WO2009118792A1 - Plasma display device - Google Patents

Plasma display device Download PDF

Info

Publication number
WO2009118792A1
WO2009118792A1 PCT/JP2008/000799 JP2008000799W WO2009118792A1 WO 2009118792 A1 WO2009118792 A1 WO 2009118792A1 JP 2008000799 W JP2008000799 W JP 2008000799W WO 2009118792 A1 WO2009118792 A1 WO 2009118792A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
voltage
adjustment
address
plasma display
Prior art date
Application number
PCT/JP2008/000799
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木孝
高木彰浩
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2008/000799 priority Critical patent/WO2009118792A1/en
Publication of WO2009118792A1 publication Critical patent/WO2009118792A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature

Definitions

  • the present invention relates to a plasma display device.
  • the plasma display device has a plasma display panel (PDP) and a drive unit for driving the PDP.
  • a PDP is formed by bonding two glass substrates (a front glass substrate and a back glass substrate) to each other, and generates an image by generating discharge light in a space (discharge space) formed between the glass substrates. indicate.
  • the cells corresponding to the pixels in the image are self-luminous, and are coated with phosphors that generate red, green, and blue visible light in response to ultraviolet rays generated by discharge.
  • a field for displaying one screen is composed of a plurality of subfields.
  • the number of sustain discharges in the sustain period of the subfield is sequentially set to 2 n times (n is a positive integer).
  • the subfield used for displaying the image is selected according to the luminance of each color (red, green, and blue) of the image for each cell that generates red, green, and blue visible light. Thereby, a multi-tone color image is displayed.
  • the hue of an image displayed on the PDP is adjusted by reducing the number of gradations of a specific color. For example, when the red luminance is increased over the entire screen, the maximum number of sustain discharges generated in one field in cells that generate green and blue visible light is reduced compared to cells that generate red visible light. . In this case, the number of gradations of the color image decreases, and the luminance of the image decreases.
  • Patent Document 1 a technique for adjusting the hue of an image displayed on the PDP while maintaining the number of gradations of each color has been proposed (for example, see Patent Document 1).
  • the PDP of Patent Document 1 is synchronized with the pulse applied to the Y electrode during the sustain period on the address electrode of the cell corresponding to the low-luminance color in order to adjust the color of the image displayed on the PDP. Apply pulse at timing.
  • the X electrode and the Y electrode are arranged on the front glass substrate, and the address electrodes are arranged on the rear glass substrate.
  • a PDP in which three electrodes, that is, an X electrode, a Y electrode, and an address electrode are arranged on a front glass substrate has been proposed (see, for example, Patent Document 2).
  • the address electrode provided on the front glass substrate is disposed at a position overlapping the partition provided on the rear glass substrate.
  • the X electrode and the Y electrode are constituted by a bus electrode extending in a direction intersecting with the address electrode and a transparent electrode provided in each cell.
  • the transparent electrode of the Y electrode is disposed between the transparent electrode of the X electrode and the address electrode.
  • a transparent electrode of Y electrode is disposed between a transparent electrode of X electrode and an address electrode. Therefore, when a pulse is applied to the address electrode at a timing synchronized with the pulse applied to the Y electrode, the transparent electrode of the Y electrode may function as a shield for the electric field generated from the address electrode to the transparent electrode of the X electrode. is there. In this case, the electric field strength between the address electrode and the Y electrode and the X electrode cannot be efficiently increased, and there is a possibility that the discharge strength of the cell of a specific color cannot be increased.
  • An object of the present invention is to adjust the hue of an image displayed on a PDP in a state where the number of gradations of each color is maintained in a PDP device having a PDP in which three electrodes are provided on a front glass substrate.
  • the plasma display device has a plasma display panel (PDP) that displays a color image and a drive unit that drives the PDP.
  • the PDP has a first substrate and a second substrate that face each other through a discharge space.
  • the first substrate extends in the first direction and is spaced apart from each other, and a plurality of address electrodes extending in a second direction intersecting the first direction. have.
  • the second substrate has a plurality of partition walls extending in the second direction and arranged at intervals.
  • the cell is formed in a region surrounded by the first and second electrodes that make a pair with each other and the partition walls adjacent to each other.
  • the first and second electrodes protrude from the first electrode toward the second electrode for each cell and are adjacent to one of the partition walls constituting the cell, and from the second electrode toward the first electrode.
  • a second projecting portion disposed between the other of the partition walls constituting the projecting cell and the first projecting portion.
  • the address electrode is disposed between the other of the partition walls constituting the cell and the second protrusion.
  • the drive unit has a first drive circuit, a second drive circuit, and a third drive circuit.
  • the first driving circuit alternately applies a first voltage and a second voltage lower than the first voltage to the first electrode during a sustain period in which a sustain discharge is generated between the first and second electrodes of the cell.
  • the two-drive circuit applies a predetermined voltage having a voltage value between the first voltage and the second voltage to the second electrode during the sustain period.
  • the third driving circuit applies an adjustment voltage higher than a predetermined voltage to the address electrode in at least one of the periods in which the second voltage is applied to the first electrode during the sustain period.
  • the hue of an image displayed on the PDP can be adjusted while maintaining the number of gradations of each color.
  • FIG. 3 is a diagram illustrating an example of a subfield discharging operation for displaying an image on the PDP illustrated in FIG. 2. It is a figure which shows another example of the discharge operation
  • FIG. 1 shows an embodiment of the present invention.
  • a plasma display device (hereinafter also referred to as a PDP device) includes a plasma display panel 10 having a square plate shape (hereinafter also referred to as a PDP), an optical filter 20 provided on the image display surface 16 side (light output side) of the PDP 10, A front housing 30 disposed on the image display surface 16 side of the PDP 10, a rear housing 40 and a base chassis 50 disposed on the back surface 18 side of the PDP 10, and attached to the rear housing 40 side of the base chassis 50 to drive the PDP 10.
  • the PDP 10 includes a front substrate portion 12 (first substrate) that forms the image display surface 16 and a rear substrate portion 14 (second substrate) that faces the front substrate portion 12.
  • a discharge space (cell) (not shown) is formed between the front substrate portion 12 and the rear substrate portion 14.
  • the front substrate unit 12 and the back substrate unit 14 are formed of, for example, a glass substrate.
  • the optical filter 20 is affixed to a protective glass (not shown) attached to the opening 32 of the front housing 30.
  • the optical filter 20 may have a function of shielding electromagnetic waves.
  • the optical filter 20 may be directly attached to the image display surface 16 side of the PDP 10 instead of the protective glass.
  • FIG. 2 shows details of the main part of the PDP 10 shown in FIG.
  • An arrow D1 in the drawing indicates the first direction D1
  • an arrow D2 indicates the second direction D2 orthogonal to the first direction D1 in a plane parallel to the image display surface.
  • the discharge space DS is formed between the front substrate portion 12 and the rear substrate portion 14 (more specifically, the concave portion of the rear substrate portion 14).
  • the front substrate portion 12 is provided extending in the first direction D1 on the surface of the glass substrate FS that faces the glass substrate RS (the lower side in the figure), and a plurality of Xs arranged at intervals from each other.
  • a bus electrode XB and a Y bus electrode YB are provided.
  • an X transparent electrode XT (first projecting portion, first display electrode) extending in the second direction D2 from the X bus electrode XB to the Y bus electrode YB is connected to the X bus electrode XB.
  • a Y transparent electrode YT (second projecting portion, second display electrode) extending in the second direction D2 from the Y bus electrode YB to the X bus electrode XB is connected to the Y bus electrode YB.
  • the X transparent electrode XT and the Y transparent electrode YT face each other along the second direction D2.
  • the X bus electrode XB and the Y bus electrode YB are opaque electrodes formed of a metal material or the like, and the X transparent electrode XT and the Y transparent electrode YT are transparent that transmit visible light formed of an ITO film or the like.
  • the X electrode XE first electrode, sustain electrode
  • the Y electrode YE second electrode, scan electrode
  • a discharge is repeatedly generated between the X electrode XE and the Y electrode YE paired with each other (more specifically, between the X transparent electrode XT and the Y transparent electrode YT).
  • the transparent electrodes XT and YT may be disposed on the entire surface between the bus electrodes XB and YB to which the transparent electrodes XT and YT are connected and the glass substrate FS. Further, even if the electrodes (for example, the first and second protrusions) integrated with the bus electrodes XB and YB are formed of the same material (metal material or the like) as the bus electrodes XB and YB, instead of the transparent electrodes XT and YT, Good.
  • the electrodes XB, XT, YB, YT are covered with the dielectric layer DL.
  • the dielectric layer DL is an insulating film such as a silicon dioxide film formed by a CVD method.
  • a plurality of address electrodes AE extending in a direction perpendicular to the bus electrodes XB and YB (second direction D2) are provided on the dielectric layer DL (lower side in the figure).
  • the PDP of this embodiment has three electrodes (electrodes XE, YE, AE) on the front substrate portion 12.
  • the address electrode AE and the dielectric layer DL are covered with a protective layer PL.
  • the protective layer PL is formed of an MgO film having high secondary electron emission characteristics due to cation collision in order to easily generate discharge.
  • the back substrate portion 14 facing the front substrate portion 12 through the discharge space DS is formed in parallel with each other on the glass base RS and extends in a direction (second direction D2) orthogonal to the bus electrodes XB and YB. It has a partition wall (barrier rib) BR. That is, the barrier ribs BR are provided on the surface of the glass substrate RS that faces the glass substrate FS, extend in the second direction D2 that intersects the first direction D1, and are arranged at intervals.
  • a partition wall BR constitutes a side wall of the cell. Further, visible light of red (R), green (G), and blue (B) is generated on the side surface of the partition wall BR and the glass substrate RS between the adjacent partition walls BR by being excited by ultraviolet rays. Phosphors PHr, PHg, and PHb are respectively applied.
  • One pixel of the PDP 10 is composed of three cells that generate red, green, and blue light.
  • one cell (one color pixel) is formed in a region surrounded by the bus electrodes XB and YB and the partition wall BR as shown in FIG. 3 described later.
  • the PDP 10 is configured by arranging cells in a matrix to display a color image and alternately arranging a plurality of types of cells that generate light of different colors.
  • a display line is constituted by cells formed along the bus electrodes XB and YB.
  • the PDP 10 is configured by bonding the front substrate portion 12 and the rear substrate portion 14 so that the protective layer PL and the partition wall BR are in contact with each other, and enclosing a discharge gas such as Ne or Xe in the discharge space DS.
  • FIG. 3 shows an outline of the PDP 10 shown in FIG. 3 shows the state of the electrodes XB, XT, YB, YT, AE and the partition wall BR as viewed from the image display surface side (upper side in FIG. 2).
  • the meanings of the arrows in the figure are the same as those in FIG.
  • the cells CLr, CLg, and CLb in the figure indicate cells that generate red, green, and blue visible light, respectively.
  • the cells CLr, CLg, and CLb are also referred to as cells CL when they are not distinguished for each color.
  • the cell CL (CLr, CLg, CLb) is in a region (region surrounded by a broken line in the figure) surrounded by the pair of bus electrodes XB, YB and a pair of adjacent barrier ribs BR. It is formed.
  • address electrodes AEr, AEg, and AEb in the figure indicate address electrodes corresponding to the cells CLr, CLg, and CLb, respectively.
  • the address electrodes AEr, AEg, and AEb are also referred to as address electrodes AE when they are not distinguished for each color.
  • one pixel PX of the PDP 10 includes cells CLr, CLg, and CLb that generate red, green, and blue light. That is, the pixel PX includes a plurality of types of cells CL that respectively generate different colors of light.
  • the cell group for each color (for example, a red cell group, a green cell group, and a blue cell group) includes cells CL that generate light of the same color.
  • the red cell group includes cells CLr that generate red light.
  • the bus electrodes XB and YB are formed in parallel along the first direction D1, and are alternately arranged along the second direction D2.
  • the transparent electrode XT and the address electrode AE are arranged adjacent to one and the other of the partition walls BR on both sides of the cell CL, respectively, and the transparent electrode YT It arrange
  • the transparent electrode XT is provided for each cell CL, protrudes from the bus electrode XB toward the bus electrode YB paired with the bus electrode XB, and is formed on the barrier ribs BR (the barrier ribs constituting the cell CL) on both sides of the cell CL. It is arranged adjacent to one side.
  • the transparent electrode YT is provided for each cell CL, protrudes from the bus electrode YB toward the bus electrode XB paired with the bus electrode YB, and the partition BR on both sides of the cell CL (the partition BR constituting the cell CL). It arrange
  • the address electrode AE extends in the second direction D2 through each cell CL, and is arranged between the other of the partition walls BR on both sides of the cell CL (the one where the transparent electrode XT is not adjacent) and the transparent electrode YT.
  • the address electrode AE may be disposed at a position that partially overlaps the partition wall BR, or may be disposed at a position that partially overlaps the transparent electrode YT. That is, the address electrode AE is disposed at a position away from the transparent electrode XT and at a position close to the transparent electrode YT.
  • the inter-wiring capacitance between the address electrode AE and the transparent electrode XT can be made smaller than the inter-wiring capacitance between the address electrode AE and the transparent electrode YT.
  • power consumption of a circuit for driving the transparent electrode XT (sustain electrode XE) (for example, an X driver XDRV in FIG. 4 described later) can be reduced.
  • the transparent electrode YT is opposed to both the address electrode AE and the transparent electrode XT. Therefore, an address discharge can be generated between the address electrode AE and the transparent electrode YT of the target cell CL by applying a voltage between the address electrode AE and the scan electrode YE of the target cell CL. In addition, a sustain discharge can be generated between the transparent electrode XT and the transparent electrode YT of the cell CL selected by the address discharge by applying a voltage between the sustain electrode XE and the scan electrode YE.
  • FIG. 4 shows a configuration example of the field FLD for displaying an image of one screen.
  • the length of one field FLD is 1/60 second (about 16.7 ms), and is composed of, for example, eight subfields SF (SF1-SF8).
  • each subfield SF has a reset period RST, an address period ADR, and a sustain period SUS.
  • the amounts of wall charges accumulated in the electrodes XE, YE, and AE are adjusted in order to match the discharge start voltages (voltages at which address discharge in the address period ADR starts to occur) of all cells. It is a period.
  • the wall charges are, for example, plus charges and minus charges accumulated on the surface of the protective layer PL such as MgO shown in FIG. 2 in each cell.
  • the address period ADR is a period for selecting a cell to be lit in the sustain period SUS.
  • a cell to be lit in the sustain period SUS is selected by selectively generating an address discharge between the scan electrode YE and the address electrode AE in the address period, as shown in FIG.
  • the sustain period SUS is a period in which a sustain discharge is generated between the sustain electrode XE and the scan electrode YE of the cell (cell to be lit) selected in the address period ADR.
  • the length of the sustain period SUS varies depending on the subfield SF and depends on the number of discharges (luminance) of the cell. Therefore, it is possible to display a color image with multiple gradations by changing the combination of subfields SF to be lit.
  • the number of discharge cycles preset in the subfield SF1-8 is 4, 8, 16, 32, 64, 128, 256, and 512, respectively.
  • the cell is discharged twice during one discharge cycle (star mark in the figure).
  • FIG. 5 shows an outline of the circuit unit 60 shown in FIG. In FIG. 5, the description of the voltage applied to the electrodes XE, YE, and AE in the reset period RST is omitted.
  • the circuit unit 60 includes a power supply unit PWR, a memory unit MEM, a control unit CNT, an X driver XDRV (first drive circuit), a Y driver YDRV (second drive circuit), and an address driver ADRV (third drive circuit). Yes.
  • the power supply unit PWR generates power supply voltages Vs, ⁇ Vs, Vsc, Vsa and the like to be supplied to the drivers XDRV, YDRV, and ADRV.
  • the memory unit MEM is formed of, for example, DRAM (Dynamic RAM), SRAM (Static RAM), flash memory, or ROM, and various parameters of the PDP (for example, adjustment data indicating the color of an image displayed on the PDP and screen brightness) Is stored).
  • DRAM Dynamic RAM
  • SRAM Static RAM
  • flash memory or ROM
  • various parameters of the PDP for example, adjustment data indicating the color of an image displayed on the PDP and screen brightness
  • the adjustment data indicating the hue of the image displayed on the PDP is data indicating the balance of the brightness of red, green and blue light, and is controlled from the memory unit MEM to the control unit CNT by a color tone adjustment signal TCNT (adjustment signal).
  • TCNT adjustment signal
  • the color tone adjustment signal TCNT is a signal indicating the balance of luminance of red, green and blue light, for example.
  • adjustment data indicating the hue of the image displayed on the PDP is adjusted in the manufacturing process of the PDP and stored in the memory unit MEM.
  • an operation unit such as a remote controller is operated by the user to adjust the hue of the image
  • adjustment data indicating the hue of the image to be adjusted is stored in the memory unit MEM.
  • the control unit CNT has a color tone adjustment unit ADJ (adjustment unit) for adjusting the hue of the image displayed on the PDP.
  • the color tone adjustment unit ADJ is an adjustment that is one of color-specific cell groups including cells that generate light of the same color in order to adjust the hue of an image (color image) displayed on the PDP. Select a cell group.
  • the adjustment cell group is a cell group to which an adjustment pulse AJP (adjustment voltage) shown in FIG. 7 described later is applied to the address electrode AE in order to adjust the color of the image. Details of the operation of the color tone adjustment unit ADJ will be described later with reference to FIG.
  • control unit CNT controls the operation of the drivers XDRV, YDRV, and ADRV.
  • the control unit CNT sequentially receives the image data R0-7, G0-7, and B0-7, and based on the received image data R0-7, G0-7, and B0-7, the cells constituting the pixel PX
  • the subfield to be used is selected for each CL. Thereby, a multi-tone color image is displayed.
  • the control unit CNT outputs control signals YCNT, XCNT, and ACNT indicating subfields used by each cell CL to the drivers YDRV, XDRV, and ADRV.
  • the control signal ACNT includes a control signal for applying the adjustment pulse AJP to the address electrode AE.
  • the drivers XDRV, YDRV, and ADRV operate as a drive unit that drives the PDP 10.
  • the X driver XDRV commonly applies a sustain pulse (for example, voltages Vs and ⁇ Vs) to the bus electrode XB during the sustain period SUS.
  • the Y driver YDRV maintains the bus electrode YB at a common constant voltage (for example, ground voltage) in the sustain period SUS, and selectively selects the scan pulse (for example, voltage Vsc) for the bus electrode YB in the address period ADR. Apply to.
  • the address driver ADRV selectively applies an address pulse (for example, a waveform voltage that returns from the voltage Vsa to the voltage Vsa via the ground voltage) to the address electrode AE in the address period ADR. Further, the address driver ADRV applies an adjustment pulse AJP (adjustment voltage, for example, voltage Vsa) shown in FIG. 7 described later to the address electrode AE of the adjustment cell group in the sustain period SUS.
  • an address pulse for example, a waveform voltage that returns from the voltage Vsa to the voltage Vsa via the ground voltage
  • FIG. 6 shows an example of the operation of the color tone adjustment unit ADJ shown in FIG.
  • the process shown in FIG. 6 may be realized only by hardware, or may be realized by controlling the hardware by software.
  • the color tone adjustment unit ADJ receives a color tone adjustment signal TCNT for adjusting the hue of an image displayed on the PDP.
  • the color tone adjustment unit ADJ receives a color tone adjustment signal TCNT from the memory unit MEM when a power supply of a PDP (not shown) is turned on.
  • the color tone adjustment unit ADJ receives the color tone adjustment signal TCNT when an operation unit (not shown) such as a remote controller is operated by the user to adjust the hue of the image. Therefore, the color tone adjustment unit ADJ performs the process of FIG. 6 every time it receives the color tone adjustment signal TCNT.
  • the color tone adjustment unit ADJ selects an adjustment cell group from cell groups for each color (for example, a red cell group, a green cell group, and a blue cell group) based on the color tone adjustment signal TCNT. For example, when the color tone adjustment unit ADJ receives a color tone adjustment signal TCNT indicating that the red luminance is increased over the entire screen and the green luminance is decreased over the entire screen, the red and blue cell groups are adjusted to the adjusted cell group. Select as each. In this case, the adjustment pulse AJP is not applied to the address electrode of the green cell group.
  • the color tone adjustment unit ADJ sets the number of times (adjustment frequency) of applying the adjustment pulse AJP (adjustment voltage) to the address electrode AE during one field FLD for each adjustment cell group based on the color tone adjustment signal TCNT. .
  • the color tone adjustment unit ADJ sets the number of adjustments 1020 times for the red cell group, and sets the number of adjustments 510 times for the blue cell group.
  • the blue luminance is set higher than the green luminance and lower than the red luminance.
  • the color tone adjustment unit ADJ is set in process 300 according to the number of sustain discharges set in each subfield SF (for example, the number of discharge cycles shown in FIG. 4 described above) for each adjustment cell group.
  • the adjusted number of adjustments is distributed to each subfield SF.
  • the color tone adjustment unit ADJ distributes the number of adjustments to each subfield SF in accordance with the ratio of the number of discharge cycles of each subfield SF to the number of discharge cycles of one field FLD.
  • the number of adjustments distributed to the subfields SF1-8 is 4, 8, 16, 32, 64, 128, 256, 512.
  • the adjustment times distributed to the subfields SF1-8 are 2, 4, 8, 16, 32, 64, 128, and 256, respectively.
  • the ratio between the number of discharge cycles and the number of adjustments in each subfield SF is set to be equal to each other.
  • the ratio between the number of discharge cycles and the number of adjustments in each subfield SF may not be set equal to each other.
  • the number of adjustments in one field FLD is 64
  • the number of adjustments distributed to subfields SF1-8 is 0, 1, 1, 2, 4, 8, 16, and 32, respectively.
  • the number of adjustments in one field FLD is 400
  • the number of adjustments distributed to the subfields SF1-8 is 2, 3, 6, 13, 25, 50, 100, and 101, respectively.
  • the information indicating the distributed number of adjustments is included in the control signal ACNT and transmitted to the address driver ADRV as described above.
  • the red luminance of the image displayed on the PDP can be increased over the entire screen, and the green luminance can be decreased over the entire screen.
  • the maximum number of sustain discharges generated in one field FLD of the green cell group is set to the cells of other colors (red, blue). There is no need to reduce it compared to the group. That is, in this embodiment, even when the green luminance is lowered on the entire screen, the number of gradations of green is maintained the same as the number of gradations of other colors (red and blue). In other words, in this embodiment, the hue of the image displayed on the PDP can be adjusted while maintaining the number of gradations of each color.
  • FIG. 7 shows an example of the discharge operation of the subfield SF for displaying an image on the PDP 10 shown in FIG.
  • FIG. 7 shows an example of the discharge operation of subfield SF1 when the red and blue cell groups are selected as the adjustment cell groups.
  • the star in the figure indicates the occurrence of discharge.
  • the waveform voltages of the electrodes XE, YE, and AE shown in FIG. 7 are applied to the electrodes XE, YE, and AE, for example, by the drivers XDRV, YDRV, and ADRV shown in FIG.
  • the number of adjustments 1020 times in one field FLD is set in a red cell group, and the number of adjustments 510 times in one field FLD is set in a blue cell group. That is, the numbers of adjustments set in the subfield SF1 of the red and blue cell groups are 4 and 2, respectively.
  • a predetermined voltage (the ground voltage GND in the figure) is applied to the sustain electrode XE (the bus electrode XB and the transparent electrode XT), and a negative write voltage (write blunt wave) that gently falls is scanned.
  • the positive voltage Vsa is applied to the address electrode AE (FIG. 7A).
  • wall charges are accumulated in the electrodes XE, YE, and AE, respectively, while suppressing the light emission of the cell.
  • negative wall charges, positive wall charges, and negative wall charges are accumulated in sustain electrode XE, scan electrode YE, and address electrode AE, respectively.
  • sustain electrode XE is maintained at ground voltage GND, and a positive adjustment voltage (adjustment blunt wave) that gradually increases is applied to scan electrode YE, and ground voltage GND is applied to address electrode AE (FIG. 7).
  • a positive adjustment voltage adjustment blunt wave
  • scan electrode YE scan electrode YE
  • address electrode AE address electrode AE
  • the maximum value of the adjustment voltage is a voltage lower than the voltage Vs.
  • the sustain electrode XE is maintained at the ground voltage GND, and the positive voltage Vsa is applied to the address electrode AE (FIG. 7C). Then, a scan pulse (voltage Vsc) serving as an anode during address discharge is applied to the scan electrode YE, and an address pulse (ground voltage GND) serving as a cathode during address discharge is applied to the address electrode AE corresponding to the lighted cell. (FIG. 7D).
  • a discharge is temporarily generated between the scan electrode YE and the address electrode AE (address discharge), and this discharge is used as a trigger to temporarily stop between the sustain electrode XE and the scan electrode YE. Discharge (address discharge) occurs. Thereby, a cell to be lit in the sustain period SUS is selected.
  • the sustain electrode XE becomes a cathode with respect to the scan electrode YE at the time of address discharge by the ground voltage GND lower than the voltage Vsc.
  • the address electrode AE becomes a cathode with respect to the scanning electrode YE at the time of address discharge by a ground voltage GND (address pulse which becomes a cathode at the time of address discharge) lower than the voltage Vsc. That is, the scan electrode YE becomes an anode with respect to the sustain electrode XE and the address electrode AE at the time of address discharge by the voltage Vsc (a scan pulse that becomes an anode at the time of address discharge). For this reason, in the cell selected by the address discharge, positive and negative wall charges are accumulated in the sustain electrode XE and the scan electrode YE, respectively.
  • the voltage Vsc of the scan pulse is higher than the maximum value of the adjustment voltage. Further, the voltage difference between the voltage Vsc and the voltage Vsa is smaller than the discharge start voltage (the lowest voltage that causes discharge) between the address electrode AE and the scan electrode YE. Thereby, it is possible to prevent erroneous discharge from occurring between the address electrode AE maintained at the voltage Vsa and the scan electrode YE to which the scan pulse (voltage Vsc) is applied.
  • the second address pulse (ground voltage GND) shown in the waveform of the address electrode AE is applied to select a cell in another display line (FIG. 7E).
  • a positive sustain pulse (first voltage, voltage Vs) is applied to the sustain electrode XE, and a constant voltage Vb (predetermined voltage), which is an intermediate voltage between the voltage Vs and the voltage ⁇ Vs, is applied.
  • Vb predetermined voltage
  • the scan electrode YE and the ground voltage GND is applied to the address electrode AE (FIG. 7F).
  • the voltage Vb is the ground voltage GND that is an average value of the voltage Vs and the voltage ⁇ Vs.
  • the voltage Vb may be a constant voltage having a voltage value between the voltage Vs and the voltage ⁇ Vs.
  • the voltage between the sustain electrode XE and the scan electrode YE is the voltage It becomes larger than Vs.
  • the voltage between sustain electrode XE and scan electrode YE becomes larger than the discharge start voltage between sustain electrode XE and scan electrode YE, and discharge (sustain discharge) occurs between sustain electrode XE and scan electrode YE. appear.
  • negative and positive wall charges are accumulated in the sustain electrode XE to which the voltage Vs is applied and the scan electrode YE to which the ground voltage GND is applied, respectively.
  • a negative sustain pulse (second voltage, voltage ⁇ Vs) is applied to sustain electrode XE, scan electrode YE and address electrode AEg are maintained at ground voltage GND, respectively, and adjustment pulse AJP (adjustment voltage Vsa) Are applied to the address electrodes Ar and AEb, respectively (FIG. 7G).
  • Vsa adjustment voltage
  • the negative and positive wall charges are accumulated in the sustain electrode XE and the scan electrode YE, respectively.
  • the voltage between the electrodes YE becomes larger than the discharge start voltage.
  • a discharge sustain discharge
  • the adjustment pulse AJP is applied to the address electrodes AE (AEr, AEb) in synchronization with the negative sustain pulse (low level period LP1 in FIG. 7). That is, the adjustment voltage Vsa higher than the constant voltage Vb is applied to the address electrodes Ar and AEb in at least one of the periods (low level period LP) in which the voltage ⁇ Vs is applied to the sustain electrodes XE.
  • the adjustment voltage Vsa higher than the constant voltage Vb is one of the adjustment cell groups in the low level period LP1 in which the voltage (voltage ⁇ Vs) of the sustain electrode XE is lower than the constant voltage Vb (the ground voltage GND in the figure).
  • the adjustment voltage Vsa is the same voltage as the positive voltage Vsa maintained at the address electrode AE during the address period ADR.
  • the red and blue cell groups to which the adjustment voltage Vsa is applied to the address electrode AE in the cells to be lit, there is an electric field from the address electrode AE to the transparent electrode XT in addition to the electric field from the transparent electrode YT to the transparent electrode XT. appear. That is, in the cells in which the red and blue cell groups are lit, a stronger electric field is generated in the transparent electrode XT than the other color (for example, green) cell groups. Thereby, in the lighted cells of the red and blue cell groups, many cations collide with the protective layer PL on the transparent electrode XT, and a strong discharge is generated.
  • the electric field generated from the adjustment voltage Vsa is directed from the transparent electrode YT to the address electrode AE.
  • the electric field generated from the adjustment voltage Vsa is directed from the transparent electrode YT to the address electrode AE.
  • the electric field from the address electrode AE to the transparent electrode XT is weak, so a strong electric field is applied to the transparent electrode XT. May not occur.
  • the voltage Vb of the transparent electrode YT is lower than the adjustment voltage Vsa, in the cells that are lit in the adjustment cell group (red and blue cell groups in the example in the figure)
  • the electric field strength between the address electrode AE and the transparent electrode YT and the transparent electrode XT can be increased, and the discharge strength can be increased.
  • the brightness of the cells to be lit in the adjustment cell group red and blue cell groups in the example in the figure
  • the adjustment voltage Vsa is applied to the address electrodes AER and AEb corresponding to the red and blue cell groups, respectively, and the address electrode AEg is maintained at the ground voltage GND.
  • luminance of the cell which the red and blue cell group lights can be made high.
  • the adjustment voltage Vsa is applied to the address electrode AERr corresponding to the red cell group, and the address electrodes AEg and AEb are maintained at the ground voltage GND.
  • luminance of the cell which a red cell group lights can be made high. Therefore, in the example of the figure, when the luminance of each color when the adjustment pulse AJP is not applied is the same, the application of the adjustment pulse AJP increases the red luminance of the image displayed on the PDP over the entire screen, and The green brightness can be lowered throughout the screen.
  • the number of adjustment pulses AJP (adjustment voltage Vsa) indicated by the number of adjustments set by the adjustment unit ADJ is synchronized with the negative sustain pulse (low level period LP) during the sustain period SUS. Then, it is applied to the address electrode AE. That is, the number of low level periods LP to which the adjustment voltage Vsa is applied by the address driver ADRV is equal to the number of adjustments.
  • a bias voltage (for example, ground voltage GND) equal to or lower than the constant voltage Vb is applied to the address electrode during a period when the adjustment voltage Vsa is not applied to the address electrode AE.
  • the address electrode AE is maintained at a bias voltage (for example, the ground voltage GND) equal to or lower than the constant voltage Vb during the sustain period SUS.
  • the scan electrode YE is maintained at the constant voltage Vb (for example, the ground voltage GND), and the sustain pulse is applied to the sustain electrode XE.
  • the number of adjustment pulses AJP adjusted voltage Vsa higher than the constant voltage Vb
  • the number of adjustments set by the adjustment unit ADJ are negative sustain pulses (low level period LP). Synchronously with this, it is applied to the address electrode AE of the adjustment cell group.
  • luminance of the visible light which the cell of an adjustment cell group emits can be made high in the state which maintained the number of gradations of each color.
  • the hue of the image displayed on the PDP can be adjusted while maintaining the number of gradations of each color.
  • one pixel includes three cells (red (R), green (G), and blue (B)) has been described.
  • the present invention is not limited to such an embodiment.
  • one pixel may be composed of four or more cells.
  • one pixel may be composed of cells that generate colors other than red (R), green (G), and blue (B), and one pixel may be red (R), green (G), A cell that generates a color other than blue (B) may be included.
  • the second direction D2 may intersect the first direction D1 in a substantially perpendicular direction (for example, 90 ° ⁇ 5 °). Also in this case, the same effect as the above-described embodiment can be obtained.
  • the present invention is applied to a plasma display panel in which one field is composed of eight subfields SF1-8 has been described.
  • the present invention is not limited to such an embodiment.
  • the present invention may be applied to a plasma display panel in which one field is composed of 10 or more subfields.
  • the subfields SF1-8 (FIG. 4) in the field FLD may not be sequentially arranged.
  • subfield SF8 may be arranged near the center of field FLD.
  • the adjustment pulse AJP is applied to the address electrode AE in the low level period LP in the first half of the sustain period SUS when the number of the adjustment pulses AJP is smaller than the number of the low level periods LP.
  • the present invention is not limited to such an embodiment.
  • the adjustment pulse AJP is an address electrode in the low level period LP near the center of the sustain period SUS (for example, the low level periods LP2 and LP3 in FIG. 7).
  • the adjustment pulse AJP may be applied to the address electrode AE in the low level period LP (for example, the low level periods LP3 and LP4 in FIG.
  • the adjustment pulse AJP may be applied to the address electrode AE in a discontinuous low level period LP (for example, the low level periods LP2 and LP4 in FIG. 7). Also in this case, the same effect as the above-described embodiment can be obtained.
  • the sustain discharge may not be stable. Therefore, when the adjustment pulse AJP is applied to the address electrode AE in the low level period LP excluding the first low level period LP1, the sustain discharge is performed. Can be prevented from becoming unstable. Further, when the adjustment pulse AJP is applied to the address electrode AE in the low level period LP excluding the last low level period LP (for example, the low level period LP4 in FIG. 7), for example, the wall charges of only the lighted cells are reduced. A discharge for decreasing (for example, the last discharge in the sustain period SUS in FIG. 7) or the like can be stably generated. When the adjustment pulse AJP is applied to the address electrode AE at intervals (for example, the low level periods LP2 and LP4 in FIG. 7), each sustain discharge can be stably generated.
  • the scan pulse (voltage Vsc) serving as the anode during address discharge and the address pulse (ground voltage GND) serving as the cathode during address discharge are applied to the scan electrode YE and the address electrode AE, respectively.
  • An example was described.
  • the present invention is not limited to such an embodiment.
  • a scan pulse (voltage -Vsc2) that becomes a cathode during address discharge and an address pulse (voltage Vsa2) that becomes an anode during address discharge are applied to the scan electrode YE and the address electrode AE.
  • Each may be applied. Also in this case, the same effect as the above-described embodiment can be obtained.
  • FIG. 8 shows another example of the subfield discharge operation for displaying an image on the PDP.
  • the polarity of the voltage applied between the scan electrode YE and the address electrode AE and the polarity of the voltage applied between the scan electrode YE and the sustain electrode XE are shown in FIG. It is different from the waveform. Detailed description of the same operations as those in FIG. 7 described above will be omitted. The meaning of the asterisk in the figure is the same as in FIG.
  • the ground voltage GND is applied to the sustain electrode XE and the address electrode AE, respectively, and a positive write voltage (write blunt wave) that gradually increases is applied to the scan electrode YE (FIG. 8 (a2)).
  • a positive write voltage write blunt wave
  • positive wall charges, negative wall charges, and positive wall charges are accumulated in sustain electrode XE, scan electrode YE, and address electrode AE, respectively.
  • sustain electrode XE and address electrode AE are maintained at ground voltage GND, and a negative adjustment voltage (adjustment blunt wave) that gently falls is applied to scan electrode YE (FIG. 8 (b2)).
  • a negative adjustment voltage adjustment blunt wave
  • scan electrode YE scan electrode YE
  • the minimum value of the adjustment voltage is a voltage higher than the voltage ⁇ Vs.
  • the sustain electrode XE and the address electrode AE are maintained at the ground voltage GND, and a negative bias voltage is applied to the scan electrode YE (FIG. 8 (c2)). Then, a scan pulse (voltage -Vsc2) serving as a cathode during address discharge is applied to the scan electrode YE, and an address pulse (voltage Vsa2) serving as an anode during address discharge is applied to the address electrode AE corresponding to the lighted cell. (FIG. 8 (d2)).
  • the scan pulse voltage ⁇ Vsc2 is lower than the minimum value of the adjustment voltage.
  • a discharge is temporarily generated between the scan electrode YE and the address electrode AE (address discharge), and this discharge is used as a trigger to temporarily stop between the sustain electrode XE and the scan electrode YE.
  • Discharge (address discharge) occurs. Thereby, a cell to be lit in the sustain period SUS is selected.
  • the address discharge negative and positive wall charges are accumulated in the sustain electrode XE and the scan electrode YE, respectively.
  • the second address pulse ground voltage GND
  • FIG. 8 (e2) another display line
  • a negative sustain pulse (second voltage, voltage ⁇ Vs) is first applied to the sustain electrode XE, and a constant voltage Vb having a voltage value between the voltage Vs and the voltage ⁇ Vs is scanned. It is applied to the electrode YE (FIG. 8 (f2)). Further, the ground voltage GND is applied to the address electrode AEg, and the adjustment pulse AJP (adjustment voltage Vsa2) is applied to the address electrodes Ar and AEb, respectively (low level period LP1 in FIG. 8).
  • the voltage Vb is a ground voltage GND that is intermediate between the voltage Vs and the voltage ⁇ Vs.
  • the adjustment voltage Vsa2 is the same voltage as the address pulse voltage Vsa2 in the address period ADR. Therefore, in this embodiment, it is not necessary to newly generate a power supply voltage for the adjustment pulse AJP, and the configuration of the circuit unit 60 (for example, the power supply unit PWR and the address driver ADRV) can be simplified.
  • the address electrode AE is directed to the transparent electrode XT.
  • An electric field is generated. Accordingly, in the cells that are lit in the adjustment cell group (red and blue cell groups in the example in the figure), the discharge intensity is increased and visible light with high luminance is generated. As a result, in the example shown in the figure, the brightness of the lighted cells of the red and blue cell groups can be increased.
  • a positive sustain pulse (first voltage, voltage Vs) is applied to the sustain electrode XE, and the scan electrode YE and the address electrode AE are maintained at the ground voltage GND (FIG. 8 (g2)).
  • first voltage, voltage Vs first voltage
  • Vs positive voltage
  • negative wall charges are accumulated in the sustain electrode XE and the scan electrode YE, respectively.
  • the voltage between the electrodes YE becomes larger than the discharge start voltage.
  • the sustain pulses (voltage -Vs, voltage Vs) having different polarities with respect to the voltage Vb (ground voltage GND) are alternately applied to the sustain electrodes XE (FIG. 8 (f2, g2)).
  • the discharge of the cells that are lit during the sustain period SUS is repeated.
  • the adjustment voltage Vsa is applied to the address electrodes AEr and AEb corresponding to the red and blue cell groups, respectively, and the address electrode AEg is maintained at the ground voltage GND. Thereby, the brightness
  • the adjustment voltage Vsa is applied to the address electrode AERr corresponding to the red cell group, and the address electrodes AEg and AEb are maintained at the ground voltage GND. Thereby, the brightness
  • the application of the adjustment pulse AJP increases the red luminance of the image displayed on the PDP over the entire screen, and Green brightness can be reduced on the entire screen.
  • the power supply unit PWR shown in FIG. 4 generates the power supply voltages Vsc2 and Vsa2 instead of the power supply voltages Vsc and Vsa.
  • the drivers XDRV, YDRV, and ADRV shown in FIG. 5 described above are the waveforms of the electrodes XE, YE, and AE shown in FIG. 8 instead of the waveform voltages of the electrodes XE, YE, and AE shown in FIG. A voltage is applied to each of the electrodes XE, YE, and AE. Also in this case, the same effect as the above-described embodiment can be obtained.
  • the present invention can be applied to a plasma display device.

Abstract

A plasma display device comprises a plasma display panel (PDP) and a driving unit. The PDP comprises a first substrate on which a first electrode, a second electrode, and an address electrode are provided and a second substrate on which a division wall is provided. The driving unit comprises first, second, and third driving circuits. For example, during a sustain period, the first driving circuit alternately applies a first voltage and a second voltage to the first electrode and the second driving circuit applies a predetermined voltage having a voltage value between the first voltage and the second voltage to the second electrode. The third driving circuit applies an adjusting voltage higher than the predetermined voltage to the address electrode at least in one of periods in which the second voltage is applied to the first electrode. As a result, the color shade of an image displayed on the PDP can be adjusted.

Description

プラズマディスプレイ装置Plasma display device
 本発明は、プラズマディスプレイ装置に関する。 The present invention relates to a plasma display device.
 プラズマディスプレイ装置(PDP装置)は、プラズマディスプレイパネル(PDP)とPDPを駆動する駆動部を有している。PDPは、2枚のガラス基板(前面ガラス基板および背面ガラス基板)を互いに貼り合わせて構成されており、ガラス基板の間に形成される空間(放電空間)に放電光を発生させることで画像を表示する。画像における画素に対応するセルは、自発光型であり、放電により発生する紫外線を受けて赤、緑、青の可視光を発生する蛍光体が塗布されている。 The plasma display device (PDP device) has a plasma display panel (PDP) and a drive unit for driving the PDP. A PDP is formed by bonding two glass substrates (a front glass substrate and a back glass substrate) to each other, and generates an image by generating discharge light in a space (discharge space) formed between the glass substrates. indicate. The cells corresponding to the pixels in the image are self-luminous, and are coated with phosphors that generate red, green, and blue visible light in response to ultraviolet rays generated by discharge.
 PDPでは、画像を多階調で表示するために、1画面を表示するためのフィールドは、複数のサブフィールドで構成される。例えば、サブフィールドのサステイン期間のサステイン放電の回数は、2のn乗回(nは正の整数)に順次設定される。そして、画像の表示に使用されるサブフィールドは、赤、緑、青の可視光を発生するセル毎に、画像の各色(赤、緑、青)の輝度に応じて選択される。これにより、多階調のカラー画像が表示される。 In PDP, in order to display an image with multiple gradations, a field for displaying one screen is composed of a plurality of subfields. For example, the number of sustain discharges in the sustain period of the subfield is sequentially set to 2 n times (n is a positive integer). Then, the subfield used for displaying the image is selected according to the luminance of each color (red, green, and blue) of the image for each cell that generates red, green, and blue visible light. Thereby, a multi-tone color image is displayed.
 一般的に、この種のPDPでは、PDPに表示される画像の色合いは、特定の色の階調数を少なくすることにより調整される。例えば、赤色の輝度を画面全体で高くする場合、緑および青の可視光を発生するセルにおいて、1フィールドで発生させるサステイン放電の最高回数を、赤の可視光を発生するセルに比べて少なくする。この場合、カラー画像の階調数は少なくなり、画像の輝度は低下する。 Generally, in this type of PDP, the hue of an image displayed on the PDP is adjusted by reducing the number of gradations of a specific color. For example, when the red luminance is increased over the entire screen, the maximum number of sustain discharges generated in one field in cells that generate green and blue visible light is reduced compared to cells that generate red visible light. . In this case, the number of gradations of the color image decreases, and the luminance of the image decreases.
 なお、3電極を有するPDPにおいて、各色の階調数を維持した状態で、PDPに表示される画像の色合いを調整する技術が提案されている(例えば、特許文献1参照)。例えば、特許文献1のPDPは、PDPに表示される画像の色合いを調整するために、輝度の低い色に対応するセルのアドレス電極に、サステイン期間中にY電極に印加されるパルスと同期したタイミングでパルスを印加する。 In addition, in a PDP having three electrodes, a technique for adjusting the hue of an image displayed on the PDP while maintaining the number of gradations of each color has been proposed (for example, see Patent Document 1). For example, the PDP of Patent Document 1 is synchronized with the pulse applied to the Y electrode during the sustain period on the address electrode of the cell corresponding to the low-luminance color in order to adjust the color of the image displayed on the PDP. Apply pulse at timing.
 一般的な3電極構造のPDPでは、X電極およびY電極は前面ガラス基板に配置され、アドレス電極は背面ガラス基板に配置されている。また、近年、X電極およびY電極とアドレス電極の3電極を前面ガラス基板に配置したPDPが提案されている(例えば、特許文献2参照)。特許文献2のPDPでは、前面ガラス基板に設けられたアドレス電極は、背面ガラス基板に設けられた隔壁と重なる位置に配置されている。また、X電極およびY電極は、アドレス電極と交差する方向に延在するバス電極と各セル内に設けられ透明電極とにより構成されている。そして、Y電極の透明電極は、X電極の透明電極とアドレス電極との間に配置されている。
特許第3598790号公報 特開2005-310785号公報
In a general three-electrode PDP, the X electrode and the Y electrode are arranged on the front glass substrate, and the address electrodes are arranged on the rear glass substrate. In recent years, a PDP in which three electrodes, that is, an X electrode, a Y electrode, and an address electrode are arranged on a front glass substrate has been proposed (see, for example, Patent Document 2). In the PDP of Patent Document 2, the address electrode provided on the front glass substrate is disposed at a position overlapping the partition provided on the rear glass substrate. Further, the X electrode and the Y electrode are constituted by a bus electrode extending in a direction intersecting with the address electrode and a transparent electrode provided in each cell. The transparent electrode of the Y electrode is disposed between the transparent electrode of the X electrode and the address electrode.
Japanese Patent No. 3598790 JP 2005-310785 A
 前面ガラス基板に3電極が設けられたPDPでは、例えば、上述したように、X電極の透明電極とアドレス電極との間にY電極の透明電極が配置されている。このため、Y電極に印加されるパルスと同期したタイミングでアドレス電極にパルスを印加した場合、Y電極の透明電極は、アドレス電極からX電極の透明電極に発生する電界のシールドとして機能するおそれがある。この場合、アドレス電極およびY電極とX電極との間の電界強度を効率よく強くできず、特定の色のセルの放電強度を強くできないおそれがある。すなわち、前面ガラス基板に3電極が設けられたPDPでは、Y電極に印加されるパルスと同期したタイミングでアドレス電極にパルスを印加しても、各色の階調数を維持した状態で、特定の色のセルの輝度を高くできないおそれがある。 In a PDP in which three electrodes are provided on a front glass substrate, for example, as described above, a transparent electrode of Y electrode is disposed between a transparent electrode of X electrode and an address electrode. Therefore, when a pulse is applied to the address electrode at a timing synchronized with the pulse applied to the Y electrode, the transparent electrode of the Y electrode may function as a shield for the electric field generated from the address electrode to the transparent electrode of the X electrode. is there. In this case, the electric field strength between the address electrode and the Y electrode and the X electrode cannot be efficiently increased, and there is a possibility that the discharge strength of the cell of a specific color cannot be increased. That is, in a PDP having three electrodes on the front glass substrate, a specific number of gradations of each color is maintained even when a pulse is applied to the address electrode at a timing synchronized with the pulse applied to the Y electrode. There is a possibility that the luminance of the color cell cannot be increased.
 本発明の目的は、前面ガラス基板に3電極が設けられたPDPを有するPDP装置において、各色の階調数を維持した状態で、PDPに表示される画像の色合いを調整することである。 An object of the present invention is to adjust the hue of an image displayed on a PDP in a state where the number of gradations of each color is maintained in a PDP device having a PDP in which three electrodes are provided on a front glass substrate.
 プラズマディスプレイ装置は、カラー画像を表示するプラズマディスプレイパネル(PDP)と、PDPを駆動する駆動部とを有している。PDPは、放電空間を介して互いに対向する第1基板および第2基板を有している。第1基板は、第1方向に延在し、互いに間隔を置いて配置された複数の第1電極および第2電極と、第1方向と交差する第2方向に延在する複数のアドレス電極とを有している。また、第2基板は、第2方向に延在し、間隔を置いて配置された複数の隔壁を有している。 The plasma display device has a plasma display panel (PDP) that displays a color image and a drive unit that drives the PDP. The PDP has a first substrate and a second substrate that face each other through a discharge space. The first substrate extends in the first direction and is spaced apart from each other, and a plurality of address electrodes extending in a second direction intersecting the first direction. have. The second substrate has a plurality of partition walls extending in the second direction and arranged at intervals.
 例えば、セルは、互いに対をなす第1および第2電極と互いに隣接する隔壁とで囲われる領域に形成される。そして、第1および第2電極は、セル毎に、第1電極から第2電極に向けて突出しセルを構成する隔壁の一方に隣接する第1突出部と、第2電極から第1電極に向けて突出しセルを構成する隔壁の他方と第1突出部との間に配置された第2突出部をそれぞれ有している。なお、アドレス電極は、セルを構成する隔壁の他方と第2突出部との間に配置されている。 For example, the cell is formed in a region surrounded by the first and second electrodes that make a pair with each other and the partition walls adjacent to each other. The first and second electrodes protrude from the first electrode toward the second electrode for each cell and are adjacent to one of the partition walls constituting the cell, and from the second electrode toward the first electrode. And a second projecting portion disposed between the other of the partition walls constituting the projecting cell and the first projecting portion. Note that the address electrode is disposed between the other of the partition walls constituting the cell and the second protrusion.
 駆動部は、第1駆動回路、第2駆動回路および第3駆動回路を有している。例えば、第1駆動回路は、セルの第1および第2電極間でサステイン放電を発生させるサステイン期間に、第1電圧および第1電圧より低い第2電圧を第1電極に交互に印加し、第2駆動回路は、サステイン期間に、第1電圧と第2電圧との間の電圧値を有する所定電圧を第2電極に印加する。そして、第3駆動回路は、サステイン期間に、第1電極に第2電圧を印加する期間の少なくとも1つで、所定電圧より高い調整電圧を、アドレス電極に印加する。 The drive unit has a first drive circuit, a second drive circuit, and a third drive circuit. For example, the first driving circuit alternately applies a first voltage and a second voltage lower than the first voltage to the first electrode during a sustain period in which a sustain discharge is generated between the first and second electrodes of the cell. The two-drive circuit applies a predetermined voltage having a voltage value between the first voltage and the second voltage to the second electrode during the sustain period. The third driving circuit applies an adjustment voltage higher than a predetermined voltage to the address electrode in at least one of the periods in which the second voltage is applied to the first electrode during the sustain period.
 本発明では、前面ガラス基板に3電極が設けられたPDPを有するPDP装置において、各色の階調数を維持した状態で、PDPに表示される画像の色合いを調整できる。 In the present invention, in a PDP apparatus having a PDP in which three electrodes are provided on the front glass substrate, the hue of an image displayed on the PDP can be adjusted while maintaining the number of gradations of each color.
一実施形態におけるPDP装置を示す図である。It is a figure which shows the PDP apparatus in one Embodiment. 図1に示したPDPの要部を示す図である。It is a figure which shows the principal part of PDP shown in FIG. 図2に示したPDPの概要を示す図である。It is a figure which shows the outline | summary of PDP shown in FIG. 1画面の画像を表示するためのフィールドの構成例を示す図である。It is a figure which shows the structural example of the field for displaying the image of 1 screen. 図1に示した回路部の概要を示す図である。It is a figure which shows the outline | summary of the circuit part shown in FIG. 図5に示した色調調整部の動作の一例を示す図である。It is a figure which shows an example of operation | movement of the color tone adjustment part shown in FIG. 図2に示したPDPに画像を表示するためのサブフィールドの放電動作の一例を示す図である。FIG. 3 is a diagram illustrating an example of a subfield discharging operation for displaying an image on the PDP illustrated in FIG. 2. 図2に示したPDPに画像を表示するためのサブフィールドの放電動作の別の例を示す図である。It is a figure which shows another example of the discharge operation | movement of the subfield for displaying an image on PDP shown in FIG.
 以下、本発明の実施形態を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態を示している。プラズマディスプレイ装置(以下、PDP装置とも称する)は、四角板形状を有するプラズマディスプレイパネル10(以下、PDPとも称する)、PDP10の画像表示面16側(光の出力側)に設けられる光学フィルタ20、PDP10の画像表示面16側に配置された前筐体30、PDP10の背面18側に配置された後筐体40およびベースシャーシ50、ベースシャーシ50の後筐体40側に取り付けられ、PDP10を駆動するための回路部60、およびPDP10をベースシャーシ50に貼り付けるための両面接着シート70を有している。回路部60は、複数の部品で構成されるため、図では、破線の箱で示している。 FIG. 1 shows an embodiment of the present invention. A plasma display device (hereinafter also referred to as a PDP device) includes a plasma display panel 10 having a square plate shape (hereinafter also referred to as a PDP), an optical filter 20 provided on the image display surface 16 side (light output side) of the PDP 10, A front housing 30 disposed on the image display surface 16 side of the PDP 10, a rear housing 40 and a base chassis 50 disposed on the back surface 18 side of the PDP 10, and attached to the rear housing 40 side of the base chassis 50 to drive the PDP 10. A double-sided adhesive sheet 70 for attaching the PDP 10 to the base chassis 50. Since the circuit unit 60 includes a plurality of components, the circuit unit 60 is indicated by a dashed box in the figure.
 PDP10は、画像表示面16を構成する前面基板部12(第1基板)と、前面基板部12に対向する背面基板部14(第2基板)とにより構成されている。前面基板部12と背面基板部14の間に図示しない放電空間(セル)が形成されている。前面基板部12および背面基板部14は、例えば、ガラス基板により形成されている。光学フィルタ20は、前筐体30の開口部32に取り付けられる保護ガラス(図示せず)に貼付される。なお、光学フィルタ20は、電磁波を遮蔽する機能を有してもよい。また、光学フィルタ20は、保護ガラスではなく、PDP10の画像表示面16側に直接貼付されてもよい。 The PDP 10 includes a front substrate portion 12 (first substrate) that forms the image display surface 16 and a rear substrate portion 14 (second substrate) that faces the front substrate portion 12. A discharge space (cell) (not shown) is formed between the front substrate portion 12 and the rear substrate portion 14. The front substrate unit 12 and the back substrate unit 14 are formed of, for example, a glass substrate. The optical filter 20 is affixed to a protective glass (not shown) attached to the opening 32 of the front housing 30. The optical filter 20 may have a function of shielding electromagnetic waves. The optical filter 20 may be directly attached to the image display surface 16 side of the PDP 10 instead of the protective glass.
 図2は、図1に示したPDP10の要部の詳細を示している。図中の矢印D1は、第1方向D1を示し、矢印D2は、第1方向D1に画像表示面に平行な面内で直交する第2方向D2を示している。上述したように、前面基板部12と背面基板部14の間(より詳細には、背面基板部14の凹部)に放電空間DSが形成される。 FIG. 2 shows details of the main part of the PDP 10 shown in FIG. An arrow D1 in the drawing indicates the first direction D1, and an arrow D2 indicates the second direction D2 orthogonal to the first direction D1 in a plane parallel to the image display surface. As described above, the discharge space DS is formed between the front substrate portion 12 and the rear substrate portion 14 (more specifically, the concave portion of the rear substrate portion 14).
 前面基板部12は、ガラス基材FSのガラス基材RSに対向する面上(図では下側)に第1方向D1に延在して設けられ、互いに間隔を置いて配置された複数のXバス電極XBおよびYバス電極YBを有している。また、Xバス電極XBには、Xバス電極XBからYバス電極YBに向けて第2方向D2に延在するX透明電極XT(第1突出部、第1表示電極)が接続されている。Yバス電極YBには、Yバス電極YBからXバス電極XBに向けて第2方向D2に延在するY透明電極YT(第2突出部、第2表示電極)が接続されている。図の例では、X透明電極XTおよびY透明電極YTは、第2方向D2に沿って対向している。 The front substrate portion 12 is provided extending in the first direction D1 on the surface of the glass substrate FS that faces the glass substrate RS (the lower side in the figure), and a plurality of Xs arranged at intervals from each other. A bus electrode XB and a Y bus electrode YB are provided. Further, an X transparent electrode XT (first projecting portion, first display electrode) extending in the second direction D2 from the X bus electrode XB to the Y bus electrode YB is connected to the X bus electrode XB. A Y transparent electrode YT (second projecting portion, second display electrode) extending in the second direction D2 from the Y bus electrode YB to the X bus electrode XB is connected to the Y bus electrode YB. In the illustrated example, the X transparent electrode XT and the Y transparent electrode YT face each other along the second direction D2.
 例えば、Xバス電極XBおよびYバス電極YBは、金属材料等で形成された不透明な電極であり、X透明電極XTおよびY透明電極YTは、ITO膜等で形成された可視光を透過する透明電極である。そして、X電極XE(第1電極、維持電極)は、Xバス電極XBおよびX透明電極XTにより構成され、Y電極YE(第2電極、走査電極)は、Yバス電極YBおよびY透明電極YTにより構成され、X電極XEと対をなしている。そして、互いに対をなすX電極XEおよびY電極YE間(より具体的には、X透明電極XTおよびY透明電極YT間)で繰り返して放電(サステイン放電)を発生させる。 For example, the X bus electrode XB and the Y bus electrode YB are opaque electrodes formed of a metal material or the like, and the X transparent electrode XT and the Y transparent electrode YT are transparent that transmit visible light formed of an ITO film or the like. Electrode. The X electrode XE (first electrode, sustain electrode) is composed of the X bus electrode XB and the X transparent electrode XT, and the Y electrode YE (second electrode, scan electrode) is the Y bus electrode YB and the Y transparent electrode YT. And is paired with the X electrode XE. Then, a discharge (sustain discharge) is repeatedly generated between the X electrode XE and the Y electrode YE paired with each other (more specifically, between the X transparent electrode XT and the Y transparent electrode YT).
 なお、透明電極XTおよびYTは、それぞれが接続されるバス電極XBおよびYBとガラス基材FSとの間に全面に配置されてもよい。また、バス電極XBおよびYBと同じ材料(金属材料等)で、バス電極XBおよびYBと一体の電極(例えば、第1および第2突出部)が透明電極XTおよびYTの代わりに形成されてもよい。 The transparent electrodes XT and YT may be disposed on the entire surface between the bus electrodes XB and YB to which the transparent electrodes XT and YT are connected and the glass substrate FS. Further, even if the electrodes (for example, the first and second protrusions) integrated with the bus electrodes XB and YB are formed of the same material (metal material or the like) as the bus electrodes XB and YB, instead of the transparent electrodes XT and YT, Good.
 電極XB、XT、YB、YTは、誘電体層DLに覆われている。例えば、誘電体層DLは、CVD法により形成された二酸化シリコン膜等の絶縁膜である。そして、誘電体層DL上(図では下側)には、バス電極XB、YBの直交方向(第2方向D2)に延在する複数のアドレス電極AEが設けられている。このように、この実施形態のPDPは、前面基板部12に3電極(電極XE、YE、AE)を有している。 The electrodes XB, XT, YB, YT are covered with the dielectric layer DL. For example, the dielectric layer DL is an insulating film such as a silicon dioxide film formed by a CVD method. A plurality of address electrodes AE extending in a direction perpendicular to the bus electrodes XB and YB (second direction D2) are provided on the dielectric layer DL (lower side in the figure). Thus, the PDP of this embodiment has three electrodes (electrodes XE, YE, AE) on the front substrate portion 12.
 アドレス電極AEおよび誘電体層DLは、保護層PLに覆われている。例えば、保護層PLは、放電を容易に発生させるために、陽イオンの衝突による2次電子の放出特性の高いMgO膜で形成される。 The address electrode AE and the dielectric layer DL are covered with a protective layer PL. For example, the protective layer PL is formed of an MgO film having high secondary electron emission characteristics due to cation collision in order to easily generate discharge.
 放電空間DSを介して前面基板部12に対向する背面基板部14は、ガラス基材RS上に互いに平行に形成され、バス電極XB、YBに直交する方向(第2方向D2)に延在する隔壁(バリアリブ)BRを有している。すなわち、隔壁BRは、ガラス基材RSのガラス基材FSに対向する面上に設けられ、第1方向D1と交差する第2方向D2に延在し、間隔を置いて配置されている。隔壁BRにより、セルの側壁が構成される。さらに、隔壁BRの側面と、互いに隣接する隔壁BRの間のガラス基材RS上とには、紫外線により励起されて赤(R)、緑(G)、青(B)の可視光を発生する蛍光体PHr、PHg、PHbが、それぞれ塗布されている。 The back substrate portion 14 facing the front substrate portion 12 through the discharge space DS is formed in parallel with each other on the glass base RS and extends in a direction (second direction D2) orthogonal to the bus electrodes XB and YB. It has a partition wall (barrier rib) BR. That is, the barrier ribs BR are provided on the surface of the glass substrate RS that faces the glass substrate FS, extend in the second direction D2 that intersects the first direction D1, and are arranged at intervals. A partition wall BR constitutes a side wall of the cell. Further, visible light of red (R), green (G), and blue (B) is generated on the side surface of the partition wall BR and the glass substrate RS between the adjacent partition walls BR by being excited by ultraviolet rays. Phosphors PHr, PHg, and PHb are respectively applied.
 PDP10の1つの画素は、赤、緑および青の光を発生する3つのセルにより構成される。ここで、1つのセル(一色の画素)は、後述する図3に示すように、バス電極XB、YBと隔壁BRとで囲われる領域に形成される。このように、PDP10は、カラー画像を表示するためにセルをマトリックス状に配置し、かつ互いに異なる色の光を発生する複数種のセルを交互に配列して構成されている。特に図示していないが、バス電極XB、YBに沿って形成されたセルにより、表示ラインが構成される。 One pixel of the PDP 10 is composed of three cells that generate red, green, and blue light. Here, one cell (one color pixel) is formed in a region surrounded by the bus electrodes XB and YB and the partition wall BR as shown in FIG. 3 described later. As described above, the PDP 10 is configured by arranging cells in a matrix to display a color image and alternately arranging a plurality of types of cells that generate light of different colors. Although not particularly illustrated, a display line is constituted by cells formed along the bus electrodes XB and YB.
 PDP10は、前面基板部12および背面基板部14を、保護層PLと隔壁BRが互いに接するように貼り合わせ、Ne、Xe等の放電ガスを放電空間DSに封入することで構成される。 The PDP 10 is configured by bonding the front substrate portion 12 and the rear substrate portion 14 so that the protective layer PL and the partition wall BR are in contact with each other, and enclosing a discharge gas such as Ne or Xe in the discharge space DS.
 図3は、図2に示したPDP10の概要を示している。なお、図3は、画像表示面側(図2の上側)から見た電極XB、XT、YB、YT、AEおよび隔壁BRの状態を示している。図中の矢印の意味は、上述した図2と同じである。 FIG. 3 shows an outline of the PDP 10 shown in FIG. 3 shows the state of the electrodes XB, XT, YB, YT, AE and the partition wall BR as viewed from the image display surface side (upper side in FIG. 2). The meanings of the arrows in the figure are the same as those in FIG.
 図中のセルCLr、CLg、CLbは、赤、緑、青の可視光をそれぞれ発生するセルを示している。以下、色毎に区別しない場合等、セルCLr、CLg、CLbをセルCLとも称する。なお、セルCL(CLr、CLg、CLb)は、上述したように、互いに対をなすバス電極XB、YBと互いに隣接する一対の隔壁BRとで囲われる領域(図の破線で囲んだ領域)に形成される。また、図中のアドレス電極AEr、AEg、AEbは、セルCLr、CLg、CLbにそれぞれ対応するアドレス電極を示している。以下、色毎に区別しない場合等、アドレス電極AEr、AEg、AEbをアドレス電極AEとも称する。 The cells CLr, CLg, and CLb in the figure indicate cells that generate red, green, and blue visible light, respectively. Hereinafter, the cells CLr, CLg, and CLb are also referred to as cells CL when they are not distinguished for each color. As described above, the cell CL (CLr, CLg, CLb) is in a region (region surrounded by a broken line in the figure) surrounded by the pair of bus electrodes XB, YB and a pair of adjacent barrier ribs BR. It is formed. In addition, address electrodes AEr, AEg, and AEb in the figure indicate address electrodes corresponding to the cells CLr, CLg, and CLb, respectively. Hereinafter, the address electrodes AEr, AEg, and AEb are also referred to as address electrodes AE when they are not distinguished for each color.
 PDP10の1つの画素PXは、上述したように、赤、緑および青の光を発生するセルCLr、CLg、CLbにより構成される。すなわち、画素PXは、互いに異なる色の光をそれぞれ発生する複数種のセルCLにより構成される。また、色別のセル群(例えば、赤色のセル群、緑色のセル群、青色のセル群)は、互いに同じ色の光を発生するセルCLにより構成される。例えば、赤色のセル群は、赤の光を発生するセルCLrにより構成される。 As described above, one pixel PX of the PDP 10 includes cells CLr, CLg, and CLb that generate red, green, and blue light. That is, the pixel PX includes a plurality of types of cells CL that respectively generate different colors of light. In addition, the cell group for each color (for example, a red cell group, a green cell group, and a blue cell group) includes cells CL that generate light of the same color. For example, the red cell group includes cells CLr that generate red light.
 バス電極XB、YBは、第1方向D1に沿って平行に形成され、第2方向D2に沿って交互に配置されている。また、各セルCL内では、透明電極XTおよびアドレス電極AE(AEr、AEg、AEb)は、セルCLの両側の隔壁BRの一方および他方にそれぞれ隣接して配置され、透明電極YTは、アドレス電極AEと透明電極XTとの間に配置されている。 The bus electrodes XB and YB are formed in parallel along the first direction D1, and are alternately arranged along the second direction D2. In each cell CL, the transparent electrode XT and the address electrode AE (AEr, AEg, AEb) are arranged adjacent to one and the other of the partition walls BR on both sides of the cell CL, respectively, and the transparent electrode YT It arrange | positions between AE and the transparent electrode XT.
 すなわち、透明電極XTは、セルCL毎に設けられ、バス電極XBからバス電極XBと対をなすバス電極YBに向けて突出し、セルCLの両側の隔壁BR(セルCLを構成する隔壁BR)の一方に隣接して配置されている。また、透明電極YTは、セルCL毎に設けられ、バス電極YBからバス電極YBと対をなすバス電極XBに向けて突出し、セルCLの両側の隔壁BR(セルCLを構成する隔壁BR)の他方と透明電極XTとの間に配置されている。図の例では、透明電極YTの先端E2は、透明電極XTの先端E1よりバス電極XB側に位置している。 That is, the transparent electrode XT is provided for each cell CL, protrudes from the bus electrode XB toward the bus electrode YB paired with the bus electrode XB, and is formed on the barrier ribs BR (the barrier ribs constituting the cell CL) on both sides of the cell CL. It is arranged adjacent to one side. In addition, the transparent electrode YT is provided for each cell CL, protrudes from the bus electrode YB toward the bus electrode XB paired with the bus electrode YB, and the partition BR on both sides of the cell CL (the partition BR constituting the cell CL). It arrange | positions between the other and the transparent electrode XT. In the example shown in the drawing, the tip E2 of the transparent electrode YT is located closer to the bus electrode XB than the tip E1 of the transparent electrode XT.
 アドレス電極AEは、各セルCL内を通って第2方向D2に延在し、セルCLの両側の隔壁BRの他方(透明電極XTが隣接していない方)と透明電極YTとの間に配置されている。なお、アドレス電極AEは、画像表示面側から見た場合、一部が隔壁BRに重なる位置に配置されてもよいし、一部が透明電極YTに重なる位置に配置されてもよい。すなわち、アドレス電極AEは、透明電極XTから離れた位置で、かつ、透明電極YTに近い位置に配置される。 The address electrode AE extends in the second direction D2 through each cell CL, and is arranged between the other of the partition walls BR on both sides of the cell CL (the one where the transparent electrode XT is not adjacent) and the transparent electrode YT. Has been. Note that when viewed from the image display surface side, the address electrode AE may be disposed at a position that partially overlaps the partition wall BR, or may be disposed at a position that partially overlaps the transparent electrode YT. That is, the address electrode AE is disposed at a position away from the transparent electrode XT and at a position close to the transparent electrode YT.
 これにより、この実施形態では、アドレス電極AEと透明電極XTとの間の配線間容量を、アドレス電極AEと透明電極YTとの間の配線間容量に比べて小さくできる。この結果、この実施形態では、透明電極XT(維持電極XE)を駆動するための回路(例えば、後述する図4のXドライバXDRV)の消費電力を小さくできる。 Thus, in this embodiment, the inter-wiring capacitance between the address electrode AE and the transparent electrode XT can be made smaller than the inter-wiring capacitance between the address electrode AE and the transparent electrode YT. As a result, in this embodiment, power consumption of a circuit for driving the transparent electrode XT (sustain electrode XE) (for example, an X driver XDRV in FIG. 4 described later) can be reduced.
 各セルCL内では、透明電極YTは、アドレス電極AEおよび透明電極XTの両方にそれぞれ対向している。したがって、着目するセルCLのアドレス電極AEおよび走査電極YE間に電圧を印加することにより、着目するセルCLのアドレス電極AEおよび透明電極YT間でアドレス放電を発生させることができる。また、維持電極XEおよび走査電極YE間に電圧を印加することにより、アドレス放電により選択されたセルCLの透明電極XTおよび透明電極YT間でサステイン放電を発生させることができる。 In each cell CL, the transparent electrode YT is opposed to both the address electrode AE and the transparent electrode XT. Therefore, an address discharge can be generated between the address electrode AE and the transparent electrode YT of the target cell CL by applying a voltage between the address electrode AE and the scan electrode YE of the target cell CL. In addition, a sustain discharge can be generated between the transparent electrode XT and the transparent electrode YT of the cell CL selected by the address discharge by applying a voltage between the sustain electrode XE and the scan electrode YE.
 図4は、1画面の画像を表示するためのフィールドFLDの構成例を示している。1つのフィールドFLDの長さは、1/60秒(約16.7ms)であり、例えば、8個のサブフィールドSF(SF1-SF8)で構成される。図の例では、各サブフィールドSFは、リセット期間RST、アドレス期間ADRおよびサステイン期間SUSを有している。 FIG. 4 shows a configuration example of the field FLD for displaying an image of one screen. The length of one field FLD is 1/60 second (about 16.7 ms), and is composed of, for example, eight subfields SF (SF1-SF8). In the illustrated example, each subfield SF has a reset period RST, an address period ADR, and a sustain period SUS.
 例えば、リセット期間RSTは、全てのセルの放電開始電圧(アドレス期間ADRのアドレス放電が発生し始める電圧)を合わせるために、各電極XE、YE、AEに蓄積される壁電荷の量を調整する期間である。ここで、壁電荷とは、例えば、各セルにおいて、図2に示したMgO等の保護層PLの表面に蓄積されるプラス電荷およびマイナス電荷である。 For example, in the reset period RST, the amounts of wall charges accumulated in the electrodes XE, YE, and AE are adjusted in order to match the discharge start voltages (voltages at which address discharge in the address period ADR starts to occur) of all cells. It is a period. Here, the wall charges are, for example, plus charges and minus charges accumulated on the surface of the protective layer PL such as MgO shown in FIG. 2 in each cell.
 アドレス期間ADRは、サステイン期間SUSに点灯させるセルを選択する期間である。例えば、サステイン期間SUSに点灯させるセルは、アドレス期間において、後述する図7に示すように、走査電極YEおよびアドレス電極AE間で選択的にアドレス放電を発生させることにより、選択される。サステイン期間SUSは、アドレス期間ADRに選択されたセル(点灯させるセル)の維持電極XEおよび走査電極YE間でサステイン放電を発生させる期間である。 The address period ADR is a period for selecting a cell to be lit in the sustain period SUS. For example, a cell to be lit in the sustain period SUS is selected by selectively generating an address discharge between the scan electrode YE and the address electrode AE in the address period, as shown in FIG. The sustain period SUS is a period in which a sustain discharge is generated between the sustain electrode XE and the scan electrode YE of the cell (cell to be lit) selected in the address period ADR.
 サステイン期間SUSの長さは、サブフィールドSFにより異なり、セルの放電回数(輝度)に依存する。このため、点灯させるサブフィールドSFの組み合わせを変えることにより、カラー画像を多階調で表示することが可能になる。この例では、サブフィールドSF1-8に予め設定されている放電サイクル数は、それぞれ4、8、16、32、64、128、256、512である。後述する図7に示すように1つの放電サイクル中に、セルは2回放電する(図の星印)。 The length of the sustain period SUS varies depending on the subfield SF and depends on the number of discharges (luminance) of the cell. Therefore, it is possible to display a color image with multiple gradations by changing the combination of subfields SF to be lit. In this example, the number of discharge cycles preset in the subfield SF1-8 is 4, 8, 16, 32, 64, 128, 256, and 512, respectively. As shown in FIG. 7 described later, the cell is discharged twice during one discharge cycle (star mark in the figure).
 図5は、図1に示した回路部60の概要を示している。なお、図5では、リセット期間RSTに電極XE、YE、AEに印可される電圧等の記載を省略している。回路部60は、電源部PWR、メモリ部MEM、制御部CNT、XドライバXDRV(第1駆動回路)、YドライバYDRV(第2駆動回路)およびアドレスドライバADRV(第3駆動回路)を有している。電源部PWRは、ドライバXDRV、YDRV、ADRVに供給する電源電圧Vs、-Vs、Vsc、Vsa等を生成する。 FIG. 5 shows an outline of the circuit unit 60 shown in FIG. In FIG. 5, the description of the voltage applied to the electrodes XE, YE, and AE in the reset period RST is omitted. The circuit unit 60 includes a power supply unit PWR, a memory unit MEM, a control unit CNT, an X driver XDRV (first drive circuit), a Y driver YDRV (second drive circuit), and an address driver ADRV (third drive circuit). Yes. The power supply unit PWR generates power supply voltages Vs, −Vs, Vsc, Vsa and the like to be supplied to the drivers XDRV, YDRV, and ADRV.
 メモリ部MEMは、例えば、DRAM(Dynamic RAM)、SRAM(Static RAM)、フラッシュメモリやROMで形成され、PDPの各種パラメータ(例えば、PDPに表示される画像の色合いを示す調整データや画面の明るさを示すデータ)を記憶する。 The memory unit MEM is formed of, for example, DRAM (Dynamic RAM), SRAM (Static RAM), flash memory, or ROM, and various parameters of the PDP (for example, adjustment data indicating the color of an image displayed on the PDP and screen brightness) Is stored).
 例えば、PDPに表示される画像の色合いを示す調整データは、赤、緑および青の光の輝度のバランスを示すデータであり、色調調整信号TCNT(調整信号)により、メモリ部MEMから制御部CNT(より詳細には、色調調整部ADJ)に伝達される。したがって、色調調整信号TCNTは、例えば、赤、緑および青の光の輝度のバランスを示す信号である。 For example, the adjustment data indicating the hue of the image displayed on the PDP is data indicating the balance of the brightness of red, green and blue light, and is controlled from the memory unit MEM to the control unit CNT by a color tone adjustment signal TCNT (adjustment signal). (More specifically, it is transmitted to the color tone adjustment unit ADJ). Therefore, the color tone adjustment signal TCNT is a signal indicating the balance of luminance of red, green and blue light, for example.
 なお、PDPに表示される画像の色合いを示す調整データは、PDPの製造工程で調整され、メモリ部MEMに記憶される。あるいは、リモートコントローラ等の図示しない操作部が、画像の色合いを調整するためにユーザにより操作されたとき、調整される画像の色合いを示す調整データがメモリ部MEMに記憶される。 Note that adjustment data indicating the hue of the image displayed on the PDP is adjusted in the manufacturing process of the PDP and stored in the memory unit MEM. Alternatively, when an operation unit (not shown) such as a remote controller is operated by the user to adjust the hue of the image, adjustment data indicating the hue of the image to be adjusted is stored in the memory unit MEM.
 制御部CNTは、PDPに表示される画像の色合いを調整するための色調調整部ADJ(調整部)を有している。例えば、色調調整部ADJは、PDPに表示される画像(カラー画像)の色合いを調整するために、互いに同じ色の光を発生するセルにより構成される色別のセル群の1つである調整セル群を選択する。ここで、調整セル群は、画像の色合いを調整するために、後述する図7に示す調整パルスAJP(調整電圧)がアドレス電極AEに印加されるセル群である。なお、色調調整部ADJの動作の詳細は、後述する図6で説明する。 The control unit CNT has a color tone adjustment unit ADJ (adjustment unit) for adjusting the hue of the image displayed on the PDP. For example, the color tone adjustment unit ADJ is an adjustment that is one of color-specific cell groups including cells that generate light of the same color in order to adjust the hue of an image (color image) displayed on the PDP. Select a cell group. Here, the adjustment cell group is a cell group to which an adjustment pulse AJP (adjustment voltage) shown in FIG. 7 described later is applied to the address electrode AE in order to adjust the color of the image. Details of the operation of the color tone adjustment unit ADJ will be described later with reference to FIG.
 また、制御部CNTは、ドライバXDRV、YDRV、ADRVの動作を制御する。例えば、制御部CNTは、画像データR0-7、G0-7、B0-7を順次受信し、受信した画像データR0-7、G0-7、B0-7に基づいて、画素PXを構成するセルCL毎に、使用するサブフィールドを選択する。これにより、多階調のカラー画像が表示される。そして、制御部CNTは、例えば、各セルCLが使用するサブフィールドを示す制御信号YCNT、XCNT、ACNTをドライバYDRV、XDRV、ADRVに出力する。なお、制御信号ACNTは、調整パルスAJPをアドレス電極AEに印加するための制御信号を含む。 Also, the control unit CNT controls the operation of the drivers XDRV, YDRV, and ADRV. For example, the control unit CNT sequentially receives the image data R0-7, G0-7, and B0-7, and based on the received image data R0-7, G0-7, and B0-7, the cells constituting the pixel PX The subfield to be used is selected for each CL. Thereby, a multi-tone color image is displayed. Then, for example, the control unit CNT outputs control signals YCNT, XCNT, and ACNT indicating subfields used by each cell CL to the drivers YDRV, XDRV, and ADRV. The control signal ACNT includes a control signal for applying the adjustment pulse AJP to the address electrode AE.
 ドライバXDRV、YDRV、ADRVは、PDP10を駆動する駆動部として動作する。例えば、XドライバXDRVは、サステイン期間SUSに、サステインパルス(例えば、電圧Vs、-Vs)をバス電極XBに共通に印加する。また、YドライバYDRVは、サステイン期間SUSでは、共通の定電圧(例えば、接地電圧)にバス電極YBを維持し、アドレス期間ADRでは、スキャンパルス(例えば、電圧Vsc)をバス電極YBに選択的に印加する。 The drivers XDRV, YDRV, and ADRV operate as a drive unit that drives the PDP 10. For example, the X driver XDRV commonly applies a sustain pulse (for example, voltages Vs and −Vs) to the bus electrode XB during the sustain period SUS. Further, the Y driver YDRV maintains the bus electrode YB at a common constant voltage (for example, ground voltage) in the sustain period SUS, and selectively selects the scan pulse (for example, voltage Vsc) for the bus electrode YB in the address period ADR. Apply to.
 そして、アドレスドライバADRVは、アドレス期間ADRに、アドレスパルス(例えば、電圧Vsaから接地電圧を経由して電圧Vsaに戻る波形電圧)をアドレス電極AEに選択的に印加する。さらに、アドレスドライバADRVは、サステイン期間SUSに、後述する図7に示す調整パルスAJP(調整電圧、例えば、電圧Vsa)を調整セル群のアドレス電極AEに印加する。 The address driver ADRV selectively applies an address pulse (for example, a waveform voltage that returns from the voltage Vsa to the voltage Vsa via the ground voltage) to the address electrode AE in the address period ADR. Further, the address driver ADRV applies an adjustment pulse AJP (adjustment voltage, for example, voltage Vsa) shown in FIG. 7 described later to the address electrode AE of the adjustment cell group in the sustain period SUS.
 図6は、図5に示した色調調整部ADJの動作の一例を示している。図6に示した処理は、ハードウエアのみで実現されてもよく、ハードウエアをソフトウエアにより制御することにより実現されてもよい。 FIG. 6 shows an example of the operation of the color tone adjustment unit ADJ shown in FIG. The process shown in FIG. 6 may be realized only by hardware, or may be realized by controlling the hardware by software.
 まず、処理100において、色調調整部ADJは、PDPに表示される画像の色合いを調整する色調調整信号TCNTを受信する。例えば、色調調整部ADJは、図示しないPDPの電源を立ち上げたときに、メモリ部MEMから色調調整信号TCNTを受ける。あるいは、色調調整部ADJは、リモートコントローラ等の図示しない操作部が、画像の色合いを調整するためにユーザにより操作されたとき、色調調整信号TCNTを受信する。このため、色調調整部ADJは、色調調整信号TCNTを受信する毎に、図6の処理を実施する。 First, in process 100, the color tone adjustment unit ADJ receives a color tone adjustment signal TCNT for adjusting the hue of an image displayed on the PDP. For example, the color tone adjustment unit ADJ receives a color tone adjustment signal TCNT from the memory unit MEM when a power supply of a PDP (not shown) is turned on. Alternatively, the color tone adjustment unit ADJ receives the color tone adjustment signal TCNT when an operation unit (not shown) such as a remote controller is operated by the user to adjust the hue of the image. Therefore, the color tone adjustment unit ADJ performs the process of FIG. 6 every time it receives the color tone adjustment signal TCNT.
 処理200において、色調調整部ADJは、色調調整信号TCNTに基づいて、色別のセル群(例えば、赤色のセル群、緑色のセル群、青色のセル群)から調整セル群を選択する。例えば、色調調整部ADJは、赤色の輝度を画面全体で高く、かつ、緑色の輝度を画面全体で低くすることを示す色調調整信号TCNTを受信した場合、赤色および青色のセル群を調整セル群としてそれぞれ選択する。この場合、緑色のセル群のアドレス電極には、調整パルスAJPは印加されない。 In the process 200, the color tone adjustment unit ADJ selects an adjustment cell group from cell groups for each color (for example, a red cell group, a green cell group, and a blue cell group) based on the color tone adjustment signal TCNT. For example, when the color tone adjustment unit ADJ receives a color tone adjustment signal TCNT indicating that the red luminance is increased over the entire screen and the green luminance is decreased over the entire screen, the red and blue cell groups are adjusted to the adjusted cell group. Select as each. In this case, the adjustment pulse AJP is not applied to the address electrode of the green cell group.
 処理300において、色調調整部ADJは、色調調整信号TCNTに基づいて、1フィールドFLD中に調整パルスAJP(調整電圧)をアドレス電極AEに印加する回数(調整回数)を調整セル群毎に設定する。例えば、色調調整部ADJは、赤色のセル群に1020回の調整回数を設定し、青色のセル群に510回の調整回数を設定する。この例では、青色の輝度は、緑色の輝度より高く、赤色の輝度より低く設定される。 In the process 300, the color tone adjustment unit ADJ sets the number of times (adjustment frequency) of applying the adjustment pulse AJP (adjustment voltage) to the address electrode AE during one field FLD for each adjustment cell group based on the color tone adjustment signal TCNT. . For example, the color tone adjustment unit ADJ sets the number of adjustments 1020 times for the red cell group, and sets the number of adjustments 510 times for the blue cell group. In this example, the blue luminance is set higher than the green luminance and lower than the red luminance.
 処理400において、色調調整部ADJは、調整セル群毎に、各サブフィールドSFに設定されたサステイン放電の回数(例えば、上述した図4に示した放電サイクル数)に応じて、処理300で設定された調整回数を各サブフィールドSFに分配する。例えば、色調調整部ADJは、1フィールドFLDの放電サイクル数に対する各サブフィールドSFの放電サイクル数の割合に合わせて、調整回数を各サブフィールドSFに分配する。 In process 400, the color tone adjustment unit ADJ is set in process 300 according to the number of sustain discharges set in each subfield SF (for example, the number of discharge cycles shown in FIG. 4 described above) for each adjustment cell group. The adjusted number of adjustments is distributed to each subfield SF. For example, the color tone adjustment unit ADJ distributes the number of adjustments to each subfield SF in accordance with the ratio of the number of discharge cycles of each subfield SF to the number of discharge cycles of one field FLD.
 上述した図4に示したフィールドFLDの構成例の場合、1020回の調整回数が設定された赤色のセル群では、サブフィールドSF1-8に分配される調整回数は、それぞれ4、8、16、32、64、128、256、512である。また、510回の調整回数が設定された青色のセル群では、サブフィールドSF1-8に分配される調整回数は、それぞれ2、4、8、16、32、64、128、256である。この場合、各サブフィールドSFの放電サイクル数と調整回数との比は、互いに等しく設定される。 In the configuration example of the field FLD shown in FIG. 4 described above, in the red cell group in which the number of adjustments of 1020 is set, the number of adjustments distributed to the subfields SF1-8 is 4, 8, 16, 32, 64, 128, 256, 512. In the blue cell group in which 510 adjustment times are set, the adjustment times distributed to the subfields SF1-8 are 2, 4, 8, 16, 32, 64, 128, and 256, respectively. In this case, the ratio between the number of discharge cycles and the number of adjustments in each subfield SF is set to be equal to each other.
 なお、各サブフィールドSFの放電サイクル数と調整回数との比は、互いに等しく設定されなくてもよい。例えば、1フィールドFLD中の調整回数が64回の場合、サブフィールドSF1-8に分配される調整回数は、それぞれ0、1、1、2、4、8、16、32である。また、1フィールドFLD中の調整回数が400回の場合、サブフィールドSF1-8に分配される調整回数は、それぞれ2、3、6、13、25、50、100、101である。 Note that the ratio between the number of discharge cycles and the number of adjustments in each subfield SF may not be set equal to each other. For example, when the number of adjustments in one field FLD is 64, the number of adjustments distributed to subfields SF1-8 is 0, 1, 1, 2, 4, 8, 16, and 32, respectively. When the number of adjustments in one field FLD is 400, the number of adjustments distributed to the subfields SF1-8 is 2, 3, 6, 13, 25, 50, 100, and 101, respectively.
 なお、この分配された調整回数を示す情報は、上述したように、制御信号ACNTに含まれ、アドレスドライバADRVに伝達される。これにより、PDPに表示される画像の赤色の輝度を画面全体で高く、かつ、緑色の輝度を画面全体で低くできる。 Note that the information indicating the distributed number of adjustments is included in the control signal ACNT and transmitted to the address driver ADRV as described above. As a result, the red luminance of the image displayed on the PDP can be increased over the entire screen, and the green luminance can be decreased over the entire screen.
 このように、この実施形態では、例えば、緑色の輝度を画面全体で低くする場合、緑色のセル群の1フィールドFLDで発生させるサステイン放電の最高回数を、他の色(赤、青)のセル群に比べて少なくする必要がない。すなわち、この実施形態では、緑色の輝度を画面全体で低くする場合でも、緑色の階調数は、他の色(赤、青)の階調数と同じに維持される。換言すれば、この実施形態では、各色の階調数を維持した状態で、PDPに表示される画像の色合いを調整できる。 Thus, in this embodiment, for example, when the green luminance is lowered over the entire screen, the maximum number of sustain discharges generated in one field FLD of the green cell group is set to the cells of other colors (red, blue). There is no need to reduce it compared to the group. That is, in this embodiment, even when the green luminance is lowered on the entire screen, the number of gradations of green is maintained the same as the number of gradations of other colors (red and blue). In other words, in this embodiment, the hue of the image displayed on the PDP can be adjusted while maintaining the number of gradations of each color.
 図7は、図2に示したPDP10に画像を表示するためのサブフィールドSFの放電動作の一例を示している。なお、図7は、赤色および青色のセル群が調整セル群として選択されたときのサブフィールドSF1の放電動作の一例を示している。図中の星印は、放電の発生を示している。また、図7に示した電極XE、YE、AEの波形電圧は、例えば、上述した図5に示したドライバXDRV、YDRV、ADRVにより、電極XE、YE、AEにそれぞれ印加される。なお、図の例では、1フィールドFLDで1020回の調整回数が赤色のセル群に設定され、1フィールドFLDで510回の調整回数が青色のセル群に設定されている。すなわち、赤色および青色のセル群のサブフィールドSF1にそれぞれ設定された調整回数は、それぞれ4、2である。 FIG. 7 shows an example of the discharge operation of the subfield SF for displaying an image on the PDP 10 shown in FIG. FIG. 7 shows an example of the discharge operation of subfield SF1 when the red and blue cell groups are selected as the adjustment cell groups. The star in the figure indicates the occurrence of discharge. Further, the waveform voltages of the electrodes XE, YE, and AE shown in FIG. 7 are applied to the electrodes XE, YE, and AE, for example, by the drivers XDRV, YDRV, and ADRV shown in FIG. In the example shown in the figure, the number of adjustments 1020 times in one field FLD is set in a red cell group, and the number of adjustments 510 times in one field FLD is set in a blue cell group. That is, the numbers of adjustments set in the subfield SF1 of the red and blue cell groups are 4 and 2, respectively.
 まず、リセット期間RSTでは、所定の電圧(図では、接地電圧GND)が維持電極XE(バス電極XBおよび透明電極XT)に印加され、緩やかに下降する負の書き込み電圧(書き込み鈍波)が走査電極YE(バス電極YBおよび透明電極YT)に印加され、正の電圧Vsaが、アドレス電極AEに印加される(図7(a))。これにより、セルの発光を抑えながら電極XE、YE、AEに壁電荷がそれぞれ蓄積される。例えば、維持電極XE、走査電極YEおよびアドレス電極AEに、負の壁電荷、正の壁電荷および負の壁電荷がそれぞれ蓄積される。 First, in the reset period RST, a predetermined voltage (the ground voltage GND in the figure) is applied to the sustain electrode XE (the bus electrode XB and the transparent electrode XT), and a negative write voltage (write blunt wave) that gently falls is scanned. Applied to the electrode YE (the bus electrode YB and the transparent electrode YT), the positive voltage Vsa is applied to the address electrode AE (FIG. 7A). Thereby, wall charges are accumulated in the electrodes XE, YE, and AE, respectively, while suppressing the light emission of the cell. For example, negative wall charges, positive wall charges, and negative wall charges are accumulated in sustain electrode XE, scan electrode YE, and address electrode AE, respectively.
 次に、維持電極XEは、接地電圧GNDに維持され、緩やかに上昇する正の調整電圧(調整鈍波)が走査電極YEに印加され、接地電圧GNDがアドレス電極AEに印加される(図7(b))。これにより、維持電極XE、走査電極YEおよびアドレス電極AEにそれぞれ蓄積された壁電荷の量を調整することができる。例えば、調整電圧の最大値は、電圧Vsより低い電圧である。 Next, sustain electrode XE is maintained at ground voltage GND, and a positive adjustment voltage (adjustment blunt wave) that gradually increases is applied to scan electrode YE, and ground voltage GND is applied to address electrode AE (FIG. 7). (B)). Thereby, the amount of wall charges accumulated in sustain electrode XE, scan electrode YE, and address electrode AE can be adjusted. For example, the maximum value of the adjustment voltage is a voltage lower than the voltage Vs.
 アドレス期間ADRでは、維持電極XEは、接地電圧GNDに維持され、正の電圧Vsaがアドレス電極AEに印加される(図7(c))。そして、アドレス放電時に陽極となるスキャンパルス(電圧Vsc)が走査電極YEに印加され、アドレス放電時に陰極となるアドレスパルス(接地電圧GND)が、点灯するセルに対応するアドレス電極AEに印加される(図7(d))。スキャンパルスとアドレスパルスにより選択されたセルでは、走査電極YEとアドレス電極AE間で一時的に放電が発生(アドレス放電)し、この放電をトリガにして、維持電極XEと走査電極YE間で一時的に放電(アドレス放電)が発生する。これにより、サステイン期間SUSに点灯させるセルが選択される。 In the address period ADR, the sustain electrode XE is maintained at the ground voltage GND, and the positive voltage Vsa is applied to the address electrode AE (FIG. 7C). Then, a scan pulse (voltage Vsc) serving as an anode during address discharge is applied to the scan electrode YE, and an address pulse (ground voltage GND) serving as a cathode during address discharge is applied to the address electrode AE corresponding to the lighted cell. (FIG. 7D). In the cell selected by the scan pulse and the address pulse, a discharge is temporarily generated between the scan electrode YE and the address electrode AE (address discharge), and this discharge is used as a trigger to temporarily stop between the sustain electrode XE and the scan electrode YE. Discharge (address discharge) occurs. Thereby, a cell to be lit in the sustain period SUS is selected.
 なお、維持電極XEは、電圧Vscより低い接地電圧GNDにより、アドレス放電時に走査電極YEに対して陰極になる。アドレス電極AEは、電圧Vscより低い接地電圧GND(アドレス放電時に陰極となるアドレスパルス)により、アドレス放電時に走査電極YEに対して陰極になる。すなわち、走査電極YEは、電圧Vsc(アドレス放電時に陽極となるスキャンパルス)により、アドレス放電時に維持電極XEおよびアドレス電極AEに対して陽極になる。このため、アドレス放電により選択されたセルでは、維持電極XEと走査電極YEに正と負の壁電荷がそれぞれ蓄積される。 The sustain electrode XE becomes a cathode with respect to the scan electrode YE at the time of address discharge by the ground voltage GND lower than the voltage Vsc. The address electrode AE becomes a cathode with respect to the scanning electrode YE at the time of address discharge by a ground voltage GND (address pulse which becomes a cathode at the time of address discharge) lower than the voltage Vsc. That is, the scan electrode YE becomes an anode with respect to the sustain electrode XE and the address electrode AE at the time of address discharge by the voltage Vsc (a scan pulse that becomes an anode at the time of address discharge). For this reason, in the cell selected by the address discharge, positive and negative wall charges are accumulated in the sustain electrode XE and the scan electrode YE, respectively.
 例えば、この実施形態では、スキャンパルスの電圧Vscは、調整電圧の最大値より高い電圧である。また、電圧Vscと電圧Vsaの電圧差は、アドレス電極AEと走査電極YE間の放電開始電圧(放電を発生させる最低電圧)より小さい。これにより、電圧Vsaに維持されているアドレス電極AEとスキャンパルス(電圧Vsc)が印加された走査電極YE間で誤放電が発生することを防止できる。なお、アドレス電極AEの波形に示される2回目のアドレスパルス(接地電圧GND)は、他の表示ラインのセルを選択するために印加される(図7(e))。 For example, in this embodiment, the voltage Vsc of the scan pulse is higher than the maximum value of the adjustment voltage. Further, the voltage difference between the voltage Vsc and the voltage Vsa is smaller than the discharge start voltage (the lowest voltage that causes discharge) between the address electrode AE and the scan electrode YE. Thereby, it is possible to prevent erroneous discharge from occurring between the address electrode AE maintained at the voltage Vsa and the scan electrode YE to which the scan pulse (voltage Vsc) is applied. Note that the second address pulse (ground voltage GND) shown in the waveform of the address electrode AE is applied to select a cell in another display line (FIG. 7E).
 サステイン期間SUSでは、最初に、正のサステインパルス(第1電圧、電圧Vs)が、維持電極XEに印加され、電圧Vsと電圧-Vsとの中間の電圧である定電圧Vb(所定電圧)が、走査電極YEに印加され、接地電圧GNDが、アドレス電極AEに印加される(図7(f))。例えば、電圧Vbは、電圧Vsと電圧-Vsとの平均値の接地電圧GNDである。なお、電圧Vbは、電圧Vsと電圧-Vsとの間の電圧値を有する定電圧でもよい。アドレス期間ADRに選択されたセル(点灯するセル)では、維持電極XEと走査電極YEに正と負の壁電荷がそれぞれ蓄積されているため、維持電極XEおよび走査電極YE間の電圧は、電圧Vsより大きくなる。 In the sustain period SUS, first, a positive sustain pulse (first voltage, voltage Vs) is applied to the sustain electrode XE, and a constant voltage Vb (predetermined voltage), which is an intermediate voltage between the voltage Vs and the voltage −Vs, is applied. , And applied to the scan electrode YE, and the ground voltage GND is applied to the address electrode AE (FIG. 7F). For example, the voltage Vb is the ground voltage GND that is an average value of the voltage Vs and the voltage −Vs. The voltage Vb may be a constant voltage having a voltage value between the voltage Vs and the voltage −Vs. In the cell (lighted cell) selected in the address period ADR, positive and negative wall charges are accumulated in the sustain electrode XE and the scan electrode YE, respectively. Therefore, the voltage between the sustain electrode XE and the scan electrode YE is the voltage It becomes larger than Vs.
 これにより、点灯するセルでは、維持電極XEおよび走査電極YE間の電圧が維持電極XEおよび走査電極YE間の放電開始電圧より大きくなり、維持電極XEと走査電極YE間で放電(サステイン放電)が発生する。そして、放電が発生したセル(点灯するセル)では、電圧Vsが印加された維持電極XEと接地電圧GNDが印加された走査電極YEに、負と正の壁電荷がそれぞれ蓄積される。 Thereby, in the lighted cell, the voltage between sustain electrode XE and scan electrode YE becomes larger than the discharge start voltage between sustain electrode XE and scan electrode YE, and discharge (sustain discharge) occurs between sustain electrode XE and scan electrode YE. appear. Then, in the cells where discharge has occurred (lighted cells), negative and positive wall charges are accumulated in the sustain electrode XE to which the voltage Vs is applied and the scan electrode YE to which the ground voltage GND is applied, respectively.
 次に、負のサステインパルス(第2電圧、電圧-Vs)が、維持電極XEに印加され、走査電極YEおよびアドレス電極AEgは、接地電圧GNDにそれぞれ維持され、調整パルスAJP(調整電圧Vsa)がアドレス電極Ar、AEbにそれぞれ印加される(図7(g))。直前(図7(f))に放電が発生していたセル(点灯するセル)では、維持電極XEと走査電極YEに負と正の壁電荷がそれぞれ蓄積されているため、維持電極XEおよび走査電極YE間の電圧は、放電開始電圧より大きくなる。これにより、点灯するセルでは、維持電極XEと走査電極YE間で放電(サステイン放電)が発生し、放電状態が維持される。 Next, a negative sustain pulse (second voltage, voltage −Vs) is applied to sustain electrode XE, scan electrode YE and address electrode AEg are maintained at ground voltage GND, respectively, and adjustment pulse AJP (adjustment voltage Vsa) Are applied to the address electrodes Ar and AEb, respectively (FIG. 7G). In the cell where the discharge occurred immediately before (figure 7 (f)) (lighted cell), the negative and positive wall charges are accumulated in the sustain electrode XE and the scan electrode YE, respectively. The voltage between the electrodes YE becomes larger than the discharge start voltage. Thereby, in the lighted cell, a discharge (sustain discharge) is generated between the sustain electrode XE and the scan electrode YE, and the discharge state is maintained.
 なお、赤色および青色のセル群では、上述したように、負のサステインパルスに同期して、調整パルスAJPがアドレス電極AE(AEr、AEb)に印加される(図7の低レベル期間LP1)。すなわち、維持電極XEに電圧-Vsを印加する期間(低レベル期間LP)の少なくとも1つで、定電圧Vbより高い調整電圧Vsaが、アドレス電極Ar、AEbに印加される。換言すれば、維持電極XEの電圧(電圧-Vs)が定電圧Vb(図では、接地電圧GND)より低い低レベル期間LP1に、定電圧Vbより高い調整電圧Vsaが、調整セル群の1つである赤色および青色のセル群にそれぞれ対応するアドレス電極AEr、AEbに印加される。なお、例えば、調整電圧Vsaは、アドレス期間ADRにアドレス電極AEに維持される正の電圧Vsaと同じ電圧である。これにより、この実施形態では、調整パルスAJP用の電源電圧を新たに生成する必要がなく、回路部60(例えば、電源部PWRおよびアドレスドライバADRV)の構成を簡易にできる。 In the red and blue cell groups, as described above, the adjustment pulse AJP is applied to the address electrodes AE (AEr, AEb) in synchronization with the negative sustain pulse (low level period LP1 in FIG. 7). That is, the adjustment voltage Vsa higher than the constant voltage Vb is applied to the address electrodes Ar and AEb in at least one of the periods (low level period LP) in which the voltage −Vs is applied to the sustain electrodes XE. In other words, the adjustment voltage Vsa higher than the constant voltage Vb is one of the adjustment cell groups in the low level period LP1 in which the voltage (voltage −Vs) of the sustain electrode XE is lower than the constant voltage Vb (the ground voltage GND in the figure). Are applied to address electrodes AEr and AEb respectively corresponding to the red and blue cell groups. For example, the adjustment voltage Vsa is the same voltage as the positive voltage Vsa maintained at the address electrode AE during the address period ADR. Thereby, in this embodiment, it is not necessary to newly generate a power supply voltage for the adjustment pulse AJP, and the configuration of the circuit unit 60 (for example, the power supply unit PWR and the address driver ADRV) can be simplified.
 調整電圧Vsaがアドレス電極AEに印加された赤色および青色のセル群のうち、点灯するセルでは、透明電極YTから透明電極XTに向かう電界の他に、アドレス電極AEから透明電極XTに向かう電界が発生する。すなわち、赤色および青色のセル群の点灯するセルでは、他の色(例えば、緑色)のセル群に比べて強い電界が透明電極XTに発生する。これにより、赤色および青色のセル群の点灯するセルでは、多くの陽イオンが透明電極XT上の保護層PLに衝突し、強い放電が発生する。 Among the red and blue cell groups to which the adjustment voltage Vsa is applied to the address electrode AE, in the cells to be lit, there is an electric field from the address electrode AE to the transparent electrode XT in addition to the electric field from the transparent electrode YT to the transparent electrode XT. appear. That is, in the cells in which the red and blue cell groups are lit, a stronger electric field is generated in the transparent electrode XT than the other color (for example, green) cell groups. Thereby, in the lighted cells of the red and blue cell groups, many cations collide with the protective layer PL on the transparent electrode XT, and a strong discharge is generated.
 ここで、例えば、アドレス電極AEと透明電極XTとの間に配置された透明電極YTの電圧が調整電圧Vsaより高い場合、調整電圧Vsaより発生する電界は、透明電極YTからアドレス電極AEに向かって主に発生する。これにより、透明電極YTの電圧が調整電圧Vsaより高い場合、調整電圧Vsaがアドレス電極AEに印加されても、アドレス電極AEから透明電極XTに向かう電界が弱いため、強い電界が透明電極XTに発生しないおそれがある。 Here, for example, when the voltage of the transparent electrode YT disposed between the address electrode AE and the transparent electrode XT is higher than the adjustment voltage Vsa, the electric field generated from the adjustment voltage Vsa is directed from the transparent electrode YT to the address electrode AE. Mainly occurs. Thereby, when the voltage of the transparent electrode YT is higher than the adjustment voltage Vsa, even if the adjustment voltage Vsa is applied to the address electrode AE, the electric field from the address electrode AE to the transparent electrode XT is weak, so a strong electric field is applied to the transparent electrode XT. May not occur.
 これに対し、この実施形態では、上述したように、透明電極YTの電圧Vbが調整電圧Vsaより低いため、調整セル群(図の例では、赤色および青色のセル群)の点灯するセルにおいて、アドレス電極AEおよび透明電極YTと透明電極XTとの間の電界強度を強くでき、放電強度を強くできる。この結果、この実施形態では、調整セル群(図の例では、赤色および青色のセル群)の点灯するセルの輝度を高くできる。 On the other hand, in this embodiment, as described above, since the voltage Vb of the transparent electrode YT is lower than the adjustment voltage Vsa, in the cells that are lit in the adjustment cell group (red and blue cell groups in the example in the figure) The electric field strength between the address electrode AE and the transparent electrode YT and the transparent electrode XT can be increased, and the discharge strength can be increased. As a result, in this embodiment, the brightness of the cells to be lit in the adjustment cell group (red and blue cell groups in the example in the figure) can be increased.
 なお、放電が発生したセルでは、電圧-Vsが印加された維持電極XEと接地電圧GNDが印加された走査電極YEに、正と負の壁電荷がそれぞれ蓄積される。このように、走査電極YEに印加される電圧Vb(接地電圧GND)に対して互いに極性の異なるサステインパルス(電圧Vs、電圧-Vs)が、維持電極XEに交互に印加される(図7(f、g))ことにより、サステイン期間SUSに点灯したセルの放電(サステイン放電)が繰り返し行われる。上述した図4で説明したように、1放電サイクル中(例えば、図7(f、g))に2回の放電が実施される。例えば、サブフィールドSF1は、4個の放電サイクルで構成され、8回の放電が実施される。 In the cells where discharge has occurred, positive and negative wall charges are accumulated in the sustain electrode XE to which the voltage −Vs is applied and the scan electrode YE to which the ground voltage GND is applied, respectively. In this way, sustain pulses (voltage Vs, voltage -Vs) having different polarities from the voltage Vb (ground voltage GND) applied to the scan electrode YE are alternately applied to the sustain electrode XE (FIG. 7 ( f, g)), the discharge of the cells lit in the sustain period SUS (sustain discharge) is repeatedly performed. As described with reference to FIG. 4 described above, two discharges are performed during one discharge cycle (for example, FIG. 7 (f, g)). For example, the subfield SF1 is composed of four discharge cycles, and eight discharges are performed.
 2番目の低レベル期間LP2では、調整電圧Vsaが、赤色および青色のセル群にそれぞれ対応するアドレス電極AEr、AEbに印加され、アドレス電極AEgは、接地電圧GNDに維持される。これにより、赤色および青色のセル群の点灯するセルの輝度を高くできる。 In the second low level period LP2, the adjustment voltage Vsa is applied to the address electrodes AER and AEb corresponding to the red and blue cell groups, respectively, and the address electrode AEg is maintained at the ground voltage GND. Thereby, the brightness | luminance of the cell which the red and blue cell group lights can be made high.
 3、4番目の低レベル期間LP3、LP4では、調整電圧Vsaが、赤色のセル群に対応するアドレス電極AErに印加され、アドレス電極AEg、AEbは、接地電圧GNDに維持される。これにより、赤色のセル群の点灯するセルの輝度を高くできる。したがって、図の例では、調整パルスAJPが印加されていないときの各色の輝度が互いに同じ場合、調整パルスAJPの印加により、PDPに表示される画像の赤色の輝度を画面全体で高く、かつ、緑色の輝度を画面全体で低くできる。 In the third and fourth low level periods LP3 and LP4, the adjustment voltage Vsa is applied to the address electrode AERr corresponding to the red cell group, and the address electrodes AEg and AEb are maintained at the ground voltage GND. Thereby, the brightness | luminance of the cell which a red cell group lights can be made high. Therefore, in the example of the figure, when the luminance of each color when the adjustment pulse AJP is not applied is the same, the application of the adjustment pulse AJP increases the red luminance of the image displayed on the PDP over the entire screen, and The green brightness can be lowered throughout the screen.
 最後に、緩やかに上昇する正の消去パルスが維持電極XEに印加される(図7(h))。これにより、点灯したセルのみの壁電荷を減少させるための放電が発生し、点灯したセルの壁電荷の量が減る。 Finally, a positive erase pulse that rises slowly is applied to the sustain electrode XE (FIG. 7 (h)). As a result, a discharge is generated to reduce the wall charge of only the lit cell, and the amount of wall charge of the lit cell is reduced.
 上述したように、調整セル群では、サステイン期間SUS中、調整部ADJにより設定された調整回数が示す数の調整パルスAJP(調整電圧Vsa)が、負のサステインパルス(低レベル期間LP)に同期して、アドレス電極AEに印加される。すなわち、アドレスドライバADRVにより調整電圧Vsaが印加される低レベル期間LPの数は、調整回数に等しい。なお、調整セル群では、調整電圧Vsaがアドレス電極AEに印加されていない期間に、定電圧Vb以下のバイアス電圧(例えば、接地電圧GND)が、アドレス電極に印加される。また、調整セル群を除くセル群では、サステイン期間SUS中、アドレス電極AEは、定電圧Vb以下のバイアス電圧(例えば、接地電圧GND)に維持される。 As described above, in the adjustment cell group, the number of adjustment pulses AJP (adjustment voltage Vsa) indicated by the number of adjustments set by the adjustment unit ADJ is synchronized with the negative sustain pulse (low level period LP) during the sustain period SUS. Then, it is applied to the address electrode AE. That is, the number of low level periods LP to which the adjustment voltage Vsa is applied by the address driver ADRV is equal to the number of adjustments. In the adjustment cell group, a bias voltage (for example, ground voltage GND) equal to or lower than the constant voltage Vb is applied to the address electrode during a period when the adjustment voltage Vsa is not applied to the address electrode AE. In the cell group excluding the adjustment cell group, the address electrode AE is maintained at a bias voltage (for example, the ground voltage GND) equal to or lower than the constant voltage Vb during the sustain period SUS.
 以上、この実施形態では、サステイン期間SUS中、走査電極YEは、定電圧Vb(例えば、接地電圧GND)に維持され、維持電極XEには、サステインパルスが印加される。さらに、この実施形態では、サステイン期間SUS中、調整部ADJにより設定された調整回数が示す数の調整パルスAJP(定電圧Vbより高い調整電圧Vsa)が、負のサステインパルス(低レベル期間LP)に同期して、調整セル群のアドレス電極AEに印加される。これにより、各色の階調数を維持した状態で、調整セル群のセルが発する可視光の輝度を高くできる。この結果、この実施形態では、各色の階調数を維持した状態で、PDPに表示される画像の色合いを調整できる。 As described above, in this embodiment, during the sustain period SUS, the scan electrode YE is maintained at the constant voltage Vb (for example, the ground voltage GND), and the sustain pulse is applied to the sustain electrode XE. Further, in this embodiment, during the sustain period SUS, the number of adjustment pulses AJP (adjustment voltage Vsa higher than the constant voltage Vb) indicated by the number of adjustments set by the adjustment unit ADJ are negative sustain pulses (low level period LP). Synchronously with this, it is applied to the address electrode AE of the adjustment cell group. Thereby, the brightness | luminance of the visible light which the cell of an adjustment cell group emits can be made high in the state which maintained the number of gradations of each color. As a result, in this embodiment, the hue of the image displayed on the PDP can be adjusted while maintaining the number of gradations of each color.
 なお、上述した実施形態では、1つの画素が、3つのセル(赤(R)、緑(G)、青(B))により構成される例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、1つの画素を4つ以上のセルにより構成してもよい。あるいは、1つの画素が、赤(R)、緑(G)、青(B)以外の色を発生するセルにより構成されてもよく、1つの画素が、赤(R)、緑(G)、青(B)以外の色を発生するセルを含んでもよい。 In the above-described embodiment, an example in which one pixel includes three cells (red (R), green (G), and blue (B)) has been described. The present invention is not limited to such an embodiment. For example, one pixel may be composed of four or more cells. Alternatively, one pixel may be composed of cells that generate colors other than red (R), green (G), and blue (B), and one pixel may be red (R), green (G), A cell that generates a color other than blue (B) may be included.
 上述した実施形態では、第2方向D2が、第1方向D1に直交する例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、第2方向D2は、第1方向D1と、ほぼ直角方向(例えば、90度±5度)に交差してもよい。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, the example in which the second direction D2 is orthogonal to the first direction D1 has been described. The present invention is not limited to such an embodiment. For example, the second direction D2 may intersect the first direction D1 in a substantially perpendicular direction (for example, 90 ° ± 5 °). Also in this case, the same effect as the above-described embodiment can be obtained.
 上述した実施形態では、本発明を、1フィールドが8個のサブフィールドSF1-8で構成されるプラズマディスプレイパネルに適用する例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、本発明を、1フィールドが10個あるいはそれ以上のサブフィールドで構成されるプラズマディスプレイパネルに適用してもよい。また、サブフィールドの放電サイクル数は、2のn乗(n=2以上の整数)に限定されない。さらに、フィールドFLD内のサブフィールドSF1-8(図4)は、順次に配列されなくてもよい。例えば、サブフィールドSF8がフィールドFLDの中央付近に配置されてもよい。 In the above-described embodiment, an example in which the present invention is applied to a plasma display panel in which one field is composed of eight subfields SF1-8 has been described. The present invention is not limited to such an embodiment. For example, the present invention may be applied to a plasma display panel in which one field is composed of 10 or more subfields. Further, the number of discharge cycles in the subfield is not limited to 2 to the power of n (n = 2 or larger integer). Further, the subfields SF1-8 (FIG. 4) in the field FLD may not be sequentially arranged. For example, subfield SF8 may be arranged near the center of field FLD.
 上述した実施形態では、調整パルスAJPの数が低レベル期間LPの数より少ない場合、サステイン期間SUSの前半の低レベル期間LPで調整パルスAJPがアドレス電極AEに印加される例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、調整パルスAJPの数が低レベル期間LPの数より少ない場合、サステイン期間SUSの中央付近の低レベル期間LP(例えば、図7の低レベル期間LP2、LP3)で、調整パルスAJPがアドレス電極AEに印加されてもよし、サステイン期間SUSの後半の低レベル期間LP(例えば、図7の低レベル期間LP3、LP4)で、調整パルスAJPがアドレス電極AEに印加されてもよい。あるいは、連続しない低レベル期間LP(例えば、図7の低レベル期間LP2、LP4)で、調整パルスAJPがアドレス電極AEに印加されてもよい。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, the example in which the adjustment pulse AJP is applied to the address electrode AE in the low level period LP in the first half of the sustain period SUS when the number of the adjustment pulses AJP is smaller than the number of the low level periods LP has been described. The present invention is not limited to such an embodiment. For example, when the number of adjustment pulses AJP is smaller than the number of low level periods LP, the adjustment pulse AJP is an address electrode in the low level period LP near the center of the sustain period SUS (for example, the low level periods LP2 and LP3 in FIG. 7). The adjustment pulse AJP may be applied to the address electrode AE in the low level period LP (for example, the low level periods LP3 and LP4 in FIG. 7) in the latter half of the sustain period SUS. Alternatively, the adjustment pulse AJP may be applied to the address electrode AE in a discontinuous low level period LP (for example, the low level periods LP2 and LP4 in FIG. 7). Also in this case, the same effect as the above-described embodiment can be obtained.
 特に、サステイン期間SUSの前半では、サステイン放電が安定していないおそれがあるため、最初の低レベル期間LP1を除いた低レベル期間LPで調整パルスAJPがアドレス電極AEに印加された場合、サステイン放電が不安定になることを防止できる。また、最後の低レベル期間LP(例えば、図7の低レベル期間LP4)を除いた低レベル期間LPで調整パルスAJPがアドレス電極AEに印加された場合、例えば、点灯したセルのみの壁電荷を減少させるための放電(例えば、図7のサステイン期間SUSの最後の放電)等を安定して発生させることができる。間隔を空けて(例えば、図7の低レベル期間LP2、LP4)、調整パルスAJPがアドレス電極AEに印加された場合、各サステイン放電を安定して発生させることができる。 In particular, in the first half of the sustain period SUS, the sustain discharge may not be stable. Therefore, when the adjustment pulse AJP is applied to the address electrode AE in the low level period LP excluding the first low level period LP1, the sustain discharge is performed. Can be prevented from becoming unstable. Further, when the adjustment pulse AJP is applied to the address electrode AE in the low level period LP excluding the last low level period LP (for example, the low level period LP4 in FIG. 7), for example, the wall charges of only the lighted cells are reduced. A discharge for decreasing (for example, the last discharge in the sustain period SUS in FIG. 7) or the like can be stably generated. When the adjustment pulse AJP is applied to the address electrode AE at intervals (for example, the low level periods LP2 and LP4 in FIG. 7), each sustain discharge can be stably generated.
 上述した実施形態では、色別の3つのセル群のうち、2つのセル群が調整セル群として選択される例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、色別のセル群のうち、1つのセル群のみが調整セル群として選択されてもよいし、全てのセル群が調整セル群として選択されてもよい。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, an example in which two cell groups among the three cell groups by color are selected as the adjustment cell groups has been described. The present invention is not limited to such an embodiment. For example, among the cell groups by color, only one cell group may be selected as the adjustment cell group, or all the cell groups may be selected as the adjustment cell group. Also in this case, the same effect as the above-described embodiment can be obtained.
 上述した実施形態では、アドレス期間ADRに、アドレス放電時に陽極となるスキャンパルス(電圧Vsc)およびアドレス放電時に陰極となるアドレスパルス(接地電圧GND)が、走査電極YEおよびアドレス電極AEにそれぞれ印加される例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、図8に示すように、アドレス期間ADRに、アドレス放電時に陰極となるスキャンパルス(電圧-Vsc2)およびアドレス放電時に陽極となるアドレスパルス(電圧Vsa2)が、走査電極YEおよびアドレス電極AEにそれぞれ印加されてもよい。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, in the address period ADR, the scan pulse (voltage Vsc) serving as the anode during address discharge and the address pulse (ground voltage GND) serving as the cathode during address discharge are applied to the scan electrode YE and the address electrode AE, respectively. An example was described. The present invention is not limited to such an embodiment. For example, as shown in FIG. 8, in the address period ADR, a scan pulse (voltage -Vsc2) that becomes a cathode during address discharge and an address pulse (voltage Vsa2) that becomes an anode during address discharge are applied to the scan electrode YE and the address electrode AE. Each may be applied. Also in this case, the same effect as the above-described embodiment can be obtained.
 図8は、PDPに画像を表示するためのサブフィールドの放電動作の別の例を示している。図8の例では、走査電極YEとアドレス電極AEとの間に印加される電圧の極性および走査電極YEと維持電極XEとの間に印加される電圧の極性が、上述した図7に示した波形と相違している。上述した図7と同じ動作については、詳細な説明を省略する。図中の星印の意味は、図7と同じである。 FIG. 8 shows another example of the subfield discharge operation for displaying an image on the PDP. In the example of FIG. 8, the polarity of the voltage applied between the scan electrode YE and the address electrode AE and the polarity of the voltage applied between the scan electrode YE and the sustain electrode XE are shown in FIG. It is different from the waveform. Detailed description of the same operations as those in FIG. 7 described above will be omitted. The meaning of the asterisk in the figure is the same as in FIG.
 まず、リセット期間RSTでは、接地電圧GNDが維持電極XEおよびアドレス電極AEにそれぞれ印加され、緩やかに上昇する正の書き込み電圧(書き込み鈍波)が走査電極YEに印加される(図8(a2))。これにより、維持電極XE、走査電極YEおよびアドレス電極AEに、正の壁電荷、負の壁電荷および正の壁電荷がそれぞれ蓄積される。 First, in the reset period RST, the ground voltage GND is applied to the sustain electrode XE and the address electrode AE, respectively, and a positive write voltage (write blunt wave) that gradually increases is applied to the scan electrode YE (FIG. 8 (a2)). ). As a result, positive wall charges, negative wall charges, and positive wall charges are accumulated in sustain electrode XE, scan electrode YE, and address electrode AE, respectively.
 次に、維持電極XEおよびアドレス電極AEは、接地電圧GNDに維持され、緩やかに下降する負の調整電圧(調整鈍波)が走査電極YEに印加される(図8(b2))。これにより、維持電極XE、走査電極YEおよびアドレス電極AEにそれぞれ蓄積された壁電荷の量を調整することができる。例えば、調整電圧の最小値は、電圧-Vsより高い電圧である。 Next, sustain electrode XE and address electrode AE are maintained at ground voltage GND, and a negative adjustment voltage (adjustment blunt wave) that gently falls is applied to scan electrode YE (FIG. 8 (b2)). Thereby, the amount of wall charges accumulated in sustain electrode XE, scan electrode YE, and address electrode AE can be adjusted. For example, the minimum value of the adjustment voltage is a voltage higher than the voltage −Vs.
 アドレス期間ADRでは、維持電極XEおよびアドレス電極AEは、接地電圧GNDに維持され、負のバイアス電圧が走査電極YEに印加される(図8(c2))。そして、アドレス放電時に陰極となるスキャンパルス(電圧-Vsc2)が走査電極YEに印加され、アドレス放電時に陽極となるアドレスパルス(電圧Vsa2)が、点灯するセルに対応するアドレス電極AEに印加される(図8(d2))。例えば、スキャンパルスの電圧-Vsc2は、調整電圧の最小値より低い電圧である。 In the address period ADR, the sustain electrode XE and the address electrode AE are maintained at the ground voltage GND, and a negative bias voltage is applied to the scan electrode YE (FIG. 8 (c2)). Then, a scan pulse (voltage -Vsc2) serving as a cathode during address discharge is applied to the scan electrode YE, and an address pulse (voltage Vsa2) serving as an anode during address discharge is applied to the address electrode AE corresponding to the lighted cell. (FIG. 8 (d2)). For example, the scan pulse voltage −Vsc2 is lower than the minimum value of the adjustment voltage.
 スキャンパルスとアドレスパルスにより選択されたセルでは、走査電極YEとアドレス電極AE間で一時的に放電が発生(アドレス放電)し、この放電をトリガにして、維持電極XEと走査電極YE間で一時的に放電(アドレス放電)が発生する。これにより、サステイン期間SUSに点灯させるセルが選択される。なお、アドレス放電により選択されたセルでは、維持電極XEと走査電極YEに負と正の壁電荷がそれぞれ蓄積される。また、アドレス電極AEの波形に示される2回目のアドレスパルス(接地電圧GND)は、他の表示ラインのセルを選択するために印加される(図8(e2))。 In the cell selected by the scan pulse and the address pulse, a discharge is temporarily generated between the scan electrode YE and the address electrode AE (address discharge), and this discharge is used as a trigger to temporarily stop between the sustain electrode XE and the scan electrode YE. Discharge (address discharge) occurs. Thereby, a cell to be lit in the sustain period SUS is selected. In the cell selected by the address discharge, negative and positive wall charges are accumulated in the sustain electrode XE and the scan electrode YE, respectively. Further, the second address pulse (ground voltage GND) shown in the waveform of the address electrode AE is applied to select a cell of another display line (FIG. 8 (e2)).
 サステイン期間SUSでは、最初に、負のサステインパルス(第2電圧、電圧-Vs)が、維持電極XEに印加され、電圧Vsと電圧-Vsとの間の電圧値を有する定電圧Vbが、走査電極YEに印加される(図8(f2))。さらに、接地電圧GNDが、アドレス電極AEgに印加され、調整パルスAJP(調整電圧Vsa2)がアドレス電極Ar、AEbにそれぞれ印加される(図8の低レベル期間LP1)。例えば、電圧Vbは、電圧Vsと電圧-Vsとの中間の接地電圧GNDである。また、例えば、調整電圧Vsa2は、アドレス期間ADRのアドレスパルス用の電圧Vsa2と同じ電圧である。これにより、この実施形態では、調整パルスAJP用の電源電圧を新たに生成する必要がなく、回路部60(例えば、電源部PWRおよびアドレスドライバADRV)の構成を簡易にできる。 In the sustain period SUS, a negative sustain pulse (second voltage, voltage −Vs) is first applied to the sustain electrode XE, and a constant voltage Vb having a voltage value between the voltage Vs and the voltage −Vs is scanned. It is applied to the electrode YE (FIG. 8 (f2)). Further, the ground voltage GND is applied to the address electrode AEg, and the adjustment pulse AJP (adjustment voltage Vsa2) is applied to the address electrodes Ar and AEb, respectively (low level period LP1 in FIG. 8). For example, the voltage Vb is a ground voltage GND that is intermediate between the voltage Vs and the voltage −Vs. Further, for example, the adjustment voltage Vsa2 is the same voltage as the address pulse voltage Vsa2 in the address period ADR. Thereby, in this embodiment, it is not necessary to newly generate a power supply voltage for the adjustment pulse AJP, and the configuration of the circuit unit 60 (for example, the power supply unit PWR and the address driver ADRV) can be simplified.
 アドレス期間ADRに選択されたセル(点灯するセル)では、維持電極XEと走査電極YEに負と正の壁電荷がそれぞれ蓄積されている。このため、維持電極XEおよび走査電極YE間の電圧は、維持電極XEおよび走査電極YE間の放電開始電圧より大きくなり、維持電極XEと走査電極YE間で放電(サステイン放電)が発生する。そして、放電が発生したセル(点灯するセル)では、維持電極XEおよび走査電極YEに、正と負の壁電荷がそれぞれ蓄積される。 In the cell (lighted cell) selected in the address period ADR, negative and positive wall charges are accumulated in the sustain electrode XE and the scan electrode YE, respectively. For this reason, the voltage between sustain electrode XE and scan electrode YE becomes larger than the discharge start voltage between sustain electrode XE and scan electrode YE, and discharge (sustain discharge) occurs between sustain electrode XE and scan electrode YE. Then, in the cell where the discharge is generated (lighted cell), positive and negative wall charges are accumulated in the sustain electrode XE and the scan electrode YE, respectively.
 なお、調整電圧Vsaがアドレス電極AEに印加された赤色および青色のセル群のうち、点灯するセルでは、透明電極YTから透明電極XTに向かう電界の他に、アドレス電極AEから透明電極XTに向かう電界が発生する。したがって、調整セル群(図の例では、赤色および青色のセル群)の点灯するセルでは、放電強度が強くなり、高い輝度の可視光が発生する。この結果、図の例では、赤色および青色のセル群の点灯するセルの輝度を高くできる。 Of the red and blue cell groups to which the adjustment voltage Vsa is applied to the address electrode AE, in the lighted cell, in addition to the electric field from the transparent electrode YT to the transparent electrode XT, the address electrode AE is directed to the transparent electrode XT. An electric field is generated. Accordingly, in the cells that are lit in the adjustment cell group (red and blue cell groups in the example in the figure), the discharge intensity is increased and visible light with high luminance is generated. As a result, in the example shown in the figure, the brightness of the lighted cells of the red and blue cell groups can be increased.
 次に、正のサステインパルス(第1電圧、電圧Vs)が、維持電極XEに印加され、走査電極YEおよびアドレス電極AEは、接地電圧GNDにそれぞれ維持される(図8(g2))。直前(図8(f2))に放電が発生していたセル(点灯するセル)では、維持電極XEと走査電極YEに正と負の壁電荷がそれぞれ蓄積されているため、維持電極XEおよび走査電極YE間の電圧は、放電開始電圧より大きくなる。これにより、点灯するセルでは、維持電極XEと走査電極YE間で放電(サステイン放電)が発生し、放電状態が維持される。 Next, a positive sustain pulse (first voltage, voltage Vs) is applied to the sustain electrode XE, and the scan electrode YE and the address electrode AE are maintained at the ground voltage GND (FIG. 8 (g2)). In the cell in which discharge occurred immediately before (f2 in FIG. 8) (lighting cell), positive and negative wall charges are accumulated in the sustain electrode XE and the scan electrode YE, respectively. The voltage between the electrodes YE becomes larger than the discharge start voltage. Thereby, in the lighted cell, a discharge (sustain discharge) is generated between the sustain electrode XE and the scan electrode YE, and the discharge state is maintained.
 このように、電圧Vb(接地電圧GND)に対して互いに極性の異なるサステインパルス(電圧-Vs、電圧Vs)が、維持電極XEに交互に印加される(図8(f2、g2))ことにより、サステイン期間SUSに点灯したセルの放電(サステイン放電)が繰り返し行われる。 As described above, the sustain pulses (voltage -Vs, voltage Vs) having different polarities with respect to the voltage Vb (ground voltage GND) are alternately applied to the sustain electrodes XE (FIG. 8 (f2, g2)). The discharge of the cells that are lit during the sustain period SUS (sustain discharge) is repeated.
 なお、2番目の低レベル期間LP2では、調整電圧Vsaが、赤色および青色のセル群にそれぞれ対応するアドレス電極AEr、AEbに印加され、アドレス電極AEgは、接地電圧GNDに維持される。これにより、赤色および青色のセル群の点灯するセルの輝度を高くできる。そして、3、4番目の低レベル期間LP3、LP4では、調整電圧Vsaが、赤色のセル群に対応するアドレス電極AErに印加され、アドレス電極AEg、AEbは、接地電圧GNDに維持される。これにより、赤色のセル群の点灯するセルの輝度を高くできる。したがって、図の例では、調整パルスAJPが印加されていないときの各色の輝度が互いに同じ場合、調整パルスAJPの印加により、PDPに表示される画像の赤色の輝度を画面全体で高く、かつ、緑色の輝度を画面全体で低くできる。 In the second low level period LP2, the adjustment voltage Vsa is applied to the address electrodes AEr and AEb corresponding to the red and blue cell groups, respectively, and the address electrode AEg is maintained at the ground voltage GND. Thereby, the brightness | luminance of the cell which the red and blue cell group lights can be made high. In the third and fourth low level periods LP3 and LP4, the adjustment voltage Vsa is applied to the address electrode AERr corresponding to the red cell group, and the address electrodes AEg and AEb are maintained at the ground voltage GND. Thereby, the brightness | luminance of the cell which a red cell group lights can be made high. Therefore, in the example of the figure, when the luminance of each color when the adjustment pulse AJP is not applied is the same, the application of the adjustment pulse AJP increases the red luminance of the image displayed on the PDP over the entire screen, and Green brightness can be reduced on the entire screen.
 最後に、緩やかに下降する負の消去パルスが維持電極XEに印加される(図8(h2))。これにより、点灯したセルのみの壁電荷を減少させるための放電が発生し、点灯したセルの壁電荷の量が減る。 Finally, a negative erasing pulse that gradually falls is applied to the sustain electrode XE (FIG. 8 (h2)). As a result, a discharge is generated to reduce the wall charge of only the lit cell, and the amount of wall charge of the lit cell is reduced.
 なお、図8に示した放電動作の例では、上述した図4に示した電源部PWRは、電源電圧Vsc、Vsaの代わりに、電源電圧Vsc2、Vsa2を生成する。そして、上述した図5に示したドライバXDRV、YDRV、ADRVは、上述した図7に示した電極XE、YE、AEの波形電圧の代わりに、図8に示した電極XE、YE、AEの波形電圧を、電極XE、YE、AEにそれぞれ印加する。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the example of the discharge operation shown in FIG. 8, the power supply unit PWR shown in FIG. 4 generates the power supply voltages Vsc2 and Vsa2 instead of the power supply voltages Vsc and Vsa. The drivers XDRV, YDRV, and ADRV shown in FIG. 5 described above are the waveforms of the electrodes XE, YE, and AE shown in FIG. 8 instead of the waveform voltages of the electrodes XE, YE, and AE shown in FIG. A voltage is applied to each of the electrodes XE, YE, and AE. Also in this case, the same effect as the above-described embodiment can be obtained.
 以上、本発明について詳細に説明してきたが、上記の実施形態およびその変形例は発明の一例に過ぎず、本発明はこれに限定されるものではない。本発明を逸脱しない範囲で変形可能であることは明らかである。 As described above, the present invention has been described in detail. However, the above-described embodiment and its modification are merely examples of the present invention, and the present invention is not limited thereto. Obviously, modifications can be made without departing from the scope of the present invention.
 本発明は、プラズマディスプレイ装置に適用できる。 The present invention can be applied to a plasma display device.

Claims (6)

  1.  カラー画像を表示するプラズマディスプレイパネルと、前記プラズマディスプレイパネルを駆動する駆動部とを備え、
     前記プラズマディスプレイパネルは、
     放電空間を介して互いに対向する第1基板および第2基板と、
     前記第1基板に設けられ、第1方向に延在し、互いに間隔を置いて配置された複数の第1電極および第2電極と、
     前記第2基板に設けられ、前記第1方向と交差する第2方向に延在し、間隔を置いて配置された複数の隔壁と、
     前記第1基板に設けられ、前記第2方向に延在する複数のアドレス電極とを備え、
     前記第1および第2電極は、互いに対をなす前記第1および第2電極と互いに隣接する前記隔壁とで囲われる領域に形成されるセル毎に、前記第1電極から前記第2電極に向けて突出し前記セルを構成する隔壁の一方に隣接する第1突出部と、前記第2電極から前記第1電極に向けて突出し前記セルを構成する隔壁の他方と前記第1突出部との間に配置された第2突出部をそれぞれ有し、
     前記アドレス電極は、前記隔壁の他方と前記第2突出部との間に配置され、
     前記駆動部は、
     前記第1および第2電極間でサステイン放電を発生させるサステイン期間に、第1電圧および当該第1電圧より低い第2電圧を前記第1電極に交互に印加する第1駆動回路と、
     前記サステイン期間に、前記第1電圧と前記第2電圧との間の電圧値を有する所定電圧を前記第2電極に印加する第2駆動回路と、
     前記サステイン期間に、前記第1電極に前記第2電圧を印加する期間の少なくとも1つで、前記所定電圧より高い調整電圧を、前記アドレス電極に印加する第3駆動回路とを備えていることを特徴とするプラズマディスプレイ装置。
    A plasma display panel for displaying a color image, and a drive unit for driving the plasma display panel,
    The plasma display panel is:
    A first substrate and a second substrate facing each other through a discharge space;
    A plurality of first and second electrodes provided on the first substrate, extending in a first direction and spaced apart from each other;
    A plurality of partition walls provided on the second substrate, extending in a second direction intersecting the first direction, and spaced apart from each other;
    A plurality of address electrodes provided on the first substrate and extending in the second direction;
    The first and second electrodes are directed from the first electrode to the second electrode for each cell formed in a region surrounded by the first and second electrodes paired with each other and the partition walls adjacent to each other. A first protrusion adjacent to one of the partition walls constituting the cell and between the other of the partition walls projecting from the second electrode toward the first electrode and the first protrusion. Each having a second protrusion disposed;
    The address electrode is disposed between the other of the partition walls and the second protrusion,
    The drive unit is
    A first driving circuit that alternately applies a first voltage and a second voltage lower than the first voltage to the first electrode during a sustain period in which a sustain discharge is generated between the first and second electrodes;
    A second driving circuit for applying a predetermined voltage having a voltage value between the first voltage and the second voltage to the second electrode during the sustain period;
    And a third drive circuit for applying an adjustment voltage higher than the predetermined voltage to the address electrode in at least one of the periods in which the second voltage is applied to the first electrode in the sustain period. A characteristic plasma display device.
  2.  請求項1記載のプラズマディスプレイ装置において、
     前記第2駆動回路は、前記第1電圧と前記第2電圧との中間の固定電圧を前記所定電圧として前記第2電極に印加することを特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 1, wherein
    The plasma display apparatus, wherein the second driving circuit applies a fixed voltage intermediate between the first voltage and the second voltage to the second electrode as the predetermined voltage.
  3.  請求項1記載のプラズマディスプレイ装置において、
     前記プラズマディスプレイパネルは、互いに異なる色の光をそれぞれ発生する複数種の前記セルにより構成される画素を備え、
     前記駆動部は、前記カラー画像の色合いを調整するために、互いに同じ色の光を発生する前記セルにより構成される色別のセル群の1つである調整セル群を選択する調整部を備え、
     前記調整部は、前記カラー画像の色合いを調整する調整信号に基づいて、前記色別のセル群から前記調整セル群を選択し、選択した前記調整セル群毎に、前記調整電圧を前記アドレス電極に印加する回数である調整回数を設定し、
     前記第3駆動回路により前記調整電圧が印加される数は、前記調整回数に対応することを特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 1, wherein
    The plasma display panel includes pixels composed of a plurality of types of cells that respectively generate light of different colors.
    The drive unit includes an adjustment unit that selects an adjustment cell group that is one of the cell groups of different colors configured by the cells that generate light of the same color to adjust the hue of the color image. ,
    The adjustment unit selects the adjustment cell group from the cell group for each color based on an adjustment signal for adjusting the hue of the color image, and sets the adjustment voltage to the address electrode for each selected adjustment cell group. Set the number of adjustments that are applied to the
    The plasma display apparatus according to claim 3, wherein the number of adjustment voltages applied by the third driving circuit corresponds to the number of adjustments.
  4.  請求項3記載のプラズマディスプレイ装置において、
     1画面を表示するための1フィールドが、サステイン放電の回数が各々設定された前記サステイン期間を有する複数のサブフィールドを含んで構成され、
     前記調整部は、前記調整セル群毎に、前記各サブフィールドに設定されたサステイン放電の回数に応じて、前記1フィールド中に前記調整電圧が前記アドレス電極に印加される回数を前記各サブフィールドに分配することを特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 3, wherein
    One field for displaying one screen includes a plurality of subfields having the sustain period in which the number of sustain discharges is set,
    For each of the adjustment cell groups, the adjustment unit may determine the number of times the adjustment voltage is applied to the address electrode in the one field according to the number of sustain discharges set in the subfield. A plasma display device.
  5.  請求項3記載のプラズマディスプレイ装置において、
     前記第3駆動回路は、前記サステイン期間に、前記所定電圧以下のバイアス電圧を、前記調整セル群を除くセル群の前記アドレス電極に印加し、前記サステイン期間で、前記調整電圧が前記アドレス電極に印加されていない期間に、前記バイアス電圧を前記調整セル群の前記アドレス電極に印加することを特徴とするプラズマディスプレイ装置。
    The plasma display device according to claim 3, wherein
    The third driving circuit applies a bias voltage equal to or lower than the predetermined voltage to the address electrodes of the cell group excluding the adjustment cell group during the sustain period, and the adjustment voltage is applied to the address electrode during the sustain period. The plasma display apparatus, wherein the bias voltage is applied to the address electrode of the adjustment cell group during a period in which the bias voltage is not applied.
  6.  請求項3記載のプラズマディスプレイパネル装置において、
     前記画素は、赤、緑および青の光をそれぞれ発生するセルにより構成されることを特徴とするプラズマディスプレイ装置。
    The plasma display panel device according to claim 3, wherein
    2. The plasma display apparatus according to claim 1, wherein each of the pixels includes cells that generate red, green, and blue light.
PCT/JP2008/000799 2008-03-28 2008-03-28 Plasma display device WO2009118792A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/000799 WO2009118792A1 (en) 2008-03-28 2008-03-28 Plasma display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/000799 WO2009118792A1 (en) 2008-03-28 2008-03-28 Plasma display device

Publications (1)

Publication Number Publication Date
WO2009118792A1 true WO2009118792A1 (en) 2009-10-01

Family

ID=41113036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/000799 WO2009118792A1 (en) 2008-03-28 2008-03-28 Plasma display device

Country Status (1)

Country Link
WO (1) WO2009118792A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008548A (en) * 2000-06-22 2002-01-11 Nec Corp Surface discharge type plasma display panel
JP2002062843A (en) * 1999-06-30 2002-02-28 Fujitsu Ltd Driving device, driving method, power circuit for plasma display panel and pulse voltage generating circuit for driving plasma display panel
JP2005310785A (en) * 2004-04-20 2005-11-04 Samsung Sdi Co Ltd Plasma display panel and manufacturing method for the same
JP2006113592A (en) * 2004-10-14 2006-04-27 Lg Electron Inc Method of driving plasma display panel
JP2006302866A (en) * 2005-03-23 2006-11-02 Pioneer Electronic Corp Plasma display panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062843A (en) * 1999-06-30 2002-02-28 Fujitsu Ltd Driving device, driving method, power circuit for plasma display panel and pulse voltage generating circuit for driving plasma display panel
JP2002008548A (en) * 2000-06-22 2002-01-11 Nec Corp Surface discharge type plasma display panel
JP2005310785A (en) * 2004-04-20 2005-11-04 Samsung Sdi Co Ltd Plasma display panel and manufacturing method for the same
JP2006113592A (en) * 2004-10-14 2006-04-27 Lg Electron Inc Method of driving plasma display panel
JP2006302866A (en) * 2005-03-23 2006-11-02 Pioneer Electronic Corp Plasma display panel

Similar Documents

Publication Publication Date Title
JP3429438B2 (en) Driving method of AC type PDP
KR100825164B1 (en) Driving method of plasma display device and plasma display device
US7907103B2 (en) Plasma display apparatus and driving method thereof
JPH11297211A (en) Ac discharge type plasma display panel and its driving method
KR20030035996A (en) Plasma display device and driving method thereof
JPH10123999A (en) Plasma display panel for color display, and its driving method
JP4415217B2 (en) Driving method of plasma display panel
JP2006194948A (en) Driving method for plasma display panel and plasma display apparatus
JP4089759B2 (en) Driving method of AC type PDP
KR20070029093A (en) Plasma display device
JP4240160B2 (en) AC type PDP driving method and plasma display device
KR20030035967A (en) Driving method of AC-type plasma display panel
WO2004070695A1 (en) Display apparatus and drive method of display apparatus
JP2004031198A (en) Display device and method of driving display panel
JP2006039479A (en) Driving method of plasma display panel
WO2009118792A1 (en) Plasma display device
KR100364713B1 (en) Method for driving plasma display panel of ADS mode
JP5229233B2 (en) Plasma display panel driving method and plasma display device
JP2009210727A (en) Driving method of plasma display panel
JP5150632B2 (en) Plasma display panel driving method and plasma display device
WO2009104220A1 (en) Plasma display unit
KR20060086775A (en) Driving method for plasma display panel
JPH08297480A (en) Display control method and device as well as display device using the same
US20120299981A1 (en) Plasma display device and method for driving a plasma display panel
JP2005157338A (en) Method of driving plasma display panel and plasma display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08720666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08720666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP