WO2010010602A1 - Plasma display panel - Google Patents

Plasma display panel Download PDF

Info

Publication number
WO2010010602A1
WO2010010602A1 PCT/JP2008/001991 JP2008001991W WO2010010602A1 WO 2010010602 A1 WO2010010602 A1 WO 2010010602A1 JP 2008001991 W JP2008001991 W JP 2008001991W WO 2010010602 A1 WO2010010602 A1 WO 2010010602A1
Authority
WO
WIPO (PCT)
Prior art keywords
address
partition wall
electrodes
partition
substrate
Prior art date
Application number
PCT/JP2008/001991
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木孝
高木彰浩
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2008/001991 priority Critical patent/WO2010010602A1/en
Publication of WO2010010602A1 publication Critical patent/WO2010010602A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • H01J11/26Address electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/14AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided only on one side of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/32Disposition of the electrodes
    • H01J2211/323Mutual disposition of electrodes

Definitions

  • the present invention relates to a plasma display panel used for a display device.
  • a plasma display panel is formed by bonding two glass substrates (a front glass substrate and a back glass substrate) to each other, and generates a discharge in a space (discharge space) formed between the glass substrates.
  • the cells corresponding to the pixels in the image are self-luminous, and are coated with phosphors that generate red, green, and blue visible light in response to ultraviolet rays generated by discharge.
  • a three-electrode PDP displays an image by generating a sustain discharge between the X electrode and the Y electrode.
  • a cell that generates a sustain discharge (a cell to be lit) is selected by, for example, selectively generating an address discharge between the Y electrode and the address electrode.
  • an unexpected current flows through a circuit that is turned off (a circuit connected to an address electrode of a cell that does not generate an address discharge), and there is a possibility that parts of the circuit (such as a transistor) are damaged. That is, the circuit may be damaged due to erroneous discharge between the address electrodes.
  • An object of the present invention is to prevent erroneous discharge between address electrodes and prevent circuit breakage in a PDP having three electrodes on a front glass substrate.
  • the plasma display panel has a first substrate and a second substrate that face each other through a discharge space.
  • On the first substrate there are provided a plurality of first and second electrodes that extend in the first direction and are spaced from each other, and a dielectric layer that covers the first and second electrodes. Yes.
  • On the second substrate a plurality of first barrier ribs extending in the second direction intersecting the first direction and arranged along the first direction are provided.
  • An address electrode extending in the second direction is provided on the dielectric layer for each first region formed between the first barrier ribs adjacent to each other. For example, the address electrodes arranged along the first direction are alternately drawn from the first region to one side and the other side in the second direction.
  • a protective layer is provided on the dielectric layer, covering the surface of the dielectric layer and the address electrode, and being exposed to the discharge space of the cell.
  • FIG. 1 shows a main part of a plasma display panel (hereinafter also referred to as PDP) in an embodiment of the present invention.
  • An arrow D1 in the drawing indicates the first direction D1
  • an arrow D2 indicates the second direction D2 orthogonal to the first direction D1 in a plane parallel to the image display surface.
  • the PDP 10 includes a front substrate portion 12 that forms an image display surface, and a rear substrate portion 14 that faces the front substrate portion 12.
  • a discharge space DS is formed between the front substrate portion 12 and the rear substrate portion 14 (more specifically, a concave portion of the rear substrate portion 14).
  • the front substrate portion 12 is provided to extend in the first direction D1 on the surface (lower side in the drawing) of the glass substrate FS (first substrate) facing the glass substrate RS (second substrate).
  • a plurality of X bus electrodes Xb and Y bus electrodes Yb are arranged at intervals.
  • the X bus electrode Xb and the Y bus electrode Yb are opaque electrodes formed of a metal material or the like.
  • An X transparent electrode Xt extending in the second direction D2 from the X bus electrode Xb to the Y bus electrode Yb is connected to the X bus electrode Xb.
  • a Y transparent electrode Yt extending in the second direction D2 from the Y bus electrode Yb to the X bus electrode Xb is connected to the Y bus electrode Yb.
  • the X transparent electrode Xt and the Y transparent electrode Yt face each other along an oblique direction with respect to the first direction D1 (or the second direction D2).
  • the transparent electrodes Xt and Yt may be provided so as to face each other along the first direction D1, or may be provided so as to face each other along the second direction D2.
  • the X transparent electrode Xt and the Y transparent electrode Yt are transparent electrodes that transmit light formed of an ITO film or the like.
  • an electrode integral with the bus electrodes Xb and Yb may be formed in place of the transparent electrodes Xt and Yt, using the same material (metal material or the like) as the bus electrodes Xb and Yb.
  • the transparent electrodes Xt and Yt may be disposed on the entire surface between the bus electrodes Xb and Yb to which the transparent electrodes Xt and Yt are connected and the glass substrate FS.
  • X electrode XE (first electrode, sustain electrode) is composed of X bus electrode Xb and X transparent electrode Xt
  • Y electrode YE (second electrode, scan electrode) is composed of Y bus electrode Yb and Y transparent electrode Yt. And is paired with the X electrode XE. That is, a plurality of X electrodes XE and Y electrodes YE extending in the first direction D1 and spaced from each other are provided on the glass substrate FS (lower side in the figure). Then, a discharge (sustain discharge) is repeatedly generated between the X electrode XE and the Y electrode YE paired with each other (more specifically, between the X transparent electrode Xt and the Y transparent electrode Yt).
  • the electrodes Xb, Xt, Yb, Yt are covered with the dielectric layer DL.
  • the dielectric layer DL is an insulating film such as a silicon dioxide film formed by a CVD method.
  • a plurality of address electrodes AE extending in a direction orthogonal to the bus electrodes Xb and Yb (second direction D2) are provided on the dielectric layer DL (lower side in the figure).
  • the PDP of this embodiment has three electrodes (electrodes XE, YE, AE) on the front substrate portion 12.
  • the surfaces of the address electrode AE and the dielectric layer DL are covered with a protective layer PL.
  • the protective layer PL is exposed to the discharge space DS, and protects the address electrode AE and the dielectric layer DL from ion collision due to discharge. That is, in this embodiment, the second dielectric layer covering the address electrode AE is not formed, and the protective layer PL is formed directly on the address electrode AE and the first dielectric layer DL.
  • the protective layer PL is formed of an MgO film having high secondary electron emission characteristics due to cation collisions in order to easily generate discharge.
  • the back substrate unit 14 has a glass base RS that faces the glass base FS through the discharge space DS.
  • a first partition (barrier rib) BR1 extending in the second direction D2 and a second extending in the first direction D1.
  • a grid-like partition wall constituted by the partition wall BR2 is formed.
  • the first partition BR1 is provided on the glass substrate RS so as to extend in the second direction D2, and is disposed along the first direction D1.
  • the second partition wall BR2 is provided to extend in the first direction D1 on the glass substrate RS, and is disposed along the second direction D2.
  • the barrier ribs BR1 and BR2 are formed integrally with the glass substrate RS by cutting the glass substrate RS by a sandblast method or the like.
  • the barrier ribs BR1 and BR2 may be formed by applying a paste-like barrier rib material on the glass substrate RS, followed by drying, sandblasting, and baking processes, or may be formed by lamination by printing.
  • the partition walls BR1 and BR2 constitute cell side walls. Further, red (R), green (G), and blue (B) are visible on the side surfaces of the barrier ribs BR1 and BR2 and on the glass substrate RS in a portion surrounded by the barrier ribs BR1 and BR2. Phosphors PHr, PHg, and PHb that generate light are respectively applied.
  • One pixel of the PDP 10 is composed of three cells that generate red, green, and blue light.
  • one cell (one color pixel) is formed in a region surrounded by partition walls BR1 and BR2, for example, as shown in FIG.
  • the PDP 10 is configured by arranging cells in a matrix to display an image and alternately arranging a plurality of types of cells that generate light of different colors.
  • a display line is constituted by cells formed along the bus electrodes Xb and Yb.
  • the front substrate portion 12 and the rear substrate portion 14 are bonded together so that the protective layer PL and the partition wall BR (for example, the first partition wall BR1) are in contact with each other, and a discharge gas such as Ne or Xe is enclosed in the discharge space DS. Consists of.
  • FIG. 2 shows an outline of the PDP 10 shown in FIG.
  • FIG. 2 shows the state of the PDP 10 as viewed from the image display surface side (upper side in FIG. 1).
  • the shaded portion in the figure shows the outer peripheral portion of the glass substrate RS and the partition walls BR1 and BR2.
  • the meanings of arrows D1 and D2 in the figure are the same as those in FIG.
  • symbol D21 in a figure has shown the one side of the 2nd direction D2
  • symbol D22 has shown the other side of the 2nd direction D2.
  • the cell CLr indicates a cell that generates red visible light
  • the cell CLg indicates a cell that generates green visible light
  • the cell CLb indicates a cell that generates blue visible light.
  • the cells CLr, CLg, and CLb are also referred to as cells CL, for example, when they are not distinguished for each color of visible light.
  • a PDP having the number of pixels of 2 pixels ⁇ 2 pixels (6 cells ⁇ 2 cells) is shown for easy viewing of the drawing.
  • the number of pixels of the PDP is 1920 pixels ⁇ 1080 pixels, 1280 pixels ⁇ 1080 pixels, 1024 pixels ⁇ 1080 pixels, 1366 pixels ⁇ 768 pixels, and the like.
  • the PDP 10 is configured by adhering the front substrate portion 12 and the rear substrate portion 14 and enclosing a discharge gas such as Ne or Xe in the discharge space DS.
  • the sealing material SL for bonding the front substrate part 12 and the rear substrate part 14 is arranged in a frame shape outside (outer peripheral part) outside the region where the barrier ribs BR1 and BR2 are formed.
  • the exhaust space ES formed between the sealing material SL and the partition walls BR1 and BR2 is provided with an exhaust hole EH that penetrates to the outer surface of the glass substrate RS.
  • both end portions of the partition wall BR1 protrude outward from the outermost partition wall BR2 (the uppermost partition wall BR2 and the lowermost partition wall BR2 in the figure). That is, both end portions of the partition wall BR1 are respectively positioned outside the partition wall BR2 disposed on the outermost side.
  • the width W20 along the second direction D2 of the partition wall BR2 disposed on the outermost side is smaller than the width W10 along the second direction D2 of the partition wall BR2 disposed between the cells CL.
  • the ratio of the area of the cell CL to the area of the PDP 10 can be increased.
  • the width W20 along the second direction D2 of the partition wall BR2 arranged on the outermost side is the same as the width W10 along the second direction D2 of the partition wall BR2 arranged between the cells CL, as shown in FIG. But you can.
  • the partition wall BR2 (second partition wall BR2 from the top in the figure) disposed between the cells CL is opposed to both the bus electrodes Xb and Yb, and the partition wall BR2 disposed on the outermost side is the bus electrode. It faces one of Xb and Yb.
  • the partition wall BR2 disposed between the cells CL may be provided to face only one of the bus electrodes Xb and Yb or may be provided between the bus electrodes Xb and Yb.
  • the outermost partition wall BR2 is provided at a position where the distances between the partition walls BR2 are the same.
  • the cell CL is formed in a region surrounded by the barrier ribs BR1 and BR2 (for example, a region surrounded by a fine broken line in the drawing), and the pixel PX is configured by the cells CLr, CLg, and CLb.
  • the transparent electrode Yt is disposed adjacent to the address electrode AE in each cell CL
  • the transparent electrode Xt is disposed adjacent to the transparent electrode Yt in each cell CL.
  • a scan pulse is applied to the Y electrode YE on the upper side in the figure, To the second address electrode AE.
  • the circuit for applying the address pulse to the other address electrodes AE (the address electrodes AE excluding the second address electrode AE from the left in the drawing) is turned off.
  • the address electrode AE is arranged for each first area AR10 (for example, an area surrounded by a thick broken line in the drawing) including the cells CL arranged along the second direction D2.
  • first area AR10 for example, an area surrounded by a thick broken line in the drawing
  • the first area AR10 is an area sandwiched between the adjacent partitions BR1. That is, the address electrode AE is provided to extend in the second direction D2 for each first region AR10 formed between the adjacent barrier ribs BR1.
  • the address electrodes AE arranged along the first direction D1 are alternately arranged from the first area AR10 on one side (for example, D21 side in the figure) and the other side (for example, D22 side in the figure) from the second direction D2. Pulled out.
  • the distance S20 between the address electrodes AE outside the first area AR10 can be made twice the distance S10 between the adjacent address electrodes AE. That is, in this embodiment, the distance S20 between the address electrodes AE in the portion exposed to the exhaust space ES through the protective layer PL can be increased.
  • the end portion EG10 in the first region AR10 of the address electrode AE (the end portion EG10 not drawn out from the first region AR10) is located outside the partition wall BR2 arranged on the outermost side.
  • the distance S30 can be larger than the distance S10. That is, in this embodiment, the distances S20 and S30 where the partition walls BR1 and BR2 are not provided between the address electrodes AE can be made larger than the distance S10 between the adjacent address electrodes AE.
  • the second address electrode AE when the address discharge is generated only in the second upper cell CL from the left in the figure, the second address electrode AE from the left in the figure and another address electrode AE (for example, in the figure) It is possible to prevent erroneous discharge from occurring with the first, third, or fourth address electrode AE) from the left.
  • an erroneous discharge between the address electrodes AE is prevented, it is possible to prevent an unexpected current from flowing through the address electrode AE of a cell CL that does not generate an address discharge (hereinafter also referred to as an off-cell CL). Therefore, in this embodiment, it is possible to prevent an unexpected current from flowing through a circuit that is turned off (for example, a circuit connected to the address electrode AE of the off cell CL), and components of the circuit (such as transistors) are damaged. Can be prevented. Further, in this embodiment, since erroneous discharge between the address electrodes AE is prevented, unnecessary light can be prevented from being generated, and the quality of an image displayed on the PDP 10 can be improved.
  • a configuration in which a dielectric layer different from the first dielectric layer DL is provided between the address electrodes AE and the protective layer PL is the present invention. It was thought of in the process. In this configuration, a process for providing a dielectric layer different from the first dielectric layer DL is required, and the manufacturing cost increases. On the other hand, in this embodiment, as described above, a dielectric layer different from the first dielectric layer DL is not provided between the address electrodes AE and the protective layer PL, and the address electrodes AE are not provided. Incorrect discharge can be prevented. Therefore, in this embodiment, the manufacturing cost can be reduced.
  • FIG. 3 shows an example of a plasma display device configured using the PDP 10 shown in FIG.
  • the plasma display device (hereinafter also referred to as a PDP device) includes a PDP 10, an optical filter 20 provided on the image display surface 16 side (light output side) of the PDP 10, and a front housing 30 disposed on the image display surface 16 side of the PDP 10.
  • the rear housing 40 and the base chassis 50 disposed on the back surface 18 side of the PDP 10, the circuit unit 60 for driving the PDP 10 attached to the rear housing 40 side of the base chassis 50, and the PDP 10 are attached to the base chassis 50.
  • a double-sided adhesive sheet 70 for attaching is provided. Since the circuit unit 60 includes a plurality of components, the circuit unit 60 is indicated by a dashed box in the figure.
  • the optical filter 20 is affixed to a protective glass (not shown) attached to the opening 32 of the front housing 30.
  • the optical filter 20 may have a function of shielding electromagnetic waves.
  • the optical filter 20 may be directly attached to the image display surface 16 side of the PDP 10 instead of the protective glass.
  • FIG. 4 shows an outline of the circuit unit 60 shown in FIG.
  • the circuit unit 60 includes a control unit CNT, an X driver XDRV, a Y driver YDRV, an address driver ADRV (ADRV1, ADRV2), and a power supply unit PWR.
  • the power supply unit PWR generates power supply voltages ⁇ Vsc, Vs / 2, ⁇ Vs / 2, Vsa and the like to be supplied to the drivers YDRV, XDRV, and ADRV.
  • the control unit CNT controls the operation of the drivers XDRV, YDRV, and ADRV.
  • the control unit CNT selects a subfield to be used based on the image data R0-R7, G0-G7, B0-B7, and outputs control signals YCNT, XCNT, and ACNT to the drivers YDRV, XDRV, and ADRV.
  • the subfield is a field obtained by dividing one field for displaying one screen of the PDP 10, and the number of sustain discharges is set for each subfield. Then, by selecting a subfield to be used for each cell constituting the pixel, a multi-gradation image is displayed.
  • the subfield includes an address period for selecting a cell to be lit (a cell for generating a sustain discharge), a sustain period for generating a sustain discharge in the cell selected in the address period, and the like.
  • the drivers XDRV, YDRV, and ADRV operate as a drive unit that drives the PDP 10.
  • the X driver XDRV alternately applies voltages ⁇ Vs / 2 and Vs / 2 (negative and positive sustain pulses) to the X electrode XE during the sustain period.
  • the Y driver YDRV alternately applies voltages Vs / 2 and ⁇ Vs / 2 (positive and negative sustain pulses) having different polarities from the voltage applied to the X electrode XE to the Y electrode YE during the sustain period,
  • the voltage ⁇ Vsc (scan pulse) is selectively applied to the Y electrode YE.
  • the address driver ADRV selectively applies a voltage Vsa (address pulse) to the address electrode AE during the address period.
  • the address driver ADRV1 selectively applies the voltage Vsa (address pulse) to the address electrode AE drawn to one side (for example, D21 side in FIG. 2) in the second direction D2 shown in FIG. ) Is applied.
  • the address driver ADRV2 selectively applies the voltage Vsa (address pulse) to the address electrode AE drawn to the other side (for example, D22 side in FIG. 2) in the second direction D2 shown in FIG. 2 during the address period. Apply.
  • erroneous discharge between the address electrodes AE is prevented, so that the circuits in the address drivers ADRV1 and ADRV2 can be prevented from being damaged.
  • a discharge (address discharge) is temporarily generated between the Y electrode YE and the address electrode AE.
  • a cell to be lit in the sustain period is selected.
  • the sustain pulses having different polarities are repeatedly applied to the X electrode XE and the Y electrode YE, so that the discharge of the cells lit in the sustain period (sustain discharge) is repeatedly performed.
  • the address electrodes AE arranged along the first direction D1 are alternately arranged on the opposite sides (D21 side and D22 side in FIG. 2) from the first area AR10 along the second direction D2. Pulled out. Thereby, in this embodiment, erroneous discharge between the address electrodes AE can be prevented, and damage to the circuit can be prevented.
  • FIG. 5 shows an outline of the PDP 10 in another embodiment.
  • the third partition BR3 is added to the configuration shown in FIG. 2 described above.
  • Other configurations are the same as those of the embodiment described with reference to FIGS. Is the same.
  • the same elements as those described in FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the meanings of arrows D1 and D2 in the figure are the same as those in FIG.
  • FIG. 5 shows the state of the PDP 10 viewed from the image display surface side (upper side in FIG. 1).
  • the shaded portion in the figure shows the outer peripheral portion of the glass substrate RS and the partition walls BR1 and BR2.
  • a PDP having the number of pixels of 2 pixels ⁇ 2 pixels (6 cells ⁇ 2 cells) is shown for easy viewing of the drawing.
  • the number of pixels of the PDP is 1920 pixels ⁇ 1080 pixels, 1280 pixels ⁇ 1080 pixels, 1024 pixels ⁇ 1080 pixels, 1366 pixels ⁇ 768 pixels, and the like.
  • the third partition wall BR3 extends in the first direction D1 on the glass substrate RS, and is disposed on the outermost side (the uppermost partition wall BR2 and the lowermost partition wall BR2 in the figure). They are arranged on the outer sides.
  • the partition wall BR1 extends from one partition wall BR3 (for example, the upper partition wall BR3 in the drawing) to the other partition wall BR3 (for example, the lower partition wall BR3 in the drawing).
  • both end portions of the partition wall BR1 are located outside the partition wall BR3. That is, both end portions of the partition wall BR1 protrude outward from the partition wall BR3.
  • the end portion of the partition wall BR1 may not protrude outward from the partition wall BR3.
  • the exhaust space ES is formed, for example, between the seal material SL and the partition walls BR1 and BR3.
  • the end EG10 (the end EG10 not drawn from the first area AR10) in the first area AR10 of the address electrode AE is outside the partition BR2 arranged on the outermost side and from the partition BR3. Located inside. That is, at least one of the barrier ribs BR1 and BR3 is provided between the end portion EG10 located in the first region AR10 of the address electrode AE and the address electrode AE adjacent to the end portion EG10.
  • the erroneous discharge occurs between the end portion EG10 located in the first region AR10 of the address electrode AE and the address electrode AE adjacent to the end portion EG10, as described above with reference to FIG. -It can be reliably prevented compared to the embodiment described in FIG.
  • the same effect as that of the embodiment described with reference to FIGS. 1 to 4 can be obtained.
  • the end portion EG10 in the first region AR10 of the address electrode AE is located in a region surrounded by the barrier ribs BR2 and BR3 and the barrier rib BR1 adjacent to each other.
  • erroneous discharge between the adjacent address electrodes AE can be surely prevented as compared with the embodiment described with reference to FIGS.
  • FIG. 6 shows a main part of the PDP 10 in another embodiment.
  • the second partition BR2 is omitted from the configuration shown in FIG. 1 described above.
  • Other configurations are the same as those of the embodiment described with reference to FIGS.
  • the same elements as those described in FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the meanings of arrows D1 and D2 in the figure are the same as those in FIG.
  • partition wall BR1 On the glass substrate RS, a stripe-shaped partition wall (partition wall BR1) in which the second partition wall BR2 is omitted from the configuration illustrated in FIG. 2 described above is provided. That is, the first partition wall BR1 extending in the second direction D2 is provided on the surface of the glass substrate RS that faces the glass substrate FS.
  • the partition wall BR1 is formed integrally with the glass substrate RS by cutting the glass substrate RS by a sandblast method or the like.
  • the partition wall BR1 may be formed by applying a paste-like partition wall material on the glass substrate RS, followed by drying, sandblasting, and baking processes, or may be formed by lamination by printing.
  • PHr, PHg, and PHb are respectively applied.
  • the cell CL is formed in a region surrounded by the bus electrodes Xb and Yb and the partition wall BR1.
  • FIG. 7 shows an outline of the PDP 10 shown in FIG.
  • FIG. 7 shows the state of the PDP 10 viewed from the image display surface side (upper side in FIG. 6).
  • the shaded portion in the figure shows the outer peripheral portion of the glass substrate RS and the partition wall BR1.
  • a PDP having the number of pixels of 2 pixels ⁇ 2 pixels (6 cells ⁇ 2 cells) is shown for easy viewing of the drawing.
  • the number of pixels of the PDP is 1920 pixels ⁇ 1080 pixels, 1280 pixels ⁇ 1080 pixels, 1024 pixels ⁇ 1080 pixels, 1366 pixels ⁇ 768 pixels, and the like.
  • the cell CL is formed in a region surrounded by the bus electrodes Xb and Yb and the partition wall BR1 (for example, a region surrounded by a fine broken line in the figure).
  • the address electrodes AE arranged along the first direction D1 are alternately drawn from the first area AR10 to the opposite sides (D21 side and D22 side in the drawing) along the second direction D2. That is, the address electrodes AE arranged along the first direction D1 are alternately arranged from the first area AR10 to one side (for example, D21 side in the figure) and the other side (for example, D22 side in the figure) from the second direction D2. Pulled out.
  • one address electrode AE is drawn from the first area AR10 to one side in the second direction (for example, D21 side in the drawing) and the other side in the second direction ( For example, the end portion EG10 on the D22 side in the drawing is disposed so as to be located in the first region AR10.
  • the other address electrode AE is drawn from the first area AR10 to the other side (for example, the D22 side in the figure), and the end EG10 on one side (for example, the D21 side in the figure) is within the first area AR10. It arrange
  • the distances S20 and S30 where the partition walls BR1 and BR2 are not provided between the address electrodes AE can be made larger than the distance S10 between the adjacent address electrodes AE.
  • the end portion EG10 in the first area AR10 of the address electrode AE is positioned outside the bus electrodes Xb and Yb arranged on the outermost side.
  • the same effect as that of the embodiment described with reference to FIGS. 1 to 4 can be obtained. Further, in this embodiment, since the second partition BR2 is omitted from the embodiment described with reference to FIGS. 1 to 4 described above, the partition BR1 can be easily formed, and the manufacturing cost can be reduced.
  • FIG. 8 shows an outline of the PDP 10 in another embodiment.
  • the width of the partition wall BR2 arranged on the outermost side and the arrangement of the end portion EG10 of the address electrode AE are different from the configuration shown in FIG.
  • Other configurations are the same as those of the embodiment described with reference to FIGS. Is the same.
  • the same elements as those described in FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the meanings of arrows D1 and D2 in the figure are the same as those in FIG.
  • FIG. 8 shows the state of the PDP 10 viewed from the image display surface side (upper side in FIG. 1).
  • the shaded portion in the figure shows the outer peripheral portion of the glass substrate RS and the partition walls BR1 and BR2.
  • a PDP having the number of pixels of 2 pixels ⁇ 2 pixels (6 cells ⁇ 2 cells) is shown for easy viewing of the drawing.
  • the number of pixels of the PDP is 1920 pixels ⁇ 1080 pixels, 1280 pixels ⁇ 1080 pixels, 1024 pixels ⁇ 1080 pixels, 1366 pixels ⁇ 768 pixels, and the like.
  • the address electrodes AE arranged along the first direction D1 are alternately drawn from the first area AR10 to the opposite sides (D21 side and D22 side in the drawing) along the second direction D2.
  • the end portion EG10 in the first region AR10 of the address electrode AE (the end portion EG10 not drawn out from the first region AR10) is the outermost partition BR2. Located on the top. That is, in this embodiment, it is possible to prevent the end portion EG10 in the first region AR10 of the address electrode AE from being exposed to the exhaust space ES via the protective layer PL.
  • the erroneous discharge occurs between the end portion EG10 located in the first region AR10 of the address electrode AE and the address electrode AE adjacent to the end portion EG10, as described above with reference to FIG. -It can be reliably prevented compared to the embodiment described in FIG.
  • the partition wall BR1 only needs to extend from one partition wall BR2 of the partition wall BR2 disposed on the outermost side to the other partition wall BR2, and the end portion is more than the partition wall BR2 disposed on the outermost side. It does not have to protrude outward.
  • the width W10 of the partition wall BR2 along the second direction D2 is disposed between the outermost partition wall BR2 (the uppermost partition wall BR2 and the lowermost partition wall BR2 in the drawing) and the cell CL.
  • the partition wall BR2 second partition wall BR2 from the top in the drawing. That is, in this embodiment, the area of the portion of the partition wall BR2 arranged on the outermost side that does not face the bus electrodes Xb and Yb can be made larger than in the embodiment described with reference to FIGS. Thereby, in this embodiment, the end portion EG10 in the first region AR10 of the address electrode AE can be easily arranged on the partition wall BR2.
  • the width along the second direction D2 of the partition wall BR2 disposed on the outermost side is smaller than the width W10 along the second direction D2 of the partition wall BR2 disposed between the cells CL as described above with reference to FIG. Also good.
  • the same effect as that of the embodiment described with reference to FIGS. 1 to 4 can be obtained. Further, in this embodiment, since the end portion EG10 in the first region AR10 of the address electrode AE is located on the barrier rib BR2, the erroneous discharge between the adjacent address electrodes AE is described with reference to FIGS. Compared to the described embodiment, it can be reliably prevented.
  • one pixel includes three cells (red (R), green (G), and blue (B)) has been described.
  • the present invention is not limited to such an embodiment.
  • one pixel may be composed of four or more cells.
  • one pixel may be composed of cells that generate colors other than red (R), green (G), and blue (B), and one pixel may be red (R), green (G), Cells that generate colors other than blue (B) may be included.
  • the pixel column area PA may be configured by four or more cell column areas CA that respectively generate light of different colors. Also in this case, the same effect as the above-described embodiment can be obtained.
  • the second direction D2 may intersect the first direction D1 in a substantially perpendicular direction (for example, 90 ° ⁇ 5 °). Also in this case, the same effect as the above-described embodiment can be obtained.
  • the example in which the end portion EG10 in the first region AR10 of the address electrode AE is located in the region surrounded by the partition wall BR2 and the partition wall BR3 and the partition wall BR1 adjacent to each other is described.
  • the present invention is not limited to such an embodiment.
  • the end portion EG10 in the first area AR10 of the address electrode AE may be located on the partition wall BR3 when viewed from the image display surface side. Also in this case, the same effect as the above-described embodiment can be obtained.
  • the present invention can be applied to a plasma display panel used in a display device.

Abstract

A plasma display panel comprises a first substrate and a second substrate opposed to each other via a discharge space. A plurality of first electrodes and second electrodes extending in a first direction and a dielectric layer covering the first and second electrodes are provided on the first substrate. A plurality of first division walls extending in a second direction intersecting with the first direction are provided on the second substrate. An address electrode extending in the second direction is provided on the dielectric layer for each first region formed between the first division walls adjacent to each other. For example, the address electrodes arranged along the first direction are drawn out from the first region to one side of the second direction and the other side thereof alternately. Further, a protection layer exposed to the discharge space of a cell is provided on the dielectric layer in such a manner that the layer covers the surface of the dielectric layer and the address electrode. As a result, unintended discharge between the address electrodes can be prevented and the destruction of a circuit can be prevented.

Description

プラズマディスプレイパネルPlasma display panel
 本発明は、ディスプレイ装置に使用するプラズマディスプレイパネルに関する。 The present invention relates to a plasma display panel used for a display device.
 プラズマディスプレイパネル(PDP)は、2枚のガラス基板(前面ガラス基板および背面ガラス基板)を互いに貼り合わせて構成されており、ガラス基板の間に形成される空間(放電空間)に放電を発生させることで画像を表示する。画像における画素に対応するセルは、自発光型であり、放電により発生する紫外線を受けて赤、緑、青の可視光を発生する蛍光体が塗布されている。 A plasma display panel (PDP) is formed by bonding two glass substrates (a front glass substrate and a back glass substrate) to each other, and generates a discharge in a space (discharge space) formed between the glass substrates. To display the image. The cells corresponding to the pixels in the image are self-luminous, and are coated with phosphors that generate red, green, and blue visible light in response to ultraviolet rays generated by discharge.
 例えば、3電極構造のPDPは、X電極およびY電極間でサステイン放電を発生させることで、画像を表示する。サステイン放電を発生させるセル(点灯させるセル)は、例えば、Y電極およびアドレス電極間で選択的にアドレス放電を発生させることにより、選択される。 For example, a three-electrode PDP displays an image by generating a sustain discharge between the X electrode and the Y electrode. A cell that generates a sustain discharge (a cell to be lit) is selected by, for example, selectively generating an address discharge between the Y electrode and the address electrode.
 近年、X電極およびY電極とアドレス電極の3電極を前面ガラス基板に配置したPDPが提案されている(例えば、特許文献1参照)。この種のPDPでは、放電空間を仕切る隔壁が、背面ガラス基材上にアドレス電極に沿って設けられている。また、背面ガラス基材の縁部には、放電ガスを放電空間に封入するための排気パスが設けられている。なお、排気パスが設けられている縁部には、隔壁は設けられていない。
特開2005-116508号公報
In recent years, a PDP in which three electrodes, that is, an X electrode, a Y electrode, and an address electrode are arranged on a front glass substrate has been proposed (see, for example, Patent Document 1). In this type of PDP, partition walls that partition the discharge space are provided on the back glass substrate along the address electrodes. Further, an exhaust path for enclosing the discharge gas in the discharge space is provided at the edge of the back glass substrate. In addition, the partition is not provided in the edge part in which the exhaust path is provided.
JP-A-2005-116508
 近年、PDPの高精細化等により1画面の画素数が増加し、PDPの各セル面積は、小さくなる傾向にある。すなわち、互いに隣接するアドレス電極間の距離が狭くなる。この場合、隔壁が設けられていない排気パスの周辺では、互いに隣接するアドレス電極間で意図しない放電(誤放電)が発生するおそれがある。例えば、アドレス放電を発生させるセルのアドレス電極と、このアドレス電極に隣接するアドレス電極との間で誤放電が発生した場合、誤放電が発生したアドレス電極に電流が流れる。この場合、例えば、オフしている回路(アドレス放電を発生させないセルのアドレス電極に接続された回路)に予期しない電流が流れ、その回路の部品(トランジスタ等)が破損するおそれがある。すなわち、アドレス電極間の誤放電により、回路が破損するおそれがある。 In recent years, the number of pixels per screen has increased due to high definition of the PDP, and the cell area of each PDP tends to become smaller. That is, the distance between the address electrodes adjacent to each other is reduced. In this case, there is a possibility that unintentional discharge (erroneous discharge) may occur between the address electrodes adjacent to each other in the vicinity of the exhaust path where no partition wall is provided. For example, when an erroneous discharge occurs between an address electrode of a cell that generates an address discharge and an address electrode adjacent to the address electrode, a current flows through the address electrode where the erroneous discharge has occurred. In this case, for example, an unexpected current flows through a circuit that is turned off (a circuit connected to an address electrode of a cell that does not generate an address discharge), and there is a possibility that parts of the circuit (such as a transistor) are damaged. That is, the circuit may be damaged due to erroneous discharge between the address electrodes.
 本発明の目的は、前面ガラス基板に3電極を有するPDPにおいて、アドレス電極間の誤放電を防止し、回路の破損を防止することである。 An object of the present invention is to prevent erroneous discharge between address electrodes and prevent circuit breakage in a PDP having three electrodes on a front glass substrate.
 プラズマディスプレイパネルは、放電空間を介して互いに対向する第1基板および第2基板を有している。第1基板上には、第1方向に延在し、互いに間隔を置いて配置された複数の第1電極および第2電極と、第1および第2電極を覆う誘電体層とが設けられている。第2基板上には、第1方向と交差する第2方向に延在し、第1方向に沿って配置された複数の第1隔壁が設けられている。そして、誘電体層上には、互いに隣接する第1隔壁間に形成される第1領域毎に、第2方向に延在するアドレス電極が設けられている。例えば、第1方向に沿って配置されたアドレス電極は、第1領域から第2方向の一方側および他方側に交互に引き出されている。また、誘電体層上には、誘電体層の表面およびアドレス電極を覆い、セルの放電空間に露出された保護層が設けられている。 The plasma display panel has a first substrate and a second substrate that face each other through a discharge space. On the first substrate, there are provided a plurality of first and second electrodes that extend in the first direction and are spaced from each other, and a dielectric layer that covers the first and second electrodes. Yes. On the second substrate, a plurality of first barrier ribs extending in the second direction intersecting the first direction and arranged along the first direction are provided. An address electrode extending in the second direction is provided on the dielectric layer for each first region formed between the first barrier ribs adjacent to each other. For example, the address electrodes arranged along the first direction are alternately drawn from the first region to one side and the other side in the second direction. Further, a protective layer is provided on the dielectric layer, covering the surface of the dielectric layer and the address electrode, and being exposed to the discharge space of the cell.
 本発明では、前面ガラス基板に3電極を有するPDPにおいて、アドレス電極間の誤放電を防止でき、回路の破損を防止できる。 In the present invention, in a PDP having three electrodes on the front glass substrate, erroneous discharge between address electrodes can be prevented, and circuit damage can be prevented.
一実施形態におけるPDPの要部を示す図である。It is a figure which shows the principal part of PDP in one Embodiment. 図1に示したPDPの概要を示す図である。It is a figure which shows the outline | summary of PDP shown in FIG. 図1に示したPDPを用いて構成されたプラズマディスプレイ装置の一例を示す図である。It is a figure which shows an example of the plasma display apparatus comprised using PDP shown in FIG. 図3に示した回路部の概要を示す図である。It is a figure which shows the outline | summary of the circuit part shown in FIG. 別の実施形態におけるPDPの概要を示す図である。It is a figure which shows the outline | summary of PDP in another embodiment. 別の実施形態におけるPDPの要部を示す図である。It is a figure which shows the principal part of PDP in another embodiment. 図6に示したPDPの概要を示す図である。It is a figure which shows the outline | summary of PDP shown in FIG. 別の実施形態におけるPDPの概要を示す図である。It is a figure which shows the outline | summary of PDP in another embodiment.
 以下、本発明の実施形態を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態におけるプラズマディスプレイパネル(以下、PDPとも称する)の要部を示している。図中の矢印D1は、第1方向D1を示し、矢印D2は、第1方向D1に画像表示面に平行な面内で直交する第2方向D2を示している。PDP10は、画像表示面を構成する前面基板部12と、前面基板部12に対向する背面基板部14とにより構成されている。前面基板部12と背面基板部14の間(より詳細には、背面基板部14の凹部)に放電空間DSが形成される。 FIG. 1 shows a main part of a plasma display panel (hereinafter also referred to as PDP) in an embodiment of the present invention. An arrow D1 in the drawing indicates the first direction D1, and an arrow D2 indicates the second direction D2 orthogonal to the first direction D1 in a plane parallel to the image display surface. The PDP 10 includes a front substrate portion 12 that forms an image display surface, and a rear substrate portion 14 that faces the front substrate portion 12. A discharge space DS is formed between the front substrate portion 12 and the rear substrate portion 14 (more specifically, a concave portion of the rear substrate portion 14).
 前面基板部12は、ガラス基材FS(第1基板)のガラス基材RS(第2基板)に対向する面上(図では下側)に第1方向D1に延在して設けられ、互いに間隔を置いて配置された複数のXバス電極XbおよびYバス電極Ybを有している。例えば、Xバス電極XbおよびYバス電極Ybは、金属材料等で形成された不透明な電極である。Xバス電極Xbには、Xバス電極XbからYバス電極Ybに向けて第2方向D2に延在するX透明電極Xtが接続されている。Yバス電極Ybには、Yバス電極YbからXバス電極Xbに向けて第2方向D2に延在するY透明電極Ytが接続されている。 The front substrate portion 12 is provided to extend in the first direction D1 on the surface (lower side in the drawing) of the glass substrate FS (first substrate) facing the glass substrate RS (second substrate). A plurality of X bus electrodes Xb and Y bus electrodes Yb are arranged at intervals. For example, the X bus electrode Xb and the Y bus electrode Yb are opaque electrodes formed of a metal material or the like. An X transparent electrode Xt extending in the second direction D2 from the X bus electrode Xb to the Y bus electrode Yb is connected to the X bus electrode Xb. A Y transparent electrode Yt extending in the second direction D2 from the Y bus electrode Yb to the X bus electrode Xb is connected to the Y bus electrode Yb.
 図の例では、X透明電極XtおよびY透明電極Ytは、第1方向D1(あるいは、第2方向D2)に対して斜めの方向に沿って対向している。なお、透明電極Xt、Ytは、第1方向D1に沿って対向するように設けられてもよいし、第2方向D2に沿って対向するように設けられてもよい。例えば、X透明電極XtおよびY透明電極Ytは、ITO膜等で形成された光を透過する透明電極である。なお、バス電極XbおよびYbと同じ材料(金属材料等)で、バス電極XbおよびYbと一体の電極が透明電極XtおよびYtの代わりに形成されてもよい。また、透明電極XtおよびYtは、それぞれが接続されるバス電極XbおよびYbとガラス基材FSとの間に全面に配置されてもよい。 In the example shown in the figure, the X transparent electrode Xt and the Y transparent electrode Yt face each other along an oblique direction with respect to the first direction D1 (or the second direction D2). The transparent electrodes Xt and Yt may be provided so as to face each other along the first direction D1, or may be provided so as to face each other along the second direction D2. For example, the X transparent electrode Xt and the Y transparent electrode Yt are transparent electrodes that transmit light formed of an ITO film or the like. Note that an electrode integral with the bus electrodes Xb and Yb may be formed in place of the transparent electrodes Xt and Yt, using the same material (metal material or the like) as the bus electrodes Xb and Yb. Further, the transparent electrodes Xt and Yt may be disposed on the entire surface between the bus electrodes Xb and Yb to which the transparent electrodes Xt and Yt are connected and the glass substrate FS.
 X電極XE(第1電極、維持電極)は、Xバス電極XbおよびX透明電極Xtにより構成され、Y電極YE(第2電極、走査電極)は、Yバス電極YbおよびY透明電極Ytにより構成され、X電極XEと対をなしている。すなわち、ガラス基材FS上(図では下側)には、第1方向D1に延在し、互いに間隔を置いて配置された複数のX電極XEおよびY電極YEが設けられている。そして、互いに対をなすX電極XEおよびY電極YE間(より具体的には、X透明電極XtおよびY透明電極Yt間)で繰り返して放電(サステイン放電)を発生させる。 X electrode XE (first electrode, sustain electrode) is composed of X bus electrode Xb and X transparent electrode Xt, and Y electrode YE (second electrode, scan electrode) is composed of Y bus electrode Yb and Y transparent electrode Yt. And is paired with the X electrode XE. That is, a plurality of X electrodes XE and Y electrodes YE extending in the first direction D1 and spaced from each other are provided on the glass substrate FS (lower side in the figure). Then, a discharge (sustain discharge) is repeatedly generated between the X electrode XE and the Y electrode YE paired with each other (more specifically, between the X transparent electrode Xt and the Y transparent electrode Yt).
 電極Xb、Xt、Yb、Ytは、誘電体層DLに覆われている。例えば、誘電体層DLは、CVD法により形成された二酸化シリコン膜等の絶縁膜である。そして、誘電体層DL上(図では下側)には、バス電極Xb、Ybの直交方向(第2方向D2)に延在する複数のアドレス電極AEが設けられている。このように、この実施形態のPDPは、前面基板部12に3電極(電極XE、YE、AE)を有している。 The electrodes Xb, Xt, Yb, Yt are covered with the dielectric layer DL. For example, the dielectric layer DL is an insulating film such as a silicon dioxide film formed by a CVD method. A plurality of address electrodes AE extending in a direction orthogonal to the bus electrodes Xb and Yb (second direction D2) are provided on the dielectric layer DL (lower side in the figure). Thus, the PDP of this embodiment has three electrodes (electrodes XE, YE, AE) on the front substrate portion 12.
 アドレス電極AEおよび誘電体層DLの表面は、保護層PLに覆われている。保護層PLは、放電空間DSに露出しており、放電によるイオン衝突からアドレス電極AEおよび誘電体層DLを保護する。すなわち、この実施形態では、アドレス電極AEを覆う2層目の誘電体層が形成されずに、保護層PLがアドレス電極AEおよび1層目の誘電体層DL上に直接形成されている。なお、例えば、保護層PLは、放電を容易に発生させるために、陽イオンの衝突による2次電子の放出特性の高いMgO膜で形成される。 The surfaces of the address electrode AE and the dielectric layer DL are covered with a protective layer PL. The protective layer PL is exposed to the discharge space DS, and protects the address electrode AE and the dielectric layer DL from ion collision due to discharge. That is, in this embodiment, the second dielectric layer covering the address electrode AE is not formed, and the protective layer PL is formed directly on the address electrode AE and the first dielectric layer DL. For example, the protective layer PL is formed of an MgO film having high secondary electron emission characteristics due to cation collisions in order to easily generate discharge.
 背面基板部14は、放電空間DSを介してガラス基材FSに対向するガラス基材RSを有している。ガラス基材RS上(ガラス基材RSのガラス基材FSに対向する面上)には、第2方向D2に延在する第1隔壁(バリアリブ)BR1と第1方向D1に延在する第2隔壁BR2とにより構成される格子状の隔壁が形成されている。すなわち、第1隔壁BR1は、ガラス基材RS上に第2方向D2に延在して設けられ、第1方向D1に沿って配置されている。また、第2隔壁BR2は、ガラス基材RS上に第1方向D1に延在して設けられ、第2方向D2に沿って配置されている。 The back substrate unit 14 has a glass base RS that faces the glass base FS through the discharge space DS. On the glass substrate RS (on the surface of the glass substrate RS facing the glass substrate FS), a first partition (barrier rib) BR1 extending in the second direction D2 and a second extending in the first direction D1. A grid-like partition wall constituted by the partition wall BR2 is formed. In other words, the first partition BR1 is provided on the glass substrate RS so as to extend in the second direction D2, and is disposed along the first direction D1. Further, the second partition wall BR2 is provided to extend in the first direction D1 on the glass substrate RS, and is disposed along the second direction D2.
 例えば、隔壁BR1、BR2は、サンドブラスト法等でガラス基材RSを削ることにより、ガラス基材RSと一体に形成される。なお、隔壁BR1、BR2は、ペースト状の隔壁材料をガラス基材RS上に塗布し、乾燥、サンドブラスト、焼成工程を経て形成されてもよいし、印刷による積層で形成されてもよい。隔壁BR1、BR2により、セルの側壁が構成される。そして、隔壁BR1、BR2の側面と、隔壁BR1、BR2に囲まれた部分のガラス基材RS上とには、紫外線により励起されて赤(R)、緑(G)、青(B)の可視光を発生する蛍光体PHr、PHg、PHbが、それぞれ塗布されている。 For example, the barrier ribs BR1 and BR2 are formed integrally with the glass substrate RS by cutting the glass substrate RS by a sandblast method or the like. The barrier ribs BR1 and BR2 may be formed by applying a paste-like barrier rib material on the glass substrate RS, followed by drying, sandblasting, and baking processes, or may be formed by lamination by printing. The partition walls BR1 and BR2 constitute cell side walls. Further, red (R), green (G), and blue (B) are visible on the side surfaces of the barrier ribs BR1 and BR2 and on the glass substrate RS in a portion surrounded by the barrier ribs BR1 and BR2. Phosphors PHr, PHg, and PHb that generate light are respectively applied.
 PDP10の1つの画素は、赤、緑および青の光を発生する3つのセルにより構成される。ここで、1つのセル(一色の画素)は、例えば、後述する図2に示すように、隔壁BR1、BR2で囲われる領域に形成される。このように、PDP10は、画像を表示するためにセルをマトリックス状に配置し、かつ互いに異なる色の光を発生する複数種のセルを交互に配列して構成されている。特に図示していないが、バス電極Xb、Ybに沿って形成されたセルにより、表示ラインが構成される。 One pixel of the PDP 10 is composed of three cells that generate red, green, and blue light. Here, one cell (one color pixel) is formed in a region surrounded by partition walls BR1 and BR2, for example, as shown in FIG. As described above, the PDP 10 is configured by arranging cells in a matrix to display an image and alternately arranging a plurality of types of cells that generate light of different colors. Although not particularly illustrated, a display line is constituted by cells formed along the bus electrodes Xb and Yb.
 PDP10は、前面基板部12および背面基板部14を、保護層PLと隔壁BR(例えば、第1隔壁BR1)が互いに接するように貼り合わせ、Ne、Xe等の放電ガスを放電空間DSに封入することで構成される。 In the PDP 10, the front substrate portion 12 and the rear substrate portion 14 are bonded together so that the protective layer PL and the partition wall BR (for example, the first partition wall BR1) are in contact with each other, and a discharge gas such as Ne or Xe is enclosed in the discharge space DS. Consists of.
 図2は、図1に示したPDP10の概要を示している。なお、図2は、画像表示面側(図1の上側)から見たPDP10の状態を示している。図の網掛け部分は、ガラス基材RSの外周部および隔壁BR1、BR2を示している。図中の矢印D1、D2の意味は、上述した図1と同じである。また、図中の符号D21は、第2方向D2の一方側を示し、符号D22は、第2方向D2の他方側を示している。なお、セルCLrは、赤の可視光を発生するセルを示し、セルCLgは、緑の可視光を発生するセルを示し、セルCLbは、青の可視光を発生するセルを示している。以下、可視光の色毎に区別しない場合等、セルCLr、CLg、CLbを、セルCLとも称する。図の例では、図を見やすくするために、2画素×2画素(6セル×2セル)の画素数のPDPを示している。実際には、PDPの画素数は、1920画素×1080画素、1280画素×1080画素、1024画素×1080画素、1366画素×768画素などである。 FIG. 2 shows an outline of the PDP 10 shown in FIG. FIG. 2 shows the state of the PDP 10 as viewed from the image display surface side (upper side in FIG. 1). The shaded portion in the figure shows the outer peripheral portion of the glass substrate RS and the partition walls BR1 and BR2. The meanings of arrows D1 and D2 in the figure are the same as those in FIG. Moreover, the code | symbol D21 in a figure has shown the one side of the 2nd direction D2, and the code | symbol D22 has shown the other side of the 2nd direction D2. The cell CLr indicates a cell that generates red visible light, the cell CLg indicates a cell that generates green visible light, and the cell CLb indicates a cell that generates blue visible light. Hereinafter, the cells CLr, CLg, and CLb are also referred to as cells CL, for example, when they are not distinguished for each color of visible light. In the example of the figure, a PDP having the number of pixels of 2 pixels × 2 pixels (6 cells × 2 cells) is shown for easy viewing of the drawing. Actually, the number of pixels of the PDP is 1920 pixels × 1080 pixels, 1280 pixels × 1080 pixels, 1024 pixels × 1080 pixels, 1366 pixels × 768 pixels, and the like.
 上述した図1で説明したように、PDP10は、前面基板部12と背面基板部14とを貼り合わせ、Ne、Xe等の放電ガスを放電空間DSに封入することで構成される。前面基板部12と背面基板部14とを貼り合わせるシール材SLは、隔壁BR1、BR2が形成される領域より外側(外周部)に、額縁状に配置される。シール材SLと隔壁BR1、BR2との間に形成された排気空間ESには、ガラス基材RSの外面まで貫通する排気孔EHが設けられている。これにより、組み立てられたPDP10の放電空間DS(上述した図1に示した背面基板部14の凹部)を真空状態に設定でき、放電ガスを放電空間DSに封入できる。 As described above with reference to FIG. 1, the PDP 10 is configured by adhering the front substrate portion 12 and the rear substrate portion 14 and enclosing a discharge gas such as Ne or Xe in the discharge space DS. The sealing material SL for bonding the front substrate part 12 and the rear substrate part 14 is arranged in a frame shape outside (outer peripheral part) outside the region where the barrier ribs BR1 and BR2 are formed. The exhaust space ES formed between the sealing material SL and the partition walls BR1 and BR2 is provided with an exhaust hole EH that penetrates to the outer surface of the glass substrate RS. Thereby, the discharge space DS of the assembled PDP 10 (the concave portion of the back substrate portion 14 shown in FIG. 1 described above) can be set in a vacuum state, and the discharge gas can be enclosed in the discharge space DS.
 例えば、隔壁BR1の両端部は、最も外側に配置された隔壁BR2(図の一番上側の隔壁BR2および一番下側の隔壁BR2)より外側にそれぞれ突出している。すなわち、隔壁BR1の両端部は、最も外側に配置された隔壁BR2より外側にそれぞれ位置している。また、例えば、最も外側に配置された隔壁BR2の第2方向D2に沿う幅W20は、セルCL間に配置された隔壁BR2の第2方向D2に沿う幅W10より小さい。これにより、この実施形態では、PDP10の面積に対するセルCLの面積の割合を大きくできる。なお、最も外側に配置された隔壁BR2の第2方向D2に沿う幅W20は、後述する図8に示すように、セルCL間に配置された隔壁BR2の第2方向D2に沿う幅W10と同じでもよい。 For example, both end portions of the partition wall BR1 protrude outward from the outermost partition wall BR2 (the uppermost partition wall BR2 and the lowermost partition wall BR2 in the figure). That is, both end portions of the partition wall BR1 are respectively positioned outside the partition wall BR2 disposed on the outermost side. Further, for example, the width W20 along the second direction D2 of the partition wall BR2 disposed on the outermost side is smaller than the width W10 along the second direction D2 of the partition wall BR2 disposed between the cells CL. Thereby, in this embodiment, the ratio of the area of the cell CL to the area of the PDP 10 can be increased. Note that the width W20 along the second direction D2 of the partition wall BR2 arranged on the outermost side is the same as the width W10 along the second direction D2 of the partition wall BR2 arranged between the cells CL, as shown in FIG. But you can.
 ここで、例えば、セルCL間に配置された隔壁BR2(図の上から2番目の隔壁BR2)は、バス電極Xb、Ybの両方に対向し、最も外側に配置された隔壁BR2は、バス電極Xb、Ybの一方に対向している。なお、セルCL間に配置される隔壁BR2は、バス電極Xb、Ybの一方のみに対向して設けられてもよいし、バス電極Xb、Ybの間に設けられてもよい。この場合、最も外側に配置される隔壁BR2は、隔壁BR2間の各距離が互いに同じになる位置に設けられる。 Here, for example, the partition wall BR2 (second partition wall BR2 from the top in the figure) disposed between the cells CL is opposed to both the bus electrodes Xb and Yb, and the partition wall BR2 disposed on the outermost side is the bus electrode. It faces one of Xb and Yb. Note that the partition wall BR2 disposed between the cells CL may be provided to face only one of the bus electrodes Xb and Yb or may be provided between the bus electrodes Xb and Yb. In this case, the outermost partition wall BR2 is provided at a position where the distances between the partition walls BR2 are the same.
 上述したように、セルCLは、隔壁BR1、BR2で囲われる領域(例えば、図の細かい破線で囲んだ領域)に形成され、画素PXは、セルCLr、CLg、CLbにより構成される。そして、透明電極Ytは、各セルCL内にアドレス電極AEに隣接して配置され、透明電極Xtは、各セルCL内に透明電極Ytに隣接して配置される。これにより、アドレス電極AEと透明電極Yt間に電圧を印加することにより、着目するセルCLでアドレス放電を発生させることができる。また、透明電極Xtと透明電極Yt間に電圧を印加することにより、アドレス放電により選択されたセルCLでサステイン放電を発生させることができる。 As described above, the cell CL is formed in a region surrounded by the barrier ribs BR1 and BR2 (for example, a region surrounded by a fine broken line in the drawing), and the pixel PX is configured by the cells CLr, CLg, and CLb. The transparent electrode Yt is disposed adjacent to the address electrode AE in each cell CL, and the transparent electrode Xt is disposed adjacent to the transparent electrode Yt in each cell CL. Thus, by applying a voltage between the address electrode AE and the transparent electrode Yt, an address discharge can be generated in the cell CL of interest. Further, by applying a voltage between the transparent electrode Xt and the transparent electrode Yt, a sustain discharge can be generated in the cell CL selected by the address discharge.
 例えば、図の左から2番目の上側のセルCL(図の細かい破線で囲んだセルCLg)のみでアドレス放電を発生させる場合、図の上側のY電極YEにスキャンパルスが印加され、図の左から2番目のアドレス電極AEにアドレスパルスが印加される。この場合、例えば、他のアドレス電極AE(図の左から2番目のアドレス電極AEを除くアドレス電極AE)にアドレスパルスを印加するための回路は、オフしている。 For example, when the address discharge is generated only in the second upper cell CL from the left in the figure (the cell CLg surrounded by the fine broken line in the figure), a scan pulse is applied to the Y electrode YE on the upper side in the figure, To the second address electrode AE. In this case, for example, the circuit for applying the address pulse to the other address electrodes AE (the address electrodes AE excluding the second address electrode AE from the left in the drawing) is turned off.
 なお、アドレス電極AEは、第2方向D2に沿って配置されたセルCLを含んで構成される第1領域AR10(例えば、図の太い破線で囲んだ領域)毎に配置される。例えば、画像表示面側(図1の上側)から見た場合、第1領域AR10は、互いに隣接する隔壁BR1に挟まれる領域である。すなわち、アドレス電極AEは、互いに隣接する隔壁BR1間に形成される第1領域AR10毎に、第2方向D2に延在して設けられる。 Note that the address electrode AE is arranged for each first area AR10 (for example, an area surrounded by a thick broken line in the drawing) including the cells CL arranged along the second direction D2. For example, when viewed from the image display surface side (the upper side in FIG. 1), the first area AR10 is an area sandwiched between the adjacent partitions BR1. That is, the address electrode AE is provided to extend in the second direction D2 for each first region AR10 formed between the adjacent barrier ribs BR1.
 さらに、第1方向D1に沿って配置されたアドレス電極AEは、第1領域AR10から第2方向D2の一方側(例えば、図のD21側)および他方側(例えば、図のD22側)に交互に引き出される。これにより、例えば、この実施形態では、第1領域AR10より外側でのアドレス電極AE間の距離S20を、互いに隣接するアドレス電極AE間の距離S10の2倍にできる。すなわち、この実施形態では、保護層PLを介して排気空間ESに露出する部分のアドレス電極AE間の距離S20を大きくできる。なお、アドレス電極AEの第1領域AR10内の端部EG10(第1領域AR10から引き出されていない方の端部EG10)は、最も外側に配置された隔壁BR2より外側に位置している。 Further, the address electrodes AE arranged along the first direction D1 are alternately arranged from the first area AR10 on one side (for example, D21 side in the figure) and the other side (for example, D22 side in the figure) from the second direction D2. Pulled out. Thereby, for example, in this embodiment, the distance S20 between the address electrodes AE outside the first area AR10 can be made twice the distance S10 between the adjacent address electrodes AE. That is, in this embodiment, the distance S20 between the address electrodes AE in the portion exposed to the exhaust space ES through the protective layer PL can be increased. Note that the end portion EG10 in the first region AR10 of the address electrode AE (the end portion EG10 not drawn out from the first region AR10) is located outside the partition wall BR2 arranged on the outermost side.
 また、この実施形態では、アドレス電極AEの第1領域AR10内に位置する端部EG10と、端部EG10に隣接するアドレス電極AEの排気空間ES(第1領域AR10の外側)に位置する部分との距離S30を、距離S10より大きくできる。すなわち、この実施形態では、アドレス電極AE間に隔壁BR1、BR2が設けられていない部分の距離S20、S30を、互いに隣接するアドレス電極AE間の距離S10より大きくできる。 In this embodiment, the end portion EG10 of the address electrode AE located in the first region AR10, and the portion of the address electrode AE adjacent to the end portion EG10 located in the exhaust space ES (outside the first region AR10) The distance S30 can be larger than the distance S10. That is, in this embodiment, the distances S20 and S30 where the partition walls BR1 and BR2 are not provided between the address electrodes AE can be made larger than the distance S10 between the adjacent address electrodes AE.
 これにより、この実施形態では、アドレス電極AE間で意図しない放電(誤放電)が発生することを防止できる。なお、アドレス電極AE間の距離が小さい場所(例えば、アドレス電極AE間の距離が距離S10になる場所)では、アドレス電極AE間に隔壁BR1が設けられているため、アドレス電極AE間で誤放電は発生しない。例えば、この実施形態では、図の左から2番目の上側のセルCLのみでアドレス放電を発生させる際に、図の左から2番目のアドレス電極AEと、他のアドレス電極AE(例えば、図の左から1番目、3番目、あるいは4番目のアドレス電極AE)との間で誤放電が発生することを防止できる。 Thereby, in this embodiment, it is possible to prevent unintended discharge (erroneous discharge) from occurring between the address electrodes AE. Note that, in a place where the distance between the address electrodes AE is small (for example, a place where the distance between the address electrodes AE is the distance S10), since the partition wall BR1 is provided between the address electrodes AE, erroneous discharge occurs between the address electrodes AE. Does not occur. For example, in this embodiment, when the address discharge is generated only in the second upper cell CL from the left in the figure, the second address electrode AE from the left in the figure and another address electrode AE (for example, in the figure) It is possible to prevent erroneous discharge from occurring with the first, third, or fourth address electrode AE) from the left.
 この実施形態では、アドレス電極AE間の誤放電が防止されるため、アドレス放電を発生させないセルCL(以下、オフセルCLとも称する)のアドレス電極AEに予期しない電流が流れることを防止できる。したがって、この実施形態では、オフしている回路(例えば、オフセルCLのアドレス電極AEに接続された回路)に予期しない電流が流れることを防止でき、その回路の部品(トランジスタ等)が破損することを防止できる。さらに、この実施形態では、アドレス電極AE間の誤放電が防止されるため、不要な光が発生することを防止でき、PDP10に表示される画像の品質を向上できる。 In this embodiment, since an erroneous discharge between the address electrodes AE is prevented, it is possible to prevent an unexpected current from flowing through the address electrode AE of a cell CL that does not generate an address discharge (hereinafter also referred to as an off-cell CL). Therefore, in this embodiment, it is possible to prevent an unexpected current from flowing through a circuit that is turned off (for example, a circuit connected to the address electrode AE of the off cell CL), and components of the circuit (such as transistors) are damaged. Can be prevented. Further, in this embodiment, since erroneous discharge between the address electrodes AE is prevented, unnecessary light can be prevented from being generated, and the quality of an image displayed on the PDP 10 can be improved.
 ここで、アドレス電極AE間の誤放電を防止するために、アドレス電極AEと保護層PLとの間に、1層目の誘電体層DLとは別の誘電体層を設ける構成が、本発明の過程で考えられた。この構成では、1層目の誘電体層DLとは別の誘電体層を設けるための工程が必要になり、製造コストが増加する。これに対し、この実施形態では、上述したように、アドレス電極AEと保護層PLとの間に1層目の誘電体層DLとは別の誘電体層を設けることなく、アドレス電極AE間の誤放電を防止できる。したがって、この実施形態では、製造コストを低減できる。 Here, in order to prevent erroneous discharge between the address electrodes AE, a configuration in which a dielectric layer different from the first dielectric layer DL is provided between the address electrodes AE and the protective layer PL is the present invention. It was thought of in the process. In this configuration, a process for providing a dielectric layer different from the first dielectric layer DL is required, and the manufacturing cost increases. On the other hand, in this embodiment, as described above, a dielectric layer different from the first dielectric layer DL is not provided between the address electrodes AE and the protective layer PL, and the address electrodes AE are not provided. Incorrect discharge can be prevented. Therefore, in this embodiment, the manufacturing cost can be reduced.
 図3は、図1に示したPDP10を用いて構成されたプラズマディスプレイ装置の一例を示している。プラズマディスプレイ装置(以下、PDP装置とも称する)は、PDP10、PDP10の画像表示面16側(光の出力側)に設けられる光学フィルタ20、PDP10の画像表示面16側に配置された前筐体30、PDP10の背面18側に配置された後筐体40およびベースシャーシ50、ベースシャーシ50の後筐体40側に取り付けられ、PDP10を駆動するための回路部60、およびPDP10をベースシャーシ50に貼り付けるための両面接着シート70を有している。回路部60は、複数の部品で構成されるため、図では、破線の箱で示している。光学フィルタ20は、前筐体30の開口部32に取り付けられる保護ガラス(図示せず)に貼付される。なお、光学フィルタ20は、電磁波を遮蔽する機能を有してもよい。また、光学フィルタ20は、保護ガラスではなく、PDP10の画像表示面16側に直接貼付されてもよい。 FIG. 3 shows an example of a plasma display device configured using the PDP 10 shown in FIG. The plasma display device (hereinafter also referred to as a PDP device) includes a PDP 10, an optical filter 20 provided on the image display surface 16 side (light output side) of the PDP 10, and a front housing 30 disposed on the image display surface 16 side of the PDP 10. The rear housing 40 and the base chassis 50 disposed on the back surface 18 side of the PDP 10, the circuit unit 60 for driving the PDP 10 attached to the rear housing 40 side of the base chassis 50, and the PDP 10 are attached to the base chassis 50. A double-sided adhesive sheet 70 for attaching is provided. Since the circuit unit 60 includes a plurality of components, the circuit unit 60 is indicated by a dashed box in the figure. The optical filter 20 is affixed to a protective glass (not shown) attached to the opening 32 of the front housing 30. The optical filter 20 may have a function of shielding electromagnetic waves. The optical filter 20 may be directly attached to the image display surface 16 side of the PDP 10 instead of the protective glass.
 図4は、図3に示した回路部60の概要を示している。回路部60は、制御部CNT、XドライバXDRV、YドライバYDRV、アドレスドライバADRV(ADRV1、ADRV2)および電源部PWRを有している。電源部PWRは、ドライバYDRV、XDRV、ADRVに供給する電源電圧-Vsc、Vs/2、-Vs/2、Vsa等を生成する。 FIG. 4 shows an outline of the circuit unit 60 shown in FIG. The circuit unit 60 includes a control unit CNT, an X driver XDRV, a Y driver YDRV, an address driver ADRV (ADRV1, ADRV2), and a power supply unit PWR. The power supply unit PWR generates power supply voltages −Vsc, Vs / 2, −Vs / 2, Vsa and the like to be supplied to the drivers YDRV, XDRV, and ADRV.
 制御部CNTは、ドライバXDRV、YDRV、ADRVの動作を制御する。例えば、制御部CNTは、画像データR0-R7、G0-G7、B0-B7に基づいて使用するサブフィールドを選択し、ドライバYDRV、XDRV、ADRVに制御信号YCNT、XCNT、ACNTを出力する。ここで、サブフィールドは、PDP10の1画面を表示するための1フィールドが分割されたフィールドであり、サブフィールド毎にサステイン放電の回数が設定されている。そして、画素を構成するセル毎に、使用するサブフィールドを選択することにより、多階調の画像が表示される。例えば、サブフィールドは、点灯させるセル(サステイン放電を発生させるセル)を選択するアドレス期間およびアドレス期間に選択されたセルでサステイン放電を発生させるサステイン期間等を含んで構成される。 The control unit CNT controls the operation of the drivers XDRV, YDRV, and ADRV. For example, the control unit CNT selects a subfield to be used based on the image data R0-R7, G0-G7, B0-B7, and outputs control signals YCNT, XCNT, and ACNT to the drivers YDRV, XDRV, and ADRV. Here, the subfield is a field obtained by dividing one field for displaying one screen of the PDP 10, and the number of sustain discharges is set for each subfield. Then, by selecting a subfield to be used for each cell constituting the pixel, a multi-gradation image is displayed. For example, the subfield includes an address period for selecting a cell to be lit (a cell for generating a sustain discharge), a sustain period for generating a sustain discharge in the cell selected in the address period, and the like.
 ドライバXDRV、YDRV、ADRVは、PDP10を駆動する駆動部として動作する。例えば、XドライバXDRVは、サステイン期間に、電圧-Vs/2、Vs/2(負および正のサステインパルス)をX電極XEに交互に印加する。また、YドライバYDRVは、サステイン期間では、X電極XEに印加される電圧と異なる極性の電圧Vs/2、-Vs/2(正および負のサステインパルス)をY電極YEに交互に印加し、アドレス期間では、電圧-Vsc(スキャンパルス)をY電極YEに選択的に印加する。アドレスドライバADRVは、アドレス期間に、アドレス電極AEに選択的に電圧Vsa(アドレスパルス)を印加する。 The drivers XDRV, YDRV, and ADRV operate as a drive unit that drives the PDP 10. For example, the X driver XDRV alternately applies voltages −Vs / 2 and Vs / 2 (negative and positive sustain pulses) to the X electrode XE during the sustain period. The Y driver YDRV alternately applies voltages Vs / 2 and −Vs / 2 (positive and negative sustain pulses) having different polarities from the voltage applied to the X electrode XE to the Y electrode YE during the sustain period, In the address period, the voltage −Vsc (scan pulse) is selectively applied to the Y electrode YE. The address driver ADRV selectively applies a voltage Vsa (address pulse) to the address electrode AE during the address period.
 例えば、アドレスドライバADRV1は、アドレス期間に、上述した図2に示した第2方向D2の一方側(例えば、図2のD21側)に引き出されたアドレス電極AEに選択的に電圧Vsa(アドレスパルス)を印加する。そして、アドレスドライバADRV2は、アドレス期間に、図2に示した第2方向D2の他方側(例えば、図2のD22側)に引き出されたアドレス電極AEに選択的に電圧Vsa(アドレスパルス)を印加する。上述した図2で説明したように、この実施形態では、アドレス電極AE間の誤放電が防止されるため、アドレスドライバADRV1、ADRV2内の回路が破損することを防止できる。 For example, the address driver ADRV1 selectively applies the voltage Vsa (address pulse) to the address electrode AE drawn to one side (for example, D21 side in FIG. 2) in the second direction D2 shown in FIG. ) Is applied. The address driver ADRV2 selectively applies the voltage Vsa (address pulse) to the address electrode AE drawn to the other side (for example, D22 side in FIG. 2) in the second direction D2 shown in FIG. 2 during the address period. Apply. As described above with reference to FIG. 2, in this embodiment, erroneous discharge between the address electrodes AE is prevented, so that the circuits in the address drivers ADRV1 and ADRV2 can be prevented from being damaged.
 スキャンパルスとアドレスパルスにより選択されたセルは、Y電極YEとアドレス電極AE間で一時的に放電(アドレス放電)が発生する。これにより、アドレス期間では、サステイン期間に点灯させるセルが選択される。また、サステイン期間では、互いに極性の異なるサステインパルスが、X電極XEおよびY電極YEに繰り返して印加されることにより、サステイン期間に点灯したセルの放電(サステイン放電)が繰り返し行われる。 In the cell selected by the scan pulse and the address pulse, a discharge (address discharge) is temporarily generated between the Y electrode YE and the address electrode AE. Thereby, in the address period, a cell to be lit in the sustain period is selected. In the sustain period, the sustain pulses having different polarities are repeatedly applied to the X electrode XE and the Y electrode YE, so that the discharge of the cells lit in the sustain period (sustain discharge) is repeatedly performed.
 以上、この実施形態では、第1方向D1に沿って配置されたアドレス電極AEは、第1領域AR10から第2方向D2に沿って互いに反対側(図2のD21側およびD22側)に交互に引き出される。これにより、この実施形態では、アドレス電極AE間の誤放電を防止でき、回路の破損を防止できる。 As described above, in this embodiment, the address electrodes AE arranged along the first direction D1 are alternately arranged on the opposite sides (D21 side and D22 side in FIG. 2) from the first area AR10 along the second direction D2. Pulled out. Thereby, in this embodiment, erroneous discharge between the address electrodes AE can be prevented, and damage to the circuit can be prevented.
 図5は、別の実施形態におけるPDP10の概要を示している。この実施形態では、上述した図2に示した構成に第3隔壁BR3が追加されて構成されている。その他の構成は、図1-図4で説明した実施形態と同じである。と同じである。図1-図4で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。例えば、図中の矢印D1、D2の意味は、上述した図1と同じである。 FIG. 5 shows an outline of the PDP 10 in another embodiment. In this embodiment, the third partition BR3 is added to the configuration shown in FIG. 2 described above. Other configurations are the same as those of the embodiment described with reference to FIGS. Is the same. The same elements as those described in FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description thereof will be omitted. For example, the meanings of arrows D1 and D2 in the figure are the same as those in FIG.
 なお、図5は、画像表示面側(図1の上側)から見たPDP10の状態を示している。図の網掛け部分は、ガラス基材RSの外周部および隔壁BR1、BR2を示している。図の例では、図を見やすくするために、2画素×2画素(6セル×2セル)の画素数のPDPを示している。実際には、PDPの画素数は、1920画素×1080画素、1280画素×1080画素、1024画素×1080画素、1366画素×768画素などである。 FIG. 5 shows the state of the PDP 10 viewed from the image display surface side (upper side in FIG. 1). The shaded portion in the figure shows the outer peripheral portion of the glass substrate RS and the partition walls BR1 and BR2. In the example of the figure, a PDP having the number of pixels of 2 pixels × 2 pixels (6 cells × 2 cells) is shown for easy viewing of the drawing. Actually, the number of pixels of the PDP is 1920 pixels × 1080 pixels, 1280 pixels × 1080 pixels, 1024 pixels × 1080 pixels, 1366 pixels × 768 pixels, and the like.
 第3隔壁BR3は、ガラス基材RS上に第1方向D1に延在して設けられ、最も外側に配置された隔壁BR2(図の一番上側の隔壁BR2および一番下側の隔壁BR2)より外側にそれぞれ配置されている。そして、隔壁BR1は、一方の隔壁BR3(例えば、図の上側の隔壁BR3)から他方の隔壁BR3(例えば、図の下側の隔壁BR3)まで延在して設けられている。図の例では、隔壁BR1の両端部は、隔壁BR3より外側にそれぞれ位置している。すなわち、隔壁BR1の両端部は、隔壁BR3より外側にそれぞれ突出している。なお、隔壁BR1の端部は、隔壁BR3より外側に突出していなくてもよい。ここで、排気空間ESは、例えば、シール材SLと隔壁BR1、BR3との間に形成される。 The third partition wall BR3 extends in the first direction D1 on the glass substrate RS, and is disposed on the outermost side (the uppermost partition wall BR2 and the lowermost partition wall BR2 in the figure). They are arranged on the outer sides. The partition wall BR1 extends from one partition wall BR3 (for example, the upper partition wall BR3 in the drawing) to the other partition wall BR3 (for example, the lower partition wall BR3 in the drawing). In the illustrated example, both end portions of the partition wall BR1 are located outside the partition wall BR3. That is, both end portions of the partition wall BR1 protrude outward from the partition wall BR3. Note that the end portion of the partition wall BR1 may not protrude outward from the partition wall BR3. Here, the exhaust space ES is formed, for example, between the seal material SL and the partition walls BR1 and BR3.
 また、アドレス電極AEの第1領域AR10内の端部EG10(第1領域AR10から引き出されていない方の端部EG10)は、最も外側に配置された隔壁BR2より外側で、かつ、隔壁BR3より内側に位置している。すなわち、アドレス電極AEの第1領域AR10内に位置する端部EG10と、端部EG10に隣接するアドレス電極AEとの間には、隔壁BR1、BR3の少なくとも一方が設けられている。これにより、この実施形態では、アドレス電極AEの第1領域AR10内に位置する端部EG10と、端部EG10に隣接するアドレス電極AEとの間で誤放電が発生することを、上述した図1-図4で説明した実施形態に比べて、確実に防止できる。 Further, the end EG10 (the end EG10 not drawn from the first area AR10) in the first area AR10 of the address electrode AE is outside the partition BR2 arranged on the outermost side and from the partition BR3. Located inside. That is, at least one of the barrier ribs BR1 and BR3 is provided between the end portion EG10 located in the first region AR10 of the address electrode AE and the address electrode AE adjacent to the end portion EG10. As a result, in this embodiment, the erroneous discharge occurs between the end portion EG10 located in the first region AR10 of the address electrode AE and the address electrode AE adjacent to the end portion EG10, as described above with reference to FIG. -It can be reliably prevented compared to the embodiment described in FIG.
 以上、この実施形態においても、上述した図1-図4で説明した実施形態と同様の効果を得ることができる。さらに、この実施形態では、アドレス電極AEの第1領域AR10内の端部EG10は、隔壁BR2および隔壁BR3と互いに隣接する隔壁BR1とで囲われる領域内に位置している。この結果、この実施形態では、互いに隣接するアドレス電極AE間の誤放電を、上述した図1-図4で説明した実施形態に比べて、確実に防止できる。 As described above, also in this embodiment, the same effect as that of the embodiment described with reference to FIGS. 1 to 4 can be obtained. Further, in this embodiment, the end portion EG10 in the first region AR10 of the address electrode AE is located in a region surrounded by the barrier ribs BR2 and BR3 and the barrier rib BR1 adjacent to each other. As a result, in this embodiment, erroneous discharge between the adjacent address electrodes AE can be surely prevented as compared with the embodiment described with reference to FIGS.
 図6は、別の実施形態におけるPDP10の要部を示している。この実施形態では、上述した図1に示した構成から第2隔壁BR2が省かれて構成されている。その他の構成は、図1-図4で説明した実施形態と同じである。図1-図4で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。例えば、図中の矢印D1、D2の意味は、上述した図1と同じである。 FIG. 6 shows a main part of the PDP 10 in another embodiment. In this embodiment, the second partition BR2 is omitted from the configuration shown in FIG. 1 described above. Other configurations are the same as those of the embodiment described with reference to FIGS. The same elements as those described in FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description thereof will be omitted. For example, the meanings of arrows D1 and D2 in the figure are the same as those in FIG.
 ガラス基材RS上には、上述した図2に示した構成から第2隔壁BR2が省かれたストライプ状の隔壁(隔壁BR1)が設けられている。すなわち、ガラス基材RSのガラス基材FSに対向する面上には、第2方向D2に延在する第1隔壁BR1が設けられている。例えば、隔壁BR1は、サンドブラスト法等でガラス基材RSを削ることにより、ガラス基材RSと一体に形成される。なお、隔壁BR1は、ペースト状の隔壁材料をガラス基材RS上に塗布し、乾燥、サンドブラスト、焼成工程を経て形成されてもよいし、印刷による積層で形成されてもよい。 On the glass substrate RS, a stripe-shaped partition wall (partition wall BR1) in which the second partition wall BR2 is omitted from the configuration illustrated in FIG. 2 described above is provided. That is, the first partition wall BR1 extending in the second direction D2 is provided on the surface of the glass substrate RS that faces the glass substrate FS. For example, the partition wall BR1 is formed integrally with the glass substrate RS by cutting the glass substrate RS by a sandblast method or the like. The partition wall BR1 may be formed by applying a paste-like partition wall material on the glass substrate RS, followed by drying, sandblasting, and baking processes, or may be formed by lamination by printing.
 隔壁BR1の側面と、互いに隣接する隔壁BR1の間のガラス基材RS上とには、紫外線により励起されて赤(R)、緑(G)、青(B)の可視光を発生する蛍光体PHr、PHg、PHbが、それぞれ塗布されている。この場合、セルCLは、例えば、後述する図7に示すように、バス電極Xb、Ybと隔壁BR1とで囲われる領域に形成される。 A phosphor that generates visible light of red (R), green (G), and blue (B) when excited by ultraviolet rays on the side surface of the barrier rib BR1 and the glass substrate RS between the barrier ribs BR1 adjacent to each other. PHr, PHg, and PHb are respectively applied. In this case, for example, as shown in FIG. 7 described later, the cell CL is formed in a region surrounded by the bus electrodes Xb and Yb and the partition wall BR1.
 図7は、図6に示したPDP10の概要を示している。なお、図7は、画像表示面側(図6の上側)から見たPDP10の状態を示している。図の網掛け部分は、ガラス基材RSの外周部および隔壁BR1を示している。図の例では、図を見やすくするために、2画素×2画素(6セル×2セル)の画素数のPDPを示している。実際には、PDPの画素数は、1920画素×1080画素、1280画素×1080画素、1024画素×1080画素、1366画素×768画素などである。 FIG. 7 shows an outline of the PDP 10 shown in FIG. FIG. 7 shows the state of the PDP 10 viewed from the image display surface side (upper side in FIG. 6). The shaded portion in the figure shows the outer peripheral portion of the glass substrate RS and the partition wall BR1. In the example of the figure, a PDP having the number of pixels of 2 pixels × 2 pixels (6 cells × 2 cells) is shown for easy viewing of the drawing. Actually, the number of pixels of the PDP is 1920 pixels × 1080 pixels, 1280 pixels × 1080 pixels, 1024 pixels × 1080 pixels, 1366 pixels × 768 pixels, and the like.
 上述した図6で説明したように、セルCLは、バス電極Xb、Ybと隔壁BR1とで囲われる領域(例えば、図の細かい破線で囲んだ領域)に形成される。第1方向D1に沿って配置されたアドレス電極AEは、第1領域AR10から第2方向D2に沿って互いに反対側(図のD21側およびD22側)に交互に引き出されている。すなわち、第1方向D1に沿って配置されたアドレス電極AEは、第1領域AR10から第2方向D2の一方側(例えば、図のD21側)および他方側(例えば、図のD22側)に交互に引き出される。 As described with reference to FIG. 6, the cell CL is formed in a region surrounded by the bus electrodes Xb and Yb and the partition wall BR1 (for example, a region surrounded by a fine broken line in the figure). The address electrodes AE arranged along the first direction D1 are alternately drawn from the first area AR10 to the opposite sides (D21 side and D22 side in the drawing) along the second direction D2. That is, the address electrodes AE arranged along the first direction D1 are alternately arranged from the first area AR10 to one side (for example, D21 side in the figure) and the other side (for example, D22 side in the figure) from the second direction D2. Pulled out.
 例えば、互いに隣接するアドレス電極AEのうち、一方のアドレス電極AEは、第1領域AR10から第2方向の一方側(例えば、図のD21側)に引き出され、かつ、第2方向の他方側(例えば、図のD22側)の端部EG10が第1領域AR10内に位置するように配置される。そして、他方のアドレス電極AEは、第1領域AR10から他方側(例えば、図のD22側)に引き出され、かつ、一方側(例えば、図のD21側)の端部EG10が第1領域AR10内に位置するように配置される。これにより、この実施形態では、アドレス電極AE間に隔壁BR1、BR2が設けられていない部分の距離S20、S30を、互いに隣接するアドレス電極AE間の距離S10より大きくできる。なお、アドレス電極AEの第1領域AR10内の端部EG10は、最も外側に配置されたバス電極Xb、Ybより外側に位置している。 For example, among the address electrodes AE adjacent to each other, one address electrode AE is drawn from the first area AR10 to one side in the second direction (for example, D21 side in the drawing) and the other side in the second direction ( For example, the end portion EG10 on the D22 side in the drawing is disposed so as to be located in the first region AR10. The other address electrode AE is drawn from the first area AR10 to the other side (for example, the D22 side in the figure), and the end EG10 on one side (for example, the D21 side in the figure) is within the first area AR10. It arrange | positions so that it may be located in. As a result, in this embodiment, the distances S20 and S30 where the partition walls BR1 and BR2 are not provided between the address electrodes AE can be made larger than the distance S10 between the adjacent address electrodes AE. Note that the end portion EG10 in the first area AR10 of the address electrode AE is positioned outside the bus electrodes Xb and Yb arranged on the outermost side.
 以上、この実施形態においても、上述した図1-図4で説明した実施形態と同様の効果を得ることができる。さらに、この実施形態では、上述した図1-図4で説明した実施形態から第2隔壁BR2が省かれて構成されているため、隔壁BR1を簡易に形成でき、製造コストを低減できる。 As described above, also in this embodiment, the same effect as that of the embodiment described with reference to FIGS. 1 to 4 can be obtained. Further, in this embodiment, since the second partition BR2 is omitted from the embodiment described with reference to FIGS. 1 to 4 described above, the partition BR1 can be easily formed, and the manufacturing cost can be reduced.
 図8は、別の実施形態におけるPDP10の概要を示している。この実施形態では、最も外側に配置される隔壁BR2の幅およびアドレス電極AEの端部EG10の配置が、上述した図2に示した構成と相違している。その他の構成は、図1-図4で説明した実施形態と同じである。と同じである。図1-図4で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。例えば、図中の矢印D1、D2の意味は、上述した図1と同じである。 FIG. 8 shows an outline of the PDP 10 in another embodiment. In this embodiment, the width of the partition wall BR2 arranged on the outermost side and the arrangement of the end portion EG10 of the address electrode AE are different from the configuration shown in FIG. Other configurations are the same as those of the embodiment described with reference to FIGS. Is the same. The same elements as those described in FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description thereof will be omitted. For example, the meanings of arrows D1 and D2 in the figure are the same as those in FIG.
 なお、図8は、画像表示面側(図1の上側)から見たPDP10の状態を示している。図の網掛け部分は、ガラス基材RSの外周部および隔壁BR1、BR2を示している。図の例では、図を見やすくするために、2画素×2画素(6セル×2セル)の画素数のPDPを示している。実際には、PDPの画素数は、1920画素×1080画素、1280画素×1080画素、1024画素×1080画素、1366画素×768画素などである。 FIG. 8 shows the state of the PDP 10 viewed from the image display surface side (upper side in FIG. 1). The shaded portion in the figure shows the outer peripheral portion of the glass substrate RS and the partition walls BR1 and BR2. In the example of the figure, a PDP having the number of pixels of 2 pixels × 2 pixels (6 cells × 2 cells) is shown for easy viewing of the drawing. Actually, the number of pixels of the PDP is 1920 pixels × 1080 pixels, 1280 pixels × 1080 pixels, 1024 pixels × 1080 pixels, 1366 pixels × 768 pixels, and the like.
 第1方向D1に沿って配置されたアドレス電極AEは、第1領域AR10から第2方向D2に沿って互いに反対側(図のD21側およびD22側)に交互に引き出されている。そして、画像表示面側から見た場合、アドレス電極AEの第1領域AR10内の端部EG10(第1領域AR10から引き出されていない方の端部EG10)は、最も外側に配置された隔壁BR2上に位置している。すなわち、この実施形態では、アドレス電極AEの第1領域AR10内の端部EG10が、保護層PLを介して排気空間ESに露出することを防止できる。 The address electrodes AE arranged along the first direction D1 are alternately drawn from the first area AR10 to the opposite sides (D21 side and D22 side in the drawing) along the second direction D2. When viewed from the image display surface side, the end portion EG10 in the first region AR10 of the address electrode AE (the end portion EG10 not drawn out from the first region AR10) is the outermost partition BR2. Located on the top. That is, in this embodiment, it is possible to prevent the end portion EG10 in the first region AR10 of the address electrode AE from being exposed to the exhaust space ES via the protective layer PL.
 これにより、この実施形態では、アドレス電極AEの第1領域AR10内に位置する端部EG10と、端部EG10に隣接するアドレス電極AEとの間で誤放電が発生することを、上述した図1-図4で説明した実施形態に比べて、確実に防止できる。なお、この実施形態では、隔壁BR1は、最も外側に配置された隔壁BR2の一方の隔壁BR2から他方の隔壁BR2まで延在していればよく、端部が最も外側に配置された隔壁BR2より外側に突出していなくてもよい。 As a result, in this embodiment, the erroneous discharge occurs between the end portion EG10 located in the first region AR10 of the address electrode AE and the address electrode AE adjacent to the end portion EG10, as described above with reference to FIG. -It can be reliably prevented compared to the embodiment described in FIG. In this embodiment, the partition wall BR1 only needs to extend from one partition wall BR2 of the partition wall BR2 disposed on the outermost side to the other partition wall BR2, and the end portion is more than the partition wall BR2 disposed on the outermost side. It does not have to protrude outward.
 例えば、隔壁BR2の第2方向D2に沿う幅W10は、最も外側に配置された隔壁BR2(図の一番上側の隔壁BR2および一番下側の隔壁BR2)と、セルCL間に配置された隔壁BR2(図の上から2番目の隔壁BR2)とで互いに同じである。すなわち、この実施形態では、最も外側に配置された隔壁BR2におけるバス電極Xb、Ybに対向していない部分の面積を、上述した図1-図4で説明した実施形態に比べて、大きくできる。これにより、この実施形態では、アドレス電極AEの第1領域AR10内の端部EG10を隔壁BR2上に簡易に配置できる。なお、最も外側に配置された隔壁BR2の第2方向D2に沿う幅は、上述した図2に示すように、セルCL間に配置された隔壁BR2の第2方向D2に沿う幅W10より小さくてもよい。 For example, the width W10 of the partition wall BR2 along the second direction D2 is disposed between the outermost partition wall BR2 (the uppermost partition wall BR2 and the lowermost partition wall BR2 in the drawing) and the cell CL. The same applies to the partition wall BR2 (second partition wall BR2 from the top in the drawing). That is, in this embodiment, the area of the portion of the partition wall BR2 arranged on the outermost side that does not face the bus electrodes Xb and Yb can be made larger than in the embodiment described with reference to FIGS. Thereby, in this embodiment, the end portion EG10 in the first region AR10 of the address electrode AE can be easily arranged on the partition wall BR2. Note that the width along the second direction D2 of the partition wall BR2 disposed on the outermost side is smaller than the width W10 along the second direction D2 of the partition wall BR2 disposed between the cells CL as described above with reference to FIG. Also good.
 以上、この実施形態においても、上述した図1-図4で説明した実施形態と同様の効果を得ることができる。さらに、この実施形態では、アドレス電極AEの第1領域AR10内の端部EG10が隔壁BR2上に位置していため、互いに隣接するアドレス電極AE間の誤放電を、上述した図1-図4で説明した実施形態に比べて、確実に防止できる。 As described above, also in this embodiment, the same effect as that of the embodiment described with reference to FIGS. 1 to 4 can be obtained. Further, in this embodiment, since the end portion EG10 in the first region AR10 of the address electrode AE is located on the barrier rib BR2, the erroneous discharge between the adjacent address electrodes AE is described with reference to FIGS. Compared to the described embodiment, it can be reliably prevented.
 なお、上述した実施形態では、1つの画素が、3つのセル(赤(R)、緑(G)、青(B))により構成される例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、1つの画素を4つ以上のセルにより構成してもよい。あるいは、1つの画素が、赤(R)、緑(G)、青(B)以外の色を発生するセルにより構成されてもよく、1つの画素が、赤(R)、緑(G)、青(B)以外の色を発生するセルを含んでもよい。すなわち、互いに異なる色の光をそれぞれ発生する4つ以上のセル列領域CAにより画素列領域PAが構成されてもよい。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, an example in which one pixel includes three cells (red (R), green (G), and blue (B)) has been described. The present invention is not limited to such an embodiment. For example, one pixel may be composed of four or more cells. Alternatively, one pixel may be composed of cells that generate colors other than red (R), green (G), and blue (B), and one pixel may be red (R), green (G), Cells that generate colors other than blue (B) may be included. That is, the pixel column area PA may be configured by four or more cell column areas CA that respectively generate light of different colors. Also in this case, the same effect as the above-described embodiment can be obtained.
 上述した実施形態では、第2方向D2が、第1方向D1に直交する例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、第2方向D2は、第1方向D1と、ほぼ直角方向(例えば、90度±5度)に交差してもよい。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, the example in which the second direction D2 is orthogonal to the first direction D1 has been described. The present invention is not limited to such an embodiment. For example, the second direction D2 may intersect the first direction D1 in a substantially perpendicular direction (for example, 90 ° ± 5 °). Also in this case, the same effect as the above-described embodiment can be obtained.
 上述した図5で説明した実施形態では、アドレス電極AEの第1領域AR10内の端部EG10が、隔壁BR2および隔壁BR3と互いに隣接する隔壁BR1とで囲われる領域内に位置する例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、アドレス電極AEの第1領域AR10内の端部EG10は、画像表示面側から見た場合、隔壁BR3上に位置してもよい。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the embodiment described with reference to FIG. 5 described above, the example in which the end portion EG10 in the first region AR10 of the address electrode AE is located in the region surrounded by the partition wall BR2 and the partition wall BR3 and the partition wall BR1 adjacent to each other is described. . The present invention is not limited to such an embodiment. For example, the end portion EG10 in the first area AR10 of the address electrode AE may be located on the partition wall BR3 when viewed from the image display surface side. Also in this case, the same effect as the above-described embodiment can be obtained.
 以上、本発明について詳細に説明してきたが、上記の実施形態およびその変形例は発明の一例に過ぎず、本発明はこれに限定されるものではない。本発明を逸脱しない範囲で変形可能であることは明らかである。 As described above, the present invention has been described in detail. However, the above-described embodiment and its modification are merely examples of the present invention, and the present invention is not limited thereto. Obviously, modifications can be made without departing from the scope of the present invention.
 本発明は、ディスプレイ装置に使用するプラズマディスプレイパネルに適用できる。 The present invention can be applied to a plasma display panel used in a display device.

Claims (5)

  1.  放電空間を介して互いに対向する第1基板および第2基板と、
     前記第1基板上に第1方向に延在して設けられ、互いに間隔を置いて配置された複数の第1電極および第2電極と、
     前記第2基板上に設けられ、前記第1方向と交差する第2方向に延在し、前記第1方向に沿って配置された複数の第1隔壁と、
     前記第1基板上に設けられ、前記第1および第2電極を覆う誘電体層と、
     互いに隣接する前記第1隔壁間に形成される第1領域毎に、前記誘電体層上に前記第2方向に延在して設けられたアドレス電極と、
     前記誘電体層上に設けられ、前記誘電体層の表面および前記アドレス電極を覆い、前記セルの放電空間に露出された保護層とを備え、
     前記第1方向に沿って配置された前記アドレス電極は、前記第1領域から前記第2方向の一方側および他方側に交互に引き出されることを特徴とするプラズマディスプレイパネル。
    A first substrate and a second substrate facing each other through a discharge space;
    A plurality of first and second electrodes provided on the first substrate and extending in the first direction and spaced apart from each other;
    A plurality of first barrier ribs provided on the second substrate, extending in a second direction intersecting the first direction, and disposed along the first direction;
    A dielectric layer provided on the first substrate and covering the first and second electrodes;
    Address electrodes provided extending in the second direction on the dielectric layer for each first region formed between the first barrier ribs adjacent to each other;
    A protective layer provided on the dielectric layer, covering the surface of the dielectric layer and the address electrode, and exposed to a discharge space of the cell;
    The plasma display panel, wherein the address electrodes arranged along the first direction are alternately drawn from the first region to one side and the other side of the second direction.
  2.  請求項1記載のプラズマディスプレイパネルにおいて、
     前記第2基板上に前記第1方向に延在して設けられ、前記第2方向に沿って配置された複数の第2隔壁を備え、
     前記第1隔壁の両端は、最も外側に配置された前記第2隔壁より外側にそれぞれ位置していることを特徴とするプラズマディスプレイパネル。
    The plasma display panel according to claim 1, wherein
    A plurality of second partition walls provided in the first direction and extending along the second direction on the second substrate;
    The plasma display panel according to claim 1, wherein both ends of the first barrier rib are positioned outside the second barrier rib disposed on the outermost side.
  3.  請求項2記載のプラズマディスプレイパネルにおいて、
     前記アドレス電極の前記第1領域内の端部は、前記最も外側に配置された第2隔壁より外側に位置していることを特徴とするプラズマディスプレイパネル。
    The plasma display panel according to claim 2, wherein
    The plasma display panel according to claim 1, wherein an end portion of the address electrode in the first region is located outside a second partition wall disposed on the outermost side.
  4.  請求項3記載のプラズマディスプレイパネルにおいて、
     前記第2基板上に前記第1方向に延在して設けられ、前記最も外側に配置された第2隔壁より外側にそれぞれ配置された第3隔壁を備え、
     前記第1隔壁は、少なくとも一方の前記第3隔壁から他方の前記第3隔壁まで延在して設けられ、
     前記アドレス電極の前記第1領域内の端部は、前記最も外側に配置された第2隔壁より外側で、かつ、前記第3隔壁より内側に位置していることを特徴とするプラズマディスプレイパネル。
    The plasma display panel according to claim 3, wherein
    A third partition wall provided on the second substrate so as to extend in the first direction and disposed outside the second partition wall disposed on the outermost side;
    The first partition wall is provided to extend from at least one third partition wall to the other third partition wall,
    The plasma display panel according to claim 1, wherein an end portion of the address electrode in the first region is located outside the second partition disposed outside and outside the third partition.
  5.  請求項1記載のプラズマディスプレイパネルにおいて、
     前記第2基板上に前記第1方向に延在して設けられ、前記第2方向に沿って配置された複数の第2隔壁を備え、
     前記第1隔壁は、少なくとも最も外側に配置された前記第2隔壁の一方の第2隔壁から他方の第2隔壁まで延在して設けられ、
     前記アドレス電極の前記第1領域内の端部は、前記最も外側に配置された第2隔壁上に位置していることを特徴とするプラズマディスプレイパネル。
    The plasma display panel according to claim 1, wherein
    A plurality of second partition walls provided in the first direction and extending along the second direction on the second substrate;
    The first partition is provided to extend from one second partition to the other second partition of at least the second partition disposed on the outermost side,
    The plasma display panel according to claim 1, wherein an end portion of the address electrode in the first region is positioned on the outermost second partition.
PCT/JP2008/001991 2008-07-25 2008-07-25 Plasma display panel WO2010010602A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/001991 WO2010010602A1 (en) 2008-07-25 2008-07-25 Plasma display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/001991 WO2010010602A1 (en) 2008-07-25 2008-07-25 Plasma display panel

Publications (1)

Publication Number Publication Date
WO2010010602A1 true WO2010010602A1 (en) 2010-01-28

Family

ID=41570080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/001991 WO2010010602A1 (en) 2008-07-25 2008-07-25 Plasma display panel

Country Status (1)

Country Link
WO (1) WO2010010602A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111272A2 (en) 1982-12-13 1984-06-20 Brigitte Morgenroth Collar strap

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255574A (en) * 1995-03-20 1996-10-01 Fujitsu Ltd Surface discharge type plasma display panel and drive method therefor
JPH1040819A (en) * 1996-07-24 1998-02-13 Fujitsu Ltd Manufacture of plasma display panel
JPH117897A (en) * 1997-06-13 1999-01-12 Hitachi Ltd Gas discharge display panel and display device using it
JP2006156349A (en) * 2004-11-29 2006-06-15 Samsung Sdi Co Ltd Plasma display panel
JP2006261106A (en) * 2005-02-16 2006-09-28 Toray Ind Inc Component for plasma display and manufacturing method, manufacturing method of back board for plasma display, and plasma display
JP2008153038A (en) * 2006-12-16 2008-07-03 Osaka Univ Plasma display panel and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255574A (en) * 1995-03-20 1996-10-01 Fujitsu Ltd Surface discharge type plasma display panel and drive method therefor
JPH1040819A (en) * 1996-07-24 1998-02-13 Fujitsu Ltd Manufacture of plasma display panel
JPH117897A (en) * 1997-06-13 1999-01-12 Hitachi Ltd Gas discharge display panel and display device using it
JP2006156349A (en) * 2004-11-29 2006-06-15 Samsung Sdi Co Ltd Plasma display panel
JP2006261106A (en) * 2005-02-16 2006-09-28 Toray Ind Inc Component for plasma display and manufacturing method, manufacturing method of back board for plasma display, and plasma display
JP2008153038A (en) * 2006-12-16 2008-07-03 Osaka Univ Plasma display panel and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111272A2 (en) 1982-12-13 1984-06-20 Brigitte Morgenroth Collar strap

Similar Documents

Publication Publication Date Title
WO2010010602A1 (en) Plasma display panel
JP4579331B2 (en) Plasma display panel
WO2009141851A1 (en) Plasma display panel
JPWO2008126147A1 (en) Plasma display panel
JP4951479B2 (en) Plasma display panel
JPWO2008120268A1 (en) Plasma display panel
JP4561933B2 (en) Plasma display panel
WO2009153830A1 (en) Plasma display panel and plasma display device
WO2009133593A1 (en) Plasma dislay panel and method of manufacturing plasma display panel
JP5150632B2 (en) Plasma display panel driving method and plasma display device
JP4661981B2 (en) Plasma display panel and method for manufacturing plasma display panel
JPWO2009034601A1 (en) Plasma display panel
JP4577452B2 (en) Plasma display panel
WO2009130742A1 (en) Plasma display apparatus
JP4764955B2 (en) Plasma display panel and method for manufacturing plasma display panel
WO2009098733A1 (en) Plasma display panel
WO2009118793A1 (en) Plasma display panel
JPWO2009044430A1 (en) Plasma display panel
US20100118005A1 (en) Plasma display panel and plasma display device
WO2009116116A1 (en) Plasma display device
JP2006012437A (en) Plasma display panel
KR20080033619A (en) Plasma display panel
WO2010026619A1 (en) Plasma display panel
KR20040082520A (en) Plasma display panel having bus electrode structure for checking open fail
JP2005100734A (en) Plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08776888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08776888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP