WO2010010716A1 - Agent and method for treating copper surface - Google Patents

Agent and method for treating copper surface Download PDF

Info

Publication number
WO2010010716A1
WO2010010716A1 PCT/JP2009/003492 JP2009003492W WO2010010716A1 WO 2010010716 A1 WO2010010716 A1 WO 2010010716A1 JP 2009003492 W JP2009003492 W JP 2009003492W WO 2010010716 A1 WO2010010716 A1 WO 2010010716A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
surface treatment
treatment agent
concentration
ppm
Prior art date
Application number
PCT/JP2009/003492
Other languages
French (fr)
Japanese (ja)
Inventor
印部俊雄
宇都宮朗
西田真也
Original Assignee
日本ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント株式会社 filed Critical 日本ペイント株式会社
Priority to JP2009532477A priority Critical patent/JP4621293B2/en
Publication of WO2010010716A1 publication Critical patent/WO2010010716A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/073Displacement plating, substitution plating or immersion plating, e.g. for finish plating

Definitions

  • the present invention relates to a copper surface treatment agent and a surface treatment method. More specifically, the present invention relates to a copper surface treatment agent and a surface treatment method capable of treating a copper surface in a smooth (flat) state without roughening such as etching.
  • a general multilayer wiring board (build-up wiring board) is manufactured by laminating and pressing an inner layer substrate having a conductive layer made of copper on the surface portion with another inner layer substrate with an insulating material such as resin interposed therebetween. ing.
  • the conductive layers are electrically connected by a through hole called a through hole whose hole wall is plated with copper.
  • the copper used for the surface portion of the inner layer substrate as the wiring of the multilayer wiring substrate is required to have adhesiveness with an insulating material such as a resin. Therefore, in order to improve the adhesion between the copper surface used for the surface portion of the inner layer substrate and an insulating material such as a resin, a copper surface treatment is generally performed.
  • Examples of the copper surface treatment method include a method of roughening the copper surface by etching the copper surface with copper chloride, sulfuric acid / hydrogen peroxide, etc., and attaching an uneven oxide film to the copper surface. It is done. According to this method, the concavo-convex-shaped oxide film is difficult to insulate with an insulating material such as a resin, and an anchor effect is produced, thereby improving the adhesion between copper and an insulating material such as a resin.
  • a method of treating the roughened copper surface with tin, a silane coupling agent or the like has been developed (for example, a patent). Reference 1 to 3).
  • a method of replacing the method using the roughening treatment such as etching a method of forming a tin film by tin plating or the like on the surface of copper used for the surface portion of the inner layer substrate is shown (for example, (See Patent Document 4). Furthermore, in order to improve the adhesion between copper and an insulating material such as resin, a method of treating with nitric acid, silane coupling agent, etc. after tin plating on the copper surface used for the surface part of the inner layer substrate is shown. (For example, see Patent Documents 5 to 9).
  • Patent Documents 5 and 10 a method of adding an acid and a reaction accelerator simultaneously with a tin compound is disclosed (for example, Patent Documents 5 and 10). reference). Furthermore, in order to improve the adhesion between copper and an insulating material such as resin, a method of forming a metal layer having high adhesion with an insulating material such as resin by adding a copper salt to the surface of copper is shown. (For example, see Patent Document 10).
  • Japanese Patent Publication “Patent No. 3135516 Japanese Patent Laid-Open No. 10-46359, published on Feb. 17, 1998)
  • Japanese Patent Publication “Japanese Patent Laid-Open No. 2003-201585” Japanese Patent Publication “Japanese Patent Laid-Open No. 2008-109111 (published May 8, 2008)”
  • Patent Documents 1 to 3 have been put to practical use because performance, particularly adhesion between copper and an insulating material such as resin, is insufficient. Furthermore, in these methods, since the roughening treatment dissolves copper, the copper width is reduced, and it becomes difficult to refine the copper-clad material surface-treated by these methods, and the electrical loss increases. Furthermore, in these methods, since an oxide film grows with a change with time after the roughening treatment, passivation becomes insufficient, and the performance deteriorates in all cases. Therefore, a rust prevention treatment as a post treatment is generally performed.
  • the copper surface treatment method disclosed in Patent Document 4 has a problem that the adhesion between copper and an insulating material such as a resin is not sufficient as compared with a method of roughening the surface of copper such as etching. Has a point.
  • the copper surface treatment method disclosed in Patent Document 10 has a problem in that sufficient adhesion cannot be maintained, and it is difficult to uniformly adhere a metal layer to the copper surface. Since the coating is also coated, there is a problem that there is a concern about inhibition of plating property, electric conductivity, etc. during mounting.
  • the present invention has been made in view of the above-described conventional problems, and its purpose is to process the surface of copper in a smooth state without increasing the number of processing steps and without performing roughening treatment such as etching.
  • An object of the present invention is to provide a copper surface treatment agent and a surface treatment method capable of maintaining adhesion between copper and an insulating material such as a resin.
  • the present inventors as a surface treatment agent used for copper surface treatment, contain a tin compound, a complexing agent, a water-soluble polymer or a water-dispersible polymer,
  • the water-soluble polymer or water-dispersible polymer is at least one function selected from the group consisting of an amino group, an epoxy group, a thiol group, a carboxyl group, a sulfonic acid group, a hydroxyl group, a phosphoric acid group, an imino group, and a silanol group.
  • the water-soluble polymer or water-dispersible polymer forms a cross-linked structure with tin deposited on the copper surface and is embraced in the tin, and the functional group is insulated with a resin or the like.
  • the copper surface treatment agent of the present invention contains a tin compound, a complexing agent, and a water-soluble polymer or a water-dispersible polymer in order to solve the above-mentioned problems.
  • the water-dispersible polymer has at least one functional group selected from the group consisting of an amino group, an epoxy group, a thiol group, a carboxyl group, a sulfonic acid group, a hydroxyl group, a phosphoric acid group, an imino group, and a silanol group. It is said.
  • the copper surface treatment agent of the present invention contains the tin compound and the water-soluble polymer or the water-dispersible polymer at the respective concentrations, and thus has the functional group.
  • a water-soluble polymer or a water-dispersible polymer forms a crosslinked structure with tin deposited on the copper surface and adheres to the tin.
  • the functional group is bonded to an insulating material such as a resin by hydrogen bonding or covalent bonding, and is in close contact with the insulating material.
  • the copper surface treatment agent of the present invention contains a complexing agent, when the surface treatment agent is used in a solution, the complexing agent forms a complex with copper to form a copper surface.
  • the solution of the surface treatment agent may improve the uniformity of the tin film by chelating copper in which the complexing agent is dissolved.
  • the copper surface treating agent of the present invention can provide sufficient adhesion between copper and an insulating material such as a resin.
  • the copper surface treating agent of the present invention preferably contains at least polyacrylic acid, polymaleic acid, polyitaconic acid or acrylic acid copolymer, or a derivative thereof as the water-soluble polymer.
  • the copper surface treating agent of the present invention can further improve the adhesion between copper and an insulating material such as a resin.
  • the water-soluble polymer or water-dispersible polymer preferably has a molecular weight in the range of 2,000 or more and 10,000,000 or less.
  • the water-soluble polymer or water-dispersible polymer contained in the copper surface treatment agent of the present invention is likely to precipitate, and the workability is improved without increasing the viscosity of the surface treatment agent. .
  • the copper surface treatment agent of the present invention preferably further contains a metal compound.
  • the copper surface treatment agent of the present invention can uniformly and stably form a film containing an alloy of copper and tin on the surface of copper by the buffering action of metal ions.
  • the metal compound is a copper compound, and the ratio of the concentration of the copper compound to the concentration of the tin compound is in the range of 0.2 to 2.0. Is preferred.
  • the copper surface treating agent of the present invention contains a copper compound, copper ions are generated. As a result, the reaction between the copper ion and the tin compound proceeds.
  • the copper surface treatment agent of the present invention can form a film (crystal) containing an alloy of copper and tin on the copper surface. Since the tin film in the said film is excellent in adhesiveness with insulating materials, such as resin, the copper surface treating agent of this invention can improve the adhesiveness between copper and insulating materials, such as resin.
  • the concentration of the tin compound relative to the entire surface treatment agent is preferably in the range of 50 ppm or more and 10,000 ppm or less.
  • the copper surface treatment agent of the present invention can easily form a film containing an alloy of copper and tin on the copper surface, and can further improve the adhesion between the copper and an insulating material such as a resin. it can.
  • the copper surface treatment agent of the present invention preferably further contains a pH adjuster.
  • the copper surface treatment agent of the present invention promotes the function of the complexing agent by adjusting the pH in the solution of the surface treatment agent, and tin is likely to precipitate.
  • the copper surface treatment agent of the present invention preferably contains at least sulfuric acid, nitric acid, hydrochloric acid, methanesulfonic acid or phosphoric acid as the pH adjuster.
  • the copper surface treatment agent of the present invention contains a strong acid, and facilitates the dissolution of copper.
  • the copper surface treatment agent of the present invention preferably has a pH of 5 or less.
  • the action of the complexing agent is activated by decreasing the pH value in the solution of the surface treatment agent, and the precipitation amount of tin increases.
  • the copper surface treatment agent is preferably brought into contact with the copper surface.
  • the copper surface treatment method of the present invention can reduce the number of treatment steps by one step compared to the surface treatment method of treating the surface of the copper with tin and then treating with nitric acid, a silane coupling agent, or the like.
  • the copper surface treatment method of the present invention can ensure sufficient adhesion without roughening the surface of the copper, such as etching, the surface of the copper can be treated in a smooth state.
  • the copper surface treatment method of the present invention is suitable for dealing with downsizing, thinning, high frequency, high density and the like of a multilayer wiring board.
  • the copper surface treatment method of the present invention is at least one pretreatment selected from the group consisting of pickling treatment, roughening treatment, chemical conversion treatment, rust prevention treatment, oxidation treatment, reduction treatment, and degreasing treatment on the copper surface. After the treatment, it is preferable to contact the surface treatment agent.
  • the copper surface treatment method of the present invention can remove dirt, oxides, etc. on the copper surface by pickling treatment and degreasing treatment, roughening treatment, chemical conversion treatment, rust prevention treatment, oxidation treatment, reduction.
  • the treatment can improve the chemical conversion on the copper surface, improve the copper performance, and the like.
  • the surface treatment agent or the post-treatment agent is brought into contact with the copper surface after the tin compound is brought into contact therewith.
  • the copper surface treatment method of the present invention can form a tin film on the copper surface with the tin compound, and the tin film can further improve the adhesion between copper and an insulating material such as a resin. it can.
  • the coating of the copper surface of the present invention is formed by the surface treatment method of the copper, by weight of tin in the coating of the copper surface is 1 mg / m 2 or more, in the range of 2,000 mg / m 2 or less, the Of the composition on the outermost surface of the film, the molar ratio of copper to tin is preferably in the range of 0.2 or more and 10 or less.
  • the film on the copper surface of the present invention contains an alloy of copper and tin or the like, the adhesion between the copper and an insulating material such as a resin can be maintained.
  • the copper-clad material of the present invention is preferably surface-treated by the above-described copper surface treatment method. Furthermore, the multilayer wiring board of the present invention preferably includes the copper-clad material. Furthermore, the wiring board of the present invention preferably includes the copper-clad material in the outermost layer.
  • the copper-clad material, multilayer wiring board, and wiring board of the present invention are made of copper and resin, etc., compared with the copper-clad material, multilayer wiring board, and wiring board surface-treated by the conventional copper surface treatment method. It becomes possible to maintain sufficient adhesion with the insulating material.
  • the copper surface treating agent of the present invention contains a tin compound, a complexing agent, and a water-soluble polymer or water-dispersible polymer, and the water-soluble polymer or water-dispersible polymer described above.
  • the coating on the copper surface of the present invention can process the copper surface in a smooth state without increasing the number of processing steps, without roughening such as etching, and insulating copper and resin. There exists an effect that the adhesiveness between materials can be maintained.
  • the substance surface-treated with the copper surface treatment agent in the present invention is not particularly limited as long as it contains 50% or more of copper. That is, as long as it contains 50% or more of copper, it is included in the present invention even if a substance other than copper is included. Examples thereof include copper alone, copper alloy material containing copper, surface-treated copper such as chromate, and plated copper.
  • foil electrolytic copper foil, rolled copper foil
  • plating film electroless copper plating film, electrolysis
  • wires, rods, tubes, plates, and the like can be used for various purposes.
  • the said copper may contain other elements according to the objective, such as brass, bronze, white copper, arsenic copper, silicon copper, titanium copper, chromium copper.
  • the copper surface is preferably a smooth surface having an average roughness of 0.1 ⁇ m or less.
  • examples of the insulating material such as a resin that adheres to copper include thermosetting resins such as epoxy resin, phenol resin, polyimide, polyurethane, bismaleimide / triazine resin, modified polyphenylene ether, and cyanate ester. These resins may be modified with functional groups, and may be reinforced with glass fibers, aramid fibers, other fibers, and the like.
  • the copper surface treatment agent of the present invention contains a tin compound, a complexing agent, and a water-soluble or water-dispersible polymer. It is. Furthermore, the copper surface treating agent of the present invention preferably contains a reducing agent. Furthermore, the copper surface treating agent of the present invention may contain a fluorine compound. Furthermore, the copper surface treatment agent of the present invention preferably contains a pH adjuster. Furthermore, the copper surface treating agent of the present invention preferably contains a metal compound. Furthermore, the copper surface treatment agent of the present invention preferably contains a rust inhibitor.
  • the copper surface treatment agent of the present invention may contain a substance other than the above substances (hereinafter referred to as “other substances”) as long as the properties of the surface treatment agent are not impaired. It does not specifically limit as a method of including another substance.
  • the copper surface treating agent of the present invention contains a tin compound.
  • a tin compound if it is soluble with respect to the solvent mentioned later, Salts with an acid are preferable from the solubility.
  • stannous sulfate, stannic sulfate, stannous borofluoride, stannous fluoride, stannic fluoride, stannous nitrate, stannic nitrate, stannous chloride, stannic chloride examples thereof include stannous salts such as stannous formate, stannic formate, stannous acetate, and stannic acetate, and stannic salts.
  • stannous salt is preferable because of the high formation rate of tin film, and it is highly stable in a solution with a solvent to be described later, so that a uniform tin film can be formed. Tin salts are preferred. Furthermore, stannous sulfate is particularly preferred because it does not adversely affect copper etching.
  • the concentration of the tin compound with respect to the whole surface treatment agent is 10 ppm to 100,000 ppm, preferably 20 ppm to 100,000 ppm, more preferably 50 ppm to 10,000 ppm, more preferably It is 500 ppm or more and 10,000 ppm or less, and particularly preferably 500 ppm or more and 3,000 ppm or less. If the concentration of the tin compound relative to the entire surface treatment agent is less than 10 ppm, the adhesion with an insulating material such as copper and resin may be lowered, which is not preferable.
  • the copper surface treatment agent of the present invention has at least one functional group selected from the group consisting of amino groups, epoxy groups, thiol groups, carboxyl groups, sulfonic acid groups, hydroxyl groups, phosphoric acid groups, imino groups, and silanol groups. It contains a water-soluble polymer or a water-dispersible polymer. Examples of the water-soluble polymer or water-dispersible polymer include aminosilane, mercaptosilane, polyacrylic acid, acrylic resin, phenol resin, epoxy resin, and polyamine resin.
  • water-soluble acrylic resins containing carboxyl groups are difficult to inhibit the film crystal properties, have excellent aqueous solution stability, and easily co-deposit with tin by coordination or hydrogen bonding with tin compounds.
  • the water-soluble acrylic resin containing a carboxyl group include polyacrylic acid, polymaleic acid, polyitaconic acid or an acrylic acid copolymer, or derivatives thereof.
  • a water-soluble acrylic resin having a carboxyl group and a functional group other than a carboxyl group is more preferable because it easily forms a crosslink by heat with an insulator.
  • water-soluble acrylic resins having a carboxyl group and a functional group other than a carboxyl group include acid monomers such as acrylic acid, methacrylic acid, maleic acid, and itaconic acid, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, acrylic Copolymerization with acrylic monomers such as 2-hydroxyethyl acid, hydroxypropyl acrylate, acrylamide, N-methylolacrylamide, glycidyl methacrylate, acrylonitrile, 3-methacryloxypropylmethyldimethoxysilane, 2-acrylamido-2-methylpropanesulfonic acid Coalescence is desirable.
  • acid monomers such as acrylic acid, methacrylic acid, maleic acid, and itaconic acid
  • 2-hydroxyethyl methacrylate hydroxypropyl methacrylate
  • acrylic Copolymerization with acrylic monomers such as 2-hydroxyethyl acid, hydroxypropyl acrylate, acrylamide, N-methyl
  • a copolymer using 2-hydroxyethyl acrylate, acrylamide, and N-methylol acrylamide as an acrylic monomer containing a functional group other than a carboxyl group is more desirable.
  • the acrylic monomer containing functional groups other than an acid monomer and a carboxyl group may be used alone, or one or both may be used in combination of a plurality of monomers.
  • mercaptosilane or a derivative thereof for the reason of extremely improving the adhesion between copper and an insulating material such as an epoxy resin. Furthermore, it is more preferable to contain at least a mercaptosilane condensate because silane is likely to precipitate.
  • the water-soluble polymer or water-dispersible polymer has a molecular weight of 2,000 or more and 10,000,000 or less, preferably 20,000 or more and 7,000,000 or less, more preferably 200,000 or more and 5,000. , 000 or less.
  • the molecular weight of the water-soluble polymer or water-dispersible polymer means the weight average molecular weight.
  • the weight average molecular weight can be measured by a gel permeation chromatography (GPC) method using polystyrene as a standard.
  • the concentration of the water-soluble polymer or water-dispersible polymer with respect to the whole surface treatment agent is 10 ppm to 500,000 ppm, preferably 20 ppm to 100,000 ppm, more preferably 50 ppm or more. It is within the range of 3,000 ppm or less. If the concentration of the water-soluble polymer or water-dispersible polymer relative to the entire surface treatment agent is less than 10 ppm, it may not be deposited on the copper surface, which is not preferable. On the other hand, if it exceeds 500,000 ppm, crystal formation on the copper surface may be hindered, which is not preferable.
  • the copper surface treating agent of the present invention contains a complexing agent.
  • the complexing agent as used in the present specification means coordination with copper to form a chelate, lowering the potential of the copper surface, making it easy to reduce, and providing an insulating material adhesion layer such as a resin on the tin surface. It means something that is easy to form.
  • the complexing agent include thiourea derivatives such as thiourea, ethylenethiourea, diethylthiourea, and dibutylthiourea, thiosulfuric acid, and cyanides.
  • the surface treatment agent when used in a solution, it can be made a stable solution with less turbidity, and more easily forms a complex with copper, and further lowers the potential on the surface of copper. It is preferable to contain at least thiourea for the purpose of easily forming a tin film.
  • Some complexing agents also work as a reducing agent, which will be described later.
  • thiourea also functions as a reducing agent which will be described later.
  • the concentration of the complexing agent with respect to the whole surface treatment agent is preferably 100 ppm or more and 500,000 ppm or less, more preferably 1,000 ppm or more and 300,000 ppm or less, and particularly preferably 10,000 ppm or more. Within the range of 150,000 ppm or less. If the concentration of the complexing agent relative to the entire surface treatment agent is less than 100 ppm, it is difficult to form a complex on the copper surface, which is not preferable. On the other hand, when it exceeds 500,000 ppm, the solubility of copper is deteriorated, and there is a possibility that the reaction of forming a tin film on the surface of copper may be inhibited, which is not preferable.
  • the copper surface treating agent of the present invention preferably contains a reducing agent.
  • the reducing agent include thiourea, diethylthiourea, potassium borohydride, dimethylaminoborane, sodium hypophosphite, hydrazine, formaldehyde and the like.
  • the concentration of the reducing agent with respect to the whole surface treatment agent is preferably 100 ppm or more and 500,000 ppm or less, more preferably 1,000 ppm or more and 300,000 ppm or less, and particularly preferably 10,000 ppm or more and 150 or more. Within the range of 1,000 ppm or less. If the concentration of the reducing agent relative to the entire surface treatment agent is less than 100 ppm, a tin film may not be formed, which is not preferable. On the other hand, if it exceeds 500,000 ppm, it may be difficult to form a tin film on the surface of copper because tin is difficult to dissolve, which is not preferable.
  • the copper surface treatment agent of the present invention preferably has a pH in the range of 0.1 or more and 5 or less, and therefore preferably contains a pH adjusting agent.
  • the pH adjuster is not particularly limited as long as it is soluble in the solvent described later.
  • As the acid pH adjuster at least one acid selected from inorganic acids and organic acids can be used.
  • Examples of the acid that can be used in the present invention include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, borofluoric acid, and phosphoric acid; carboxylic acids such as formic acid, acetic acid, propionic acid, acrylic acid, and butyric acid; And organic acids such as alkane sulfonic acid such as acid and ethane sulfonic acid, and aromatic sulfonic acid such as benzene sulfonic acid, phenol sulfonic acid and cresol sulfonic acid.
  • strong acids such as sulfuric acid, nitric acid, hydrochloric acid, methanesulfonic acid, and phosphoric acid are preferable because the pH can be adjusted to 5 or less.
  • the concentration of the pH adjusting agent with respect to the whole surface treatment agent is preferably 10 ppm to 500,000 ppm, more preferably 1,000 ppm to 300,000 ppm, and particularly preferably 10,000 ppm or more. It is in the range of 200,000 ppm or less. If the concentration of the pH adjuster relative to the entire surface treatment agent is less than 10 ppm, the tin compound is difficult to dissolve, which is not preferable. On the other hand, if it exceeds 500,000 ppm, the reaction of forming a tin film on the surface of copper may be inhibited, which is not preferable.
  • the copper surface treating agent of the present invention preferably contains a metal compound.
  • the copper surface treatment agent of the present invention can uniformly and stably form a tin film on the surface of copper by the buffering action of metal ions.
  • the metal compound include metal salts.
  • metal compounds include silver compounds, aluminum compounds, zirconyl compounds, titanium compounds, calcium compounds, sodium compounds, magnesium compounds, strontium compounds, manganese compounds, vanadium compounds, yttrium compounds, niobium compounds, zinc compounds, and indium compounds. Silver compounds, iron compounds, palladium compounds, cobalt compounds, copper compounds and the like.
  • silver compounds, palladium compounds, zinc compounds, cobalt compounds, and copper compounds are preferred because they are considered to be easily precipitated with tin and give a denser tin film.
  • a copper compound is particularly preferable because an alloy with tin can be formed.
  • These metal compounds can be used alone or in combination. When combining a plurality, it is preferable to use a combination of copper and silver or copper and palladium.
  • the concentration of the metal compound relative to the whole surface treatment agent is preferably 1 ppm to 10,000 ppm, more preferably 10 ppm to 2,000 ppm, and particularly preferably 100 ppm to 1,000 ppm. Within range. If the concentration of the metal compound relative to the entire surface treatment agent is less than 1 ppm, the effect cannot be expected, which is not preferable. On the other hand, if it exceeds 10,000 ppm, the reaction of forming a tin film on the surface of copper may be inhibited, which is not preferable.
  • the copper surface treatment agent of the present invention preferably contains a rust inhibitor.
  • the rust preventive include aminotetrazole, methyl mercaptotetrazole, benzotriazole, carboxybenzotriazole, aminomercaptotriazole, imidazole, methylimidazole, triazine thiol, trimercaptotriazine or a salt thereof, or a similar compound thereof; mercaptosilane Thioglycolic acid; thioglycerol; guanylthiourea; thioureas; Among them, tetrazole, triazole, imidazole, and thiol rust preventives are preferred because they have both a rust preventive function on the copper surface and chemical conversion.
  • the concentration of the rust inhibitor with respect to the entire surface treatment agent is preferably 10 ppm to 100,000 ppm, more preferably 20 ppm to 10,000 ppm, and particularly preferably 50 ppm to 3,000 ppm. Is within the range.
  • concentration of the anticorrosive agent relative to the entire surface treatment agent is less than 10 ppm, the effect is not sufficient, which is not preferable.
  • concentration of the anticorrosive agent relative to the entire surface treatment agent is less than 10 ppm, the effect is not sufficient, which is not preferable.
  • it exceeds 100,000 ppm the reaction of forming a tin film on the surface of copper may be inhibited, which is not preferable.
  • the copper surface treatment agent of the present invention is a surfactant for forming a uniform adhesion layer with an insulating material such as a resin, a polymerization initiator for promoting the formation of an adhesion layer with an insulating material such as a resin, etc. If necessary, various additives that do not inhibit the reaction of forming a tin film on the surface of copper may be contained.
  • the copper surface treating agent of the present invention may contain a fluorine compound.
  • the fluorine compound include hydrogen fluoride, borohydrofluoric acid, acidic sodium fluoride, acidic ammonium fluoride, sodium fluoride, ammonium fluoride, and hydrogen silicofluoride.
  • the surface treatment agent is used in a solution and the pH is in the range of 0.1 or more and 5 or less, tin ions are stably present, and a stable solution with less turbidity can be obtained. For this reason, hydrogen fluoride and sodium acid fluoride are preferred.
  • the concentration of the fluorine compound with respect to the entire surface treatment agent is preferably in the range of 10 ppm to 200,000 ppm, more preferably 25 ppm to 5000 ppm, and particularly preferably 100 ppm to 2000 ppm. . If the concentration of the fluorine compound relative to the entire surface treatment agent is less than 10 ppm, tin ions may be difficult to stabilize, which is not preferable. On the other hand, if it exceeds 200,000 ppm, the reaction of forming a tin film on the surface of copper may be inhibited, which is not preferable. If the concentration of the fluorine compound with respect to the entire surface treatment agent is 5,000 ppm or less, the tin film formed on the copper surface may become thick, become porous (porous), etc. It is more preferable because it is not present.
  • the concentration of free fluorine derived from the fluorine compound with respect to the whole surface treatment agent is preferably 0.1 ppm to 100 ppm, more preferably 1 ppm to 50 ppm, and particularly preferably 2 ppm to 20 ppm. Is within the range. If the concentration of free fluorine in the fluorine compound relative to the entire surface treatment agent is less than 0.1 ppm, tin ions may not be stably present, which is not preferable. On the other hand, if it exceeds 100 ppm, the reaction of forming a tin film on the surface of copper may be hindered, which is not preferable.
  • the concentration of free fluorine can be measured with an ordinary ion meter as the amount of fluorine ions.
  • free fluorine fluorine ion
  • a fluorine compound is included in the surface treatment agent.
  • the said free fluorine has the effect
  • the free fluorine also has an action of promoting the reaction of the tin compound with respect to copper which is a target of the surface treatment with the solution of the surface treatment agent.
  • the ratio of the copper compound concentration to the tin compound concentration is preferably in the range of 0.2 to 2.0, more preferably 0.4 to 1.2. Within the range, particularly preferably within the range of 0.7 to 1.0.
  • the copper surface treating agent of the present invention has a concentration of the complexing agent in the range of 20,000 ppm or more and less than 40,000 ppm with respect to the entire surface treating agent, and the pH adjusting agent with respect to the entire surface treating agent.
  • the concentration may be 50,000 ppm or more.
  • the copper surface treatment agent of the present invention is mixed by a conventionally known mixing method / mixing apparatus.
  • the order of mixing the substances contained in the copper surface treating agent of the present invention is not particularly limited. Moreover, the said substance may be mixed at once, and may be divided and mixed.
  • the surface treatment agent is preferably brought into contact with the surface of copper as a solution.
  • the solution is composed of the surface treatment agent as a solute and a solvent.
  • the solvent used in the present invention is not particularly limited as long as it can dissolve the surface treatment agent. For example, water, an organic solvent, etc. are mentioned.
  • the copper surface treating agent in the present invention is superior to the conventional copper surface treating agent in that the copper surface is not subjected to roughening treatment such as etching.
  • the surface treatment method of copper in this invention is a method of making the said surface treating agent contact the surface of copper.
  • the method for bringing the surface treatment agent into contact with the copper surface is not particularly limited.
  • a method of immersing copper in a solution containing the surface treatment agent, a method of spraying a solution containing the surface treatment agent on the surface of copper by spraying, a method of applying a solution containing the surface treatment agent on the surface of copper, etc. Is mentioned.
  • a method of immersing copper in a solution containing the surface treatment agent and performing strong stirring because the replacement of the solution containing the surface treatment agent on the copper surface is preferable is faster.
  • a method of spraying a solution containing a treatment agent by spraying is preferred.
  • the said surface treating agent may be made to contact at once, and may be divided and made to contact.
  • the temperature at which the surface treatment agent is brought into contact with the surface of copper is not particularly limited depending on the components of the surface treatment agent, but is preferably 10 ° C. or higher because of excellent reactivity. It is 60 ° C. or less, more preferably 20 ° C. or more and 50 ° C. or less, particularly preferably 30 ° C. or more and 40 ° C. or less.
  • the time for which the surface treatment agent is brought into contact with the surface of copper is not particularly limited depending on the components of the surface treatment agent, but is preferably 1 second or more and 600 seconds because of excellent reactivity. In the following, it is more preferably 5 seconds to 300 seconds, further preferably 15 seconds to 180 seconds, still more preferably 60 seconds to 180 seconds, and particularly preferably 60 seconds to 120 seconds.
  • the copper surface treatment method in the present invention is selected from pickling treatment, roughening treatment, chemical conversion treatment, rust prevention treatment, oxidation treatment, reduction treatment, and degreasing treatment before bringing the surface treatment agent into contact with the copper surface. At least one kind of pretreatment may be performed.
  • the tin compound may be contacted before the surface treatment agent is brought into contact with the copper surface.
  • the copper treatment may be further performed with the surface treatment agent or the like. After the post-treatment, it may be washed with water and dried, or may be dried without washing.
  • the surface treatment agent may be brought into contact with the copper surface, and then heat treatment or the like may be performed.
  • the surface treatment agent may be brought into contact with the copper surface, and then a rust inhibitor, a pH adjuster, a post-treatment agent, or the like may be brought into contact therewith.
  • the post-treatment agent examples include silane coupling agents such as mercaptosilane, vinyl silane, epoxy silane, styryl silane, methacryloxy silane, acryloxy silane, amino silane, ureido silane, chloropropyl silane, sulfide silane, isocyanate silane, and the like. Preference is given to mixtures, silane coupling agent condensates and mixtures thereof, and water-soluble polymers having at least one functional group as described above.
  • the post-treatment agent after the chemical conversion treatment, the post-treatment agent may be contacted by spraying, dipping, coating, or the like, and then washed with water or dried without washing with water to form a coating film.
  • the copper surface film in the present invention is formed by the above-described copper surface treatment method, and the weight of tin in the copper surface film is 1 mg / m 2 or more and 2,000 mg / m 2.
  • the molar ratio of copper to tin on the outermost surface of the coating is preferably in the range of 0.2 or more and 10 or less, more preferably 0.2 or more and 2.0 or less.
  • the outermost surface of the film means an extremely thin layer on the surface of the film, and specifically means a layer having a depth of about 10 nm from the surface of the film.
  • the composition of tin or copper on the outermost surface of the film can be measured by narrow scan.
  • the weight of tin in the coating is preferably 1 mg / m 2 or more and 2,000 mg / m 2 or less, more preferably 20 mg / m 2 or more and 2,000 mg / m 2 or less, and even more preferably 50 mg / m 2 or more and 1,500 mg. / M 2 or less, particularly preferably in the range of 10 mg / m 2 or more and 1,000 mg / m 2 or less.
  • Copper-clad material in the present invention is surface-treated by the above-described copper surface treatment method.
  • Examples of the copper-clad material before the surface treatment by the copper surface treatment method include electronic parts such as general electronic substrates and lead frames, ornaments, and building materials.
  • the copper-clad material of the present invention is not limited to those in which the entire surface of copper is surface-treated by the above-mentioned surface treatment method, and those in which a part of the surface of copper is surface-treated by the above-mentioned surface treatment method are also included in the present invention. include.
  • the multilayer wiring board (build-up wiring board) of the present invention comprises the above copper-clad material.
  • the multilayer wiring board of the present invention is manufactured by a conventionally known method for manufacturing a multilayer wiring board. Specifically, an inner layer substrate having a conductive layer whose surface is made of copper is manufactured by being laminated and pressed with another inner layer substrate with an insulating material such as resin interposed therebetween.
  • the multilayer wiring board (build-up wiring board) includes a batch lamination type build-up board and a sequential build-up type build-up board.
  • the multilayer wiring board in the present invention includes an outer layer board and a single layer board provided with the copper-clad material in the outermost layer.
  • the outer layer substrate includes a single-sided or double-sided outer layer substrate having the copper-clad material on one or both sides on the outermost layer surface.
  • Example 1 ⁇ Copper surface treatment process> An aqueous solution of sulfuric acid and hydrogen peroxide (3% sulfuric acid concentration, peroxidation) obtained by diluting 35 ⁇ m or 18 ⁇ m thick electrolytic copper foil (Furukawa Circuit Foil Co., Ltd., trade name: “F-WS foil”) with tap water After being immersed in hydrogen at a concentration of 1% at 30 ° C. for 60 seconds, it was washed with tap water.
  • F-WS foil electrolytic copper foil
  • the electrolytic copper foil subjected to the above treatment was immersed in a solution of a predetermined surface treatment agent (components will be described later) under conditions of 40 ° C. and 60 seconds, then washed with tap water, and 80 ° C. -Dried for 5 minutes.
  • a predetermined surface treatment agent components will be described later
  • the predetermined surface treatment agent includes stannous sulfate as a tin compound (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm, reagent) and thiourea as a complexing agent (thio with respect to the whole surface treatment agent).
  • Urea concentration 50,000 ppm, reagent
  • polyacrylic acid as a water-soluble polymer (molecular weight 2,000,000, concentration of polyacrylic acid relative to the entire surface treatment agent: 1,000 ppm, reagent) .
  • pH was measured with a pH meter (trade name “F-21” manufactured by Horiba, Ltd.), the pH was 3.
  • the etching amount of the electrolytic copper foil after the copper surface treatment was obtained by measuring the weight change before and after the etching with a precision balance. As a result, the state where the etching amount is less than 0.1 g / m 2 is set as “ ⁇ ”, the state where the etching amount is 0.1 g / m 2 or more and 1 g / m 2 or less is set as “ ⁇ ”, and the state exceeding 1 g / m 2 Was marked “x”.
  • Tin / carbon coating amount of electrolytic copper foil after copper surface treatment The amount of tin / carbon coating of electrolytic copper foil after copper surface treatment was measured by fluorescent X-ray (manufactured by Shimadzu Corporation, trade name: It was measured as the amount of tin element or carbon element by measurement according to “XRF1700”).
  • the peel strength of the copper foil from the insulating material in the multilayer wiring board is 100 kg / m in load cell according to JIS C 6481 using a universal testing machine (manufactured by A & D Co., Ltd., trade name: “Tensilon”). 2. Measurement was performed under conditions of a range of 2%, a crosshead speed of 50 mm / min, and a chart speed of 20 mm / min. When the A material was used as the insulating material, a copper foil having a thickness of 35 ⁇ m was used, and when the B material was used as the insulating material, a copper foil having a thickness of 18 ⁇ m was used.
  • Table 1 shows the evaluation results of the above physical properties.
  • Example 2 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) The same operation as Example 1 was performed except having changed into.
  • Example 3 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm)
  • the same operation as in Example 1 was performed except that hydrogen fluoride as a fluorine compound (hydrogen fluoride concentration with respect to the entire surface treatment agent: 500 ppm, reagent) was added.
  • Example 4 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) And the complexing agent was changed from thiourea (concentration of thiourea to the entire surface treatment agent: 50,000 ppm) to diethylthiourea (concentration of diethylthiourea to the entire surface treatment agent: 50,000 ppm, reagent), and The same operation as in Example 1 was performed except that hydrogen fluoride as a fluorine compound (the concentration of hydrogen fluoride with respect to the entire surface treatment agent: 500 ppm) was added.
  • hydrogen fluoride as a fluorine compound
  • Example 5 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 10, 000 ppm), and the same operation as in Example 1 was performed except that hydrogen fluoride as a fluorine compound (the concentration of hydrogen fluoride with respect to the entire surface treatment agent: 10,000 ppm) was added.
  • Example 6 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm)
  • the water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, concentration of polyacrylic acid to the whole surface treatment agent: 1,000 ppm) to polyacrylic acid (molecular weight 2,000,000, surface treatment agent).
  • the operation was the same as in Example 1 except that the polyacrylic acid concentration relative to the whole was changed to 200 ppm) and hydrogen fluoride as a fluorine compound was further added (hydrogen fluoride concentration relative to the entire surface treatment agent: 500 ppm). Went.
  • Example 7 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm)
  • the water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, concentration of polyacrylic acid to the whole surface treatment agent: 1,000 ppm) to polyacrylic acid (molecular weight 2,000,000, surface treatment agent).
  • hydrogen fluoride as a fluorine compound
  • Example 8 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm)
  • hydrogen fluoride as a fluorine compound hydrogen fluoride concentration relative to the entire surface treatment agent: 500 ppm
  • sulfuric acid sulfuric acid concentration relative to the entire surface treatment agent: 5,000 ppm
  • Example 9 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm)
  • Example 1 except that hydrogen fluoride as a fluorine compound (concentration of hydrogen fluoride with respect to the entire surface treatment agent: 500 ppm) was added and the pH was adjusted to 5.0 with sodium hydroxide. The same operation was performed.
  • Example 10 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm)
  • the water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, concentration of polyacrylic acid to the whole surface treatment agent: 1,000 ppm) to polyacrylic acid (molecular weight 200,000, to the whole surface treatment agent).
  • the concentration was changed to polyacrylic acid concentration: 1,000 ppm, reagent, and hydrogen fluoride as a fluorine compound (hydrogen fluoride concentration with respect to the entire surface treatment agent: 500 ppm) was added, as in Example 1.
  • Example 10 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment
  • Example 11 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm)
  • the water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, concentration of polyacrylic acid to the whole surface treatment agent: 1,000 ppm) to polyacrylic acid (molecular weight 20,000, to the whole surface treatment agent).
  • the concentration was changed to polyacrylic acid concentration: 1,000 ppm, reagent, and hydrogen fluoride as a fluorine compound (hydrogen fluoride concentration with respect to the entire surface treatment agent: 500 ppm) was added, as in Example 1.
  • Example 11 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment
  • Example 12 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm)
  • the water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, concentration of polyacrylic acid to the whole surface treatment agent: 1,000 ppm) to a copolymer of acrylic acid and 2-hydroxyethyl acrylate (acrylic).
  • the molar ratio of the acid to 2-hydroxyethyl acrylate was changed to 7: 3, the molecular weight was 200,000, and the concentration of the copolymer with respect to the whole surface treatment agent was 1,000 ppm.
  • hydrogen fluoride as a fluorine compound (surface treatment) The same operation as in Example 1 was performed except that the concentration of hydrogen fluoride with respect to the whole agent: 500 ppm) was added.
  • Example 13 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm)
  • the water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, concentration of polyacrylic acid to the whole surface treatment agent: 1,000 ppm) to amino-modified epoxy resin (amino-modified epoxy resin to the whole surface treatment agent) Concentration: 1,000 ppm, manufactured by ADEKA CORPORATION, trade name “ADEKA RESIN EP4100”), and further, hydrogen fluoride as a fluorine compound (concentration of hydrogen fluoride with respect to the whole surface treatment agent: 500 ppm) was added. The same operation as in Example 1 was performed.
  • Example 14 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm)
  • the water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, polyacrylic acid concentration to the whole surface treatment agent: 1,000 ppm) to epoxy silane (Shin-Etsu Chemical Co., Ltd.) as a water-soluble polymer.
  • the product was changed to a 50% ethanol solution (product name: “KBM403”) (concentration of epoxysilane with respect to the entire surface treatment agent: 1,000 ppm), and hydrogen fluoride as a fluorine compound (hydrogen fluoride with respect to the entire surface treatment agent)
  • KBM403 concentration of epoxysilane with respect to the entire surface treatment agent: 1,000 ppm
  • hydrogen fluoride as a fluorine compound (hydrogen fluoride with respect to the entire surface treatment agent)
  • 500 ppm was added.
  • Example 15 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm)
  • the water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, concentration of polyacrylic acid to the entire surface treatment agent: 1,000 ppm) to 5% polyacrylic acid by epoxysilane (Shin-Etsu Chemical Co., Ltd.)
  • a silane-modified polyacrylic acid (molecular weight 200,000, whole surface treatment agent) obtained by adding 1% by weight of a product made by the company, trade name: “KBM403”) and stirring for 30 minutes at room temperature to silane-modify polyacrylic acid.
  • the concentration of silane-modified polyacrylic acid with respect to the surface is changed to 1,000 ppm, and hydrogen fluoride as a fluorine compound (for the entire surface treatment agent)
  • the concentration of hydrogen fluoride that: except for the addition of 500 ppm) were subjected to the same procedure as in Example 1.
  • Example 16 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) contained in the predetermined surface treatment agent
  • hydrogen fluoride as a fluorine compound (concentration of hydrogen fluoride with respect to the entire surface treatment agent: 500 ppm)
  • silver chloride as a metal compound (concentration of silver chloride with respect to the entire surface treatment agent: 20 ppm, reagent) Except that, the same operation as in Example 1 was performed.
  • Example 17 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm)
  • hydrogen fluoride as a fluorine compound
  • copper sulfate as a metal compound
  • copper sulfate concentration relative to the entire surface treatment agent 100 ppm, reagent
  • Example 18 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 1,
  • hydrogen fluoride as a fluorine compound (concentration of hydrogen fluoride with respect to the whole surface treatment agent: 1,000 ppm)
  • copper sulfate as a metal compound concentration of copper sulfate with respect to the whole surface treatment agent: 500 ppm
  • Example 19 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), hydrogen fluoride as a fluorine compound (hydrogen fluoride concentration relative to the entire surface treatment agent: 2,000 ppm), copper sulfate as a metal compound (copper sulfate concentration relative to the entire surface treatment agent: 1, (000 ppm) was added, except that the same operation as in Example 1 was performed (the ratio of the concentration of the copper compound to the concentration of the tin compound in the surface treatment agent was 0.5).
  • Example 20 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), hydrogen fluoride as a fluorine compound (hydrogen fluoride concentration relative to the entire surface treatment agent: 2,000 ppm), copper sulfate as a metal compound (copper sulfate concentration relative to the entire surface treatment agent: 1, 000 ppm), and the same operation as in Example 1 was carried out except that sulfuric acid as a pH adjuster (sulfuric acid concentration relative to the entire surface treatment agent: 5,000 ppm) was added (the tin compound in the surface treatment agent). The ratio of the concentration of the copper compound to the concentration was 0.5).
  • Example 21 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 5, 000 ppm), hydrogen fluoride as a fluorine compound (hydrogen fluoride concentration relative to the entire surface treatment agent: 5,000 ppm), copper sulfate as a metal compound (copper sulfate concentration relative to the entire surface treatment agent: 2, The same operation as in Example 1 was performed except that (500 ppm) was added (the ratio of the concentration of the copper compound to the concentration of the tin compound in the surface treatment agent was 0.5).
  • Example 22 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 1, 000ppm), hydrogen fluoride as fluorine compound (hydrogen fluoride concentration with respect to the entire surface treatment agent: 1,000ppm), copper sulfate as metal compound (concentration of copper sulfate with respect to the entire surface treatment agent: 200ppm)
  • the same operation as in Example 1 was performed except that the concentration of the copper compound with respect to the concentration of the tin compound in the surface treatment agent was 0.2.
  • Example 23 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm)
  • the water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, concentration of polyacrylic acid to the entire surface treatment agent: 1,000 ppm) to polyacrylic acid (molecular weight 2,000, based on the whole surface treatment agent).
  • the concentration was changed to polyacrylic acid concentration: 1,000 ppm, reagent, and hydrogen fluoride as a fluorine compound (hydrogen fluoride concentration with respect to the entire surface treatment agent: 500 ppm) was added, as in Example 1.
  • Example 23 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire
  • Example 24 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 1, 000 ppm), hydrogen fluoride as a fluorine compound (hydrogen fluoride concentration relative to the entire surface treatment agent: 1,000 ppm), copper sulfate as a metal compound (copper sulfate concentration relative to the entire surface treatment agent: 2, 000 ppm), except that methanesulfonic acid (concentration of methanesulfonic acid with respect to the entire surface treatment agent: 100,000 ppm) as a pH adjuster was added (the surface treatment agent had the same operation).
  • the ratio of the copper compound concentration to the tin compound concentration was 2).
  • Example 25 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), the complexing agent was changed from thiourea (thiourea concentration to the entire surface treatment agent: 5%) to thiourea (thiourea concentration to the entire surface treatment agent: 3%), and a metal compound Example 1 except that copper sulfate (concentration of copper sulfate with respect to the entire surface treatment agent: 400 ppm) and sulfuric acid (concentration of sulfuric acid with respect to the entire surface treatment agent: 100,000 ppm) as a pH adjuster were added. (The ratio of the concentration of the copper compound to the concentration of the tin compound in the surface treatment agent was 0.2).
  • Example 26 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), the complexing agent was changed from thiourea (thiourea concentration to the entire surface treatment agent: 5%) to thiourea (thiourea concentration to the entire surface treatment agent: 3%), and a metal compound Copper sulfate (concentration of copper sulfate relative to the entire surface treatment agent: 400 ppm) and silver nitrate (concentration of silver nitrate relative to the entire surface treatment agent: 100 ppm), sulfuric acid as a pH adjuster (concentration of sulfuric acid relative to the entire surface treatment agent: 100, 000 ppm) except that the same operation as in Example 1 was performed (the concentration of the copper compound relative to the concentration of
  • Example 27 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), the complexing agent was changed from thiourea (thiourea concentration to the entire surface treatment agent: 5%) to thiourea (thiourea concentration to the entire surface treatment agent: 3%), and a metal compound Copper sulfate (concentration of copper sulfate with respect to the whole surface treatment agent: 400 ppm), sulfuric acid as pH adjuster (concentration of sulfuric acid with respect to the whole surface treatment agent: 100,000 ppm), sodium hypophosphite (surface) as a reducing agent
  • the same operation as in Example 1 was performed except that sodium hypophosphite concentration (2,000 ppm) with respect to the entire treatment agent was added (
  • Example 28 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), the complexing agent was changed from thiourea (thiourea concentration to the entire surface treatment agent: 5%) to thiourea (thiourea concentration to the entire surface treatment agent: 3%), and a metal compound Copper sulfate (concentration of copper sulfate with respect to the whole surface treatment agent: 400 ppm), sulfuric acid as pH adjuster (concentration of sulfuric acid with respect to the whole surface treatment agent: 100,000 ppm), thioglycerol (surface treatment agent)
  • the same operation as in Example 1 was carried out except that the concentration of thioglycerol with respect to the whole was added (5,000 ppm) (the t
  • Example 29 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), the complexing agent was changed from thiourea (thiourea concentration to the entire surface treatment agent: 5%) to thiourea (thiourea concentration to the entire surface treatment agent: 3%), and a metal compound Except for adding copper sulfate (concentration of copper sulfate relative to the entire surface treatment agent: 400 ppm) and methanesulfonic acid as a pH adjuster (concentration of methanesulfonic acid relative to the entire surface treatment agent: 100,000 ppm) The same operation as in Example 1 was performed (the ratio of the copper compound concentration to the tin compound concentration in the surface treatment agent was 0.2).
  • Example 30 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), the complexing agent was changed from thiourea (thiourea concentration to the entire surface treatment agent: 5%) to thiourea (thiourea concentration to the entire surface treatment agent: 3%), and a metal compound Copper sulfate (concentration of copper sulfate with respect to the entire surface treatment agent: 400 ppm), sulfuric acid as pH adjuster (concentration of sulfuric acid with respect to the entire surface treatment agent: 100,000 ppm), polyacrylic acid (molecular weight as a water-soluble polymer) The same operation as in Example 1 was performed except that 20,000 and the concentration of the polyacrylic acid with respect to the whole surface treatment agent: 1,000 ppm
  • Example 31 The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 5, 000 ppm), the complexing agent was changed from thiourea (thiourea concentration to the entire surface treatment agent: 5%) to thiourea (thiourea concentration to the entire surface treatment agent: 3%), and a metal compound Example 1 except that copper sulfate (concentration of copper sulfate with respect to the whole surface treatment agent: 1,000 ppm) and sulfuric acid as a pH adjuster (concentration of sulfuric acid with respect to the whole surface treatment agent: 100,000 ppm) were added. (The ratio of the copper compound concentration to the tin compound concentration in the surface treatment agent was 0.2).
  • Example 32 Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm)
  • the water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, polyacrylic acid concentration to the whole surface treatment agent: 1,000 ppm) to a copolymer of acrylic acid and acrylamide (acrylic acid and acrylamide
  • the molar ratio was changed to 7: 3, the molecular weight was 200,000, the concentration of the copolymer with respect to the whole surface treatment agent: 1,000 ppm, and hydrogen fluoride as a fluorine compound (the concentration of hydrogen fluoride with respect to the whole surface treatment agent: 500 ppm)
  • the same operation as in Example 1 was carried out except that was added.
  • the tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 18, And the complexing agent is changed from thiourea (the concentration of thiourea to the entire surface treatment agent: 50,000 ppm) to thiourea (the concentration of thiourea to the entire surface treatment agent: 150,000 ppm), and Sulfuric acid (concentration of sulfuric acid relative to the entire surface treatment agent: 220,000 ppm), nickel sulfate (concentration of nickel sulfate relative to the entire surface treatment agent: 50,000 ppm), copper sulfate (concentration of copper sulfate relative to the entire surface treatment agent: 20,000 ppm) ), Diethylene glycol (concentration of diethylene glycol with respect to
  • the tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 18, And the complexing agent is changed from thiourea (the concentration of thiourea to the entire surface treatment agent: 50,000 ppm) to thiourea (the concentration of thiourea to the entire surface treatment agent: 150,000 ppm), and Sulfuric acid (concentration of sulfuric acid relative to the entire surface treatment agent: 220,000 ppm), nickel sulfate (concentration of nickel sulfate relative to the entire surface treatment agent: 50,000 ppm), copper sulfate (concentration of copper sulfate relative to the entire surface treatment agent: 20,000 ppm) ), Diethylene glycol (concentration of diethylene glycol with respect to
  • Table 1 summarizes the evaluation results of the above physical properties after the surface treatment of copper.
  • Example 2 compared with Example 1, by increasing the concentration of stannous sulfate as a tin compound contained in the predetermined surface treatment agent, As a result, the adhesion with an insulating material such as resin was improved.
  • Example 3 When Example 3 and Example 2 are compared, in Example 3, compared with Example 2, the concentration of hydrogen fluoride as the fluorine compound is increased, whereby the adhesion between the copper foil and an insulating material such as a resin is increased. The result was improved.
  • Example 4 Comparing Example 4 and Example 3, in Example 4, compared with Example 3, even when the complexing agent was changed from thiourea to diethylthiourea, sufficient copper foil and insulating material such as resin were sufficient. As a result, it was possible to maintain the adhesion.
  • Example 5 When Example 5 is compared with Example 1, in Example 5, compared with Example 1, even if the concentration of stannous sulfate as a tin compound is significantly increased, copper foil and an insulating material such as a resin As a result, it was possible to maintain sufficient adhesion.
  • Example 6 Comparing Example 6 and Example 3, in Example 6, compared to Example 3, even when the concentration of polyacrylic acid as a water-soluble polymer was lowered, the copper foil and an insulating material such as a resin As a result, sufficient adhesion could be maintained.
  • Example 7 When Example 7 and Example 3 are compared, in Example 7, compared with Example 3, by increasing the concentration of polyacrylic acid as a water-soluble polymer, copper foil and an insulating material such as a resin As a result, the adhesion was improved.
  • Example 8 Comparing Example 8 and Example 3, in Example 8, the adhesion between the copper foil and the insulating material such as resin is improved by adding sulfuric acid as a pH adjuster as compared with Example 3. It became the result.
  • Example 9 Comparing Example 9 and Example 3, in Example 9, compared to Example 3, even when the pH is increased, sufficient adhesion between the copper foil and an insulating material such as a resin can be maintained. It became the result.
  • Example 10 11, 23 and Example 3 are compared, even if the molecular weight of the polyacrylic acid as a water-soluble polymer is made small in Example 10, 11, 23 compared with Example 3, it is copper foil. As a result, sufficient adhesion between the resin and an insulating material such as resin can be maintained.
  • Examples 12 and 32 are compared with Example 10, in Examples 12 and 32, as compared with Example 10, a water-soluble polymer having a carboxyl group and a functional group other than a carboxyl group is added as a water-soluble polymer. As a result, the adhesion between the copper foil and an insulating material such as resin was improved.
  • Example 13 and 14 are compared with Example 3, in Examples 13 and 14, even when a polymer that does not contain a carboxyl group other than polyacrylic acid is added as a water-soluble polymer, As a result, sufficient adhesion between the copper foil and an insulating material such as resin can be maintained.
  • Examples 15 to 17 and Example 3 can be obtained by adding a silane, a metal compound, etc. As a result, it was possible to maintain the adhesion.
  • Example 25 Comparing Example 25 and Example 20, in Example 25, compared to Example 20, the concentration of sulfuric acid as a pH adjuster was increased without adding a fluorine compound, and accordingly, thiourea as a complexing agent was added. As a result, it was possible to maintain sufficient adhesion between the copper foil and the insulating material such as resin.
  • Example 26 When Example 26 and Example 25 are compared, in Example 26, the adhesion between copper foil and an insulating material such as a resin is improved by adding silver nitrate as a metal compound as compared with Example 25. Became.
  • Example 27 Comparing Example 27 and Example 25, in Example 27, sodium hypophosphite as a reducing agent was added as compared with Example 25, so that sufficient adhesion between the copper foil and an insulating material such as a resin was achieved. As a result, it was possible to maintain sex.
  • Example 28 Comparing Example 28 and Example 25, in Example 28, sufficient adhesion between the copper foil and an insulating material such as a resin can be obtained by adding thioglycerol as a rust inhibitor compared to Example 25. The result was that it could be maintained.
  • Example 29 and Example 25 compared with Example 25, in Example 29, methanesulfonic acid was added instead of sulfuric acid as a pH adjuster, so that copper foil and an insulating material such as a resin were used. As a result, sufficient adhesion could be maintained.
  • Example 30 When Example 30 and Example 25 are compared, in Example 30, compared with Example 25, by adding polyacrylic acid as a water-soluble polymer, the adhesion between the copper foil and an insulating material such as a resin is improved. The result was improved.
  • Example 31 When Example 31 and Example 25 are compared, in Example 31, the concentration of stannous sulfate as the tin compound is high by increasing the concentration of copper sulfate as the copper compound as compared with Example 25. As a result, sufficient adhesion between the copper foil and an insulating material such as resin can be maintained.
  • Comparative Examples 1 and 2 did not use a surface treatment agent containing a tin compound or the like as compared with Examples 1 to 32, and roughened etching and the like. Since the treatment (unevenness treatment) was performed, the result was that unevenness was seen in the SEM appearance of the electrolytic copper foil after the copper surface treatment.
  • Comparative Examples 5 and 6 Comparing Comparative Examples 5 and 6 with Example 1, in Comparative Examples 5 and 6, the concentration of stannous sulfate as a tin compound was significantly increased compared to Example 1, and copper sulfate ( As a result, the adhesion between the copper foil and an insulating material such as a resin is greatly reduced.
  • the copper surface treatment agent and surface treatment method of the present invention can maintain the adhesion between copper and an insulating material such as a resin without roughening the surface of the copper, such as etching. It is possible to cope with higher frequency and higher density of electronic devices and electronic parts. Moreover, in the conventional roughening process (unevenness

Abstract

Disclosed is an agent for treating a copper surface, which is capable of processing the copper surface into a flat and smooth surface without increasing the number of processing steps and without subjecting the copper surface to a roughening treatment such as etching.  The agent for treating a copper surface is also capable of maintaining adhesion between copper and an insulating material such as a resin.  A method for treating a copper surface is also disclosed.  The agent for treating a copper surface contains a tin compound, a complexing agent and a water-soluble or water-dispersible polymer.  The water-soluble or water-dispersible polymer has at least one kind of functional group which is selected from the group consisting of an amino group, an epoxy group, a thiol group, a carboxyl group, a sulfonic acid group, a hydroxyl group, a phosphoric acid group, an imino group and a silanol group.

Description

銅の表面処理剤および表面処理方法Copper surface treatment agent and surface treatment method
 本発明は、銅の表面処理剤および表面処理方法に関するものである。さらに詳しくは、銅の表面をエッチング等の粗化処理することなく平滑(フラット)な状態に処理することができる銅の表面処理剤および表面処理方法に関するものである。 The present invention relates to a copper surface treatment agent and a surface treatment method. More specifically, the present invention relates to a copper surface treatment agent and a surface treatment method capable of treating a copper surface in a smooth (flat) state without roughening such as etching.
 従来、一般的な多層配線基板(ビルドアップ配線基板)は、表面部に銅からなる導電層を有する内層基板が樹脂等の絶縁材を挟んで他の内層基板と積層プレスされることにより製造されている。上記導電層間は、孔壁が銅メッキされたスルーホールと呼ばれる貫通孔により、電気的に接続されている。 Conventionally, a general multilayer wiring board (build-up wiring board) is manufactured by laminating and pressing an inner layer substrate having a conductive layer made of copper on the surface portion with another inner layer substrate with an insulating material such as resin interposed therebetween. ing. The conductive layers are electrically connected by a through hole called a through hole whose hole wall is plated with copper.
 ここで、上記多層配線基板の配線として上記内層基板の表面部に用いられている銅には、樹脂等の絶縁材との密着性が要求されている。それゆえ、上記内層基板の表面部に用いられている銅の表面と、樹脂等の絶縁材との密着性を向上させるために、銅の表面処理が行われるのが一般的である。 Here, the copper used for the surface portion of the inner layer substrate as the wiring of the multilayer wiring substrate is required to have adhesiveness with an insulating material such as a resin. Therefore, in order to improve the adhesion between the copper surface used for the surface portion of the inner layer substrate and an insulating material such as a resin, a copper surface treatment is generally performed.
 銅の表面処理方法としては、例えば、銅の表面を塩化銅、硫酸・過酸化水素等でエッチングして銅の表面を粗化させ、銅の表面に凹凸形状の酸化皮膜を付ける方法等が挙げられる。この方法によれば、凹凸形状の酸化皮膜が樹脂等の絶縁材にくい込み、アンカー効果を生じて、銅と樹脂等の絶縁材との密着性が向上する。銅と樹脂等の絶縁材との密着性を向上させるための他の方法として、粗化させた銅の表面を、スズ、シランカップリング剤等で処理する方法も開発されている(例えば、特許文献1~3参照)。 Examples of the copper surface treatment method include a method of roughening the copper surface by etching the copper surface with copper chloride, sulfuric acid / hydrogen peroxide, etc., and attaching an uneven oxide film to the copper surface. It is done. According to this method, the concavo-convex-shaped oxide film is difficult to insulate with an insulating material such as a resin, and an anchor effect is produced, thereby improving the adhesion between copper and an insulating material such as a resin. As another method for improving the adhesion between copper and an insulating material such as a resin, a method of treating the roughened copper surface with tin, a silane coupling agent or the like has been developed (for example, a patent). Reference 1 to 3).
 近年の電子機器・電子部品の小型化、薄型化等に対応するために、多層配線基板を薄くすることが要求されている。さらに、近年の電子機器・電子部品の高周波化、高密度化等に対応するために、多層配線基板の配線の微細化(ファイン化)が要求されている。 In order to cope with recent downsizing and thinning of electronic devices and electronic parts, it is required to make the multilayer wiring board thinner. Furthermore, in order to cope with the recent increase in frequency and density of electronic devices and electronic parts, it is required to make the wiring of the multilayer wiring board finer (finer).
 また、上記多層配線基板の表面部に用いられている銅の表面が粗い場合には、該多層配線基板に表面電流が流れ、電気的損失や信号の遅延が生じるという問題がある。 Also, when the copper surface used for the surface portion of the multilayer wiring board is rough, there is a problem that surface current flows through the multilayer wiring board, resulting in electrical loss and signal delay.
 そこで、上記のエッチング等の粗化処理を用いる方法に代わる方法として、内層基板の表面部に用いられている銅の表面に、スズメッキ等によりスズ皮膜を形成する方法が示されている(例えば、特許文献4参照)。さらに、銅と樹脂等の絶縁材との密着性を向上させるために、内層基板の表面部に用いられている銅の表面にスズメッキした後、硝酸、シランカップリング剤等で処理する方法が示されている(例えば、特許文献5~9参照)。さらに、pHを調整して銅と樹脂等の絶縁材との密着性を向上させるために、スズ化合物と同時に酸および反応促進剤を添加する方法が示されている(例えば、特許文献5,10参照)。さらに、銅と樹脂等の絶縁材との密着性を向上させるために、銅の表面に銅塩を添加することで、樹脂等の絶縁材との密着性の高い金属層を形成する方法が示されている(例えば、特許文献10参照)。 Therefore, as a method of replacing the method using the roughening treatment such as etching, a method of forming a tin film by tin plating or the like on the surface of copper used for the surface portion of the inner layer substrate is shown (for example, (See Patent Document 4). Furthermore, in order to improve the adhesion between copper and an insulating material such as resin, a method of treating with nitric acid, silane coupling agent, etc. after tin plating on the copper surface used for the surface part of the inner layer substrate is shown. (For example, see Patent Documents 5 to 9). Furthermore, in order to adjust pH and improve the adhesiveness between copper and an insulating material such as a resin, a method of adding an acid and a reaction accelerator simultaneously with a tin compound is disclosed (for example, Patent Documents 5 and 10). reference). Furthermore, in order to improve the adhesion between copper and an insulating material such as resin, a method of forming a metal layer having high adhesion with an insulating material such as resin by adding a copper salt to the surface of copper is shown. (For example, see Patent Document 10).
日本国公開特許公報「特開平10-289838号公報(1998年10月27日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 10-289838 (published on Oct. 27, 1998)” 日本国公開特許公報「特開2000-340948号公報(2000年12月8日公開)」Japanese Patent Publication “JP 2000-340948 A (published on Dec. 8, 2000)” 日本国公開特許公報「特開平10-256736号公報(1998年9月25日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 10-256736 (published on September 25, 1998)” 日本国公開特許公報「特開平4-233793号公報(1992年8月21日公開)」Japanese Patent Publication “JP-A-4-233793 (published on August 21, 1992)” 日本国公開特許公報「特開2005-23301号公報(2005年1月27日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2005-23301 (published January 27, 2005)” 日本国公開特許公報「特開平1-109796号公報(1989年4月26日公開)」Japanese Patent Publication “Japanese Laid-Open Patent Publication No. 1-109796 (published on April 26, 1989)” 日本国公開特許公報「特開平7-170064号公報(1995年7月4日公開)」Japanese Patent Publication “Japanese Laid-Open Patent Publication No. 7-170064 (published July 4, 1995)” 日本国公開特許公報「特許第3135516号公報(特開平10-46359号公報、1998年2月17日公開)」Japanese Patent Publication “Patent No. 3135516 (Japanese Patent Laid-Open No. 10-46359, published on Feb. 17, 1998)” 日本国公開特許公報「特開2003-201585号公報(2003年7月18日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2003-201585” (published July 18, 2003) 日本国公開特許公報「特開2008-109111号公報(2008年5月8日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2008-109111 (published May 8, 2008)”
 しかしながら、上記特許文献1~3に示される銅の表面処理方法では、いずれも性能、特に銅と樹脂等の絶縁材との密着性が不十分であるため、ほとんど実用化されていない。さらに、これらの方法では、粗化処理が銅を溶解するため銅幅が目減りし、これらの方法により表面処理された銅張り材料のファイン化が困難となり、かつ電気損失が大きくなる。さらに、これらの方法では、粗化処理後の経時変化に伴い酸化膜が成長するため不動態化が不十分となり、いずれも性能が劣化する。そのため、後処理としての防錆処理が一般的に行われている。 However, none of the copper surface treatment methods disclosed in Patent Documents 1 to 3 have been put to practical use because performance, particularly adhesion between copper and an insulating material such as resin, is insufficient. Furthermore, in these methods, since the roughening treatment dissolves copper, the copper width is reduced, and it becomes difficult to refine the copper-clad material surface-treated by these methods, and the electrical loss increases. Furthermore, in these methods, since an oxide film grows with a change with time after the roughening treatment, passivation becomes insufficient, and the performance deteriorates in all cases. Therefore, a rust prevention treatment as a post treatment is generally performed.
 また、上記特許文献4に示される銅の表面処理方法では、銅の表面をエッチング等の粗化処理する方法と比較して、銅と樹脂等の絶縁材との密着性が十分ではないという問題点を有している。 In addition, the copper surface treatment method disclosed in Patent Document 4 has a problem that the adhesion between copper and an insulating material such as a resin is not sufficient as compared with a method of roughening the surface of copper such as etching. Has a point.
 また、上記特許文献5~9に示される銅の表面処理方法では、銅の表面にスズメッキした後、硝酸、シランカップリング剤等で処理するので、処理工程が増加する。さらに、これらの方法でも、銅の表面をエッチング等の粗化処理する方法と比較して、銅と樹脂等の絶縁材との十分な密着性を維持できないという問題点がある。 Also, in the copper surface treatment methods disclosed in Patent Documents 5 to 9, since the copper surface is tin-plated and then treated with nitric acid, a silane coupling agent, etc., the number of treatment steps increases. Furthermore, these methods also have a problem that sufficient adhesion between copper and an insulating material such as a resin cannot be maintained as compared with a method of roughening the surface of copper such as etching.
 また、上記特許文献5,10に示される銅の表面処理方法では、銅の表面にスズ化合物と同時に酸および反応促進剤を添加しているが、スズ化合物と酸(pH)と反応促進剤とのバランスを考慮しておらず、銅の表面をエッチング等の粗化処理する方法と比較して、銅と樹脂等の絶縁材との十分な密着性を維持できないという問題点がある。 In addition, in the copper surface treatment method disclosed in Patent Documents 5 and 10, an acid and a reaction accelerator are added to the copper surface simultaneously with the tin compound, but the tin compound, the acid (pH), the reaction accelerator, There is a problem that sufficient adhesion between copper and an insulating material such as resin cannot be maintained as compared with a method of roughening the surface of copper, such as etching.
 また、上記特許文献10に示される銅の表面処理方法では、十分な密着性を維持できないという問題点があるのに加え、銅表面への金属層の均一付着が難しく、さらに銅以外の部分にもコーティングされるため、実装時にメッキ性、電気導電性などの阻害が懸念されるという問題点がある。 In addition, the copper surface treatment method disclosed in Patent Document 10 has a problem in that sufficient adhesion cannot be maintained, and it is difficult to uniformly adhere a metal layer to the copper surface. Since the coating is also coated, there is a problem that there is a concern about inhibition of plating property, electric conductivity, etc. during mounting.
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、処理工程を増加させることなく、銅の表面をエッチング等の粗化処理することなく平滑な状態に処理することができ、かつ銅と樹脂等の絶縁材との間の密着性を維持することができる銅の表面処理剤および表面処理方法を提供することにある。 The present invention has been made in view of the above-described conventional problems, and its purpose is to process the surface of copper in a smooth state without increasing the number of processing steps and without performing roughening treatment such as etching. An object of the present invention is to provide a copper surface treatment agent and a surface treatment method capable of maintaining adhesion between copper and an insulating material such as a resin.
 本発明者は、上記課題に鑑み鋭意検討した結果、銅の表面処理に用いられる表面処理剤において、スズ化合物と、錯化剤と、水溶性高分子または水分散性高分子とを含有し、上記水溶性高分子または水分散性高分子が、アミノ基、エポキシ基、チオール基、カルボキシル基、スルホン酸基、水酸基、リン酸基、イミノ基およびシラノール基からなる群より選ばれる少なくとも一種の官能基を有していることで、該水溶性高分子または水分散性高分子が銅表面に析出したスズと架橋構造を形成して該スズに抱き込まれ、かつ該官能基が樹脂等の絶縁材と水素結合または共有結合を行い、その結果、銅と樹脂等の絶縁材との十分な密着性を維持することができることを独自に見出し、本発明を完成させるに至った。 As a result of intensive investigations in view of the above problems, the present inventors, as a surface treatment agent used for copper surface treatment, contain a tin compound, a complexing agent, a water-soluble polymer or a water-dispersible polymer, The water-soluble polymer or water-dispersible polymer is at least one function selected from the group consisting of an amino group, an epoxy group, a thiol group, a carboxyl group, a sulfonic acid group, a hydroxyl group, a phosphoric acid group, an imino group, and a silanol group. By having a group, the water-soluble polymer or water-dispersible polymer forms a cross-linked structure with tin deposited on the copper surface and is embraced in the tin, and the functional group is insulated with a resin or the like. As a result, it was found that sufficient adhesion between copper and an insulating material such as resin can be maintained, and the present invention was completed.
 即ち、本発明の銅の表面処理剤は、上記課題を解決するために、スズ化合物と、錯化剤と、水溶性高分子または水分散性高分子とを含有し、上記水溶性高分子または水分散性高分子が、アミノ基、エポキシ基、チオール基、カルボキシル基、スルホン酸基、水酸基、リン酸基、イミノ基およびシラノール基からなる群より選ばれる少なくとも一種の官能基を有することを特徴としている。 That is, the copper surface treatment agent of the present invention contains a tin compound, a complexing agent, and a water-soluble polymer or a water-dispersible polymer in order to solve the above-mentioned problems. The water-dispersible polymer has at least one functional group selected from the group consisting of an amino group, an epoxy group, a thiol group, a carboxyl group, a sulfonic acid group, a hydroxyl group, a phosphoric acid group, an imino group, and a silanol group. It is said.
 上記の発明によれば、本発明の銅の表面処理剤は、スズ化合物と、水溶性高分子または水分散性高分子とを、上記の各濃度で含有しているので、上記官能基を有する水溶性高分子または水分散性高分子が、銅表面に析出したスズと架橋構造を形成し、該スズと密着する。さらに、本発明の銅の表面処理剤は、上記官能基が樹脂等の絶縁材と水素結合または共有結合を行い、該絶縁材と密着する。また、本発明の銅の表面処理剤は、錯化剤を含有しているので、上記表面処理剤を溶液で用いた場合に、上記錯化剤が銅と錯体を形成して銅の表面の電位が低くなるため還元されやすく、スズが析出しやすくなる。さらに、上記表面処理剤の溶液は、上記錯化剤が溶解した銅のキレートをすることにより、スズ皮膜の均一性を向上させる可能性がある。その結果、本発明の銅の表面処理剤は、銅と樹脂等の絶縁材との十分な密着性を付与することができる。 According to the above invention, the copper surface treatment agent of the present invention contains the tin compound and the water-soluble polymer or the water-dispersible polymer at the respective concentrations, and thus has the functional group. A water-soluble polymer or a water-dispersible polymer forms a crosslinked structure with tin deposited on the copper surface and adheres to the tin. Furthermore, in the copper surface treating agent of the present invention, the functional group is bonded to an insulating material such as a resin by hydrogen bonding or covalent bonding, and is in close contact with the insulating material. In addition, since the copper surface treatment agent of the present invention contains a complexing agent, when the surface treatment agent is used in a solution, the complexing agent forms a complex with copper to form a copper surface. Since the potential is low, it is easily reduced and tin is likely to precipitate. Furthermore, the solution of the surface treatment agent may improve the uniformity of the tin film by chelating copper in which the complexing agent is dissolved. As a result, the copper surface treating agent of the present invention can provide sufficient adhesion between copper and an insulating material such as a resin.
 また、本発明の銅の表面処理剤は、上記水溶性高分子として、少なくともポリアクリル酸、ポリマレイン酸、ポリイタコン酸もしくはアクリル酸共重合体、またはその誘導体を含有することが好ましい。 The copper surface treating agent of the present invention preferably contains at least polyacrylic acid, polymaleic acid, polyitaconic acid or acrylic acid copolymer, or a derivative thereof as the water-soluble polymer.
 これにより、本発明の銅の表面処理剤は、銅と樹脂等の絶縁材との密着性をより一層向上させることができる。 Thereby, the copper surface treating agent of the present invention can further improve the adhesion between copper and an insulating material such as a resin.
 また、本発明の銅の表面処理剤は、上記水溶性高分子または水分散性高分子の分子量が2,000以上、10,000,000以下の範囲内であることが好ましい。 In the copper surface treatment agent of the present invention, the water-soluble polymer or water-dispersible polymer preferably has a molecular weight in the range of 2,000 or more and 10,000,000 or less.
 これにより、本発明の銅の表面処理剤に含有される上記水溶性高分子または水分散性高分子が析出しやすくなり、かつ上記表面処理剤の粘度が上昇せずに作業性が良好になる。 As a result, the water-soluble polymer or water-dispersible polymer contained in the copper surface treatment agent of the present invention is likely to precipitate, and the workability is improved without increasing the viscosity of the surface treatment agent. .
 また、本発明の銅の表面処理剤は、さらに金属化合物を含有することが好ましい。 The copper surface treatment agent of the present invention preferably further contains a metal compound.
 これにより、本発明の銅の表面処理剤は、金属イオンの緩衝作用により、銅の表面に銅とスズとの合金を含有する皮膜を均一・安定に形成することができると考えられる。 Thereby, it is considered that the copper surface treatment agent of the present invention can uniformly and stably form a film containing an alloy of copper and tin on the surface of copper by the buffering action of metal ions.
 また、本発明の銅の表面処理剤は、上記金属化合物が銅化合物であり、上記スズ化合物の濃度に対する上記銅化合物の濃度の比が0.2以上、2.0以下の範囲内であることが好ましい。 In the copper surface treatment agent of the present invention, the metal compound is a copper compound, and the ratio of the concentration of the copper compound to the concentration of the tin compound is in the range of 0.2 to 2.0. Is preferred.
 これにより、本発明の銅の表面処理剤は、銅化合物を含有しているので、銅イオンを生じる。その結果、銅イオンとスズ化合物との反応が進行する。 Thereby, since the copper surface treating agent of the present invention contains a copper compound, copper ions are generated. As a result, the reaction between the copper ion and the tin compound proceeds.
 それゆえ、本発明の銅の表面処理剤は、銅表面に銅とスズとの合金を含有する皮膜(結晶)を形成することができる。上記皮膜中におけるスズ皮膜は樹脂等の絶縁材との密着性に優れているので、本発明の銅の表面処理剤は、銅と樹脂等の絶縁材との密着性を向上させることができる。 Therefore, the copper surface treatment agent of the present invention can form a film (crystal) containing an alloy of copper and tin on the copper surface. Since the tin film in the said film is excellent in adhesiveness with insulating materials, such as resin, the copper surface treating agent of this invention can improve the adhesiveness between copper and insulating materials, such as resin.
 また、本発明の銅の表面処理剤は、表面処理剤全体に対する上記スズ化合物の濃度が50ppm以上、10,000ppm以下の範囲内であることが好ましい。 In the copper surface treatment agent of the present invention, the concentration of the tin compound relative to the entire surface treatment agent is preferably in the range of 50 ppm or more and 10,000 ppm or less.
 これにより、本発明の銅の表面処理剤は、銅表面に銅とスズとの合金を含有する皮膜を形成しやすくなり、銅と樹脂等の絶縁材との密着性をより一層向上させることができる。 Thereby, the copper surface treatment agent of the present invention can easily form a film containing an alloy of copper and tin on the copper surface, and can further improve the adhesion between the copper and an insulating material such as a resin. it can.
 また、本発明の銅の表面処理剤は、さらにpH調整剤を含有することが好ましい。 The copper surface treatment agent of the present invention preferably further contains a pH adjuster.
 これにより、本発明の銅の表面処理剤は、上記表面処理剤の溶液中のpHを調整することで錯化剤の働きを助長し、スズが析出しやすくなる。 Thereby, the copper surface treatment agent of the present invention promotes the function of the complexing agent by adjusting the pH in the solution of the surface treatment agent, and tin is likely to precipitate.
 また、本発明の銅の表面処理剤は、上記pH調整剤として、少なくとも硫酸、硝酸、塩酸、メタンスルホン酸もしくはリン酸を含有することが好ましい。 The copper surface treatment agent of the present invention preferably contains at least sulfuric acid, nitric acid, hydrochloric acid, methanesulfonic acid or phosphoric acid as the pH adjuster.
 これにより、本発明の銅の表面処理剤は、強酸を含有することになり、銅の溶解を促進させやすくなる。 Thereby, the copper surface treatment agent of the present invention contains a strong acid, and facilitates the dissolution of copper.
 また、本発明の銅の表面処理剤は、pHが5以下であることが好ましい。 The copper surface treatment agent of the present invention preferably has a pH of 5 or less.
 これにより、本発明の銅の表面処理剤は、上記表面処理剤の溶液中におけるpHの値が小さくなることで錯化剤の働きが活性化され、スズの析出量が増加する。 Thereby, in the copper surface treatment agent of the present invention, the action of the complexing agent is activated by decreasing the pH value in the solution of the surface treatment agent, and the precipitation amount of tin increases.
 また、本発明の銅の表面処理方法は、銅の表面に上記銅の表面処理剤を接触させることが好ましい。 In the copper surface treatment method of the present invention, the copper surface treatment agent is preferably brought into contact with the copper surface.
 これにより、本発明の銅の表面処理方法は、銅の表面にスズメッキした後に硝酸、シランカップリング剤等で処理する表面処理方法と比較して、処理工程を一工程減らすことができる。また、本発明の銅の表面処理方法は、銅の表面をエッチング等の粗化処理しなくとも十分な密着性を担保できるため、銅の表面を平滑な状態に処理することができる。その結果、本発明の銅の表面処理方法は、多層配線基板の小型化、薄型化、高周波化、高密度化等に対応するのに適している。 Thus, the copper surface treatment method of the present invention can reduce the number of treatment steps by one step compared to the surface treatment method of treating the surface of the copper with tin and then treating with nitric acid, a silane coupling agent, or the like. In addition, since the copper surface treatment method of the present invention can ensure sufficient adhesion without roughening the surface of the copper, such as etching, the surface of the copper can be treated in a smooth state. As a result, the copper surface treatment method of the present invention is suitable for dealing with downsizing, thinning, high frequency, high density and the like of a multilayer wiring board.
 また、本発明の銅の表面処理方法は、銅の表面に酸洗処理、粗化処理、化成処理、防錆処理、酸化処理、還元処理、脱脂処理からなる群より選ばれる少なくとも一種の前処理をした後に、上記表面処理剤を接触させることが好ましい。 Further, the copper surface treatment method of the present invention is at least one pretreatment selected from the group consisting of pickling treatment, roughening treatment, chemical conversion treatment, rust prevention treatment, oxidation treatment, reduction treatment, and degreasing treatment on the copper surface. After the treatment, it is preferable to contact the surface treatment agent.
 これにより、本発明の銅の表面処理方法は、酸洗処理、脱脂処理により銅表面の汚れ、酸化物等を除去することができ、粗化処理、化成処理、防錆処理、酸化処理、還元処理により銅表面での化成性向上、銅の性能向上等を図ることができる。 Thereby, the copper surface treatment method of the present invention can remove dirt, oxides, etc. on the copper surface by pickling treatment and degreasing treatment, roughening treatment, chemical conversion treatment, rust prevention treatment, oxidation treatment, reduction. The treatment can improve the chemical conversion on the copper surface, improve the copper performance, and the like.
 また、本発明の銅の表面処理方法は、銅の表面にスズ化合物を接触させた後に、上記表面処理剤または後処理剤を接触させることが好ましい。 In the copper surface treatment method of the present invention, it is preferable that the surface treatment agent or the post-treatment agent is brought into contact with the copper surface after the tin compound is brought into contact therewith.
 これにより、本発明の銅の表面処理方法は、スズ化合物により銅表面にスズ皮膜を形成することができ、該スズ皮膜により銅と樹脂等の絶縁材との密着性をより一層向上させることができる。 Thus, the copper surface treatment method of the present invention can form a tin film on the copper surface with the tin compound, and the tin film can further improve the adhesion between copper and an insulating material such as a resin. it can.
 また、本発明の銅表面の皮膜は、上記銅の表面処理方法により形成され、銅表面の皮膜におけるスズの重量が1mg/m以上、2,000mg/m以下の範囲内であり、上記皮膜の最表面における組成のうちの、スズに対する銅のモル比が0.2以上、10以下の範囲内であることが好ましい。 Further, the coating of the copper surface of the present invention is formed by the surface treatment method of the copper, by weight of tin in the coating of the copper surface is 1 mg / m 2 or more, in the range of 2,000 mg / m 2 or less, the Of the composition on the outermost surface of the film, the molar ratio of copper to tin is preferably in the range of 0.2 or more and 10 or less.
 これにより、本発明の銅表面の皮膜は、銅とスズとの合金等を含有するので、銅と樹脂等の絶縁材との密着性を維持することができる。 Thereby, since the film on the copper surface of the present invention contains an alloy of copper and tin or the like, the adhesion between the copper and an insulating material such as a resin can be maintained.
 また、本発明の銅張り材料は、上記銅の表面処理方法により表面処理されてなることが好ましい。さらに、本発明の多層配線基板は、上記銅張り材料を備えていることが好ましい。さらに、本発明の配線基板は、最外層に上記銅張り材料を備えていることが好ましい。 The copper-clad material of the present invention is preferably surface-treated by the above-described copper surface treatment method. Furthermore, the multilayer wiring board of the present invention preferably includes the copper-clad material. Furthermore, the wiring board of the present invention preferably includes the copper-clad material in the outermost layer.
 これにより、本発明の銅張り材料、多層配線基板および配線基板は、従来の銅の表面処理方法により表面処理された銅張り材料、多層配線基板および配線基板と比較して、銅と樹脂等の絶縁材との十分な密着性を維持することが可能となる。 As a result, the copper-clad material, multilayer wiring board, and wiring board of the present invention are made of copper and resin, etc., compared with the copper-clad material, multilayer wiring board, and wiring board surface-treated by the conventional copper surface treatment method. It becomes possible to maintain sufficient adhesion with the insulating material.
 本発明の銅の表面処理剤は、以上のように、スズ化合物と、錯化剤と、水溶性高分子または水分散性高分子とを含有し、上記水溶性高分子または水分散性高分子が、アミノ基、エポキシ基、チオール基、カルボキシル基、スルホン酸基、水酸基、リン酸基、イミノ基およびシラノール基からなる群より選ばれる少なくとも一種の官能基を有するものである。 As described above, the copper surface treating agent of the present invention contains a tin compound, a complexing agent, and a water-soluble polymer or water-dispersible polymer, and the water-soluble polymer or water-dispersible polymer described above. Have at least one functional group selected from the group consisting of an amino group, an epoxy group, a thiol group, a carboxyl group, a sulfonic acid group, a hydroxyl group, a phosphoric acid group, an imino group, and a silanol group.
 それゆえ、本発明の銅表面の皮膜は、処理工程を増加させることなく、銅の表面をエッチング等の粗化処理することなく平滑な状態に処理することができ、かつ銅と樹脂等の絶縁材との間の密着性を維持することができるという効果を奏する。 Therefore, the coating on the copper surface of the present invention can process the copper surface in a smooth state without increasing the number of processing steps, without roughening such as etching, and insulating copper and resin. There exists an effect that the adhesiveness between materials can be maintained.
 以下、本発明について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更して実施し得るものである。具体的には、本発明は下記の実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。なお、本明細書等において、便宜上、「重量ppm」を単に「ppm」,「重量%」を単に「%」と記載する。 Hereinafter, the present invention will be described in detail. However, the scope of the present invention is not limited to these descriptions, and other than the following examples, the present invention can be appropriately modified and implemented without departing from the spirit of the present invention. It is. Specifically, the present invention is not limited to the following embodiments, and various modifications are possible within the scope of the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention. In this specification and the like, for convenience, “weight ppm” is simply referred to as “ppm”, and “weight%” is simply referred to as “%”.
 (I)本発明における銅の表面処理剤で表面処理される物質等
 本発明における銅の表面処理剤で表面処理される物質は、銅を50%以上含有するものであれば特に限定されない。つまり、銅を50%以上含有していれば、銅以外の物質が含まれていても本発明に含まれる。例えば、銅単体、銅を含む銅合金材、クロメート等の表面処理された銅、メッキされた銅などが挙げられる。
(I) Substances Surface-treated with Copper Surface Treatment Agent in the Present Invention The substance surface-treated with the copper surface treatment agent in the present invention is not particularly limited as long as it contains 50% or more of copper. That is, as long as it contains 50% or more of copper, it is included in the present invention even if a substance other than copper is included. Examples thereof include copper alone, copper alloy material containing copper, surface-treated copper such as chromate, and plated copper.
 本発明における銅として、具体的には電子基板、リードフレーム等の電子部品、装飾品、建材等に使用される箔(電解銅箔、圧延銅箔)、めっき膜(無電解銅めっき膜、電解銅めっき膜)、線、棒、管、板など、種々の用途の銅を挙げることができる。上記銅は、黄銅、青銅、白銅、ヒ素銅、ケイ素銅、チタン銅、クロム銅等、その目的に応じて他の元素を含有したものであってもよい。また、近年の高周波の電気信号が流れる銅配線の場合には、銅の表面は平均粗さが0.1μm以下の平滑面であることが好ましい。 As copper in the present invention, specifically, foil (electrolytic copper foil, rolled copper foil), plating film (electroless copper plating film, electrolysis) used for electronic parts such as electronic boards and lead frames, ornaments, building materials, etc. Copper plating film), wires, rods, tubes, plates, and the like can be used for various purposes. The said copper may contain other elements according to the objective, such as brass, bronze, white copper, arsenic copper, silicon copper, titanium copper, chromium copper. In the case of a copper wiring through which a high-frequency electrical signal flows in recent years, the copper surface is preferably a smooth surface having an average roughness of 0.1 μm or less.
 本発明において、銅と密着する樹脂等の絶縁材は、エポキシ樹脂、フェノール樹脂、ポリイミド、ポリウレタン、ビスマレイミド・トリアジン樹脂、変性ポリフェニレンエーテル、シアネートエステル等の熱硬化性樹脂などを挙げることができる。これらの樹脂は官能基によって変性されていてもよく、ガラス繊維、アラミド繊維、その他の繊維等で強化されていてもよい。 In the present invention, examples of the insulating material such as a resin that adheres to copper include thermosetting resins such as epoxy resin, phenol resin, polyimide, polyurethane, bismaleimide / triazine resin, modified polyphenylene ether, and cyanate ester. These resins may be modified with functional groups, and may be reinforced with glass fibers, aramid fibers, other fibers, and the like.
 (II)本発明における銅の表面処理剤に用いられる材料等
 本発明の銅の表面処理剤は、スズ化合物と、錯化剤と、水溶性高分子または水分散性高分子とを含有するものである。さらに、本発明の銅の表面処理剤は、還元剤を含有することが好ましい。さらに、本発明の銅の表面処理剤は、フッ素化合物を含有してもよい。さらに、本発明の銅の表面処理剤は、pH調整剤を含有することが好ましい。さらに、本発明の銅の表面処理剤は、金属化合物を含有することが好ましい。さらに、本発明の銅の表面処理剤は、防錆剤を含有することが好ましい。
(II) Materials Used for Copper Surface Treatment Agent in the Present Invention The copper surface treatment agent of the present invention contains a tin compound, a complexing agent, and a water-soluble or water-dispersible polymer. It is. Furthermore, the copper surface treating agent of the present invention preferably contains a reducing agent. Furthermore, the copper surface treating agent of the present invention may contain a fluorine compound. Furthermore, the copper surface treatment agent of the present invention preferably contains a pH adjuster. Furthermore, the copper surface treating agent of the present invention preferably contains a metal compound. Furthermore, the copper surface treatment agent of the present invention preferably contains a rust inhibitor.
 また、本発明の銅の表面処理剤は、該表面処理剤の特性を阻害しない限り、上記物質以外の物質(以下、「他の物質」という)を含んでいてもよい。他の物質を含める方法としては、特に限定されるものではない。 The copper surface treatment agent of the present invention may contain a substance other than the above substances (hereinafter referred to as “other substances”) as long as the properties of the surface treatment agent are not impaired. It does not specifically limit as a method of including another substance.
 <スズ化合物>
 本発明の銅の表面処理剤は、スズ化合物を含有するものである。スズ化合物としては、後述する溶媒に対して可溶性のものであれば特に限定されないが、その溶解性から酸との塩類が好ましい。例えば、硫酸第一スズ、硫酸第二スズ、ホウフッ化第一スズ、フッ化第一スズ、フッ化第二スズ、硝酸第一スズ、硝酸第二スズ、塩化第一スズ、塩化第二スズ、ギ酸第一スズ、ギ酸第二スズ、酢酸第一スズ、酢酸第二スズ等の第一スズ塩や第二スズ塩などが挙げられる。その中でも、スズ皮膜の形成速度が速いという理由から第一スズ塩が好ましく、後述する溶媒との溶液中での安定性が高く、均一なスズ皮膜を形成することができるという理由から、第二スズ塩が好ましい。さらに、銅のエッチングに悪影響を及ぼさないという理由から硫酸第一スズが特に好ましい。
<Tin compounds>
The copper surface treating agent of the present invention contains a tin compound. Although it will not specifically limit as a tin compound if it is soluble with respect to the solvent mentioned later, Salts with an acid are preferable from the solubility. For example, stannous sulfate, stannic sulfate, stannous borofluoride, stannous fluoride, stannic fluoride, stannous nitrate, stannic nitrate, stannous chloride, stannic chloride, Examples thereof include stannous salts such as stannous formate, stannic formate, stannous acetate, and stannic acetate, and stannic salts. Among them, stannous salt is preferable because of the high formation rate of tin film, and it is highly stable in a solution with a solvent to be described later, so that a uniform tin film can be formed. Tin salts are preferred. Furthermore, stannous sulfate is particularly preferred because it does not adversely affect copper etching.
 上記表面処理剤全体(表面処理剤の溶液全体)に対する上記スズ化合物の濃度は、10ppm以上100,000ppm以下、好ましくは20ppm以上100,000ppm以下、より好ましくは50ppm以上10,000ppm以下、さらに好ましくは500ppm以上10,000ppm以下、特に好ましくは500ppm以上3,000ppm以下である。上記表面処理剤全体に対する上記スズ化合物の濃度が10ppm未満であると、銅および樹脂等の絶縁材との密着性が低下するおそれがあり、好ましくない。一方、100,000ppmを超えると、銅の表面に多量のスズが析出し、スズ皮膜が凝集破壊するおそれがあり、かつ溶液安定性が劣るとの理由から銅の表面にスズ皮膜を形成し難くなるおそれがあり、好ましくない。 The concentration of the tin compound with respect to the whole surface treatment agent (the whole solution of the surface treatment agent) is 10 ppm to 100,000 ppm, preferably 20 ppm to 100,000 ppm, more preferably 50 ppm to 10,000 ppm, more preferably It is 500 ppm or more and 10,000 ppm or less, and particularly preferably 500 ppm or more and 3,000 ppm or less. If the concentration of the tin compound relative to the entire surface treatment agent is less than 10 ppm, the adhesion with an insulating material such as copper and resin may be lowered, which is not preferable. On the other hand, if it exceeds 100,000 ppm, a large amount of tin is deposited on the surface of copper, the tin film may cohesively break, and it is difficult to form a tin film on the surface of copper because the solution stability is poor. This is not preferable.
 <水溶性高分子または水分散性高分子>
 本発明の銅の表面処理剤は、アミノ基、エポキシ基、チオール基、カルボキシル基、スルホン酸基、水酸基、リン酸基、イミノ基およびシラノール基からなる群より選ばれる少なくとも一種の官能基を有する水溶性高分子または水分散性高分子を含有するものである。水溶性高分子または水分散性高分子としては、例えば、アミノシラン、メルカプトシラン、ポリアクリル酸、アクリル樹脂、フェノール樹脂、エポキシ樹脂、ポリアミン樹脂等が挙げられる。その中でも、皮膜結晶物性を阻害し難く、水溶液安定性に優れており、スズ化合物と配位や水素結合をすることによりスズと共析しやすいという理由から、カルボキシル基を含有する水溶性アクリル樹脂が好ましい。カルボキシル基を含有する水溶性アクリル樹脂としては、ポリアクリル酸、ポリマレイン酸、ポリイタコン酸もしくはアクリル酸共重合体、またはその誘導体が挙げられる。絶縁体とも熱による架橋を形成しやすいという理由から、カルボキシル基と、カルボキシル基以外の官能基とを有する水溶性アクリル樹脂がより好ましい。カルボキシル基と、カルボキシル基以外の官能基とを有する水溶性アクリル樹脂としては、アクリル酸、メタクリル酸、マレイン酸、イタコン酸などの酸モノマーと、メタクリル酸2-ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、アクリル酸2-ヒドロキシエチル、アクリル酸ヒドロキシプロピル、アクリルアミド、N-メチロールアクリルアミド、グリシジルメタクリレート、アクリロニトリル、3-メタクリオキシプロピルメチルジメトキシシラン、2-アクリルアミド-2-メチルプロパンスルホン酸などのアクリルモノマーとの共重合体が望ましい。なかでも、アクリル酸2-ヒドロキシエチル、アクリルアミド、N-メチロールアクリルアミドをカルボキシル基以外の官能基を含有するアクリルモノマーとして用いる共重合体がより望ましい。なお、酸モノマーおよびカルボキシル基以外の官能基を含有するアクリルモノマーは、それぞれ1種で用いてもよく、また、いずれかもしくは両方が複数のモノマーを組み合わせて用いてもよい。
<Water-soluble polymer or water-dispersible polymer>
The copper surface treatment agent of the present invention has at least one functional group selected from the group consisting of amino groups, epoxy groups, thiol groups, carboxyl groups, sulfonic acid groups, hydroxyl groups, phosphoric acid groups, imino groups, and silanol groups. It contains a water-soluble polymer or a water-dispersible polymer. Examples of the water-soluble polymer or water-dispersible polymer include aminosilane, mercaptosilane, polyacrylic acid, acrylic resin, phenol resin, epoxy resin, and polyamine resin. Among them, water-soluble acrylic resins containing carboxyl groups are difficult to inhibit the film crystal properties, have excellent aqueous solution stability, and easily co-deposit with tin by coordination or hydrogen bonding with tin compounds. Is preferred. Examples of the water-soluble acrylic resin containing a carboxyl group include polyacrylic acid, polymaleic acid, polyitaconic acid or an acrylic acid copolymer, or derivatives thereof. A water-soluble acrylic resin having a carboxyl group and a functional group other than a carboxyl group is more preferable because it easily forms a crosslink by heat with an insulator. Examples of water-soluble acrylic resins having a carboxyl group and a functional group other than a carboxyl group include acid monomers such as acrylic acid, methacrylic acid, maleic acid, and itaconic acid, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, acrylic Copolymerization with acrylic monomers such as 2-hydroxyethyl acid, hydroxypropyl acrylate, acrylamide, N-methylolacrylamide, glycidyl methacrylate, acrylonitrile, 3-methacryloxypropylmethyldimethoxysilane, 2-acrylamido-2-methylpropanesulfonic acid Coalescence is desirable. Among these, a copolymer using 2-hydroxyethyl acrylate, acrylamide, and N-methylol acrylamide as an acrylic monomer containing a functional group other than a carboxyl group is more desirable. In addition, the acrylic monomer containing functional groups other than an acid monomer and a carboxyl group may be used alone, or one or both may be used in combination of a plurality of monomers.
 また、銅とエポキシ樹脂等の絶縁材との密着性を極めて向上させるという理由から少なくともメルカプトシランもしくはその誘導体を含有することが好ましい。さらに、シランが析出しやすいという理由から少なくともメルカプトシラン縮合体を含有することがより好ましい。 Further, it is preferable to contain at least mercaptosilane or a derivative thereof for the reason of extremely improving the adhesion between copper and an insulating material such as an epoxy resin. Furthermore, it is more preferable to contain at least a mercaptosilane condensate because silane is likely to precipitate.
 上記水溶性高分子または水分散性高分子の分子量は、2,000以上、10,000,000以下、好ましくは20,000以上7,000,000以下、より好ましくは200,000以上5,000,000以下である。上記水溶性高分子または水分散性高分子の分子量が2,000未満であると、析出し難くなり、好ましくない。一方、10,000,000を超えると、表面処理剤の粘度が上昇するため作業性が悪くなり、好ましくない。なお、本明細書等において、水溶性高分子または水分散性高分子の分子量とは重量平均分子量を意味する。重量平均分子量の測定は、ポリスチレンを標準とするゲル・パーミエーションクロマトグラフィー(GPC)法によって求めることができる。 The water-soluble polymer or water-dispersible polymer has a molecular weight of 2,000 or more and 10,000,000 or less, preferably 20,000 or more and 7,000,000 or less, more preferably 200,000 or more and 5,000. , 000 or less. When the water-soluble polymer or water-dispersible polymer has a molecular weight of less than 2,000, it is difficult to precipitate, which is not preferable. On the other hand, if it exceeds 10,000,000, the viscosity of the surface treatment agent increases, so that workability is deteriorated, which is not preferable. In the present specification and the like, the molecular weight of the water-soluble polymer or water-dispersible polymer means the weight average molecular weight. The weight average molecular weight can be measured by a gel permeation chromatography (GPC) method using polystyrene as a standard.
 上記表面処理剤全体(表面処理剤の溶液全体)に対する上記水溶性高分子または水分散性高分子の濃度は、10ppm以上500,000ppm以下、好ましくは20ppm以上100,000ppm以下、より好ましくは50ppm以上3,000ppm以下の範囲内である。上記表面処理剤全体に対する上記水溶性高分子または水分散性高分子の濃度が10ppm未満であると、銅表面に析出しないおそれがあり、好ましくない。一方、500,000ppmを超えると、銅表面での結晶形成を阻害するおそれがあり、好ましくない。 The concentration of the water-soluble polymer or water-dispersible polymer with respect to the whole surface treatment agent (the whole solution of the surface treatment agent) is 10 ppm to 500,000 ppm, preferably 20 ppm to 100,000 ppm, more preferably 50 ppm or more. It is within the range of 3,000 ppm or less. If the concentration of the water-soluble polymer or water-dispersible polymer relative to the entire surface treatment agent is less than 10 ppm, it may not be deposited on the copper surface, which is not preferable. On the other hand, if it exceeds 500,000 ppm, crystal formation on the copper surface may be hindered, which is not preferable.
 <錯化剤>
 本発明の銅の表面処理剤は、錯化剤を含有するものである。ここで、本明細書でいう錯化剤とは、銅に配位してキレートを形成し、銅表面の電位を下げ還元しやすいような状態にし、スズ表面に樹脂等の絶縁材密着層を形成しやすくするものを意味する。錯化剤としては、例えば、チオ尿素、エチレンチオウレア、ジエチルチオ尿素、ジブチルチオ尿素等のチオ尿素誘導体、チオ硫酸、シアン類などが挙げられる。その中でも、上記表面処理剤を溶液で用いた場合に、より一層濁りの少ない安定な溶液とすることができ、かつ銅との錯体を形成しやすく、銅の表面の電位を低くするためより一層スズ皮膜を形成しやすくするという理由から少なくともチオ尿素を含有することが好ましい。なお、錯化剤には、副次的に後述する還元剤としても働くものもある。その中で、チオ尿素は、副次的に後述する還元剤としても働くものである。
<Complexing agent>
The copper surface treating agent of the present invention contains a complexing agent. Here, the complexing agent as used in the present specification means coordination with copper to form a chelate, lowering the potential of the copper surface, making it easy to reduce, and providing an insulating material adhesion layer such as a resin on the tin surface. It means something that is easy to form. Examples of the complexing agent include thiourea derivatives such as thiourea, ethylenethiourea, diethylthiourea, and dibutylthiourea, thiosulfuric acid, and cyanides. Among them, when the surface treatment agent is used in a solution, it can be made a stable solution with less turbidity, and more easily forms a complex with copper, and further lowers the potential on the surface of copper. It is preferable to contain at least thiourea for the purpose of easily forming a tin film. Some complexing agents also work as a reducing agent, which will be described later. Among them, thiourea also functions as a reducing agent which will be described later.
 上記表面処理剤全体(表面処理剤の溶液全体)に対する上記錯化剤の濃度は、好ましくは100ppm以上500,000ppm以下、より好ましくは1,000ppm以上300,000ppm以下、特に好ましくは10,000ppm以上150,000ppm以下の範囲内である。上記表面処理剤全体に対する上記錯化剤の濃度が100ppm未満であると、銅表面に錯体を形成し難くなるおそれがあり、好ましくない。一方、500,000ppmを超えると、銅の溶解性が悪くなり、銅の表面にスズ皮膜を形成する反応を阻害するおそれがあり、好ましくない。 The concentration of the complexing agent with respect to the whole surface treatment agent (the whole solution of the surface treatment agent) is preferably 100 ppm or more and 500,000 ppm or less, more preferably 1,000 ppm or more and 300,000 ppm or less, and particularly preferably 10,000 ppm or more. Within the range of 150,000 ppm or less. If the concentration of the complexing agent relative to the entire surface treatment agent is less than 100 ppm, it is difficult to form a complex on the copper surface, which is not preferable. On the other hand, when it exceeds 500,000 ppm, the solubility of copper is deteriorated, and there is a possibility that the reaction of forming a tin film on the surface of copper may be inhibited, which is not preferable.
 <還元剤>
 本発明の銅の表面処理剤は、還元剤を含有していることが好ましい。還元剤としては、例えば、チオ尿素、ジエチルチオ尿素、水素化ホウ素カリウム、ジメチルアミノボラン、次亜リン酸ナトリウム、ヒドラジン、ホルムアルデヒド等が挙げられる。その中でも、スズ化合物に電子を付加して、スズ単体、酸化スズ等からなるスズ皮膜を形成しやすいという理由から少なくともチオ尿素を含有することが好ましい。
<Reducing agent>
The copper surface treating agent of the present invention preferably contains a reducing agent. Examples of the reducing agent include thiourea, diethylthiourea, potassium borohydride, dimethylaminoborane, sodium hypophosphite, hydrazine, formaldehyde and the like. Among them, it is preferable to contain at least thiourea because it is easy to add a tin compound and to form a tin film made of tin alone, tin oxide, or the like.
 上記表面処理剤全体(表面処理剤の溶液全体)に対する上記還元剤の濃度は、好ましくは100ppm以上500,000ppm以下、より好ましくは1,000ppm以上300,000ppm以下、特に好ましくは10,000ppm以上150,000ppm以下の範囲内である。上記表面処理剤全体に対する上記還元剤の濃度が100ppm未満であると、スズ皮膜を形成しないおそれがあり、好ましくない。一方、500,000ppmを超えると、スズが溶解し難くなるとの理由から銅の表面にスズ皮膜を形成し難くなるおそれがあり、好ましくない。 The concentration of the reducing agent with respect to the whole surface treatment agent (the whole solution of the surface treatment agent) is preferably 100 ppm or more and 500,000 ppm or less, more preferably 1,000 ppm or more and 300,000 ppm or less, and particularly preferably 10,000 ppm or more and 150 or more. Within the range of 1,000 ppm or less. If the concentration of the reducing agent relative to the entire surface treatment agent is less than 100 ppm, a tin film may not be formed, which is not preferable. On the other hand, if it exceeds 500,000 ppm, it may be difficult to form a tin film on the surface of copper because tin is difficult to dissolve, which is not preferable.
 <pH調整剤>
 本発明の銅の表面処理剤は、pHが0.1以上、5以下の範囲内であることが好ましく、そのためにpH調整剤を含有することが好ましい。pH調整剤としては、後述する溶媒に対して可溶性のものであれば特に限定されない。酸のpH調整剤としては、無機酸および有機酸から選択される少なくとも1種の酸を使用することができる。本発明で使用することができる酸としては、例えば、塩酸、硫酸、硝酸、ホウフッ化水素酸、リン酸などの無機酸;ギ酸、酢酸、プロピオン酸、アクリル酸、酪酸等のカルボン酸、メタンスルホン酸、エタンスルホン酸等のアルカンスルホン酸、ベンゼンスルホン酸、フェノールスルホン酸、クレゾールスルホン酸等の芳香族スルホン酸などの有機酸;が挙げられる。その中でも、pHを5以下に調整することができるとの理由から、硫酸、硝酸、塩酸、メタンスルホン酸、リン酸等の強酸が好ましい。
<PH adjuster>
The copper surface treatment agent of the present invention preferably has a pH in the range of 0.1 or more and 5 or less, and therefore preferably contains a pH adjusting agent. The pH adjuster is not particularly limited as long as it is soluble in the solvent described later. As the acid pH adjuster, at least one acid selected from inorganic acids and organic acids can be used. Examples of the acid that can be used in the present invention include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, borofluoric acid, and phosphoric acid; carboxylic acids such as formic acid, acetic acid, propionic acid, acrylic acid, and butyric acid; And organic acids such as alkane sulfonic acid such as acid and ethane sulfonic acid, and aromatic sulfonic acid such as benzene sulfonic acid, phenol sulfonic acid and cresol sulfonic acid. Among these, strong acids such as sulfuric acid, nitric acid, hydrochloric acid, methanesulfonic acid, and phosphoric acid are preferable because the pH can be adjusted to 5 or less.
 上記表面処理剤全体(表面処理剤の溶液全体)に対する上記pH調整剤の濃度は、好ましくは10ppm以上500,000ppm以下、より好ましくは1,000ppm以上300,000ppm以下、特に好ましくは10,000ppm以上200,000ppm以下の範囲内である。上記表面処理剤全体に対する上記pH調整剤の濃度が10ppm未満であると、スズ化合物が溶解し難くなり、好ましくない。一方、500,000ppmを超えると、銅の表面にスズ皮膜を形成する反応を阻害するおそれがあり、好ましくない。 The concentration of the pH adjusting agent with respect to the whole surface treatment agent (the whole solution of the surface treatment agent) is preferably 10 ppm to 500,000 ppm, more preferably 1,000 ppm to 300,000 ppm, and particularly preferably 10,000 ppm or more. It is in the range of 200,000 ppm or less. If the concentration of the pH adjuster relative to the entire surface treatment agent is less than 10 ppm, the tin compound is difficult to dissolve, which is not preferable. On the other hand, if it exceeds 500,000 ppm, the reaction of forming a tin film on the surface of copper may be inhibited, which is not preferable.
 <金属化合物>
 本発明の銅の表面処理剤は、金属化合物を含有していることが好ましい。これにより、本発明の銅の表面処理剤は、金属イオンの緩衝作用により、銅の表面にスズ皮膜を均一・安定に形成することができると考えられる。金属化合物としては、金属塩等が挙げられる。また、金属化合物としては、例えば、銀化合物、アルミニウム化合物、ジルコニル化合物、チタニウム化合物、カルシウム化合物、ナトリウム化合物、マグネシウム化合物、ストロンチウム化合物、マンガン化合物、バナジウム化合物、イットリウム化合物、ニオブ化合物、亜鉛化合物、インジウム化合物、銀化合物、鉄化合物、パラジウム化合物、コバルト化合物、銅化合物等が挙げられる。その中でも、スズと共析出しやすいと考えられ、より緻密なスズ膜を与えるという理由から銀化合物、パラジウム化合物、亜鉛化合物、コバルト化合物、銅化合物が好ましい。さらにその中でも、スズとの合金を形成することができるという理由から銅化合物が特に好ましい。これらの金属化合物は、単独または複数を組み合わせて使用することができる。複数を組み合わせる場合は、銅と銀、または銅とパラジウム、を組み合わせて用いることが好ましい。
<Metal compound>
The copper surface treating agent of the present invention preferably contains a metal compound. Thereby, it is considered that the copper surface treatment agent of the present invention can uniformly and stably form a tin film on the surface of copper by the buffering action of metal ions. Examples of the metal compound include metal salts. Examples of metal compounds include silver compounds, aluminum compounds, zirconyl compounds, titanium compounds, calcium compounds, sodium compounds, magnesium compounds, strontium compounds, manganese compounds, vanadium compounds, yttrium compounds, niobium compounds, zinc compounds, and indium compounds. Silver compounds, iron compounds, palladium compounds, cobalt compounds, copper compounds and the like. Among these, silver compounds, palladium compounds, zinc compounds, cobalt compounds, and copper compounds are preferred because they are considered to be easily precipitated with tin and give a denser tin film. Among them, a copper compound is particularly preferable because an alloy with tin can be formed. These metal compounds can be used alone or in combination. When combining a plurality, it is preferable to use a combination of copper and silver or copper and palladium.
 上記表面処理剤全体(表面処理剤の溶液全体)に対する上記金属化合物の濃度は、好ましくは1ppm以上10,000ppm以下、より好ましくは10ppm以上2,000ppm以下、特に好ましくは100ppm以上1,000ppm以下の範囲内である。上記表面処理剤全体に対する上記金属化合物の濃度が1ppm未満であると、効果が期待できず、好ましくない。一方、10,000ppmを超えると、銅の表面にスズ皮膜を形成する反応を阻害するおそれがあり、好ましくない。 The concentration of the metal compound relative to the whole surface treatment agent (the whole solution of the surface treatment agent) is preferably 1 ppm to 10,000 ppm, more preferably 10 ppm to 2,000 ppm, and particularly preferably 100 ppm to 1,000 ppm. Within range. If the concentration of the metal compound relative to the entire surface treatment agent is less than 1 ppm, the effect cannot be expected, which is not preferable. On the other hand, if it exceeds 10,000 ppm, the reaction of forming a tin film on the surface of copper may be inhibited, which is not preferable.
 <防錆剤>
 本発明の銅の表面処理剤は、防錆剤を含有していることが好ましい。防錆剤としては、例えば、アミノテトラゾール、メチルメルカプトテトラゾール、ベンゾトリアゾール、カルボキシベンゾトリアゾール、アミノメルカプトトリアゾール、イミダゾール、メチルイミダゾール、トリアジンチオール、トリメルカプトトリアジン若しくはこれらの塩、またはこれらの類似化合物;メルカプトシラン;チオグリコール酸;チオグリセロール;グアニルチオ尿素;チオ尿素類;等が挙げられる。その中でも、銅表面での防錆機能と化成性との両立という理由から、テトラゾール、トリアゾール、イミダゾール、チオール類の防錆剤が好ましい。
<Rust preventive>
The copper surface treatment agent of the present invention preferably contains a rust inhibitor. Examples of the rust preventive include aminotetrazole, methyl mercaptotetrazole, benzotriazole, carboxybenzotriazole, aminomercaptotriazole, imidazole, methylimidazole, triazine thiol, trimercaptotriazine or a salt thereof, or a similar compound thereof; mercaptosilane Thioglycolic acid; thioglycerol; guanylthiourea; thioureas; Among them, tetrazole, triazole, imidazole, and thiol rust preventives are preferred because they have both a rust preventive function on the copper surface and chemical conversion.
 上記表面処理剤全体(表面処理剤の溶液全体)に対する上記防錆剤の濃度は、好ましくは10ppm以上100,000ppm以下、より好ましくは20ppm以上10,000ppm以下、特に好ましくは50ppm以上3,000ppm以下の範囲内である。上記表面処理剤全体に対する上記防錆剤の濃度が10ppm未満であると、効果が十分でなく、好ましくない。一方、100,000ppmを超えると、銅の表面にスズ皮膜を形成する反応を阻害するおそれがあり、好ましくない。 The concentration of the rust inhibitor with respect to the entire surface treatment agent (the whole solution of the surface treatment agent) is preferably 10 ppm to 100,000 ppm, more preferably 20 ppm to 10,000 ppm, and particularly preferably 50 ppm to 3,000 ppm. Is within the range. When the concentration of the anticorrosive agent relative to the entire surface treatment agent is less than 10 ppm, the effect is not sufficient, which is not preferable. On the other hand, if it exceeds 100,000 ppm, the reaction of forming a tin film on the surface of copper may be inhibited, which is not preferable.
 <他の物質>
 本発明の銅の表面処理剤は、樹脂等の絶縁材との均一な密着層を形成するための界面活性剤、樹脂等の絶縁材との密着層の形成を促進するための重合開始剤等、必要に応じて、銅の表面にスズ皮膜を形成する反応を阻害しないような種々の添加剤を含有してもよい。
<Other substances>
The copper surface treatment agent of the present invention is a surfactant for forming a uniform adhesion layer with an insulating material such as a resin, a polymerization initiator for promoting the formation of an adhesion layer with an insulating material such as a resin, etc. If necessary, various additives that do not inhibit the reaction of forming a tin film on the surface of copper may be contained.
 例えば、本発明の銅の表面処理剤は、フッ素化合物を含有していてもよい。フッ素化合物としては、例えば、フッ化水素、ホウフッ化水素酸、酸性フッ化ナトリウム、酸性フッ化アンモニウム、フッ化ナトリウム、フッ化アンモニウム、ケイフッ化水素等が挙げられる。その中でも、上記表面処理剤を溶液で用い、pHが0.1以上、5以下の範囲内である場合に、スズイオンが安定的に存在し、より一層濁りの少ない安定な溶液とすることができるという理由からフッ化水素、酸性フッ化ナトリウムが好ましい。 For example, the copper surface treating agent of the present invention may contain a fluorine compound. Examples of the fluorine compound include hydrogen fluoride, borohydrofluoric acid, acidic sodium fluoride, acidic ammonium fluoride, sodium fluoride, ammonium fluoride, and hydrogen silicofluoride. Among these, when the surface treatment agent is used in a solution and the pH is in the range of 0.1 or more and 5 or less, tin ions are stably present, and a stable solution with less turbidity can be obtained. For this reason, hydrogen fluoride and sodium acid fluoride are preferred.
 上記表面処理剤全体(表面処理剤の溶液全体)に対する上記フッ素化合物の濃度は、好ましくは10ppm以上200,000ppm以下、より好ましくは25ppm以上5000ppm以下、特に好ましくは100ppm以上2000ppm以下の範囲内である。上記表面処理剤全体に対する上記フッ素化合物の濃度が10ppm未満であると、スズイオンが安定化し難いおそれがあり、好ましくない。一方、200,000ppmを超えると、銅の表面にスズ皮膜を形成する反応を阻害するおそれがあり、好ましくない。上記表面処理剤全体に対する上記フッ素化合物の濃度が5,000ppm以下であると、銅の表面に形成されるスズ皮膜が厚くなること、多孔質(ポーラス)になること等で不均一になるおそれがないため、より好ましい。 The concentration of the fluorine compound with respect to the entire surface treatment agent (the whole solution of the surface treatment agent) is preferably in the range of 10 ppm to 200,000 ppm, more preferably 25 ppm to 5000 ppm, and particularly preferably 100 ppm to 2000 ppm. . If the concentration of the fluorine compound relative to the entire surface treatment agent is less than 10 ppm, tin ions may be difficult to stabilize, which is not preferable. On the other hand, if it exceeds 200,000 ppm, the reaction of forming a tin film on the surface of copper may be inhibited, which is not preferable. If the concentration of the fluorine compound with respect to the entire surface treatment agent is 5,000 ppm or less, the tin film formed on the copper surface may become thick, become porous (porous), etc. It is more preferable because it is not present.
 上記表面処理剤全体(表面処理剤の溶液全体)に対する上記フッ素化合物に由来する遊離フッ素の濃度は、好ましくは0.1ppm以上100ppm以下、より好ましくは1ppm以上50ppm以下、特に好ましくは2ppm以上20ppm以下の範囲内である。上記表面処理剤全体に対する上記フッ素化合物中の遊離フッ素の濃度が0.1ppm未満であると、スズイオンが安定的に存在し難くなるおそれがあり、好ましくない。一方、100ppmを超えると、銅の表面にスズ皮膜を形成する反応を阻害するおそれがあり、好ましくない。遊離のフッ素の濃度は、フッ素イオン量として通常のイオンメーターにより測定することができる。 The concentration of free fluorine derived from the fluorine compound with respect to the whole surface treatment agent (the whole solution of the surface treatment agent) is preferably 0.1 ppm to 100 ppm, more preferably 1 ppm to 50 ppm, and particularly preferably 2 ppm to 20 ppm. Is within the range. If the concentration of free fluorine in the fluorine compound relative to the entire surface treatment agent is less than 0.1 ppm, tin ions may not be stably present, which is not preferable. On the other hand, if it exceeds 100 ppm, the reaction of forming a tin film on the surface of copper may be hindered, which is not preferable. The concentration of free fluorine can be measured with an ordinary ion meter as the amount of fluorine ions.
 ここで、遊離フッ素(フッ素イオン)について以下に説明する。本発明における銅の表面処理剤の溶液には、遊離フッ素が存在していることが好ましい。上記遊離フッ素を存在させるには、上記表面処理剤にフッ素化合物を含めておく。上記遊離フッ素は、上記表面処理剤の溶液中におけるスズ化合物の安定性を向上させる作用を有している。さらに、上記遊離フッ素は、上記表面処理剤の溶液による表面処理の対象である銅に対しての上記スズ化合物の反応を促進する作用も有している。 Here, free fluorine (fluorine ion) will be described below. It is preferable that free fluorine exists in the solution of the copper surface treatment agent in the present invention. In order to allow the free fluorine to exist, a fluorine compound is included in the surface treatment agent. The said free fluorine has the effect | action which improves the stability of the tin compound in the solution of the said surface treating agent. Furthermore, the free fluorine also has an action of promoting the reaction of the tin compound with respect to copper which is a target of the surface treatment with the solution of the surface treatment agent.
 <スズ化合物の濃度と銅化合物の濃度との比>
 本発明の銅の表面処理剤は、上記スズ化合物の濃度に対する上記銅化合物の濃度の比が好ましくは0.2以上2.0以下の範囲内、より好ましくは0.4以上1.2以下の範囲内、特に好ましくは0.7以上1.0以下の範囲内である。
<Ratio of tin compound concentration to copper compound concentration>
In the copper surface treatment agent of the present invention, the ratio of the copper compound concentration to the tin compound concentration is preferably in the range of 0.2 to 2.0, more preferably 0.4 to 1.2. Within the range, particularly preferably within the range of 0.7 to 1.0.
 <錯化剤の濃度とpH調整剤の濃度との関係>
 本発明の銅の表面処理剤は、上記表面処理剤全体に対する上記錯化剤の濃度が20,000ppm以上、40,000ppm未満の範囲内であり、かつ上記表面処理剤全体に対する上記pH調整剤の濃度が50,000ppm以上であってもよい。これにより、上記pH調整剤の濃度を高くすることに伴い、上記錯化剤の濃度を低くすることができるので、銅の溶解性がよくなり、銅の表面にスズおよび銅を含有する皮膜を形成する反応を促進させることができる。
<Relationship between concentration of complexing agent and concentration of pH adjusting agent>
The copper surface treating agent of the present invention has a concentration of the complexing agent in the range of 20,000 ppm or more and less than 40,000 ppm with respect to the entire surface treating agent, and the pH adjusting agent with respect to the entire surface treating agent. The concentration may be 50,000 ppm or more. As a result, the concentration of the complexing agent can be lowered as the concentration of the pH adjusting agent is increased, so that the solubility of copper is improved and a film containing tin and copper is formed on the surface of copper. The reaction to form can be promoted.
 (III)本発明における銅の表面処理剤の製造方法
 本発明の銅の表面処理剤は、従来公知の混合方法・混合装置により混合される。本発明の銅の表面処理剤に含有される物質を混合する順番は、特に限定されない。また、上記物質は、一度に混合してもよく、分割して混合してもよい。
(III) Manufacturing Method of Copper Surface Treatment Agent in the Present Invention The copper surface treatment agent of the present invention is mixed by a conventionally known mixing method / mixing apparatus. The order of mixing the substances contained in the copper surface treating agent of the present invention is not particularly limited. Moreover, the said substance may be mixed at once, and may be divided and mixed.
 (IV)本発明における銅の表面処理剤を含む溶液
 本発明における銅の表面処理方法は、銅の表面に、上記表面処理剤を溶液として接触させることが好ましい。上記溶液は、溶質である上記表面処理剤と溶媒とから構成される。本発明に用いられる溶媒は、上記表面処理剤を溶解することができれば特に限定されない。例えば、水、有機溶媒などが挙げられる。本発明における銅の表面処理剤は、従来の銅の表面処理剤と比較して、銅の表面をエッチング等の粗化処理しないという点で優れている。
(IV) Solution containing copper surface treatment agent in the present invention In the copper surface treatment method in the present invention, the surface treatment agent is preferably brought into contact with the surface of copper as a solution. The solution is composed of the surface treatment agent as a solute and a solvent. The solvent used in the present invention is not particularly limited as long as it can dissolve the surface treatment agent. For example, water, an organic solvent, etc. are mentioned. The copper surface treating agent in the present invention is superior to the conventional copper surface treating agent in that the copper surface is not subjected to roughening treatment such as etching.
 (V)本発明における銅の表面処理方法
 また、本発明の銅の表面処理方法は、銅の表面に上記表面処理剤を接触させる方法である。銅の表面に上記表面処理剤を接触させる方法としては特に限定されない。例えば、上記表面処理剤を含む溶液に銅を浸漬させる方法、銅の表面に上記表面処理剤を含む溶液をスプレーによって噴射する方法、銅の表面に上記表面処理剤を含む溶液を塗布する方法等が挙げられる。その中でも、銅表面での上記表面処理剤を含む溶液の置換が早い方が好ましいとの理由から、上記表面処理剤を含む溶液に銅を浸漬させて強攪拌を行う方法、銅表面に上記表面処理剤を含む溶液をスプレーによって噴射する方法等が好ましい。なお、上記表面処理剤を含む溶液を攪拌する場合には、例えば50rpm以上、3000rpm以下の範囲内で攪拌することが好ましい。また、上記表面処理剤は、一度に接触させてもよく、分割して接触させてもよい。
(V) The surface treatment method of copper in this invention Moreover, the surface treatment method of copper of this invention is a method of making the said surface treating agent contact the surface of copper. The method for bringing the surface treatment agent into contact with the copper surface is not particularly limited. For example, a method of immersing copper in a solution containing the surface treatment agent, a method of spraying a solution containing the surface treatment agent on the surface of copper by spraying, a method of applying a solution containing the surface treatment agent on the surface of copper, etc. Is mentioned. Among them, a method of immersing copper in a solution containing the surface treatment agent and performing strong stirring because the replacement of the solution containing the surface treatment agent on the copper surface is preferable is faster. A method of spraying a solution containing a treatment agent by spraying is preferred. In addition, when stirring the solution containing the said surface treating agent, it is preferable to stir within the range of 50 rpm or more and 3000 rpm or less, for example. Moreover, the said surface treating agent may be made to contact at once, and may be divided and made to contact.
 銅の表面に上記表面処理剤を接触させる際の温度は、上記表面処理剤の成分等によって決まり特に限定されるものではないが、反応性に優れているとの理由から、好ましくは10℃以上60℃以下、より好ましくは20℃以上50℃以下、特に好ましくは30℃以上40℃以下の範囲内である。 The temperature at which the surface treatment agent is brought into contact with the surface of copper is not particularly limited depending on the components of the surface treatment agent, but is preferably 10 ° C. or higher because of excellent reactivity. It is 60 ° C. or less, more preferably 20 ° C. or more and 50 ° C. or less, particularly preferably 30 ° C. or more and 40 ° C. or less.
 銅の表面に上記表面処理剤を接触させる時間は、上記表面処理剤の成分等によって決まり特に限定されるものではないが、反応性に優れているとの理由から、好ましくは1秒以上600秒以下、より好ましくは5秒以上300秒以下、さらに好ましくは15秒以上180秒以下、さらにより好ましくは60秒以上180秒以下、特に好ましくは60秒以上120秒以下の範囲内である。 The time for which the surface treatment agent is brought into contact with the surface of copper is not particularly limited depending on the components of the surface treatment agent, but is preferably 1 second or more and 600 seconds because of excellent reactivity. In the following, it is more preferably 5 seconds to 300 seconds, further preferably 15 seconds to 180 seconds, still more preferably 60 seconds to 180 seconds, and particularly preferably 60 seconds to 120 seconds.
 本発明における銅の表面処理方法は、銅の表面に上記表面処理剤を接触させる前に、酸洗処理、粗化処理、化成処理、防錆処理、酸化処理、還元処理、脱脂処理から選ばれる少なくとも一種の前処理を行ってもよい。また、本発明における銅の表面処理方法は、銅の表面に上記表面処理剤を接触させる前に、スズ化合物を接触させてもよい。 The copper surface treatment method in the present invention is selected from pickling treatment, roughening treatment, chemical conversion treatment, rust prevention treatment, oxidation treatment, reduction treatment, and degreasing treatment before bringing the surface treatment agent into contact with the copper surface. At least one kind of pretreatment may be performed. In the copper surface treatment method of the present invention, the tin compound may be contacted before the surface treatment agent is brought into contact with the copper surface.
 また、本発明における銅の表面処理方法は、銅の表面に上記表面処理剤を接触させた後に、さらに上記表面処理剤等により後処理してもよい。上記後処理後には、水洗してから乾燥させても、水洗せずに乾燥させてもよい。また、本発明における銅の表面処理方法は、銅の表面に上記表面処理剤を接触させた後に、熱処理等を行ってもよい。また、本発明における銅の表面処理方法は、銅の表面に上記表面処理剤を接触させた後に、防錆剤、pH調整剤、後処理剤等を接触させてもよい。 In the copper surface treatment method of the present invention, after the surface treatment agent is brought into contact with the copper surface, the copper treatment may be further performed with the surface treatment agent or the like. After the post-treatment, it may be washed with water and dried, or may be dried without washing. In the copper surface treatment method of the present invention, the surface treatment agent may be brought into contact with the copper surface, and then heat treatment or the like may be performed. In the copper surface treatment method of the present invention, the surface treatment agent may be brought into contact with the copper surface, and then a rust inhibitor, a pH adjuster, a post-treatment agent, or the like may be brought into contact therewith.
 後処理剤としては、例えば、メルカプトシラン、ビニルシラン、エポキシシラン、スチリルシラン、メタクリロキシシラン、アクリロキシシラン、アミノシラン、ウレイドシラン、クロロプロピルシラン、スルフィドシラン、イソシアネートシラン等のシランカップリング剤およびそれらの混合物、シランカップリング剤縮合物およびそれらの混合物、上記の少なくとも一種の官能基を有する水溶性高分子が好ましい。後処理方法としては、化成処理後、後処理剤をスプレー、浸漬、コーティング等により接触させ、その後水洗するまたは水洗せずに乾燥することにより、コーティング膜を形成してもよい。 Examples of the post-treatment agent include silane coupling agents such as mercaptosilane, vinyl silane, epoxy silane, styryl silane, methacryloxy silane, acryloxy silane, amino silane, ureido silane, chloropropyl silane, sulfide silane, isocyanate silane, and the like. Preference is given to mixtures, silane coupling agent condensates and mixtures thereof, and water-soluble polymers having at least one functional group as described above. As the post-treatment method, after the chemical conversion treatment, the post-treatment agent may be contacted by spraying, dipping, coating, or the like, and then washed with water or dried without washing with water to form a coating film.
 (VI)本発明における銅表面の皮膜
 本発明における銅表面の皮膜は、上記銅の表面処理方法により形成され、銅表面の皮膜におけるスズの重量が1mg/m以上、2,000mg/m以下の範囲内であり、上記皮膜の最表面におけるスズに対する銅のモル比が、好ましくは0.2以上、10以下、より好ましくは0.2以上、2.0以下の範囲内である。
(VI) Copper Surface Film in the Present Invention The copper surface film in the present invention is formed by the above-described copper surface treatment method, and the weight of tin in the copper surface film is 1 mg / m 2 or more and 2,000 mg / m 2. The molar ratio of copper to tin on the outermost surface of the coating is preferably in the range of 0.2 or more and 10 or less, more preferably 0.2 or more and 2.0 or less.
 ここで、皮膜の最表面とは、皮膜表面の極めて薄い層を意味し、具体的には皮膜表面から約10nmまでの深さの層を意味する。皮膜の最表面におけるスズや銅の組成は、ナロースキャンによって測定することができる。 Here, the outermost surface of the film means an extremely thin layer on the surface of the film, and specifically means a layer having a depth of about 10 nm from the surface of the film. The composition of tin or copper on the outermost surface of the film can be measured by narrow scan.
 上記皮膜におけるスズの重量は、好ましくは1mg/m以上2,000mg/m以下、より好ましくは20mg/m以上2,000mg/m以下、さらに好ましくは50mg/m以上1,500mg/m以下、特に好ましくは10mg/m以上1,000mg/m以下の範囲内である。 The weight of tin in the coating is preferably 1 mg / m 2 or more and 2,000 mg / m 2 or less, more preferably 20 mg / m 2 or more and 2,000 mg / m 2 or less, and even more preferably 50 mg / m 2 or more and 1,500 mg. / M 2 or less, particularly preferably in the range of 10 mg / m 2 or more and 1,000 mg / m 2 or less.
 (VII)本発明における銅張り材料
 本発明の銅張り材料は、上記銅の表面処理方法により表面処理されてなるものである。上記銅の表面処理方法により表面処理される前の銅張り材料としては、一般的な電子基板、リードフレーム等の電子部品、装飾品、建材等を挙げることができる。本発明の銅張り材料は、銅の表面全体が上記表面処理方法により表面処理されているものに限定されず、銅の表面の一部が上記表面処理方法により表面処理されているものも本発明に含まれる。
(VII) Copper-clad material in the present invention The copper-clad material of the present invention is surface-treated by the above-described copper surface treatment method. Examples of the copper-clad material before the surface treatment by the copper surface treatment method include electronic parts such as general electronic substrates and lead frames, ornaments, and building materials. The copper-clad material of the present invention is not limited to those in which the entire surface of copper is surface-treated by the above-mentioned surface treatment method, and those in which a part of the surface of copper is surface-treated by the above-mentioned surface treatment method are also included in the present invention. include.
 (VIII)本発明における多層配線基板
 本発明の多層配線基板(ビルドアップ配線基板)は、上記銅張り材料を備えているものである。本発明の多層配線基板は、従来公知の多層配線基板の製造方法により製造されるものである。具体的には、表面部が銅からなる導電層を有する内層基板が、樹脂等の絶縁材を挟んで他の内層基板と積層プレスされることにより製造される。多層配線基板(ビルドアップ配線基板)には、一括ラミネーション方式のビルドアップ基板と、シーケンシャルビルドアップ方式のビルドアップ基板とがある。
(VIII) Multilayer wiring board in the present invention The multilayer wiring board (build-up wiring board) of the present invention comprises the above copper-clad material. The multilayer wiring board of the present invention is manufactured by a conventionally known method for manufacturing a multilayer wiring board. Specifically, an inner layer substrate having a conductive layer whose surface is made of copper is manufactured by being laminated and pressed with another inner layer substrate with an insulating material such as resin interposed therebetween. The multilayer wiring board (build-up wiring board) includes a batch lamination type build-up board and a sequential build-up type build-up board.
 本発明における多層配線基板には、最外層に上記銅張り材料を備えている外層基板および単層基板を含む。また、上記外層基板には、最外層面に上記銅張り材料を片面または両面に備えている片面または両面の外層基板を含む。 The multilayer wiring board in the present invention includes an outer layer board and a single layer board provided with the copper-clad material in the outermost layer. The outer layer substrate includes a single-sided or double-sided outer layer substrate having the copper-clad material on one or both sides on the outermost layer surface.
 以下、実施例および比較例により、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
 〔実施例1〕
 <銅の表面処理工程>
 厚さ35μmまたは18μmの電解銅箔(古河サーキットフォイル株式会社製、商品名:「F-WS箔」)を、水道水で希釈した硫酸および過酸化水素の水溶液(硫酸の濃度3%、過酸化水素の濃度1%)に30℃・60秒の条件で浸漬させた後、水道水で洗浄した。
[Example 1]
<Copper surface treatment process>
An aqueous solution of sulfuric acid and hydrogen peroxide (3% sulfuric acid concentration, peroxidation) obtained by diluting 35 μm or 18 μm thick electrolytic copper foil (Furukawa Circuit Foil Co., Ltd., trade name: “F-WS foil”) with tap water After being immersed in hydrogen at a concentration of 1% at 30 ° C. for 60 seconds, it was washed with tap water.
 次に、上記処理を行った電解銅箔を、所定の表面処理剤(成分等については後述する)の溶液に40℃・60秒の条件で浸漬させた後、水道水で洗浄し、80℃・5分の条件で乾燥させた。 Next, the electrolytic copper foil subjected to the above treatment was immersed in a solution of a predetermined surface treatment agent (components will be described later) under conditions of 40 ° C. and 60 seconds, then washed with tap water, and 80 ° C. -Dried for 5 minutes.
 <所定の表面処理剤の成分等>
 上記所定の表面処理剤には、スズ化合物としての硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm、試薬)と、錯化剤としてのチオ尿素(表面処理剤全体に対するチオ尿素の濃度:50,000ppm、試薬)と、水溶性高分子としてのポリアクリル酸(分子量2,000,000、表面処理剤全体に対するポリアクリル酸の濃度:1,000ppm、試薬)とを含めた。ここで、pHメーター(株式会社堀場製作所製、商品名「F-21」)によりpHを測定したところ、pHは3であった。
<Components of predetermined surface treatment agent>
The predetermined surface treatment agent includes stannous sulfate as a tin compound (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm, reagent) and thiourea as a complexing agent (thio with respect to the whole surface treatment agent). Urea concentration: 50,000 ppm, reagent) and polyacrylic acid as a water-soluble polymer (molecular weight 2,000,000, concentration of polyacrylic acid relative to the entire surface treatment agent: 1,000 ppm, reagent) . Here, when the pH was measured with a pH meter (trade name “F-21” manufactured by Horiba, Ltd.), the pH was 3.
 <多層配線基板製造工程>
 得られた電解銅箔と樹脂等の絶縁材との密着性を評価するため、上記電解銅箔の両面にビルドアップ配線板用絶縁材[A材(松下電工株式会社製、FR-5)、B材(味の素株式会社製、パッケージ用絶縁材AGF-GX13)]を重ねて、150℃・20kg/m→150℃・30kg/m・0.5時間→180℃・30kg/m・1.5時間の条件で加熱しながら積層プレスし、その後に、80℃・1.5時間の条件で冷却した。その後プレスを終了し、20℃・20分間の条件で冷却した。また、A材は35μm銅箔で測定し、B材は絶縁材の密着性が高いため、18μ銅箔で測定した。
<Multilayer wiring board manufacturing process>
In order to evaluate the adhesion between the obtained electrolytic copper foil and an insulating material such as resin, build-up wiring board insulating materials [A material (manufactured by Matsushita Electric Works, FR-5), B material (Ajinomoto Co., insulation AGF-GX13 package) overlapping the], 150 ℃ · 20kg / m 2 → 150 ℃ · 30kg / m 2 · 0.5 hours → 180 ℃ · 30kg / m 2 · The laminate was pressed under heating for 1.5 hours, and then cooled under conditions of 80 ° C. and 1.5 hours. Thereafter, the press was terminated, and cooling was performed at 20 ° C. for 20 minutes. Further, the A material was measured with a 35 μm copper foil, and the B material was measured with an 18 μ copper foil because the insulating material had high adhesion.
 <銅の表面処理後の物性>
 (1)銅の表面処理後における電解銅箔のエッチング量
 銅の表面処理後における電解銅箔のエッチング量は、精密天秤により、エッチング前後の重量変化を測定して求めた。その結果、エッチング量が0.1g/m未満である状態を「○」とし、0.1g/m以上1g/m以下である状態を「△」とし、1g/mを超える状態を「×」とした。
<Physical properties after surface treatment of copper>
(1) The etching amount of the electrolytic copper foil after the copper surface treatment The etching amount of the electrolytic copper foil after the copper surface treatment was obtained by measuring the weight change before and after the etching with a precision balance. As a result, the state where the etching amount is less than 0.1 g / m 2 is set as “◯”, the state where the etching amount is 0.1 g / m 2 or more and 1 g / m 2 or less is set as “Δ”, and the state exceeding 1 g / m 2 Was marked “x”.
 (2)銅の表面処理後における電解銅箔のSEM外観
 銅の表面処理後における電解銅箔の外観は、SEM(Scanning Electron Microscope、日本電子株式会社製、商品名:「JSM5310」)により、倍率を1000倍および5000倍にして目視にて評価した。その結果、凹凸がない(平坦な)状態を「○」とし、凹凸がある状態を「×」とした。
(2) SEM appearance of electrolytic copper foil after copper surface treatment The external appearance of the electrolytic copper foil after copper surface treatment is determined by SEM (Scanning Electron Microscope, manufactured by JEOL Ltd., trade name: “JSM5310”). Was 1000 times and 5000 times and evaluated visually. As a result, the state without unevenness (flat) was set as “◯”, and the state with unevenness was set as “x”.
 (3)銅の表面処理後における電解銅箔のスズ・炭素の皮膜量
 銅の表面処理後における電解銅箔のスズ・炭素の皮膜量は、蛍光X線(株式会社島津製作所製、商品名:「XRF1700」)による測定により、スズ元素もしくは炭素元素の量として測定した。
(3) Tin / carbon coating amount of electrolytic copper foil after copper surface treatment The amount of tin / carbon coating of electrolytic copper foil after copper surface treatment was measured by fluorescent X-ray (manufactured by Shimadzu Corporation, trade name: It was measured as the amount of tin element or carbon element by measurement according to “XRF1700”).
 (4)銅の表面処理後における電解銅箔を備えた多層配線基板での銅箔と樹脂等の絶縁材との密着性
 多層配線基板の銅箔と樹脂等の絶縁材との密着性、即ち多層配線基板における絶縁材からの銅箔の引き剥がし強さは、万能試験機(株式会社エー・アンド・デイ製、商品名:「テンシロン」)により、JIS C 6481に準拠してロードセル100kg/m、レンジ2%、クロスヘッドスピード50mm/min、チャートスピード20mm/minの条件で測定した。なお、絶縁材としてA材を用いた場合には銅箔として厚さ35μmのものを用い、絶縁材としてB材を用いた場合には銅箔として厚さ18μmのものを用いた。
(4) Adhesiveness between copper foil and insulating material such as resin in multilayer wiring board provided with electrolytic copper foil after surface treatment of copper Adhesion between copper foil of multilayer wiring board and insulating material such as resin, The peel strength of the copper foil from the insulating material in the multilayer wiring board is 100 kg / m in load cell according to JIS C 6481 using a universal testing machine (manufactured by A & D Co., Ltd., trade name: “Tensilon”). 2. Measurement was performed under conditions of a range of 2%, a crosshead speed of 50 mm / min, and a chart speed of 20 mm / min. When the A material was used as the insulating material, a copper foil having a thickness of 35 μm was used, and when the B material was used as the insulating material, a copper foil having a thickness of 18 μm was used.
 (5)上記物性の評価結果
 上記物性の評価結果を表1に示す。
(5) Evaluation results of the above physical properties Table 1 shows the evaluation results of the above physical properties.
 〔実施例2〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)に変更したこと以外は、実施例1と同様の操作を行った。
[Example 2]
Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) The same operation as Example 1 was performed except having changed into.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例3〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm、試薬)を添加したこと以外は、実施例1と同様の操作を行った。
Example 3
Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) The same operation as in Example 1 was performed except that hydrogen fluoride as a fluorine compound (hydrogen fluoride concentration with respect to the entire surface treatment agent: 500 ppm, reagent) was added.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例4〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:50,000ppm)からジエチルチオ尿素(表面処理剤全体に対するジエチルチオ尿素の濃度:50,000ppm、試薬)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加したこと以外は、実施例1と同様の操作を行った。
Example 4
Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) And the complexing agent was changed from thiourea (concentration of thiourea to the entire surface treatment agent: 50,000 ppm) to diethylthiourea (concentration of diethylthiourea to the entire surface treatment agent: 50,000 ppm, reagent), and The same operation as in Example 1 was performed except that hydrogen fluoride as a fluorine compound (the concentration of hydrogen fluoride with respect to the entire surface treatment agent: 500 ppm) was added.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例5〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:10,000ppm)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:10,000ppm)を添加したこと以外は、実施例1と同様の操作を行った。
Example 5
The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 10, 000 ppm), and the same operation as in Example 1 was performed except that hydrogen fluoride as a fluorine compound (the concentration of hydrogen fluoride with respect to the entire surface treatment agent: 10,000 ppm) was added.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例6〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)に変更し、水溶性高分子をポリアクリル酸(分子量2,000,000、表面処理剤全体に対するポリアクリル酸の濃度:1,000ppm)からポリアクリル酸(分子量2,000,000、表面処理剤全体に対するポリアクリル酸の濃度:200ppm)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加したこと以外は、実施例1と同様の操作を行った。
Example 6
Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) The water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, concentration of polyacrylic acid to the whole surface treatment agent: 1,000 ppm) to polyacrylic acid (molecular weight 2,000,000, surface treatment agent). The operation was the same as in Example 1 except that the polyacrylic acid concentration relative to the whole was changed to 200 ppm) and hydrogen fluoride as a fluorine compound was further added (hydrogen fluoride concentration relative to the entire surface treatment agent: 500 ppm). Went.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例7〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)に変更し、水溶性高分子をポリアクリル酸(分子量2,000,000、表面処理剤全体に対するポリアクリル酸の濃度:1,000ppm)からポリアクリル酸(分子量2,000,000、表面処理剤全体に対するポリアクリル酸の濃度:5,000ppm)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加したこと以外は、実施例1と同様の操作を行った。
Example 7
Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) The water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, concentration of polyacrylic acid to the whole surface treatment agent: 1,000 ppm) to polyacrylic acid (molecular weight 2,000,000, surface treatment agent). The same as in Example 1, except that the polyacrylic acid concentration relative to the whole was changed to 5,000 ppm, and hydrogen fluoride as a fluorine compound (hydrogen fluoride concentration relative to the entire surface treatment agent: 500 ppm) was added. Was performed.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例8〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)、pH調整剤としての硫酸(表面処理剤全体に対する硫酸の濃度:5,000ppm)を添加したこと以外は、実施例1と同様の操作を行った。
Example 8
Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) In addition, hydrogen fluoride as a fluorine compound (hydrogen fluoride concentration relative to the entire surface treatment agent: 500 ppm) and sulfuric acid as a pH adjuster (sulfuric acid concentration relative to the entire surface treatment agent: 5,000 ppm) were added. Except that, the same operation as in Example 1 was performed.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは1であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 1.
 〔実施例9〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加し、pHを水酸化ナトリウムで5.0に調整したこと以外は、実施例1と同様の操作を行った。
Example 9
Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) Example 1 except that hydrogen fluoride as a fluorine compound (concentration of hydrogen fluoride with respect to the entire surface treatment agent: 500 ppm) was added and the pH was adjusted to 5.0 with sodium hydroxide. The same operation was performed.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは5であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 5.
 〔実施例10〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)に変更し、水溶性高分子をポリアクリル酸(分子量2,000,000、表面処理剤全体に対するポリアクリル酸の濃度:1,000ppm)からポリアクリル酸(分子量200,000、表面処理剤全体に対するポリアクリル酸の濃度:1,000ppm、試薬)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加したこと以外は、実施例1と同様の操作を行った。
Example 10
Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) The water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, concentration of polyacrylic acid to the whole surface treatment agent: 1,000 ppm) to polyacrylic acid (molecular weight 200,000, to the whole surface treatment agent). The concentration was changed to polyacrylic acid concentration: 1,000 ppm, reagent, and hydrogen fluoride as a fluorine compound (hydrogen fluoride concentration with respect to the entire surface treatment agent: 500 ppm) was added, as in Example 1. Was performed.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例11〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)に変更し、水溶性高分子をポリアクリル酸(分子量2,000,000、表面処理剤全体に対するポリアクリル酸の濃度:1,000ppm)からポリアクリル酸(分子量20,000、表面処理剤全体に対するポリアクリル酸の濃度:1,000ppm、試薬)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加したこと以外は、実施例1と同様の操作を行った。
Example 11
Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) The water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, concentration of polyacrylic acid to the whole surface treatment agent: 1,000 ppm) to polyacrylic acid (molecular weight 20,000, to the whole surface treatment agent). The concentration was changed to polyacrylic acid concentration: 1,000 ppm, reagent, and hydrogen fluoride as a fluorine compound (hydrogen fluoride concentration with respect to the entire surface treatment agent: 500 ppm) was added, as in Example 1. Was performed.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例12〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)に変更し、水溶性高分子をポリアクリル酸(分子量2,000,000、表面処理剤全体に対するポリアクリル酸の濃度:1,000ppm)からアクリル酸とアクリル酸2-ヒドロキシエチルとのコポリマー(アクリル酸とアクリル酸2-ヒドロキシエチルとのモル比 7:3、分子量200,000、表面処理剤全体に対する該コポリマーの濃度:1,000ppm)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加したこと以外は、実施例1と同様の操作を行った。
Example 12
Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) The water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, concentration of polyacrylic acid to the whole surface treatment agent: 1,000 ppm) to a copolymer of acrylic acid and 2-hydroxyethyl acrylate (acrylic). The molar ratio of the acid to 2-hydroxyethyl acrylate was changed to 7: 3, the molecular weight was 200,000, and the concentration of the copolymer with respect to the whole surface treatment agent was 1,000 ppm. Further, hydrogen fluoride as a fluorine compound (surface treatment) The same operation as in Example 1 was performed except that the concentration of hydrogen fluoride with respect to the whole agent: 500 ppm) was added.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例13〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)に変更し、水溶性高分子をポリアクリル酸(分子量2,000,000、表面処理剤全体に対するポリアクリル酸の濃度:1,000ppm)からアミノ変性エポキシ樹脂(表面処理剤全体に対するアミノ変性エポキシ樹脂の濃度:1,000ppm、株式会社アデカ製、商品名「アデカレジンEP4100」)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加したこと以外は、実施例1と同様の操作を行った。
Example 13
Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) The water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, concentration of polyacrylic acid to the whole surface treatment agent: 1,000 ppm) to amino-modified epoxy resin (amino-modified epoxy resin to the whole surface treatment agent) Concentration: 1,000 ppm, manufactured by ADEKA CORPORATION, trade name “ADEKA RESIN EP4100”), and further, hydrogen fluoride as a fluorine compound (concentration of hydrogen fluoride with respect to the whole surface treatment agent: 500 ppm) was added. The same operation as in Example 1 was performed.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例14〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)に変更し、水溶性高分子をポリアクリル酸(分子量2,000,000、表面処理剤全体に対するポリアクリル酸の濃度:1,000ppm)から水溶性高分子としてのエポキシシラン(信越化学工業株式会社製、商品名:「KBM403」)の50%エタノール溶液(表面処理剤全体に対するエポキシシランの濃度:1,000ppm)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加したこと以外は、実施例1と同様の操作を行った。
Example 14
Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) The water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, polyacrylic acid concentration to the whole surface treatment agent: 1,000 ppm) to epoxy silane (Shin-Etsu Chemical Co., Ltd.) as a water-soluble polymer. The product was changed to a 50% ethanol solution (product name: “KBM403”) (concentration of epoxysilane with respect to the entire surface treatment agent: 1,000 ppm), and hydrogen fluoride as a fluorine compound (hydrogen fluoride with respect to the entire surface treatment agent) The same operation as in Example 1 was performed except that 500 ppm) was added.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例15〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)に変更し、水溶性高分子をポリアクリル酸(分子量2,000,000、表面処理剤全体に対するポリアクリル酸の濃度:1,000ppm)からポリアクリル酸5重量%にエポキシシラン(信越化学工業株式会社製、商品名:「KBM403」)1重量%を添加して室温で30分間攪拌し、ポリアクリル酸をシラン変性して得られたシラン変性ポリアクリル酸(分子量200,000、表面処理剤全体に対するシラン変性ポリアクリル酸の濃度:1,000ppm)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加したこと以外は、実施例1と同様の操作を行った。
Example 15
Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) The water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, concentration of polyacrylic acid to the entire surface treatment agent: 1,000 ppm) to 5% polyacrylic acid by epoxysilane (Shin-Etsu Chemical Co., Ltd.) A silane-modified polyacrylic acid (molecular weight 200,000, whole surface treatment agent) obtained by adding 1% by weight of a product made by the company, trade name: “KBM403”) and stirring for 30 minutes at room temperature to silane-modify polyacrylic acid. The concentration of silane-modified polyacrylic acid with respect to the surface is changed to 1,000 ppm, and hydrogen fluoride as a fluorine compound (for the entire surface treatment agent) The concentration of hydrogen fluoride that: except for the addition of 500 ppm), were subjected to the same procedure as in Example 1.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例16〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)、金属化合物としての塩化銀(表面処理剤全体に対する塩化銀の濃度:20ppm、試薬)を添加したこと以外は、実施例1と同様の操作を行った。
Example 16
Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) contained in the predetermined surface treatment agent In addition, hydrogen fluoride as a fluorine compound (concentration of hydrogen fluoride with respect to the entire surface treatment agent: 500 ppm) and silver chloride as a metal compound (concentration of silver chloride with respect to the entire surface treatment agent: 20 ppm, reagent) Except that, the same operation as in Example 1 was performed.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例17〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)、金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:100ppm、試薬)を添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.5であった)。
Example 17
Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) In addition, hydrogen fluoride as a fluorine compound (hydrogen fluoride concentration relative to the entire surface treatment agent: 500 ppm) and copper sulfate as a metal compound (copper sulfate concentration relative to the entire surface treatment agent: 100 ppm, reagent) added Except that, the same operation as in Example 1 was performed (the ratio of the concentration of the copper compound to the concentration of the tin compound in the surface treatment agent was 0.5).
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例18〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:1,000ppm)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:1,000ppm)、金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:500ppm)を添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.5であった)。
Example 18
The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 1, In addition, hydrogen fluoride as a fluorine compound (concentration of hydrogen fluoride with respect to the whole surface treatment agent: 1,000 ppm), copper sulfate as a metal compound (concentration of copper sulfate with respect to the whole surface treatment agent: 500 ppm) The same operation as in Example 1 was performed except that the concentration of the copper compound to the concentration of the tin compound in the surface treatment agent was 0.5.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例19〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:2,000ppm)、金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:1,000ppm)を添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.5であった)。
Example 19
The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), hydrogen fluoride as a fluorine compound (hydrogen fluoride concentration relative to the entire surface treatment agent: 2,000 ppm), copper sulfate as a metal compound (copper sulfate concentration relative to the entire surface treatment agent: 1, (000 ppm) was added, except that the same operation as in Example 1 was performed (the ratio of the concentration of the copper compound to the concentration of the tin compound in the surface treatment agent was 0.5).
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例20〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:2,000ppm)、金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:1,000ppm)、pH調整剤としての硫酸(表面処理剤全体に対する硫酸の濃度:5,000ppm)を添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.5であった)。
Example 20
The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), hydrogen fluoride as a fluorine compound (hydrogen fluoride concentration relative to the entire surface treatment agent: 2,000 ppm), copper sulfate as a metal compound (copper sulfate concentration relative to the entire surface treatment agent: 1, 000 ppm), and the same operation as in Example 1 was carried out except that sulfuric acid as a pH adjuster (sulfuric acid concentration relative to the entire surface treatment agent: 5,000 ppm) was added (the tin compound in the surface treatment agent). The ratio of the concentration of the copper compound to the concentration was 0.5).
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは1であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 1.
 〔実施例21〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:5,000ppm)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:5,000ppm)、金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:2,500ppm)を添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.5であった)。
Example 21
The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 5, 000 ppm), hydrogen fluoride as a fluorine compound (hydrogen fluoride concentration relative to the entire surface treatment agent: 5,000 ppm), copper sulfate as a metal compound (copper sulfate concentration relative to the entire surface treatment agent: 2, The same operation as in Example 1 was performed except that (500 ppm) was added (the ratio of the concentration of the copper compound to the concentration of the tin compound in the surface treatment agent was 0.5).
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例22〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:1,000ppm)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:1,000ppm)、金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:200ppm)を添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.2であった)。
[Example 22]
The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 1, 000ppm), hydrogen fluoride as fluorine compound (hydrogen fluoride concentration with respect to the entire surface treatment agent: 1,000ppm), copper sulfate as metal compound (concentration of copper sulfate with respect to the entire surface treatment agent: 200ppm) The same operation as in Example 1 was performed except that the concentration of the copper compound with respect to the concentration of the tin compound in the surface treatment agent was 0.2.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例23〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)に変更し、水溶性高分子をポリアクリル酸(分子量2,000,000、表面処理剤全体に対するポリアクリル酸の濃度:1,000ppm)からポリアクリル酸(分子量2,000、表面処理剤全体に対するポリアクリル酸の濃度:1,000ppm、試薬)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加したこと以外は、実施例1と同様の操作を行った。
Example 23
Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) The water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, concentration of polyacrylic acid to the entire surface treatment agent: 1,000 ppm) to polyacrylic acid (molecular weight 2,000, based on the whole surface treatment agent). The concentration was changed to polyacrylic acid concentration: 1,000 ppm, reagent, and hydrogen fluoride as a fluorine compound (hydrogen fluoride concentration with respect to the entire surface treatment agent: 500 ppm) was added, as in Example 1. Was performed.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例24〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:1,000ppm)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:1,000ppm)、金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:2,000ppm)、pH調整剤としてのメタンスルホン酸(表面処理剤全体に対するメタンスルホン酸の濃度:100,000ppm)を添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は2であった)。
Example 24
The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 1, 000 ppm), hydrogen fluoride as a fluorine compound (hydrogen fluoride concentration relative to the entire surface treatment agent: 1,000 ppm), copper sulfate as a metal compound (copper sulfate concentration relative to the entire surface treatment agent: 2, 000 ppm), except that methanesulfonic acid (concentration of methanesulfonic acid with respect to the entire surface treatment agent: 100,000 ppm) as a pH adjuster was added (the surface treatment agent had the same operation). The ratio of the copper compound concentration to the tin compound concentration was 2).
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは0.5以下であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 0.5 or less.
 〔実施例25〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:5%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:3%)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:400ppm)、pH調整剤としての硫酸(表面処理剤全体に対する硫酸の濃度:100,000ppm)を添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.2であった)。
Example 25
The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), the complexing agent was changed from thiourea (thiourea concentration to the entire surface treatment agent: 5%) to thiourea (thiourea concentration to the entire surface treatment agent: 3%), and a metal compound Example 1 except that copper sulfate (concentration of copper sulfate with respect to the entire surface treatment agent: 400 ppm) and sulfuric acid (concentration of sulfuric acid with respect to the entire surface treatment agent: 100,000 ppm) as a pH adjuster were added. (The ratio of the concentration of the copper compound to the concentration of the tin compound in the surface treatment agent was 0.2).
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは0.5以下であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 0.5 or less.
 〔実施例26〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:5%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:3%)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:400ppm)および硝酸銀(表面処理剤全体に対する硝酸銀の濃度:100ppm)、pH調整剤としての硫酸(表面処理剤全体に対する硫酸の濃度:100,000ppm)を添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.2であった)。
Example 26
The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), the complexing agent was changed from thiourea (thiourea concentration to the entire surface treatment agent: 5%) to thiourea (thiourea concentration to the entire surface treatment agent: 3%), and a metal compound Copper sulfate (concentration of copper sulfate relative to the entire surface treatment agent: 400 ppm) and silver nitrate (concentration of silver nitrate relative to the entire surface treatment agent: 100 ppm), sulfuric acid as a pH adjuster (concentration of sulfuric acid relative to the entire surface treatment agent: 100, 000 ppm) except that the same operation as in Example 1 was performed (the concentration of the copper compound relative to the concentration of the tin compound in the surface treatment agent). It was 0.2).
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは0.5以下であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 0.5 or less.
 〔実施例27〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:5%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:3%)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:400ppm)、pH調整剤としての硫酸(表面処理剤全体に対する硫酸の濃度:100,000ppm)、還元剤としての次亜リン酸ナトリウム(表面処理剤全体に対する次亜リン酸ナトリウムの濃度:2,000ppm)を添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.2であった)。
Example 27
The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), the complexing agent was changed from thiourea (thiourea concentration to the entire surface treatment agent: 5%) to thiourea (thiourea concentration to the entire surface treatment agent: 3%), and a metal compound Copper sulfate (concentration of copper sulfate with respect to the whole surface treatment agent: 400 ppm), sulfuric acid as pH adjuster (concentration of sulfuric acid with respect to the whole surface treatment agent: 100,000 ppm), sodium hypophosphite (surface) as a reducing agent The same operation as in Example 1 was performed except that sodium hypophosphite concentration (2,000 ppm) with respect to the entire treatment agent was added (the above-mentioned sulphate in the surface treatment agent). The concentration ratio of the copper compound to the concentration of compound was 0.2).
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは0.5以下であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 0.5 or less.
 〔実施例28〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:5%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:3%)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:400ppm)、pH調整剤としての硫酸(表面処理剤全体に対する硫酸の濃度:100,000ppm)、防錆剤としてのチオグリセロール(表面処理剤全体に対するチオグリセロールの濃度:5,000ppm)を添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.2であった)。
Example 28
The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), the complexing agent was changed from thiourea (thiourea concentration to the entire surface treatment agent: 5%) to thiourea (thiourea concentration to the entire surface treatment agent: 3%), and a metal compound Copper sulfate (concentration of copper sulfate with respect to the whole surface treatment agent: 400 ppm), sulfuric acid as pH adjuster (concentration of sulfuric acid with respect to the whole surface treatment agent: 100,000 ppm), thioglycerol (surface treatment agent) The same operation as in Example 1 was carried out except that the concentration of thioglycerol with respect to the whole was added (5,000 ppm) (the tin compound in the surface treatment agent) The ratio of the concentration of the copper compound to the concentration was 0.2).
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは0.5以下であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 0.5 or less.
 〔実施例29〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:5%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:3%)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:400ppm)、pH調整剤としてのメタンスルホン酸(表面処理剤全体に対するメタンスルホン酸の濃度:100,000ppm)を添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.2であった)。
Example 29
The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), the complexing agent was changed from thiourea (thiourea concentration to the entire surface treatment agent: 5%) to thiourea (thiourea concentration to the entire surface treatment agent: 3%), and a metal compound Except for adding copper sulfate (concentration of copper sulfate relative to the entire surface treatment agent: 400 ppm) and methanesulfonic acid as a pH adjuster (concentration of methanesulfonic acid relative to the entire surface treatment agent: 100,000 ppm) The same operation as in Example 1 was performed (the ratio of the copper compound concentration to the tin compound concentration in the surface treatment agent was 0.2).
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは0.5以下であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 0.5 or less.
 〔実施例30〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:2,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:5%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:3%)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:400ppm)、pH調整剤としての硫酸(表面処理剤全体に対する硫酸の濃度:100,000ppm)、水溶性高分子としてのポリアクリル酸(分子量20,000、表面処理剤全体に対する当該ポリアクリル酸の濃度:1,000ppm)を添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.2であった)。
Example 30
The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 2, 000 ppm), the complexing agent was changed from thiourea (thiourea concentration to the entire surface treatment agent: 5%) to thiourea (thiourea concentration to the entire surface treatment agent: 3%), and a metal compound Copper sulfate (concentration of copper sulfate with respect to the entire surface treatment agent: 400 ppm), sulfuric acid as pH adjuster (concentration of sulfuric acid with respect to the entire surface treatment agent: 100,000 ppm), polyacrylic acid (molecular weight as a water-soluble polymer) The same operation as in Example 1 was performed except that 20,000 and the concentration of the polyacrylic acid with respect to the whole surface treatment agent: 1,000 ppm were added (Table). The ratio of the concentration of the copper compound to the concentration of the tin compound in the treatment agent was 0.2).
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは0.5以下であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 0.5 or less.
 〔実施例31〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:5,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:5%)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:3%)に変更し、さらに金属化合物としての硫酸銅(表面処理剤全体に対する硫酸銅の濃度:1,000ppm)、pH調整剤としての硫酸(表面処理剤全体に対する硫酸の濃度:100,000ppm)を添加したこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は0.2であった)。
Example 31
The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 5, 000 ppm), the complexing agent was changed from thiourea (thiourea concentration to the entire surface treatment agent: 5%) to thiourea (thiourea concentration to the entire surface treatment agent: 3%), and a metal compound Example 1 except that copper sulfate (concentration of copper sulfate with respect to the whole surface treatment agent: 1,000 ppm) and sulfuric acid as a pH adjuster (concentration of sulfuric acid with respect to the whole surface treatment agent: 100,000 ppm) were added. (The ratio of the copper compound concentration to the tin compound concentration in the surface treatment agent was 0.2).
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは0.5以下であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 0.5 or less.
 〔実施例32〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)に変更し、水溶性高分子をポリアクリル酸(分子量2,000,000、表面処理剤全体に対するポリアクリル酸の濃度:1,000ppm)からアクリル酸とアクリルアミドとのコポリマー(アクリル酸とアクリルアミドとのモル比 7:3、分子量200,000、表面処理剤全体に対する該コポリマーの濃度:1,000ppm)に変更し、さらにフッ素化合物としてのフッ化水素(表面処理剤全体に対するフッ化水素の濃度:500ppm)を添加したこと以外は、実施例1と同様の操作を行った。
[Example 32]
Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) The water-soluble polymer was changed from polyacrylic acid (molecular weight 2,000,000, polyacrylic acid concentration to the whole surface treatment agent: 1,000 ppm) to a copolymer of acrylic acid and acrylamide (acrylic acid and acrylamide The molar ratio was changed to 7: 3, the molecular weight was 200,000, the concentration of the copolymer with respect to the whole surface treatment agent: 1,000 ppm, and hydrogen fluoride as a fluorine compound (the concentration of hydrogen fluoride with respect to the whole surface treatment agent: 500 ppm) The same operation as in Example 1 was carried out except that was added.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔比較例1〕
 所定の表面処理剤に含まれるスズ化合物としての硫酸第一スズと、フッ素化合物としてのフッ化水素と、錯化剤としてのチオ尿素と、水溶性高分子としてのポリアクリル酸とを、塩化銅(表面処理剤全体に対する塩化銅の濃度:10%、試薬)と、酢酸(表面処理剤全体に対する酢酸の濃度:10%、試薬)と、アミノテトラゾール(表面処理剤全体に対するアミノテトラゾールの濃度:0.3%、試薬)とに変更したこと以外は、実施例1と同様の操作を行った。上記物性の評価結果を表1に示す。
[Comparative Example 1]
Copper chloride containing stannous sulfate as a tin compound, hydrogen fluoride as a fluorine compound, thiourea as a complexing agent, and polyacrylic acid as a water-soluble polymer contained in a predetermined surface treatment agent (Concentration of copper chloride with respect to the whole surface treatment agent: 10%, reagent), acetic acid (concentration of acetic acid with respect to the whole surface treatment agent: 10%, reagent), and aminotetrazole (concentration of aminotetrazole with respect to the whole surface treatment agent: 0) The same operation as in Example 1 was performed, except that the change was made to. The evaluation results of the physical properties are shown in Table 1.
 〔比較例2〕
 所定の表面処理剤に含まれるスズ化合物としての硫酸第一スズと、フッ素化合物としてのフッ化水素と、錯化剤としてのチオ尿素と、水溶性高分子としてのポリアクリル酸とを、硫酸(表面処理剤全体に対する硫酸の濃度:10%、試薬)と、過酸化水素(表面処理剤全体に対する過酸化水素の濃度:3%、試薬)と、アミノテトラゾール(表面処理剤全体に対するアミノテトラゾールの濃度:0.3%)とに変更したこと以外は、実施例1と同様の操作を行った。上記物性の評価結果を表1に示す。
[Comparative Example 2]
Stannous sulfate as a tin compound, hydrogen fluoride as a fluorine compound, thiourea as a complexing agent, and polyacrylic acid as a water-soluble polymer contained in a predetermined surface treatment agent, sulfuric acid ( Concentration of sulfuric acid relative to the entire surface treatment agent: 10%, reagent), hydrogen peroxide (concentration of hydrogen peroxide relative to the entire surface treatment agent: 3%, reagent), and aminotetrazole (concentration of aminotetrazole relative to the entire surface treatment agent) : 0.3%) The same operation as in Example 1 was performed except that the change was made. The evaluation results of the physical properties are shown in Table 1.
 〔比較例3〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)に変更し、さらに錯化剤としてのチオ尿素を添加しなかったこと以外は、実施例1と同様の操作を行った。
[Comparative Example 3]
Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) The same operation as in Example 1 was performed except that thiourea as a complexing agent was not added.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔比較例4〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:500ppm)に変更し、さらに水溶性高分子としてのポリアクリル酸を添加しなかったこと以外は、実施例1と同様の操作を行った。
[Comparative Example 4]
Stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate relative to the entire surface treatment agent: 500 ppm) The same operation as in Example 1 was performed except that polyacrylic acid as a water-soluble polymer was not added.
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔比較例5〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:18,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:50,000ppm)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:150,000ppm)に変更し、さらに硫酸(表面処理剤全体に対する硫酸の濃度:220,000ppm)、硫酸ニッケル(表面処理剤全体に対する硫酸ニッケルの濃度:50,000ppm)、硫酸銅(表面処理剤全体に対する硫酸銅の濃度:20,000ppm)、ジエチレングリコール(表面処理剤全体に対するジエチレングリコールの濃度:300,000ppm)を添加し、水溶性高分子としてのポリアクリル酸を添加しなかったこと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は1.1であった)。
[Comparative Example 5]
The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 18, And the complexing agent is changed from thiourea (the concentration of thiourea to the entire surface treatment agent: 50,000 ppm) to thiourea (the concentration of thiourea to the entire surface treatment agent: 150,000 ppm), and Sulfuric acid (concentration of sulfuric acid relative to the entire surface treatment agent: 220,000 ppm), nickel sulfate (concentration of nickel sulfate relative to the entire surface treatment agent: 50,000 ppm), copper sulfate (concentration of copper sulfate relative to the entire surface treatment agent: 20,000 ppm) ), Diethylene glycol (concentration of diethylene glycol with respect to the entire surface treatment agent: 300,000 ppm) In addition, the same operation as in Example 1 was performed except that polyacrylic acid as a water-soluble polymer was not added (ratio of the concentration of the copper compound to the concentration of the tin compound in the surface treatment agent). Was 1.1).
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔比較例6〕
 所定の表面処理剤に含まれるスズ化合物を硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:25ppm)から硫酸第一スズ(表面処理剤全体に対する硫酸第一スズの濃度:18,000ppm)に変更し、錯化剤をチオ尿素(表面処理剤全体に対するチオ尿素の濃度:50,000ppm)からチオ尿素(表面処理剤全体に対するチオ尿素の濃度:150,000ppm)に変更し、さらに硫酸(表面処理剤全体に対する硫酸の濃度:220,000ppm)、硫酸ニッケル(表面処理剤全体に対する硫酸ニッケルの濃度:50,000ppm)、硫酸銅(表面処理剤全体に対する硫酸銅の濃度:20,000ppm)、ジエチレングリコール(表面処理剤全体に対するジエチレングリコールの濃度:300,000ppm)を添加し、水溶性高分子としてのポリアクリル酸を添加せず、後処理として水溶性高分子としてのエポキシシラン(表面処理剤全体に対するエポキシシランの濃度:10,000ppm)を添加した(水洗はしていない)こと以外は、実施例1と同様の操作を行った(表面処理剤中の上記スズ化合物の濃度に対する上記銅化合物の濃度の比は1.1であった)。
[Comparative Example 6]
The tin compound contained in the predetermined surface treatment agent is changed from stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 25 ppm) to stannous sulfate (concentration of stannous sulfate with respect to the whole surface treatment agent: 18, And the complexing agent is changed from thiourea (the concentration of thiourea to the entire surface treatment agent: 50,000 ppm) to thiourea (the concentration of thiourea to the entire surface treatment agent: 150,000 ppm), and Sulfuric acid (concentration of sulfuric acid relative to the entire surface treatment agent: 220,000 ppm), nickel sulfate (concentration of nickel sulfate relative to the entire surface treatment agent: 50,000 ppm), copper sulfate (concentration of copper sulfate relative to the entire surface treatment agent: 20,000 ppm) ), Diethylene glycol (concentration of diethylene glycol with respect to the entire surface treatment agent: 300,000 ppm) In addition, polyacrylic acid as a water-soluble polymer was not added, and epoxy silane as a water-soluble polymer (concentration of epoxy silane with respect to the entire surface treatment agent: 10,000 ppm) was added as a post-treatment (washing with water) (The ratio of the concentration of the copper compound to the concentration of the tin compound in the surface treatment agent was 1.1).
 上記物性の評価結果を表1に示す。ここで、pHメーターによりpHを測定したところ、pHは3であった。 The evaluation results of the above physical properties are shown in Table 1. Here, when the pH was measured with a pH meter, the pH was 3.
 〔実施例のまとめ〕
 表1に、銅の表面処理後における上記物性の評価結果をまとめた。
(Summary of Examples)
Table 1 summarizes the evaluation results of the above physical properties after the surface treatment of copper.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1と実施例2とを比較すると、実施例2では実施例1と比べて、所定の表面処理剤に含まれるスズ化合物としての硫酸第一スズの濃度を高くすることにより、銅箔と樹脂等の絶縁材との密着性が向上するという結果になった。 When Example 1 and Example 2 are compared, in Example 2, compared with Example 1, by increasing the concentration of stannous sulfate as a tin compound contained in the predetermined surface treatment agent, As a result, the adhesion with an insulating material such as resin was improved.
 実施例3と実施例2とを比較すると、実施例3では実施例2と比べて、フッ素化合物としてのフッ化水素の濃度を高くすることにより、銅箔と樹脂等の絶縁材との密着性が向上するという結果になった。 When Example 3 and Example 2 are compared, in Example 3, compared with Example 2, the concentration of hydrogen fluoride as the fluorine compound is increased, whereby the adhesion between the copper foil and an insulating material such as a resin is increased. The result was improved.
 実施例4と実施例3とを比較すると、実施例4では実施例3と比べて、錯化剤をチオ尿素からジエチルチオ尿素に変更しても、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。 Comparing Example 4 and Example 3, in Example 4, compared with Example 3, even when the complexing agent was changed from thiourea to diethylthiourea, sufficient copper foil and insulating material such as resin were sufficient. As a result, it was possible to maintain the adhesion.
 実施例5と実施例1とを比較すると、実施例5では実施例1と比べて、スズ化合物としての硫酸第一スズの濃度を大幅に高くしても、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。 When Example 5 is compared with Example 1, in Example 5, compared with Example 1, even if the concentration of stannous sulfate as a tin compound is significantly increased, copper foil and an insulating material such as a resin As a result, it was possible to maintain sufficient adhesion.
 実施例6と実施例3とを比較すると、実施例6では実施例3と比べて、水溶性高分子としてのポリアクリル酸の濃度を低くしても、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。 Comparing Example 6 and Example 3, in Example 6, compared to Example 3, even when the concentration of polyacrylic acid as a water-soluble polymer was lowered, the copper foil and an insulating material such as a resin As a result, sufficient adhesion could be maintained.
 実施例7と実施例3とを比較すると、実施例7では実施例3と比べて、水溶性高分子としてのポリアクリル酸の濃度を高くすることにより、銅箔と樹脂等の絶縁材との密着性が向上するという結果になった。 When Example 7 and Example 3 are compared, in Example 7, compared with Example 3, by increasing the concentration of polyacrylic acid as a water-soluble polymer, copper foil and an insulating material such as a resin As a result, the adhesion was improved.
 実施例8と実施例3とを比較すると、実施例8では実施例3と比べて、pH調整剤としての硫酸を添加することにより、銅箔と樹脂等の絶縁材との密着性が向上するという結果になった。 Comparing Example 8 and Example 3, in Example 8, the adhesion between the copper foil and the insulating material such as resin is improved by adding sulfuric acid as a pH adjuster as compared with Example 3. It became the result.
 実施例9と実施例3とを比較すると、実施例9では実施例3と比べて、pHを高くしても、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。 Comparing Example 9 and Example 3, in Example 9, compared to Example 3, even when the pH is increased, sufficient adhesion between the copper foil and an insulating material such as a resin can be maintained. It became the result.
 実施例10,11,23と実施例3とを比較すると、実施例10,11,23では実施例3と比べて、水溶性高分子としてのポリアクリル酸の分子量を小さくしても、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。 When Example 10, 11, 23 and Example 3 are compared, even if the molecular weight of the polyacrylic acid as a water-soluble polymer is made small in Example 10, 11, 23 compared with Example 3, it is copper foil. As a result, sufficient adhesion between the resin and an insulating material such as resin can be maintained.
 実施例12,32と実施例10とを比較すると、実施例12,32では実施例10と比べて、水溶性高分子としてカルボキシル基およびカルボキシル基以外の官能基を有する水溶性高分子を添加することにより、銅箔と樹脂等の絶縁材との密着性が向上するという結果になった。 When Examples 12 and 32 are compared with Example 10, in Examples 12 and 32, as compared with Example 10, a water-soluble polymer having a carboxyl group and a functional group other than a carboxyl group is added as a water-soluble polymer. As a result, the adhesion between the copper foil and an insulating material such as resin was improved.
 実施例13,14と実施例3とを比較すると、実施例13,14では実施例3と比べて、水溶性高分子としてポリアクリル酸以外のカルボキシル基を含有しない高分子を添加しても、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。 When Examples 13 and 14 are compared with Example 3, in Examples 13 and 14, even when a polymer that does not contain a carboxyl group other than polyacrylic acid is added as a water-soluble polymer, As a result, sufficient adhesion between the copper foil and an insulating material such as resin can be maintained.
 実施例15~17と実施例3とを比較すると、実施例15~17では実施例3と比べて、シラン、金属化合物等を添加することにより、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。 Comparing Examples 15 to 17 and Example 3, compared to Example 3, Examples 15 to 17 can be obtained by adding a silane, a metal compound, etc. As a result, it was possible to maintain the adhesion.
 実施例18~22,24と実施例3とを比較すると、実施例18~22,24では実施例3と比べて銅化合物としての硫酸銅を添加することにより、錯化剤としてのチオ尿素の濃度が低い場合でも、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。 Comparing Examples 18 to 22 and 24 with Example 3, in Examples 18 to 22 and 24, compared with Example 3, the addition of copper sulfate as a copper compound resulted in the addition of thiourea as a complexing agent. As a result, even when the concentration was low, sufficient adhesion between the copper foil and an insulating material such as resin could be maintained.
 実施例25と実施例20とを比較すると、実施例25では実施例20と比べてフッ素化合物を添加せずにpH調整剤としての硫酸の濃度を高くし、それに伴い錯化剤としてのチオ尿素の濃度を低くすることにより、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。 Comparing Example 25 and Example 20, in Example 25, compared to Example 20, the concentration of sulfuric acid as a pH adjuster was increased without adding a fluorine compound, and accordingly, thiourea as a complexing agent was added. As a result, it was possible to maintain sufficient adhesion between the copper foil and the insulating material such as resin.
 実施例26と実施例25とを比較すると、実施例26では実施例25と比べて金属化合物としての硝酸銀を添加することにより、銅箔と樹脂等の絶縁材との密着性が向上するという結果になった。 When Example 26 and Example 25 are compared, in Example 26, the adhesion between copper foil and an insulating material such as a resin is improved by adding silver nitrate as a metal compound as compared with Example 25. Became.
 実施例27と実施例25とを比較すると、実施例27では実施例25と比べて還元剤としての次亜リン酸ナトリウムを添加することにより、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。 Comparing Example 27 and Example 25, in Example 27, sodium hypophosphite as a reducing agent was added as compared with Example 25, so that sufficient adhesion between the copper foil and an insulating material such as a resin was achieved. As a result, it was possible to maintain sex.
 実施例28と実施例25とを比較すると、実施例28では実施例25と比べて防錆剤としてのチオグリセロールを添加することにより、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。 Comparing Example 28 and Example 25, in Example 28, sufficient adhesion between the copper foil and an insulating material such as a resin can be obtained by adding thioglycerol as a rust inhibitor compared to Example 25. The result was that it could be maintained.
 実施例29と実施例25とを比較すると、実施例29では実施例25と比べてpH調整剤としての硫酸の代わりにメタンスルホン酸を添加することにより、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。 Comparing Example 29 and Example 25, compared with Example 25, in Example 29, methanesulfonic acid was added instead of sulfuric acid as a pH adjuster, so that copper foil and an insulating material such as a resin were used. As a result, sufficient adhesion could be maintained.
 実施例30と実施例25とを比較すると、実施例30では実施例25と比べて水溶性高分子としてのポリアクリル酸を添加することにより、銅箔と樹脂等の絶縁材との密着性が向上するという結果になった。 When Example 30 and Example 25 are compared, in Example 30, compared with Example 25, by adding polyacrylic acid as a water-soluble polymer, the adhesion between the copper foil and an insulating material such as a resin is improved. The result was improved.
 実施例31と実施例25とを比較すると、実施例31では実施例25と比べて銅化合物としての硫酸銅の濃度を高くすることにより、スズ化合物としての硫酸第一スズの濃度が高い場合でも、銅箔と樹脂等の絶縁材との十分な密着性を維持することができるという結果になった。 When Example 31 and Example 25 are compared, in Example 31, the concentration of stannous sulfate as the tin compound is high by increasing the concentration of copper sulfate as the copper compound as compared with Example 25. As a result, sufficient adhesion between the copper foil and an insulating material such as resin can be maintained.
 比較例1,2と実施例1~32とを比較すると、比較例1,2では実施例1~32と比べてスズ化合物等を含んだ表面処理剤を用いておらず、エッチング等の粗化処理(凹凸処理)を行っているので、銅の表面処理後における電解銅箔のSEM外観に凹凸が見られるという結果になった。 Comparing Comparative Examples 1 and 2 with Examples 1 to 32, Comparative Examples 1 and 2 did not use a surface treatment agent containing a tin compound or the like as compared with Examples 1 to 32, and roughened etching and the like. Since the treatment (unevenness treatment) was performed, the result was that unevenness was seen in the SEM appearance of the electrolytic copper foil after the copper surface treatment.
 比較例3と実施例2とを比較すると、比較例3では実施例2と比べて錯化剤としてのチオ尿素を添加しないことにより、銅箔と樹脂等の絶縁材との密着性が低下するという結果になった。 Comparing Comparative Example 3 and Example 2, in Comparative Example 3, the adhesiveness between the copper foil and the insulating material such as resin is reduced by not adding thiourea as a complexing agent as compared with Example 2. It became the result.
 比較例4と実施例2とを比較すると、比較例4では実施例2と比べて水溶性高分子としてのポリアクリル酸を添加しないことにより、銅箔と樹脂等の絶縁材との密着性が低下するという結果になった。 Comparing Comparative Example 4 and Example 2, in Comparative Example 4, the adhesion between the copper foil and an insulating material such as a resin is improved by not adding polyacrylic acid as a water-soluble polymer as compared with Example 2. The result was a decline.
 比較例5,6と実施例1とを比較すると、比較例5,6では実施例1と比べてスズ化合物としての硫酸第一スズの濃度を大幅に高くし、かつ銅イオンとしての硫酸銅(およびニッケル)を添加することにより、銅箔と樹脂等の絶縁材との密着性が大幅に低下するという結果になった。 Comparing Comparative Examples 5 and 6 with Example 1, in Comparative Examples 5 and 6, the concentration of stannous sulfate as a tin compound was significantly increased compared to Example 1, and copper sulfate ( As a result, the adhesion between the copper foil and an insulating material such as a resin is greatly reduced.
 上述した具体的な実施形態および実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内において、いろいろと変更して実施することができるものである。 The specific embodiments and examples described above are merely to clarify the technical contents of the present invention, and should not be construed in a narrow sense as being limited to such specific examples. Various modifications can be made within the spirit of the present invention and the following claims.
 本発明の銅の表面処理剤および表面処理方法は、銅の表面をエッチング等の粗化処理することなく銅と樹脂等の絶縁材との間の密着性を維持することができるため、近年の電子機器・電子部品の高周波化、高密度化等に対応することができる。また、従来の粗化処理(凹凸処理)では、処理後に酸化膜が成長し、電子機器・電子部品としての機能を発揮しないため、多くの場合には後処理として防錆処理を施していた。本発明の銅の表面処理剤は、密着および防錆(不動態化)を同時に行うため、従来の粗化処理と比較して、電子機器・電子部品の生産工程を削減することができる。具体的には、本発明の銅の表面処理剤および表面処理方法は、微細(ファイン)配線を有するプリント配線基板、半導体実装品、液晶デバイス、エレクトロルミネッセンス等の各種電子機器・電子部品に利用することが可能である。 The copper surface treatment agent and surface treatment method of the present invention can maintain the adhesion between copper and an insulating material such as a resin without roughening the surface of the copper, such as etching. It is possible to cope with higher frequency and higher density of electronic devices and electronic parts. Moreover, in the conventional roughening process (unevenness | corrugation process), since the oxide film grew after the process and the function as an electronic device / electronic component is not exhibited, in many cases, the rust prevention process was performed as a post-process. Since the copper surface treating agent of the present invention performs adhesion and rust prevention (passivation) at the same time, the production process of electronic devices and electronic parts can be reduced as compared with the conventional roughening treatment. Specifically, the copper surface treatment agent and surface treatment method of the present invention are used for various electronic devices and electronic parts such as printed wiring boards, semiconductor mounting products, liquid crystal devices, and electroluminescence having fine (fine) wiring. It is possible.

Claims (15)

  1.  スズ化合物と、錯化剤と、水溶性高分子または水分散性高分子とを含有し、
     上記水溶性高分子または水分散性高分子が、アミノ基、エポキシ基、チオール基、カルボキシル基、スルホン酸基、水酸基、リン酸基、イミノ基およびシラノール基からなる群より選ばれる少なくとも一種の官能基を有することを特徴とする銅の表面処理剤。
    Containing a tin compound, a complexing agent, a water-soluble polymer or a water-dispersible polymer,
    The water-soluble polymer or water-dispersible polymer is at least one function selected from the group consisting of an amino group, an epoxy group, a thiol group, a carboxyl group, a sulfonic acid group, a hydroxyl group, a phosphoric acid group, an imino group, and a silanol group. A copper surface treatment agent comprising a group.
  2.  上記水溶性高分子として、少なくともポリアクリル酸、ポリマレイン酸、ポリイタコン酸もしくはアクリル酸共重合体、またはその誘導体を含有することを特徴とする請求項1に記載の銅の表面処理剤。 The copper surface treatment agent according to claim 1, wherein the water-soluble polymer contains at least polyacrylic acid, polymaleic acid, polyitaconic acid, an acrylic acid copolymer, or a derivative thereof.
  3.  上記水溶性高分子または水分散性高分子の分子量が2,000以上、10,000,000以下の範囲内であることを特徴とする請求項1または2に記載の銅の表面処理剤。 The copper surface treatment agent according to claim 1 or 2, wherein the water-soluble polymer or water-dispersible polymer has a molecular weight in the range of 2,000 to 10,000,000.
  4.  さらに、金属化合物を含有することを特徴とする請求項1~3のいずれか1項に記載の銅の表面処理剤。 The copper surface treatment agent according to any one of claims 1 to 3, further comprising a metal compound.
  5.  上記金属化合物が銅化合物であり、
     上記スズ化合物の濃度に対する上記銅化合物の濃度の比が0.2以上、2.0以下の範囲内であることを特徴とする請求項4に記載の銅の表面処理剤。
    The metal compound is a copper compound;
    5. The copper surface treatment agent according to claim 4, wherein a ratio of the copper compound concentration to the tin compound concentration is in a range of 0.2 or more and 2.0 or less.
  6.  表面処理剤全体に対する上記スズ化合物の濃度が50ppm以上、10,000ppm以下の範囲内であることを特徴とする請求項5に記載の銅の表面処理剤。 The copper surface treatment agent according to claim 5, wherein the concentration of the tin compound with respect to the entire surface treatment agent is in the range of 50 ppm to 10,000 ppm.
  7.  さらに、pH調整剤を含有し、前記pH調整剤として、少なくとも硫酸、硝酸、塩酸、メタンスルホン酸もしくはリン酸を含有することを特徴とする請求項1~6のいずれか1項に記載の銅の表面処理剤。 The copper according to any one of claims 1 to 6, further comprising a pH adjusting agent, wherein the pH adjusting agent contains at least sulfuric acid, nitric acid, hydrochloric acid, methanesulfonic acid or phosphoric acid. Surface treatment agent.
  8.  pHが5以下であることを特徴とする請求項7に記載の銅の表面処理剤。 The surface treatment agent for copper according to claim 7, wherein the pH is 5 or less.
  9.  銅の表面に請求項1~8のいずれか1項に記載の銅の表面処理剤を接触させることを特徴とする銅の表面処理方法。 A copper surface treatment method comprising contacting the copper surface treatment agent according to any one of claims 1 to 8 with a copper surface.
  10.  銅の表面に酸洗処理、粗化処理、化成処理、防錆処理、酸化処理、還元処理、脱脂処理から選ばれる少なくとも一種の前処理をした後に、上記表面処理剤を接触させることを特徴とする請求項9に記載の銅の表面処理方法。 The surface treatment agent is contacted after at least one pretreatment selected from pickling treatment, roughening treatment, chemical conversion treatment, rust prevention treatment, oxidation treatment, reduction treatment, and degreasing treatment on the surface of copper. The copper surface treatment method according to claim 9.
  11.  銅の表面にスズ化合物を接触させた後に、上記表面処理剤または後処理剤を接触させることを特徴とする請求項9または10に記載の銅の表面処理方法。 11. The copper surface treatment method according to claim 9, wherein the surface treatment agent or the post-treatment agent is contacted after the tin compound is brought into contact with the copper surface.
  12.  請求項9~11のいずれか1項に記載の銅の表面処理方法により形成され、
     銅表面の皮膜におけるスズの重量が1mg/m以上、2,000mg/m以下の範囲内であり、
     上記皮膜の最表面における組成のうちの、スズに対する銅のモル比が0.2以上、10以下の範囲内であることを特徴とする銅表面の皮膜。
    A copper surface treatment method according to any one of claims 9 to 11,
    The weight of tin in the film on the copper surface is in the range of 1 mg / m 2 or more and 2,000 mg / m 2 or less,
    The copper surface coating, wherein the molar ratio of copper to tin in the composition on the outermost surface of the coating is in the range of 0.2 or more and 10 or less.
  13.  請求項9~11のいずれか1項に記載の銅の表面処理方法により表面処理されてなることを特徴とする銅張り材料。 A copper-clad material that is surface-treated by the copper surface treatment method according to any one of claims 9 to 11.
  14.  請求項13に記載の銅張り材料を備えていることを特徴とする多層配線基板。 A multilayer wiring board comprising the copper-clad material according to claim 13.
  15.  最外層に請求項13に記載の銅張り材料を備えていることを特徴とする配線基板。 A wiring board comprising the copper clad material according to claim 13 in an outermost layer.
PCT/JP2009/003492 2008-07-25 2009-07-24 Agent and method for treating copper surface WO2010010716A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009532477A JP4621293B2 (en) 2008-07-25 2009-07-24 Copper surface treatment agent and surface treatment method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-192663 2008-07-25
JP2008192663 2008-07-25
JP2008305051 2008-11-28
JP2008-305051 2008-11-28

Publications (1)

Publication Number Publication Date
WO2010010716A1 true WO2010010716A1 (en) 2010-01-28

Family

ID=41570184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003492 WO2010010716A1 (en) 2008-07-25 2009-07-24 Agent and method for treating copper surface

Country Status (2)

Country Link
JP (1) JP4621293B2 (en)
WO (1) WO2010010716A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157574A1 (en) * 2012-04-19 2013-10-24 日本パーカライジング株式会社 Self-deposition type surface treatment agent for copper and method for manufacturing copper-containing substrate provided with resin coating film
WO2023127679A1 (en) * 2021-12-28 2023-07-06 四国化成工業株式会社 Surface treatment liquid for metal
WO2023127681A1 (en) * 2021-12-28 2023-07-06 四国化成工業株式会社 Organic coating and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230665A (en) * 1992-02-24 1993-09-07 C Uyemura & Co Ltd Electroless tin or tin-lead alloy plating method
JPH0790598A (en) * 1993-09-17 1995-04-04 Merutetsukusu Kk Replaced soldering bath
JP2006057116A (en) * 2004-08-17 2006-03-02 Ishihara Chem Co Ltd Electroless tin plating bath

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290774A (en) * 1988-05-18 1989-11-22 Hiroshi Kido Electroless soldering bath
JPH02197580A (en) * 1989-01-24 1990-08-06 Okuno Seiyaku Kogyo Kk Electroless solder plating bath
JPH0713299B2 (en) * 1990-10-22 1995-02-15 株式会社コサク Electroless solder plating bath composition
JP2008109111A (en) * 2006-09-27 2008-05-08 Mec Kk To-resin adhesive layer and manufacturing method of laminate using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230665A (en) * 1992-02-24 1993-09-07 C Uyemura & Co Ltd Electroless tin or tin-lead alloy plating method
JPH0790598A (en) * 1993-09-17 1995-04-04 Merutetsukusu Kk Replaced soldering bath
JP2006057116A (en) * 2004-08-17 2006-03-02 Ishihara Chem Co Ltd Electroless tin plating bath

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157574A1 (en) * 2012-04-19 2013-10-24 日本パーカライジング株式会社 Self-deposition type surface treatment agent for copper and method for manufacturing copper-containing substrate provided with resin coating film
CN104246011A (en) * 2012-04-19 2014-12-24 日本帕卡濑精株式会社 Self-deposition type surface treatment agent for copper and method for manufacturing copper-containing substrate provided with resin coating film
WO2023127679A1 (en) * 2021-12-28 2023-07-06 四国化成工業株式会社 Surface treatment liquid for metal
WO2023127681A1 (en) * 2021-12-28 2023-07-06 四国化成工業株式会社 Organic coating and method for producing same

Also Published As

Publication number Publication date
JP4621293B2 (en) 2011-01-26
JPWO2010010716A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5307117B2 (en) Copper surface treatment agent and surface treatment method
JP4309602B2 (en) Method for improving adhesion between copper or copper alloy and resin, and laminate
JP5663739B2 (en) Copper surface conditioning composition and surface treatment method
JP5139514B2 (en) Metal surface treatment composition
CN1993501B (en) Composite copper foil and method for production thereof
WO2012046615A1 (en) Laminate production process
JP3930885B2 (en) Microetching agents for copper and copper alloys
JPWO2005025857A1 (en) Resin composite film
US6554948B1 (en) Process for improving the adhesion of polymeric materials to metal surfaces
TW200523108A (en) Chromium-free antitarnish adhesion promoting treatment composition
CN101243159A (en) Improved microetching solution
JP2009235565A (en) Solution for and method of treating surface of copper
JP4621293B2 (en) Copper surface treatment agent and surface treatment method
JP5688522B2 (en) Copper surface treatment agent
JP4895795B2 (en) Manufacturing method of multilayer wiring board
KR20160140455A (en) Replacement nickel plating bath for the copper surface treatment, manufacturing method of the copper parts of using the plating bath and the copper parts
JP4841337B2 (en) Primer resin and resin composition for primer resin layer
JP2010150613A (en) Surface treatment agent and surface treatment method for copper, and film for copper surface
EP2385881A1 (en) Process for improving the adhesion of polymeric materials to metal surfaces
JP5522617B2 (en) Adhesive layer forming liquid and adhesive layer forming method
WO2010074067A1 (en) Electroless tin or tin-alloy plating solution and electronic part with tin or tin-alloy coating film formed from the plating solution
JP5317099B2 (en) Adhesive layer forming solution
WO2010007755A1 (en) Copper surface processing agent, surface processing method, and copper surface film
JP4776217B2 (en) Copper metallized laminate and method for producing the same
JP3932193B2 (en) MICRO ETCHING AGENT FOR COPPER AND COPPER ALLOY AND METHOD OF FINE Roughening of COPPER OR COPPER ALLOY USING THE SAME

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2009532477

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09800232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09800232

Country of ref document: EP

Kind code of ref document: A1