WO2010012255A2 - Verfahren zum erzeugen einer fügeverbindung mit einkristallinem oder gerichtet erstarrtem werkstoff - Google Patents

Verfahren zum erzeugen einer fügeverbindung mit einkristallinem oder gerichtet erstarrtem werkstoff Download PDF

Info

Publication number
WO2010012255A2
WO2010012255A2 PCT/DE2009/000890 DE2009000890W WO2010012255A2 WO 2010012255 A2 WO2010012255 A2 WO 2010012255A2 DE 2009000890 W DE2009000890 W DE 2009000890W WO 2010012255 A2 WO2010012255 A2 WO 2010012255A2
Authority
WO
WIPO (PCT)
Prior art keywords
component
hub
blade
joining
joining surface
Prior art date
Application number
PCT/DE2009/000890
Other languages
English (en)
French (fr)
Other versions
WO2010012255A3 (de
Inventor
Dieter Schneefeld
Joachim Bamberg
Johannes Gabel
Original Assignee
Mtu Aero Engines Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mtu Aero Engines Gmbh filed Critical Mtu Aero Engines Gmbh
Priority to CA2732031A priority Critical patent/CA2732031A1/en
Priority to US13/055,925 priority patent/US20110129347A1/en
Priority to EP09775912A priority patent/EP2315641A2/de
Publication of WO2010012255A2 publication Critical patent/WO2010012255A2/de
Publication of WO2010012255A3 publication Critical patent/WO2010012255A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/129Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding specially adapted for particular articles or workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/24Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/006Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/34Rotor-blade aggregates of unitary construction, e.g. formed of sheet laminae
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/20Manufacture essentially without removing material
    • F05B2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05B2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05B2230/239Inertia or friction welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/606Directionally-solidified crystalline structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/607Monocrystallinity

Definitions

  • the present invention relates to a method for producing a joint connection between two components, of which at least one comprises a monocrystalline or directionally solidified material. Further, the present invention relates to an integrally bladed rotor disk of a compressor or a turbine and to a compressor and a turbine.
  • single crystal or directionally solidified materials are used, in particular monocrystalline or directionally solidified metallic materials.
  • monocrystalline or directionally solidified metallic materials examples are rotor blades of gas turbine engines for aircraft or other applications fertilize. These blades are exposed simultaneously to high centrifugal forces or fatigue stresses in the radial direction, vibrations and high temperatures.
  • Single-crystalline or directionally solidified materials are particularly suitable for these applications because of their properties.
  • High-strength joint connections can be produced by friction welding.
  • turbine blades are connected to hubs by friction welding.
  • friction welding For friction welding of monocrystalline or directionally solidified materials, however, particularly high mechanical welding stresses are required. These particularly high mechanical welding stresses require extremely stiff design of the machines and tools used for friction welding. This causes high costs.
  • WO 2007/144557 A1 describes a friction-welded joint with a monocrystalline component and the orientations of the primary sliding plane of a face-centered crystal lattice to be used in this case, parallel to the oscillation direction and to the welding force.
  • An object of the present invention is to provide an improved method for producing a joint between components, at least one of which is a einkri- stalled or directionally solidified material to provide an improved integrally bladed rotor disk of a compressor or turbine and an improved compressor and turbine.
  • Various embodiments of the present invention are based on the idea of producing a polycrystalline layer on the joining surface of a component which comprises a monocrystalline or directionally solidified material before the joining surface is joined to another component by friction welding.
  • the polycrystalline layer is produced, for example, by introducing deformation or distortion energy into a thin near-surface layer and subsequent heat treatment.
  • Deformation energy is introduced, for example, by shot peening, ultrasonic peening, the action of neutrons, high-energy electrons or other ionizing radiation or compact rolling.
  • the heat treatment can be carried out before the friction welding in a separate process step.
  • only a near-surface layer can be heated by using a high heat output within a short period of time.
  • only the region is heated to the recrystallization temperature into which deformation or distortion energy has previously been introduced by one of the measures mentioned.
  • the heat treatment in the friction welding itself can be done immediately prior to welding the joining surfaces.
  • the actual friction welding process is carried out similarly to the known friction welding processes.
  • the parameters of the friction welding process are selected, for example, such that initially only a layer near the surface is heated to the recrystallization temperature and predetermined during a time interval Duration is maintained at this recrystallization temperature. This predetermined duration is chosen so that the polycrystalline layer is formed.
  • the actual friction welding process takes place, for example by briefly increasing the temperature at the joining surface to the required value by increasing the surface normal force or the amplitude or frequency of the friction.
  • the component pretreated in this way can be joined by friction welding to a component which has optionally been pretreated in a similar manner with a monocrystalline or directionally solidified material or with a component with a polycrystalline material.
  • blades of a compressor or a turbine are connected in one of the ways described above with an adapter, which in turn is connected to a hub or rotor disk.
  • the blades are connected directly to the hub of the rotor disk in one of the manners described above.
  • integrally bladed rotor disks for compressors or turbines can be created, whose blades have a monocrystalline or directionally solidified material.
  • the blades each have a polycrystalline layer on their joining surfaces.
  • the polycrystalline layer may have a thickness of several microns to several millimeters. For some materials, a thickness of at least 0.3 mm is advantageous.
  • a compressor or turbine or gas turbine engine for an aircraft or other application may include a plurality of such integrally bladed rotor disks.
  • Various embodiments of the present invention have the advantage that the mechanical welding stress required to form the friction-welding joint is lower than it would be without prior formation of a polycrystalline layer.
  • Figure 1 is a schematic representation of two to be joined by friction welding
  • Figure 2 is a schematic representation of a rotor disk
  • FIG. 3 shows a schematic flow diagram of a method for producing a joint connection, a rotor disk, a compressor or a turbine.
  • the first component 10 is, for example, a hub for a rotor disk.
  • the second component 20 is in this case, for example, a blade for the rotor disk.
  • the first component 10 has a polycrystalline material.
  • the second component 20 has a monocrystalline or directionally solidified material.
  • the materials of the first component 10 and the second component 20 may be similar or different from their crystalline or microscopic structures. For example, both materials of the first component 10 and the second component 20 are metallic materials.
  • a polycrystalline layer 24 hatched in FIG. 1 is first produced on the joining surface 22 of the second component 20.
  • the joining surface 22 of the second Component 20 for example, first by shot peening (English: Shot Peening), ultrasonic shot peening (English: Ultrasonic Peening) or hard rolling (English: Compact Rolling) pretreated. Good results were obtained with compressive stresses of 500 MPa or more and a treatment depth of treatment of 0.3 mm or more. As a result of this treatment, deformation or distortion energy is introduced into the originally monocrystalline or directionally solidified material of the second component 20 near its joining surface 22.
  • the second component 20 or at least one region adjoining the joining surface 22 is subjected to a short heat treatment.
  • This heat treatment is carried out, for example, by inductive heating.
  • a temperature is generated near or above the recrystallization temperature. Due to the induced deformation or distortion energy, the material recrystallizes polycrystalline.
  • the first component 10 and the second component 20 are joined or joined by friction welding.
  • the joining surface 12 of the first component 10 and the joining surface 22 of the second component 20 are pressed against one another with a high surface normal force.
  • This surface normal force is represented by the arrows 31, 32.
  • the first component 10 and the second component 20 and thus, in particular, the joining surface 12 of the first component 10 and the joining surface 22 of the second component 20 are moved relative to one another.
  • This relative movement is, for example, an oscillation movement in one direction or (with two different frequencies) in two different directions.
  • the oscillation movement is indicated by the arrow 38.
  • the resulting frictional heat has a welding of the joining surfaces 12, 22 of the components 10, 20 result.
  • the illustrated friction-welded joint is particularly suitable for the connection of components which are exposed to high mechanical loads, for example high centrifugal forces and / or fatigue stresses.
  • One example is the connection between a blade and a hub or between a blade and an adapter to be later connected to a hub for forming a rotor disk of a compressor or a turbine of a gas turbine engine for an aircraft or for other applications.
  • the second component 20 is the blade and the first component 10 is the adapter or the hub.
  • the direction of the introduction of the welding force is advantageously selected parallel to the primary crystal orientation direction of the type ⁇ 100>.
  • the oscillating movement 38 in friction welding advantageously lies in a ⁇ 100 ⁇ crystallographic plane of the material of the second component 20.
  • the [001] direction of FIG the main stress direction and the Stapelach- se of the second component 20 (also referred to as the Z axis) by a maximum of 15 degrees.
  • the main stress direction and the stack axis correspond to the radial direction in the case of a rotor disk.
  • the secondary orientation tilting of the crystal lattice about the Z axis
  • FIG. 2 shows a rotor disk 40 comprising a hub 10 and a multiplicity of blades 20, which are connected to the hub 10 as shown above with reference to FIG.
  • FIG. 3 shows a schematic flow diagram of a method for producing a joint connection by friction welding. Although this method can also be used for components which have other features than those described above with reference to FIG. 1, reference numerals from FIG. 1 are used by way of example for ease of understanding.
  • a first component 10 is provided in a first step 101.
  • a second component 20 is provided which comprises a monocrystalline or directionally solidified material.
  • a polycrystalline layer 24 is produced in the material at the joining surface 22 of the second component 20.
  • the polycrystalline layer 24 is produced in this example by first treating the joining surface 22 by shot peening or ultrasonic shot peening or deep rolling in the third step 103.
  • a fourth step 104 the joining surface 22 of the second component 20 and at least one partial region of the second component 20 adjoining the joining surface 22 are subjected to a (possibly local) heat treatment.
  • This heat treatment takes place in a separate process or in a process with the friction welding shown below.
  • the material recrystallizes in a polycrystalline manner due to the deformation or distortion energy introduced in the third step 103.
  • first component 10 has a monocrystalline or directionally solidified material
  • a polycrystalline layer is preferably also produced on the joining surface 12 of the first component 10, for example in method steps corresponding to the third step 103 and the fourth step 104.
  • first component 10 and the second component 20 are joined or joined to one another by friction welding, in particular by linear friction welding.
  • the polycrystallinity of the layer 24 reduces the surface normal force 31, 32 and the force required to produce the oscillatory motion 38 required to form the friction weld joint.
  • the fourth step 104 and the fifth step 105 may be partially or fully integrated.
  • the heat treatment can be carried out as part of the friction welding immediately before or during welding of the joining surfaces.
  • the rubbing operation can be controlled similarly to a conventional rubbing operation.
  • the rubbing process may be controlled so that only a near-surface layer is initially heated to the recrystallization temperature and held at this recrystallization temperature for a predetermined time interval. This predetermined duration is chosen so that the polycrystalline layer is formed. Thereafter, the actual friction welding takes place, for example, by increasing the surface normal force or the amplitude or frequency of the friction, the temperature at the joining surface is increased in the short term to the required value.
  • a sixth step 106 the above-described steps can be repeated for all blades of the rotor disk.
  • a compressor or a turbine or a gas turbine engine may be formed from one or more rotor disks formed in the sixth step 106.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Bei einem Verfahren zum Erzeugen einer Fügeverbindung zwischen einem ersten Bauteil (10) und einem zweiten Bauteil (20), wobei das zweite Bauteil (20) einen einkristallinen oder gerichtet erstarrten Werkstoff aufweist, werden das erste Bauteil (10) und das zweite Bauteil (20) bereitgestellt. An einer zum Fügen des zweiten Bauteils (20) mit dem ersten Bauteil (10) vorgesehenen Fügefläche (22) des zweiten Bauteils (20) wird eine polykristalline Schicht (24) erzeugt. Die Fügefläche (22) des zweiten Bauteils (20) wird mit dem ersten Bauteil (10) durch Reibschweißen gefügt.

Description

Beschreibung
Verfahren zum Erzeugen einer Fügeverbindung mit einkristallinem oder gerichtet erstarrtem Werkstoff
Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Erzeugen einer Fügeverbindung zwischen zwei Bauteilen, von denen mindestens eines einen einkristallinen oder gerichtet erstarrten Werkstoff umfasst. Ferner bezieht sich die vorliegende Erfindung auf eine integral beschaufelte Rotorscheibe eines Verdichters oder einer Turbine sowie auf einen Verdichter und eine Turbine.
Für eine Reihe von Anwendungen werden einkristalline oder gerichtet erstarrte Werkstoffe verwendet, insbesondere einkristalline oder gerichtet erstarrte metallische Werkstoffe. Beispiele sind Rotorschaufeln von Gasturbinen-Triebwerken für Flugzeuge oder andere Anwen- düngen. Diese Schaufeln sind gleichzeitig hohen Fliehkräften oder Ermüdungsbeanspruchungen in radialer Richtung, Vibrationen und hohen Temperaturen ausgesetzt. Einkristalline oder gerichtet erstarrte Werkstoffe sind für diese Anwendungen aufgrund ihrer Eigenschaften besonders geeignet.
Hochfeste Fügeverbindungen können durch Reibschweißen erzeugt werden. Beispielsweise werden Turbinen-Schaufeln mit Naben durch Reibschweißen verbunden. Zum Reibschweißen von einkristallinen oder gerichtet erstarrten Werkstoffen sind jedoch besonders hohe mechanische Schweißspannungen erforderlich. Diese besonders hohen mechanischen Schweißspannungen bedingen eine extrem steife Auslegung der Maschinen und Werkzeuge, die zum Reib- schweißen verwendet werden. Dadurch werden hohe Kosten verursacht.
Die WO 2007/144557 Al beschreibt eine Reibschweiß-Fügeverbindung mit einer einkristallinen Komponente und die dabei zu verwendenden Orientierungen der primären Gleitebene eines flächenzentrierten Kristallgitters parallel zur Oszillationsrichtung und zur Schweißkraft.
Eine Aufgabe der vorliegenden Erfindung besteht darin, ein verbessertes Verfahren zum Erzeugen einer Fügeverbindung zwischen Bauteilen, von denen mindestens eines einen einkri- stallinen oder gerichtet erstarrten Werkstoff aufweist, eine verbesserte integral beschaufelte Rotorscheibe eines Verdichters oder einer Turbine sowie einen verbesserten Verdichter und eine verbesserte Turbine zu schaffen.
Diese Aufgabe wird durch die Gegenstände der unabhängigen Ansprüche gelöst.
Weiterbildungen sind in den abhängigen Ansprüchen angegeben.
Verschiedene Ausführungsformen der vorliegenden Erfindung beruhen auf der Idee, an der Fügefläche eines Bauteils, das einen einkristallinen oder gerichtet erstarrten Werkstoff um- fasst, eine polykristalline Schicht zu erzeugen, bevor die Fügefläche mit einem weiteren Bauteil durch Reibschweißen verbunden wird.
Die polykristalline Schicht wird beispielsweise durch Einbringen von Verformungs- oder Verzerrungsenergie in eine dünne oberflächennahe Schicht und eine anschließende Wärmebehandlung erzeugt. Verformungsenergie wird beispielsweise durch Kugelstrahlen (engl.: shot peening), Ultraschall-Kugelstrahlen (engl.: ultrasonic peening), Einwirkung von Neutronen, hochenergetischen Elektronen oder anderer ionisierender Strahlung oder Festwalzen (engl.: compact rolling) eingebracht.
Die Wärmebehandlung kann vor dem Reibschweißen in einem separaten Verfahrensschritt erfolgen. Dabei kann durch Verwendung einer hohen Heizleistung innerhalb einer kurzen Zeitdauer lediglich eine oberflächennahe Schicht erwärmt werden. Vorteilhaft wird dabei nur der Bereich auf die Rekristallisationstemperatur erwärmt, in den zuvor durch eine der genann- ten Maßnahmen Verformungs- oder Verzerrungsenergie eingebracht wurde.
Alternativ kann die Wärmebehandlung bei dem Reibschweißvorgang selbst unmittelbar vor dem Verschweißen der Fügeflächen erfolgen. Im einfachsten Fall wird nach dem Einbringen von Verformungs- oder Verzerrungsenergie der eigentliche Reibschweißvorgang ähnlich den bekannten Reibschweißvorgängen durchgeführt. Alternativ werden die Parameter des Reibschweißvorgangs beispielsweise so gewählt, dass zunächst nur eine oberflächennahe Schicht auf die Rekristallisationstemperatur erwärmt und während eines Zeitintervalls vorbestimmter Dauer bei dieser Rekristallisationstemperatur gehalten wird. Diese vorbestimmte Dauer wird so gewählt, dass die polykristalline Schicht entsteht. Danach findet der eigentliche Reib- schweißvόrgang statt, indem beispielsweise durch Erhöhen der Flächennormalkrafϊt oder der Amplitude oder Frequenz des Reibens die Temperatur an der Fügefläche kurzfristig auf den erforderlichen Wert erhöht wird.
Das so vorbehandelte Bauteil kann mit einem optional auf ähnliche Weise vorbehandelten Bauteil mit einem einkristallinen oder gerichtet erstarrten Werkstoff oder mit einem Bauteil mit einem polykristallinen Werkstoff durch Reibschweißen verbunden werden.
Beispiele für nach dem beschriebenen Verfahren zu verbindende Bauteile sind Schaufeln eines Verdichters oder einer Turbine. Jede Schaufel wird auf eine der oben beschriebenen Weisen mit einem Adapter verbunden, der wiederum mit einer Nabe oder Rotorscheibe verbunden wird. Alternativ werden die Schaufeln direkt mit der Nabe der Rotorscheibe auf eine der oben beschriebenen Weisen verbunden.
Mit dem beschriebenen Verfahren können integral beschaufelte Rotorscheiben für Verdichter oder Turbinen geschaffen werden, deren Schaufeln einen einkristallinen oder gerichtet erstarrten Werkstoff aufweisen. Die Schaufeln weisen an ihren Fügeflächen jeweils eine polykristal- line Schicht auf. Die polykristalline Schicht kann eine Dicke von mehreren Mikrometern bis mehren Millimetern aufweisen. Für einige Materialien ist eine Dicke von wenigstens 0,3 mm vorteilhaft. Ein Verdichter oder eine Turbine oder ein Gasturbinen-Triebwerk für ein Flugzeug oder eine andere Anwendung kann mehrere derartige integral beschaufelte Rotorscheiben aufweisen.
Verschiedene Ausführungsformen der vorliegenden Erfindung haben den Vorteil, dass die zum Ausbilden der Reibschweiß-Fügeverbindung erforderliche mechanische Schweißspannung niedriger ist, als sie ohne eine vorherige Ausbildung einer polykristallinen Schicht wäre.
Weitere Ausführungsformen der vorliegenden Erfindung beruhen auf der Idee, beim Reibschweißen eines ersten Bauteils mit einem zweiten Bauteil, das einen einkristallinen oder gerichtet erstarrten Werkstoff aufweist, die Fügefläche an dem zweiten Bauteil parallel zu einer kristallographischen Ebene des Typs {001 } anzuordnen. Dies hat sich, beispielsweise im Vergleich zum herkömmlichen Reibschweißen an einer Ebene des Typs { 111 }, als vorteilhaft erwiesen, vor Allem in Bezug auf die erforderliche Flächennormalkraft,
Kurzbeschreibung der Figuren
Nachfolgend werden Ausfuhrungsformen anhand der beigefügten Figuren näher erläutert. Es zeigen:
Figur 1 eine schematische Darstellung zweier durch Reibschweißen zu verbindenden
Bauteile;
Figur 2eine schematische Darstellung einer Rotorscheibe; und
Figur 3 ein schematisches Flussdiagramm eines Verfahrens zum Erzeugen einer Fügeverbindung, einer Rotorscheibe, eines Verdichters oder einer Turbine.
Beschreibung der Ausführungsformen
Figur 1 zeigt eine schematische Darstellung eines ersten Bauteils 10 mit einer Fügefläche 12 und eines zweiten Bauteils 20 mit einer Fügefläche 22. Das erste Bauteil 10 ist beispielsweise eine Nabe für eine Rotorscheibe. Das zweite Bauteil 20 ist in diesem Fall beispielsweise eine Schaufel für die Rotorscheibe. Das erste Bauteil 10 weist einen polykristallinen Werkstoff auf. Das zweite Bauteil 20 weist einen einkristallinen oder gerichtet erstarrten Werkstoff auf. Die Werkstoffe des ersten Bauteils 10 und des zweiten Bauteils 20 können von ihrer kristallinen bzw. mikroskopischen Strukturen abgesehen ähnlich oder verschieden sein. Beispielsweise sind beide Werkstoffe des ersten Bauteils 10 und des zweiten Bauteils 20 metallische Werkstoffe.
Zum Erzeugen einer Fügeverbindung zwischen dem ersten Bauteil 10 und dem zweiten Bauteil 20 wird zunächst eine in Figur 1 schraffiert dargestellte polykristalline Schicht 24 an der Fügefläche 22 des zweiten Bauteils 20 erzeugt. Dazu wird die Fügefläche 22 des zweiten Bauteils 20 beispielsweise zunächst durch Kugelstrahlen (Engl.: Shot Peening), Ultraschall- Kugelstrahlen (Engl.: Ultrasonic Peening) oder Festwalzen (Engl.: Compact Rolling) vorbehandelt. Gute Ergebnisse wurden mit Druckspannungen von 500 MPa oder mehr und einer Wirktiefe der Behandlung von 0,3 mm oder mehr erzielt. Durch diese Behandlung wird Ver- formung- oder Verzerrungsenergie in den ursprünglich einkristallinen oder gerichtet erstarrten Werkstoff des zweiten Bauteils 20 nahe dessen Fügefiäche 22 eingebracht. Anschließend wird das zweite Bauteil 20 oder zumindest ein an die Fügefläche 22 angrenzender Bereich einer kurzen Wärmebehandlung unterzogen. Diese Wärmebehandlung erfolgt beispielsweise durch induktives Heizen. Dabei wird eine Temperatur nahe oder über der Rekristallisationstempera- tur erzeugt. Aufgrund der eingebrachten Verformungs- oder Verzerrungsenergie rekristallisiert der Werkstoff polykristallin.
Anstelle einer Wärmebehandlung in einem separaten Schritt vor dem Reibschweißvorgang ist auch eine in den Reibschweißvorgang integrierte Wärmebehandlung möglich, wie sie unten anhand der Figur 3 als Alternative beschrieben wird.
Nach dem Erzeugen der polykristallinen Schicht 24 an der Fügefläche 22 im zweiten Bauteil 20 werden das erste Bauteil 10 und das zweite Bauteil 20 durch Reibschweißen verbunden bzw. gefügt. Dazu werden die Fügefläche 12 des ersten Bauteils 10 und die Fügefläche 22 des zweiten Bauteils 20 mit einer hohen Flächennormalkraft aneinander gepresst. Diese Flächen- normalkraft wird durch die Pfeile 31, 32 repräsentiert. Gleichzeitig werden das erste Bauteil 10 und das zweite Bauteil 20 und damit insbesondere die Fügefläche 12 des ersten Bauteils 10 und die Fügefläche 22 des zweiten Bauteils 20 relativ zueinander bewegt. Diese Relativbewegung ist beispielsweise eine Oszillationsbewegung in einer Richtung oder (mit zwei verschie- denen Frequenzen) in zwei verschiedenen Richtungen. Die Oszillationsbewegung wird durch den Pfeil 38 angedeutet. Die entstehende Reibungswärme hat ein Verschweißen der Fügeflächen 12, 22 der Bauteile 10, 20 zur Folge.
Aufgrund der Polykristallinität der Schicht 24 an der Fügefiäche 22 des zweiten Bauteils 20 ist ein Fügen durch Reibschweißen bei einer Flächennormalkraft möglich, die deutlich niedriger liegt, als sie sein müsste, wenn der Werkstoff des zweiten Bauteils 20 auch an dessen Fügefläche 22 einkristallin oder gerichtet erstarrt wäre. Der apparative Aufwand, insbesondere die erforderliche Steifigkeit der verwendeten Werkzeuge und die Belastung für die Bauteile 10, 20 sind dadurch deutlich geringer.
Die dargestellte Reibschweiß-Fügeverbindung ist besonders für die Verbindung von Bautei- len geeignet, die hohen mechanischen Belastungen, beispielsweise hohen Fliehkräften und/oder Ermüdungsbeanspruchungen ausgesetzt sind. Ein Beispiel ist die Verbindung zwischen einer Schaufel und einer Nabe oder zwischen einer Schaufel und einem später mit einer Nabe zu verbindenden Adapter zur Bildung einer Rotorscheibe eines Verdichters oder einer Turbine eines Gasturbinen-Triebwerks für ein Flugzeug oder für andere Anwendungen. In diesem Fall ist das zweite Bauteil 20 die Schaufel und das erste Bauteil 10 der Adapter oder die Nabe.
Um das volle Festigkeitspotenzial des einkristallinen oder gerichtet erstarrten Werkstoffs des zweiten Bauteils 20 nutzen zu können, wird die Richtung der Schweißkrafteinleitung vorteil- haft parallel zur primären Kristallorientierungsrichtung des Typs <100> gewählt. In diesem Fall liegt die Oszillationsbewegung 38 beim Reibschweißen vorteilhaft in einer kristal- lographischen Ebene des Typs {100} des Werkstoffs des zweiten Bauteils 20. Um eine hohe Beständigkeit gegen Kriechen und Thermoermüdung in der Hauptbeanspruchungsrichtung zu erzielen, weicht die [001] -Richtung von der Hauptbeanspruchungsrichtung und der Stapelach- se des zweiten Bauteiles 20 (auch als Z- Achse bezeichnet) um maximal 15 Grad ab. Die Hauptbeanspruchungsrichtung und die Stapelachse entsprechen im Fall einer Rotorscheibe der radialen Richtung. Die Sekundärorientierung (Verdrehung des Kristallgitters um die Z- Achse) ist für viele Anwendungen unerheblich.
Die beschriebene Orientierung der Fügefläche parallel zu einer kristallographischen Ebene des Typs {001 } ist aber auch vorteilhaft, wenn vor oder bei dem Reibschweißvorgang nicht polykristallin rekristallisiert wird. Auch beim Verbinden einer Fügefläche, an der der Werkstoff einkristallin oder gerichtet erstarrt ist, mit einem anderen Bauteil, ist eine Orientierung der Fügefläche parallel zu einer kristallographischen Ebene des Typs {001 } vorteilhaft. Ne- ben den oben genannten Vorteilen erlaubt diese Orientierung bei bestimmten Materialien beispielsweise die Verwendung einer vergleichsweise niedrigeren Flächennormalkraft oder einer reduzierten Frequenz oder Amplitude des Reibens. Figur 2 zeigt als Beispiel der Anwendung des beschriebenen Fügeverfahrens eine Rotorscheibe 40 aus einer Nabe 10 und einer Vielzahl von Schaufeln 20, die wie oben anhand der Figur 1 dargestellt, mit der Nabe 10 verbunden sind.
Figur 3 zeigt ein schematisches Flussdiagramm eines Verfahrens zum Erzeugen einer Fügeverbindung durch Reibschweißen. Obwohl dieses Verfahren auch für Bauteile verwendbar ist, die andere als die oben anhand der Figur 1 dargestellten Merkmale aufweisen, werden nachfolgend zur Vereinfachung des Verständnisses Bezugszeichen aus Figur 1 beispielhaft ver- wendet.
In einem ersten Schritt 101 wird ein erstes Bauteil 10 bereitgestellt. In einem zweiten Schritt 102 wird ein zweites Bauteil 20 bereitgestellt, das einen einkristallinen oder gerichtet erstarrten Werkstoff umfasst.
In einem dritten Schritt 103 und einem vierten Schritt 104 wird eine polykristalline Schicht 24 in dem Werkstoff an der Fügefläche 22 des zweiten Bauteils 20 erzeugt. Die polykristalline Schicht 24 wird in diesem Beispiel erzeugt, indem zunächst im dritten Schritt 103 die Fügefläche 22 durch Kugelstrahlen oder Ultraschall-Kugelstrahlen oder Festwalzen behandelt wird.
Anschließend werden in einem vierten Schritt 104 die Fügefläche 22 des zweiten Bauteils 20 und zumindest ein an die Fügefläche 22 angrenzender Teilbereich des zweiten Bauteils 20 einer (ggf. lokalen) Wärmebehandlung unterzogen. Diese Wärmebehandlung erfolgt in einem separaten Prozess oder in einem Prozess mit dem nachfolgend dargestellten Reibschweißen. Dabei rekristallisiert der Werkstoff aufgrund der im dritten Schritt 103 eingebrachten Ver- formungs- oder Verzerrungsenergie polykristallin.
Wenn auch das erste Bauteil 10 einen einkristallinen oder gerichtet erstarrten Werkstoff auf- weist, wird vorzugsweise auch an der Fügefläche 12 des ersten Bauteils 10 eine polykristalline Schicht erzeugt, beispielsweise in Verfahrensschritten, die dem dritten Schritt 103 und dem vierten Schritt 104 entsprechen. In einem fünften Schritt 105 werden das erste Bauteil 10 und das zweite Bauteil 20 durch Reibschweißen, insbesondere durch lineares Reibschweißen miteinander verbunden bzw. gefügt. Die Polykristallinität der Schicht 24 reduziert die Flächennormalkraft 31, 32 und die zur Erzeugung der Oszillationsbewegung 38 erforderliche Kraft, die zum Ausbilden der Reibschweiß-Fügeverbindung erforderlich sind.
Der vierte Schritt 104 und der fünfte Schritt 105 können teilweise oder vollständig integriert werden. Die Wärmebehandlung kann im Rahmen des Reibschweißens unmittelbar vor oder beim Verschweißen der Fügeflächen erfolgen. Der Reibevorgang kann ähnlich einem herkömmlichen Reibevorgang gesteuert werden. Alternativ kann der Reibevorgang so gesteuert werden, dass zunächst nur eine oberflächennahe Schicht auf die Rekristallisationstemperatur erwärmt und während eines Zeitintervalls vorbestimmter Dauer bei dieser Rekristallisationstemperatur gehalten wird. Diese vorbestimmte Dauer wird so gewählt, dass die polykristalline Schicht entsteht. Danach findet der eigentliche Reibschweißvorgang statt, indem beispielsweise durch Erhöhen der Flächennormalkraft oder der Amplitude oder Frequenz des Reibens die Temperatur an der Fügefläche kurzfristig auf den erforderlichen Wert erhöht wird.
Um eine Rotorscheibe zu bilden, können in einem sechsten Schritt 106 die oben beschriebe- nen Schritte für alle Schaufeln der Rotorscheibe wiederholt werden.
In einem optionalen siebten Schritt 107 können aus einer oder mehreren Rotorscheiben, die im sechsten Schritt 106 gebildet wurden, ein Verdichter oder eine Turbine oder ein Gasturbinen-Triebwerk gebildet werden.

Claims

Ansprüche:
1. Verfahren zum Erzeugen einer Fügeverbindung zwischen einem ersten Bauteil (10) und einem zweiten Bauteil (20), wobei das zweite Bauteil (20) einen einkristallinen oder gerichtet erstarrten Werkstoff aufweist, mit folgenden Schritten:
Bereitstellen (101) des ersten Bauteils (10);
Bereitstellen (102) des zweiten Bauteils (20) mit einer zum Fügen des zweiten Bauteils (20) mit dem ersten Bauteil (10) vorgesehenen Fügefläche (22);
Erzeugen (103, 104) einer poly kristallinen Schicht (24) an der Fügefläche (22) des zweiten Bauteils (20);
Fügen ( 105) der Fügefläche (22) des zweiten Bauteils (20) mit dem ersten Bauteil ( 10) durch Reibschweißen.
2. Verfahren nach einem der vorangehenden Ansprüche, bei dem das Erzeugen (103, 104) der polykristallinen Schicht (24) zumindest entweder ein Kugelstrahlen oder ein Ultra- schall-Kugelstrahlen oder ein Bestrahlen mit Neutronen, Elektronen oder anderer ionisierender Strahlung oder ein Festwalzen umfasst.
3. Verfahren nach einem der vorangehenden Ansprüche, bei dem das Erzeugen (103, 104) der polykristallinen Schicht zumindest entweder ein induktives Heizen oder eine andere lokale Wärmebehandlung oder eine andere Erwärmung mindestens auf die Rekristallisationstemperatur des Werkstoffs des zweiten Bauteils (20) umfasst.
4. Verfahren nach einem der vorangehenden Ansprüche, bei dem das erste Bauteil (10) einen einkristallinen oder gerichtet erstarrten weiteren Werkstoff umfasst, ferner mit folgen- dem Schritt: Erzeugen (103, 104) einer poly kristallinen Schicht in dem weiteren Werkstoff des ersten Bauteils (10) an einer Fügefläche (12) des ersten Bauteils (10).
5. Verfahren nach einem der Ansprüche 1 bis 3, bei dem das erste Bauteil (10) einen po- lykristallinen Werkstoff umfasst.
6. Verfahren nach einem der vorangehenden Ansprüche, bei dem das zweite Bauteil (20) eine Schaufel eines Verdichters oder einer Turbine ist, und bei dem das erste Bauteil (10) ein Adapter zum Verbinden der Schaufel (20) mit einer Nabe einer Rotorscheibe (40) ist.
7. Verfahren nach einem der vorangehenden Ansprüche, bei dem die Fügefläche (22) parallel zu einer kristallographischen Ebene des Typs {001} ist.
8. Verfahren zum Erzeugen einer Fügeverbindung zwischen einem ersten Bauteil (10) und einem zweiten Bauteil (20), wobei das zweite Bauteil (20) einen einkristallinen oder gerichtet erstarrten Werkstoff aufweist, mit folgenden Schritten:
Bereitstellen (101) des ersten Bauteils (10);
Bereitstellen (102) des zweiten Bauteils (20) mit einer zum Fügen des zweiten Bauteils (20) mit dem ersten Bauteil (10) vorgesehenen Fügefläche (22), die parallel zu einer kristallographischen Ebene des Typs {001} ist;
Fügen (105) der Fügefläche (22) des zweiten Bauteils (20) mit dem ersten Bauteil (10) durch Reibschweißen.
9. Verfahren zum Herstellen einer integral beschaufelten Rotorscheibe (40) eines Verdichters oder einer Turbine, wobei eine Nabe der Rotorscheibe als erstes Bauteil (10) und eine Schaufel als zweites Bauteil (20) nach einem der vorangehenden Ansprüche gefügt wer- den.
10. Integral beschaufelte Rotorscheibe (40) eines Verdichters oder einer Turbine, mit folgenden Merkmalen:
einer Nabe (10);
einer Schaufel (20), die ein einkristallines Material oder ein gerichtet erstarrtes Material aufweist,
wobei eine Fügefläche (22) der Schaufel (20) durch Reibschweißen mit der Nabe (10) oder mit einem Adapter, der mit der Nabe (10) verbunden ist, gefügt ist, und
wobei die Schaufel (20) an der Fügefläche (22) eine polykristalline Schicht (24) aufweist.
11. Integral beschaufelte Rotorscheibe (40) nach dem vorangehenden Anspruch, wobei die Schaufel (20) und die Nabe (10) nach einem der vorangehenden Verfahrensansprüche gefügt sind.
12. Integral beschaufelte Rotorscheibe (40) nach dem vorangehenden Anspruch, bei der die Nabe (10) ein polykristallines Material aufweist.
13. Integral beschaufelte Rotorscheibe (40) eines Verdichters oder einer Turbine, mit folgenden Merkmalen:
einer Nabe (10);
einer Schaufel (20), die ein einkristallines Material oder ein gerichtet erstarrtes Material aufweist,
wobei eine Fügefläche (22) der Schaufel (20) durch Reibschweißen mit der Nabe (10) oder mit einem Adapter, der mit der Nabe (10) verbunden ist, gefügt ist, und
wobei die Fügefläche (22) parallel zu einer kristallographischen Ebene des Typs {001} ist.
14. Verdichter oder Turbine mit einer integral beschaufelten Rotorscheibe (40) nach einem der vorangehenden Vorrichtungsansprüche.
PCT/DE2009/000890 2008-07-26 2009-06-26 Verfahren zum erzeugen einer fügeverbindung mit einkristallinem oder gerichtet erstarrtem werkstoff WO2010012255A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2732031A CA2732031A1 (en) 2008-07-26 2009-06-26 Process for producing a join to single-crystal or directionally solidified material
US13/055,925 US20110129347A1 (en) 2008-07-26 2009-06-26 Process for producing a join to single-crystal or directionally solidified material
EP09775912A EP2315641A2 (de) 2008-07-26 2009-06-26 Verfahren zum erzeugen einer fügeverbindung mit einkristallinem oder gerichtet erstarrtem werkstoff

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008034930.5 2008-07-26
DE102008034930A DE102008034930A1 (de) 2008-07-26 2008-07-26 Verfahren zum Erzeugen einer Fügeverbindung mit einkristallinem oder gerichtet erstarrtem Werkstoff

Publications (2)

Publication Number Publication Date
WO2010012255A2 true WO2010012255A2 (de) 2010-02-04
WO2010012255A3 WO2010012255A3 (de) 2010-04-08

Family

ID=41210458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2009/000890 WO2010012255A2 (de) 2008-07-26 2009-06-26 Verfahren zum erzeugen einer fügeverbindung mit einkristallinem oder gerichtet erstarrtem werkstoff

Country Status (5)

Country Link
US (1) US20110129347A1 (de)
EP (1) EP2315641A2 (de)
CA (1) CA2732031A1 (de)
DE (1) DE102008034930A1 (de)
WO (1) WO2010012255A2 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5853405B2 (ja) * 2011-04-25 2016-02-09 株式会社Ihi 摩擦接合方法及び接合構造体
EP2583784A1 (de) * 2011-10-21 2013-04-24 Siemens Aktiengesellschaft Vorbereitung einer Schweißstelle vor dem Schweißen und Bauteil
DE102011086770A1 (de) * 2011-11-22 2013-05-23 Mtu Aero Engines Gmbh Reibschweißverfahren, insbesondere zum stoffschlüssigen Verbinden von Schaufeln und Scheiben zu einer Schaufel-Scheiben-Einheit sowie entsprechend hergestellte Schaufel-Scheiben-Einheit
US9745855B2 (en) 2011-12-05 2017-08-29 Apci, Llc Linear friction welding apparatus and method
AT13403U1 (de) * 2012-07-25 2013-12-15 Mtu Aero Engines Gmbh Verfahren zum Verbinden zweier metallischer Gegenstände
US10584608B2 (en) * 2014-08-07 2020-03-10 United Technologies Corporation Tuned rotor disk
GB2559325A (en) * 2017-01-25 2018-08-08 Rolls Royce Plc Bladed disc and method of manufacturing the same
GB201809530D0 (en) 2018-06-11 2018-07-25 Rolls Royce Plc A method
DE102018122441A1 (de) 2018-09-13 2020-03-19 Federal-Mogul Valvetrain Gmbh Geschweisstes hohlraumventil mit kleiner wärmeeinflusszone und verfahren zur herstellung
DE102018219591A1 (de) * 2018-11-15 2020-05-20 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Herstellung eines Bauteils für eine Turbomaschine
DE102018219590A1 (de) * 2018-11-15 2020-05-20 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Herstellung eines Bauteils für eine Turbomaschine
GB201908479D0 (en) * 2019-06-13 2019-07-31 Rolls Royce Plc Joining method
US11897065B2 (en) 2019-11-12 2024-02-13 Honeywell International Inc. Composite turbine disc rotor for turbomachine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007144557A1 (en) 2006-06-16 2007-12-21 Rolls-Royce Plc Friction welding of a single crystal component to a second component with minimisation of in plane friction and forge forces

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1315199A1 (ru) * 1985-08-16 1987-06-07 Предприятие П/Я Р-6496 Способ диффузионной сварки монокристаллов корунда
GB2367028B (en) * 2000-09-22 2004-06-09 Rolls Royce Plc Gas turbine engine rotor blades
US6596411B2 (en) * 2001-12-06 2003-07-22 General Electric Company High energy beam welding of single-crystal superalloys and assemblies formed thereby
US6969238B2 (en) * 2003-10-21 2005-11-29 General Electric Company Tri-property rotor assembly of a turbine engine, and method for its preparation
US20050091848A1 (en) * 2003-11-03 2005-05-05 Nenov Krassimir P. Turbine blade and a method of manufacturing and repairing a turbine blade
US8220697B2 (en) * 2005-01-18 2012-07-17 Siemens Energy, Inc. Weldability of alloys with directionally-solidified grain structure
DE502006000502D1 (de) * 2005-03-03 2008-05-08 Mtu Aero Engines Gmbh Verfahren zum Reibschweissfügen von einer Laufschaufel an einen Rotorgrundkörper mit Bewegung eines zwischen der Laufschaufel und dem Rotorgrundkörper angeordneten Fügeteils
DE102006012662A1 (de) * 2006-03-20 2007-09-27 Mtu Aero Engines Gmbh Verfahren zum Verbinden von metallischen Bauelementen und damit hergestelltes Bauteil
US7832986B2 (en) * 2007-03-07 2010-11-16 Honeywell International Inc. Multi-alloy turbine rotors and methods of manufacturing the rotors
US20090304514A1 (en) * 2007-10-09 2009-12-10 Hamilton Sundstrand Corporation Method of manufacturing a turbine rotor
DE102007051577A1 (de) * 2007-10-29 2009-04-30 Mtu Aero Engines Gmbh Verfahren zum Fügen von Bauteilen
US8267663B2 (en) * 2008-04-28 2012-09-18 Pratt & Whitney Canada Corp. Multi-cast turbine airfoils and method for making same
DE102008039113B3 (de) * 2008-08-21 2010-01-21 Mtu Aero Engines Gmbh Verfahren zum Verbinden eines einkristallinen Bauteils mit einem polykristallinen Bauteil und Turbinenblisk

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007144557A1 (en) 2006-06-16 2007-12-21 Rolls-Royce Plc Friction welding of a single crystal component to a second component with minimisation of in plane friction and forge forces

Also Published As

Publication number Publication date
US20110129347A1 (en) 2011-06-02
DE102008034930A1 (de) 2010-01-28
CA2732031A1 (en) 2010-02-04
WO2010012255A3 (de) 2010-04-08
EP2315641A2 (de) 2011-05-04

Similar Documents

Publication Publication Date Title
WO2010012255A2 (de) Verfahren zum erzeugen einer fügeverbindung mit einkristallinem oder gerichtet erstarrtem werkstoff
DE68907881T2 (de) Herstellungs- oder Reparaturverfahren für einen integrierten Schaufelrotoraufbau.
EP2198128A1 (de) Verfahren zur herstellung einer blisk oder eines blings, mittels eines angeschweissten schaufelfusses
EP0145897A1 (de) Fügeverfahren
EP3238868A1 (de) Verfahren zum herstellen einer schaufel für eine strömungsmaschine
DE102016203785A1 (de) Verfahren zum Herstellen einer Schaufel für eine Strömungsmaschine
EP3170609A1 (de) Verfahren zum herstellen eines beschaufelten rotors für eine strömungsmaschine ; entsprechender beschaufelter rotor
DE3318766A1 (de) Verfahren zur herstellung von einkristallgegenstaenden
EP2193872A1 (de) Verfahren zur Herstellung eines geschweißten Rotors für ein Gasturbinentriebwerk mit Wärmbehandlung der Schweissnaht und ihrer angrenzenden Wärmeeinflusszone mit unterschiedlichen Temperaturen
EP2331287A1 (de) Verfahren zur reparatur eines gehäuses eines flugzeugtriebwerks
EP3581668A1 (de) Verfahren zur herstellung eines bauteils aus gamma - tial und entsprechend hergestelltes bauteil
EP3501721A1 (de) Verfahren zum fügen von bauteilen sowie vorrichtung
DE102010034337A1 (de) Verfahren zum Verbinden einer Turbinenschaufel mit einer Turbinenscheibe oder einem Turbinenring
DE102021003914A1 (de) Bauteilanordnung und Verfahren zur Herstellung einer Bauteilanordnung
EP2412469A1 (de) Hochdruckverdichter mit geschweissten dualen Blisken aus TI6242 and Ti6246 ; Verfahren zur Herstellung eines solchen Hochdruckverdichter
DE102013205956A1 (de) Blisk mit Titanaluminid-Schaufeln und Verfahren zur Herstellung
DE112014001895T5 (de) Verfahren zum Verbinden von Edelstahlelementen und Edelstähle
EP2346639A1 (de) Fügeverfahren
DE102014222526A1 (de) Verfahren und Vorrichtung zum generativen Herstellen zumindest eines Bauteilbereichs eines Bauteils
DE102006010880A1 (de) Sonotrode insbesondere zum Beschleunigen von Kugeln zum Ultraschall-Kugelstrahlen
EP2601010A1 (de) Herstellung von schaufeln einer strömungsmaschine aus kaltumformten grundmaterial
DE102008046742A1 (de) Verfahren zum Verbinden von Bauteilen
DE102021132256A1 (de) Verfahren zum beschichten eines bauteils
DE102006061448B4 (de) Verfahren zur Herstellung einer Blisk oder eines Blings einer Gasturbine und danach hergestelltes Bauteil
DE102005032739B3 (de) Fügeverfahren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09775912

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009775912

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2732031

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13055925

Country of ref document: US