WO2009098733A1 - Plasma display panel - Google Patents

Plasma display panel Download PDF

Info

Publication number
WO2009098733A1
WO2009098733A1 PCT/JP2008/000164 JP2008000164W WO2009098733A1 WO 2009098733 A1 WO2009098733 A1 WO 2009098733A1 JP 2008000164 W JP2008000164 W JP 2008000164W WO 2009098733 A1 WO2009098733 A1 WO 2009098733A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrodes
bus
protruding
display panel
Prior art date
Application number
PCT/JP2008/000164
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Sasaki
Tetsuya Sakamoto
Akihiro Takagi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2008/000164 priority Critical patent/WO2009098733A1/en
Publication of WO2009098733A1 publication Critical patent/WO2009098733A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • H01J11/24Sustain electrodes or scan electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/24Sustain electrodes or scan electrodes
    • H01J2211/245Shape, e.g. cross section or pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/32Disposition of the electrodes
    • H01J2211/323Mutual disposition of electrodes

Definitions

  • the present invention relates to a plasma display panel used for a display device.
  • a plasma display panel is formed by bonding two glass substrates (a front glass substrate and a back glass substrate) to each other, generating a discharge in a space formed between the glass substrates, An image is displayed by emitting light.
  • the cells corresponding to the pixels in the image are self-luminous, and are coated with phosphors that generate red, green, and blue visible light in response to ultraviolet rays generated by discharge.
  • a PDP having a three-electrode structure having X, Y electrodes and address electrodes displays an image by generating a sustain discharge with an electrode pair composed of X electrodes and Y electrodes.
  • a cell that generates a sustain discharge (a cell to be lit) is selected by, for example, selectively generating an address discharge between the Y electrode and the address electrode.
  • an electrode pair composed of an X electrode and a Y electrode is disposed on a front glass substrate at an interval, and is disposed between partition walls extending in the orthogonal direction of the X electrode and partition walls adjacent to each other.
  • Address electrodes are disposed on the rear glass substrate.
  • the X electrode is composed of an X bus electrode and an X transparent electrode connected to the X bus electrode
  • the Y electrode is composed of a Y bus electrode and a Y transparent electrode connected to the Y bus electrode.
  • the X and Y transparent electrodes are disposed between the X and Y bus electrodes that are paired with each other (see, for example, Patent Document 1). JP 2006-185903 A
  • a partition wall (lateral partition wall) extending along the X electrode is disposed between one electrode pair and the other electrode pair of electrode pairs adjacent to each other. That is, the back glass substrate is provided with a grid-like partition wall constituted by partition walls (vertical partition walls) extending in the orthogonal direction of the X electrode and partition walls (horizontal partition walls) extending along the X electrode.
  • the light emitting area becomes smaller by the area where the horizontal barrier rib is formed (non-light emitting area), and the luminance of the image is lowered.
  • An object of the present invention is to reduce the non-light emitting area and increase the luminance of the image.
  • an object of the present invention is to increase the luminance of an image while preventing erroneous discharge.
  • the plasma display panel has a first substrate and a second substrate facing each other.
  • the first substrate has a plurality of bus electrode pairs configured by first and second bus electrodes extending in the first direction across the discharge gap, and the second substrate intersects with the first direction. It has a plurality of partition walls extending in the direction.
  • the first and second bus electrodes are provided on the first and second bus electrodes of each bus electrode pair for each display column region formed between the partition walls.
  • the first and second protruding electrodes provided in each bus electrode pair respectively protrude along the second direction on the opposite side of the region where the discharge gap is formed from the first and second bus electrodes, and are different from each other. It is arranged adjacent to each partition. Note that the first or second projecting electrodes provided in different bus electrode pairs and adjacent to each other in the display column region are respectively disposed adjacent to one and the other of the partition walls forming the display column region.
  • the non-light emitting area can be reduced and the brightness of the image can be increased.
  • the luminance of an image can be increased while preventing erroneous discharge.
  • FIG. 1 shows a main part of a plasma display panel (hereinafter also referred to as PDP) in an embodiment of the present invention.
  • An arrow D1 in the drawing indicates the first direction D1
  • an arrow D2 indicates the second direction D2 orthogonal to the first direction D1 in a plane parallel to the image display surface.
  • the PDP 10 includes a front substrate portion 12 that forms an image display surface, and a rear substrate portion 14 that faces the front substrate portion 12.
  • a discharge space DS is formed between the front substrate portion 12 and the rear substrate portion 14 (more specifically, a concave portion of the rear substrate portion 14).
  • the front substrate portion 12 includes a plurality of bus electrode pairs BEp arranged at intervals on a surface (lower side in the drawing) of the glass substrate FS (first substrate) facing the glass substrate RS (second substrate). have.
  • Each bus electrode pair BEp is configured by an X bus electrode Xb (first bus electrode) and a Y bus electrode Yb (second bus electrode) extending in the first direction D1 across the discharge gap DG.
  • the X-projection electrode Xp (first projection electrode) extending in the second direction D2 is connected to the X-bus electrode Xb on the opposite side of the region where the discharge gap DG is formed from the X-bus electrode Xb. Further, a Y-projection electrode Yp (second projection electrode) extending in the second direction D2 is connected to the Y bus electrode Yb on the side opposite to the region where the discharge gap DG is formed from the Y bus electrode Yb.
  • the X electrode XE (sustain electrode) is composed of the X bus electrode Xb and the X projection electrode Xp
  • the Y electrode YE (scanning electrode) is composed of the Y bus electrode Yb and the Y projection electrode Yp. Then, a discharge (sustain discharge) is repeatedly generated between the X electrode XE and the Y electrode YE that are paired with each other.
  • the X bus electrode Xb and the Y bus electrode Yb are opaque electrodes formed of a metal material or the like, and the X protruding electrode Xp and the Y protruding electrode Yp transmit visible light formed of an ITO film or the like. It is a transparent electrode.
  • the protruding electrodes Xp and Yp may be disposed on the entire surface between the bus electrodes Xb and Yb to which the protruding electrodes Xp and Yp are connected and the glass substrate FS.
  • the electrodes Xb, Xp, Yb, Yp are covered with the dielectric layer DL1, and the surface of the dielectric layer DL1 is covered with the protective layer PL.
  • the protective layer PL is formed of an MgO film having high secondary electron emission characteristics due to cation collision in order to easily generate discharge.
  • the rear substrate portion 14 facing the front substrate portion 12 through the discharge space DS has a plurality of address electrodes AE extending on the glass base RS in the orthogonal direction (second direction D2) of the bus electrodes Xb and Yb.
  • the address electrode AE is an opaque electrode made of a metal material or the like.
  • the address electrode AE is covered with the dielectric layer DL2, and a plurality of partition walls (barrier ribs) BR extending in the second direction D2 are formed on the dielectric layer DL2. That is, the barrier ribs BR are arranged at intervals on the surface of the glass substrate RS that faces the glass substrate FS. For example, the barrier ribs BR are disposed between the address electrodes AE adjacent to each other.
  • the side wall of the cell is constituted by the partition wall BR. Further, visible light of red (R), green (G), and blue (B) is generated on the side surface of the partition wall BR and the glass substrate RS between the adjacent partition walls BR by being excited by ultraviolet rays. Phosphors PHr, PHg, and PHb are respectively applied.
  • One pixel of the PDP 10 is composed of three cells that generate red, green, and blue light.
  • one cell one color pixel
  • the PDP 10 is configured by arranging cells in a matrix to display an image and alternately arranging a plurality of types of cells that generate light of different colors.
  • a display line is constituted by cells formed along the bus electrodes Xb and Yb.
  • the PDP 10 is configured by bonding the front substrate portion 12 and the rear substrate portion 14 so that the protective layer PL and the partition wall BR are in contact with each other, and enclosing a discharge gas such as Ne or Xe in the discharge space DS.
  • FIG. 2 shows an outline of the PDP 10 shown in FIG. 2 shows the state of the electrodes Xb, Xp, Yb, Yp, AE and the partition wall BR as viewed from the image display surface side (upper side in FIG. 1).
  • the bus electrode pairs BEp adjacent to each other are arranged such that the bus electrode Xb of one bus electrode pair BEp and the bus electrode Xb of the other bus electrode pair BEp are adjacent to each other.
  • the bus electrode pairs BEp adjacent to each other are arranged such that the bus electrode Yb of one bus electrode pair BEp and the bus electrode Yb of the other bus electrode pair BEp are adjacent to each other.
  • the protruding electrodes Xp and Yp protrude along the second direction D2 from the bus electrodes Xb and Yb of each bus electrode pair BEp on the side opposite to the region where the discharge gap DG is formed.
  • the protruding electrodes Xp and Yp that are paired with each other are provided on the bus electrodes Xb and Yb of each bus electrode pair BEp for each display column region RA formed between a pair of adjacent barrier ribs BR. Arranged adjacent to one and the other of the pair of partition walls BR forming the region RA. That is, the protruding electrodes Xp and Yp that make a pair are adjacent to different partition walls BR.
  • a discharge is generated between the bus electrodes Xb and Yb facing each other through the discharge gap DG, and this discharge is a pair of protruding electrodes Xp. , Spread to Yp.
  • a phosphor for example, the phosphor PHr shown in FIG. 1 described above
  • visible light for example, red visible light
  • one cell C1 (one color pixel) includes, as described above, a region including the protruding electrodes Xp and Yp that are paired with each other in the display column region RA (a region surrounded by a broken line in the drawing). Formed.
  • each of the pair of partition walls BR forming the display row region RA is disposed adjacent to each other. That is, the protruding electrodes Xp or Yp that are provided on different bus electrode pairs BEp and are adjacent to each other in the display column region RA are disposed adjacent to one and the other of the pair of partition walls BR forming the display column region RA. ing.
  • the protruding electrodes Xp and Yp are connected between the bus electrodes Xb and Yb where the shortest distance S1 between the adjacent protruding electrodes Xp and the shortest distance S1 between the protruding electrodes Yp form the discharge gap DG. It arrange
  • the shortest distance S1 between the protruding electrodes Xp (or between the protruding electrodes Yp) is about 200 ⁇ m
  • the distance S2 between the bus electrodes Xb and Yb is about 100 ⁇ m.
  • the sustain discharge generated between the electrodes XE and YE of one cell C1 of the cells C1 adjacent to each other in the display column region RA is changed to the electrode YE (or XE) of the other cell C1. Can be prevented from spreading.
  • the electrode XE (or YE) of one cell C1 and the electrode XE (or YE) of the other cell C1 are adjacent. That is, the electrode XE (or YE) of one cell C1 is arranged away from the electrode YE (or XE) of the other cell C1.
  • the electrode XE (or YE) of one cell C1 is generated. And erroneous discharge between the electrode YE (or XE) of the other cell C1 can be prevented.
  • the distance between the protruding electrodes Xp (and the protruding electrodes Yp) of the cells C1 adjacent to each other in the display row region RA is mainly secured in the first direction D1, the cells C1 adjacent to each other.
  • the distance in the second direction D2 can be reduced. That is, in this embodiment, the non-light emitting area formed between the adjacent cells C1 can be reduced, and the brightness of the image can be increased.
  • the light emitting region (cell C1) including the protruding electrodes Xp and Yp paired with each other can be increased, and the luminance of the image can be increased.
  • the luminance of the image can be increased while preventing erroneous discharge.
  • the address electrode AE is disposed between the adjacent barrier ribs BR.
  • the address electrode AE is disposed so as to extend in the second direction D2 through between the protruding electrodes Xp and Yp of each cell C1.
  • a voltage between the address electrode AE and the scan electrode YE projection electrode Yp
  • an address discharge can be generated in the cell C1 of interest.
  • FIG. 3 shows an example of a plasma display device configured using the PDP 10 shown in FIG.
  • a plasma display device (hereinafter also referred to as a PDP device) includes a PDP 10, an optical filter 20 provided on the image display surface 16 side (light output side) of the PDP 10, and a front housing 30 disposed on the image display surface 16 side of the PDP 10.
  • the rear housing 40 and the base chassis 50 disposed on the back surface 18 side of the PDP 10, the circuit unit 60 for driving the PDP 10 attached to the rear housing 40 side of the base chassis 50, and the PDP 10 are attached to the base chassis 50.
  • a double-sided adhesive sheet 70 for attaching is provided. Since the circuit unit 60 includes a plurality of components, the circuit unit 60 is indicated by a dashed box in the figure.
  • the optical filter 20 is affixed to a protective glass (not shown) attached to the opening 32 of the front housing 30.
  • the optical filter 20 may have a function of shielding electromagnetic waves.
  • the optical filter 20 may be directly attached to the image display surface 16 side of the PDP 10 instead of the protective glass.
  • FIG. 4 shows an outline of the circuit unit 60 for driving the PDP 10 shown in FIG.
  • the circuit unit 60 includes an X driver XDRV, a Y driver YDRV, an address driver ADRV, a power supply unit PWR, and a control unit CNT.
  • the drivers XDRV, YDRV, and ADRV operate as a drive unit that drives the PDP 10.
  • the X driver XDRV applies a common pulse to the bus electrode Xb
  • the Y driver YDRV selectively applies a pulse to the bus electrode Yb
  • the address driver ADRV selectively applies an address pulse to the address electrode AE.
  • the power supply unit PWR generates power supply voltages Vsc, Vs / 2, ⁇ Vs / 2, Vbx, Vsa and the like to be supplied to the drivers YDRV, XDRV, and ADRV.
  • the control unit CNT controls the operation of the drivers XDRV, YDRV, and ADRV.
  • the control unit CNT selects a subfield to be used based on the image data R0-7, G0-7, and B0-7, and outputs control signals YCNT, XCNT, and ACNT to the drivers YDRV, XDRV, and ADRV.
  • the subfield is a field obtained by dividing one field for displaying one screen of the PDP 10, and the number of sustain discharges is set for each subfield.
  • a multi-tone image is displayed by selecting a subfield to be used for each cell C1 constituting the pixel.
  • FIG. 5 shows an example of the subfield discharge operation for displaying an image on the PDP shown in FIG.
  • the star in the figure indicates the occurrence of discharge.
  • each subfield SF has a reset period RST, an address period ADR, and a sustain period SUS.
  • a negative voltage (blunt wave) that gently falls is applied to the sustain electrode XE, and a positive voltage is applied to the scan electrode YE (FIG. 5A).
  • the sustain electrode XE is maintained at a negative write voltage, and a positive write voltage (write obtuse wave) that gradually increases is applied to the scan electrode YE (FIG. 5B).
  • a positive adjustment voltage is applied to the sustain electrode XE, and a negative adjustment voltage (adjusted obtuse wave) is applied to the scan electrode YE (FIG.
  • the positive adjustment voltage is a voltage lower than the voltage Vs / 2
  • the minimum value of the negative adjustment voltage is a voltage higher than the voltage ⁇ Vs / 2.
  • a bias voltage Vbx that serves as an anode at the time of address discharge is applied to the sustain electrode XE
  • a scan pulse (voltage ⁇ Vs / 2) that serves as a cathode at the time of address discharge is applied to the scan electrode YE
  • the address pulse (voltage Vsa) is applied to the address electrode AE corresponding to the cell to be lit (FIG. 5D).
  • a discharge is temporarily generated between the scan electrode YE and the address electrode AE (address discharge), and this discharge is used as a trigger to temporarily stop between the sustain electrode XE and the scan electrode YE.
  • Discharge (address discharge) occurs.
  • a cell to be lit in the sustain period SUS is selected.
  • the bias voltage Vbx is the same voltage as the positive adjustment voltage applied to the sustain electrode XE during the reset period RST.
  • a bias voltage Vby that is a difference voltage between the voltage ⁇ Vs / 2 and the voltage Vsc is applied to the scanning electrode YE of the display line other than the selection target.
  • the second address pulse shown in the waveform of the address electrode AE is applied to select a cell of another display line (FIG. 5E).
  • negative and positive sustain pulses (voltage -Vs / 2, voltage Vs / 2) are applied to the sustain electrode XE and the scan electrode YE, respectively (FIG. 5 (f)).
  • a discharge (sustain discharge) is generated between the sustain electrode XE and the scan electrode YE in the cell selected in the address period ADR (cell to be lit).
  • positive and negative sustain pulses (voltage Vs / 2, voltage ⁇ Vs / 2) are applied to the sustain electrode XE and the scan electrode YE, respectively (FIG. 4G), and the discharge state of the lit cell is maintained. Is done.
  • Sustain pulses having different polarities are repeatedly applied to the sustain electrode XE and the scan electrode YE, so that the discharge of the cells lit in the sustain period SUS (sustain discharge) is repeatedly performed.
  • the protruding electrodes Xp and Yp protrude along the second direction D2 from the bus electrodes Xb and Yb of each bus electrode pair BEp on the opposite side to the region where the discharge gap DG is formed.
  • the distance between the protruding electrodes Xp (and the protruding electrodes Yp) of the cells C1 adjacent to each other is ensured mainly in the first direction D1.
  • FIG. 6 shows an outline of the PDP 10 in another embodiment.
  • FIG. 6 shows the state of the electrodes Xb, Xp2, Yb, Yp2, AE and the partition wall BR as viewed from the image display surface side (upper side in FIG. 1).
  • protruding electrodes Xp2, Yp2 are formed instead of the protruding electrodes Xp, Yp shown in FIGS.
  • Other configurations are the same as those of the embodiment described with reference to FIGS.
  • the discharge operation for displaying an image on the PDP 10 is the same as that in FIG. 5 except for voltage values (for example, the voltages Vs / 2, ⁇ Vs / 2, and Vsa shown in FIG. 5 described above).
  • the same elements as those described in FIGS. 1 to 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the protruding electrodes Xp2 and Yp2 are made of the same material (metal material or the like) as the bus electrodes Xb and Yb, are formed integrally with the bus electrodes Xb and Yb, and are arranged so that a part thereof is located on the partition wall BR.
  • the projecting electrodes Xp2 and Yp2 are formed integrally with the bus electrodes Xb and Yb, the process for forming the electrodes XE and YE can be simplified, and the manufacturing cost can be reduced.
  • part of the protruding electrodes Xp2 and Yp2 is positioned on the barrier rib BR, so that visible light is not transmitted without reducing the width of the protruding electrodes Xp2 and Yp2 that block the light emission of the phosphor.
  • the non-light emitting region by the protruding electrodes Xp2 and Yp2 can be reduced.
  • the width of the protruding electrodes Xp2, Yp2 can be secured to a certain size (for example, about 40 ⁇ m), and the protruding electrodes Xp2, Yp2 can be prevented from being disconnected.
  • the light emitting region can be enlarged while preventing the protruding electrodes Xp2, Yp2 from being disconnected.
  • the protruding electrodes Xp2 and Yp2 may be arranged so that only one part of the protruding electrodes Xp2 and Yp2 (for example, the protruding electrode Xp2) is positioned on the partition wall BR.
  • the same effects as those of the embodiment described with reference to FIGS. 1 to 5 can be obtained.
  • the manufacturing yield of the PDP or the reliability of the PDP can be improved.
  • FIG. 7 shows an outline of the PDP 10 in another embodiment.
  • FIG. 7 shows the state of the electrodes Xb, Xp, Yb, Yp, AE2 and the partition wall BR as viewed from the image display surface side (upper side in FIG. 1).
  • an address electrode AE2 having an address pad Ap is formed instead of the address electrode AE shown in FIGS.
  • Other configurations are the same as those of the embodiment described with reference to FIGS.
  • the discharge operation for displaying an image on the PDP 10 is the same as that in FIG. 5 except for voltage values (for example, the voltages Vs / 2, ⁇ Vs / 2, and Vsa shown in FIG. 5 described above).
  • the same elements as those described in FIGS. 1 to 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the address electrode AE2 is provided to extend in the second direction D2 on the glass base RS shown in FIG. 1 described above. That is, the address electrode AE2 is provided on the surface of the glass substrate RS that faces the glass substrate FS, extends in the second direction D2, and is disposed between the protruding electrode Yp and the protruding electrode Xp.
  • the address electrode AE2 has an address pad Ap that protrudes in the first direction D1 toward one of the protruding electrodes Yp of the protruding electrodes Xp and Yp when viewed from the image display surface side.
  • the address pad Ap is integrally formed with the address electrode AE2 for each cell C1 with the same material (metal material or the like) as the address electrode AE2. Further, in the example shown in the figure, the address pad Ap is arranged so as to partially overlap the protruding electrode Yp when viewed from the image display surface side. The address pad Ap may be formed so as to protrude toward the protruding electrode Yp so as not to overlap with the protruding electrode Yp when viewed from the image display surface side. In this embodiment, since the distance between the address electrode AE2 (more specifically, the address pad Ap) and the protruding electrode Yp is shorter than the embodiment described with reference to FIGS.
  • the address electrode AE2 and the protruding electrode The discharge start voltage between the electrodes Yp can be lowered. Thereby, in this embodiment, the power consumption of the circuit for driving the address electrode AE2 (for example, the driver ADRV in FIG. 4 described above) can be reduced.
  • the wiring width of the address electrode AE2 in the portion excluding the portion where the address pad Ap is provided can be reduced, and the address electrode AE2 Wiring capacity can be reduced. Therefore, in this embodiment, the power consumption of the circuit for driving the address electrode AE2 can be reduced. As described above, also in this embodiment, the same effects as those of the embodiment described with reference to FIGS. 1 to 5 can be obtained.
  • FIG. 8 shows an outline of the PDP 10 in another embodiment.
  • FIG. 8 shows the state of the electrodes Xb, Xp3, Yb, Yp3, AE and the partition wall BR as viewed from the image display surface side (upper side in FIG. 1).
  • the shape of the protruding electrodes Xp3 and Yp3 is different from the shape of the protruding electrodes Xp and Yp shown in FIGS.
  • Other configurations are the same as those of the embodiment described with reference to FIGS.
  • the discharge operation for displaying an image on the PDP 10 is the same as that in FIG. 5 except for voltage values (for example, the voltages Vs / 2, ⁇ Vs / 2, and Vsa shown in FIG. 5 described above).
  • the same elements as those described in FIGS. 1 to 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the protruding electrodes Xp3 and Yp3 are formed in a chamfered tip. That is, the protruding electrodes Xp3 and Yp3 have a chamfered portion TA chamfered at the tip.
  • the chamfered portion TA of one projection electrode Xp3 (or Yp3) is the chamfered portion of the other projection electrode Xp3 (or Yp3). Opposite TA.
  • the chamfered portion TA of one protruding electrode Xp3 (or Yp3) is the other protruding Opposite the chamfer TA of the electrode Xp3 (or Yp3).
  • the shortest distance S1 between the adjacent projecting electrodes Xp3 and the shortest distance S1 between the projecting electrodes Yp3 can be increased as compared with the embodiment described with reference to FIGS. Therefore, in this embodiment, when the sustain discharge is generated between the electrodes XE and YE of one cell C1 of the cells C1 adjacent to each other in the display column region RA, the electrode XE (or YE) of one cell C1 and It is possible to reliably prevent erroneous discharge from occurring between the electrode YE (or XE) of the other cell C1. As described above, also in this embodiment, the same effects as those of the embodiment described with reference to FIGS. 1 to 5 can be obtained.
  • FIG. 9 shows an outline of the PDP 10 in another embodiment.
  • FIG. 9 shows the state of the electrodes Xb, Xp3, Yb, Yp3, AE and the partition wall BR as viewed from the image display surface side (upper side in FIG. 1).
  • the positions of the tips of the protruding electrodes Xp3 and Yp3 are different from the configuration shown in FIG. 8 described above.
  • Other configurations are the same as those of the embodiment described with reference to FIG.
  • the discharge operation for displaying an image on the PDP 10 is the same as that in FIG. 5 except for voltage values (for example, the voltages Vs / 2, ⁇ Vs / 2, and Vsa shown in FIG. 5 described above).
  • the same elements as those described in FIGS. 1 to 5 and 8 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the tip TP1 of one projection electrode Xp3 (or Yp3) is the tip TP2 of the other projection electrode Xp3 (or Yp3). Therefore, it is located on the bus electrode Xb (or Yb) side to which the other protruding electrode Xp3 (or Yp3) is connected.
  • the tip TP1 of one protruding electrode Xp3 (or Yp3) is the other protruding electrode. It is located on the bus electrode Xb (or Yb) side to which the other protruding electrode Xp3 (or Yp3) is connected from the tip TP2 of Xp3 (or Yp3).
  • the non-light emitting area formed between the cells C1 adjacent to each other can be reduced and the luminance of the image can be increased as compared with the configuration of FIG. 8 described above.
  • the light emitting region (the region surrounded by the broken line in the figure, cell C1) including the protruding electrodes Xp3 and Yp3 that are paired with each other can be increased, and the luminance of the image can be increased.
  • each protruding electrode Xp3, Yp3 is between the bus electrodes Xb, Yb where the distance S1 between the protruding electrodes Xp3 adjacent to each other (and between the protruding electrodes Yp3) in the display row region RA forms the discharge gap DG. It is formed to be larger than the distance S2.
  • FIG. 10 shows an outline of the PDP 10 in another embodiment. 10 shows the state of the electrodes Xb, Xp, Yb, Yp, AE and the partition wall BR as viewed from the image display surface side (upper side in FIG. 1).
  • the arrangement order of the bus electrodes Xb and Yb and the arrangement of the address electrodes AE are different from the configuration shown in FIGS.
  • Other configurations are the same as those shown in FIGS.
  • the same elements as those described in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • electrodes XE (od) and YE (od) indicate sustain electrodes XE and scan electrodes YE corresponding to odd-numbered display lines, respectively, and electrodes XE (ev) and YE (ev) are even-numbered.
  • the sustain electrode XE and the scan electrode YE corresponding to the display line are respectively shown.
  • the electrodes XE (od) and XE (ev) are also referred to as electrodes XE (or sustain electrodes XE), and the electrodes YE (od) and YE (ev) are referred to as electrodes YE (or Also referred to as scanning electrode YE).
  • the bus electrode pairs BEp adjacent to each other are arranged such that the bus electrode Xb of one bus electrode pair BEp and the bus electrode Yb of the other bus electrode pair BEp are adjacent to each other. That is, the sustain electrode XE (od) of the odd display line is adjacent to the scan electrode YE (ev) of the even display line, and the scan electrode YE (od) of the odd display line is the even display. Adjacent to the sustain electrode XE (ev) of the line.
  • each display row region RA the protruding electrode Xp of one cell C1 and the protruding electrode Yp of the other cell C1 of the cells C1 adjacent to each other are displayed in order to secure a mutual distance in the first direction D1.
  • the protruding electrodes Xp or Yp that are provided on different bus electrode pairs BEp and are adjacent to each other in the display column region RA are disposed adjacent to one and the other of the pair of partition walls BR forming the display column region RA. ing.
  • the projecting electrodes Xp and Yp are such that the shortest distance S1 between the projecting electrodes Xp and Yp adjacent to each other is larger than the distance S2 between the bus electrodes Xb and Yb forming the discharge gap DG.
  • the shortest distance S1 between the protruding electrodes Xp (or between the protruding electrodes Yp) is about 200 ⁇ m
  • the distance S2 between the bus electrodes Xb and Yb is about 100 ⁇ m.
  • the distance between the protruding electrodes Xp and Yp of the cells C1 adjacent to each other in the display row region RA is mainly secured in the first direction D1, the second direction between the cells C1 adjacent to each other.
  • the distance D2 can be reduced. That is, in this embodiment, the non-light emitting area formed between the adjacent cells C1 can be reduced, and the brightness of the image can be increased.
  • the light emitting region (cell C1) including the protruding electrodes Xp and Yp paired with each other can be increased, and the luminance of the image can be increased. In particular, in this embodiment, the luminance of the image can be increased while preventing erroneous discharge.
  • the address electrode AE extends between the protruding electrodes Xp and Yp of each cell C1 in the second direction D2 and is disposed adjacent to the protruding electrode Yp.
  • the address electrode AE may be arranged so that a part thereof overlaps the protruding electrode Yp when viewed from the image display surface side.
  • the address electrode AE is provided on the glass substrate RS as described with reference to FIG. That is, the address electrode AE is provided between the dielectric layer DL1 shown in FIG. 1 and the glass substrate RS, extends in the second direction D2, and is adjacent to one of the protruding electrodes Yp of the protruding electrodes Xp and Yp. Are arranged.
  • the discharge start voltage between the address electrode AE and the protruding electrode Yp can be lowered, and a circuit for driving the address electrode AE (for example, described later)
  • the power consumption of the driver ADRV in FIG. 11 can be reduced.
  • FIG. 11 shows an outline of the circuit unit 62 for driving the PDP 10 shown in FIG.
  • the circuit unit 62 is provided with an X driver XDRV2 and a control unit CNT2 in place of the X driver XDRV and the control unit CNT of the circuit unit 60 shown in FIG. 4 described above.
  • Other configurations are the same as those of the circuit unit 60 shown in FIG.
  • the same elements as those described in FIG. 4 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the PDP device configured using the PDP 10 shown in FIG. 10 is the same as the configuration of FIG. 3 described above except that the circuit unit 62 is provided instead of the circuit unit 60 shown in FIG.
  • the X driver XDRV2 applies the bias voltage Vbx to the bus electrode Xb (sustain electrode XE) in the address period ADR separately for the odd-numbered display lines and the even-numbered display lines.
  • Other operations of the X driver XDRV2 are the same as those of the X driver XDRV shown in FIG.
  • the control unit CNT2 controls the operations of the drivers XDRV2, YDRV, and ADRV so as to select the cells to be lit in the odd-numbered display lines and the even-numbered display lines.
  • Other operations of the control unit CNT2 are the same as those of the control unit CNT shown in FIG. 4 described above.
  • FIG. 12 shows an example of the subfield discharge operation for displaying an image on the PDP 10 shown in FIG.
  • the waveform of the address period ADR is different from the waveform shown in FIG.
  • the discharge operation in other periods (reset period RST, sustain period SUS) is the same as the discharge operation shown in FIG.
  • the same elements as those described in FIG. 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the star in the figure indicates the occurrence of discharge.
  • the bias voltage Vbx is applied to the sustain electrodes XE (od) corresponding to the odd-numbered display lines, and the ground voltage GND is set to the even-numbered display lines.
  • a bias voltage Vbx serving as an anode during address discharge is applied to the sustain electrode XE (od)
  • a scan pulse (voltage ⁇ Vs / 2) serving as a cathode during address discharge is applied to the scan electrode YE (od).
  • An address pulse (voltage Vsa) that sometimes serves as an anode is applied to the address electrode AE corresponding to the cell to be lit (FIG. 12 (h)).
  • a discharge is temporarily generated (address discharge) between the scan electrode YE (od) and the address electrode AE, and this discharge is used as a trigger to generate the sustain electrode XE (od).
  • Discharge is temporarily generated between the scan electrodes YE (od).
  • the sustain electrode XE (ev) Since the ground voltage GND lower than the bias voltage Vbx is applied to the sustain electrode XE (ev), the voltage between the sustain electrode XE (ev) and the scan electrode YE (od) is scanned with the sustain electrode XE (od). It is smaller than the voltage between the electrodes YE (od). Accordingly, in this embodiment, it is possible to prevent erroneous discharge from occurring between the sustain electrode XE (ev) and the scan electrode YE (od) when the discharge is generated between the scan electrode YE (od) and the address electrode AE. it can.
  • the scan electrode YE (od) of the odd-numbered display lines other than the selection target is applied with, for example, a difference voltage between the voltage ⁇ Vs / 2 and the voltage Vsc. A certain bias voltage Vby is applied. Note that the second address pulse shown in the waveform of the address electrode AE is applied to select cells of other odd-numbered display lines (FIG. 12 (i)).
  • the bias voltage Vbx is applied to the sustain electrode XE (ev), and the ground voltage GND is applied to the sustain electrode XE (od).
  • a bias voltage Vbx serving as an anode at the time of address discharge is applied to the sustain electrode XE (ev)
  • a scan pulse (voltage ⁇ Vs / 2) serving as a cathode at the time of address discharge is applied to the scan electrode YE (ev).
  • An address pulse (voltage Vsa) that sometimes becomes the anode is applied to the address electrode AE corresponding to the cell to be lit (FIG. 12 (j)).
  • a discharge is temporarily generated (address discharge) between the scan electrode YE (ev) and the address electrode AE, and this discharge is used as a trigger to generate the sustain electrode XE (ev) and Discharge (address discharge) is temporarily generated between the scan electrodes YE (ev).
  • the cells of the odd-numbered display lines that are turned on in the sustain period SUS are selected. Since the ground voltage GND is applied to the sustain electrode XE (od), even if a discharge occurs between the scan electrode YE (ev) and the address electrode AE, the sustain electrode XE (od) and the scan electrode YE (ev) ) No erroneous discharge occurs between.
  • a bias voltage Vby is applied to the scan electrodes YE (ev) of even-numbered display lines other than the selection target.
  • the last address pulse shown in the waveform of the address electrode AE is applied to select cells of other even-numbered display lines (FIG. 12 (k)).
  • the bias voltage Vby may be applied to the scanning electrodes YE of the display lines other than the selection target regardless of the odd-numbered and even-numbered display lines.
  • the cell selection order may be reversed between the odd-numbered display lines and the even-numbered display lines. For example, after cells of even-numbered display lines are selected, cells of odd-numbered display lines may be selected.
  • the address electrode AE is disposed adjacent to the protruding electrode Yp without providing the address pad Ap or the like shown in FIG. As a result, in this embodiment, the power consumption of the circuit for driving the address electrode AE can be reduced.
  • FIG. 13 shows an outline of the PDP 10 in another embodiment.
  • FIG. 13 shows the state of the electrodes Xb, Xp, Yb, Yp, AE and the partition wall BR as viewed from the image display surface side (upper side in FIG. 1).
  • the arrangement of the protruding electrodes Yp and the address electrodes AE is different from the configuration shown in FIG. 10 described above.
  • Other configurations are the same as those of the embodiment described with reference to FIGS.
  • the discharge operation for displaying an image on the PDP 10 is the same as that in FIG. 12 except for the voltage values (for example, the voltages Vs / 2, ⁇ Vs / 2, and Vsa shown in FIG. 5 described above).
  • the same elements as those described in FIGS. 1 to 5 and 10 to 12 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the address electrode AE passes between the partition wall BR and the protruding electrode Yp, extends in the second direction D2, and is disposed adjacent to the protruding electrode Yp.
  • the protruding electrode Yp may be arranged so that a part thereof overlaps the address electrode AE when viewed from the image display surface side.
  • the discharge start voltage between the address electrode AE and the protruding electrode Yp can be lowered, and a circuit for driving the address electrode AE (for example, as described above)
  • the power consumption of the driver ADRV in FIG. 11 can be reduced.
  • the same effect as that of the embodiment described with reference to FIGS. 10 to 12 can be obtained.
  • FIG. 14 shows a main part of the PDP 10 in another embodiment.
  • This embodiment is different from the embodiment described with reference to FIG. 13 described above in that the address electrodes AE are provided on the front substrate portion 12.
  • the rear substrate portion 14 of this embodiment is configured by omitting the dielectric layer DL2 from the configuration shown in FIG. 1 described above.
  • Other configurations are the same as those of the embodiment described with reference to FIG. That is, the state of the electrodes Xb, Xp, Yb, Yp, AE and the partition wall BR viewed from the image display surface side (upper side in FIG. 14) is the same as that in FIG.
  • the discharge operation for displaying an image on the PDP 10 is the same as that in FIG. 12 except for the voltage values (for example, the voltages Vs / 2, ⁇ Vs / 2, and Vsa shown in FIG. 5 described above).
  • the same elements as those described in FIGS. 1 to 5 and 10 to 13 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the address electrode AE is provided so as to extend in the second direction D2 on the dielectric layer DL1 (lower side in the figure). Further, when viewed from the image display surface side (upper side in FIG. 14), the address electrode AE is disposed between the partition wall BR and the protruding electrode Yp as shown in FIG. Note that a part of the address electrode AE may be disposed on the partition wall BR. In addition, a part of the protruding electrode Yp may be disposed on the address electrode AE.
  • the address electrode AE and the dielectric layer DL1 are covered with a protective layer PL.
  • the dielectric layer DL1 is an insulating film such as a silicon dioxide film formed by a CVD method.
  • the rear substrate portion 14 facing the front substrate portion 12 through the discharge space DS has a partition wall BR extending along the address electrode AE on the glass base RS. That is, the barrier ribs BR are arranged on the surface of the glass substrate RS that faces the glass substrate FS at an interval, and extend in the second direction D2.
  • the same effect as that of the embodiment described with reference to FIG. 13 described above can be obtained.
  • one pixel includes three cells (red (R), green (G), and blue (B)) has been described.
  • the present invention is not limited to such an embodiment.
  • one pixel may be composed of four or more cells.
  • one pixel may be composed of cells that generate colors other than red (R), green (G), and blue (B), and one pixel may be red (R), green (G), A cell that generates a color other than blue (B) may be included.
  • the second direction D2 may intersect the first direction D1 in a substantially perpendicular direction (for example, 90 ° ⁇ 5 °). Also in this case, the same effect as the above-described embodiment can be obtained.
  • the bus electrode pairs BEp adjacent to each other are adjacent to the bus electrode Xb of one bus electrode pair BEp and the bus electrode Xb of the other bus electrode pair BEp.
  • An example to be arranged in is described.
  • the present invention is not limited to such an embodiment.
  • the bus electrode pairs BEp adjacent to each other may be arranged such that the bus electrode Xb of one bus electrode pair BEp and the bus electrode Yb of the other bus electrode pair BEp are adjacent to each other. Also in this case, the same effect as the embodiment described with reference to FIGS. 1 to 9 can be obtained.
  • the protruding electrodes Xp (Xp3) and Yp (Yp3) are formed of a material that transmits visible light, such as an ITO film.
  • the present invention is not limited to such an embodiment.
  • the protruding electrodes Xp (Xp3) and Yp (Yp3) may be formed of the same material (metal material or the like) as the bus electrodes Xb and Yb and integrally formed with the bus electrodes Xb and Yb.
  • the process for forming the electrodes XE and YE can be simplified, and the manufacturing cost can be reduced. Also in this case, the same effects as those of the embodiments described with reference to FIGS. 1 to 5 and FIGS. 7 to 14 can be obtained.
  • the example in which the address electrode AE is provided on the glass substrate RS has been described.
  • the present invention is not limited to such an embodiment.
  • the address electrode AE may be provided on the dielectric layer DL1 covering the electrodes Xb, Xp, Yb, Yp as shown in FIG. Also in this case, the same effects as those of the embodiments described with reference to FIGS. 1 to 6 and FIGS. 8 to 13 can be obtained.
  • the present invention can be applied to a plasma display panel used in a display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

A plasma display panel comprises a first substrate and a second substrate that face each other. The first substrate includes bus electrode pairs each constituted by a first and a second bus electrode that extend in a first direction with a discharge gap between them, and the second substrate includes barrier ribs extending in a second direction crossing the first direction. The first and the second bus electrode of each of the bus electrode pairs are provided with, in each display column area formed between the barrier ribs, a first and a second projecting electrode which respectively project along the second direction from the first and the second bus electrode to the side opposite to the area where the discharge gap is formed and adjoin the barrier ribs different from each other. The first or the second projecting electrodes that are provided on the bus electrodes pairs different from each other and are adjacent to each other in the display column area are disposed adjacent to each of one and the other of the barrier ribs forming the display column area. Consequently, image brightness can be increased.

Description

プラズマディスプレイパネルPlasma display panel
 本発明は、ディスプレイ装置に使用するプラズマディスプレイパネルに関する。 The present invention relates to a plasma display panel used for a display device.
 プラズマディスプレイパネル(PDP)は、2枚のガラス基板(前面ガラス基板および背面ガラス基板)を互いに貼り合わせて構成されており、ガラス基板の間に形成される空間に放電を発生させ、蛍光体を発光させることで画像を表示する。画像における画素に対応するセルは、自発光型であり、放電により発生する紫外線を受けて赤、緑、青の可視光を発生する蛍光体が塗布されている。 A plasma display panel (PDP) is formed by bonding two glass substrates (a front glass substrate and a back glass substrate) to each other, generating a discharge in a space formed between the glass substrates, An image is displayed by emitting light. The cells corresponding to the pixels in the image are self-luminous, and are coated with phosphors that generate red, green, and blue visible light in response to ultraviolet rays generated by discharge.
 例えば、X、Y電極およびアドレス電極を有する3電極構造のPDPは、X電極およびY電極で構成される電極対でサステイン放電を発生させることで、画像を表示する。サステイン放電を発生させるセル(点灯させるセル)は、例えば、Y電極およびアドレス電極間で選択的にアドレス放電を発生させることにより、選択される。 For example, a PDP having a three-electrode structure having X, Y electrodes and address electrodes displays an image by generating a sustain discharge with an electrode pair composed of X electrodes and Y electrodes. A cell that generates a sustain discharge (a cell to be lit) is selected by, for example, selectively generating an address discharge between the Y electrode and the address electrode.
 一般的なPDPでは、X電極およびY電極で構成される電極対が間隔を置いて前面ガラス基板に配置され、X電極の直交方向に延在する隔壁および互いに隣接する隔壁の間に配置されたアドレス電極が背面ガラス基板に配置されている。例えば、X電極は、Xバス電極とXバス電極に接続されたX透明電極とにより構成され、Y電極は、Yバス電極とYバス電極に接続されたY透明電極とにより構成される。一般的に、XおよびY透明電極は、互いに対をなすXおよびYバス電極の間に配置される(例えば、特許文献1参照)。
特開2006-185903号公報
In a general PDP, an electrode pair composed of an X electrode and a Y electrode is disposed on a front glass substrate at an interval, and is disposed between partition walls extending in the orthogonal direction of the X electrode and partition walls adjacent to each other. Address electrodes are disposed on the rear glass substrate. For example, the X electrode is composed of an X bus electrode and an X transparent electrode connected to the X bus electrode, and the Y electrode is composed of a Y bus electrode and a Y transparent electrode connected to the Y bus electrode. Generally, the X and Y transparent electrodes are disposed between the X and Y bus electrodes that are paired with each other (see, for example, Patent Document 1).
JP 2006-185903 A
 この種のPDPでは、互いに隣接する電極対は、一方の電極対でサステイン放電を発生させるきに、一方の電極対のXバス電極と他方の電極対のYバス電極とで誤放電が発生することを防止するために、間隔を置いて配置されている。この互いに隣接する電極対に挟まれた領域は、非発光領域である。したがって、互いに隣接する電極対の間隔が大きい場合、非発光領域が大きくなり、発光領域は小さくなる。このため、画像の輝度が低下する。 In this type of PDP, when an electrode pair adjacent to each other generates a sustain discharge in one electrode pair, an erroneous discharge occurs in the X bus electrode of one electrode pair and the Y bus electrode of the other electrode pair. In order to prevent this, it is arranged at intervals. A region sandwiched between the electrode pairs adjacent to each other is a non-light emitting region. Therefore, when the interval between the electrode pairs adjacent to each other is large, the non-light-emitting region becomes large and the light-emitting region becomes small. For this reason, the brightness of the image decreases.
 また、特許文献1のPDPでは、互いに隣接する電極対の一方の電極対と他方の電極対との間に、X電極に沿って延在する隔壁(横隔壁)が配置されている。すなわち、X電極の直交方向に延在する隔壁(縦隔壁)とX電極に沿って延在する隔壁(横隔壁)とにより構成される格子状の隔壁が、背面ガラス基板に設けられている。この場合、横隔壁が形成される領域(非発光領域)の分だけ発光領域が小さくなり、画像の輝度が低下する。 Further, in the PDP of Patent Document 1, a partition wall (lateral partition wall) extending along the X electrode is disposed between one electrode pair and the other electrode pair of electrode pairs adjacent to each other. That is, the back glass substrate is provided with a grid-like partition wall constituted by partition walls (vertical partition walls) extending in the orthogonal direction of the X electrode and partition walls (horizontal partition walls) extending along the X electrode. In this case, the light emitting area becomes smaller by the area where the horizontal barrier rib is formed (non-light emitting area), and the luminance of the image is lowered.
 本発明の目的は、非発光領域を小さくし、画像の輝度を高くすることである。特に、本発明の目的は、誤放電を防止しつつ、画像の輝度を高くすることである。 An object of the present invention is to reduce the non-light emitting area and increase the luminance of the image. In particular, an object of the present invention is to increase the luminance of an image while preventing erroneous discharge.
 プラズマディスプレイパネルは、互いに対向する第1基板および第2基板を有している。第1基板は、放電ギャップを挟んで第1方向に延在する第1および第2バス電極により構成される複数のバス電極対を有し、第2基板は、第1方向と交差する第2方向に延在する複数の隔壁を有している。また、各バス電極対の第1および第2バス電極には、隔壁間に形成される表示列領域毎に、第1および第2突起電極がそれぞれ設けられている。例えば、各バス電極対にそれぞれ設けられた第1および第2突起電極は、第1および第2バス電極から放電ギャップが形成される領域と反対側に第2方向に沿ってそれぞれ突出し、互いに異なる隔壁にそれぞれ隣接して配置されている。なお、互いに異なるバス電極対に設けられ、表示列領域内で互いに隣接する第1または第2突起電極は、表示列領域を形成する隔壁の一方および他方にそれぞれ隣接して配置されている。 The plasma display panel has a first substrate and a second substrate facing each other. The first substrate has a plurality of bus electrode pairs configured by first and second bus electrodes extending in the first direction across the discharge gap, and the second substrate intersects with the first direction. It has a plurality of partition walls extending in the direction. The first and second bus electrodes are provided on the first and second bus electrodes of each bus electrode pair for each display column region formed between the partition walls. For example, the first and second protruding electrodes provided in each bus electrode pair respectively protrude along the second direction on the opposite side of the region where the discharge gap is formed from the first and second bus electrodes, and are different from each other. It is arranged adjacent to each partition. Note that the first or second projecting electrodes provided in different bus electrode pairs and adjacent to each other in the display column region are respectively disposed adjacent to one and the other of the partition walls forming the display column region.
 本発明では、非発光領域を小さくし、画像の輝度を高くできる。特に、本発明では、誤放電を防止しつつ、画像の輝度を高くできる。 In the present invention, the non-light emitting area can be reduced and the brightness of the image can be increased. In particular, according to the present invention, the luminance of an image can be increased while preventing erroneous discharge.
一実施形態におけるPDPの要部を示す図である。It is a figure which shows the principal part of PDP in one Embodiment. 図1に示したPDPの概要を示す図である。It is a figure which shows the outline | summary of PDP shown in FIG. 図1に示したPDPを用いて構成されたプラズマディスプレイ装置の一例を示す図である。It is a figure which shows an example of the plasma display apparatus comprised using PDP shown in FIG. 図3に示した回路部の概要を示す図である。It is a figure which shows the outline | summary of the circuit part shown in FIG. 図1に示したPDPに画像を表示するためのサブフィールドの放電動作の一例を示す図である。It is a figure which shows an example of the discharge operation | movement of the subfield for displaying an image on PDP shown in FIG. 別の実施形態におけるPDPの概要を示す図である。It is a figure which shows the outline | summary of PDP in another embodiment. 別の実施形態におけるPDPの概要を示す図である。It is a figure which shows the outline | summary of PDP in another embodiment. 別の実施形態におけるPDPの概要を示す図である。It is a figure which shows the outline | summary of PDP in another embodiment. 別の実施形態におけるPDPの概要を示す図である。It is a figure which shows the outline | summary of PDP in another embodiment. 別の実施形態におけるPDPの概要を示す図である。It is a figure which shows the outline | summary of PDP in another embodiment. 図10に示したPDPを駆動するための回路部の概要を示す図である。It is a figure which shows the outline | summary of the circuit part for driving PDP shown in FIG. 図10に示したPDPに画像を表示するためのサブフィールドの放電動作の一例を示す図である。It is a figure which shows an example of the discharge operation | movement of the subfield for displaying an image on PDP shown in FIG. 別の実施形態におけるPDPの概要を示す図である。It is a figure which shows the outline | summary of PDP in another embodiment. 別の実施形態におけるPDPの要部を示す図である。It is a figure which shows the principal part of PDP in another embodiment.
 以下、本発明の実施形態を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態におけるプラズマディスプレイパネル(以下、PDPとも称する)の要部を示している。図中の矢印D1は、第1方向D1を示し、矢印D2は、第1方向D1に画像表示面に平行な面内で直交する第2方向D2を示している。PDP10は、画像表示面を構成する前面基板部12と、前面基板部12に対向する背面基板部14とにより構成されている。前面基板部12と背面基板部14の間(より詳細には、背面基板部14の凹部)に放電空間DSが形成される。 FIG. 1 shows a main part of a plasma display panel (hereinafter also referred to as PDP) in an embodiment of the present invention. An arrow D1 in the drawing indicates the first direction D1, and an arrow D2 indicates the second direction D2 orthogonal to the first direction D1 in a plane parallel to the image display surface. The PDP 10 includes a front substrate portion 12 that forms an image display surface, and a rear substrate portion 14 that faces the front substrate portion 12. A discharge space DS is formed between the front substrate portion 12 and the rear substrate portion 14 (more specifically, a concave portion of the rear substrate portion 14).
 前面基板部12は、ガラス基材FS(第1基板)のガラス基材RS(第2基板)に対向する面上(図では下側)に間隔を置いて配置された複数のバス電極対BEpを有している。各バス電極対BEpは、放電ギャップDGを挟んで第1方向D1に延在するXバス電極Xb(第1バス電極)およびYバス電極Yb(第2バス電極)により構成されている。 The front substrate portion 12 includes a plurality of bus electrode pairs BEp arranged at intervals on a surface (lower side in the drawing) of the glass substrate FS (first substrate) facing the glass substrate RS (second substrate). have. Each bus electrode pair BEp is configured by an X bus electrode Xb (first bus electrode) and a Y bus electrode Yb (second bus electrode) extending in the first direction D1 across the discharge gap DG.
 Xバス電極Xbには、Xバス電極Xbから放電ギャップDGが形成される領域と反対側に第2方向D2に延在するX突起電極Xp(第1突起電極)が接続されている。また、Yバス電極Ybには、Yバス電極Ybから放電ギャップDGが形成される領域と反対側に第2方向D2に延在するY突起電極Yp(第2突起電極)が接続されている。例えば、X電極XE(維持電極)は、Xバス電極XbおよびX突起電極Xpにより構成され、Y電極YE(走査電極)は、Yバス電極YbおよびY突起電極Ypにより構成されている。そして、互いに対をなすX電極XEおよびY電極YE間で繰り返して放電(サステイン放電)を発生させる。 The X-projection electrode Xp (first projection electrode) extending in the second direction D2 is connected to the X-bus electrode Xb on the opposite side of the region where the discharge gap DG is formed from the X-bus electrode Xb. Further, a Y-projection electrode Yp (second projection electrode) extending in the second direction D2 is connected to the Y bus electrode Yb on the side opposite to the region where the discharge gap DG is formed from the Y bus electrode Yb. For example, the X electrode XE (sustain electrode) is composed of the X bus electrode Xb and the X projection electrode Xp, and the Y electrode YE (scanning electrode) is composed of the Y bus electrode Yb and the Y projection electrode Yp. Then, a discharge (sustain discharge) is repeatedly generated between the X electrode XE and the Y electrode YE that are paired with each other.
 ここで、Xバス電極XbおよびYバス電極Ybは、金属材料等で形成された不透明な電極であり、X突起電極XpおよびY突起電極Ypは、ITO膜等で形成された可視光を透過する透明電極である。なお、突起電極XpおよびYpは、それぞれが接続されるバス電極XbおよびYbとガラス基材FSとの間に全面に配置されてもよい。電極Xb、Xp、Yb、Ypは、誘電体層DL1に覆われており、誘電体層DL1の表面は、保護層PLに覆われている。例えば、保護層PLは、放電を容易に発生させるために、陽イオンの衝突による2次電子の放出特性の高いMgO膜で形成される。 Here, the X bus electrode Xb and the Y bus electrode Yb are opaque electrodes formed of a metal material or the like, and the X protruding electrode Xp and the Y protruding electrode Yp transmit visible light formed of an ITO film or the like. It is a transparent electrode. The protruding electrodes Xp and Yp may be disposed on the entire surface between the bus electrodes Xb and Yb to which the protruding electrodes Xp and Yp are connected and the glass substrate FS. The electrodes Xb, Xp, Yb, Yp are covered with the dielectric layer DL1, and the surface of the dielectric layer DL1 is covered with the protective layer PL. For example, the protective layer PL is formed of an MgO film having high secondary electron emission characteristics due to cation collision in order to easily generate discharge.
 放電空間DSを介して前面基板部12に対向する背面基板部14は、ガラス基材RS上に、バス電極Xb、Ybの直交方向(第2方向D2)に延在する複数のアドレス電極AEが設けられている。例えば、アドレス電極AEは、金属材料等で形成された不透明な電極である。アドレス電極AEは、誘電体層DL2に覆われ、誘電体層DL2上には、第2方向D2に延在する複数の隔壁(バリアリブ)BRが形成されている。すなわち、隔壁BRは、ガラス基材RSのガラス基材FSに対向する面上に間隔を置いて配置されている。例えば、隔壁BRは、互いに隣接するアドレス電極AEの間に配置されている。 The rear substrate portion 14 facing the front substrate portion 12 through the discharge space DS has a plurality of address electrodes AE extending on the glass base RS in the orthogonal direction (second direction D2) of the bus electrodes Xb and Yb. Is provided. For example, the address electrode AE is an opaque electrode made of a metal material or the like. The address electrode AE is covered with the dielectric layer DL2, and a plurality of partition walls (barrier ribs) BR extending in the second direction D2 are formed on the dielectric layer DL2. That is, the barrier ribs BR are arranged at intervals on the surface of the glass substrate RS that faces the glass substrate FS. For example, the barrier ribs BR are disposed between the address electrodes AE adjacent to each other.
 隔壁BRにより、セルの側壁が構成される。さらに、隔壁BRの側面と、互いに隣接する隔壁BRの間のガラス基材RS上とには、紫外線により励起されて赤(R)、緑(G)、青(B)の可視光を発生する蛍光体PHr、PHg、PHbが、それぞれ塗布されている。 The side wall of the cell is constituted by the partition wall BR. Further, visible light of red (R), green (G), and blue (B) is generated on the side surface of the partition wall BR and the glass substrate RS between the adjacent partition walls BR by being excited by ultraviolet rays. Phosphors PHr, PHg, and PHb are respectively applied.
 PDP10の1つの画素は、赤、緑および青の光を発生する3つのセルにより構成される。ここで、1つのセル(一色の画素)は、後述する図2に示すように、互いに隣接する一対の隔壁BRで挟まれる領域において、互いに対をなす突起電極Xp、Ypを含む領域に形成される。このように、PDP10は、画像を表示するためにセルをマトリックス状に配置し、かつ互いに異なる色の光を発生する複数種のセルを交互に配列して構成されている。特に図示していないが、バス電極Xb、Ybに沿って形成されたセルにより、表示ラインが構成される。 One pixel of the PDP 10 is composed of three cells that generate red, green, and blue light. Here, as shown in FIG. 2 to be described later, one cell (one color pixel) is formed in a region including a pair of protruding electrodes Xp and Yp in a region sandwiched between a pair of adjacent barrier ribs BR. The As described above, the PDP 10 is configured by arranging cells in a matrix to display an image and alternately arranging a plurality of types of cells that generate light of different colors. Although not particularly illustrated, a display line is constituted by cells formed along the bus electrodes Xb and Yb.
 PDP10は、前面基板部12および背面基板部14を、保護層PLと隔壁BRが互いに接するように貼り合わせ、Ne、Xe等の放電ガスを放電空間DSに封入することで構成される。 The PDP 10 is configured by bonding the front substrate portion 12 and the rear substrate portion 14 so that the protective layer PL and the partition wall BR are in contact with each other, and enclosing a discharge gas such as Ne or Xe in the discharge space DS.
 図2は、図1に示したPDP10の概要を示している。なお、図2は、画像表示面側(図1の上側)から見た電極Xb、Xp、Yb、Yp、AEおよび隔壁BRの状態を示している。 FIG. 2 shows an outline of the PDP 10 shown in FIG. 2 shows the state of the electrodes Xb, Xp, Yb, Yp, AE and the partition wall BR as viewed from the image display surface side (upper side in FIG. 1).
 図の例では、互いに隣接するバス電極対BEpは、一方のバス電極対BEpのバス電極Xbと、他方のバス電極対BEpのバス電極Xbとが隣接するように配置されている。換言すれば、互いに隣接するバス電極対BEpは、一方のバス電極対BEpのバス電極Ybと、他方のバス電極対BEpのバス電極Ybとが隣接するように配置されている。 In the example of the figure, the bus electrode pairs BEp adjacent to each other are arranged such that the bus electrode Xb of one bus electrode pair BEp and the bus electrode Xb of the other bus electrode pair BEp are adjacent to each other. In other words, the bus electrode pairs BEp adjacent to each other are arranged such that the bus electrode Yb of one bus electrode pair BEp and the bus electrode Yb of the other bus electrode pair BEp are adjacent to each other.
 上述したように、突起電極Xp、Ypは、各バス電極対BEpのバス電極Xb、Ybから放電ギャップDGが形成される領域と反対側に第2方向D2に沿ってそれぞれ突出している。そして、互いに対をなす突起電極Xp、Ypは、互いに隣接する一対の隔壁BR間に形成される表示列領域RA毎に、各バス電極対BEpのバス電極Xb、Ybにそれぞれ設けられ、表示列領域RAを形成する一対の隔壁BRの一方および他方にそれぞれ隣接して配置されている。すなわち、互いに対をなす突起電極Xp、Ypは、互いに異なる隔壁BRにそれぞれ隣接している。 As described above, the protruding electrodes Xp and Yp protrude along the second direction D2 from the bus electrodes Xb and Yb of each bus electrode pair BEp on the side opposite to the region where the discharge gap DG is formed. The protruding electrodes Xp and Yp that are paired with each other are provided on the bus electrodes Xb and Yb of each bus electrode pair BEp for each display column region RA formed between a pair of adjacent barrier ribs BR. Arranged adjacent to one and the other of the pair of partition walls BR forming the region RA. That is, the protruding electrodes Xp and Yp that make a pair are adjacent to different partition walls BR.
 例えば、維持電極XEおよび走査電極YE間に電圧を印加することにより、先ず、放電ギャップDGを介して対向するバス電極Xb、Yb間で放電が発生し、この放電が互いに対をなす突起電極Xp、Ypの方まで広がる。そして、放電により発生する紫外線を受けた蛍光体(例えば、上述した図1に示した蛍光体PHr)は、可視光(例えば、赤の可視光)を発生する。すなわち、この実施形態では、1つのセルC1(一色の画素)は、上述したように、表示列領域RAにおいて、互いに対をなす突起電極Xp、Ypを含む領域(図の破線で囲んだ領域)に形成される。 For example, by applying a voltage between the sustain electrode XE and the scan electrode YE, first, a discharge is generated between the bus electrodes Xb and Yb facing each other through the discharge gap DG, and this discharge is a pair of protruding electrodes Xp. , Spread to Yp. Then, a phosphor (for example, the phosphor PHr shown in FIG. 1 described above) that has received ultraviolet rays generated by discharge generates visible light (for example, red visible light). That is, in this embodiment, one cell C1 (one color pixel) includes, as described above, a region including the protruding electrodes Xp and Yp that are paired with each other in the display column region RA (a region surrounded by a broken line in the drawing). Formed.
 各表示列領域RAでは、互いに隣接するセルC1の一方のセルC1の突起電極Xp(またはYp)および他方のセルC1の突起電極Xp(またはYp)は、第1方向D1で互いの距離を確保するために、表示列領域RAを形成する一対の隔壁BRの一方および他方にそれぞれ隣接して配置されている。すなわち、互いに異なるバス電極対BEpに設けられ、表示列領域RA内で互いに隣接する突起電極XpまたはYpは、表示列領域RAを形成する一対の隔壁BRの一方および他方にそれぞれ隣接して配置されている。 In each display row region RA, the protruding electrode Xp (or Yp) of one cell C1 of the cells C1 adjacent to each other and the protruding electrode Xp (or Yp) of the other cell C1 secure a distance from each other in the first direction D1. In order to achieve this, each of the pair of partition walls BR forming the display row region RA is disposed adjacent to each other. That is, the protruding electrodes Xp or Yp that are provided on different bus electrode pairs BEp and are adjacent to each other in the display column region RA are disposed adjacent to one and the other of the pair of partition walls BR forming the display column region RA. ing.
 例えば、表示列領域RA内では、突起電極Xp、Ypは、互いに隣接する突起電極Xp間の最短距離S1および突起電極Yp間の最短距離S1が放電ギャップDGを形成するバス電極Xb、Yb間の距離S2より大きくなるように配置されている。例えば、突起電極Xp間(または突起電極Yp間)の最短距離S1は、200μm程度であり、バス電極Xb、Yb間の距離S2は、100μm程度である。これにより、この実施形態では、例えば、表示列領域RA内で互いに隣接するセルC1の一方のセルC1の電極XE、YE間で発生したサステイン放電が、他方のセルC1の電極YE(またはXE)まで広がることを防止できる。 For example, in the display row region RA, the protruding electrodes Xp and Yp are connected between the bus electrodes Xb and Yb where the shortest distance S1 between the adjacent protruding electrodes Xp and the shortest distance S1 between the protruding electrodes Yp form the discharge gap DG. It arrange | positions so that it may become larger than the distance S2. For example, the shortest distance S1 between the protruding electrodes Xp (or between the protruding electrodes Yp) is about 200 μm, and the distance S2 between the bus electrodes Xb and Yb is about 100 μm. Thereby, in this embodiment, for example, the sustain discharge generated between the electrodes XE and YE of one cell C1 of the cells C1 adjacent to each other in the display column region RA is changed to the electrode YE (or XE) of the other cell C1. Can be prevented from spreading.
 また、表示列領域RA内で互いに隣接するセルC1では、一方のセルC1の電極XE(またはYE)と他方のセルC1の電極XE(またはYE)とが隣接している。すなわち、一方のセルC1の電極XE(またはYE)は、他方のセルC1の電極YE(またはXE)から離れて配置されている。これにより、この実施形態では、表示列領域RA内で互いに隣接するセルC1の一方のセルC1の電極XE、YE間でサステイン放電を発生させる際に、一方のセルC1の電極XE(またはYE)と他方のセルC1の電極YE(またはXE)との間で誤放電が発生することを防止できる。 In the cell C1 adjacent to each other in the display row region RA, the electrode XE (or YE) of one cell C1 and the electrode XE (or YE) of the other cell C1 are adjacent. That is, the electrode XE (or YE) of one cell C1 is arranged away from the electrode YE (or XE) of the other cell C1. Thus, in this embodiment, when a sustain discharge is generated between the electrodes XE and YE of one cell C1 of the cells C1 adjacent to each other in the display column region RA, the electrode XE (or YE) of one cell C1 is generated. And erroneous discharge between the electrode YE (or XE) of the other cell C1 can be prevented.
 また、この実施形態では、表示列領域RA内で互いに隣接するセルC1の突起電極Xp間(および突起電極Yp間)の距離が主に第1方向D1で確保されるため、互いに隣接するセルC1間の第2方向D2の距離を小さくできる。すなわち、この実施形態では、互いに隣接するセルC1間に形成される非発光領域を小さくでき、画像の輝度を高くできる。換言すれば、この実施形態では、互いに対をなす突起電極Xp、Ypを含む発光領域(セルC1)を大きくでき、画像の輝度を高くできる。特に、この実施形態では、誤放電を防止しつつ、画像の輝度を高くできる。 In this embodiment, since the distance between the protruding electrodes Xp (and the protruding electrodes Yp) of the cells C1 adjacent to each other in the display row region RA is mainly secured in the first direction D1, the cells C1 adjacent to each other. The distance in the second direction D2 can be reduced. That is, in this embodiment, the non-light emitting area formed between the adjacent cells C1 can be reduced, and the brightness of the image can be increased. In other words, in this embodiment, the light emitting region (cell C1) including the protruding electrodes Xp and Yp paired with each other can be increased, and the luminance of the image can be increased. In particular, in this embodiment, the luminance of the image can be increased while preventing erroneous discharge.
 アドレス電極AEは、互いに隣接する隔壁BRの間に配置されている。なお、図の例では、アドレス電極AEは、各セルC1の突起電極Xp、Yp間を通って第2方向D2に延在して配置されている。これにより、アドレス電極AEと走査電極YE(突起電極Yp)との間に電圧を印加することにより、着目するセルC1でアドレス放電を発生させることができる。 The address electrode AE is disposed between the adjacent barrier ribs BR. In the example shown in the figure, the address electrode AE is disposed so as to extend in the second direction D2 through between the protruding electrodes Xp and Yp of each cell C1. Thereby, by applying a voltage between the address electrode AE and the scan electrode YE (projection electrode Yp), an address discharge can be generated in the cell C1 of interest.
 図3は、図1に示したPDP10を用いて構成されたプラズマディスプレイ装置の一例を示している。プラズマディスプレイ装置(以下、PDP装置とも称する)は、PDP10、PDP10の画像表示面16側(光の出力側)に設けられる光学フィルタ20、PDP10の画像表示面16側に配置された前筐体30、PDP10の背面18側に配置された後筐体40およびベースシャーシ50、ベースシャーシ50の後筐体40側に取り付けられ、PDP10を駆動するための回路部60、およびPDP10をベースシャーシ50に貼り付けるための両面接着シート70を有している。回路部60は、複数の部品で構成されるため、図では、破線の箱で示している。光学フィルタ20は、前筐体30の開口部32に取り付けられる保護ガラス(図示せず)に貼付される。なお、光学フィルタ20は、電磁波を遮蔽する機能を有してもよい。また、光学フィルタ20は、保護ガラスではなく、PDP10の画像表示面16側に直接貼付されてもよい。 FIG. 3 shows an example of a plasma display device configured using the PDP 10 shown in FIG. A plasma display device (hereinafter also referred to as a PDP device) includes a PDP 10, an optical filter 20 provided on the image display surface 16 side (light output side) of the PDP 10, and a front housing 30 disposed on the image display surface 16 side of the PDP 10. The rear housing 40 and the base chassis 50 disposed on the back surface 18 side of the PDP 10, the circuit unit 60 for driving the PDP 10 attached to the rear housing 40 side of the base chassis 50, and the PDP 10 are attached to the base chassis 50. A double-sided adhesive sheet 70 for attaching is provided. Since the circuit unit 60 includes a plurality of components, the circuit unit 60 is indicated by a dashed box in the figure. The optical filter 20 is affixed to a protective glass (not shown) attached to the opening 32 of the front housing 30. The optical filter 20 may have a function of shielding electromagnetic waves. The optical filter 20 may be directly attached to the image display surface 16 side of the PDP 10 instead of the protective glass.
 図4は、図1に示したPDP10を駆動するための回路部60の概要を示している。回路部60は、XドライバXDRV、YドライバYDRV、アドレスドライバADRV、電源部PWRおよび制御部CNTを有している。ドライバXDRV、YDRV、ADRVは、PDP10を駆動する駆動部として動作する。例えば、XドライバXDRVは、バス電極Xbに共通のパルスを印加し、YドライバYDRVは、バス電極Ybに選択的にパルスを印加し、アドレスドライバADRVは、アドレス電極AEに選択的にアドレスパルスを印加する。電源部PWRは、ドライバYDRV、XDRV、ADRVに供給する電源電圧Vsc、Vs/2、-Vs/2、Vbx、Vsa等を生成する。 FIG. 4 shows an outline of the circuit unit 60 for driving the PDP 10 shown in FIG. The circuit unit 60 includes an X driver XDRV, a Y driver YDRV, an address driver ADRV, a power supply unit PWR, and a control unit CNT. The drivers XDRV, YDRV, and ADRV operate as a drive unit that drives the PDP 10. For example, the X driver XDRV applies a common pulse to the bus electrode Xb, the Y driver YDRV selectively applies a pulse to the bus electrode Yb, and the address driver ADRV selectively applies an address pulse to the address electrode AE. Apply. The power supply unit PWR generates power supply voltages Vsc, Vs / 2, −Vs / 2, Vbx, Vsa and the like to be supplied to the drivers YDRV, XDRV, and ADRV.
 制御部CNTは、ドライバXDRV、YDRV、ADRVの動作を制御する。例えば、制御部CNTは、画像データR0-7、G0-7、B0-7に基づいて使用するサブフィールドを選択し、ドライバYDRV、XDRV、ADRVに制御信号YCNT、XCNT、ACNTを出力する。ここで、サブフィールドは、PDP10の1画面を表示するための1フィールドが分割されたフィールドであり、サブフィールド毎にサステイン放電の回数が設定されている。そして、画素を構成するセルC1毎に、使用するサブフィールドを選択することにより、多階調の画像が表示される。 The control unit CNT controls the operation of the drivers XDRV, YDRV, and ADRV. For example, the control unit CNT selects a subfield to be used based on the image data R0-7, G0-7, and B0-7, and outputs control signals YCNT, XCNT, and ACNT to the drivers YDRV, XDRV, and ADRV. Here, the subfield is a field obtained by dividing one field for displaying one screen of the PDP 10, and the number of sustain discharges is set for each subfield. A multi-tone image is displayed by selecting a subfield to be used for each cell C1 constituting the pixel.
 図5は、図1に示したPDPに画像を表示するためのサブフィールドの放電動作の一例を示している。図中の星印は、放電の発生を示している。この例では、各サブフィールドSFは、リセット期間RSTと、アドレス期間ADRと、サステイン期間SUSとを有している。 FIG. 5 shows an example of the subfield discharge operation for displaying an image on the PDP shown in FIG. The star in the figure indicates the occurrence of discharge. In this example, each subfield SF has a reset period RST, an address period ADR, and a sustain period SUS.
 まず、リセット期間RSTでは、緩やかに下降する負の電圧(鈍波)が、維持電極XEに印加され、正の電圧が、走査電極YEに印加される(図5(a))。そして、維持電極XEは、負の書き込み電圧に維持され、緩やかに上昇する正の書き込み電圧(書き込み鈍波)が走査電極YEに印加される(図5(b))。これにより、セルの発光を抑えながら維持電極XEと走査電極YEに正と負の壁電荷がそれぞれ蓄積される。次に、維持電極XEに正の調整電圧が印加され、負の調整電圧(調整鈍波)が走査電極YEに印加される(図5(c))。これにより、維持電極XEと走査電極YEにそれぞれ蓄積された正と負の壁電荷の量が減るとともに、全てのセルの壁電荷の量が調整される。なお、例えば、正の調整電圧は、電圧Vs/2より低い電圧であり、負の調整電圧の最小値は、電圧-Vs/2より高い電圧である。 First, in the reset period RST, a negative voltage (blunt wave) that gently falls is applied to the sustain electrode XE, and a positive voltage is applied to the scan electrode YE (FIG. 5A). The sustain electrode XE is maintained at a negative write voltage, and a positive write voltage (write obtuse wave) that gradually increases is applied to the scan electrode YE (FIG. 5B). As a result, positive and negative wall charges are accumulated in the sustain electrode XE and the scan electrode YE, respectively, while suppressing light emission of the cell. Next, a positive adjustment voltage is applied to the sustain electrode XE, and a negative adjustment voltage (adjusted obtuse wave) is applied to the scan electrode YE (FIG. 5C). This reduces the amount of positive and negative wall charges accumulated in the sustain electrode XE and the scan electrode YE, respectively, and adjusts the amount of wall charges in all cells. For example, the positive adjustment voltage is a voltage lower than the voltage Vs / 2, and the minimum value of the negative adjustment voltage is a voltage higher than the voltage −Vs / 2.
 アドレス期間ADRでは、アドレス放電時に陽極となるバイアス電圧Vbxが維持電極XEに印加され、アドレス放電時に陰極となるスキャンパルス(電圧-Vs/2)が走査電極YEに印加され、アドレス放電時に陽極となるアドレスパルス(電圧Vsa)が、点灯するセルに対応するアドレス電極AEに印加される(図5(d))。スキャンパルスとアドレスパルスにより選択されたセルでは、走査電極YEとアドレス電極AE間で一時的に放電が発生(アドレス放電)し、この放電をトリガにして、維持電極XEと走査電極YE間で一時的に放電(アドレス放電)が発生する。これにより、サステイン期間SUSに点灯させるセルが選択される。なお、例えば、バイアス電圧Vbxは、リセット期間RSTに維持電極XEに印加された正の調整電圧と同じ電圧である。 In the address period ADR, a bias voltage Vbx that serves as an anode at the time of address discharge is applied to the sustain electrode XE, a scan pulse (voltage −Vs / 2) that serves as a cathode at the time of address discharge is applied to the scan electrode YE, The address pulse (voltage Vsa) is applied to the address electrode AE corresponding to the cell to be lit (FIG. 5D). In the cell selected by the scan pulse and the address pulse, a discharge is temporarily generated between the scan electrode YE and the address electrode AE (address discharge), and this discharge is used as a trigger to temporarily stop between the sustain electrode XE and the scan electrode YE. Discharge (address discharge) occurs. Thereby, a cell to be lit in the sustain period SUS is selected. For example, the bias voltage Vbx is the same voltage as the positive adjustment voltage applied to the sustain electrode XE during the reset period RST.
 また、他の表示ラインのセルを選択する際、選択対象以外の表示ラインの走査電極YEには、例えば、電圧-Vs/2と電圧Vscとの差電圧であるバイアス電圧Vbyが印加されている。なお、アドレス電極AEの波形に示される2回目のアドレスパルスは、他の表示ラインのセルを選択するために印加される(図5(e))。 Further, when a cell of another display line is selected, for example, a bias voltage Vby that is a difference voltage between the voltage −Vs / 2 and the voltage Vsc is applied to the scanning electrode YE of the display line other than the selection target. . Note that the second address pulse shown in the waveform of the address electrode AE is applied to select a cell of another display line (FIG. 5E).
 サステイン期間SUSでは、負および正のサステインパルス(電圧-Vs/2、電圧Vs/2)が、維持電極XEおよび走査電極YEにそれぞれ印加される(図5(f))。これにより、アドレス期間ADRに選択されたセル(点灯させるセル)では、維持電極XEと走査電極YE間で放電(サステイン放電)が発生する。次に、正および負のサステインパルス(電圧Vs/2、電圧-Vs/2)が、維持電極XEおよび走査電極YEにそれぞれ印加され(図4(g))、点灯したセルの放電状態が維持される。互いに極性の異なるサステインパルスが、維持電極XEおよび走査電極YEに繰り返して印加されることにより、サステイン期間SUSに点灯したセルの放電(サステイン放電)が繰り返し行われる。 In the sustain period SUS, negative and positive sustain pulses (voltage -Vs / 2, voltage Vs / 2) are applied to the sustain electrode XE and the scan electrode YE, respectively (FIG. 5 (f)). As a result, a discharge (sustain discharge) is generated between the sustain electrode XE and the scan electrode YE in the cell selected in the address period ADR (cell to be lit). Next, positive and negative sustain pulses (voltage Vs / 2, voltage −Vs / 2) are applied to the sustain electrode XE and the scan electrode YE, respectively (FIG. 4G), and the discharge state of the lit cell is maintained. Is done. Sustain pulses having different polarities are repeatedly applied to the sustain electrode XE and the scan electrode YE, so that the discharge of the cells lit in the sustain period SUS (sustain discharge) is repeatedly performed.
 以上、この実施形態では、突起電極Xp、Ypは、各バス電極対BEpのバス電極Xb、Ybから放電ギャップDGが形成される領域と反対側に第2方向D2に沿ってそれぞれ突出している。また、表示列領域RA内では、互いに隣接するセルC1の突起電極Xp間(および突起電極Yp間)の距離は、主に第1方向D1で確保される。この結果、この実施形態では、誤放電を防止しつつ、互いに隣接するセルC1間の第2方向D2の距離を小さくできる。すなわち、この実施形態では、誤放電を防止しつつ、互いに隣接するセルC1間に形成される非発光領域を小さくでき、画像の輝度を高くできる。 As described above, in this embodiment, the protruding electrodes Xp and Yp protrude along the second direction D2 from the bus electrodes Xb and Yb of each bus electrode pair BEp on the opposite side to the region where the discharge gap DG is formed. In the display row region RA, the distance between the protruding electrodes Xp (and the protruding electrodes Yp) of the cells C1 adjacent to each other is ensured mainly in the first direction D1. As a result, in this embodiment, it is possible to reduce the distance in the second direction D2 between the adjacent cells C1 while preventing erroneous discharge. That is, in this embodiment, it is possible to reduce the non-light emitting region formed between the cells C1 adjacent to each other while preventing erroneous discharge, and to increase the luminance of the image.
 図6は、別の実施形態におけるPDP10の概要を示している。なお、図6は、画像表示面側(図1の上側)から見た電極Xb、Xp2、Yb、Yp2、AEおよび隔壁BRの状態を示している。この実施形態では、上述した図1-図2に示した突起電極Xp、Ypの代わりに、突起電極Xp2、Yp2が形成されている。その他の構成は、図1-図4で説明した実施形態と同じである。また、PDP10に画像を表示するための放電動作は、電圧値(例えば、上述した図5に示した電圧Vs/2、-Vs/2、Vsa)を除いて、図5と同じである。図1-図5で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。 FIG. 6 shows an outline of the PDP 10 in another embodiment. FIG. 6 shows the state of the electrodes Xb, Xp2, Yb, Yp2, AE and the partition wall BR as viewed from the image display surface side (upper side in FIG. 1). In this embodiment, protruding electrodes Xp2, Yp2 are formed instead of the protruding electrodes Xp, Yp shown in FIGS. Other configurations are the same as those of the embodiment described with reference to FIGS. The discharge operation for displaying an image on the PDP 10 is the same as that in FIG. 5 except for voltage values (for example, the voltages Vs / 2, −Vs / 2, and Vsa shown in FIG. 5 described above). The same elements as those described in FIGS. 1 to 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 突起電極Xp2およびYp2は、バス電極XbおよびYbと同じ材料(金属材料等)で、バス電極XbおよびYbと一体に形成され、一部が隔壁BR上に位置するように配置されている。この実施形態では、突起電極Xp2、Yp2がバス電極Xb、Ybと一体に形成されるため、電極XE、YEを形成するための工程を簡略化でき、製造コストを低減できる。 The protruding electrodes Xp2 and Yp2 are made of the same material (metal material or the like) as the bus electrodes Xb and Yb, are formed integrally with the bus electrodes Xb and Yb, and are arranged so that a part thereof is located on the partition wall BR. In this embodiment, since the projecting electrodes Xp2 and Yp2 are formed integrally with the bus electrodes Xb and Yb, the process for forming the electrodes XE and YE can be simplified, and the manufacturing cost can be reduced.
 また、この実施形態では、突起電極Xp2、Yp2の一部を隔壁BR上に位置させることにより、蛍光体の発光を遮光する突起電極Xp2、Yp2の幅を細くすることなく、可視光を透過しない突起電極Xp2、Yp2による非発光領域を小さくできる。これにより、この実施形態では、突起電極Xp2、Yp2の幅をある程度の大きさ(例えば、40μm程度)に確保でき、突起電極Xp2、Yp2が断線することを防止できる。すなわち、この実施形態では、突起電極Xp2、Yp2が断線することを防止しつつ、発光領域を大きくできる。なお、突起電極Xp2、Yp2は、突起電極Xp2、Yp2の一方(例えば、突起電極Xp2)の一部のみが、隔壁BR上に位置するように配置されてもよい。以上、この実施形態においても、上述した図1-図5で説明した実施形態と同様の効果を得ることができる。また、この実施形態では、突起電極Xp2、Yp2が断線することを防止できるため、PDPの製造歩留まり、あるいは、PDPの信頼性を向上できる。 In this embodiment, part of the protruding electrodes Xp2 and Yp2 is positioned on the barrier rib BR, so that visible light is not transmitted without reducing the width of the protruding electrodes Xp2 and Yp2 that block the light emission of the phosphor. The non-light emitting region by the protruding electrodes Xp2 and Yp2 can be reduced. Thereby, in this embodiment, the width of the protruding electrodes Xp2, Yp2 can be secured to a certain size (for example, about 40 μm), and the protruding electrodes Xp2, Yp2 can be prevented from being disconnected. That is, in this embodiment, the light emitting region can be enlarged while preventing the protruding electrodes Xp2, Yp2 from being disconnected. Note that the protruding electrodes Xp2 and Yp2 may be arranged so that only one part of the protruding electrodes Xp2 and Yp2 (for example, the protruding electrode Xp2) is positioned on the partition wall BR. As described above, also in this embodiment, the same effects as those of the embodiment described with reference to FIGS. 1 to 5 can be obtained. Moreover, in this embodiment, since the protruding electrodes Xp2 and Yp2 can be prevented from being disconnected, the manufacturing yield of the PDP or the reliability of the PDP can be improved.
 図7は、別の実施形態におけるPDP10の概要を示している。なお、図7は、画像表示面側(図1の上側)から見た電極Xb、Xp、Yb、Yp、AE2および隔壁BRの状態を示している。この実施形態では、上述した図1-図2に示したアドレス電極AEの代わりに、アドレスパッドApを有するアドレス電極AE2が形成されている。その他の構成は、図1-図4で説明した実施形態と同じである。また、PDP10に画像を表示するための放電動作は、電圧値(例えば、上述した図5に示した電圧Vs/2、-Vs/2、Vsa)を除いて、図5と同じである。図1-図5で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。 FIG. 7 shows an outline of the PDP 10 in another embodiment. FIG. 7 shows the state of the electrodes Xb, Xp, Yb, Yp, AE2 and the partition wall BR as viewed from the image display surface side (upper side in FIG. 1). In this embodiment, an address electrode AE2 having an address pad Ap is formed instead of the address electrode AE shown in FIGS. Other configurations are the same as those of the embodiment described with reference to FIGS. The discharge operation for displaying an image on the PDP 10 is the same as that in FIG. 5 except for voltage values (for example, the voltages Vs / 2, −Vs / 2, and Vsa shown in FIG. 5 described above). The same elements as those described in FIGS. 1 to 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 アドレス電極AE2は、上述した図1に示したガラス基材RS上に、第2方向D2に延在して設けられている。すなわち、アドレス電極AE2は、ガラス基材RSのガラス基材FSに対向する面上に設けられ、第2方向D2に延在し、突起電極Ypと突起電極Xpとの間に配置されている。そして、アドレス電極AE2は、画像表示面側から見て、突起電極Xp、Ypの一方の突起電極Ypに向かって第1方向D1に突出するアドレスパッドApを有している。 The address electrode AE2 is provided to extend in the second direction D2 on the glass base RS shown in FIG. 1 described above. That is, the address electrode AE2 is provided on the surface of the glass substrate RS that faces the glass substrate FS, extends in the second direction D2, and is disposed between the protruding electrode Yp and the protruding electrode Xp. The address electrode AE2 has an address pad Ap that protrudes in the first direction D1 toward one of the protruding electrodes Yp of the protruding electrodes Xp and Yp when viewed from the image display surface side.
 例えば、アドレスパッドApは、セルC1毎に、アドレス電極AE2と同じ材料(金属材料等)で、アドレス電極AE2と一体に形成される。また、図の例では、アドレスパッドApは、画像表示面側から見た場合、一部が突起電極Ypと重なるように配置されている。なお、アドレスパッドApは、画像表示面側から見た場合、突起電極Ypと重ならない程度に、突起電極Ypに向かって突出して形成されてもよい。この実施形態では、上述した図1-図5で説明した実施形態に比べて、アドレス電極AE2(より詳細には、アドレスパッドAp)と突起電極Ypとの距離が近いため、アドレス電極AE2および突起電極Yp間の放電開始電圧を低くできる。これにより、この実施形態では、アドレス電極AE2を駆動するための回路(例えば、上述した図4のドライバADRV)の消費電力を小さくできる。 For example, the address pad Ap is integrally formed with the address electrode AE2 for each cell C1 with the same material (metal material or the like) as the address electrode AE2. Further, in the example shown in the figure, the address pad Ap is arranged so as to partially overlap the protruding electrode Yp when viewed from the image display surface side. The address pad Ap may be formed so as to protrude toward the protruding electrode Yp so as not to overlap with the protruding electrode Yp when viewed from the image display surface side. In this embodiment, since the distance between the address electrode AE2 (more specifically, the address pad Ap) and the protruding electrode Yp is shorter than the embodiment described with reference to FIGS. 1 to 5 described above, the address electrode AE2 and the protruding electrode The discharge start voltage between the electrodes Yp can be lowered. Thereby, in this embodiment, the power consumption of the circuit for driving the address electrode AE2 (for example, the driver ADRV in FIG. 4 described above) can be reduced.
 ここで、アドレス電極AE2と突起電極Ypとの距離を近くするために、アドレス電極AE2の幅を全体的に太くする構成が、本発明の過程で考えられた。しかし、この構成では、アドレス電極AE2の配線容量が大きくなり、アドレス電極AE2を駆動するための回路の消費電力が大きくなる。 Here, in order to reduce the distance between the address electrode AE2 and the protruding electrode Yp, a configuration in which the width of the address electrode AE2 is increased as a whole was considered in the process of the present invention. However, with this configuration, the wiring capacity of the address electrode AE2 increases, and the power consumption of the circuit for driving the address electrode AE2 increases.
 これに対し、この実施形態では、アドレス電極AE2の幅を全体的に太くする構成に比べて、アドレスパッドApが設けられる部分を除いた部分のアドレス電極AE2の配線幅を細くでき、アドレス電極AE2の配線容量を小さくできる。したがって、この実施形態では、アドレス電極AE2を駆動するための回路の消費電力を小さくできる。以上、この実施形態においても、上述した図1-図5で説明した実施形態と同様の効果を得ることができる。 On the other hand, in this embodiment, compared to the configuration in which the width of the address electrode AE2 is increased as a whole, the wiring width of the address electrode AE2 in the portion excluding the portion where the address pad Ap is provided can be reduced, and the address electrode AE2 Wiring capacity can be reduced. Therefore, in this embodiment, the power consumption of the circuit for driving the address electrode AE2 can be reduced. As described above, also in this embodiment, the same effects as those of the embodiment described with reference to FIGS. 1 to 5 can be obtained.
 図8は、別の実施形態におけるPDP10の概要を示している。なお、図8は、画像表示面側(図1の上側)から見た電極Xb、Xp3、Yb、Yp3、AEおよび隔壁BRの状態を示している。この実施形態では、突起電極Xp3、Yp3の形状が上述した図1-図2に示した突起電極Xp、Ypの形状と相違している。その他の構成は、図1-図4で説明した実施形態と同じである。また、PDP10に画像を表示するための放電動作は、電圧値(例えば、上述した図5に示した電圧Vs/2、-Vs/2、Vsa)を除いて、図5と同じである。図1-図5で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。 FIG. 8 shows an outline of the PDP 10 in another embodiment. FIG. 8 shows the state of the electrodes Xb, Xp3, Yb, Yp3, AE and the partition wall BR as viewed from the image display surface side (upper side in FIG. 1). In this embodiment, the shape of the protruding electrodes Xp3 and Yp3 is different from the shape of the protruding electrodes Xp and Yp shown in FIGS. Other configurations are the same as those of the embodiment described with reference to FIGS. The discharge operation for displaying an image on the PDP 10 is the same as that in FIG. 5 except for voltage values (for example, the voltages Vs / 2, −Vs / 2, and Vsa shown in FIG. 5 described above). The same elements as those described in FIGS. 1 to 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 突起電極Xp3、Yp3は、先端が面取りされた形状に形成されている。すなわち、突起電極Xp3、Yp3は、先端に面取りされた面取り部TAを有している。例えば、表示列領域RA内で互いの先端が隣接する突起電極Xp3(またはYp3)では、一方の突起電極Xp3(またはYp3)の面取り部TAは、他方の突起電極Xp3(またはYp3)の面取り部TAに対向している。すなわち、互いに異なるバス電極対BEpに設けられ、かつ、表示列領域RA内で互いに隣接する突起電極Xp3(またはYp3)では、一方の突起電極Xp3(またはYp3)の面取り部TAは、他方の突起電極Xp3(またはYp3)の面取り部TAに対向している。 The protruding electrodes Xp3 and Yp3 are formed in a chamfered tip. That is, the protruding electrodes Xp3 and Yp3 have a chamfered portion TA chamfered at the tip. For example, in the projection electrode Xp3 (or Yp3) whose tips are adjacent to each other in the display row region RA, the chamfered portion TA of one projection electrode Xp3 (or Yp3) is the chamfered portion of the other projection electrode Xp3 (or Yp3). Opposite TA. That is, in the protruding electrodes Xp3 (or Yp3) that are provided on different bus electrode pairs BEp and are adjacent to each other in the display row region RA, the chamfered portion TA of one protruding electrode Xp3 (or Yp3) is the other protruding Opposite the chamfer TA of the electrode Xp3 (or Yp3).
 これにより、この実施形態では、上述した図1-図5で説明した実施形態に比べて、互いに隣接する突起電極Xp3間の最短距離S1および突起電極Yp3間の最短距離S1を大きくできる。したがって、この実施形態では、表示列領域RA内で互いに隣接するセルC1の一方のセルC1の電極XE、YE間でサステイン放電を発生させる際に、一方のセルC1の電極XE(またはYE)と他方のセルC1の電極YE(またはXE)との間で誤放電が発生することを確実に防止できる。以上、この実施形態においても、上述した図1-図5で説明した実施形態と同様の効果を得ることができる。 Accordingly, in this embodiment, the shortest distance S1 between the adjacent projecting electrodes Xp3 and the shortest distance S1 between the projecting electrodes Yp3 can be increased as compared with the embodiment described with reference to FIGS. Therefore, in this embodiment, when the sustain discharge is generated between the electrodes XE and YE of one cell C1 of the cells C1 adjacent to each other in the display column region RA, the electrode XE (or YE) of one cell C1 and It is possible to reliably prevent erroneous discharge from occurring between the electrode YE (or XE) of the other cell C1. As described above, also in this embodiment, the same effects as those of the embodiment described with reference to FIGS. 1 to 5 can be obtained.
 図9は、別の実施形態におけるPDP10の概要を示している。なお、図9は、画像表示面側(図1の上側)から見た電極Xb、Xp3、Yb、Yp3、AEおよび隔壁BRの状態を示している。この実施形態では、突起電極Xp3、Yp3の先端の位置が上述した図8に示した構成と相違している。その他の構成は、図8で説明した実施形態と同じである。また、PDP10に画像を表示するための放電動作は、電圧値(例えば、上述した図5に示した電圧Vs/2、-Vs/2、Vsa)を除いて、図5と同じである。図1-図5および図8で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。 FIG. 9 shows an outline of the PDP 10 in another embodiment. FIG. 9 shows the state of the electrodes Xb, Xp3, Yb, Yp3, AE and the partition wall BR as viewed from the image display surface side (upper side in FIG. 1). In this embodiment, the positions of the tips of the protruding electrodes Xp3 and Yp3 are different from the configuration shown in FIG. 8 described above. Other configurations are the same as those of the embodiment described with reference to FIG. The discharge operation for displaying an image on the PDP 10 is the same as that in FIG. 5 except for voltage values (for example, the voltages Vs / 2, −Vs / 2, and Vsa shown in FIG. 5 described above). The same elements as those described in FIGS. 1 to 5 and 8 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 表示列領域RA内で互いの先端TP1、TP2が隣接する突起電極Xp3(またはYp3)では、一方の突起電極Xp3(またはYp3)の先端TP1は、他方の突起電極Xp3(またはYp3)の先端TP2より、他方の突起電極Xp3(またはYp3)が接続されるバス電極Xb(またはYb)側に位置している。すなわち、互いに異なるバス電極対BEpに設けられ、かつ、表示列領域RA内で互いに隣接する突起電極Xp3(またはYp3)では、一方の突起電極Xp3(またはYp3)の先端TP1は、他方の突起電極Xp3(またはYp3)の先端TP2より、他方の突起電極Xp3(またはYp3)が接続されるバス電極Xb(またはYb)側に位置している。 In the projection electrode Xp3 (or Yp3) where the tips TP1 and TP2 are adjacent to each other in the display row region RA, the tip TP1 of one projection electrode Xp3 (or Yp3) is the tip TP2 of the other projection electrode Xp3 (or Yp3). Therefore, it is located on the bus electrode Xb (or Yb) side to which the other protruding electrode Xp3 (or Yp3) is connected. That is, in the protruding electrodes Xp3 (or Yp3) that are provided on different bus electrode pairs BEp and are adjacent to each other in the display row region RA, the tip TP1 of one protruding electrode Xp3 (or Yp3) is the other protruding electrode. It is located on the bus electrode Xb (or Yb) side to which the other protruding electrode Xp3 (or Yp3) is connected from the tip TP2 of Xp3 (or Yp3).
 これにより、この実施形態では、上述した図8の構成に比べて、互いに隣接するセルC1間に形成される非発光領域を小さくでき、画像の輝度を高くできる。換言すれば、この実施形態では、互いに対をなす突起電極Xp3、Yp3を含む発光領域(図の破線で囲んだ領域、セルC1)を大きくでき、画像の輝度を高くできる。 Thereby, in this embodiment, the non-light emitting area formed between the cells C1 adjacent to each other can be reduced and the luminance of the image can be increased as compared with the configuration of FIG. 8 described above. In other words, in this embodiment, the light emitting region (the region surrounded by the broken line in the figure, cell C1) including the protruding electrodes Xp3 and Yp3 that are paired with each other can be increased, and the luminance of the image can be increased.
 なお、各突起電極Xp3、Yp3の面取り部TAは、表示列領域RA内で互いに隣接する突起電極Xp3間(および突起電極Yp3間)の距離S1が放電ギャップDGを形成するバス電極Xb、Yb間の距離S2より大きくなるように形成されている。これにより、この実施形態では、表示列領域RA内で互いに隣接するセルC1の一方のセルC1の電極XE、YE間でサステイン放電を発生させる際に、一方のセルC1の電極XE(またはYE)と他方のセルC1の電極YE(またはXE)との間で誤放電が発生することを防止できる。以上、この実施形態においても、上述した図1-図5および図8で説明した実施形態と同様の効果を得ることができる。 Note that the chamfered portion TA of each protruding electrode Xp3, Yp3 is between the bus electrodes Xb, Yb where the distance S1 between the protruding electrodes Xp3 adjacent to each other (and between the protruding electrodes Yp3) in the display row region RA forms the discharge gap DG. It is formed to be larger than the distance S2. Thus, in this embodiment, when a sustain discharge is generated between the electrodes XE and YE of one cell C1 of the cells C1 adjacent to each other in the display column region RA, the electrode XE (or YE) of one cell C1 is generated. And erroneous discharge between the electrode YE (or XE) of the other cell C1 can be prevented. As described above, also in this embodiment, the same effects as those of the embodiment described with reference to FIGS. 1 to 5 and FIG. 8 can be obtained.
 図10は、別の実施形態におけるPDP10の概要を示している。なお、図10は、画像表示面側(図1の上側)から見た電極Xb、Xp、Yb、Yp、AEおよび隔壁BRの状態を示している。この実施形態では、バス電極Xb、Ybの並び順およびアドレス電極AEの配置が上述した図1-図2に示した構成と相違している。その他の構成は、図1-図2に示した構成と同じである。図1-図2で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。 FIG. 10 shows an outline of the PDP 10 in another embodiment. 10 shows the state of the electrodes Xb, Xp, Yb, Yp, AE and the partition wall BR as viewed from the image display surface side (upper side in FIG. 1). In this embodiment, the arrangement order of the bus electrodes Xb and Yb and the arrangement of the address electrodes AE are different from the configuration shown in FIGS. Other configurations are the same as those shown in FIGS. The same elements as those described in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 図の例では、電極XE(od)およびYE(od)は、奇数番目の表示ラインに対応する維持電極XEおよび走査電極YEをそれぞれ示し、電極XE(ev)およびYE(ev)は、偶数番目の表示ラインに対応する維持電極XEおよび走査電極YEをそれぞれ示している。なお、以下、奇数および偶数を区別しない場合等、電極XE(od)、XE(ev)を電極XE(あるいは維持電極XE)とも称し、電極YE(od)、YE(ev)を電極YE(あるいは走査電極YE)とも称する。 In the illustrated example, electrodes XE (od) and YE (od) indicate sustain electrodes XE and scan electrodes YE corresponding to odd-numbered display lines, respectively, and electrodes XE (ev) and YE (ev) are even-numbered. The sustain electrode XE and the scan electrode YE corresponding to the display line are respectively shown. In the following description, when the odd and even numbers are not distinguished, the electrodes XE (od) and XE (ev) are also referred to as electrodes XE (or sustain electrodes XE), and the electrodes YE (od) and YE (ev) are referred to as electrodes YE (or Also referred to as scanning electrode YE).
 互いに隣接するバス電極対BEpは、一方のバス電極対BEpのバス電極Xbと、他方のバス電極対BEpのバス電極Ybとが隣接するように配置されている。すなわち、奇数番目の表示ラインの維持電極XE(od)は、偶数番目の表示ラインの走査電極YE(ev)に隣接し、奇数番目の表示ラインの走査電極YE(od)は、偶数番目の表示ラインの維持電極XE(ev)に隣接している。 The bus electrode pairs BEp adjacent to each other are arranged such that the bus electrode Xb of one bus electrode pair BEp and the bus electrode Yb of the other bus electrode pair BEp are adjacent to each other. That is, the sustain electrode XE (od) of the odd display line is adjacent to the scan electrode YE (ev) of the even display line, and the scan electrode YE (od) of the odd display line is the even display. Adjacent to the sustain electrode XE (ev) of the line.
 このため、各表示列領域RAでは、互いに隣接するセルC1の一方のセルC1の突起電極Xpおよび他方のセルC1の突起電極Ypは、第1方向D1で互いの距離を確保するために、表示列領域RAを形成する一対の隔壁BRの一方および他方にそれぞれ隣接して配置されている。すなわち、互いに異なるバス電極対BEpに設けられ、表示列領域RA内で互いに隣接する突起電極XpまたはYpは、表示列領域RAを形成する一対の隔壁BRの一方および他方にそれぞれ隣接して配置されている。 Therefore, in each display row region RA, the protruding electrode Xp of one cell C1 and the protruding electrode Yp of the other cell C1 of the cells C1 adjacent to each other are displayed in order to secure a mutual distance in the first direction D1. Arranged adjacent to one and the other of the pair of partition walls BR forming the row region RA. That is, the protruding electrodes Xp or Yp that are provided on different bus electrode pairs BEp and are adjacent to each other in the display column region RA are disposed adjacent to one and the other of the pair of partition walls BR forming the display column region RA. ing.
 例えば、表示列領域RA内では、突起電極Xp、Ypは、互いに隣接する突起電極Xp、Yp間の最短距離S1が放電ギャップDGを形成するバス電極Xb、Yb間の距離S2より大きくなるように配置されている。例えば、突起電極Xp間(または突起電極Yp間)の最短距離S1は、200μm程度であり、バス電極Xb、Yb間の距離S2は、100μm程度である。これにより、この実施形態では、表示列領域RA内で互いに隣接するセルC1の一方のセルC1の電極XE、YE間でサステイン放電を発生させる際に、一方のセルC1の維持電極XE(突起電極Xp)と他方のセルC1の走査電極YE(突起電極Yp)との間で誤放電が発生することを防止できる。 For example, in the display row region RA, the projecting electrodes Xp and Yp are such that the shortest distance S1 between the projecting electrodes Xp and Yp adjacent to each other is larger than the distance S2 between the bus electrodes Xb and Yb forming the discharge gap DG. Has been placed. For example, the shortest distance S1 between the protruding electrodes Xp (or between the protruding electrodes Yp) is about 200 μm, and the distance S2 between the bus electrodes Xb and Yb is about 100 μm. Thereby, in this embodiment, when sustain discharge is generated between the electrodes XE and YE of one cell C1 of the cells C1 adjacent to each other in the display column region RA, the sustain electrode XE (projection electrode) of one cell C1 is generated. Xp) and the scan electrode YE (projection electrode Yp) of the other cell C1 can be prevented from being erroneously discharged.
 また、この実施形態では、表示列領域RA内で互いに隣接するセルC1の突起電極Xp、Yp間の距離が主に第1方向D1で確保されるため、互いに隣接するセルC1間の第2方向D2の距離を小さくできる。すなわち、この実施形態では、互いに隣接するセルC1間に形成される非発光領域を小さくでき、画像の輝度を高くできる。換言すれば、この実施形態では、互いに対をなす突起電極Xp、Ypを含む発光領域(セルC1)を大きくでき、画像の輝度を高くできる。特に、この実施形態では、誤放電を防止しつつ、画像の輝度を高くできる。 In this embodiment, since the distance between the protruding electrodes Xp and Yp of the cells C1 adjacent to each other in the display row region RA is mainly secured in the first direction D1, the second direction between the cells C1 adjacent to each other. The distance D2 can be reduced. That is, in this embodiment, the non-light emitting area formed between the adjacent cells C1 can be reduced, and the brightness of the image can be increased. In other words, in this embodiment, the light emitting region (cell C1) including the protruding electrodes Xp and Yp paired with each other can be increased, and the luminance of the image can be increased. In particular, in this embodiment, the luminance of the image can be increased while preventing erroneous discharge.
 図の例では、アドレス電極AEは、各セルC1の突起電極Xp、Yp間を通って第2方向D2に延在し、突起電極Ypに隣接して配置されている。なお、アドレス電極AEは、画像表示面側から見た場合、一部が突起電極Ypと重なるように配置されてもよい。また、アドレス電極AEは、上述した図1で説明したように、ガラス基材RS上に設けられている。すなわち、アドレス電極AEは、図1に示した誘電体層DL1とガラス基材RSとの間に設けられ、第2方向D2に延在し、突起電極Xp、Ypの一方の突起電極Ypに隣接して配置されている。 In the example shown in the figure, the address electrode AE extends between the protruding electrodes Xp and Yp of each cell C1 in the second direction D2 and is disposed adjacent to the protruding electrode Yp. Note that the address electrode AE may be arranged so that a part thereof overlaps the protruding electrode Yp when viewed from the image display surface side. Further, the address electrode AE is provided on the glass substrate RS as described with reference to FIG. That is, the address electrode AE is provided between the dielectric layer DL1 shown in FIG. 1 and the glass substrate RS, extends in the second direction D2, and is adjacent to one of the protruding electrodes Yp of the protruding electrodes Xp and Yp. Are arranged.
 この実施形態では、アドレス電極AEと突起電極Ypとが隣接しているため、アドレス電極AEおよび突起電極Yp間の放電開始電圧を低くでき、アドレス電極AEを駆動するための回路(例えば、後述する図11のドライバADRV)の消費電力を小さくできる。 In this embodiment, since the address electrode AE and the protruding electrode Yp are adjacent to each other, the discharge start voltage between the address electrode AE and the protruding electrode Yp can be lowered, and a circuit for driving the address electrode AE (for example, described later) The power consumption of the driver ADRV in FIG. 11 can be reduced.
 図11は、図10に示したPDP10を駆動するための回路部62の概要を示している。回路部62は、上述した図4に示した回路部60のXドライバXDRVおよび制御部CNTの代わりにXドライバXDRV2および制御部CNT2がそれぞれ設けられている。その他の構成は、図4に示した回路部60と同じである。図4で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。また、図10に示したPDP10を用いて構成されたPDP装置は、図4に示した回路部60の代わりに回路部62が設けられる以外、上述した図3の構成と同じである。 FIG. 11 shows an outline of the circuit unit 62 for driving the PDP 10 shown in FIG. The circuit unit 62 is provided with an X driver XDRV2 and a control unit CNT2 in place of the X driver XDRV and the control unit CNT of the circuit unit 60 shown in FIG. 4 described above. Other configurations are the same as those of the circuit unit 60 shown in FIG. The same elements as those described in FIG. 4 are denoted by the same reference numerals, and detailed description thereof will be omitted. Further, the PDP device configured using the PDP 10 shown in FIG. 10 is the same as the configuration of FIG. 3 described above except that the circuit unit 62 is provided instead of the circuit unit 60 shown in FIG.
 XドライバXDRV2は、例えば、後述する図12に示すように、アドレス期間ADRに、奇数番目の表示ラインと偶数番目の表示ラインとに分けてバイアス電圧Vbxをバス電極Xb(維持電極XE)に印加する。XドライバXDRV2のその他の動作は、上述した図4に示したXドライバXDRVと同じである。制御部CNT2は、例えば、後述する図12に示すように、奇数番目の表示ラインと偶数番目の表示ラインとに分けて点灯させるセルを選択するように、ドライバXDRV2、YDRV、ADRVの動作を制御する。制御部CNT2のその他の動作は、上述した図4に示した制御部CNTと同じである。 For example, as shown in FIG. 12 to be described later, the X driver XDRV2 applies the bias voltage Vbx to the bus electrode Xb (sustain electrode XE) in the address period ADR separately for the odd-numbered display lines and the even-numbered display lines. To do. Other operations of the X driver XDRV2 are the same as those of the X driver XDRV shown in FIG. For example, as shown in FIG. 12 to be described later, the control unit CNT2 controls the operations of the drivers XDRV2, YDRV, and ADRV so as to select the cells to be lit in the odd-numbered display lines and the even-numbered display lines. To do. Other operations of the control unit CNT2 are the same as those of the control unit CNT shown in FIG. 4 described above.
 図12は、図10に示したPDP10に画像を表示するためのサブフィールドの放電動作の一例を示している。この実施形態の放電動作は、アドレス期間ADRの波形が上述した図5に示した波形と相違している。その他の期間(リセット期間RST、サステイン期間SUS)の放電動作は、図5に示した放電動作と同じである。図5で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。図中の星印は、放電の発生を示している。 FIG. 12 shows an example of the subfield discharge operation for displaying an image on the PDP 10 shown in FIG. In the discharge operation of this embodiment, the waveform of the address period ADR is different from the waveform shown in FIG. The discharge operation in other periods (reset period RST, sustain period SUS) is the same as the discharge operation shown in FIG. The same elements as those described in FIG. 5 are denoted by the same reference numerals, and detailed description thereof will be omitted. The star in the figure indicates the occurrence of discharge.
 アドレス期間ADRでは、先ず、奇数番目の表示ラインのセルを選択するため、バイアス電圧Vbxが奇数番目の表示ラインに対応する維持電極XE(od)に印加され、接地電圧GNDが偶数番目の表示ラインに対応する維持電極XE(ev)に印加される。例えば、アドレス放電時に陽極となるバイアス電圧Vbxが維持電極XE(od)に印加され、アドレス放電時に陰極となるスキャンパルス(電圧-Vs/2)が走査電極YE(od)に印加され、アドレス放電時に陽極となるアドレスパルス(電圧Vsa)が、点灯するセルに対応するアドレス電極AEに印加される(図12(h))。 In the address period ADR, first, in order to select the cells of the odd-numbered display lines, the bias voltage Vbx is applied to the sustain electrodes XE (od) corresponding to the odd-numbered display lines, and the ground voltage GND is set to the even-numbered display lines. Is applied to the sustain electrode XE (ev) corresponding to. For example, a bias voltage Vbx serving as an anode during address discharge is applied to the sustain electrode XE (od), and a scan pulse (voltage −Vs / 2) serving as a cathode during address discharge is applied to the scan electrode YE (od). An address pulse (voltage Vsa) that sometimes serves as an anode is applied to the address electrode AE corresponding to the cell to be lit (FIG. 12 (h)).
 スキャンパルスとアドレスパルスにより選択されたセルでは、走査電極YE(od)とアドレス電極AE間で一時的に放電が発生(アドレス放電)し、この放電をトリガにして、維持電極XE(od)と走査電極YE(od)間で一時的に放電(アドレス放電)が発生する。これにより、サステイン期間SUSに点灯させる偶数番目の表示ラインのセルが選択される。 In the cell selected by the scan pulse and the address pulse, a discharge is temporarily generated (address discharge) between the scan electrode YE (od) and the address electrode AE, and this discharge is used as a trigger to generate the sustain electrode XE (od). Discharge (address discharge) is temporarily generated between the scan electrodes YE (od). Thereby, the cells of the even-numbered display lines that are lit in the sustain period SUS are selected.
 なお、バイアス電圧Vbxより低い接地電圧GNDが維持電極XE(ev)に印加されているため、維持電極XE(ev)と走査電極YE(od)間の電圧は、維持電極XE(od)と走査電極YE(od)間の電圧より小さい。これにより、この実施形態では、走査電極YE(od)とアドレス電極AE間で放電が発生した祭に、維持電極XE(ev)と走査電極YE(od)間で誤放電が発生することを防止できる。 Since the ground voltage GND lower than the bias voltage Vbx is applied to the sustain electrode XE (ev), the voltage between the sustain electrode XE (ev) and the scan electrode YE (od) is scanned with the sustain electrode XE (od). It is smaller than the voltage between the electrodes YE (od). Accordingly, in this embodiment, it is possible to prevent erroneous discharge from occurring between the sustain electrode XE (ev) and the scan electrode YE (od) when the discharge is generated between the scan electrode YE (od) and the address electrode AE. it can.
 また、他の奇数番目の表示ラインのセルを選択する際、選択対象以外の奇数番目の表示ラインの走査電極YE(od)には、例えば、電圧-Vs/2と電圧Vscとの差電圧であるバイアス電圧Vbyが印加されている。なお、アドレス電極AEの波形に示される2回目のアドレスパルスは、他の奇数番目の表示ラインのセルを選択するために印加される(図12(i))。 Further, when selecting the cells of the other odd-numbered display lines, the scan electrode YE (od) of the odd-numbered display lines other than the selection target is applied with, for example, a difference voltage between the voltage −Vs / 2 and the voltage Vsc. A certain bias voltage Vby is applied. Note that the second address pulse shown in the waveform of the address electrode AE is applied to select cells of other odd-numbered display lines (FIG. 12 (i)).
 次に、偶数番目の表示ラインのセルを選択するため、バイアス電圧Vbxが維持電極XE(ev)に印加され、接地電圧GNDが維持電極XE(od)に印加される。例えば、アドレス放電時に陽極となるバイアス電圧Vbxが維持電極XE(ev)に印加され、アドレス放電時に陰極となるスキャンパルス(電圧-Vs/2)が走査電極YE(ev)に印加され、アドレス放電時に陽極となるアドレスパルス(電圧Vsa)が、点灯するセルに対応するアドレス電極AEに印加される(図12(j))。 Next, in order to select cells of even-numbered display lines, the bias voltage Vbx is applied to the sustain electrode XE (ev), and the ground voltage GND is applied to the sustain electrode XE (od). For example, a bias voltage Vbx serving as an anode at the time of address discharge is applied to the sustain electrode XE (ev), and a scan pulse (voltage −Vs / 2) serving as a cathode at the time of address discharge is applied to the scan electrode YE (ev). An address pulse (voltage Vsa) that sometimes becomes the anode is applied to the address electrode AE corresponding to the cell to be lit (FIG. 12 (j)).
 スキャンパルスとアドレスパルスにより選択されたセルでは、走査電極YE(ev)とアドレス電極AE間で一時的に放電が発生(アドレス放電)し、この放電をトリガにして、維持電極XE(ev)と走査電極YE(ev)間で一時的に放電(アドレス放電)が発生する。これにより、サステイン期間SUSに点灯させる奇数番目の表示ラインのセルが選択される。なお、接地電圧GNDが維持電極XE(od)に印加されているため、走査電極YE(ev)とアドレス電極AE間で放電が発生しても、維持電極XE(od)と走査電極YE(ev)間で誤放電は、発生しない。 In the cell selected by the scan pulse and the address pulse, a discharge is temporarily generated (address discharge) between the scan electrode YE (ev) and the address electrode AE, and this discharge is used as a trigger to generate the sustain electrode XE (ev) and Discharge (address discharge) is temporarily generated between the scan electrodes YE (ev). Thereby, the cells of the odd-numbered display lines that are turned on in the sustain period SUS are selected. Since the ground voltage GND is applied to the sustain electrode XE (od), even if a discharge occurs between the scan electrode YE (ev) and the address electrode AE, the sustain electrode XE (od) and the scan electrode YE (ev) ) No erroneous discharge occurs between.
 また、他の偶数番目の表示ラインのセルを選択する際、選択対象以外の偶数番目の表示ラインの走査電極YE(ev)には、例えば、バイアス電圧Vbyが印加されている。なお、アドレス電極AEの波形に示される最後のアドレスパルスは、他の偶数番目の表示ラインのセルを選択するために印加される(図12(k))。なお、奇数番目および偶数番目の表示ラインに拘わらず、選択対象以外の表示ラインの走査電極YEに、バイアス電圧Vbyが印加されてもよい。また、セルの選択順序を奇数番目の表示ラインと偶数番目の表示ラインとで逆にしてもよい。例えば、偶数番目の表示ラインのセルが選択された後に、奇数番目の表示ラインのセルが選択されてもよい。 Further, when selecting cells of other even-numbered display lines, for example, a bias voltage Vby is applied to the scan electrodes YE (ev) of even-numbered display lines other than the selection target. Note that the last address pulse shown in the waveform of the address electrode AE is applied to select cells of other even-numbered display lines (FIG. 12 (k)). Note that the bias voltage Vby may be applied to the scanning electrodes YE of the display lines other than the selection target regardless of the odd-numbered and even-numbered display lines. The cell selection order may be reversed between the odd-numbered display lines and the even-numbered display lines. For example, after cells of even-numbered display lines are selected, cells of odd-numbered display lines may be selected.
 以上、この実施形態においても、上述した図1-図5で説明した実施形態と同様の効果を得ることができる。さらに、この実施形態では、アドレス電極AEは、上述した図7に示したアドレスパッドAp等を設けることなく、突起電極Ypに隣接して配置されている。この結果、この実施形態では、アドレス電極AEを駆動するための回路の消費電力を小さくできる。 As described above, also in this embodiment, the same effect as that of the embodiment described with reference to FIGS. 1 to 5 can be obtained. Further, in this embodiment, the address electrode AE is disposed adjacent to the protruding electrode Yp without providing the address pad Ap or the like shown in FIG. As a result, in this embodiment, the power consumption of the circuit for driving the address electrode AE can be reduced.
 図13は、別の実施形態におけるPDP10の概要を示している。なお、図13は、画像表示面側(図1の上側)から見た電極Xb、Xp、Yb、Yp、AEおよび隔壁BRの状態を示している。この実施形態では、突起電極Ypおよびアドレス電極AEの配置が上述した図10に示した構成と相違している。その他の構成は、図10-図11で説明した実施形態と同じである。また、PDP10に画像を表示するための放電動作は、電圧値(例えば、上述した図5に示した電圧Vs/2、-Vs/2、Vsa)を除いて、図12と同じである。図1-図5、図10-図12で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。 FIG. 13 shows an outline of the PDP 10 in another embodiment. FIG. 13 shows the state of the electrodes Xb, Xp, Yb, Yp, AE and the partition wall BR as viewed from the image display surface side (upper side in FIG. 1). In this embodiment, the arrangement of the protruding electrodes Yp and the address electrodes AE is different from the configuration shown in FIG. 10 described above. Other configurations are the same as those of the embodiment described with reference to FIGS. The discharge operation for displaying an image on the PDP 10 is the same as that in FIG. 12 except for the voltage values (for example, the voltages Vs / 2, −Vs / 2, and Vsa shown in FIG. 5 described above). The same elements as those described in FIGS. 1 to 5 and 10 to 12 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 アドレス電極AEは、隔壁BRと突起電極Ypとの間を通って第2方向D2に延在し、突起電極Ypに隣接して配置されている。なお、突起電極Ypは、画像表示面側から見た場合、一部がアドレス電極AEと重なるように配置されてもよい。この実施形態では、アドレス電極AEと突起電極Ypとが隣接しているため、アドレス電極AEおよび突起電極Yp間の放電開始電圧を低くでき、アドレス電極AEを駆動するための回路(例えば、上述した図11のドライバADRV)の消費電力を小さくできる。以上、この実施形態においても、上述した図10-図12で説明した実施形態と同様の効果を得ることができる。 The address electrode AE passes between the partition wall BR and the protruding electrode Yp, extends in the second direction D2, and is disposed adjacent to the protruding electrode Yp. Note that the protruding electrode Yp may be arranged so that a part thereof overlaps the address electrode AE when viewed from the image display surface side. In this embodiment, since the address electrode AE and the protruding electrode Yp are adjacent to each other, the discharge start voltage between the address electrode AE and the protruding electrode Yp can be lowered, and a circuit for driving the address electrode AE (for example, as described above) The power consumption of the driver ADRV in FIG. 11 can be reduced. As described above, also in this embodiment, the same effect as that of the embodiment described with reference to FIGS. 10 to 12 can be obtained.
 図14は、別の実施形態におけるPDP10の要部を示している。この実施形態では、アドレス電極AEが前面基板部12に設けられている点が上述した図13で説明した実施形態と相違している。また、この実施形態の背面基板部14は、上述した図1に示した構成から誘電体層DL2が省かれて構成されている。その他の構成は、図13で説明した実施形態と同じである。すなわち、画像表示面側(図14の上側)から見た電極Xb、Xp、Yb、Yp、AEおよび隔壁BRの状態は、上述した図13と同じである。 FIG. 14 shows a main part of the PDP 10 in another embodiment. This embodiment is different from the embodiment described with reference to FIG. 13 described above in that the address electrodes AE are provided on the front substrate portion 12. Further, the rear substrate portion 14 of this embodiment is configured by omitting the dielectric layer DL2 from the configuration shown in FIG. 1 described above. Other configurations are the same as those of the embodiment described with reference to FIG. That is, the state of the electrodes Xb, Xp, Yb, Yp, AE and the partition wall BR viewed from the image display surface side (upper side in FIG. 14) is the same as that in FIG.
 また、PDP10に画像を表示するための放電動作は、電圧値(例えば、上述した図5に示した電圧Vs/2、-Vs/2、Vsa)を除いて、図12と同じである。図1-図5、図10-図13で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。 The discharge operation for displaying an image on the PDP 10 is the same as that in FIG. 12 except for the voltage values (for example, the voltages Vs / 2, −Vs / 2, and Vsa shown in FIG. 5 described above). The same elements as those described in FIGS. 1 to 5 and 10 to 13 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 アドレス電極AEは、誘電体層DL1上(図では下側)に、第2方向D2に延在して設けられている。また、アドレス電極AEは、画像表示面側(図14の上側)から見た場合、上述した図13に示したように、隔壁BRと突起電極Ypとの間に配置されている。なお、アドレス電極AEは、一部が隔壁BR上に配置されてもよい。また、突起電極Ypは、一部がアドレス電極AE上に配置されてもよい。 The address electrode AE is provided so as to extend in the second direction D2 on the dielectric layer DL1 (lower side in the figure). Further, when viewed from the image display surface side (upper side in FIG. 14), the address electrode AE is disposed between the partition wall BR and the protruding electrode Yp as shown in FIG. Note that a part of the address electrode AE may be disposed on the partition wall BR. In addition, a part of the protruding electrode Yp may be disposed on the address electrode AE.
 アドレス電極AEおよび誘電体層DL1は、保護層PLに覆われている。例えば、この実施形態では、誘電体層DL1は、CVD法により形成された二酸化シリコン膜等の絶縁膜である。放電空間DSを介して前面基板部12に対向する背面基板部14は、ガラス基材RS上に、アドレス電極AEに沿って延在する隔壁BRを有している。すなわち、隔壁BRは、ガラス基材RSのガラス基材FSに対向する面上に間隔を置いて配置され、第2方向D2に延在している。以上、この実施形態においても、上述した図13で説明した実施形態と同様の効果を得ることができる。 The address electrode AE and the dielectric layer DL1 are covered with a protective layer PL. For example, in this embodiment, the dielectric layer DL1 is an insulating film such as a silicon dioxide film formed by a CVD method. The rear substrate portion 14 facing the front substrate portion 12 through the discharge space DS has a partition wall BR extending along the address electrode AE on the glass base RS. That is, the barrier ribs BR are arranged on the surface of the glass substrate RS that faces the glass substrate FS at an interval, and extend in the second direction D2. As described above, also in this embodiment, the same effect as that of the embodiment described with reference to FIG. 13 described above can be obtained.
 なお、上述した実施形態では、1つの画素が、3つのセル(赤(R)、緑(G)、青(B))により構成される例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、1つの画素を4つ以上のセルにより構成してもよい。あるいは、1つの画素が、赤(R)、緑(G)、青(B)以外の色を発生するセルにより構成されてもよく、1つの画素が、赤(R)、緑(G)、青(B)以外の色を発生するセルを含んでもよい。 In the above-described embodiment, an example in which one pixel includes three cells (red (R), green (G), and blue (B)) has been described. The present invention is not limited to such an embodiment. For example, one pixel may be composed of four or more cells. Alternatively, one pixel may be composed of cells that generate colors other than red (R), green (G), and blue (B), and one pixel may be red (R), green (G), A cell that generates a color other than blue (B) may be included.
 上述した実施形態では、第2方向D2が、第1方向D1に直交する例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、第2方向D2は、第1方向D1と、ほぼ直角方向(例えば、90度±5度)に交差してもよい。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, the example in which the second direction D2 is orthogonal to the first direction D1 has been described. The present invention is not limited to such an embodiment. For example, the second direction D2 may intersect the first direction D1 in a substantially perpendicular direction (for example, 90 ° ± 5 °). Also in this case, the same effect as the above-described embodiment can be obtained.
 上述した図1-図9で説明した実施形態では、互いに隣接するバス電極対BEpが、一方のバス電極対BEpのバス電極Xbと、他方のバス電極対BEpのバス電極Xbとが隣接するように配置される例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、互いに隣接するバス電極対BEpは、一方のバス電極対BEpのバス電極Xbと、他方のバス電極対BEpのバス電極Ybとが隣接するように配置されてもよい。この場合にも、上述した図1-図9で説明した実施形態と同様の効果を得ることができる。 In the embodiment described with reference to FIGS. 1 to 9, the bus electrode pairs BEp adjacent to each other are adjacent to the bus electrode Xb of one bus electrode pair BEp and the bus electrode Xb of the other bus electrode pair BEp. An example to be arranged in is described. The present invention is not limited to such an embodiment. For example, the bus electrode pairs BEp adjacent to each other may be arranged such that the bus electrode Xb of one bus electrode pair BEp and the bus electrode Yb of the other bus electrode pair BEp are adjacent to each other. Also in this case, the same effect as the embodiment described with reference to FIGS. 1 to 9 can be obtained.
 上述した図1-図5、図7-図14で説明した実施形態では、突起電極Xp(Xp3)、Yp(Yp3)がITO膜等の可視光を透過する材料で形成される例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、突起電極Xp(Xp3)、Yp(Yp3)は、バス電極Xb、Ybと同じ材料(金属材料等)で、バス電極Xb、Ybと一体に形成されてもよい。この場合、電極XE、YEを形成するための工程を簡略化でき、製造コストを低減できる。この場合にも、上述した図1-図5、図7-図14で説明した実施形態と同様の効果を得ることができる。 In the embodiments described with reference to FIGS. 1 to 5 and FIGS. 7 to 14 described above, examples in which the protruding electrodes Xp (Xp3) and Yp (Yp3) are formed of a material that transmits visible light, such as an ITO film, have been described. . The present invention is not limited to such an embodiment. For example, the protruding electrodes Xp (Xp3) and Yp (Yp3) may be formed of the same material (metal material or the like) as the bus electrodes Xb and Yb and integrally formed with the bus electrodes Xb and Yb. In this case, the process for forming the electrodes XE and YE can be simplified, and the manufacturing cost can be reduced. Also in this case, the same effects as those of the embodiments described with reference to FIGS. 1 to 5 and FIGS. 7 to 14 can be obtained.
 上述した図1-図6、図8-図13で説明した実施形態では、アドレス電極AEがガラス基材RS上に設けられる例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、アドレス電極AEは、上述した図14に示したように、電極Xb、Xp、Yb、Ypを覆う誘電体層DL1上に設けられてもよい。この場合にも、上述した図1-図6、図8-図13で説明した実施形態と同様の効果を得ることができる。 In the embodiments described with reference to FIGS. 1 to 6 and FIGS. 8 to 13, the example in which the address electrode AE is provided on the glass substrate RS has been described. The present invention is not limited to such an embodiment. For example, the address electrode AE may be provided on the dielectric layer DL1 covering the electrodes Xb, Xp, Yb, Yp as shown in FIG. Also in this case, the same effects as those of the embodiments described with reference to FIGS. 1 to 6 and FIGS. 8 to 13 can be obtained.
 以上、本発明について詳細に説明してきたが、上記の実施形態およびその変形例は発明の一例に過ぎず、本発明はこれに限定されるものではない。本発明を逸脱しない範囲で変形可能であることは明らかである。 As described above, the present invention has been described in detail. However, the above-described embodiment and its modification are merely examples of the present invention, and the present invention is not limited thereto. Obviously, modifications can be made without departing from the scope of the present invention.
 本発明は、ディスプレイ装置に使用するプラズマディスプレイパネルに適用できる。 The present invention can be applied to a plasma display panel used in a display device.

Claims (11)

  1.  互いに対向する第1基板および第2基板と、
     前記第1基板の前記第2基板に対向する面上に間隔を置いて配置され、放電ギャップを挟んで第1方向に延在する第1および第2バス電極により構成される複数のバス電極対と、
     前記第2基板の前記第1基板に対向する面上に間隔を置いて配置され、前記第1方向と交差する第2方向に延在する複数の隔壁と、
     前記隔壁間に形成される表示列領域毎に、前記各バス電極対の前記第1および第2バス電極にそれぞれ設けられ、前記第1および第2バス電極から前記放電ギャップが形成される領域と反対側に前記第2方向に沿ってそれぞれ突出し、互いに異なる前記隔壁にそれぞれ隣接する第1および第2突起電極とを備え、
     互いに異なる前記バス電極対に設けられ、前記表示列領域内で互いに隣接する前記第1または第2突起電極は、前記表示列領域を形成する前記隔壁の一方および他方にそれぞれ隣接して配置されていることを特徴とするプラズマディスプレイパネル。
    A first substrate and a second substrate facing each other;
    A plurality of bus electrode pairs configured by first and second bus electrodes arranged on the surface of the first substrate facing the second substrate at an interval and extending in a first direction across a discharge gap. When,
    A plurality of barrier ribs arranged on the surface of the second substrate facing the first substrate at intervals and extending in a second direction intersecting the first direction;
    For each display column region formed between the barrier ribs, a region is provided on the first and second bus electrodes of each bus electrode pair, and the discharge gap is formed from the first and second bus electrodes. First and second protruding electrodes respectively protruding along the second direction on opposite sides and adjacent to the partition walls different from each other;
    The first or second projecting electrodes provided on the bus electrode pairs different from each other and adjacent to each other in the display column region are respectively disposed adjacent to one and the other of the partition walls forming the display column region. A plasma display panel.
  2.  請求項1記載のプラズマディスプレイパネルにおいて、
     前記表示列領域内では、前記第1または第2突起電極は、互いに異なる前記バス電極対に設けられた前記突起電極間の最短距離が、前記放電ギャップを形成する前記第1および第2バス電極間の距離より大きくなるように形成されていることを特徴とするプラズマディスプレイパネル。
    The plasma display panel according to claim 1, wherein
    In the display row region, the first and second bus electrodes are formed such that the shortest distance between the bump electrodes provided on the bus electrode pairs different from each other forms the discharge gap. A plasma display panel, wherein the plasma display panel is formed so as to be larger than a distance therebetween.
  3.  請求項1記載のプラズマディスプレイパネルにおいて、
     前記第1突起電極は、前記第1バス電極と一体に形成され、
     前記第2突起電極は、前記第2バス電極と一体に形成されていることを特徴とするプラズマディスプレイパネル。
    The plasma display panel according to claim 1, wherein
    The first protruding electrode is formed integrally with the first bus electrode,
    The plasma display panel, wherein the second protruding electrode is formed integrally with the second bus electrode.
  4.  請求項3記載のプラズマディスプレイパネルにおいて、
     前記第1および第2突起電極の少なくとも1つは、一部が前記隔壁上に位置していることを特徴とするプラズマディスプレイパネル。
    The plasma display panel according to claim 3, wherein
    A plasma display panel, wherein at least one of the first and second projecting electrodes is partially located on the partition wall.
  5.  請求項1記載のプラズマディスプレイパネルにおいて、
     互いに隣接する前記バス電極対は、一方のバス電極対の前記第1バス電極と、他方のバス電極対の前記第1バス電極とが隣接するように配置されていることを特徴とするプラズマディスプレイパネル。
    The plasma display panel according to claim 1, wherein
    The plasma electrode display, wherein the bus electrode pairs adjacent to each other are arranged such that the first bus electrode of one bus electrode pair and the first bus electrode of the other bus electrode pair are adjacent to each other. panel.
  6.  請求項1記載のプラズマディスプレイパネルにおいて、
     互いに隣接する前記バス電極対は、一方のバス電極対の前記第1バス電極と、他方のバス電極対の前記第2バス電極とが隣接するように配置されていることを特徴とするプラズマディスプレイパネル。
    The plasma display panel according to claim 1, wherein
    The bus electrode pairs adjacent to each other are arranged such that the first bus electrode of one bus electrode pair and the second bus electrode of the other bus electrode pair are adjacent to each other. panel.
  7.  請求項6記載のプラズマディスプレイパネルにおいて、
     前記第1基板上に設けられ、前記バス電極および前記突起電極を覆う誘電体層と、
     前記誘電体層と前記第2基板との間に設けられ、前記第2方向に延在し、前記第1および第2突起電極の一方の突起電極に隣接して配置されるアドレス電極を備えていることを特徴とするプラズマディスプレイパネル。
    The plasma display panel according to claim 6, wherein
    A dielectric layer provided on the first substrate and covering the bus electrode and the protruding electrode;
    An address electrode is provided between the dielectric layer and the second substrate, extends in the second direction, and is disposed adjacent to one of the first and second protruding electrodes. A plasma display panel.
  8.  請求項7記載のプラズマディスプレイパネルにおいて、
     前記アドレス電極は、前記誘電体層上に設けられ、前記隔壁と前記一方の突起電極との間に配置されていることを特徴とするプラズマディスプレイパネル。
    The plasma display panel according to claim 7, wherein
    The plasma display panel, wherein the address electrode is provided on the dielectric layer and is disposed between the partition wall and the one protruding electrode.
  9.  請求項1記載のプラズマディスプレイパネルにおいて、
     前記第2基板の前記第1基板に対向する面上に設けられ、前記第2方向に延在し、前記第1突起電極と前記第2突起電極との間に配置されるアドレス電極を備え、
     前記アドレス電極は、前記第1基板に垂直な方向から見て、前記第1および第2突起電極の一方の突起電極に向かって前記第1方向に突出するアドレスパッドを備えていることを特徴とするプラズマディスプレイパネル。
    The plasma display panel according to claim 1, wherein
    An address electrode provided on a surface of the second substrate facing the first substrate, extending in the second direction, and disposed between the first protruding electrode and the second protruding electrode;
    The address electrode includes an address pad that protrudes in the first direction toward one of the first and second protruding electrodes when viewed from a direction perpendicular to the first substrate. Plasma display panel.
  10.  請求項1記載のプラズマディスプレイパネルにおいて、
     前記第1および第2突起電極は、先端に面取りされた面取り部を備え、
     互いに異なる前記バス電極対に設けられ、前記表示列領域内で互いに隣接する前記第1または第2突起電極では、一方の突起電極の前記面取り部は、他方の突起電極の前記面取り部に対向していることを特徴とするプラズマディスプレイパネル。
    The plasma display panel according to claim 1, wherein
    The first and second protruding electrodes include a chamfered portion chamfered at the tip,
    In the first or second protruding electrode provided on the bus electrode pair different from each other and adjacent to each other in the display column region, the chamfered portion of one protruding electrode faces the chamfered portion of the other protruding electrode. A plasma display panel characterized by the above.
  11.  請求項10記載のプラズマディスプレイパネルにおいて、
     互いに異なる前記バス電極対に設けられ、前記表示列領域内で互いに隣接する前記第1または第2突起電極では、一方の突起電極の先端は、他方の突起電極の先端よりこの他方の突起電極が接続されるバス電極側に位置していることを特徴とするプラズマディスプレイパネル。
    The plasma display panel according to claim 10, wherein
    In the first or second protruding electrode provided on the bus electrode pair different from each other and adjacent to each other in the display column region, the tip of one protruding electrode is connected to the other protruding electrode from the tip of the other protruding electrode. A plasma display panel, which is located on the bus electrode side to be connected.
PCT/JP2008/000164 2008-02-06 2008-02-06 Plasma display panel WO2009098733A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/000164 WO2009098733A1 (en) 2008-02-06 2008-02-06 Plasma display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/000164 WO2009098733A1 (en) 2008-02-06 2008-02-06 Plasma display panel

Publications (1)

Publication Number Publication Date
WO2009098733A1 true WO2009098733A1 (en) 2009-08-13

Family

ID=40951822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/000164 WO2009098733A1 (en) 2008-02-06 2008-02-06 Plasma display panel

Country Status (1)

Country Link
WO (1) WO2009098733A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134031A (en) * 2000-10-25 2002-05-10 Matsushita Electric Ind Co Ltd Plasma display panel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134031A (en) * 2000-10-25 2002-05-10 Matsushita Electric Ind Co Ltd Plasma display panel

Similar Documents

Publication Publication Date Title
JPH11185634A (en) Surface discharge type plasma display panel
KR20100011284A (en) Plasma display panel
WO2009098733A1 (en) Plasma display panel
JP4561933B2 (en) Plasma display panel
JPWO2009034601A1 (en) Plasma display panel
JP5150632B2 (en) Plasma display panel driving method and plasma display device
JP4577452B2 (en) Plasma display panel
WO2009116116A1 (en) Plasma display device
JPWO2008120268A1 (en) Plasma display panel
WO2010010602A1 (en) Plasma display panel
US20060113920A1 (en) Plasma display panel and drive method thereof
WO2009153830A1 (en) Plasma display panel and plasma display device
JP4661981B2 (en) Plasma display panel and method for manufacturing plasma display panel
WO2009104220A1 (en) Plasma display unit
JP4579331B2 (en) Plasma display panel
JP3764897B2 (en) Driving method of plasma display panel
JP2003132798A (en) Plasma display panel
JPWO2008126147A1 (en) Plasma display panel
JP2010170758A (en) Plasma display panel
JP2006202627A (en) Plasma display panel
WO2009081448A1 (en) Method for driving plasma display panel, and plasma display unit
JP2009135004A (en) Plasma display panel
JP2005339945A (en) Plasma display panel apparatus
WO2009118792A1 (en) Plasma display device
JP2001216905A (en) Structure and drive method of discharge-type display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08710318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08710318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP