de section) des fils causées par l'action conjointe des diverses sollicitations mécaniques, en particulier de l'intense travail des forces de contact entre les fils, et de l'eau provenant de l'air ambiant, en d'autres termes à la fatigue-fretting- corrosion subie par le câble à l'intérieur du pneumatique, lors du roulage.
On peut aussi choisir de conduire le test de roulage jusqu'à la destruction forcée du pneumatique, en raison d'une rupture de la nappe de carcasse ou d'un autre type d'avarie survenant plus tôt (par exemple un déchapage).
II. DESCRIPTION DETAILLEE DE L'INVENTION
Dans la présente description, sauf indication expresse différente, tous les pourcentages (%) i innddiiαquuééss s soonntt d deess % % m maassssiiαquueess..
D'autre part, tout intervalle de valeurs désigné par l'expression "entre a et b" représente le domaine de valeurs allant de plus de a à moins de b (c'est-à-dire bornes a et b exclues) tandis que tout intervalle de valeurs désigné par l'expression "de a à b" signifie le domaine de valeurs allant de a jusqu'à b (c'est-à-dire incluant les bornes strictes a et b).
II- 1. Câble 3+N de l'invention
Le câble métallique à deux couches (Ci, Ce) de l'invention, de construction 3+N, comporte donc : une couche interne (Ci) constituée de trois fils d'âme de diamètre d, enroulés ensemble en hélice selon un pas pi ; et une couche externe (Ce) de N fils, N variant de 6 à 12, de diamètre d2 enroulés ensemble en hélice selon un pas p2 autour de la couche interne (Ci).
II présente en outre les caractéristiques essentielles suivantes :
- 0,08 < d, < 0,30 ;
- 0,08 < d2 < 0,20 ;
Figure imgf000012_0001
;
- 3 < p, < 30 ;
- 6 < p2 < 30 ; la couche interne est gainée par une composition de caoutchouc diénique dite "gomme de remplissage" qui, pour toute longueur de câble de 2 cm ou plus, est présente dans le canal central formé par les trois fils d'âme et dans chacun des interstices situés entre les trois fils d'âme et les N fils de la couche externe (Ce) ; le taux de gomme de remplissage dans le câble est compris entre 5 et 35 mg par g de câble.
Ce câble de l'invention peut ainsi être qualifié de câble gommé in situ : sa couche interne Ci et sa couche externe Ce sont séparées radialement par une gaine de gomme de remplissage qui remplit, au moins en partie, chacun des interstices ou cavités présents entre la couche interne Ci et la couche externe Ce. En outre, son capillaire central formé par les trois fils de la couche interne est lui aussi pénétré par la gomme de remplissage.
Le câble de l'invention a pour autre caractéristique essentielle que son taux de gomme de remplissage est compris entre 5 et 35 mg de gomme par g de câble.
En dessous du minimum indiqué, il n'est pas possible de garantir que, pour toute longueur de câble d'au moins 2 cm, la gomme de remplissage soit bien présente, au moins en partie, dans chacun des interstices du câble, tandis qu'au-delà du maximum indiqué, on s'expose aux différents problèmes précédemment décrits dus au débordement de la gomme de remplissage à la périphérie du câble. Pour toutes ces raisons, on préfère que le taux de gomme de remplissage soit compris entre 5 et 30 mg, par exemple dans un domaine de 10 à 25 mg par g de câble.
Un tel taux de gomme de remplissage et son contrôle dans les limites indiquées ci-dessus n'est rendu possible que grâce à la mise en œuvre d'un procédé de retordage-gommage spécifique, adapté à la géométrie du câble 3+N, qui sera exposé en détail ultérieurement. La mise en œuvre de ce procédé spécifique, tout en permettant l'obtention d'un câble dont la quantité de gomme de remplissage est maîtrisée, garantit la présence de cloisons internes (continues ou discontinues dans l'axe du câble) ou bouchons de gomme dans le câble de l'invention, notamment dans son canal central, en nombre suffisant ; ainsi, le câble de l'invention devient étanche à la propagation, le long du câble, de tout fluide corrosif tel que l'eau ou l'oxygène de l'air, supprimant ainsi l'effet de mèche décrit en introduction du présent mémoire.
Selon un mode de réalisation particulièrement préférentiel de l'invention, la caractéristique suivante est vérifiée : sur toute longueur de câble de 2 cm ou plus, le câble est étanche ou quasiment étanche à l'air dans la direction longitudinale. En d'autres termes, chaque interstice
(ou cavité) du câble 3+N, y compris le canal central formé par les trois fils d'âme, comporte au moins un bouchon (ou cloison interne) de gomme de remplissage tous les 2 cm, de telle manière que ledit câble (une fois enrobé de l'extérieur par un polymère tel que du caoutchouc) est étanche ou quasiment étanche à l'air dans sa direction longitudinale.
Au test de perméabilité à l'air décrit au paragraphe 1-2, un câble 3+N dit "étanche à l'air" est caractérisé par un débit d'air moyen inférieur ou au plus égal à 0,2 cmVmin tandis qu'un câble 3+N dit " quasiment étanche à l'air" est caractérisé par un débit d'air moyen inférieur à 2 cmVmin, plus préférentiellement inférieur à 1 cm3 /min.
Selon un autre mode de réalisation particulièrement préférentiel de l'invention, le câble de l'invention est dépourvu ou pratiquement dépourvu de gomme de remplissage à sa périphérie. Par une telle expression, on entend qu'aucune particule de gomme de remplissage n'est visible, à l'œil nu, à la périphérie du câble, c'est-à-dire que l'homme du métier ne fait pas de différence, à l'œil nu et à une distance de deux mètres ou plus, entre une bobine de câble 3+N qui est conforme à l'invention et une bobine de câble 3+N conventionnel non gommé in situ, en sortie de fabrication.
Pour un compromis optimisé entre résistance, faisabilité, rigidité et endurance en flexion du câble, on préfère que les diamètres des fils des couches Ci et Ce, que ces fils aient un diamètre identique ou non d'une couche à l'autre, vérifient les relations suivantes :
- 0,10 < d, < 0,25 ; - 0,10 < d2 < 0,20 .
Plus préférentiellement encore, les relations suivantes sont vérifiées :
- 0, 10 < d, < 0,20 ; - 0, 10 < d2 < 0,20 . Les fils des couches Ci et Ce peuvent avoir un diamètre identique ou différent d'une couche à l'autre. On utilise de préférence des fils de même diamètre d'une couche à l'autre (soit d, = d2), ce qui simplifie notamment la fabrication et réduit le coût des câbles.
De préférence, on a la relation suivante qui est vérifiée: 0,5 < pi / p2 < 1 .
On rappelle ici que de manière connue le pas « p » représente la longueur, mesurée parallèlement à l'axe du câble, au bout de laquelle un fil ayant ce pas effectue un tour complet autour dudit axe du câble.
Selon un mode de réalisation particulier, les pi et p2 sont égaux (pi = p2). C'est notamment le cas pour des câbles à couches du type compacts tels que décrits par exemple à la figure 1, dans lesquels les deux couches Ci et Ce ont pour autre caractéristique d'être enroulées dans le même sens de torsion (S/S ou Z/Z). Dans de tels câbles à couches compacts, la compacité est telle que pratiquement aucune couche distincte de fils n'est visible ; il en résulte que la section transversale de tels câbles a un contour qui est polygonal et non cylindrique, comme illustré par exemple sur la figure 1 (câble compact 3+9 conforme à l'invention) ou à la figure 2 (câble compact 3+9 témoin, c'est-à-dire non gommé in situ).
Le pas p2 est choisi plus préférentiellement compris entre 6 et 25 mm, par exemple dans un domaine de 8 à 20 mm, en particulier lorsque dj = d2. Dans un tel cas, le pas p, est choisi plus préférentiellement compris entre 3 et 25 mm, par exemple dans un domaine de 4 à 20 mm, en particulier lorsque d, = d2.
La couche externe Ce a pour caractéristique préférentielle d'être une couche saturée, c'est-à- dire que, par définition, il n'existe pas suffisamment de place dans cette couche pour y ajouter au moins un (Nmaχ+l)ème fil de diamètre d2, Nmax représentant le nombre maximal de fils enroulables en une couche autour de la couche interne Ci. Cette construction a pour avantage de limiter le risque de débordement de gomme de remplissage à sa périphérie et d'offrir, pour un diamètre donné du câble, une résistance plus élevée.
Ainsi, le nombre N de fils peut varier dans une très large mesure selon le mode de réalisation particulier de l'invention, par exemple de 6 à 12 fils, étant entendu que le nombre maximal de fils Nmax sera augmenté si leur diamètre d2 est réduit comparativement au diamètre dι des fils d'âme, afin de conserver préférentiellement la couche externe dans un état saturé.
Selon un mode préférentiel, la couche Ce comporte de 8 à 10 fils, en d'autres termes le câble de l'invention est choisi dans le groupe des câbles de constructions 3+8, 3+9 et 3+10. Plus préférentiellement, les fils de la couche Ce vérifient alors les relations suivantes : - pour N = 8 : 0,7 < (d, / d2) < 1 ;
- pour N = 9 : 0,9 < (d, / d2) < 1,2 ;
- pour N = 10 : 1,0 < (d, / d2) < 1 ,3.
Sont particulièrement sélectionnés parmi les câbles ci-dessus ceux constitués de fils ayant sensiblement le même diamètre d'une couche à l'autre (soit d| = d2).
Selon un mode de réalisation particulièrement préférentiel, la couche externe comporte 9 fils.
Le câble 3+N de l'invention, comme tous les câbles à couches, peut être de deux types, à savoir du type compact ou du type à couches cylindriques.
Préférentiellement, tous les fils des couches Ci et Ce sont enroulés dans le même sens de torsion, c'est-à-dire soit dans la direction S (disposition "S/S"), soit dans la direction Z (disposition "Z/Z"). L'enroulement dans le même sens des couches Ci et Ce permet avantageusement de minimiser les frottements entre ces deux couches et donc l'usure des fils qui les constituent.
Plus préférentiellement encore, les deux couches sont enroulées dans le même sens (S/S ou Z/Z), soit au même pas (p, = p2), pour l'obtention d'un câble du type compact tel que représenté par exemple à la figure 1, soit à des pas différents pour l'obtention d'un câble du type cylindrique tel que représenté par exemple à la figure 3.
La construction du câble de l'invention permet de manière avantageuse la suppression du fil de frette, grâce à une meilleure pénétration du caoutchouc dans sa structure et à l'auto-frettage qui en résulte.
Par câble métallique, on entend par définition dans la présente demande un câble formé de fils constitués majoritairement (c'est-à-dire pour plus de 50% en nombre de ces fils) ou intégralement (pour 100% des fils) d'un matériau métallique. Les fils de la couche Ci sont préférentiellement en acier, plus préférentiellement en acier au carbone. Indépendamment, les fils de la couche Ce sont eux-mêmes en acier, de préférence en acier au carbone. Mais il est bien entendu possible d'utiliser d'autres aciers, par exemple un acier inoxydable, ou d'autres alliages.
Lorsqu'un acier au carbone est utilisé, sa teneur en carbone est de préférence comprise entre
0,4% et 1,2%, notamment entre 0,5% et 1,1%. Elle est plus préférentiellement comprise entre
0,6% et 1 ,0% (% en poids d'acier), une telle teneur représentant un bon compromis entre les propriétés mécaniques requises pour le composite et la faisabilité des fils. Il est à noter qu'une teneur en carbone comprise entre 0,5% et 0,6% rend de tels aciers finalement moins coûteux car plus faciles à tréfiler. Un autre mode avantageux de réalisation de l'invention peut consister aussi, selon les applications visées, à utiliser des aciers à faible teneur en carbone, comprise par exemple entre 0,2% et 0,5%, en raison notamment d'un coût plus bas et d'une plus grande facilité de, tréfilage.
Le métal ou l'acier utilisé, qu'il s'agisse en particulier d'un acier au carbone ou d'un acier inoxydable, peut être lui-même revêtu d'une couche métallique améliorant par exemple les propriétés de mise en œuvre du câble métallique et/ou de ses éléments constitutifs, ou les propriétés d'usage du câble et/ou du pneumatique eux-mêmes, telles que les propriétés d'adhésion, de résistance à la corrosion ou encore de résistance au vieillissement. Selon un mode de réalisation préférentiel, l'acier utilisé est recouvert d'une couche de laiton (alliage Zn- Cu) ou de zinc ; on rappelle que lors du procédé de fabrication des fils, le revêtement de laiton ou de zinc facilite le tréfilage du fil, ainsi que le collage du fil avec le caoutchouc. Mais les fils pourraient être recouverts d'une fine couche métallique autre que du laiton ou du zinc, ayant par exemple pour fonction d'améliorer la résistance à la corrosion de ces fils et/ou leur adhésion au caoutchouc, par exemple une fine couche de Co, Ni, Al, d'un alliage de deux ou plus des composés Cu, Zn, Al, Ni, Co, Sn.
Les câbles de l'invention sont préférentiellement en acier au carbone et possèdent une résistance en traction (Rm) de préférence supérieure à 2500 MPa, plus préférentiellement supérieure à 3000 MPa. L'allongement total à la rupture (At) du câble, somme de ses allongements structural, élastique et plastique, est de préférence supérieur à 2,0%, plus préférentiellement au moins égal à 2,5%.
L'élastomère diénique (ou indistinctement "caoutchouc", les deux étant considérés comme synonymes) de la gomme de remplissage est préférentiellement un élastomère diénique choisi dans le groupe constitué par les polybutadiènes (BR), le caoutchouc naturel (NR), les polyisoprènes de synthèse (IR), les différents copolymères de butadiène, les différents copolymères d'isoprène, et les mélanges de ces élastomères. De tels copolymères sont plus préférentiellement choisis dans le groupe constitué par les copolymères de butadiène-styrène (SBR), que ces derniers soient préparés par polymérisation en émulsion (ESBR) ou en solution (SSBR), les copolymères d'isoprène-butadiène (BIR), les copolymères d'isoprène- styrène (SIR) et les copolymères d'isoprène-butadiène-styrène (SBIR).
Un mode de réalisation préférentiel consiste à utiliser un élastomère "isoprénique", c'est-à-dire un homopolymère ou un copolymère d'isoprène, en d'autres termes un élastomère diénique choisi dans le groupe constitué par le caoutchouc naturel (NR), les polyisoprènes de synthèse (IR), les différents copolymères d'isoprène et les mélanges de ces élastomères. L'élastomère isoprénique est de préférence du caoutchouc naturel ou un polyisoprène de synthèse du type cis-1,4. Parmi ces polyisoprènes de synthèse, sont utilisés de préférence des polyisoprènes ayant un taux (% molaire) de liaisons cis-1,4 supérieur à 90%, plus préférentiellement encore supérieur à 98%. Selon d'autres modes de réalisation préférentiels, l'élastomère diénique peut être constitué, en tout ou partie, d'un autre élastomère diénique tel que, par exemple, un élastomère SBR utilisé en coupage ou non avec un autre élastomère, par exemple du type BR.
La gomme de remplissage peut contenir un seul ou plusieurs élastomère(s) diénique(s), ce dernier ou ces derniers pouvant être utilisé(s) en association avec tout type d'élastomère synthétique autre que diénique, voire avec des polymères autres que des élastomères.
La gomme de remplissage est du type réticulable, c'est-à-dire qu'elle comprend généralement un système de réticulation adapté pour permettre la réticulation de la composition lors de sa cuisson (i.e., son durcissement). De préférence, le système de réticulation de la gaine de caoutchouc est un système dit de vulcanisation, c'est-à-dire à base de soufre (ou d'un agent donneur de soufre) et d'un accélérateur primaire de vulcanisation. A ce système de vulcanisation de base peuvent s'ajouter divers accélérateurs secondaires ou activateurs de vulcanisation connus. Le soufre est utilisé à un taux préférentiel compris entre 0,5 et 10 pce, plus préférentiellement compris entre 1 et 8 pce, l'accélérateur primaire de vulcanisation, par exemple un sulfénamide, est utilisé à un taux préférentiel compris entre 0,5 et 10 pce, plus préférentiellement compris entre 0,5 et 5,0 pce.
Mais l'invention s'applique également aux cas où la gomme de remplissage est dépourvu de soufre et même de tout autre système de réticulation, étant entendu que pourrait suffire, pour sa propre réticulation, le système de réticulation ou vulcanisation déjà présent dans la matrice de caoutchouc que le câble de l'invention est destiné à renforcer, et susceptible de migrer par contact de ladite matrice environnante vers la gomme de remplissage.
La gomme de remplissage peut comporter également, outre ledit système de réticulation, tout ou partie des additifs habituellement utilisés dans les matrices de caoutchouc destinées à la fabrication de pneumatiques, tels que par exemple des charges renforçantes comme le noir de carbone ou des charges inorganiques comme la silice, des agents de couplage, des agents antivieillissement, des antioxydants, des agents plastifiants ou des huiles d'extension, que ces derniers soient de nature aromatique ou non-aromatique, notamment des huiles très faiblement ou non aromatiques, par exemple du type naphténiques ou paraffiniques, à haute ou de préférence à basse viscosité, des huiles MES ou TDAE, des résines plastifiantes à haute Tg supérieure à 300C, des agents facilitant la mise en œuvre (processabilité) des compositions à l'état cru, des résines tackifiantes, des agents antiréversion, des accepteurs et donneurs de méthylène tels que par exemple HMT (hexaméthylènetétramine) ou H3M (hexaméthoxyméthylmélamine), des résines renforçantes (tels que résorcinol ou bismaléimide), des systèmes promoteurs d'adhésion connus du type sels métalliques par exemple, notamment sels de cobalt, de nickel ou de lanthanide.
Le taux de charge renforçante, par exemple du noir de carbone ou une charge inorganique renforçante telle que silice, est de préférence supérieur à 50 pce, par exemple compris entre 60 et 140 pce. Il est plus préférentiellement supérieur à 70 pce, par exemple compris entre 70 et 120 pce. Comme noirs de carbone, par exemple, conviennent tous les noirs de carbone, notamment les noirs du type HAF, ISAF, SAF conventionnellement utilisés dans les pneumatiques (noirs dits de grade pneumatique). Parmi ces derniers, on citera plus particulièrement les noirs de carbone de grade (ASTM) 300, 600 ou 700 (par exemple N326, N330, N347, N375, N683, N772). Comme charges inorganiques renforçantes conviennent notamment des charges minérales du type silice (Siθ2), notamment les silice précipitées ou pyro gênées présentant une surface BET inférieure à 450 m2/g, de préférence de 30 à 400 mVg.
L'homme de l'art saura, à la lumière de la présente description, ajuster la formulation de la gomme de remplissage afin d'atteindre les niveaux de propriétés (notamment module d'élasticité) souhaités, et adapter la formulation à l'application spécifique envisagée.
Selon un premier mode de réalisation de l'invention, la formulation de la gomme de remplissage peut être choisie identique à la formulation de la matrice de caoutchouc que le câble de l'invention est destiné à renforcer ; ainsi, il n'y a aucun problème de compatibilité entre les matériaux respectifs de la gomme de remplissage et de ladite matrice de caoutchouc.
Selon un second mode de réalisation de l'invention, la formulation de la gomme de remplissage peut être choisie différente de la formulation de la matrice de caoutchouc que le câble de l'invention est destiné à renforcer. On pourra notamment ajuster la formulation de la gomme de remplissage en utilisant une quantité relativement élevée de promoteur d'adhésion, typiquement par exemple de 5 à 15 pce d'un sel métallique tel qu'un sel de cobalt, un sel de nickel ou un sel de lanthanide tel que néodyme (voir notamment demande WO 2005/1 13666), et en réduisant avantageusement la quantité dudit promoteur (voire en le supprimant totalement) dans la matrice de caoutchouc environnante. Bien entendu, on pourra également ajuster la formulation de la gomme de remplissage en vue d'optimiser sa viscosité et ainsi sa pénétration à l'intérieur du câble lors de la fabrication de ce dernier.
De préférence, la gomme de remplissage présente, à l'état réticulé, un module sécant en extension ElO (à 10% d'allongement) qui est compris entre 2 et 25 MPa, plus préférentiellement entre 3 et 20 MPa, en particulier compris dans un domaine de 3 à 15 MPa. L'invention concerne bien entendu le câble précédemment décrit tant à l'état cru (sa gomme de remplissage étant alors non vulcanisée) qu'à l'état cuit (sa gomme de remplissage étant alors vulcanisée). On préfère toutefois utiliser le câble de l'invention avec une gomme de remplissage à l'état cru jusqu'à son incorporation ultérieure dans le produit semi-fini ou produit fini tel que pneumatique auquel ce câble est destiné, de manière à favoriser la liaison au cours de la vulcanisation finale entre la gomme de remplissage et la matrice de caoutchouc environnante (par exemple la gomme de calandrage).
La figure 1 schématise, en coupe perpendiculaire à l'axe du câble (supposé rectiligne et au repos), un exemple d'un câble préférentiel 3+9 selon l'invention.
Ce câble (noté C-I) est du type compact, c'est-à-dire que ses couches interne Ci et externe Ce sont enroulées dans le même sens (S/S ou Z/Z selon une nomenclature reconnue) et de plus au même pas (p, = p2). Ce type de construction a pour conséquence que les fils internes (10) et externes (11) forment deux couches concentriques qui ont chacune un contour (représenté en pointillés) sensiblement polygonal (triangulaire pour la couche Ci, hexagonal pour la couche Ce), et non cylindrique comme dans le cas des câbles à couches cylindiques qui seront décrits ultérieurement.
La gomme de remplissage (12) remplit le capillaire central (13) (symbolisé par un triangle) formé, délimité par les trois fils d'âme (10) en les écartant très légèrement, tout en recouvrant totalement la couche interne Ci formée par les trois fils (10). Elle remplit aussi chaque interstice ou cavité (symbolisé aussi par un triangle) formé, délimité soit par un fil d'âme (10) et les deux fils externes (11) qui lui sont immédiatement adjacents, soit par deux fils d'âme (10) et le fil externe (11) qui leur est adjacent ; au total, 12 interstices sont ainsi présents dans ce câble 3+9, auxquels s'ajoute le capillaire central (13).
Selon un mode de réalisation préférentiel, dans le câble 3+N de l'invention, la gomme de remplissage s'étend d'une manière continue autour de la couche Ci qu'elle recouvre.
Pour comparaison, la figure 2 rappelle la coupe d'un câble 3+9 (noté C-2) conventionnel (i.e., non gommé in situ), également du type compact. L'absence de gomme de remplissage fait que pratiquement tous les fils (20, 21) sont au contact l'un de l'autre, ce qui conduit à une structure particulièrement compacte, par ailleurs très difficilement pénétrable (pour ne pas dire impénétrable) de l'extérieur par du caoutchouc. La caractéristique de ce type de câble est que les trois fils d'âme (20) forment un canal ou capillaire central (23) qui est vide et fermé et donc propice, par effet "de mèche", à la propagation de milieux corrosifs tels que l'eau.
La figure 3 schématise un autre exemple d'un câble préférentiel 3+9 selon l'invention. Ce câble (noté C-3) est du type à couches cylindriques, c'est-à-dire que ses couches interne Ci et externe Ce sont soit enroulées au même pas (pi = p2) mais dans un sens différent (S/Z ou Z/S), soit enroulées à un pas différent (p, # p2) quelles que soient les directions de torsion (S/S ou Z/Z ou S/Z ou Z/S). De manière connue, ce type de construction a pour conséquence que les fils sont disposés selon deux couches (Ci et Ce) adjacentes et concentriques, tubulaires, donnant au câble (et aux deux couches) un contour (représenté en pointillés) cylindrique et non polygonal.
La gomme de remplissage (32) remplit le capillaire central (33) (symbolisé par un triangle) formé par les trois fils d'âme (30) en les écartant légèrement, tout en recouvrant totalement la couche interne Ci formée par les trois fils (30). Elle remplit aussi, au moins en partie (ici, dans cet exemple, totalement) chaque interstice ou cavité formé, délimité soit par un fil d'âme (30) et les deux fils externes (31) qui lui sont immédiatement adjacents (les plus proches), soit par deux fils d'âme (30) et le fil externe (31) qui leur est adjacent.
Pour comparaison, la figure 4 rappelle la coupe d'un câble 3+9 (noté C-4) conventionnel (i.e., non gommé in situ), également du type à deux couches cylindriques. L'absence de gomme de remplissage fait que les trois fils (40) de la couche interne (Ci) sont pratiquement au contact l'un de l'autre, ce qui conduit à un capillaire central (43) vide et fermé, impénétrable de l'extérieur par du caoutchouc et propice d'autre part à la propagation de milieux corrosifs.
Le câble de l'invention pourrait être pourvu d'une frette externe, constituée par exemple d'un fil unique, métallique ou non, enroulé en hélice autour du câble selon un pas plus court que celui de la couche externe, et un sens d'enroulement opposé ou identique à celui de cette couche externe.
Cependant, grâce à sa structure spécifique, le câble de l'invention, déjà auto-fretté, ne nécessite généralement pas l'emploi d'un fil de frette externe, ce qui résout avantageusement les problèmes d'usure entre la frette et les fils de la couche la plus externe du câble.
Toutefois, si un fil de frette est utilisé, dans le cas général où les fils de la couche externe sont en acier au carbone, on pourra alors avantageusement choisir un fil de frette en acier inoxydable afin de réduire l'usure par fretting de ces fils en acier au carbone au contact de la frette en acier inoxydable, comme enseigné par exemple dans la demande WO-A-98/41682, le fil en acier inoxydable pouvant être éventuellement remplacé, de manière équivalente, par un fil composite dont seule la peau est en acier inoxydable et le cœur en acier au carbone, tel que décrit par exemple dans le document EP-A-976 541. On peut également utiliser une frette constituée d'un polyester ou d'un polyester-amide aromatique thermotrope, telle que décrite dans la demande WO-A-03/048447. II-2. Fabrication du câble 3+N de l'invention
Le câble de l'invention de construction 3+N précédemment décrit peut être fabriqué selon un procédé comportant les quatre étapes suivantes opérées en ligne :
tout d'abord, une étape d'assemblage par retordage des trois fils d'âme, pour formation de la couche interne (Ci) en un point d'assemblage ; puis, en aval dudit point d'assemblage des trois fils d'âme, une étape de gainage de la couche interne (Ci) par la gomme de remplissage à l'état cru (c'est-à-dire non réticulée) ; suivie d'une étape d'assemblage par retordage des N fils de la couche externe (Ce) autour de la couche interne (Ci) ainsi gainée ; puis d'une étape d'équilibrage final des torsions.
On rappelle ici qu'il existe deux techniques possibles d'assemblage de fils métalliques :
soit par câblage : dans un tel cas, les fils ne subissent pas de torsion autour de leur propre axe, en raison d'une rotation synchrone avant et après le point d'assemblage ; soit par retordage : dans un tel cas, les fils subissent à la fois une torsion collective et une torsion individuelle autour de leur propre axe, ce qui génère un couple de détorsion sur chacun des fils.
Une caractéristique essentielle du procédé ci-dessus est d'utiliser, tant pour l'assemblage de la couche interne que pour celui de la couche externe, une étape de retordage.
Au cours de la première étape, les trois fils d'âme sont retordus ensemble (direction S ou Z) pour formation de la couche interne Ci, de manière connue en soi ; les fils sont délivrés par des moyens d'alimentation tels que des bobines, une grille de répartition, couplée ou non à un grain d'assemblage, destinés à faire converger les fils d'âme en un point de torsion commun (ou point d'assemblage).
La couche interne (Ci) ainsi formée est ensuite gainée de gomme de remplissage à l'état cru, apportée par une vis d'extrusion à une température appropriée. La gomme de remplissage peut être ainsi délivrée en un point fixe, unique et de faible encombrement, au moyen d'une tête d'extrusion unique, sans faire appel à un gainage individuel des fils en amont des opérations d'assemblage, avant formation de la couche interne, comme décrit dans l'art antérieur.
Ce procédé a l'avantage notable de ne pas ralentir le procédé d'assemblage conventionnel. Il rend possible l'opération complète de retordage initial, gommage et retordage final en ligne et en une seule étape, quel que soit le type de câble produit (câble compact comme câble à couches cylindriques), tout ceci à haute vitesse. Le procédé ci-dessus peut être mis en œuvre à une vitesse (vitesse de défilement du câble sur la ligne de retordage-gommage) supérieure à 50 m/min, préférentiellement supérieure à 70 m/min.
En amont de la tête d'extrusion, la tension exercée sur les trois fils, sensiblement identique d'un fil à l'autre, est préférentiellement comprise entre 10 et 25% de la force rupture des fils.
La tête d'extrusion peut comporter une ou plusieurs filières, par exemple une filière amont de guidage et une filière aval de calibrage. On peut ajouter des moyens de mesure et de contrôle en continu du diamètre du câble, reliés à l'extrudeuse. De préférence, la température d'extrusion de la gomme de remplissage est comprise entre 600C et 1200C, plus préférentiellement comprise entre 600C et 1000C.
La tête d'extrusion définit ainsi une zone de gainage ayant la forme d'un cylindre de révolution dont le diamètre est compris de préférence entre 0, 15 mm et 0,8 mm, plus préférentiellement entre 0,2 et 0,6 mm, et dont la longueur est de préférence comprise entre 4 et 10 mm.
Ainsi, la quantité de gomme de remplissage délivrée par la tête d'extrusion peut être ajustée aisément de telle manière que, dans le câble 3+N final, cette quantité soit comprise entre 5 et 35 mg, de préférence entre 5 et 30 mg, notamment dans un domaine de 10 à 25 mg par g de câble.
Typiquement, en sortie de la tête d'extrusion, la couche interne Ci, en tout point de sa périphérie, est recouverte d'une épaisseur minimale de gomme de remplissage qui est préférentiellement supérieure à 5 μm, plus préférentiellement supérieure à 10 μm, par exemple comprise entre 10 et 50 μm.
En sortie de l'étape de gainage qui précède, au cours d'une troisième étape, on procède à l'assemblage final, toujours par retordage (direction S ou Z), des N fils de la couche externe (Ce) autour de la couche interne (Ci) ainsi gainée. Au cours du retordage, les N fils viennent s'appuyer sur la gomme de remplissage, s'incruster dans cette dernière. La gomme de remplissage, en se déplaçant sous la pression exercée par ces fils externes, a alors naturellement tendance à remplir, au moins en partie, chacun des interstices ou cavités laissés vides par les fils, entre la couche interne (Ci) et la couche externe (Ce).
A ce stade, le câble 3+N de l'invention n'est pas terminé : son canal central, délimité par les trois fils d'âme, n'est pas encore rempli de gomme de remplissage, en tout cas de manière insuffisante pour l'obtention d'une imperméabilité à l'air qui soit acceptable. L'étape essentielle qui suit consiste à faire passer le câble à travers des moyens d'équilibrage de torsion. Par "équilibrage de torsion", on entend ici de manière connue l'annulation des couples de torsion résiduels (ou du retour élastique de détorsion) s'exerçant sur chaque fil du câble, dans la couche interne comme dans la couche externe.
Les outils d'équilibrage de la torsion sont bien connus de l'homme du métier du retordage ; ils peuvent consister par exemple en des "dresseurs" et/ou "retordeurs" et/ou des "retordeurs- dresseurs" constitués soit de poulies pour les retordeurs, soit de galets de petit diamètre pour les dresseurs, poulies ou galets à travers lesquels circule le câble, dans un seul plan ou de préférence dans au moins deux plans différents.
On suppose a posteriori que, lors du passage à travers ces outils d'équilibrage, la torsion s'exerçant sur les trois fils d'âme est suffisante pour forcer, pour entraîner la gomme de remplissage à l'état cru (i.e., non réticulée, non cuite), encore chaude et relativement fluide, de l'extérieur vers le cœur du câble, à l'intérieur même du canal central formé par les trois fils, offrant in fine au câble de l'invention l'excellente propriété d'imperméabilité à l'air qui le caractérise. La fonction de dressage en plus, apportée par l'utilisation d'un outil dresseur, aurait pour avantage que le contact des galets du dresseur avec les fils de la couche externe va exercer une pression supplémentaire sur la gomme de remplissage favorisant encore sa pénétration dans le capillaire central formé par les trois fils d'âme.
En d'autres termes, le procédé décrit ci-dessus exploite la torsion des trois fils d'âme, au stade final de fabrication du câble, pour répartir naturellement, de manière homogène, la gomme de remplissage à l'intérieur et autour de la couche interne (Ci), tout en contrôlant parfaitement la quantité de gomme de remplissage fournie. L'homme du métier saura notamment ajuster l'agencement, le diamètre des poulies et/ou des galets des moyens d'équilibrage de torsion, pour jouer sur l'intensité de la pression radiale s'exerçant sur les différents fils.
Ainsi, de manière inattendue, il s'est avéré possible de faire pénétrer la gomme de remplissage au cœur même du câble de l'invention, en déposant la gomme en aval du point d'assemblage des trois fils et non en amont comme décrit dans l'art antérieur, tout en contrôlant et en optimisant la quantité de gomme de remplissage délivrée grâce à l'emploi d'une tête d'extrusion unique.
Après cette étape ultime d'équilibrage de la torsion, la fabrication du câble 3+N de l'invention est terminée. Ce câble peut être enroulé sur une bobine de réception, pour stockage, avant d'être traité par exemple à travers une installation de calandrage, pour préparation d'un tissu composite métal-caoutchouc. Le procédé précédemment décrit rend possible la fabrication de câbles conformes à l'invention qui peuvent être avantageusement dépourvus (ou quasiment dépourvus) de gomme de remplissage à leur périphérie. Par une telle expression, on entend qu'aucune particule de gomme de remplissage n'est visible, à l'oeil nu, à la périphérie du câble, c'est-à-dire que l'homme du métier ne fait pas de différence en sortie de fabrication, à l'œil nu et à une distance de trois mètres ou plus, voire même plus préférentiellement de deux mètres ou plus, entre une bobine de câble conforme à l'invention et une bobine de câble conventionnel non gommé in situ.
Le procédé précédemment décrit s'applique bien entendu à la fabrication de câbles du type compacts (pour rappel et par définition, ceux dont les couches Ci et Ce sont enroulées au même pas et dans le même sens) comme de câbles du type à couches cylindriques (pour rappel et par définition, ceux dont les couches Ci et Ce sont enroulées soit à des pas différents, soit dans des sens opposés, soit encore à des pas différents et dans des sens opposés).
Un dispositif d'assemblage et gommage utilisable pour la mise en œuvre du procédé précédemment décrit est un dispositif comportant d'amont en aval, selon la direction d'avancement d'un câble en cours de formation :
- des moyens d'alimentation des trois fils d'âme ; des moyens d'assemblage par retordage des trois fils d'âme pour formation de la couche interne ; des moyens de gainage de la couche interne ; en sortie de moyens de gainage, des moyens d'assemblage par retordage de N fils externes autour de la couche interne ainsi gainée, pour formation de la couche externe ; enfin, des moyens d'équilibrage de torsion.
On voit sur la figure 5 un exemple de dispositif (50) d'assemblage par retordage, du type à alimentation fixe et à réception tournante, utilisable pour la fabrication d'un câble du type compact (pi = p2 et même sens de torsion des couches Ci et Ce) tel qu'illustré par exemple à la figure 1, dans lequel des moyens d'alimentation (510) délivrent trois fils d'âme (51) à travers une grille (52) de répartition (répartiteur axisymétrique), couplée ou non à un grain d'assemblage (53), au-delà de laquelle convergent les trois fils d'âme en un point d'assemblage (54), pour formation de la couche interne (Ci).
La couche interne Ci, une fois formée, traverse ensuite une zone de gainage consistant par exemple en une tête d'extrusion unique (55) à travers laquelle est destinée à circuler la couche interne. La distance entre le point de convergence (54) et le point de gainage (55) est par exemple comprise entre 50 cm et 1 m. Autour de la couche interne Ci ainsi gommée (56), progressant dans le sens de la flèche, sont ensuite assemblés par retordage les N fils (57) de la couche externe (Ce), par exemple au nombre de neuf, délivrés par des moyens d'alimentation (570). Le câble final 3+N ainsi formé est finalement collecté sur une réception tournante (59), après traversée des moyens d'équilibrage de torsion (58) consistant par exemple en un dresseur ou retordeur-dresseur.
On rappelle ici que, de manière bien connue de l'homme du métier, pour la fabrication d'un câble selon l'invention du type à couches cylindriques tel qu'illustré par exemple à la figure 3 (pas pi et p2 différents et/ou sens de torsion différents des couches Ci et Ce), on utilisera un dispositif comportant deux organes (alimentation ou réception) tournants, et non un seul comme décrit ci-dessus (Fig. 5) à titre d'exemple.
II-3. Utilisation du câble en armature carcasse de pneumatique
Comme expliqué en introduction du présent mémoire, le câble de l'invention est particulièrement destiné à une armature de carcasse de pneumatique pour véhicules industriels tels que véhicules Poids-lourds.
A titre d'exemple, la figure 6 représente de manière schématique une coupe radiale d'un pneumatique à armature de carcasse métallique pouvant être conforme ou non à l'invention, dans cette représentation générale. Ce pneumatique 1 comporte un sommet 2 renforcé par une armature de sommet ou ceinture 6, deux flancs 3 et deux bourrelets 4, chacun de ces bourrelets 4 étant renforcé avec une tringle 5. Le sommet 2 est surmonté d'une bande de roulement non représentée sur cette figure schématique. Une armature de carcasse 7 est enroulée autour des deux tringles 5 dans chaque bourrelet 4, le retournement 8 de cette armature 7 étant par exemple disposé vers l'extérieur du pneumatique 1 qui est ici représenté monté sur sa jante 9. L'armature de carcasse 7 est de manière connue en soi constituée d'au moins une nappe renforcée par des câbles métalliques dits "radiaux", c'est-à-dire que ces câbles sont disposés pratiquement parallèles les uns aux autres et s'étendent d'un bourrelet à l'autre de manière à former un angle compris entre 80° et 90° avec le plan circonférentiel médian (plan perpendiculaire à l'axe de rotation du pneumatique qui est situé à mi-distance des deux bourrelets 4 et passe par le milieu de l'armature de sommet 6).
Le pneumatique conforme à l'invention est caractérisé en ce que son armature de carcasse 7 comporte au moins, à titre de renforcement d'au moins une nappe de carcasse, un câble métallique conforme à l'invention. Bien entendu, ce pneumatique 1 comporte en outre de manière connue une couche de gomme ou élastomère intérieure (communément appelée
"gomme intérieure") qui définit la face radialement interne du pneumatique et qui est destinée à protéger la nappe de carcasse de la diffusion d'air provenant de l'espace intérieur au pneumatique. Dans cette nappe d'armature de carcasse, la densité des câbles conformes à l'invention est de préférence comprise entre 40 et 150 câbles par dm (décimètre) de nappe de carcasse, plus préférentiellement entre 70 et 120 câbles par dm de nappe, la distance entre deux câbles adjacents, d'axe en axe, étant de préférence comprise entre 0,7 et 2,5 mm, plus préférentiellement comprise entre 0,75 et 2,2 mm.
Les câbles conformes à l'invention sont de préférence disposés de telle manière que la largeur (notée Lc) du pont de caoutchouc, entre deux câbles adjacents, est comprise entre 0,25 et 1,5 mm. Cette largeur Lc représente de manière connue la différence entre le pas de calandrage (pas de pose du câble dans le tissu de caoutchouc) et le diamètre du câble. En dessous de la valeur minimale indiquée, le pont de caoutchouc, trop étroit, risque de se dégrader mécaniquement lors du travail de la nappe, notamment au cours des déformations subies dans son propre plan par extension ou cisaillement. Au-delà du maximum indiqué, on s'expose à des risques d'apparition de défauts d'aspect sur les flancs des pneumatiques ou de pénétration d'objets, par perforation, entre les câbles. Plus préférentiellement, pour ces mêmes raisons, la largeur Lc est choisie comprise entre 0,35 et 1,25 mm.
De préférence, la composition de caoutchouc utilisée pour le tissu de la nappe d'armature de carcasse présente, à l'état vulcanisé (i.e., après cuisson), un module sécant en extension ElO qui est compris entre 2 et 25 MPa, plus préférentiellement entre 3 et 20 MPa, notamment dans un domaine de 3 à 15 MPa, lorsque ce tissu est destiné à former une nappe d'armature de carcasse.
III. EXEMPLES DE REALISATION DE L'INVENTION
Les essais qui suivent démontrent la capacité de l'invention à fournir des câbles dont l'endurance, en particulier en armature de carcasse de pneumatique, est notablement augmentée grâce à une excellente propriété d'imperméabilité à l'air, selon leur axe longitudinal.
HI- 1. Essai 1 - Fabrication des câbles
On utilise dans les essais qui suivent des câbles à couches de constructions 3+9 tels que schématisés à la figure 1, constitués de fils fins en acier au carbone revêtus de laiton.
Les fils en acier au carbone sont préparés de manière connue, en partant par exemple de fils machine (diamètre 5 à 6 mm) que l'on écrouit tout d'abord, par laminage et/ou tréfilage, jusqu'à un diamètre intermédiaire voisin de 1 mm. L'acier utilisé est un acier au carbone connu (norme USA AISI 1069) dont la teneur en carbone est de 0,70%.
Les fils de diamètre intermédiaire subissent un traitement de dégraissage et/ou décapage, avant leur transformation ultérieure. Après dépôt d'un revêtement de laiton sur ces fils intermédiaires, on effectue sur chaque fil un écrouissage dit "final" (i.e., après le dernier traitement thermique de patentage), par tréfilage à froid en milieu humide avec un lubrifiant de tréfilage qui se présente par exemple sous forme d'une émulsion ou d'une dispersion aqueuses.
Les fils en acier ainsi tréfilés ont le diamètre et les propriétés mécaniques suivantes :
Tableau 1
Figure imgf000027_0001
Le revêtement de laiton qui entoure les fils a une épaisseur très faible, nettement inférieure au micromètre, par exemple de l'ordre de 0,15 à 0,30 μm, ce qui est négligeable par rapport au diamètre des fils en acier. Bien entendu, la composition de l'acier du fil en ses différents éléments (par exemple C, Cr, Mn) est la même que celle de l'acier du fil de départ.
Ces fils sont ensuite assemblés sous forme de câbles à couches 3+9 (référencés C-I à la Fig. 1 et C-2 à la Fig. 2) dont la construction est conforme aux représentations des figures 1 et 2 et dont les propriétés mécaniques sont données dans le tableau 2.
Tableau 2
Figure imgf000027_0002
Le câble de l'invention 3+9 (C-I), tel que schématisé à la Fig. 1, est formé de 12 fils au total, tous de diamètre 0,18 mm, qui ont été enroulés au même pas (p, = p2 = 12,5 mm) et dans la même direction de torsion (S) pour l'obtention d'un câble du type compact. Le taux de gomme de remplissage, mesuré selon la méthode indiquée précédemment au paragraphe 1-3, est de 24 mg environ par g de câble. Cette gomme de remplissage remplit le canal ou capillaire central formé par les trois fils d'âme en les écartant légèrement, tout en recouvrant totalement la couche interne Ci formée par les trois fils. Elle remplit aussi, au moins en partie sinon totalement, chacun des douze interstices formés soit par un fil d'âme et les deux fils externes qui lui sont immédiatement adjacents, soit par deux fils d'âme et le fil externe qui leur est adjacent. Ce câble C- 1 de l'invention est dépourvu de fil de frette externe.
Pour la fabrication de ce câble, on a utilisé un dispositif tel que décrit précédemment et schématisé à la figure 5. La gomme de remplissage est une composition de caoutchouc conventionnelle pour armature carcasse de pneumatique, ayant la même formulation que celle de la nappe de caoutchouc de carcasse que le câble C- 1 est destiné à renforcer dans l'essai qui suit. Cette composition a été extradée à une température de 82°C environ à travers une filière de calibrage de 0,410 mm.
Le câble témoin 3+9 (C-2), tel que schématisé à la Fig. 2, est formé de 12 fils au total de diamètre 0,18 mm. Il comporte une couche interne Ci de 3 fils enroulés ensemble en hélice (direction S) selon un pas pi égal à environ 6,3 mm, cette couche Ci étant au contact d'une couche externe cylindrique de 9 fils eux-mêmes enroulés ensemble en hélice (direction S) autour de l'âme selon un pas p2 double égal à environ 12,5 mm. Il comporte en outre un fil de frette externe unitaire de petit diamètre (diamètre 0,15 mm, pas d'hélice 3,5 mm), non représenté à la figure 2 pour simplification, destiné notamment, de manière connue, à augmenter la résistance au flambage du câble et notamment l'endurance de la carcasse en roulage sous faible pression ; ce câble témoin n'est pas pénétrable de l'extérieur jusqu'en son centre, il est dépourvu de gomme de remplissage.
III-2. Essai 2 - Endurance des câbles en test courroie
Dans cet essai, les câbles à couches C-I et C-2 sont ensuite incorporés par calandrage à des nappes ("skims") de caoutchouc constituées d'une composition utilisée conventionnellement pour la fabrication des nappes d'armature de carcasse de pneumatiques radiaux pour véhicules
Poids lourds. Cette composition est à base de caoutchouc naturel (peptisé) et de noir de carbone N330 (55 pce) ; elle comporte en outre les additifs usuels suivants: soufre (6 pce), accélérateur sulfénamide (1 pce), ZnO (9 pce), acide stéarique (0,7 pce), antioxydant (1,5 pce), naphténate de cobalt (1 pce) ; le module ElO de la composition est de 6 MPa environ.
Les tissus composites ainsi calandres comportent donc une matrice de caoutchouc formée de deux couches fines (épaisseur 0,6 mm environ) de gomme superposées de part et d'autre des câbles. Le pas de calandrage (pas de pose des câbles dans le tissu de caoutchouc) est de 1,5 mm environ. Compte tenu du diamètre des câbles (respectivement 0,73 et 1,02 mm environ pour les câbles C-I et C-2), l'épaisseur de gomme au dos des câbles est comprise entre 0,15 et 0,25 mm environ. Les tissus caoutchoutés ainsi préparés ont été ensuite soumis au test courroie décrit au paragraphe 1-4 qui précède ; après décorticage, les résultats suivants ont été obtenus :
Tableau 3
Figure imgf000029_0001
A la lecture du tableau 3, on constate que, quelle que soit la zone du câble analysée (couche interne Ci ou externe Ce), les meilleurs résultats (les plus faibles déchéances) sont systématiquement enregistrés sur les câbles C-I conformes à l'invention. On observe notamment que la déchéance globale ΔFm du câble de l'invention est environ trois fois moindre que celle du câble témoin.
HI-3. Essai 3 - Endurance des câbles en armature carcasse de pneumatique
Dans ce nouvel essai, on fabrique un autre câble conforme à l'invention, noté C-3, identique au câble C-I précédent exception faite de ses pas pi et p2 (dans cet essai, respectivement égaux à 6 et 10 mm). Les pas pi et p2 étant différents, la structure de ce câble est de type cylindrique, comme illustré par exemple à la figure 3. Son taux de gomme de remplissage est de 27 mg environ par g de câble.
Ce câble C-3 a les propriétés indiquées au tableau 4 qui suit.
Tableau 4
Figure imgf000029_0002
Les câbles à couches C-2 et C-3 sont ensuite incorporés par calandrage à des nappes (skims) de caoutchouc pour formation de tissus caoutchoutés, comme indiqué précédemment à l'essai 2, puis on réalise deux séries d'essais de roulage de pneumatiques de véhicule poids lourd (notées respectivement P-2 et P-3), de dimensions 225/90 Rl 7.5, avec dans chaque série des pneumatiques destinés au roulage, d'autres à un décorticage sur pneumatique neuf. L'armature de carcasse de ces pneumatiques est constituée d'une seule nappe radiale constituée des tissus caoutchoutés ci-dessus. Les pneus P-3 renforcés par les câbles C-3 de l'invention sont donc les pneumatiques conformes à l'invention. Les pneumatiques P-2 renforcés par les câbles témoins C-2 constituent les pneus témoins de l'art antérieur ; ces pneumatiques P-2 constituent, en raison de leurs performances reconnues, un témoin de choix pour cet essai.
Les pneumatiques P-2 et P-3 sont donc identiques à l'exception des câbles C-2 et C-3 qui renforcent leur armature de carcasse 7.
Leur armature de sommet ou ceinture 6, en particulier, est de manière connue en soi constituée de deux demi-nappes de triangulation renforcées de câbles métalliques inclinés de 65 degrés, surmontées de deux "nappes de travail" superposées croisées. Ces nappes de travail sont renforcées par des câbles métalliques connus disposés sensiblement parallèlement les uns par rapport aux autres et inclinés de 26 degrés (nappe radialement interne) et 18 degrés (nappe radialement externe). Les deux nappes de travail sont par ailleurs recouvertes par une nappe de protection renforcée de câbles métalliques élastiques (haute élongation) conventionnels inclinés de 18 degrés. Tous les angles d'inclinaison indiqués sont mesurés par rapport au plan circonférentiel médian.
On fait subir à ces pneumatiques un test de roulage sévère tel que décrit au paragraphe 1-5, en conduisant le test jusqu'à une distance totale parcourue de 250 000 km. Un tel kilométrage équivaut à un roulage en continu proche de 8 mois environ et à plus de 100 millions de cycles de fatigue.
Après roulage, on réalise un décorticage c'est-à-dire une extraction des câbles hors des pneumatiques. Les câbles sont alors soumis à des essais de traction, en mesurant à chaque fois la force-rupture initiale (câble extrait du pneumatique neuf) et la force-rupture résiduelle (câble extrait du pneumatique ayant roulé) de chaque type de fil, selon la position du fil dans le câble, et pour chacun des câbles testés.
La déchéance moyenne ΔFm est donnée en % dans le tableau 5 ci-dessous ; elle est calculée à la fois pour les fils de la couche interne Ci et pour les fils de le couche externe Ce. Les déchéances ΔFm globales sont également mesurées sur les câbles eux-mêmes. Tableau 5
Figure imgf000031_0001
A la lecture du tableau 5, on constate de nouveau que, quelle que soit la zone du câble analysée (couche interne Ci ou externe Ce), les meilleurs résultats (c'est-à-dire les plus faibles déchéances), et de loin, sont obtenus sur les câbles C-3 conformes à l'invention. On note en particulier que la déchéance globale ΔFm du câble de l'invention est réduite d'un facteur 2,5 environ par rapport au câble témoin.
Corrélativement à ces résultats, un examen visuel des différents fils montre que les phénomènes d'usure ou fretting (érosion de matériel aux points de contact), qui résultent du frottement répété des fils entre eux, sont nettement réduits dans les câbles C-3 par rapport aux câbles C-2.
En résumé, l'utilisation du câble C-3 conforme à l'invention permet d'augmenter de manière tout à fait sensible la longévité de la carcasse, déjà excellente par ailleurs sur le pneumatique témoin renforcé par le câble C-2.
En conclusion, comme le démontrent les essais qui précèdent, les câbles de l'invention permettent de réduire de manière notable les phénomènes de fatigue-fretting-corrosion des câbles dans les armatures de carcasse des pneumatiques, en particulier des pneumatiques Poids-lourds, et d'améliorer ainsi la longévité de ces pneumatiques.
Enfin, ce qui n'est pas le moindre, on a en outre constaté que ces câbles selon l'invention, grâce à leur construction particulière (pour rappel, ne nécessitant pas de fil de frette externe) et probablement une résistance au flambage largement améliorée, offraient aux armatures de carcasse des pneumatiques une endurance notablement améliorée, d'un facteur deux à trois, en roulage sous pression réduite.
Tous les résultats d'endurance améliorés décrits précédemment apparaissent par ailleurs très bien corrélés au taux de pénétration des câbles par le caoutchouc, comme expliqué ci-après dans l'essai 4.
IH-4. Essai 4 - Tests de perméabilité à l'air
Les câbles C- 1 de l'invention ont été par ailleurs soumis au test de perméabilité à l'air décrit au paragraphe 1-2, en mesurant le volume d'air (en cm3) traversant les câbles en 1 minute (moyenne de 10 mesures pour chaque câble testé).
Pour chaque câble C-I testé et pour 100% des mesures (soit dix éprouvettes sur dix), on a mesuré un débit nul ou inférieur à 0,2 cmVmin ; en d'autres termes, les câbles de l'invention peuvent être qualifiés d'étanches à l'air selon leur axe ; ils présentent donc un taux de pénétration optimal par le caoutchouc.
Des câbles gommés in situ témoins, de même construction que les câbles compacts C-I de l'invention, ont été préparés en gainant individuellement soit un seul fil, soit chacun des trois fils de la couche interne Ci. Ce gainage a été réalisé à l'aide de filières d'extrusion de diamètre variable (230 à 300 μm) disposées cette fois en amont du point d'assemblage (gainage et retordage en ligne) comme décrit dans l'art antérieur ; pour une comparaison rigoureuse, on a ajusté d'autre part la quantité de gomme de remplissage de telle manière que le taux de gomme de remplissage, dans les câbles finaux (entre 4 et 30 mg/g de câble, mesuré selon la méthode du paragraphe 1-3), soit voisin de celui des câbles de l'invention.
Dans le cas du gainage d'un seul fil, quel que soit le câble testé, on a observé que 100% des mesures (i.e., 10 éprouvettes sur 10) indiquaient un débit d'air supérieur à 2 cmVmin ; le débit moyen mesuré variait de 2,5 à 9 crrrVmin selon les conditions opératoires utilisées, notamment le diamètre de filière d'extrusion testé.
Dans le cas du gainage individuel de chacun des trois fils, si le débit moyen mesuré s'est révélé dans de nombreux cas inférieur à 2 cmVmin, on a observé toutefois que les câbles obtenus présentaient une quantité relativement importante de gomme de remplissage à leur périphérie, les rendant inaptes à une opération de calandrage en conditions industrielles.
Bien entendu, l'invention n'est pas limitée aux exemples de réalisation précédemment décrits.
C'est ainsi par exemple que le câble de l'invention pourrait être utilisé pour le renforcement d'articles autres que des pneumatiques, par exemple des tuyaux, des courroies, des bandes transporteuses ; avantageusement, il pourrait être utilisé aussi pour le renforcement de parties des pneumatiques autres que leur armature de carcasse, notamment pour le renforcement de l'armature de sommet de pneumatiques pour véhicules industriels tels que Poids-lourds.
Notamment, l'invention concerne également tout câble d'acier multi-torons ("multi-strand rope") dont la structure incorpore au moins, en tant que toron élémentaire, un câble à couches conforme à l'invention. A titre d'exemples de câbles multi-torons conformes à l'invention, utilisables par exemple dans des pneumatiques pour véhicules industriels du type génie civil, notamment dans leur armature carcasse ou sommet, on peut citer des câbles multi-torons de construction générale connue en soi :
(1+6) (3+N) formé au total de sept torons élémentaires, un au centre et les six autres câblés autour du centre ;
(3+9) (3+N) formé au total de douze torons élémentaires, trois au centre et les neuf autres câblés autour du centre,
mais dans lesquels chaque toron élémentaire (ou tout au moins une partie d'entre eux) constitué par un câble à couches 3+N, notamment 3+8 ou 3+9, du type compact ou du type à couches cylindriques, est un câble 3+N conforme à l'invention, gommé in situ.
De tels câbles d'acier multi-torons, notamment du type (1+6) (3+8), (1+6) (3+9), (3+9) (3+8) ou (3+9) (3+9), pourraient être eux-mêmes gommés in situ lors de leur fabrication, c'est-à- dire que dans ce cas le toron central est lui-même, ou les torons du centre s'ils sont plusieurs sont eux-mêmes, gainé(s) par de la gomme de remplissage non vulcanisée (cette gomme de remplissage étant de formulation identique ou différente de celle utilisée pour le gommage in situ des torons élémentaires) avant la mise en place par câblage des torons périphériques formant la couche externe.

Claims

REVENDICATIONS
1. Câble métallique à deux couches (Ci, Ce) de construction 3+N, gommé in situ, comportant une couche interne (Ci) constituée de trois fils d'âme de diamètre dι enroulés ensemble en hélice selon un pas pi et une couche externe (Ce) de N fils, N variant de 6 à 12, de diamètre d2 enroulés ensemble en hélice selon un pas p2 autour de la couche interne (Ci), ledit câble étant caractérisé en ce qu'il présente les caractéristiques suivantes (db d2, pi, p2 étant exprimés en mm) :
- 0,08 < d, < 0,30 ;
- 0,08 < d2 < 0,20 ;
Figure imgf000034_0001
;
- 3 < p, < 30 ; - 6 < p2 < 30 ; la couche interne est gainée par une composition de caoutchouc diénique dite "gomme de remplissage" qui, pour toute longueur de câble de 2 cm ou plus, est présente dans le canal central formé par les trois fils d'âme et dans chacun des interstices situés entre les trois fils d'âme et les N fils de la couche externe (Ce) ; - le taux de gomme de remplissage dans le câble est compris entre 5 et 35 mg par gramme de câble.
2. Câble selon la revendication 1, dans lequel l'élastomère diénique de la gomme de remplissage est choisi dans le groupe constitué par les polybutadiènes, le caoutchouc naturel, les polyisoprènes de synthèse, les copolymères de butadiène, les copolymères d'isoprène, et les mélanges de ces élastomères.
3. Câble selon la revendication 2, dans lequel l'élastomère diénique est du caoutchouc naturel.
4. Câble selon l'une quelconque des revendications 1 à 3, dans lequel les caractéristiques suivantes sont vérifiées (di, d2 en mm) :
- 0, 10 < d, < 0,25 ; - 0, 10 < d2 < 0,20 .
5. Câble selon l'une quelconque des revendications 1 à 4, dans lequel la caractéristique suivante est vérifiée :
0,5 ≤ pi / p2 < 1 .
6. Câble selon l'une quelconque des revendications 1 à 5, dans lequel pi = p2.
7. Câble selon l'une quelconque des revendications 1 à 6, dans lequel p2 est compris entre 6 et 25 mm.
8. Câble selon l'une quelconque des revendications 1 à 7, dans lequel pi est compris entre 3 et 25 mm.
9. Câble selon l'une quelconque des revendications 1 à 8, dans lequel la couche externe (Ce) est une couche saturée.
10. Câble selon l'une quelconque des revendications 1 à 9, dans lequel la couche externe (Ce) comporte 8, 9 ou 10 fils.
11. Câble selon la revendication 10, dans lequel les fils de la couche externe (Ce) vérifient les relations suivantes :
- pour N = 8 : 0,7 < (d, / d2) < 1 ; - pour N = 9 : 0,9 < (d, / d2) < 1,2 ;
- pour N = 10 : 1,0 < (d, / d2) < 1,3.
12. Câble selon l'une quelconque des revendications 1 à 11, dans lequel d, = d2.
13. Câble selon la revendication 12, dans lequel la couche externe (Ce) comporte 9 fils.
14. Câble selon l'une quelconque des revendications 1 à 13, dans lequel le taux de gomme de remplissage est compris entre 5 et 30 mg par g de câble.
15. Câble selon l'une quelconque des revendications 1 à 14, caractérisé en ce que, au test de perméabilité à l'air, il présente un débit d'air moyen inférieur à 2 cm3 /min.
16. Câble selon la revendication 15, caractérisé en ce que, au test de perméabilité à l'air, il présente un débit d'air moyen inférieur ou au plus égal à 0,2 cmVmin.
17. Câble multi-torons dont au moins un des torons est un câble selon l'une quelconque des revendications 1 à 16.
18. Câble multi-torons selon la revendication 17, de construction (1+6) (3+N), formé au total de sept torons élémentaires, un au centre et les six autres câblés autour du centre, chacun de construction 3+N.
19. Câble multi-torons selon la revendication 17, de construction (3+9) (3+N) formé au total de douze torons élémentaires, trois au centre et les six autres câblés autour du centre, chacun de construction 3+N.
20. Câble multi-torons selon la revendication 18 ou 19, dans lequel N est égal à 8 ou 9.
21. Câble multi-torons selon l'une quelconque des revendications 17 à 20, caractérisé en ce que ledit câble multi-torons est lui-même gommé in situ.
22. Utilisation d'un câble selon l'une quelconque des revendications 1 à 21, comme élément de renforcement d'un pneumatique.
23. Utilisation selon la revendication 22, le câble étant présent dans l'armature de carcasse du pneumatique.
24. Pneumatique comportant un câble selon l'une quelconque des revendications 1 à 23.
25. Pneumatique selon la revendication 24, ledit pneumatique étant destiné à un véhicule industriel.
26. Pneumatique selon la revendication 24 ou 25, le câble étant présent dans l'armature de carcasse du pneumatique.
PCT/EP2009/005343 2008-08-01 2009-07-23 Cable a couches gomme in situ pour armature carcasse de pneumatique WO2010012411A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011520359A JP5276717B2 (ja) 2008-08-01 2009-07-23 タイヤのカーカス補強材のための現場ゴム引き層状ケーブル
CN200980129607.7A CN102105634B (zh) 2008-08-01 2009-07-23 用于轮胎的胎体增强件的就地被涂覆橡胶的分层缆线
KR1020117004769A KR101547377B1 (ko) 2008-08-01 2009-07-23 금속 코드, 다중 스트랜드 로프 및 타이어
US13/057,127 US8869851B2 (en) 2008-08-01 2009-07-23 In-situ rubberized layered cable for carcass reinforcement for tire
BRPI0916700A BRPI0916700A2 (pt) 2008-08-01 2009-07-23 cabo e pneumático
EP09777384.0A EP2326765B1 (fr) 2008-08-01 2009-07-23 Cable a couches gomme in situ pour armature carcasse de pneumatique
EA201170279A EA018029B1 (ru) 2008-08-01 2009-07-23 Прорезиненный по месту слоистый корд для каркасного армирования шины

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0855317 2008-08-01
FR0855317A FR2934614B1 (fr) 2008-08-01 2008-08-01 Cable a couches gomme in situ pour armature carcasse de pneumatique.

Publications (1)

Publication Number Publication Date
WO2010012411A1 true WO2010012411A1 (fr) 2010-02-04

Family

ID=40399332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/005343 WO2010012411A1 (fr) 2008-08-01 2009-07-23 Cable a couches gomme in situ pour armature carcasse de pneumatique

Country Status (9)

Country Link
US (1) US8869851B2 (fr)
EP (1) EP2326765B1 (fr)
JP (1) JP5276717B2 (fr)
KR (1) KR101547377B1 (fr)
CN (1) CN102105634B (fr)
BR (1) BRPI0916700A2 (fr)
EA (1) EA018029B1 (fr)
FR (1) FR2934614B1 (fr)
WO (1) WO2010012411A1 (fr)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2947574A1 (fr) * 2009-07-03 2011-01-07 Michelin Soc Tech Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ.
FR2947575A1 (fr) * 2009-07-03 2011-01-07 Michelin Soc Tech Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ.
FR2950904A1 (fr) * 2010-12-17 2011-04-08 Michelin Soc Tech Cable metallique multitorons a haute permeabilite.
WO2013075984A1 (fr) 2011-11-23 2013-05-30 Compagnie Generale Des Etablissements Michelin Câble métallique à deux couches, gommé in situ par un élastomère thermoplastique insaturé.
WO2013075985A1 (fr) 2011-11-23 2013-05-30 Compagnie Generale Des Etablissements Michelin Procédé de fabrication d'un câble métallique à deux couches gommé in situ par un élastomère thermoplastique insaturé
WO2013092621A1 (fr) 2011-12-19 2013-06-27 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse
WO2013092623A1 (fr) 2011-12-19 2013-06-27 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse
WO2013092609A1 (fr) 2011-12-19 2013-06-27 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse
WO2013092625A1 (fr) 2011-12-19 2013-06-27 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse
WO2013092618A1 (fr) 2011-12-19 2013-06-27 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse
WO2013092612A1 (fr) 2011-12-19 2013-06-27 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse
JP2013531741A (ja) * 2010-05-20 2013-08-08 コンパニー ゼネラール デ エタブリッスマン ミシュラン 不飽和熱可塑性エラストマーによって現場ゴム引きした多層状金属コード
WO2014049058A1 (fr) * 2012-09-28 2014-04-03 Compagnie Generale Des Etablissements Michelin Cable gomme in situ comprenant une composition comprenant un polysulfure organique
WO2015004204A1 (fr) 2013-07-12 2015-01-15 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des epaisseurs variables des melanges caoutchouteux interieurs a l'armature de carcasse
WO2015004206A1 (fr) 2013-07-12 2015-01-15 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des cables d'armatures de carcasse presentant une faible permeabilite
WO2015004202A1 (fr) 2013-07-12 2015-01-15 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des cables d'armatures de carcasse presentant une faible permeabilite
WO2015004210A1 (fr) 2013-07-12 2015-01-15 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des epaisseurs variables des melanges caoutchouteux interieurs a l'armature de carcasse
WO2015086309A1 (fr) 2013-12-09 2015-06-18 Compagnie Generale Des Etablissements Michelin Pneumatique présentant une pression nominale réduite et une flèche relative sous charge nominale augmentée
WO2015189313A2 (fr) 2014-06-12 2015-12-17 Compagnie Generale Des Etablissements Michelin Câble gommé in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion
WO2015189310A1 (fr) 2014-06-12 2015-12-17 Compagnie Generale Des Etablissements Michelin Produit semi-fini comprenant un câble gommé in situ noyé dans une composition de caoutchouc de calandrage
WO2015189314A1 (fr) 2014-06-12 2015-12-17 Compagnie Generale Des Etablissements Michelin Câble gommé in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion
US9428011B2 (en) 2012-10-30 2016-08-30 Compagnie Generale Des Etablissements Michelin Cord rubberized in situ comprising a composition comprising a styrene-butadiene copolymer
CN110582605A (zh) * 2017-04-27 2019-12-17 株式会社普利司通 弹性体增强用帘线

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2962456B1 (fr) * 2010-05-20 2012-09-21 Michelin Soc Tech Procede de fabrication d'un cable metallique multicouches gomme in situ par un elastomere thermoplastique insature
FR2962454B1 (fr) * 2010-05-20 2012-09-21 Michelin Soc Tech Procede de fabrication d'un cable metallique a trois couches du type gomme in situ
JP5905298B2 (ja) * 2012-02-29 2016-04-20 株式会社ブリヂストン タイヤ
FR2990962B1 (fr) * 2012-05-25 2014-06-27 Michelin & Cie Procede de fabrication d'un cable metallique multi-torons a deux couches.
JP5806644B2 (ja) 2012-05-31 2015-11-10 東京製綱株式会社 ハイブリッド心ロープ
CN103074787B (zh) * 2013-01-07 2016-12-28 浙江宏晟技术转让服务有限公司 一种高渗胶率的高强度钢丝帘线
JP6440206B2 (ja) * 2013-07-22 2018-12-19 株式会社ブリヂストン 空気入りタイヤ
FR3022263B1 (fr) * 2014-06-12 2017-10-27 Michelin & Cie Cable gomme in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion
DE102014211929A1 (de) 2014-06-23 2016-01-07 ContiTech Transportsysteme GmbH Verfahren zur Herstellung eines Zugträgers in Seilkonstruktion, insbesondere für Fördergurte
RU174518U1 (ru) * 2015-02-12 2017-10-18 Общество с ограниченной ответственностью "Научно-производственный центр "Гальва" Стальной прядевый канат с полимерным материалом
CN105568465A (zh) * 2015-12-14 2016-05-11 山东胜通钢帘线有限公司 一种轮胎及其帘线
EP3440245A1 (fr) 2016-04-08 2019-02-13 Gates Corporation Câble hybride pour renforcement d'articles polymères et articles renforcés
BR112017028476A2 (pt) * 2016-07-01 2018-08-28 Kordsa Teknik Tekstil Anonim Sirketi novo cabo de pneu de aramida bielástica como reforço de carcaça
DE102016221021A1 (de) * 2016-10-26 2018-04-26 Continental Reifen Deutschland Gmbh Wulstverstärker zur mechanischen Verstärkung
US11458772B2 (en) * 2017-12-19 2022-10-04 Compagnie Generale Des Etablissements Michelin Two-layer multi-strand cords having very low, low and medium moduli
JP7278744B2 (ja) * 2018-10-30 2023-05-22 株式会社ブリヂストン エラストマー補強用コード
JP7278745B2 (ja) * 2018-10-30 2023-05-22 株式会社ブリヂストン エラストマー補強用コード
WO2020141012A1 (fr) * 2018-12-31 2020-07-09 Goldhofer Ag Véhicule à charge lourde

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122162A (ja) * 1992-10-09 1994-05-06 Bridgestone Bekaert Steel Code Kk 補強用スチ−ルコ−ド及びゴムとの複合体並びにその製法
WO1999031313A1 (fr) * 1997-12-15 1999-06-24 N.V. Bekaert S.A. Cable d'acier avec materiau polymere
WO2002044464A1 (fr) * 2000-12-01 2002-06-06 N.V. Bekaert S.A. Cable metallique pour renforcer des pneus hors-route et des bandes transporteuses
JP2002302885A (ja) * 2001-03-30 2002-10-18 Yokohama Rubber Co Ltd:The エラストマー複合スチールコードの製造方法
US20020160213A1 (en) * 2001-03-30 2002-10-31 The Yokohama Rubber Co., Ltd. Elastomer and steel cord composite and process for producing the same
JP2002363875A (ja) * 2001-03-30 2002-12-18 Yokohama Rubber Co Ltd:The エラストマー複合スチールコードおよびその製造方法
JP2004190199A (ja) * 2002-12-13 2004-07-08 Yokohama Rubber Co Ltd:The スチールコード及びそれを用いた空気入りラジアルタイヤ
JP2004277923A (ja) * 2003-03-14 2004-10-07 Fuji Seiko Kk ゴム被覆スチールコード、同コードを用いたゴムリボン及びタイヤ並びにそれらの製造方法
EP1602780A2 (fr) * 2000-09-11 2005-12-07 The Yokohama Rubber Co., Ltd. Câble d'acier pour pneumatique et pneumatique radial
DE102004036807A1 (de) * 2004-07-29 2006-03-23 Continental Aktiengesellschaft Stahlkord zur Verwendung als Festigkeitsträger in Bauteilen von Fahrzeugluftreifen

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB562137A (en) * 1942-03-18 1944-06-20 Us Rubber Co Improvements in cords and in pneumatic tyre carcass fabrics made therefrom
JPS58188201U (ja) * 1982-06-04 1983-12-14 株式会社ブリヂストン ラジアルタイヤ
US5139874A (en) * 1991-09-05 1992-08-18 The Goodyear Tire & Rubber Company Cable for reinforcing rubber articles
JP3538205B2 (ja) * 1992-03-09 2004-06-14 住友ゴム工業株式会社 タイヤのカーカス用のスチールコード、タイヤのフィラー用のスチールコード、及びそれを用いたタイヤ
US5609014A (en) * 1992-04-20 1997-03-11 Tokyo Rope Manufacturing Co., Ltd. Rubber reinforcing steel cord
JPH05302283A (ja) * 1992-04-20 1993-11-16 Tokyo Seiko Co Ltd ゴム補強用スチールコード
JPH0622162A (ja) * 1992-07-06 1994-01-28 Matsushita Electric Ind Co Ltd インデックス信号検出装置
CA2171540C (fr) * 1993-12-15 2005-06-28 Frans Van Giel Structure ouverte pour cable metallique
EP0709236A1 (fr) * 1994-10-28 1996-05-01 Sumitomo Rubber Industries Limited Câble pour bandage pneumatique
WO2001034900A1 (fr) * 1999-11-11 2001-05-17 Bridgestone Corporation Cable d'acier de renforcement d'un article en caoutchouc et pneumatique correspondant
US6272830B1 (en) * 2000-02-18 2001-08-14 The Goodyear Tire & Rubber Company Steel cord for reinforcing elastomeric articles
JP4049627B2 (ja) * 2002-07-02 2008-02-20 トクセン工業株式会社 エラストマー複合スチールコードおよびその製造方法
FR2873721A1 (fr) * 2004-08-02 2006-02-03 Michelin Soc Tech Cable a couches pour armature de sommet de pneumatique
JP4630154B2 (ja) * 2005-08-02 2011-02-09 住友ゴム工業株式会社 タイヤ用の金属コードの製造方法、及びそれを用いた空気入りタイヤの製造方法
ES2608959T3 (es) * 2006-08-31 2017-04-17 Bridgestone Corporation Cordón de acero para reforzar caucho y cubierta radial de neumáticos
FR2925922B1 (fr) 2007-12-28 2009-12-18 Soc Tech Michelin Cable a couches pour ceinture de pneumatique

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122162A (ja) * 1992-10-09 1994-05-06 Bridgestone Bekaert Steel Code Kk 補強用スチ−ルコ−ド及びゴムとの複合体並びにその製法
WO1999031313A1 (fr) * 1997-12-15 1999-06-24 N.V. Bekaert S.A. Cable d'acier avec materiau polymere
EP1602780A2 (fr) * 2000-09-11 2005-12-07 The Yokohama Rubber Co., Ltd. Câble d'acier pour pneumatique et pneumatique radial
WO2002044464A1 (fr) * 2000-12-01 2002-06-06 N.V. Bekaert S.A. Cable metallique pour renforcer des pneus hors-route et des bandes transporteuses
JP2002302885A (ja) * 2001-03-30 2002-10-18 Yokohama Rubber Co Ltd:The エラストマー複合スチールコードの製造方法
US20020160213A1 (en) * 2001-03-30 2002-10-31 The Yokohama Rubber Co., Ltd. Elastomer and steel cord composite and process for producing the same
JP2002363875A (ja) * 2001-03-30 2002-12-18 Yokohama Rubber Co Ltd:The エラストマー複合スチールコードおよびその製造方法
JP2004190199A (ja) * 2002-12-13 2004-07-08 Yokohama Rubber Co Ltd:The スチールコード及びそれを用いた空気入りラジアルタイヤ
JP2004277923A (ja) * 2003-03-14 2004-10-07 Fuji Seiko Kk ゴム被覆スチールコード、同コードを用いたゴムリボン及びタイヤ並びにそれらの製造方法
DE102004036807A1 (de) * 2004-07-29 2006-03-23 Continental Aktiengesellschaft Stahlkord zur Verwendung als Festigkeitsträger in Bauteilen von Fahrzeugluftreifen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "High tensile strength steel cord constructions for tyres", RESEARCH DISCLOSURE, MASON PUBLICATIONS, HAMPSHIRE, GB, vol. 340, no. 54, 1 August 1992 (1992-08-01), XP007118007, ISSN: 0374-4353 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2947575A1 (fr) * 2009-07-03 2011-01-07 Michelin Soc Tech Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ.
WO2011000963A3 (fr) * 2009-07-03 2011-03-03 Societe De Technologie Michelin Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ
WO2011000964A3 (fr) * 2009-07-03 2011-03-03 Societe De Technologie Michelin Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ
US8863490B2 (en) 2009-07-03 2014-10-21 Michelin Recherche Et Techniques S.A. Multi-strand cord in which the basic strands are dual layer cords, rubberized in situ
US8857146B2 (en) 2009-07-03 2014-10-14 Michelin Recherche Et Techniques S.A. Multi-strand cord in which the basic strands are dual layer cords, rubberized in situ
FR2947574A1 (fr) * 2009-07-03 2011-01-07 Michelin Soc Tech Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ.
JP2013531741A (ja) * 2010-05-20 2013-08-08 コンパニー ゼネラール デ エタブリッスマン ミシュラン 不飽和熱可塑性エラストマーによって現場ゴム引きした多層状金属コード
FR2950904A1 (fr) * 2010-12-17 2011-04-08 Michelin Soc Tech Cable metallique multitorons a haute permeabilite.
WO2013075984A1 (fr) 2011-11-23 2013-05-30 Compagnie Generale Des Etablissements Michelin Câble métallique à deux couches, gommé in situ par un élastomère thermoplastique insaturé.
WO2013075985A1 (fr) 2011-11-23 2013-05-30 Compagnie Generale Des Etablissements Michelin Procédé de fabrication d'un câble métallique à deux couches gommé in situ par un élastomère thermoplastique insaturé
US9617662B2 (en) 2011-11-23 2017-04-11 Compagnie Generale Des Etablissements Michelin Two-layered metal cord rubberized in situ by an unsaturated thermoplastic elastomer
US9617661B2 (en) 2011-11-23 2017-04-11 Compagnie Generale Des Etablissements Michelin Method of manufacturing a two-layer metal cord rubberized in situ using an unsaturated thermoplastic elastomer
WO2013092623A1 (fr) 2011-12-19 2013-06-27 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse
WO2013092612A1 (fr) 2011-12-19 2013-06-27 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse
WO2013092618A1 (fr) 2011-12-19 2013-06-27 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse
WO2013092625A1 (fr) 2011-12-19 2013-06-27 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse
WO2013092609A1 (fr) 2011-12-19 2013-06-27 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse
WO2013092621A1 (fr) 2011-12-19 2013-06-27 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse
WO2014049058A1 (fr) * 2012-09-28 2014-04-03 Compagnie Generale Des Etablissements Michelin Cable gomme in situ comprenant une composition comprenant un polysulfure organique
FR2996230A1 (fr) * 2012-09-28 2014-04-04 Michelin & Cie Cable gomme in situ comprenant une composition comprenant un polysulfure organique.
US9428011B2 (en) 2012-10-30 2016-08-30 Compagnie Generale Des Etablissements Michelin Cord rubberized in situ comprising a composition comprising a styrene-butadiene copolymer
WO2015004206A1 (fr) 2013-07-12 2015-01-15 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des cables d'armatures de carcasse presentant une faible permeabilite
WO2015004202A1 (fr) 2013-07-12 2015-01-15 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des cables d'armatures de carcasse presentant une faible permeabilite
WO2015004210A1 (fr) 2013-07-12 2015-01-15 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des epaisseurs variables des melanges caoutchouteux interieurs a l'armature de carcasse
WO2015004204A1 (fr) 2013-07-12 2015-01-15 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des epaisseurs variables des melanges caoutchouteux interieurs a l'armature de carcasse
WO2015086309A1 (fr) 2013-12-09 2015-06-18 Compagnie Generale Des Etablissements Michelin Pneumatique présentant une pression nominale réduite et une flèche relative sous charge nominale augmentée
WO2015189313A2 (fr) 2014-06-12 2015-12-17 Compagnie Generale Des Etablissements Michelin Câble gommé in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion
WO2015189310A1 (fr) 2014-06-12 2015-12-17 Compagnie Generale Des Etablissements Michelin Produit semi-fini comprenant un câble gommé in situ noyé dans une composition de caoutchouc de calandrage
WO2015189314A1 (fr) 2014-06-12 2015-12-17 Compagnie Generale Des Etablissements Michelin Câble gommé in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion
CN110582605A (zh) * 2017-04-27 2019-12-17 株式会社普利司通 弹性体增强用帘线

Also Published As

Publication number Publication date
EP2326765B1 (fr) 2015-09-30
JP2011530013A (ja) 2011-12-15
FR2934614B1 (fr) 2010-09-10
US20110198008A1 (en) 2011-08-18
KR20110045030A (ko) 2011-05-03
CN102105634A (zh) 2011-06-22
EA018029B1 (ru) 2013-04-30
FR2934614A1 (fr) 2010-02-05
BRPI0916700A2 (pt) 2015-11-10
EP2326765A1 (fr) 2011-06-01
JP5276717B2 (ja) 2013-08-28
US8869851B2 (en) 2014-10-28
KR101547377B1 (ko) 2015-08-25
EA201170279A1 (ru) 2011-08-30
CN102105634B (zh) 2012-08-08

Similar Documents

Publication Publication Date Title
EP2326765B1 (fr) Cable a couches gomme in situ pour armature carcasse de pneumatique
EP2366046B1 (fr) Cable a trois couches, gomme in situ, pour armature de carcasse de pneumatique
EP2238289B1 (fr) Câble a couches gomme in situ utilisable en ceinture de pneumatique
EP2449171B1 (fr) Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ
EP2449170B1 (fr) Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ
EP2366048B1 (fr) Procede et dispositif de fabrication d&#39;un cable a trois couches du type gomme in situ
EP2438233A1 (fr) Câble à trois couches, gommé in situ, pour armature carcasse de pneumatique
EP2238288B1 (fr) Procédé et dispositif de fabrication d&#39;un cable à deux couches du type gomme in situ
EP2414583B1 (fr) Procede et dispositif de fabrication d&#39;un cable a trois couches
EP2449168A2 (fr) Cable metallique a trois couches gomme in situ de construction 2+m+n
EP2449169A2 (fr) Cable metallique a trois couches gomme in situ de construction 3+m+n
EP2414582B1 (fr) Procede et dispositif de fabrication d&#39;un cable a trois couches
FR2959517A1 (fr) Cable metallique multitorons elastique a haute permeabilite.
FR2969181A1 (fr) Cable metallique multitorons a haute permeabilite
FR2950904A1 (fr) Cable metallique multitorons a haute permeabilite.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129607.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09777384

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 459/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2011520359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009777384

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117004769

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201170279

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 13057127

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0916700

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110131