WO2010010213A1 - Perfil de expresión génica como marcador de la receptividad endometrial - Google Patents

Perfil de expresión génica como marcador de la receptividad endometrial Download PDF

Info

Publication number
WO2010010213A1
WO2010010213A1 PCT/ES2009/000386 ES2009000386W WO2010010213A1 WO 2010010213 A1 WO2010010213 A1 WO 2010010213A1 ES 2009000386 W ES2009000386 W ES 2009000386W WO 2010010213 A1 WO2010010213 A1 WO 2010010213A1
Authority
WO
WIPO (PCT)
Prior art keywords
microarray
endometrial
receptivity
endometrium
expression
Prior art date
Application number
PCT/ES2009/000386
Other languages
English (en)
French (fr)
Inventor
Carlos SIMÓN VALLES
José Antonio HORCAJADAS ALMANSA
Patricia Diaz Gimeno
Antonio PELLICER MARTÍNEZ
Original Assignee
Equipo Ivi Investigacion Sl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equipo Ivi Investigacion Sl filed Critical Equipo Ivi Investigacion Sl
Priority to EP09800092.0A priority Critical patent/EP2333107B1/en
Priority to US13/057,135 priority patent/US10081840B2/en
Priority to PL09800092T priority patent/PL2333107T3/pl
Priority to DK09800092.0T priority patent/DK2333107T3/da
Priority to CA2732849A priority patent/CA2732849C/en
Priority to ES09800092.0T priority patent/ES2484417T3/es
Publication of WO2010010213A1 publication Critical patent/WO2010010213A1/es
Priority to US16/140,437 priority patent/US20190276890A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to the determination of the receptivity of the human endometrium from a gene expression profile. More specifically, it consists in the elaboration of a specific expression microarray of endometrial receptivity (Endometrial Receptivity Array or ERA) that allows evaluating the receptive state of a human endometrium, as well as assessing said state for diagnostic and therapeutic purposes.
  • Endometrial Receptivity Array or ERA Endometrial Receptivity Array
  • the endometrium is the mucosa that lines the inside of the uterine cavity. Its function is to house the embryo, allowing its implantation and favoring the development of the placenta. This process requires a receptive endometrium capable of responding to the blastocyst signals that is the stage of development in which the embryo is when it implants.
  • the human endometrium is a cyclic hormonally regulated tissue, the hormones that prepare it to reach this state of receptivity are estradiol that induces cell proliferation and progesterone that is involved in differentiation, causing a large number of changes in the profile of gene expression of the endometrium that reaches a receptive phenotype for a short period of time called the "implantation window".
  • Noyes and his collaborators examined the histological features of endometrial biopsies taken during 8,000 spontaneous cycles in 300 women (Noyes et al., 1950). They were able to relate different histological patterns with particular moments of the menstrual cycle by correlating the histological changes with the basal body temperature. These morphological criteria are still used today and are considered as the "GoId Standard" for the study of the endometrium, evaluation of endometrial receptivity and detection of endometrial abnormalities.
  • ASRM American Society of Reproductive Medicine
  • Balasch et al., 1992 showed that the incidence of DFL and histological endometrial patterns were similar in fertile and infertile women. Moreover, an adequate endometrial histology in the ovulation cycle or in the previous ones was not related to pregnancy data in infertile women concluding that The histological evaluation of the endometrium in the luteal phase is not useful for predicting or improving reproductive outcomes (Balasch et al., 1992). In other studies of the same group, the existence of a clear dissociation in the temporal expression of a series of markers related to the implantation window (alpha and beta 3 integrins) and the expression of pinpopods was demonstrated. They also did not find differences in the expression of these markers between fertile and infertile women (Creus and cois., 2002). They also demonstrated high variability between cycles and low reproducibility for these markers (Ordi and cois., 2003).
  • Li and cois. 1989 performed the dating of 63 endometrial biopsies on two different occasions by the same pathologist demonstrating that in only 24% of them there was a total agreement. In a separate study they observed that between different cycles of the same woman only in 4% of cases there was total agreement. These data emphasize the lack of precision of traditional dating methods and their lack of guarantee to predict development in subsequent cycles (Li et al., 1989).
  • a DNA microarray consists of a large number of DNA molecules arranged on a solid substrate so that they form a matrix of sequences in two or three dimensions.
  • fragments of genetic material can be short sequences called oligonucleotides or larger, such as complementary DNA (cDNA) that is synthesized from mRNA, or PCR products (in vitro replication of DNA sequences through chain reaction of polymerase).
  • cDNA complementary DNA
  • probes single-stranded nucleotide fragments immobilized on the support.
  • the nucleic acids of the samples to be analyzed are marked by various methods (enzymatic, fluorescent, etc.) and incubated on the panel of probes, allowing hybridization (recognition and binding between complementary molecules) of homologous sequences.
  • the samples of labeled genetic material bind to their complementary immobilized in the support of the chip, allowing the identification and quantification of the DNA present in the sample.
  • the appropriate bioinformatics scanner and tools allow interpreting and analyzing the data obtained (Al-Shahrour F et al., 2005).
  • microarray you can use those that exist commercially, or you can design a custom one.
  • Support material glass, plastic, membranes, ...
  • US 2003/0186300 A1 describes commercial methods and compositions for the diagnosis and treatment of diseases associated with reproduction.
  • the invention also relates to methods and compositions for determining and modulating the receptivity of the endometrium.
  • cadherin-11 is used in endometrial tissue as an indicator of the ability to establish or maintain a pregnancy.
  • WO 01/89548 A2 refers to the pharmaceutical use of the polypeptide and the nucleic acid of fibulin-1 in the control of birth in women, and for the diagnosis and treatment of endometriosis.
  • the invention relates to a method and means for determining the specific conditions or changes in the mucosa of the uterus or in the epithelium of other organs.
  • the method allows to determine the overexpression of mRNA subunits of the type l- ⁇ ( ⁇ 7, ⁇ 6, B6e) of human gonadotropin.
  • the measures of the expression of ⁇ 7, ⁇ 6, ⁇ 6e are used to indicate the receptivity of the uterine mucosa to the implantation of an embryo or to indicate neoplastic changes in the epithelium.
  • US 6,733,962 B2 describes a method to diagnose an abnormal development of a woman's endometrium based on the expression of cyclin E and p27 in a sample obtained after day 20 of the menstrual cycle of a woman that ideally lasts 28 days .
  • microarray available that encompasses a selection of genes that generate an expression profile that serve to diagnose and determine if the state of a particular endometrium corresponds to the state of receptivity / non-receptivity.
  • the method of the present invention uses as a marker of endometrial receptivity the joint expression of the mRNAs related to the process as a whole, unlike the rest of the molecular markers of receptivity of the state of the art that are based on the study of a molecule or a small group of molecules considered independently.
  • the present invention allows to determine the functional state of human endometrial receptivity by means of the use of two components: on the one hand, the design of a specific microarray that identifies the gene expression profile of the situation of receptivity / non-receptivity of the human endometrium and on the other, of the subsequent analysis of the expression profile of this specific microarray by means of a computational predictor that is capable of assigning a receptive status.
  • the basis of the microarray is as follows: when a gene is active, mRNA molecules are produced, which have the base sequence complementary to that of the gene. When a gene is inactive, mRNA is not produced.
  • the analysis consists of extracting the total mRNA from two cell populations that vary in the situation to be studied, in this case the receptive and non-receptive endometrium, mark it with a fluorescent substance and hybridize it on the microarray. Since each mRNA is matched only to the probe of the gene that has its same sequence of complementary bases, those probes that capture more mRNA - and therefore shine with more fluorescence - will indicate which genes were most active. If the fluorescence pattern of the receptive endometrium is compared with the non-receptive one, it will be known which genes are differentially expressed in one situation with respect to the other, and therefore to be related to the process.
  • the probes are designed to be joined by the mRNAs of the gene to which they belong, and are those that are attached to the array support.
  • the oligonucleotides that they form (by probe are automatically inserted into a layer of glass, nylon or plastic, placed in boxes that act as a test microtube.
  • the oligonucleotide microarrays are manufactured automatically and inserted by robots by photolithography or piezoelectric printing The result is an automated and standardized process that allows thousands of impressions per cm 2 and minute.
  • the distribution of the probes in the microarray is observed as a set of probes; those that have the same sequence are located in the matrix at the same point.
  • the probes are 60 nucleotide oligos.
  • the microarray object of the invention has been established, as well as the pattern of receptivity expression defined to evaluate the state of receptivity / non-receptivity of an endometrium by bioinformatic methods, the states of receptivity of others pathological processes that result in infertility or subfertility of endometrial origin such as implantation failure due to endometrial cause and hydrosalpinx.
  • microarray of the present invention for molecular diagnosis, it can also be used as a biotechnological tool for the study of the possible effect of drugs and / or inert devices on the endometrium, such as, for example, the response to contraceptive drugs, both in in vitro assays as in vivo.
  • the microarray of the present invention is suitable for determining from a biological sample of the human endometrium, the normality / abnormality situation in the receptive profile of said endometrium, since the microarray is a personalized expression microarray that analyzes the mRNA set of the biopsy. To do this, and using a computational prediction model, the receptivity expression profile is defined and classified.
  • the microarray of the present invention is an oligo expression microarray with an 8x15K format (8 arrays of 15,000 probes) per slide ( Figure 3). Each array contains 15,744 points: 659 probes that include the selected genes (8 replicates per probe, 4552 points), 536 control points and 10656 free (empty) points.
  • Fig 1. List of the 569 probes corresponding to the 238 genes with an FDR ⁇ 0.05 and an FC> 3, which are the ones that have been selected and are specified in Figure 2.
  • Fig 3. Specific microarray (ERA) (agilent technologies). The figure shows how the ERA, oligo expression microarray, has an 8x15K format (8 arrays of 15,000 probes) per slide. Each array contains 15,744 points: 569 probes in which they include the selected genes (8 replicates per probe, 4,552 points), 536 control points and 10656 free (empty) points.
  • Fig 7. The result of a computational prediction model generated with a training set of 23 samples of the described characteristics, which have been analyzed with the ERA, is shown.
  • Endometrial receptivity is the state in which the endometrium is arranged for embryo implantation to occur. This occurs in all menstrual cycles in a period of time called the implantation window that is of variable duration, and opens around day 19 of the cycle and closes on day 24, considering day 21 as a reference day.
  • LH luteinizing hormone
  • the endometrial biopsy is processed to extract its RNA, and this labeled RNA will hybridize with the probes fixed in the ERA, being able to detect the expression levels of the genes based on the intensity of each point by means of a scanner.
  • the data of the intents of each point are analyzed by the prediction model that has been previously trained, and this model, based on the whole set of points, classifies the samples as normal receptive, or out of normal ( Figure 8 ).
  • the prediction model is a mathematical system that uses different algorithms, formulas, to distinguish between classes, and is trained with the training set to define the normal receptivity profile, as well as to define the receptivity profile of endometrial pathologies or subfertility status due to endometrial cause causing implantation failure; such as Endometriosis, Hydrosalpinx, etc. Those would be the main ones.
  • the first phase of the project consists in the identification of the genes that are specifically regulated in the endometrium of the LH + 7 day and that will be part of the personalized microarray.
  • FDR from the acronym of False Discovery Rate. Parameter that corrects the P-value depending on the sample size.
  • the value of FDR 0.05 is the significance that is taken into account at the statistical level and involves the risk of 5% that the differences are due to chance, and not to the biological process in question.
  • FC from the acronym of FoId change. It means: number of times the expression of a gene changes in a situation with respect to the hearing.
  • FO 3 the criterion is to assume that if it changes more than three times it is enough change to consider the gene important for the process.
  • the FDR has considered the possibility that differences in expression may be due to chance, and not to the biological process.
  • genes with an Fc above a threshold value of 3 have been selected so that the final number of genes with which we are going to work is feasible. In this way, we are giving more importance to the genes that change the most, because we assume a directly proportional relationship between greater change and greater importance for the process.
  • This strict criterion combines both the statistical and the biological requirement.
  • the ERA is an oligo expression microarray with an 8x15K format (8 arrays of 15,000 probes) per slide ( Figure 3). Each array contains 15,744 points: 569 probes that include our selected genes (8 replicas per probe, 4,552 points), 536 control points and 10,656 free (empty) points. Expression analysis using the ERA
  • endometrial biopsies of fertile women are selected. All independent samples, from women with proven fertility, on different days of the menstrual cycle. These are Caucasian women with a body mass index between 19 and 25 kg / m 2 and whose age ranges from 18 to 35 years.
  • RNA was washed with 70% ethanol in water treated with diethyl pyrocarbonate (DEPC), then resuspended in DEPC water (15 ⁇ l). With this protocol, 1-2 ⁇ g of total RNA per mg of endometrial tissue is usually obtained.
  • the RNA thus extracted is treated with DNase for 1 hour at 37 ° C to remove traces of DNA and purify it again using the Qiagen RNeasy kit following the manufacturer's instructions.
  • the RNA that is obtained behind the columns of the RNeasy kit is analyzed to verify its quality in the Agilent 2100 bioanalyzer using the specific RNA chips of the Agilent brand, the Nano LabChip RNA.
  • RNA complementary DNA single strand cDNA
  • nucleotide and an oligonucleotide polydT-T7 is generated that not only carries the poly T sequence that hybridizes with the polyA tail of the messenger RNAs, but also the recognition sequence of the T7 RNA polymerase.
  • cRNA complementary RNA
  • That cRNA is purified by means of a purification kit based on affinity chromatography, and quantified.
  • the labeled cRNA was fragmented for 30 min at 60 0 C and hybridized on the microarray for 17 hours at 65 ° C. After that time, the microarray is washed to eliminate nonspecific hybridizations. Once hybridized and washed, the microarrays are centrifuged at 3,000 rpm for 3 minutes to dry the microarrays and are read by scanning on an Axon GenePix 4100A reading for the intensities of Cy3 (532nm).
  • the correction of the background effect has been made by subtracting half of the median from this, to the average of the intensity of the point.
  • Interarray normalization has been done using the quantile method.
  • results obtained in the ERA have been validated by quantitative PCR in order to give more consistency to our results and verify that the microarray analysis is reliable.
  • RNA in the form of cDNA was placed in the presence of 1 ⁇ g oligo (dT) (Clontech) until reaching a final volume of 12.5 ⁇ l with water treated with DEPC (diethyl pyrcarbonate).
  • dT oligo
  • DEPC diethyl pyrcarbonate
  • 6.5 ⁇ l was added for each of the 30 samples to be validated, of a MIX solution with 4 ⁇ l of buffer, 1 ⁇ l dNTP, 0.5 ⁇ l RNAse and 1 ⁇ l of retrotranscriptase (Rt-PCR clontech).
  • the 1hr retrotranscription in the thermocycler was continued.
  • 80 ⁇ l of water with DEPC are added and the concentration of the single stranded cDNA obtained by placing 2 ⁇ l of sample and 98 ⁇ l of DEPC water is measured by spectrophotometry.
  • the amount of cDNA that has been retrotranscribed must be between 80 to 120 ng / ⁇ l to start from similar concentrations, although it is normalized with the internal standard in our case GAPDH.
  • the range of cDNA to be amplified must be between 50-500 ng / ⁇ l. If any sample is not in those parameters, it is diluted.
  • a predictor is a mathematical tool that uses a matrix of data, in our case those generated with the ERA, and learns to distinguish classes (Medina I, and cois, 2007), in our case two or more classes according to the different profiles. generate receptivity (standard receptive ⁇ ; pathological receptive; not normal receptive ).
  • the reasoning underlying this strategy is as follows: if we can distinguish between classes as a result of the different level of gene expression, then in theory, it is possible to find the characteristic gene expression of LH + 7 and use it to assign a class to the profile of Expression of the sample problem analyzed with the ERA custom microarray.
  • the set of samples that trains the classifier to define the classes is called a training set. That is, the gene expression profiles of these samples, measured with the E ⁇ RA, are used by the program to know which probes are the most informative and to distinguish between classes (different states of receptivity and non-receptive normal).
  • the biopsies used to generate the classification model are carefully chosen and dated in the most reliable way we have today.
  • This training set will be expanded as a larger number of samples is tested, but it is made up of receptive samples and on other days of the menstrual cycle. They are all independent samples, of different, healthy women, in natural cycle and with proven fertility. These are Caucasian women with a body mass index between 19 and 25 kg / m 2 and between 19 and 34 years. Only those samples whose histological damage, applying the Noyes criteria, coincide between the two pathologists and with the day of the menstrual cycle have been chosen.
  • the classification is carried out by the bioinformatics program using different mathematical algorithms, there are many available.
  • An algorithm is a well-defined, orderly and finite list of operations that allows us to find the solution to a problem.
  • the classifier gets calculate the error committed by a process called cross - validation, which involves putting a subset of samples of the training set (training set) real class known, outside the group to define classes, and 'then test them with The ' generated model and see if it is right, this is done by making all possible combinations.
  • the efficiency of the classifier is calculated and we obtain prediction models that correctly classify all the samples of the training set (Figure 5). That is, all the samples in the training set are classified by the predictor in the assigned real class known to us.
  • the generated prediction model has been trained with a training set of 23 samples, 12 receptive and 11 on other days of the menstrual cycle. Distinguishing two classes (receptive / Other). In the following, the model will be retraining as we obtain more samples of the same characteristics of the training set already generated, but also with samples in the period of receptivity with pathologies that alter the pattern of ERA expression, as well as the alteration by drugs. In this way we will define more and more ciases.
  • the ERA can be used for the positive identification of the e ⁇ dometrial receptivity, as well as for the diagnosis of its alteration associated with endometrial alterations typical of pathologies such as endometriosis, implantation failure, hydrosalpinx, etc.
  • this diagnostic tool would allow to detect the functional modifications induced by interceptive drugs or that aim to improve endometrial receptivity, altering the normality / abnormality situation in the receptive profile of a woman's endometrium.
  • the ERA of the present invention is a microarray of gene expression on demand. It is an array of 60-meter oligos with 8 arrays per slide or slide, with 15K (15744 points) in each array.
  • Reading the expression profile of the expression data of 238 genes represented by 569 probes is a prediction model constructed with 23 samples that classifies with an error of 0, which is capable of classifying the sample in a receptive or other state.
  • the final list of the ERA includes the 569 probes that represent the 238 genes with an FDR ⁇ 0.05 and an FO3 (Figure 1)
  • the customized ERA array is hybridized with the messenger RNA from another set of samples other than those used to select the genes to include, which are used to teach the predictor to classify between LH + 7 or another.
  • the predictor will scale, that is, it will determine how close or far the profile of a sample of the receptive profile is.
  • Endometrial biopsies are taken from 30 healthy donor women with proven fertility, and from 10 patients of the clinic with implantation failure due to endometrial cause, the 4 or biopsies taken on day 21 of the menstrual cycle (receptive phase, LH + 7) .
  • RNA of each of the biopsies is extracted using the Trizol (Invitrogen) protocol following the manufacturer's instructions (Life Technologies, Inc., USA).
  • the samples are homogenized using 1 ml of Trizol per 75 mg of tissue, incubated at room temperature 5 min, 200 ⁇ l volumes of chloroform are added for the same amount of tissue and incubated at room temperature 5 min. It is then centrifuged 15 min at 12,000xg (4 ° C). The aqueous phase is precipitated with an equal volume of 2-propanol (isopropanol), incubated on ice for 5 min and centrifuged for 30 min at 12,000xg (4 ° C).
  • RNA is washed with 70% ethanol in water treated with diethyl pyrocarbonate (DEPC), and then resuspended in DEPC water (15 ⁇ l). With this protocol, 1-2 ⁇ g of total RNA per mg of endometrial tissue is usually obtained.
  • the RNA thus extracted is treated with DNase for 1 hour at 37 ° C to remove traces of DNA and purify it again using the Qiagen RNeasy kit following the manufacturer's instructions.
  • the RNA that is obtained behind the columns of the RNeasy kit is analyzed to verify its quality in the Agilent 2100 bioanalyzer using the specific RNA chips of the Agilent brand, the Nano LabChip RNA.
  • RNA complementary DNA single strand cDNA
  • nucleotide and an oligonucleotide polydT-T7 is generated that not only carries the poly T sequence that hybridizes with the polyA tail of messenger RNAs, but also the recognition sequence of T7 RNA polymerase.
  • cRNA complementary RNA
  • That cRNA is purified by means of a purification kit based on affinity chromatography, and quantified.
  • the labeled cRNA was fragmented for 30 min at 60 ° C and hybridized on the microarray for 17 hours at 65 0 C. Once this time has elapsed, the microarray is washed to remove nonspecific hybridizations the. Once hybridized and washed, the microarrays are centrifuged at 3,000 rpm for 3 minutes to dry the microarrays and are read by scanning on an Axon GenePix 4100A reading for the intensities of Cy3 (532nm).
  • the processing of the array data is carried out by a series of bioinformatic commands that are defined in a software designed exclusively for the invention as explained below.
  • the correction of the background effect is made to the 40 data matrices due to the technique's own marking process.
  • the empty points are eliminated and the normalization process is carried out based on the 40 samples and based on the expression profile defined according to the prediction model so that it can be compared.
  • test set The 40 samples to be tested (test set) are launched with the classification model created that analyzes the expression of the ERA and predicts which class they belong to.

Abstract

La presente invención se refiere a la determinación de la receptividad del endometrio humano a partir de un perfil de expresión génica. Más concretamente, consiste en la elaboración de un microarray de expresión específico de receptividad endometrial (Endometrial Receptivity Array o ERA) que permita evaluar el estado receptivo de un endometrio humano, así como valorar dicho estado con fines diagnósticos y terapéuticos.

Description

PERFIL DE EXPRESIÓN GÉNICA COMO MARCADOR DE LA RECEPTIVIDAD ENDOMETRIAL
SECTOR DE LA TÉCNICA
La presente invención se refiere a Ia determinación de Ia receptividad del endometrio humano a partir de un perfil de expresión génica. Más concretamente, consiste en Ia elaboración de un microarray de expresión específico de receptividad endometrial (Endometrial Receptivity Array o ERA) que permita evaluar el estado receptivo de un endometrio humano, así como valorar dicho estado con fines diagnósticos y terapéuticos.
ESTADO DE LA TÉCNICA
El endometrio es Ia mucosa que recubre el interior de Ia cavidad uterina. Su función es Ia de alojar al embrión, permitiendo su implantación y favoreciendo el desarrollo de Ia placenta. Este proceso requiere de un endometrio receptivo capaz de responder a las señales del blastocisto que es el estadio de desarrollo en el que se encuentra el embrión cuando implanta. El endometrio humano es un tejido regulado hormonalmente de forma cíclica, las hormonas que Io preparan para alcanzar dicho estado de receptividad son el estradiol que induce Ia proliferación celular y Ia progesterona que está implicada en Ia diferenciación, provocando un gran número de cambios en el perfil de expresión génica del endometrio que alcanza un fenotipo receptivo durante un corto periodo de tiempo llamado "ventana de implantación". Aunque no hay total acuerdo sobre el periodo de implantación en los humanos, los estudios clínicos sugieren que este proceso tiene lugar entre ios días 20 y 24 de un ciclo ovulatorio normal (Wilcox y cois., 1999), considerándose crítico el día LH+7 (día 20-21).
La evolución de nuestro conocimiento sobre el endometrio humano contrasta con Ia ausencia de progreso en el desarrollo de nuevos métodos diagnósticos para su datación y estudio. En Ia actualidad, Ia valoración del endometrio todavía se realiza por medio de estudios histológicos basados en observaciones descritas hace más de 50 años (Noyes y cois., 1950) o con técnicas macroscópicas y poco resolutivas como estudios ecográficos igualmente poco objetivos, faltos de concreción y que producen resultados con grandes variaciones. En 1950, Noyes y colaboradores describieron por primera vez, un método de daíación endometrial basado exclusivamente en criterios histológicos y en los cambios morfológicos de los distintos compartimentos del endometrio en respuesta a la presencia de estrógenos y progesterona. Noyes y sus colaboradores examinaron los rasgos histológicos de biopsias endometriales tomadas durante 8.000 ciclos espontáneos en 300 mujeres (Noyes y cois., 1950). Fueron capaces de relacionar distintos patrones histológicos con momentos particulares del ciclo menstrual correlacionando los cambios histológicos con Ia temperatura corporal basal. Estos criterios morfológicos siguen siendo usados hoy en día y se consideran como el "GoId Standard" para el estudio del endometrio, evaluación de Ia receptividad endometrial y detección de anomalías endometriales.
Sin embargo, esta técnica no está exenta de inconvenientes. Se demuestra que el uso de las características histológicas falla a Ia hora de distinguir Ia fase del ciclo menstrual, así como forma de discriminar entre mujeres fértiles e infértiles, concluyéndose que no es útil para su uso clínico. La subjetividad que supone Ia observación visual hace que exista una variabilidad interobservador, intraobservador e interciclo que alteran Ia consistencia de los resultados obtenidos. Además, Ia estimulación ovárica propia de los tratamientos de reproducción asistida (TRA) produce modificaciones en el proceso de maduración endometrial comparado con ciclos naturales que difícilmente pueden ser explicados con los criterios de Noyes (Papanikolaou y cois., 2005). Es por esto, que existe en Ia literatura muchos trabajos que cuestionan las observaciones histológicas interpretadas por uno o varios patólogos, tanto en estudios clínicos retrospectivos (Balash y cois., 1992; Batista y cois., 1993; Shoupe y cois., 1989), prospectivos (Li y cois., 1989; Creus y cois., 2002; Ordi y cois., 2003), así como recientemente en estudios aleatorios (Murray y cois., 2004; Coutifaris y cois,, 2004). Asimismo, el comité práctico de Ia Sociedad Americana de Medicina Reproductiva (ASRM) establece que aunque el criterio clásico del defecto de Ia fase lútea consiste en un retraso en Ia maduración endometrial de >2 días siguiendo los criterios de Noyes, este comité tiene serias dudas sobre Ia exactitud de dichos criterios histológicos y por Io tanto de Ia prevalencia del defecto de Ia fase lútea (DFL) e incluso de su relevancia clínica como causa de infertilidad (ASRM, 2000).
En este sentido, Balasch y cois., 1992 demostraron que Ia incidencia de DFL y los patrones endometriales histológicos eran similares en mujeres fértiles e infértiles. Más aún, una histología endometrial adecuada en el ciclo de Ia ovulación o en los anteriores no estaba relacionada con los datos de embarazo en mujeres infértiles concluyendo que Ia evaluación histológica del endometrio en Ia fase lútea no resulta útil para predecir o mejorar los resultados reproductivos (Balasch y cois., 1992). En otros estudios del mismo grupo se demostró Ia existencia de una clara disociación en Ia expresión temporal de una serie de marcadores relacionados con Ia ventana de implantación (integrinas alpha y beta 3) y Ia expresión de pinópodos. No encontraron, además, diferencias de expresión de estos marcadores entre mujeres fértiles e infértiles (Creus y cois., 2002). También demostraron una alta variabilidad entre ciclos y una baja reproducibilidad para estos marcadores (Ordi y cois., 2003).
Li y cois. 1989, realizaron Ia datación de 63 biopsias endometriales en dos ocasiones distintas por el mismo patólogo demostrando que sólo en un 24% de ellas hubo un acuerdo total. En un estudio separado observaron que entre distintos ciclos de Ia misma mujer sólo en un 4% de los casos hubo acuerdo total. Estos datos enfatizan Ia falta de precisión de los métodos de datación tradicionales y su falta de garantía para predecir el desarrollo en los ciclos siguientes (Li y cois., 1989).
Las diferencias entre patólogos varían dependiendo del día del ciclo menstrual en que Ia biopsia endometrial es recogida. Más de un 20% de las biopsias endometriales fueron datadas con una diferencia de al menos dos días entre patólogos en Ia fase íúíea temprana, media y tardía. Con respecto a las variaciones interciclos, éstas llegan a ser del 60% en Ia fase lútea media (Murray y cois., 2004). Se ha demostrado que, durante Ia ventana de implantación, un porcentaje muy similar de mujeres tienen el endometrio fuera de fase, 49,4% de fértiles frente al 43,2% de infértiles (p = 0,33) y que, finalmente, Ia datación histológica no está relacionada con el estatus de fertilidad (Coutifaris y cois., 2004). Estas variaciones descritas sugieren que los criterios tradicionales no son precisos y que se requiere nuevas tecnologías para datar e identificar funcionalmente las muestras endometriales.
En Ia era pre-genómica, sólo se podían llevar a cabo estudios "gen a gen" para seleccionar candidatas útiles para el estudio de Ia receptividad uterina o para determinar Ia situación endometrial en mujeres con endometriosis o sin ella.
Así, en Ia era genómica en Ia que nos encontramos, se buscan herramientas objetivas basadas en criterios moleculares que vengan a mejorar Ia capacidad diagnóstica de determinadas técnicas como Ia histológica, muy útil, sin embargo, para otro tipo de necesidades. A mediados de los 90 (Schena y cois., 1995), se desarrolló una tecnología revolucionaria para Ia determinación y cuantificación de Ia expresión de los ARN mensajeros (ARNm) en una muestra, los microarrays de expresión génica. Su principal ventaja es que ofrecen Ia posibilidad de analizar simultáneamente miles de genes en un solo experimento. Un microarray de ADN consiste en un gran número de moléculas de ADN ordenadas sobre un sustrato sólido de manera que formen una matriz de secuencias en dos o tres dimensiones. Estos fragmentos de material genético pueden ser secuencias cortas llamadas oligonucleótidos o de mayor tamaño, como es el ADN complementario (ADNc) que es sintetizado a partir de ARNm, o bien productos de PCR (replicación in vitro de secuencias de ADN mediante Ia reacción en cadena de polimerasa). A estos fragmentos de nucleótidos de una sola hebra inmovilizados en el soporte, se les denomina "sondas". Los ácidos nucleicos de las muestras a analizar se marcan por diversos métodos (enzimáticos, fluorescentes, etc.) y se incuban sobre el panel de sondas, permitiendo Ia hibridación (reconocimiento y unión entre moléculas complementarias) de secuencias homologas. Durante Ia hibridación, las muestras de material genético marcadas se unen a sus complementarias inmovilizadas en el soporte del chip, permitiendo Ia identificación y cuantificación del ADN presente en Ia muestra. Después, el escáner y las herramientas bioinformáticas adecuadas permiten interpretar y analizar los datos obtenidos (Al-Shahrour F y cois., 2005).
Para utilizar un microarray se puede recurrir a los que existen comercialmente, o se puede diseñar uno personalizado.
Para diseñar un microarray se deben realizar las operaciones siguientes:
a) Elección del tipo de sonda, oligos, ADNc, ...
b) Mareaje de sondas o muestras: enzimático, fluorescente,...
c) Material de soporte: vidrio, plástico, membranas, ...
d) Inmovilización de sondas: activa, pasiva, covalente, ...
e) Fabricación: impresión, síntesis in situ, ...
f) Detección de Ia hibridación: escáner, fluorimetría, ...
g) Procesamiento de datos: software. Esta tecnología se está aplicando al análisis de Ia expresión génica, secuenciación, seguimiento de terapias, medicina preventiva, toxicología de fármacos y diagnóstico molecular. Se ha descrito Ia fabricación de microarrays, denominados también bioarrays o biochips en varios documentos de patente, como por ejemplo/ WO 2005/018796 AI1 US 2005/0048554 A1, y US 2005/0046758 Al También su utilización se ha aplicado a dendrímeros (WO 2005/040094 A1) y grandes biomoléculas (US 2005/0042363 A1) o para recabar información sobre muestras, como por ejemplo, identificar una célula cancerígena o patógena en un individuo (WO 2005/016230 A2). También se conoce su utilización para inmovilizar ácidos nucleicos que son complementarios de una variedad de genes, aplicándose al campo de Ia química, Ia biología, Ia medicina y los diagnósticos en medicina (US 6,821,724 B1). En Ia actualidad se están utilizando los microarrays para hacer comparaciones basándose en datos genómicos y para investigar distintos sistemas.
Existen diversas publicaciones de literatura patente y no patente sobre este tema. En Ia actualidad, Ia tecnología del microarray ha permitido estudiar de forma global Ia expresión génica del endometrio bajo condiciones fisiológicas durante las diferentes. fases del ciclo menstrual en ciclo natural (Ponnampalam y cois., 2004, Talbi y cois., 2005). En Io que respecta a Ia ventana de implantación humana los perfiles de expresión génica del endometrio en el ciclo natural han sido descritos (Borthwick y cois., 2003; Carson y cois., 2002; Riesewijk y cois., 2003;Mirkin y cois., 2005). También se ha analizado el perfil de expresión génica del endometrio durante la ventana de implantación en ciclos estimulados (Mirkin y cois., 2004; Horcajadas y cois., 2005 (Aportar referencia bibliográfica en el apartado Bibliografía); Simón C y cois., 2005) y en respuesta a fármacos como RU486 (Catalano y cois., 2003 (Aportar referencia bibliográfica en el apartado Bibliografía); Sharkey y cois., 2005).
Asimismo se ha estudiado el perfil refractario del endometrio humano en presencia de un dispositivo intrauterino (DIU) durante la ventana de implantación (Horcajadas y col. 2006). Todos estos trabajos han sido revisados recientemente por los autores de Ia presente solicitud (Horcajadas y cois., 2007). La conclusión de dicho estudio es que aunque en los últimos 4 años, se han llevado a cabo diversos estudios genómicos del endometrio humano en distintas condiciones fisiológicas y patológicas, los cuales han generado gran cantidad de información sobre Ia regulación de los genes durante Ia ventana de implantación, tanto en mujeres fértiles como infértiles, sin embargo, las moléculas y mecanismos clave todavía están por descubrir. En el campo de las patentes, existen varias que tratan de determinar Ia receptividad/no receptividad del endometrio, aunque ni los genes, ni Ia tecnología, ni los sistemas predictivos que postulan coinciden con los empleados en Ia presente invención.
En el documento de patente US 2003/0077589 A1 se describe un método para diagnosticar Ia endometriosis, basado en Ia identificación del producto de al menos uno de los genes del grupo que consiste en fibronectina, receptor de transmenbrana PTK7, colágeno tipo XVIII, alfa 1, proteína similar a Ia subtilisina (PACE4), cadena de laminina M
(merosina), elastina, colágeno tipo IV, alfa 2, gen p27 interferón alfa inducible, reticulocalbina, aldehido deshidrogenasa 6, gravina, nidogen y fosfolipasa C epsilon, en Ia que una pequeña cantidad del gen control indica Ia presencia de endometriosis.
En Ia solicitud de patente US 2003/0125282 A1 se describen dos proteínas humanas MATER (se conocían las MATER de ratón) y su relación y utilización para las alteraciones relacionados con Ia fertilidad.
En el documento US 2003/0186300 A1 se describen métodos y composiciones comerciales para el diagnóstico y el tratamiento de enfermedades asociadas a Ia reproducción. La invención también se refiere a métodos y composiciones para Ia determinación y modulación de Ia receptividad del endometrio.
En la patente US 2005/0032111 A1 se utiliza Ia expresión de Ia cadherina-11 en el tejido endometrial como indicador de Ia capacidad para establecer o mantener un embarazo.
El documento US 2005/0106134 A1 se refiere al papel de Ia enzima proproteína convertasa 5/6 durante el embarazo, y particularmente de su detección y Ia de sus isoformas en el útero. Esta enzima es útil en el control de Ia fertilidad, para monitorizar un embarazo prematuro y para Ia detección de Ia receptividad del útero en los mamíferos. También se describen nuevas formas de proproteína convertasa 5/6,
En Ia patente US 2003/0228636 A1 se describe un método para detectar Ia receptividad del endometrio para Ia implantación embrionaria, que comprende: obtener una muestra del endometrio, poner en contacto el endometrio con un anticuerpo monoclonal de β3, y detectar β3 en el endometrio. También se mencionan los contraceptivos y kits de diagnóstico útiles para llevar a cabo los métodos de la invención.
En Ia solicitud de patente WO 2005/061725 A1 se describen métodos para detectar marcadores asociados con enfermedades endometriales o una determinada fase endometrial en una mujer, que comprenden medir los marcadores endometriales peptídicos o los polinucleótidos que codifican los marcadores, en Ia muestra estudio. La invención también proporciona métodos para detectar enfermedades endometriales, así como kits para llevar a cabo los métodos de Ia invención.
El documento WO 01/89548 A2 se refiere a Ia utilización farmacéutica del polipéptido y el ácido nucleico de Ia fibulina-1 en el control de Ia natalidad en las mujeres, y para el diagnóstico y tratamiento de Ia endometriosis.
En Ia patente WO 2004/058999 A2 Ia invención se refiere a un método y los medios para determinar las condiciones específicas o los cambios en Ia mucosa del útero o en el epitelio de otros órganos. El método permite determinar Ia sobre-expresión de subunidades ARNm del tipo l-β (β7,β6,B6e) de gonadotropina humana. Las medidas de Ia expresión de β7,β6,β6e se utilizan para indicar Ia receptividad de Ia mucosa uterina a Ia implantación de un embrión o para indicar cambios neoplásicos en el epitelio.
En la patente US 2004/0005612 A1 se identifican secuencias genéticas con niveles de expresión que son reprimidos o inducidos en el endometrio humano durante Ia ventana de implantación. Los genes caracterizados durante Ia ventana de implantación proporcionan material para ensayos con el objeto de determinar alteraciones del endometrio e infertilidad, así como métodos de control de Ia natalidad basados en el endometrio.
En Ia patente US 6,733,962 B2 se describe un método para diagnosticar un desarrollo anormal del endometrio de una mujer basándose en Ia expresión de Ia ciclina E y Ia p27 en una muestra obtenida después del día 20 del ciclo menstrual de una mujer que idealmente dura 28 días.
Resumiendo, durante más de 50 años se ha tratado de determinar un estándar histológico para utilizar en el diagnóstico clínico de receptividad endometrial basado en observaciones morfológicas. Hoy día, con Ia tecnología de los microarrays, mucho más precisa que las observaciones morfológicas, se han publicado trabajos que se refieren a distintos genes presentes a Io largo del ciclo menstrual, pero los resultados no coinciden ya que el diseño experimental, Ia recolección de muestras y Ia selección de los genes son cruciales a Ia hora de sacar conclusiones.
Por Io tanto, todavía y más que nunca, es necesario tener disponible un microarray que englobe una selección de genes que generen un perfil de expresión que sirva para diagnosticar y determinar si el estado de un endometrio particular corresponde al estado de receptividad/no receptividad.
Por ello, en Ia presente solicitud se ha determinado una lista de genes y sondas, los cuales una vez incorporados a un microarray, por medio del análisis de Ia expresión conjunta de estos genes en Ia muestra objeto del estudio, utilizando un modelo de predicción computacional definido y entrenado, es capaz de evaluar el estado de receptividad/no receptividad de una muestra de endometrio obtenida 7 días después del pico de Ia LH, así como situaciones de sub-fertilidad de origen endometrial en función del perfil de expresión génica de todos ellos.
Así, el método de Ia presente invención utiliza como marcador de receptividad endometrial Ia expresión conjunta de los RNAm relacionados con el proceso como un conjunto, a diferencia del resto de marcadores moleculares de receptividad del estado de Ia técnica que se basan en el estudio de una molécula o de un pequeño grupo de moléculas consideradas de forma independiente.
OBJETO DE LA INVENCIÓN
La presente invención permite determinar el estado funcional de receptividad endometrial humano por medio de Ia utilización de dos componentes: por una parte, el diseño de un microarray específico que identifica el perfil de expresión génica de Ia situación de receptividad /no receptividad del endometrio humano y por otra, del posterior análisis del perfil de expresión de este microarray específico por medio de un predíctor computacional que es capaz de asignar un estatus de receptividad.
Para ello, se siguen los pasos siguientes:
1. Identificar un conjunto de (os genes que estén implicados en Ia receptividad endometrial para su inclusión en un microarray específico de receptividad endometrial (Endometrial Receptivity Array, ERA).
2. Creación del microarray específico.
3. Analizar el patrón de expresión del ERA durante Ia ventana de implantación mediante herramientas bioinformáticas, para poder establecer el perfil de receptividad endometrial y crear un modelo de predicción. 4. Desarrollar un software que con este modelo de predicción basado en el perfil de expresión génica, permita evaluar y predecir, de forma cuantitativa y objetiva el estado receptivo endometrial in vivo.
El fundamento del microarray es el siguiente: cuando un gen está activo, se producen moléculas de ARNm, que tienen Ia secuencia de bases complementaria a Ia del gen. Cuando un gen está inactivo no se produce ARNm. El análisis consiste en extraer el ARNm total de dos poblaciones celulares que varían en Ia situación a estudiar, en este caso el endometrio receptivo y no receptivo, marcarlo con una sustancia fluorescente e hibridarlo sobre el microarray. Como cada ARNm se aparea sólo a Ia sonda del gen que tiene su misma secuencia de bases complementarias, aquellas sondas que capturen más ARNm -y que por tanto brillen con más fluorescencia- indicarán qué genes estaban más activos. Si se compara el patrón de fluorescencia del endometrio receptivo contra el no receptivo, se sabrá qué genes están expresados de forma diferencial en una situación con respecto de Ia otra, y que por tanto ser relacionan con el proceso.
Las sondas están diseñadas para que se unan a ellas los ARNm del gen al cual pertenecen, y son las que están fijadas en el soporte del array. Los oligonucleótidos que forman (a sonda se insertan de forma automatizada en una capa de cristal, nylon o plástico, colocándose en unas casillas que actúan a modo de microtubo de ensayo. Los microarrays de oligonucleótidos son fabricados de manera automatizada e insertados por robots mediante fotolitografía o impresión piezoeléctrica. El resultado es un proceso automatizado y normalizado que permite miles de impresiones por cm2 y minuto.
Generalmente se observa Ia distribución de las sondas en el microarray como un conjunto de sondas; las que tienen Ia misma secuencia se sitúan en Ia matriz en un mismo punto. En el ERA de Ia presente invención las sondas son oligos de 60 nucleótidos. De este modo, lo que está marcado y suelto en Ia disolución que ponemos a hibridar en el microarray son los fragmentos de ARNm marcados que serán los que se unan a Ia sonda fijada al soporte de Ia manera explicada, por homología de secuencia, de modo que cuanto más ARNm marcado se una a un punto, que corresponde a Ia sonda específica de un gen, más luz será detectada en ese punto, y se concluye por Io tanto que dicho gen es más activo.
Una vez establecido el funcionamiento del microarray objeto de Ia invención, así como delimitado el patrón de expresión de receptividad para evaluar mediante métodos bioinformáticos el estado de receptividad/no receptividad de un endometrio, se podrá evaluar igualmente, utilizando el mismo método, los estados de receptividad de otros procesos patológicos que deriven en infertilidad o subfertilidad de origen endometrial como el fallo de implantación debido a causa endometrial y el hidrosálpinx.
Además del uso del microarray de Ia presente invención para el diagnóstico molecular, éste también se puede utilizar como herramienta biotecnológica para el estudio del posible efecto de fármacos y/o dispositivos inertes en el endometrio, como por ejemplo, Ia respuesta a fármacos contraceptivos, tanto en ensayos in vitro como in vivo.
Más concretamente, el microarray de Ia presente invención es adecuado para determinar a partir de una muestra biológica de endometrio humano, Ia situación de normalidad/anormalidad en el perfil receptivo de dicho endometrio, ya que el microarray es un microarray de expresión personalizado que analiza el conjunto de RNAm de Ia biopsia. Para ello, y empleando un modelo de predicción computacional se define y clasifica el perfil de expresión de receptividad. También es capaz de definir el estado de receptividad de normalidad y de otras situaciones de receptividad, tanto de subfertilidad como de infertilidad, así como de Ia exposición a fármacos y/o dispositivos inertes, ya que para el análisis del microarray se emplea un software que contiene Ia información necesaria para que a partir de una biopsia endometrial obtenida durante el periodo receptivo, tras ser analizada por el ERA, sus datos de expresión génica sean preprocesados, de modo que Ia muestra sea clasificada en la clase que el modelo de predicción determine.
El microarray de Ia presente invención es un microarray de expresión de oligos con un formato 8x15K (8 arrays de 15.000 sondas) por portaobjetos (Figura 3). Cada array contiene 15.744 puntos: 659 sondas en las que se incluyen los genes seleccionados (8 réplicas por sonda, 4552 puntos), 536 puntos control y 10656 puntos libres (vacíos).
BREVE DESCRIPCIÓN DE LAS FIGURAS
Fig 1. Lista de las 569 sondas correspondientes a los 238 genes con un FDR<0, 05 y un FC>3, que son los que se han seleccionado y se especifican en Ia Figura 2.
Fig 2. Lista de los 238 genes seleccionados con un FDR<0,05 y un FC>3.
Fig 3. Microarray específico (ERA) (agilent technologies). La figura muestra como el ERA, microarray de expresión de oligos, tiene un formato de 8x15K (8 arrays de 15.000 sondas) por portaobjetos. Cada array contiene 15.744 puntos: 569 sondas en las que se incluyen los genes seleccionados (8 réplicas por sonda, 4.552 puntos), 536 puntos control y 10656 puntos libres (vacíos).
Fig 4. Tabla en Ia que se muestran los cebadores directos e inversos diseñados de los genes a amplificar mediante PCR cuantitativa.
Fig 5. Media de Ia expresión de las sondas de cada gen en el array comparada con Ia expresión en Ia PCR cuantitativa.
Fig 6. Esquema que resume como se ha diseñado la herramienta molecular y de los componentes principales de los que consta.
Fig 7. Se muestra el resultado de un modelo de predicción computacional generado con un training set de 23 muestras de las características descritas, que han sido analizadas con el ERA. A. El modelo de predicción distingue entre dos clases Receptivo (Receptive, muestras en día 20-21) y Otro (Other, muestras en días del ciclo fuera de receptividad). En las filas tenemos cada una de las muestras analizadas con el array ERA, y en Ia 1a columna Ia clase real conocida a príorí y en la 2a columna, Ia clase asignada por el modelo de predicción. Se observa que predice con un 100% de acierto, tras realizar el cálculo del error por validación cruzada. B. Matriz de confusión en Ia que observamos que 11 muestras las clasifica como en otros días del ciclo y 12 muestras como receptivas, no habiendo ni falsos positivos ni falsos negativos.
Fig 8. Esquema del procedimiento a seguir para determinar el estado de receptividad endometrial de una mujer.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La receptividad endometrial es el estado en el que el endometrio se encuentra dispuesto para que se produzca Ia implantación embrionaria. Esto ocurre en todos los ciclos menstruales en un periodo de tiempo denominado ventana de implantación que es de duración variable, y se abre entorno al día 19 del ciclo y se cierra sobre el día 24, considerándose el día 21 un día de referencia.
Después del pico de Ia hormona luteinizante (LH), que ocurre entorno al día 14, se produce Ia ovulación. Una manera más exacta de saber en que momento del ciclo menstrual nos encontramos, es medir este pico de LH en sangre, considerándose el día que se produce como día LH 0 y como LH+1 el día 15 del ciclo y como LH+7 al día 21 del ciclo . La herramienta diagnóstica molecular nos permite analizar el transcriptoma de un subconjunto de genes del genoma relacionados con el estatus de receptividad.
Tras coger una biopsia endometrial en día 21 del ciclo menstrual (fase receptiva, LH+7) podemos evaluar si esa mujer tiene un endometrio receptivo normal o si por el contrario no muestra el patrón de expresión esperado.
La biopsia endometrial es procesada para extraer su RNA, y este RNA marcado va a hibridar con las sondas fijadas en el ERA, pudiendo detectar los niveles de expresión de los genes en función de Ia intensidad de cada punto mediante un escaner. Los datos de las intesidades de cada punto son analizados por el modelo de predicción que ha sido entrenado con anterioridad, y este modelo, en función de todo el conjunto de puntos, clasifica las muestras como receptivas normales, o fuera de Ia normalidad (Figura 8).
El modelo de predicción es un sistema matemático que utiliza distintos algoritmos, fórmulas, para distinguir entre clases, y está entrenado con el training set para definir el perfil normal de receptividad, así como para definir el perfil de receptividad de patologías endometriales o estatus de subfertilidad debidos a causa endometrial que causan fallo de implantación; como por ejemplo Endometriosis, Hidrosálpinx, etc. Esas serían las principales.
1. Identificación de los genes implicados en Ia receptividad endometrial para Ia generación del microarray específico de receptividad endometrial.
La primera fase del proyecto consiste en Ia identificación de los genes que se encuentran regulados de forma específica en el endometrio del día LH+7 y que van a formar parte del microarray personalizado.
En Ia mayoría de los trabajos publicados los genes mencionados se han seleccionado cuando se encuentran inducidos o reprimidos dos veces. En Ia presente invención se han seguido unos criterios de selección distintos y más estrictos:
Criterio de selección de genes.
La selección de genes ha sido realizada en base a las diferencias del perfil de expresión génica endometrial representado por LH+1 , LH+3 y LH+5 (no receptivo) contra
LH+7 como estado receptivo. Los niveles de expresión se han obtenido a partir de un microarray de expresión de oligos de genoma completo. Se han escogido aquellos genes que muestran diferencias significativas de expresión en estas dos situaciones utilizando los criterios de FDR<0,05* y de FO3**.
* FDR: de las siglas en inglés de False Discovery Rate. Parámetro que corrige el P- valor en función del tamaño de la muestra. El valor de FDR 0,05 es Ia significatividad que de forma estándar se tiene en cuenta a nivel estadístico y supone el correr un riesgo del 5% de que las diferencias se deban al azar, y no al proceso biológico en cuestión.
** FC: de las siglas en ingles de FoId change. Significa: número de veces que cambia Ia expresión de un gen en una situación con respecto de Ia oirá. En cuanto a) FO 3, el criterio es suponer que si cambia más de tres veces es suficiente cambio para considerar el gen importante para el proceso.
Con el FDR se ha considerado Ia posibilidad de que las diferencias de expresión puedan deberse al azar, y no al proceso biológico. Además, se han seleccionado los genes con un Fc por encima de un valor umbral de 3 para que el número final de genes con los que vamos a trabajar sea factible. De este modo, estamos dando más importancia a los genes que cambian más, porque asumimos una relación directamente proporcional entre un mayor cambio y una mayor importancia para el proceso. Este criterio estricto auna tanto el requerimiento estadístico como el biológico. Además, hemos corroborado el sentido funcional de esta selección génica en el proceso biológico de Ia receptividad endometrial. Para ello, hemos realizado, mediante el uso de herramientas bioinformáticas, Ia clasificación ontológica de los genes utilizando FATIGO GEPAS (Al- Shahrour F y cois., 2005) viendo que los procesos biológicos representados de una manera superior a Ia esperada con una significatividad de 0,05, son Ia respuesta al estrés, la respuesta de defensa y Ia adhesión celular, procesos bastantes relevantes en preparar un endometrio a Ia posible implantación del blastocisto.
Se han escogido aquellos genes con estas características y por medio de programas informáticos han resultando un total de 238 genes (Figura 2) representados por 569 sondas (Figura 1).
2. Creación del microarray específico (Era) (Agilent Technologies)
El ERA es un microarray de expresión de oligos con un formato de 8x15K (8 arrays de 15.000 sondas) por portaobjetos (Figura 3). Cada array contiene 15.744 puntos: 569 sondas en las que se incluyen nuestros genes seleccionados (8 réplicas por sonda, 4.552 puntos), 536 puntos control y 10.656 puntos libres (vacíos). Análisis de expresión mediante el ERA
En esta sección utilizamos los datos de expresión generados por el ERA para Ia clasificación de las muestras endometriales en dos o más clases según los distintos perfiles que se generen de receptividad (receptivo normal; receptivo patológico; no receptivo normal...) , para generar el modelo de predicción y para comprobar su eficacia.
Para ello, se seleccionan biopsias endometriales de mujeres fértiles . Todas las muestras independientes, de mujeres con fertilidad probada, en distintos días del ciclo menstrual. Se trata de mujeres caucásicas con un índice de masa corporal entre 19 y 25 kg/m2 y cuya edad oscila entre 18 y 35 años.
Dichas muestras se utilizaron para generar un modelo de predicción.
Para ello, el ARN total fue extraído usando el protocolo del Trizol (Invitrogen) siguiendo las instrucciones del fabricante (Life Technologies, Inc., USA). Las muestras se homogeneizaron usando 1 mi de trizol por cada 75 mg de tejido, se incubaron a temperatura ambiente 5 min, se añadieron 200 μl volúmenes de cloroformo para Ia misma cantidad de tejido y se incubaron a temperatura ambiente 5 min. Posteriormente se centrifugaron 15 min a 12.000xg (40C). La fase acuosa se precipitó con un volumen igual de 2-propanol (isopropanol), se incubaron en hielo 5 min y centrifugaron 30 min a 12.000xg (40C). El precipitado se lavó con etanol 70% en agua tratada con dietilpirocarbonato (DEPC), para posteriormente resuspenderlo en agua DEPC (15 μl). Con este protocolo se suelen obtener 1-2 μg de ARN total por mg de tejido endometrial. EI ARN así extraído se trata con ADNsa durante 1 hora a 37°C para eliminar las trazas de ADN y purificarlo de nuevo usando el kit RNeasy de Qiagen siguiendo las instrucciones del fabricante. El ARN que se obtiene tras las columnas del kit RNeasy se analiza para comprobar su calidad en el bioanalizador Agilent 2100 usando los chips para ARN específicos de Ia marca Agilent, el ARN Nano LabChip.
Sólo se han utilizado para posteriores análisis aquellos ARNs que cumplían las características siguientes:
- No presentaban ADN genómico detectable,
- poseían una concentración superior a 200 μg/ml,
- el valor del radio de rARN era 28s/18S > 1,2, y - el valor de RIN>7,0, (RNA Integrity Number).
Tras los análisis, con las muestras seleccionadas por su calidad adecuada, a partir del ARN total se genera ADN complementarios de una sola cadena (ADNc) incubándolo entre una y dos horas a 400C con retrotranscriptasa, nucleótidos y un oligonucleótido polydT-T7 que porta, no solamente Ia secuencia poly T que híbrida con Ia cola poliA de los ARN mensajeros, sino además Ia secuencia de reconocimiento de Ia ARN polimerasa de T7.
A partir del ADNc obtenido en el paso anterior, se incuba durante 2 horas a 400C en presencia de ARN polimerasa de T7 y nucleótidos, uno de los cuales está marcado con Cy3, para producir ARN complementario llamado ARNc.
Se purifica ese ARNc por medio de un kit de purificación basado en una cromatografía de afinidad, y sé cuantifica.
Una vez purificado, ese ARNc marcado se fragmenta durante 30 min a 600C y se híbrida en el microarray durante 17 horas a 65°C. Una vez transcurrido ese tiempo, se lava el microarray para eliminar las hibridaciones inespecíficas. Una vez hibridados y lavados, los microarrays se centrifugan a 3.000 rpm durante 3 minutos para secar los microarrays y se procede a su lectura por medio de su escaneo en un Axon GenePix 4100A leyendo para las intensidades de Cy3 (532nm).
Como resultado, tras el pertinente procesado de datos que adjuntamos a continuación, se generó una matriz de expresión génica cuyas filas corresponden a las 569 sondas de los 238 genes seleccionados y cuyas columnas, a las distintas muestras.
Procesado de los datos del array
La corrección del efecto del fondo se ha realizado restando Ia mitad de Ia mediana de este, a Ia media de Ia intensidad del punto. La normalización interarray se ha hecho usando el método de los cuantiles.
Después es calculada Ia media de las ocho réplicas de cada sonda. Las diferentes sondas del mismo gen (probé set) son analizadas individualmente y los resultados son procesados por herramientas bioinformáticas. Validación de los resultados del ERA mediante PCR
Los resultados obtenidos en el ERA han sido validados mediante PCR cuantitativa con objeto de dar mayor consistencia a nuestros resultados y comprobar que el análisis por microarrays es fiable.
Se lleva a cabo Ia retrotranscripción para obtener el ARN en forma de ADNc, para ello 1μg de ARN total se puso en presencia de 1μg oligo (dT) (Clontech) hasta llegar a un volumen final de 12,5 μl con agua tratada con DEPC (dietilpirocarbonato). Se calentó 2 minutos a 700C para que se desnaturalizara cualquier posible estructura secundaría en los ÁRNm y luego se mantuvo en hielo 2 minutos.
Después se añadió 6,5 μl por cada una de las 30 muestras a validar, de una solución MIX con 4 μl de tampón, 1 μl dNTP, 0,5 μl ARNsa y 1 μl de retrotranscriptasa (Rt-PCR clontech). Se prosiguió Ia retrotranscripción 1hr en el termociclador. Se añaden 80 μl de agua con DEPC y se mide por espectrofotometría Ia concentración del ADNc de simple cadena obtenido poniendo 2 μl de muestra y 98 μl de agua DEPC. La cantidad de ADNc que se ha retrotranscrito debe estar entre 80 a 120 ng / μl para partir de concentraciones similares, aunque se normaliza con el patrón interno en nuestro caso GAPDH. De todos modos, para que Ia PCR cuantitativa funcione correctamente el rango de ADNc a amplificar debe estar entre 50-500 ng / μl. Si alguna muestra no está en esos parámetros, se diluye.
Diseñamos los cebadores directos e inversos para cinco genes aumentados en
LH+7 (Figura 4). Las secuencias de oligonucleótidos de los cebadores fueron diseñadas con el programa bioinformático Gene fisher (ver Figura 4 y listado de secuencias). El sistema de detección se realizó con el SYBR Green I de unión a ADN de doble cadena (Roche). Este sistema de detección establece un rango dinámico linear para detectar productos específicos de PCR. Todos los experimentos de Q-PCR se realizaron usando el SYBR Green PCR Master Mix (roche) y las condiciones universales de los parámetros de ciclos térmicos indicados por los fabricantes utilizando el Light cycler de Roche. Se realizaron 40 ciclos. Las temperaturas a las que funcionan bien los cebadores se pueden observar en Ia Figura 4. La cuantificación relativa se realizo mediante el método estándar de Ia curva patrón.
La expresión de GPX3; CLDN10; FXYD2 ; SPP1;y MT1G, corresponden en el ERA a los valores de expresión de las siguientes sondas: Sonda Gen
A_ .23_ _P133474 GPX3
A_ .23. _P 133475 GPX3
A_ .01. .P007324 CLDN 10
A_ .23. .P48350 CLDN10
A_ .24. .P 196562 FXYD2
A_ _23_ .P161769 FXYD2
A. .23. .P7313 SPP1
A .01. _P017618 SPP1
A_ 23. _P60933 MT1G
A_ .23. .P206707 MT1G
A 23 P206701 MT1G
Considerando que se trata de técnicas distintas, Ia PCR cuantitativa, cuya sensibilidad es mucho mayor pero que proporciona un solo valor de expresión, y los arrays en los. que se tiene Ia expresión de distintas sondas para un mismo gen. Por ello, para poder comparar se ha realizado en el array Ia media de Ia expresión de las distintas sondas de un gen (Figura 5).
Debido a su distinta sensibilidad, se considera que Ia relación del valor de expresión entre ambas técnicas correspondería a un factor de corrección de 10 (aumentos de expresión de 1Ox en el array se admite que se corresponden con un máximo de 10Ox en Ia PCR cuantitativa (Figura 5). 3. Analizar el patrón de expresión del ERA durante Ia ventana de implantación para poder establecer el perfil de receptividad endometrial. Generación de un clasificador .
Entrenamiento
Un predictor es una herramienta matemática que utiliza una matriz de datos, en nuestro caso los generados con el ERA, y aprende a distinguir clases (Medina I, y cois, 2007), en nuestro caso dos o más clases según los distintos perfiles qué se generen de receptividad (receptivo norma}; receptivo patológico; no receptivo normal...). El razonamiento que subyace a esta estrategia es el siguiente: si podemos distinguir entre las clases como consecuencia del distinto nivel de expresión génica, entonces en teoría, es posible encontrar Ia expresión génica característica de LH+7 y usarla para asignar una clase al perfil de expresión de Ia muestra problema analizada con el microarray personalizado ERA.
Al conjunto de muestras que entrena al clasificador para definir las clases, se denomina conjunto de entrenamiento ("training set"). Es decir, los perfiles de expresión génica de estas muestras, medidos con el EΞRA, son utilizados por el programa para saber que sondas son las más informativas y para distinguir entre clases (distintos estados de receptividad y no receptivas normales). Las biopsias utilizadas para generar el modelo de clasificación, están cuidadosamente escogidas y datadas de Ia manera más fiable de Ia que disponemos en Ia actualidad. Este conjunto de entrenamiento se irá ampliando conforme se teste un mayor número de muestras, pero está compuesto por muestras receptivas y en otros días del ciclo menstrual. Son todas muestras independientes, de mujeres distintas, sanas, en ciclo natural y con fertilidad probada. Se trata de mujeres caucásicas con un índice de masa corporal entre 19 y 25 kg/m2 y entre 19 y 34 años. Sólo se han escogido aquellas muestras cuya daíación histológica, aplicando los criterios de Noyes, coincide entre los dos patólogos y con el día del ciclo menstrual.
La clasificación es realizada por el programa bioinformático utilizando distintos algoritmos matemáticos, existen multitud disponibles. Un algoritmo es una lista bien definida, ordenada y finita, de operaciones que permite hallar Ia solución a un problema.
Dado un estado inicial y una entrada, a través de pasos sucesivos y bien definidos se llega a un estado final, obteniendo una solución. El clasificador consigue calcular el error que comete mediante un procedimiento llamado validación cruzada, que consiste en dejar un subconjunto de las muestras del conjunto de entrenamiento (training set) de clase real conocida, fuera del grupo para definir las clases, y' luego testarlas con el' modelo generado y ver si acierta, esto se realiza haciendo todas las combinaciones posibles. Se calcula Ia eficacia del clasificador y obtenemos modelos de predicción que clasifica correctamente todas las muestras del conjunto de entrenamiento ( Figura 5). Es decir, que todas las muestras del conjunto de entrenamiento son clasificadas por el predictor en Ia clase real asignada conocida por nosotros.
A priori no se puede saber como se distribuyen los datos en el espacio, sólo se sabe como se ubican en las dimensiones que se pueden distinguir, que son tres. De este modo, hay diferentes algoritmos a aplicar, que funcionarán mejor o peor según como los datos introducidos se distribuyan en el espacio. Se aplican los más usados en matemáticas para matrices de expresión generadas por el análisis de microarrays, y vemos cual separa mejor las clases definidas. De este modo existen algoritmos que establecen una separación en virtud a una recta, otros en función del punto vecino más cercano, se basa en distancias... y así cada método se basa en un criterio de separación matemático que se ajustará más a menos a Ia realidad de las muestras.
4. Desarrollo de un predictor que permita evaluar y predecir, de forma cuantitativa y objetiva el estado receptivo endometrial basándose en el perfil de expresión génica.
Determinar Ia predicción
En función de todos los parámetros relativos a un predictor computacional explicados con anterioridad, generamos un modelo de predicción que nos clasifica todas las muestras según Ia clase real asignada, que a su vez estaba datada por Noyes, habiendo una coincidencia del 100% ( Figura 7).
El modelo de predicción generado ha sido entrenado con un training set de 23 muestras, 12 receptivas y 11 en otros días del ciclo menstrual. Distinguiéndose dos clases (receptive / Other). En Io sucesivo el modelo será reentrenando conforme vayamos obteniendo más muestras de las mismas características del training set ya generado, pero también con muestras en periodo de receptividad con patologías que alteren el patrón de expresión del ERA, así como Ia alteración por fármacos. De este modo iremos definiendo cada vez más ciases. Así, el ERA se puede utilizar para Ia identificación positiva de la receptividad eπdometrial, así como para el diagnóstico de su alteración asociado a alteraciones endometriales propias de patologías como Ia endometriosis, fallo de implantación, hidrosalpinx, etc. Así mismo esta herramienta diagnóstica permitiría detectar las modificaciones funcionales inducidas por fármacos interceptivos o que pretendan mejorar Ia receptividad endometrial, alterando Ia situación de normalidad/anormalidad en el perfil receptivo del endometrio de una mujer.
Así, el ERA de Ia presente invención, es un microarray de expresión génica a la carta. Es un array de oligos de 60 mers con 8 arrays por portaobjetos o slide, con 15K (15744 puntos) en cada array.
Es un array personalizado con número de diseño 016088 (AMADID) Posee 569 sondas representadas por 238 genes con 8 replicas por cada sonda hacen un total de 4.536 puntos quedando 10.672 puntos libres.
Lectura del perfil de expresión de los datos de expresión de 238 genes representados por 569 sondas (genes con un FDR>0.05 y un FC>3) es un modelo de predicción construido con 23 muestras que clasifica con un error de 0, que es capaz de clasificar Ia muestra en estado receptivo u otro.
Los análisis estadísticos, así como Ia selección de genes con las características indicadas, han sido realizados mediante el uso de programas informáticos.
La lista final del ERA incluye las 569 sondas que representan a los 238 genes con un FDR<0,05 y un FO3 (Figura 1)
El array personalizado ERA es hibridado con el RNA mensajero de otro set de muestras distintas a las utilizadas para seleccionar ios genes a incluir, que son usadas para enseñar al predictor a clasificar entre LH+7 u otro.
Tras definir estas dos clases, receptivo o fuera, el predictor se va a escalar, es decir, nos va a determinar cómo de cerca o lejos se encuentra el perfil de una muestra del perfil receptivo. EJEMPLO
Obtención y procesado de las muestras
Se toman biopsias del endometrio de 30 mujeres donantes sanas con fertilidad probada, y de 10 pacientes de Ia clínica con fallo de implantación debido a causa endometrial, las 4o biopsias cogidas en el día 21 del ciclo menstrual (fase receptiva, LH+7).
El ARN total de cada una de las biopsias se extrae usando el protocolo del Trizol (Invitrogen) siguiendo las instrucciones del fabricante (Life Technologies, Inc., USA). Las muestras se homogenizan usando 1 mi de Trizol por cada 75 mg de tejido, se incuban a temperatura ambiente 5 min, se añaden 200 μl volúmenes de cloroformo para Ia misma cantidad de tejido y se incuba a temperatura ambiente 5 min. Posteriormente se centrifuga 15 min a 12.000xg (4°C). La fase acuosa se precipita con un volumen igual de 2-propanol (isopropanol), se incuba en hielo 5 min y centrifugamos 30 min a 12.000xg (4°C). El precipitado se lava con etanol 70% en agua tratada con dietilpirocarbonato (DEPC), para posteriormente resuspenderlo en agua DEPC (15 μl). Con este protocolo se suelen obtener 1-2 μg de ARN total por mg de tejido endometrial. El ARN así extraído se trata con ADNsa durante 1 hora a 37°C para eliminar las trazas de ADN y purificarlo de nuevo usando el kit RNeasy de Qiagen siguiendo las instrucciones del fabricante. El ARN que se obtiene tras las columnas del kit RNeasy se analiza para comprobar su calidad en el bioanalizador Agilent 2100 usando los chips para ARN específicos de Ia marca Agilent, el ARN Nano LabChip.
Sólo se puede utilizar aquellos ARNs que cumplen las características siguientes:
- no presentaban ADN genómico detectable,
- poseían una concentración superior a 200 μg/ml,
- el valor del radio de rARN era 28s/18S >1,2, y
- el valor de RIN>7,0, (ARN Integrity Number).
Tras los análisis, con las muestras seleccionadas por su calidad adecuada, a partir del ARN total se genera ADN complementarios de una sola cadena (ADNc) incubándolo entre una y dos horas a 400C con retrotranscriptasa, nucleótidos y un oligonucleótido polydT-T7 que porta, no solamente Ia secuencia poly T que híbrida con Ia cola poliA de los ARN mensajeros, sino además Ia secuencia de reconocimiento de Ia ARN polimerasa de T7.
A partir del ADNc obtenido en el paso anterior, se incuba durante 2 horas a 4O0C en presencia de ARN polimerasa de T7 y nucleótidos, uno de los cuales está marcado con Cy3, para producir ARN complementario llamado ARNc.
Se purifica ese ARNc por medio de un kit de purificación basado en una cromatografía de afinidad, y se cuantifica.
Una vez purificado, ese ARNc marcado se fragmenta durante 30 min a 60°C y se híbrida en el microarray durante 17 horas a 650C. Una vez transcurrido ese tiempo, se lava el microarray para eliminar las hibridaciones inespecíficas. Una vez hibridados y lavados, los microarrays se centrifugan a 3.000 rpm durante 3 minutos para secar los microarrays y se procede a su lectura por medio de su escaneo en un Axon GenePix 4100A leyendo para las intensidades de Cy3 (532nm).
Como resultado, tras el pertinente procesado de datos que adjuntamos a continuación, se genera una matriz de expresión génica cuyas filas corresponden a las 569 sondas de los 238 genes seleccionados y cuyas columnas, a las distintas muestras.
Procesado de los datos del array
El procesado de los datos del array es realizado por una serie de comandos bioinformáticos que quedan definidos en un software diseñado exclusivamente para Ia invención como se explica a continuación.
A las 40 matrices de datos se les realiza Ia corrección del efecto de fondo debido al proceso de mareaje propio de Ia técnica.
Posteriormente se eliminan los puntos vacíos y se realiza el proceso de normalización en función de las 40 muestras y en función del perfil de expresión definido según el modelo de predicción para que pueda ser comparado.
Después es calculada Ia media de las ocho réplicas de cada sonda. Las diferentes sondas del mismo gen son analizadas individualmente y los resultados son analizados por el modelo de predicción computacional creado que también se halla incluido en el software. Predicción
Las 40 muestras a testar (test set) se lanzan con el modelo de clasificación creado que analiza Ia expresión del ERA y predice a Ia clase que pertenecen.
Resultados El análisis de los datos de expresión del array fue introducido en el software. El resultado obtenido indicó que, de las 30 muestras de mujeres sanas con fertilidad probada testadas, 27 correspondían a mujeres con perfil de expresión de receptividad del endometrio considerado como normal y 3 correspondían a mujeres con perfil de expresión de receptividad del endometrio considerado como fuera de Ia normalidad. De las 10 pacientes con fallo de implantación, 9 fueron clasificadas como fuera de Ia receptividad normal y 1 como dentro de Ia receptividad normal. La herramienta molecular presentó una eficacia diagnóstica del 90%.
BIBLIOGRAFÍA
- AI-ShahiOiir F y Dopazo J. In Azuaje F y Dopazo J (eds), Data analysis and visualization in genomícs and proteomics. Wiley 2005; 99-112.
- Al-Shahrour F, Minguez P, Vaquerizas JM, Conde L y Dopazo J. BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high- throughput experiments. Nucleic Acids Res 2005; 33:460-464,
- Balasch J, Fabregues F, Creus M y Vanrell JA. The usefulness of endometrial biopsy for luteal phase evaluation in infertility. Hum Reprod 1992; 7:973-977.
- Batista MC, Cartledge TP, Merino MJ, Axiotis C, Platia MP, Merriam GR. Midluteal phase endometrial biopsy does not accurately predict luteal function. Fértil Steril 1993; 59:294-300,
-Borthwick J, Charnock-Jones S, Tom BD y cois, (2003) Determinaron of the transcript profile of human endometrium. Mol Hum Reprod 9, 19-33,
-Carson D, Lagow E, Thathiah A y cois, (2002) Changes ¡n gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high- density microarray screening. Mol Hum Reprod 8, 971-979. - Catalano RD, Yanaihara A, Evans AL, Rocha D, Prentice A, Saidi S, Print CG, Charnock-Jones DS, Sharkey AM and Smith SK (2003) The effect of RU486 on the gene expression profile in an endometrial explant model Mol Human Reprod 9,465-473.
- Coutifaris C, Myers ER, Guzick DS, Diamond MP, Carson SA, Legro RS, McGovern PG, Schlaff WD, Carr BR1 Steinkampf MP, Silva S, Vogel DL y Leppert PC. Histological dating of timed endometrial biopsy tissue ¡s not related to fertility status. Fértil Steril 2004; 82:1264-72.
- Creus M, Ordi J, Fabregues F, Casamitjana R, Ferrer B, CoII E, Vanrell JA y Balasch J. Alphavbeta 3 integrin expression and pinopod formation in normal and out-of-phase endometria of fertile and infertile women. Hum Reprod 2002; 17:2279-2286,
-Horcajadas JA, Sharkey AM, Catalano RD, Sherwin JRA, Domínguez F, Burgos LA, Castro A, Peraza MR, Pellicer A and Simón C (2006) Use of Gene-Expression Profiling to Identify Human Endometrial Refractoriness. J Clin Endocrino! Metabol.
-Horcajadas JA, Pellicer A y Simón C (2007) Wíde Genomic Analysis of Human Endometrial Receptivity. New times, new opportunities. Human Reprod Update 13, 77- 86,
-Horcajadas JA, Riesewijk A, Polman J, van Os R, Pellicer A, Mosselman S and Simón, C (2005) Effect of Controlled Ovarían Hyperstimulation in IVF on Endometrial Gene Expression Profiles. Mol Human Reprod 11,195-205.
-Kliman HJ, Honig S, WaIIs D, Luna M, McSweet JC, Copperman AB. Optimization of endometrial preparation results in a normal endometrial function test (EFT) and good reproductive outcome ¡n donor ovum recipients. J Assist Reprod Genet 2006; 23:299- 303,
- Lessey BA, Castelbaum AJ, Sawín SW, Sun J. Integrins as markers of uterine receptivity in women with primary unexplained infertility.
Fértil Steril 1995; 63:535-542.
- Li TC, Dockery P, Rogers AW y Cooke ID. (How precise is histologic dating of endometrium using the standard dating criteria?. Fértil Steril 1989; 51:759-763,
- Medina I, Montaner D, Tarraga J, Dopazo J. Prophet, a web-based tool for class predictíon using microarray data. Bioinformatics. 2007; 23(3):390-1. -Mirkin S, Arslan M, Churikov D, Corica A, Diaz Jl, Williams S, Bocea S y Oehninger S (2005) In search of candidaíe genes critically expressed ¡n the human endometrium during the window of implantation Human Reprod 20:2104-2117.
-Mirkin S, Nikas G, Hsiu JG, Diaz J and Oehninger S (2004) Gene expression profiles y strucíural/functional features of the peri-implantation endometrium in natural and gonadotropin-stimulated eyeles. J Clin Endocrinol Metab 89:5742-5752.
- Montaner D, Tarraga J, Huerta-Cepas J, Burguet J, Vaquerizas JM1 Conde L, Minguez P, Vera J, Mukherjee S, VaIIs J, Pujana MAG, Alloza E, Herrero J, Al-Shahrour F y Dopazo J. Next station in microarray data analysis: GEPAS. Accepted Nucleic Acids Res. 2006,
- Murray IWJ, Meyer WR, Zaino RJ, Lessey BA, Novotny DB, lreland K, Zeng D y Fritz MA. A critical analysis of the aecuracy, reproducibilíty, and clinical utility of histologic endometrial dating in fertile women. Fértil Steril 2004; 81:1333-1343,
- Noyes RW, Hertig AT, y Rock J. Dating the endometrial biopsy. Fértil Steril 1950; 1:3-17.
- Ordf J, Creus M, Quinto L, Casamítjana R, Cardesa A y Balasen J. Within-subject between-cycle variability of histological dating, alpha v beta 3 ¡ntegrin expression, and pinopod formation in the human endometrium. J Clin Endocrinol Metab 2003; 88:2119- 2125,
- Papanikolaou EG, TouARNye H, Verpoest W, Camus M, VeARNeve V, Van Steirteghem A, Devroey P;
http://www.ncbi.nlm. nih.gov/sites/entrez?Db=pubmed&Cmd=ShowDetailView&Ter mToSearch=15576388&ordinalpos=79&itool=EntrezSystem2.PEntrez.Pubmed.Pu bmed_ResultsPanel.Pubmed_RVDocSum Early and late ovarían hyperstimulation syndrome: early pregnaney outeome and profile. Hum Reprod. 2005; 20(3). '636-641.
- Ponnampalam AP, Weston GC, Trajstman AC. Molecular classification of human endometrial eyele stages by transcriptional profiling. Mol Hum Reprod 2004; 10, 879-893,
- Riesewijk A, Martin J, Horcajadas JA Polman J, Pellicer A, Mosselman S y Simón C (2003) Gene expression profiling of human endometrial receptivity on days LH+2 contra LH+7 by microarray technology. Mol Hum Reprod 9:253-264, - Schena M, Shalon D, Davis RW y Brown PO. Quantitative monitoring of gene expression paíterns with a complemeníary ADN microarray. Science 1995; 270:467-470,
- Sharkey AWI, Catalano R, Evans A, Chamock-Jones DS and Smith SK (2005) Novel antiangiogenic agents for use in contraception. Contraception 71,263-271.
- Shoupe D, Mishell DR Jr, Lacarra M, Lobo RA, Horenstein J, d'Ablaing G. Correlation of endometrial maturation with four methods of estimating day of ovulation. Obstet Gynecol. Obstet Gynecol 1989; 73:88-92.
- Talbi S, Hamilton AE, Vo KC, Tulac S, Overgaard M T, Dosiou C, Le Shay N, Nezhat, CN, Kempson R, Lessey BA, Nayak NR y Giudice LC. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes ¡n normo-ovulatory women.- Endocrinology 2005; 147:1097-1121.
-Wilcox AJ, Baird DD, Weinberg CR. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med. 1999;340:1796-1799.
T-REX (http://www.gepas.org/)
FATIGO(http://babelomics.bioinfo.cipf.es/EntryPoint?loadForm=fat¡go)
PROPHET(http://gepas.bioinfo. cipf.es/cgi-bin/loadtool. cgi?tool=prophet)
Agilent earray 4,5 ( https://earray.chem. agilent.com/earray/)

Claims

REIVfNDICACIONES
1. Un método para detectar, en una muestra biológica obtenida del endometrio humano, Ia situación de normalidad/anormalidad en el perfil receptivo de dicho endometrio, caracterizado porque comprende:
a) obtener una biopsia endometria! del fondo uterino de una mujer 7 días después de su pico de LH endógena, Io que equivale a Ia fase del día 20-21 del ciclo menstrual.
b) realizar Ia extracción y purificación de ARNm de Ia biopsia endometrial;
c) determinar en dicha muestra el perfil de expresión del conjunto de los genes implicados en Ia receptividad endometrial según figura 1, incluidos en el ERA mediante Ia tecnología de microarrays ;
d) detectar en dicha biopsia el perfil de expresión de dichos genes implicados en Ia receptividad endometrial ; y
e) analizar dicho perfil de expresión de los genes mediante el software informático que contiene el modelo de predicción específico que clasifica y determina el estado del endometrio en función del perfil génico con los criterios fijados.
2. Un método, según Ia reivindicación 1 , caracterizado porque Ia muestra endometrial obtenida en (a) se ha puesto en contacto con un oligo (sonda) que es complementario a una región del gen cuya expresión se cuantifica.
3. Un método, según las reivindicaciones 1-2, caracterizado porque cada gen tiene al menos una sonda.
4. Un método, según las reivindicaciones 1-3, caracterizado porque dicho ARNm normalmente es inducido o reprimido en esa fase del ciclo en un endometrio receptivo y es reprimido o inducido en esa misma fase del ciclo femenino en un endometrio no receptivo.
5. Un método, según las reivindicaciones 1-4 caracterizado porque el perfil de expresión se ajusta al establecido por el modelo de predicción para el ERA, una vez establecido el patrón de expresión del ERA durante Ia ventana de implantación.
6. Un método, según las reivindicaciones 1- 5, caracterizado porque Ia situación de anormalidad es producida por situaciones de subfertilidad o debida a causa endometrial como pueda ser el fallo de implantación o hidrosálpinx.
7. Un método, de acuerdo con las reivindicaciones 1-6, caracterizado porque Ia situación de normalidad/anormalidad en el perfil de receptividad del endometrio es causa del efecto de fármacos o dispositivos inertes o en combinación con fármacos que alteran Ia situación de normalidad/anormalidad.
8. LJn método, de acuerdo con Ia reivindicación 7, para detectar en una muestra biológica el efecto de fármacos que alteren Ia situación de normalidad/anormalidad en el perfil receptivo de un endometrio, caracterizado por el perfil de expresión determinado por el ERA, tanto en una mujer sana como con diversos estados patológicos que afecten al perfil de expresión génica de los genes que incluye el ERA, como por ejemplo, fallo de implantación debido a causa endometrial.
9. Un método según cualquiera de las reivindicaciones anteriores caracterizado porque el marcador de receptividad empleado consiste en Ia determinación del perfil de expresión conjunto de los genes según figura 1.
10. Microarray para llevar a cabo el método de acuerdo con las reivindicaciones 1-9.
11. Microarray de acuerdo con Ia reivindicación 10, caracterizado porque es un microarray de expresión personalizado formado por oligos (sondas) que detecta el conjunto de RNAm de Ia muestra.
12. Microarray de acuerdo con las reivindicaciones 10-11 , caracterizado porque define y clasifica el perfil de expresión de receptividad mediante un modelo de predicción computacional.
13. Microarray de acuerdo con las reivindicaciones 10-12, caracterizado porque define el estado de receptividad de normalidad y de otras situaciones de receptividad, tanto de subfertilidad como de infertilidad, así como de Ia exposición a fármacos.
14. Microarray de acuerdo con las reivindicaciones 10-13, caracterizado porque utiliza un software que contiene toda Ia información necesaria para que una biopsia endometrial cogida en periodo receptivo, tras ser analizada por el ERA y sus datos de expresión génica sean preprocesados, sea clasificada en Ia clase que el modelo de predicción determine.
15. Microarray de acuerdo con las reivindicaciones 10-14, caracterizado por poseer un formato de 8x15K (8 arrays de 15.000 sondas) por portaobjetos.
16. Microarray de acuerdo con las reivindicaciones 10-15, caracterizado porque comprende las 569 sondas de Ia Figura 1 representadas por los 238 genes de Ia Figura 2.
17. Microarray de acuerdo con las reivindicaciones 10-16, caracterizado porque con el modelo de predicción construido es capaz de clasificar Ia situación de normalidad/anormalidad en el perfil receptivo de dicha muestra.
18. Kit que comprende: a) el microarray de acuerdo con las reivindicaciones 10-17, y b) instrucciones para su utilización.
19. Kit que comprende: a) el microarray de acuerdo con las reivindicaciones 10-17, b) un software que procesa, analiza y predice a partir de los datos del microarray, y c) instrucciones para su utilización.
PCT/ES2009/000386 2008-07-22 2009-07-22 Perfil de expresión génica como marcador de la receptividad endometrial WO2010010213A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP09800092.0A EP2333107B1 (en) 2008-07-22 2009-07-22 Gene expression profile as an endometrial receptivity marker
US13/057,135 US10081840B2 (en) 2008-07-22 2009-07-22 Gene expression profile as an endometrial receptivity marker
PL09800092T PL2333107T3 (pl) 2008-07-22 2009-07-22 profil ekspresji genów jako marker wrażliwości śluzówki macicy
DK09800092.0T DK2333107T3 (da) 2008-07-22 2009-07-22 Genekspressionsprofil som markør for endometriel receptivitet
CA2732849A CA2732849C (en) 2008-07-22 2009-07-22 Gene expression profile as an endometrial receptivity marker
ES09800092.0T ES2484417T3 (es) 2008-07-22 2009-07-22 Perfil de expresión génica como marcador de la receptividad endometrial
US16/140,437 US20190276890A1 (en) 2009-07-22 2018-09-24 Gene expression profile as an endometrial receptivity marker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESPCT/ES08/000513 2008-07-22
PCT/ES2008/000513 WO2010010201A1 (es) 2008-07-22 2008-07-22 Perfil de expresion genetica como marcador de la receptividad endometrial

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/057,135 A-371-Of-International US10081840B2 (en) 2008-07-22 2009-07-22 Gene expression profile as an endometrial receptivity marker
US16/140,437 Continuation US20190276890A1 (en) 2009-07-22 2018-09-24 Gene expression profile as an endometrial receptivity marker

Publications (1)

Publication Number Publication Date
WO2010010213A1 true WO2010010213A1 (es) 2010-01-28

Family

ID=41570044

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/ES2008/000513 WO2010010201A1 (es) 2008-07-22 2008-07-22 Perfil de expresion genetica como marcador de la receptividad endometrial
PCT/ES2009/000386 WO2010010213A1 (es) 2008-07-22 2009-07-22 Perfil de expresión génica como marcador de la receptividad endometrial

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000513 WO2010010201A1 (es) 2008-07-22 2008-07-22 Perfil de expresion genetica como marcador de la receptividad endometrial

Country Status (7)

Country Link
US (1) US10081840B2 (es)
EP (1) EP2333107B1 (es)
CA (1) CA2732849C (es)
DK (1) DK2333107T3 (es)
ES (1) ES2484417T3 (es)
PL (1) PL2333107T3 (es)
WO (2) WO2010010201A1 (es)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8323177B2 (en) 2009-08-22 2012-12-04 The Board Of Trustees Of The Leland Stanford Junior University Imaging and evaluating embryos, oocytes, and stem cells
EP3037101A1 (en) 2014-12-22 2016-06-29 Ferring B.V. Oxytocin receptor antagonist therapy in the luteal phase for implantation and pregnancy in women undergoing assisted reproductive technologies
US9482659B2 (en) 2010-09-27 2016-11-01 Progyny, Inc. Apparatus, method, and system for the automated imaging and evaluation of embryos, oocytes and stem cells
US9879307B2 (en) 2011-02-23 2018-01-30 The Board Of Trustees Of The Leland Stanford Junior University Methods of detecting aneuploidy in human embryos
US10241108B2 (en) 2013-02-01 2019-03-26 Ares Trading S.A. Abnormal syngamy phenotypes observed with time lapse imaging for early identification of embryos with lower development potential
US10450561B2 (en) 2012-07-20 2019-10-22 Matricelab Innove Method for increasing implantation success in assisted fertilization

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2910650A1 (en) 2009-08-24 2015-08-26 National University Corporation Kanazawa University Detection of colorectal cancer by gene expression profiling
EP4012023B1 (en) 2014-06-17 2024-05-15 Asherman Therapy, S.L. Stem cell therapy in endometrial pathologies
US10918327B2 (en) 2017-02-02 2021-02-16 Coopersurgical, Inc. Compositions and methods for determining receptivity of an endometrium for embryonic implantation
EP3569718A1 (en) * 2018-05-16 2019-11-20 Integrated Genetic Lab Services SLU Kit and method for determining the receptivity status of an endometrium
CN110042156B (zh) * 2019-04-22 2021-12-28 苏州亿康医学检验有限公司 一种判断子宫内膜容受性的方法及其应用
EP3969912A1 (en) 2019-05-17 2022-03-23 Tervisetehnoloogiate Arenduskeskus AS Endomentrial receptivity determination
CN111778326B (zh) * 2020-07-14 2021-10-22 和卓生物科技(上海)有限公司 用于子宫内膜容受性评估的基因标志物组合及其应用
CN114517232A (zh) * 2022-03-15 2022-05-20 苏州亿康医学检验有限公司 无创方式判断子宫内膜容受性的方法、模型和标志物
EP4311862A1 (en) 2022-07-29 2024-01-31 Ivi Rma Global, Sl. Methods for detection of embryo implantation failure of endometrial origen

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001089548A2 (en) 2000-05-24 2001-11-29 Schering Aktiengesellschaft Pharmaceutical use of fibulin-1
US20030077589A1 (en) 2000-09-25 2003-04-24 Holger Hess-Stumpp Method for in vitro diagnosis of endometriosis
US20030125282A1 (en) 2001-08-10 2003-07-03 Schering Ag Human mater proteins
US20030186300A1 (en) 2002-03-20 2003-10-02 Ali Akoum Methods and products for modulation of reproductive processes and for diagnosis, prognostication and treatment of related conditions
US20030228636A1 (en) 1992-06-12 2003-12-11 Bruce Lessey Determination of endometrial receptivity toward embryo implantation
US20040005612A1 (en) 2002-05-14 2004-01-08 Giudice Linda C. Endometrial genes in endometrial disorders
US6733962B2 (en) 2000-03-08 2004-05-11 Harvey J. Kliman Methods of diagnosing and monitoring endometrial glandular development
WO2004058999A2 (de) 2002-12-21 2004-07-15 Universität Leipzig Verfahren und mittel zur bestimmung von bestimmten zuständen bzw. veränderungen im uterusepithel und im epithel anderer organe
US6821724B1 (en) 1998-09-17 2004-11-23 Affymetrix, Inc. Methods of genetic analysis using nucleic acid arrays
US20050032111A1 (en) 1997-04-25 2005-02-10 Maccalman Colin D. Cadherin-11 as an indicator of viable pregnancy
US20050042363A1 (en) 2003-08-18 2005-02-24 Kukhtin Alexander V. Method for fabrication of biochips with a macroporous polymer substrate
WO2005016230A2 (en) 2002-06-07 2005-02-24 President And Fellows Of Harvard College Evaluating protein signatures
US20050048554A1 (en) 2002-12-19 2005-03-03 Jizhong Zhou Method of making and using hybrid polymeric thin films for bio-microarray applications
US20050046758A1 (en) 2003-07-29 2005-03-03 Tomohiko Matsushita Method of transcribing biomolecular patterns, method of manufacturing chip boards, and method of manufacturing biochips
WO2005018796A1 (en) 2003-08-21 2005-03-03 Pamgene B.V. Microarray support for bioprobe synthesis
WO2005040094A1 (en) 2003-10-24 2005-05-06 Postech Foundation Novel dendrimer compound and a biochip using the same
US20050106134A1 (en) 2001-07-31 2005-05-19 Prince Henry's Institute Of Medical Research Pregnancy-related enzyme activity
WO2005061725A1 (en) 2003-12-23 2005-07-07 Mount Sinai Hospital Methods for detecting markers associated with endometrial disease or phase

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473612B1 (en) 1989-05-05 1996-07-31 Northern Sydney Area Health Service Fertility enhancement
IL127896A0 (en) 1998-12-31 1999-10-28 Gail Laster A novel treatment for preeclampsia and related diseases
GB0201284D0 (en) 2002-01-21 2002-03-06 Isis Innovation Screening methods for contraceptive and fertility agents
ES2273061T3 (es) 2002-08-02 2007-05-01 Schering Aktiengesellschaft Agentes moduladores de receptores de progesterona con actividad antigonadotropa elevada para el control de fertilidad femenina y para la terapia por reemplazo hormonal.
DE10236405A1 (de) 2002-08-02 2004-02-19 Schering Ag Progesteronrezeptormodulatoren mit erhöhter antigonadotroper Aktivität für die weibliche Fertilitätskontrolle und Hormonersatztherapie
EP1670902A4 (en) 2003-09-08 2008-05-07 Univ Texas METHOD AND COMPOSITION FOR ENHANCING IN VITRO EMBRYONIC DEVELOPMENT BY ENRICHING A CULTURE MEDIUM COMPRISING PROSTAGLANDIN OR PROSTAGLANDIN ANALOGUE
JP2007504807A (ja) 2003-09-08 2007-03-08 ボード オブ リージェンツ オブ ザ ユニバーシティー オブ テキサス システム 培養培地にプロスタグランジン又はプロスタグランジン類似物を補足することによってインビトロ胚発生を高めるための方法及び組成
US20080014172A1 (en) 2004-05-28 2008-01-17 Applied Research Systems Ars Holding N.V. Use of Il-17 in the Treatment of Fertility-Related Disorders
JP2007278750A (ja) 2006-04-04 2007-10-25 Ono Pharmaceut Co Ltd プロスタグランジン類及びその類縁体の定量方法
US8673850B2 (en) 2008-05-30 2014-03-18 Institut De Recherches Cliniques De Montreal PCSK9 inhibitors and methods of use thereof
EP2348318A1 (en) 2010-01-21 2011-07-27 Equipo Ivi Investigación, S.L. Diagnostic method for endometrial receptivity
US9453259B2 (en) 2011-10-21 2016-09-27 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods for assessing endometrial receptivity of a patient after controlled ovarian hyperstimulation
SG11201402649QA (en) 2011-11-30 2014-06-27 Agency Science Tech & Res Gm1 ganglioside to annexin v microparticle polypeptide ratio for biological monitoring
KR101996123B1 (ko) 2012-06-27 2019-07-03 에프. 호프만-라 로슈 아게 특정 시기 내에 임신중독증의 개시를 배제하기 위한 sFlt-1/PlGF 또는 엔도글린/PlGF 비의 적용 수단 및 방법
CN106662589B (zh) 2014-03-21 2019-07-30 艾基诺米公司 先兆子痫的早期检测
EP4012023B1 (en) 2014-06-17 2024-05-15 Asherman Therapy, S.L. Stem cell therapy in endometrial pathologies

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030228636A1 (en) 1992-06-12 2003-12-11 Bruce Lessey Determination of endometrial receptivity toward embryo implantation
US20050032111A1 (en) 1997-04-25 2005-02-10 Maccalman Colin D. Cadherin-11 as an indicator of viable pregnancy
US6821724B1 (en) 1998-09-17 2004-11-23 Affymetrix, Inc. Methods of genetic analysis using nucleic acid arrays
US6733962B2 (en) 2000-03-08 2004-05-11 Harvey J. Kliman Methods of diagnosing and monitoring endometrial glandular development
WO2001089548A2 (en) 2000-05-24 2001-11-29 Schering Aktiengesellschaft Pharmaceutical use of fibulin-1
US20030077589A1 (en) 2000-09-25 2003-04-24 Holger Hess-Stumpp Method for in vitro diagnosis of endometriosis
US20050106134A1 (en) 2001-07-31 2005-05-19 Prince Henry's Institute Of Medical Research Pregnancy-related enzyme activity
US20030125282A1 (en) 2001-08-10 2003-07-03 Schering Ag Human mater proteins
US20030186300A1 (en) 2002-03-20 2003-10-02 Ali Akoum Methods and products for modulation of reproductive processes and for diagnosis, prognostication and treatment of related conditions
US20040005612A1 (en) 2002-05-14 2004-01-08 Giudice Linda C. Endometrial genes in endometrial disorders
WO2005016230A2 (en) 2002-06-07 2005-02-24 President And Fellows Of Harvard College Evaluating protein signatures
US20050048554A1 (en) 2002-12-19 2005-03-03 Jizhong Zhou Method of making and using hybrid polymeric thin films for bio-microarray applications
WO2004058999A2 (de) 2002-12-21 2004-07-15 Universität Leipzig Verfahren und mittel zur bestimmung von bestimmten zuständen bzw. veränderungen im uterusepithel und im epithel anderer organe
US20050046758A1 (en) 2003-07-29 2005-03-03 Tomohiko Matsushita Method of transcribing biomolecular patterns, method of manufacturing chip boards, and method of manufacturing biochips
US20050042363A1 (en) 2003-08-18 2005-02-24 Kukhtin Alexander V. Method for fabrication of biochips with a macroporous polymer substrate
WO2005018796A1 (en) 2003-08-21 2005-03-03 Pamgene B.V. Microarray support for bioprobe synthesis
WO2005040094A1 (en) 2003-10-24 2005-05-06 Postech Foundation Novel dendrimer compound and a biochip using the same
WO2005061725A1 (en) 2003-12-23 2005-07-07 Mount Sinai Hospital Methods for detecting markers associated with endometrial disease or phase

Non-Patent Citations (37)

* Cited by examiner, † Cited by third party
Title
AL SHAHROUR F; DOPAZO J.: "Data analysis and visualization in genomics and proteomics", 2005, WILEY, pages: 99 - 112
AL-SHAHROUR F; MINGUEZ P; VAQUERIZAS JM; CONDE L; DOPAZO J.: "BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments", NUCLEIC ACIDS RES, vol. 33, 2005, pages 460 - 464
BALASCH J; FABREGUES F; CREUS M; VANRELL JA.: "The usefulness of endometrial biopsy for luteal phase evaluation in infertility", HUM REPROD, vol. 7, 1992, pages 973 - 977
BATISTA MC; CARTLEDGE TP; MERINO MJ; AXIOTIS C; PLATIA MP; MERRIAM GR: "Midluteal phase endometrial biopsy does not accurately predict luteal function", FERTIL STERIL, vol. 59, 1993, pages 294 - 300
BORTHWICK J; CHARNOCK-JONES S; TOM BD ET AL.: "Determination of the transcript profile of human endometrium", MOL HUM REPROD, vol. 9, 2003, pages 19 - 33
BORTHWICK, J. M. ET AL.: "Determination of the transcript profile of human endometrium.", MOLECULAR HUMAN REPRODUCTION., vol. 9, no. 1, January 2003 (2003-01-01), pages 19 - 33, XP008142241 *
BURNEY, R. O. ET AL.: "Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis.", ENDOCRINOLOGY., vol. 148, no. 8, August 2007 (2007-08-01), pages 3814 - 3826, XP008142244 *
CARSON D; LAGOW E; THATHIAH A ET AL.: "Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high- density microarray screening", MOL HUM REPROD, vol. 8, 2002, pages 971 - 979
CARSON, D. D. ET AL.: "Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening.", MOLECULAR HUMAN REPRODUCTION., vol. 8, no. 9, September 2002 (2002-09-01), pages 871 - 879, XP002595770 *
CATALANO RD; YANAIHARA A; EVANS AL; OCHA D; PRENTICE A; SAIDI S; PRINT CG; CHARNOCK-JONES DS; SHARKEY AM; SMITH SK: "The effect of RU486 on the gene expression profile in an endometrial explant model", MOL HUMAN REPROD 9, 2003, pages 465 - 473
COUTIFARIS C; MYERS ER; GUZICK DS; DIAMOND MP; CARSON SA; LEGRO RS; MCGOVERN PG; SCHLAFF WD; CARR BR; STEINKAMPF MP: "Histological dating of timed endometrial biopsy tissue is not related to fertility status", FERTIL STERIL, vol. 82, 2004, pages 1264 - 72
CREUS M; ORDI J; FABREGUES F; CASAMITJANA R; FERRER B; COLL E; VANRELL JA; BALASCH J.: "Alphavbeta 3 integrin expression and pinopod formation in normal and out-of-phase endometria of fertile and infertile women", HUM REPROD, vol. 17, 2002, pages 2279 - 2286
HORCAJADAS JA; PELLICER A; SIMON C: "Wide Genomic Analysis of Human Endometrial Receptivity", HUMAN REPROD UPDATE, vol. 13, 2007, pages 77 - 86
HORCAJADAS JA; RIESEWIJK A; POLMAN J; VAN OS R; PELLICER A; MOSSELMAN S; SIMON, C: "Controlled Ovarian Hyperstimulation in IVF on Endometrial Gene Expression Profiles", MOL HUMAN REPROD, vol. 11, 2005, pages 195 - 205
HORCAJADAS JA; SHARKEY AM; CATALANO RD; SHERWIN JRA; DOMINGUEZ F; BURGOS LA; CASTRO A; PERAZA MR; PELLICER A; SIMON C: "Use of Gene-Expression Profiling to Identify Human Endometrial Refractoriness", J CLIN ENDOCRINOL METABOL., 2006
HORCAJADAS, J. A. ET AL.: "Effect of an intrauterine device on the gene expression profile of the endometrium.", THE JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM., vol. 91, no. 8, August 2006 (2006-08-01), pages 3199 - 3207, XP008142081 *
KLIMAN HJ; HONIG S; WALLS D; LUNA M; MCSWEET JC; COPPERMAN AB: "Optimization of endometrial preparation results in a normal endometrial function test (EFT) and good reproductive outcome in donor ovum recipients", J ASSIST REPROD GENET, vol. 23, 2006, pages 299 - 303
LESSEY BA; CASTELBAUM AJ; SAWIN SW; SUN J. INTEGRINS, FERTIL STERIL, vol. 63, 1995, pages 535 - 542
LI TC; DOCKERY P; ROGERS AW; COOKE ID: "How precise is histologic dating of endometrium using the standard dating criteria?", FERTIL STERIL, vol. 51, 1989, pages 759 - 763
MEDINA I; MONTANER D; TARRAGA J; DOPAZO J.: "Prophet, a web-based tool for class prediction using microarray data", BIOINFORMATICS., vol. 23, no. 3, 2007, pages 390 - 1
MIRKIN S; ARSLAN M; CHURIKOV D; CORICA A; DIAZ JL; WILLIAMS S; BOCCA S; OEHNINGER S, IN SEARCH OF CANDIDATE GENES CRITICALLY EXPRESSED IN THE HUMAN ENDOMETRIUM DURING THE WINDOW OF IMPLANTATION HUMAN REPROD, vol. 20, 2005, pages 2104 - 2117
MIRKIN S; NIKAS G; HSIU JG; DIAZ J; OEHNINGER S: "Gene expression profiles and structural/functional features of the peri-implantation endometrium in natural and gonadotropin-stimulated cycles", J CLIN ENDOCRINOL METAB, vol. 89, 2004, pages 5742 - 5752
MONTANER D; TARRAGA J; HUERTA-CEPAS J; BURGUET J; VAQUERIZAS JM; CONDE L; MINGUEZ P; VERA J; MUKHERJEE S; VALLS J: "Next station in microarray data analysis: GEPAS", ACCEPTED NUCLEIC ACIDS RES., 2006
MURRAY MJ; MEYER WR; ZAINO RJ; LESSEY BA; NOVOTNY DB; IRELAND K; ZENG D; FRITZ MA.: "A critical analysis of the accuracy, reproducibility, and clinical utility of histologic endometrial dating in fertile women", FERTIL STERIL, vol. 81, 2004, pages 1333 - 1343
NOYES RW; HERTIG AT; ROCK J.: "Dating the endometrial biopsy", FERTIL STERIL, vol. 1, 1950, pages 3 - 17
ORDI J; CREUS M; QUINTO L; CASAMITJANA R; CARDESA A; BALASCH J.: "Within-subject between-cycle variability of histological dating, alpha v beta 3 integrin expression, and pinopod formation in the human endometrium", J CLIN ENDOCRINOL METAB, vol. 88, 2003, pages 2119 - 2125
PAPANIKOLAOU EG; TOUARNYE H; VERPOEST W; CAMUS M; VEARNEVE V; VAN STEIRTEGHEM A; DEVROEY P: "Pubmed-RVDocSum Early and late ovarian hyperstimulation syndrome: early pregnancy outcome and profile", HUM REPROD., vol. 20, no. 3, 2005, pages 636 - 641, Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=ShowDet ailView&TermToSearch=15576388&ordinalpos=79&itool=EntrezSystem 2.PEntrez.Pubmed.Pubmed-ResultsPanel>
PONNAMPALAM AP; WESTON GC; TRAJSTMAN AC.: "Molecular classification of human endometrial cycle stages by transcriptional profiling", MOL HUM REPROD, vol. 10, 2004, pages 879 - 893
RIESEWIJK A; MARTIN J; HORCAJADAS JA POLMAN J; PELLICER A; MOSSELMAN S; SIMON C: "Gene expression profiling of human endometrial receptivity on days LH+2 contra LH+7 by microarray technology", MOL HUM REPROD, vol. 9, 2003, pages 253 - 264
RIESEWIJK, A. ET AL.: "Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology.", MOLECULAR HUMAN REPRODUCTION., vol. 9, no. 5, May 2003 (2003-05-01), pages 253 - 264, XP008041260 *
SCHENA M; SHALON D; DAVIS RW; BROWN PO: "Quantitative monitoring of gene expression patterns with a complementary DNA microarray", SCIENCE, vol. 270, 1995, pages 467 - 470
See also references of EP2333107A4
SHARKEY AM; CATALANO R; EVANS A; CHARNOCK-JONES DS; SMITH SK: "Novel antiangiogenic agents for use in contraception", CONTRACEPTION, vol. 71, 2005, pages 263 - 271
SHOUPE D; MISHELL DR JR; LACARRA M; LOBO RA; HORENSTEIN J: "d'Ablaing G. Correlation of endometrial maturation with four methods of estimating day of ovulation. Obstet Gynecol", OBSTET GYNECOL, vol. 73, 1989, pages 88 - 92
TALBI S; HAMILTON AE; VO KC; TULAC S; OVERGAARD M T; DOSIOU C; LE SHAY N; NEZHAT, CN; KEMPSON R; LESSEY BA: "Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women", ENDOCRINOLOGY, vol. 147, 2005, pages 1097 - 1121
TALBI, S. ET AL.: "Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo ovulatory women.", ENDOCRINOLOGY., vol. 147, no. 3, March 2006 (2006-03-01), pages 1097 - 1121, XP002595772 *
WILCOX AJ; BAIRD DD; WEINBERG CR.: "Time of implantation of the conceptus and loss of pregnancy", N ENGL J MED., vol. 340, 1999, pages 1796 - 1799

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8337387B2 (en) 2009-08-22 2012-12-25 The Board Of Trustees Of The Leland Stanford Junior University Imaging and evaluating embryos, oocytes, and stem cells
US8721521B2 (en) 2009-08-22 2014-05-13 The Board Of Trustees Of The Leland Stanford Junior University Imaging and evaluating embryos, oocytes, and stem cells
US8951184B2 (en) 2009-08-22 2015-02-10 The Board Of Trustees Of The Leland Stanford Junior University Imaging and evaluating embryos, oocytes, and stem cells
US8989475B2 (en) 2009-08-22 2015-03-24 The Board Of Trustees Of The Leland Stanford Junior University Imaging and evaluating embryos, oocytes, and stem cells
US9228931B2 (en) 2009-08-22 2016-01-05 The Board Of Trustees Of The Leland Stanford Junior University Imaging and evaluating embryos, oocytes, and stem cells
US8323177B2 (en) 2009-08-22 2012-12-04 The Board Of Trustees Of The Leland Stanford Junior University Imaging and evaluating embryos, oocytes, and stem cells
US9482659B2 (en) 2010-09-27 2016-11-01 Progyny, Inc. Apparatus, method, and system for the automated imaging and evaluation of embryos, oocytes and stem cells
US9879307B2 (en) 2011-02-23 2018-01-30 The Board Of Trustees Of The Leland Stanford Junior University Methods of detecting aneuploidy in human embryos
US10450561B2 (en) 2012-07-20 2019-10-22 Matricelab Innove Method for increasing implantation success in assisted fertilization
US10241108B2 (en) 2013-02-01 2019-03-26 Ares Trading S.A. Abnormal syngamy phenotypes observed with time lapse imaging for early identification of embryos with lower development potential
WO2016105190A1 (en) 2014-12-22 2016-06-30 Ferring B.V. Oxytocin receptor antagonist therapy in the luteal phase for implantation and pregnancy in women undergoing assisted reproductive technologies
EP3037101A1 (en) 2014-12-22 2016-06-29 Ferring B.V. Oxytocin receptor antagonist therapy in the luteal phase for implantation and pregnancy in women undergoing assisted reproductive technologies
EP3501533A1 (en) 2014-12-22 2019-06-26 Ferring B.V. Oxytocin receptor antagonist therapy in the luteal phase for implantation and pregnancy in women undergoing assisted reproductive technologies
US11752157B2 (en) 2014-12-22 2023-09-12 Ferring B.V. Oxytocin receptor antagonist therapy in the luteal phase for implantation and pregnancy in women undergoing assisted reproductive technologies

Also Published As

Publication number Publication date
EP2333107A4 (en) 2012-03-14
EP2333107B1 (en) 2014-04-23
US20120040849A1 (en) 2012-02-16
CA2732849C (en) 2022-06-21
PL2333107T3 (pl) 2014-11-28
DK2333107T3 (da) 2014-07-21
EP2333107A1 (en) 2011-06-15
US10081840B2 (en) 2018-09-25
ES2484417T3 (es) 2014-08-11
CA2732849A1 (en) 2010-01-28
WO2010010201A1 (es) 2010-01-28

Similar Documents

Publication Publication Date Title
WO2010010213A1 (es) Perfil de expresión génica como marcador de la receptividad endometrial
US20050164272A1 (en) Genes differentially expressed in secretory versus proliferative endometrium
US20100267574A1 (en) Predicting lung cancer survival using gene expression
KR20170063519A (ko) 불임 및 관련 병리상태를 평가하기 위한 방법 및 시스템
Messaoudi et al. 15 years of transcriptomic analysis on endometrial receptivity: what have we learnt?
US11667974B2 (en) Diagnostic, prognostic and therapeutic uses of long noncoding RNAs for pathologies and toxicities inducing heart disorders
He et al. The role of transcriptomic biomarkers of endometrial receptivity in personalized embryo transfer for patients with repeated implantation failure
Herington et al. Gene profiling the window of implantation: Microarray analyses from human and rodent models
JP2008537474A (ja) 血液リンパ球における子宮内膜症に関する分子診断マーカーの同定
US20160003837A1 (en) Biomarkers for the prediction of preterm birth
US20120094845A1 (en) Methods and devices for assessing infertility and/or egg quality
US20190276890A1 (en) Gene expression profile as an endometrial receptivity marker
RU2636527C1 (ru) Способ определения персонального &#34;окна имплантации&#34; у женщин на основе анализа транскрипционного профиля генов
JP2013510575A (ja) 卵丘細胞が差示発現する遺伝子およびそれらを用いる妊娠受容能をもつ卵母細胞の同定のためのアッセイ
ES2784142T3 (es) Kit y método para determinar el estado de receptividad de un endometrio
US20180265929A1 (en) Combinations of cell free nucleic acids
Suthaporn et al. Suboptimal mid-luteal progesterone concentrations are associated with aberrant endometrial gene expression, potentially resulting in implantation failure
CN113755570A (zh) 用于预测不明原因复发性流产的生物标志物及应用
Chen et al. Genome-wide analysis of cervical secretions obtained during embryo transfer reveals the association between deoxyribonucleic acid methylation and pregnancy outcomes
Aghajanova et al. mRNA and miRNA biomarkers for endometriosis
JP2010502179A (ja) 予後診断方法
Class et al. Patent application title: GENE EXPRESSION PROFILE AS AN ENDOMETRIAL RECEPTIVITY MARKER Inventors: Carlos Simón Valles (Valencia, ES) José Antonio Horcajadas Almansa (Valencia, ES) José Antonio Horcajadas Almansa (Valencia, ES) Patricia Diaz Gimeno (Valencia, ES) Antonio Pellicer Martínez (Valencia, ES) Assignees: EQUIPO IVI INVESTIGACION SL
CN114941025B (zh) 用于诊断子痫前期的miRNA及其应用
EP4311862A1 (en) Methods for detection of embryo implantation failure of endometrial origen
CN113755571B (zh) 用于胚胎着床成功率检测的生物标志物及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09800092

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2732849

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009800092

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13057135

Country of ref document: US