WO2010007662A1 - 成形プレス用耐熱クッション材 - Google Patents

成形プレス用耐熱クッション材 Download PDF

Info

Publication number
WO2010007662A1
WO2010007662A1 PCT/JP2008/062732 JP2008062732W WO2010007662A1 WO 2010007662 A1 WO2010007662 A1 WO 2010007662A1 JP 2008062732 W JP2008062732 W JP 2008062732W WO 2010007662 A1 WO2010007662 A1 WO 2010007662A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
cushion material
resistant
cushion
felt
Prior art date
Application number
PCT/JP2008/062732
Other languages
English (en)
French (fr)
Inventor
和之 澤田
直人 西本
Original Assignee
イチカワ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イチカワ株式会社 filed Critical イチカワ株式会社
Priority to PCT/JP2008/062732 priority Critical patent/WO2010007662A1/ja
Priority to JP2010520833A priority patent/JP4820920B2/ja
Priority to KR1020107029078A priority patent/KR20110040781A/ko
Priority to PCT/JP2009/062397 priority patent/WO2010007917A1/ja
Priority to CN200980123985.4A priority patent/CN102083606B/zh
Priority to TW098123601A priority patent/TWI383893B/zh
Publication of WO2010007662A1 publication Critical patent/WO2010007662A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/06Platens or press rams
    • B30B15/061Cushion plates
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0854Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns in the form of a non-woven mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3425Printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards

Definitions

  • the present invention relates to a heat-resistant cushioning material for molding press (hereinafter sometimes referred to as a cushioning material), and particularly relates to a heat-resistant cushioning material having an excellent temperature rise rate and high cushioning properties.
  • a product having a laminated structure is, for example, sandwiched between a plurality of hot plates and manufactured by hot pressing with these hot plates.
  • An example of a laminated product manufactured by this method is as follows. In addition to the examples shown below, there are a wide variety of laminated products.
  • Laminate board to be a printed wiring board substrate As this laminated board, there are a paper phenol laminated board made of kraft paper and phenol resin, and a glass epoxy laminated board made of glass fiber woven fabric and epoxy resin.
  • Printed wiring board As this printed wiring board, a single-sided printed wiring board with a conductor pattern formed on one side of the board, a double-sided printed wiring board with a conductor pattern formed on both sides of the board, and a conductor pattern formed not only on the outside surface but also on the inside Multi-layer printed wiring boards.
  • Flat panel display Liquid crystal display, electroluminescence, etc.
  • Semiconductor package There is a chip size package (CSP) that is almost the same size as the chip.
  • CSP chip size package
  • a cushioning material is interposed between the hot platen and the laminated products.
  • This cushion material has a cushioning property so that the hot platen and the laminated product are not in direct contact with each other, and also exhibits a function of uniformly transferring heat generated by the hot plate to the entire surface of the laminated product.
  • FIG. 1 is a cross-sectional view illustrating an example of a laminated plate forming press in a double-sided printed wiring board manufacturing apparatus.
  • a pair of hot plates 40 arranged opposite to each other, a pair of cushion materials C arranged on the inner side of the pair of hot plates 40, and arranged on the inner side of the cushion materials C
  • a pair of mirror plates 50, copper foil 60, and prepreg 70 are used.
  • a double-sided printed wiring board is formed by the prepreg 70 and the copper foil 60.
  • the prepreg 70 is configured by stacking a plurality of plate materials in which a glass cloth is impregnated with an epoxy resin to form a semi-cured state.
  • the laminated plate is formed by applying heat and pressure with the hot plates 40, 40, but the molding conditions at this time differ depending on the composition of the epoxy resin raw material. Therefore, it is necessary to match the heat transfer amount (temperature increase rate: ° C./min) of the cushion material C used in the molding press process with the molding conditions. If the heat transfer amount of the cushion material C does not match the molding conditions of the epoxy resin, there is a possibility that a physical property difference may occur in the laminated product. For example, a physical property difference is generated between a laminated product located in the immediate vicinity of the hot plates 40 and 40 and a laminated product located in the center between the hot plates 40 and 40 and away from the hot platen 40. Further, even in one laminated product, there may be a difference in physical properties between the central portion and the peripheral portion.
  • the reason for this is that in the manufacturing process in which the viscosity of the resin in the prepreg 70 is once lowered by the hot press and the resin is returned to a liquid state, and then the curing of the resin proceeds gradually.
  • the timing for increasing the pressure is shifted. That is, the timing of the molding press by temperature and pressure for moving the resin to bond the prepregs 70, to bond the prepreg 70 and the copper foil 60, and to remove and subdivide the air contained in the resin. This is because it exceeds the allowable range. For example, if pressure is applied to the prepreg 70 when the viscosity of the resin becomes too low, the resin flows more than necessary, and the thickness of the central portion of the laminated plate increases and the thickness of the peripheral portion decreases.
  • the thickness of the finally manufactured laminated product becomes non-uniform.
  • the pressure is applied to the prepreg 70 when the viscosity of the resin becomes too high, the resin does not flow sufficiently and the air contained in the resin does not disappear, which causes a problem in the insulation of the laminated product. Therefore, the cushion material C is required to have an excellent temperature rising rate.
  • FIG. 6 is a cross-sectional view of a conventional heat-resistant cushion material C4 for forming presses.
  • the cushion material C4 shown in FIG. 6 includes a base body 11B, a staple fiber felt material layer 11A laminated on the surface of the base body 11B, and a staple fiber felt laminated on the back surface of the base body 11B and needle punched. It is constituted by the material layer 11A.
  • the two felt material layers 11A and 11A are laminated.
  • the staple fiber of the felt material layer 11A is made of a meta-aromatic polyamide.
  • For the base body 11B a woven fabric made of warp yarns 11B1 and weft yarns 11B2 made of heat-resistant fibers is used.
  • the staple fiber of the felt material layer 11A of the cushion material C4 is made of a meta-aromatic polyamide, the heating rate can be easily adjusted.
  • the staple fiber of the meta-aromatic polyamide has a short life span because the cushioning material C4 has a short life because it is difficult to maintain the cushioning property. Therefore, in order to maintain the cushioning property of the cushion material C4, it is conceivable to increase the basis weight of the staple fiber. However, if the basis weight of the staple fiber is increased, the heat conduction speed becomes slow, so that it is difficult to adjust the temperature rising speed, and the cushion material C4 becomes heavy and the usability during use deteriorates.
  • FIG. 7 is a cross-sectional view of another conventional heat-resistant cushioning material C5 for forming presses.
  • the cushion material C5 shown in FIG. 7 includes a base body 21B, a staple fiber felt material layer 21A laminated on the surface of the base body 21B and needle punched, and a staple fiber felt laminated on the back surface of the base body 21B and needle punched. It is comprised by the material layer 21A. That is, in the cushion material C5, two layers of felt material layers 21A and 21A are laminated.
  • the staple fiber of the felt material layer 21A is made of a para-aromatic polyamide mainly composed of polyparaphenylene terephthalamide or the like.
  • a woven fabric having warps 21B1 and wefts 21B2 made of heat resistant fibers is used for the base 21B.
  • the felt material layer 21A of the cushion material C5 has a good cushioning property because the staple fiber is made of para-aromatic polyamide. However, since the cushion material C5 has too high thermal conductivity, it is difficult to adjust the rate of temperature increase of the cushion material C5. In order to adjust the heating rate, it is necessary to increase the basis weight of the staple fiber, but the cushion material C5 becomes heavy, so that the usability during use is bad.
  • US Pat. No. 5,945,358 discloses a papermaking felt in which a spunbonded nonwoven fabric is disposed in order to obtain good void volume (void, porosity), running stability, and wear resistance.
  • bat fibers are arranged in the thickness direction of the felt in order to fix the spunbonded nonwoven fabric to the papermaking felt.
  • this papermaking felt is used for running and pressurizing wet paper, but it is not used by heating with a hot platen or the like. Therefore, the papermaking felt is not required to have characteristics such as heat resistance, adjustment of the heating rate and maintenance of cushioning properties. Therefore, in US Pat. No. 5,945,358, there is no description regarding these characteristics which are the effects of the present invention.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a heat-resistant cushioning material for a molding press that can easily adjust a temperature rising rate and is excellent in maintaining cushioning properties.
  • the present invention is a heat-resistant cushioning material for a molding press, which is used for manufacturing a laminated product (molded body) with a molding press apparatus and in which a base and a felt material layer are laminated.
  • This cushion material has at least one layer (that is, one layer or two or more layers) of a felt material layer containing heat-resistant staple fibers with respect to one surface and the other surface of the substrate.
  • a plurality of napped fiber bodies made of fine staple fibers are formed through the base in the thickness direction of the cushion material.
  • the “felt material layer including heat-resistant staple fibers” is formed by blending heat-resistant staple fibers and other staple fibers, and includes at least 50% by weight or more of heat-resistant staple fibers.
  • the heat-resistant staple fiber constituting the felt material layer includes one or more selected from the group consisting of a meta-aromatic polyamide, a para-aromatic polyamide, and a flame-resistant fiber.
  • the napped fiber body is formed by entanglement between fibers by needle punching.
  • the napped fiber body has a fineness of 1.0 to 10.0 dtex (decitex) and is made of heat-resistant staple fibers. In this case, the fineness of the napped fiber body is preferably 1.0 to 6.0 dtex (more preferably 1.0 to 3.0 dtex).
  • the density of the cushioning material is preferably 0.3 g / cm 3 to 0.5 g / cm 3 .
  • a surface layer material is laminated on the surface of the cushion material. This surface layer material is bonded to the cushion material by bonding means (for example, resin, prepreg, bonded staple fiber, etc.).
  • the “napped fiber” refers to a fiber in which the axis of the staple fiber of the napped fiber is oriented in the thickness direction of the cushion material.
  • the “napped fiber body” refers to a bundle of at least three napped fibers. It is preferable that at least 5 bundles (that is, 5 bundles / cm 2 ) are disposed per unit area (1 cm 2 ) in a plan view of the cushion material.
  • the upper limit of the number of bundles of napped fiber bodies in the cushion material is a case where almost all or all of the unit area of the cushion material in a plan view is occupied by bundled napped fiber bodies.
  • the aspect of the napped fiber body as described above can be confirmed by a microscope (see FIG. 4).
  • “It is formed in the thickness direction of the cushion material” means that the axis of the staple fiber of the napped fiber is formed so as to face substantially perpendicular to the base material of the cushion material.
  • the material is also included in the configuration “the napped fiber body is formed in the thickness direction of the cushion material”.
  • the “two-dimensional surface formed by the base” is, for example, the X and Z planes formed by the Z direction in which the warp extends and the X direction in which the weft extends, as shown in FIGS. is there.
  • the heat-resistant cushion material for molding presses of the present invention is easy to adjust the rate of temperature rise and is excellent in maintaining cushioning properties.
  • FIG. 1 It is sectional drawing which shows an example of the shaping
  • the basic structure of the heat-resistant cushioning material for molding presses is a cushioning material used for manufacturing a laminated product with a molding press apparatus, and a substrate and a felt material layer are laminated.
  • this cushion material at least one layer (that is, one layer or two layers or more) of a felt material layer containing heat-resistant staple fibers is provided for each of one surface (front surface) and the other surface (back surface) of the substrate.
  • a plurality of napped fiber bodies made of fine staple fibers are formed in the thickness direction of the cushion material through the base.
  • the heat-resistant staple fibers constituting the felt material layer are meta-aromatic polyamides (Conex; trade name / manufactured by Teijin Ltd., Nomex; trade name / manufactured by DuPont), para-aromatic It is preferable to include one or more selected from the group consisting of a group polyamide (Kevlar; trade name / manufactured by DuPont, Toaron; trade name / manufactured by Teijin Ltd.) and flame resistant fire fiber.
  • the felt material layer may be composed of composite staple fibers in which staple fibers of meta-aromatic polyamide and staple fibers of para-aromatic polyamide are mixed.
  • the cushion material is a heat-resistant cushion material for a molding press that is used to manufacture a laminated product with a molding press device and in which a base and a felt material layer are laminated.
  • This cushioning material includes one felt material layer containing meta-aromatic polyamide staple fibers, and another felt material layer containing para-aromatic polyamide staple fibers, and one surface (surface) of the substrate. Each has at least one layer (that is, one layer or two or more layers) with respect to the other surface (back surface).
  • a plurality of napped fiber bodies made of fine staple fibers are formed through the base in the thickness direction of the cushion material.
  • the napped fiber body is preferably a heat-resistant staple fiber having a fineness of 1.0 to 6.0 dtex (decitex) and formed by entanglement between the fibers by needle punching. More preferably, the density of the cushioning material is 0.3 g / cm 3 to 0.5 g / cm 3 .
  • the napped fiber body has heat-resistant staple fibers having a fineness. That is, using a heat-resistant staple fiber having a fineness, a napped fiber body having a high density is formed by entanglement between fibers by needle punching. A large number of napped fiber bodies made of staple fibers having such fineness are formed in the cushion material in the thickness direction of the cushion material through the base. If it carries out like this, many napped fiber bodies will exhibit the effect
  • the napped fiber body when the napped fiber body is formed in the thickness direction of the cushion material without penetrating the base body of the cushion material, the napped fiber body exhibits the action of a spring, but the temperature rising rate of the cushion material The adjustment becomes worse. This is because the napped fiber body made of staple fibers having a fineness does not penetrate the base body of the cushion material, and therefore the thermal conductivity in the thickness direction of the cushion material is deteriorated.
  • the density of the cushion material is 0.3 g / cm 3 to 0.5 g / cm 3
  • the improvement in elasticity of the cushion material accompanying the increase in density and the cushioning property of the napped fiber body act as a synergistic effect. Therefore, cushioning properties are further improved.
  • a surface layer material is preferably laminated on the surface of the cushion material. If it carries out like this, when carrying out hot press molding of a laminated product (molded object), the surface of a surface layer material will change dependently according to the shape of the uneven surface of a laminated product. As a result, since the surface layer material is in close contact with the laminated product, the cushion material can be easily adhered to the uneven surface of the laminated product. Therefore, the heating plate can transmit the pressing force evenly to the laminated product through the cushion material.
  • a heat-resistant resin having releasability with respect to a cover lay film, a metal foil, or a hot platen is preferable.
  • coverlay film a polyolefin resin can be used in addition to the polyamide resin and the polystyrene resin which are press molding films.
  • coverlay film Nomex (trade name / manufactured by DuPont) paper or the like made of fibers mainly composed of polymetaphenylene isophthalamide may be employed.
  • metal foil aluminum alloy foil, stainless steel foil or the like can be used.
  • the heat resistant resins are tetrafluoroethylene / ethylene copolymer (ETFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and polytetrafluoro. Selected from the group consisting of ethylene (PTFE).
  • resin a prepreg, or joining fiber
  • resin an epoxy resin or a polyimide resin can be used, and a heat-welding resin such as a fluorine film can also be used.
  • prepreg a glass epoxy prepreg sheet or the like can be used.
  • bonding fiber unstretched Conex fiber or wholly aromatic polyester fiber (Vectran; trade name) can be used.
  • FIGS. 2 is a cross-sectional view of a heat-resistant cushioning material for molding presses according to one embodiment of the present invention
  • FIG. 3 is a cross-sectional view of a heat-resistant cushioning material for molding presses according to another embodiment
  • FIG. 4 is shown in FIG. It is an expanded sectional view of the heat-resistant cushion material for forming presses.
  • the first cushion material 10 includes a base body 10B, a first felt material layer 1A laminated on a surface (front surface) on one side (one hot platen 40 side) of the base body 10B, 2nd felt material layer 1B laminated
  • the fourth felt material layer 1D is laminated on the surface of the layer 1B.
  • the first felt material layer 1A and the second felt material layer 1B are respectively attached to the front surface and the back surface of the base body 10B by needle punching.
  • the third felt material layer 1C is attached to the first felt material layer 1A by needle punching.
  • the fourth felt material layer 1D is attached to the second felt material layer 1B by needle punching.
  • a plurality of napped fiber bodies 30 made of fine staple fibers are formed in the thickness direction of the cushion material 10 through the base body 10B.
  • the first felt material layer 1A, the second felt material layer 1B, the third felt material layer 1C, and the fourth felt material layer 1D are each made of a meta-fragrance.
  • One or both of an aromatic polyamide and a para-aromatic polyamide are included.
  • the third felt material layer 1C and the fourth felt material layer 1D are made of a felt material of staple fibers (here, meta-aromatic polyamide) having a low thermal conductivity. By doing so, the thermal unevenness in the hot platen 40 is alleviated.
  • the first felt material layer 1A and the second felt material layer 1B are made of a felt material of staple fiber (here, para-aromatic polyamide) having high thermal conductivity. By doing so, the cushioning property is improved, and therefore, the adjustment of the temperature rising rate and the cushioning property can be set in a well-balanced manner as the entire cushion material 10.
  • the second cushion material 20 shown in FIG. 3 has a configuration in which the surface layer material 1E is laminated on the surface of the first cushion material 10 (FIG. 2) (here, both one surface and the other surface). ing. That is, the surface layer material 1E is bonded to the surface of the third felt material layer 1C by the joining means P. The surface layer material 1E is also bonded to the surface of the fourth felt material layer 1D by the joining means P. Also in the second cushion material 20, the first felt material layer 1A, the second felt material layer 1B, the third felt material layer 1C, and the fourth felt material layer 1D are formed of a meta-aromatic polyamide, respectively. One or both of the para-type aromatic polyamides are included.
  • the base body 10B is constituted by a woven fabric formed by weaving warp yarns 10B1 and weft yarns 10B2 made of heat-resistant fibers.
  • the heat-resistant fiber is selected from the group consisting of meta-aromatic polyamide, para-aromatic polyamide, wholly aromatic polyester fiber, polyparaphenylene benzobisoxazole (PBO) fiber, and stainless steel fiber.
  • the base 10B is desirably a woven fabric made by weaving the warp yarn 10B1 and the weft yarn 10B2 as described above. However, instead of the woven fabric, the warp yarn and the weft yarn may be simply overlapped.
  • the base body 10B includes the warp yarn 10B1 and the weft yarn 10B2, and a large number of napped fiber bodies 30 are formed in the thickness direction of the cushion materials 10 and 20 through the base body 10B. Therefore, the warp yarns 10B1 extending in the Z direction, the weft yarns 10B2 extending in the X direction, and the napped fiber bodies 30 extending in the Y direction (thickness direction of the cushion materials 10, 20) are three-dimensionally arranged substantially orthogonal to each other. (Ie, X, Y, Z orthogonal coordinate system). In addition, since the napped fiber body 30 penetrates through the base body 10B, the middle portion of the napped fiber body 30 is firmly held by the base body 10B (FIGS. 2 to 4). As a result, a large number of napped fiber bodies 30 exhibit a spring effect in the thickness direction of the cushion materials 10 and 20, so that the cushioning properties of the cushion materials 10 and 20 are improved.
  • the first felt material layer 1A and the second felt material layer 1B are attached to one surface (front surface) and the other surface (back surface) of the base body 10B by needle punching, respectively.
  • a third felt material layer 1C is attached to the surface of the first felt material layer 1A by needle punching.
  • a fourth felt material layer 1D is attached to the surface of the second felt material layer 1B by needle punching.
  • the joining means P is respectively arranged on the surface of the third felt material layer 1C and the surface of the fourth felt material layer 1D thus formed.
  • the joining means P is, for example, an unstretched Conex staple fiber and a felt material having a small basis weight.
  • the joining means P melts.
  • the third felt material layer 1 ⁇ / b> C and the surface layer material 1 ⁇ / b> E are firmly bonded (adhered) via the molten bonding means P.
  • the fourth felt material layer 1D and the surface layer material 1E are firmly bonded (adhered) via the molten bonding means P.
  • a method for forming a plurality of napped fiber bodies 30 in the thickness direction of the cushion materials 10 and 20 so that the napped fiber bodies 30 penetrate the base body 10B will be described.
  • (Procedure 1) First, a woven fabric is prepared as the base body 10B. A carded staple fiber web is laminated on the front and back surfaces of the woven fabric. Then, needle punching is performed to entangle the staple fiber to the woven fabric (base 10B). Thereby, the 1st felt material layer 1A and the 2nd felt material layer 1B are each laminated
  • needle punching needles (hereinafter referred to as needle needles) having 6 barbs or less per edge are used.
  • the number of times of needle punching is 50 times / cm 2 or less.
  • needle punching is performed by setting the first barb of the needle needle (the barb closest to the point) in contact with the woven fabric surface. By such an entanglement process, the axial direction of the staple fiber becomes parallel to the woven fabric.
  • a needle needle having a larger number of barbs (stabs) than the needle needle used in the entanglement process for example, needles of 8 barbs or more per ridge
  • the plurality of napped fiber bodies 30 are formed in the thickness direction of the cushion materials 10 and 20 by the needle needle.
  • a needle with 2 ridges and 18 barbs is used, and the number of times of needle punching is 80 times / cm 2 or more.
  • the needle needle is set so that the final barb of the needle needle (the barb farthest from the point) passes through the woven fabric.
  • a plurality of napped fiber bodies 30 are formed in the thickness direction of the cushion materials 10 and 20 through the woven fabric (base 10B). Thus, the cushion materials 10 and 20 having the plurality of napped fiber bodies 30 are completed.
  • the fineness of the staple fiber of the napped fiber body 30 is preferably in the range of 1.0 to 6.0 dtex. By doing so, the staple fibers are unlikely to become pills by needle punching, so that the napped fiber body 30 can be easily formed.
  • the napped fiber body 30 having a high density is easily formed, and the cushioning properties of the cushion materials 10 and 20 are enhanced.
  • the cushion materials 10 and 20 having the above-described configuration are applied to, for example, the laminated plate forming press apparatus 1 in the double-sided printed wiring board manufacturing apparatus shown in FIG.
  • substrate of a double-sided printed wiring board is a laminated product is shown.
  • cushion material base For the base material of the cushion material, a woven fabric woven from a spun yarn of a meta-aromatic polyamide was used. The fiber of this woven fabric is Cornex (trade name / manufactured by Teijin Limited).
  • Needle punching conditions (A) Entanglement conditions; A needle of 6 barbs per ridge was used, the number of times of needle punching was 50 times / cm 2, and the first barb of the needle needle was set at a position in contact with the woven fabric surface.
  • Example 1 Polyparaphenylene terephthalamide staple fibers were laminated as carding webs on the front and back surfaces of the woven fabric, respectively. Then, needle cushioning was performed to form the first felt material layer 1A and the second felt material layer 1B, respectively, and the cushioning material according to Example 1 was produced.
  • Example 2 Conex staple fibers were laminated as carding webs on the front and back surfaces of the woven fabric, respectively. And the needle material was punched and the 1st felt material layer 1A and the 2nd felt material layer 1B were formed, respectively, and the cushioning material concerning Example 2 was produced.
  • Example 3 Polyparaphenylene terephthalamide staple fiber on the surface of the woven fabric (the surface on the one side of the heating platen 40), Conex staple fiber on the back side of the woven fabric (the surface on the side opposite to the one of the heating platen 40), Each was laminated as a web. Then, the first felt material layer 1A and the second felt material layer 1B were formed by needle punching, and the cushion material according to Example 3 was produced.
  • Example 4 A web obtained by blending 50% by weight of staple fibers of polyparaphenylene terephthalamide and 50% by weight of carbon fibers is laminated as a web on the surface of the woven fabric (the surface on the one heating platen 40 side). On the back of the woven fabric (the surface opposite to one of the heating plates 40), 50% by weight of Conex staple fibers and 50% by weight of carbon fibers are mixed and laminated as a web. And the needle material was punched and the 1st felt material layer 1A and the 2nd felt material layer 1B were formed, respectively, and the cushioning material concerning Example 4 was produced.
  • Example 5 Conex staple fibers on the surface of the woven fabric (one side of the heating platen 40), and polyparaphenylene terephthalamide staple fibers on the back side of the woven fabric (the side opposite to the one of the heating plates 40), Each was laminated as a web. Then, needle cushioning was performed to form the first felt material layer 1A and the second felt material layer 1B, and the cushioning material according to Example 5 was produced.
  • Example 6 Polyparaphenylene terephthalamide staple fibers were laminated as carding webs on the front and back surfaces of the woven fabric, respectively. Then, needle punching was performed to form a first felt material layer 1A and a second felt material layer 1B, respectively, and a cushion material according to Example 6 was produced. In Example 6, compared with Example 1, the basis weight of staple fibers was increased.
  • Example 7 Conex staple fibers were further laminated as webs on the surface of the cushion material produced in Example 1. Then, needle punching was performed to form a third felt material layer 1C and a fourth felt material layer 1D, and a cushion material according to Example 7 was produced.
  • Example 8 Further, a staple fiber of polyparaphenylene terephthalamide was laminated as a web on the surface of the cushion material manufactured in Example 2. Then, needle punching was performed to form a third felt material layer 1C and a fourth felt material layer 1D, respectively, and a cushion material according to Example 8 was produced.
  • Example 9 An ETFE film was further bonded to the surface of the cushion material produced in Example 7 via a glass epoxy prepreg sheet to produce a cushion material according to Example 9.
  • Example 10 Polyparaphenylene terephthalamide staple fiber on the surface of the woven fabric (the surface on the one side of the heating platen 40), Conex staple fiber on the back side of the woven fabric (the surface on the side opposite to the one of the heating platen 40), Each was laminated as a web. Then, needle punching was performed to form the first felt material layer 1 ⁇ / b> A and the second felt material layer 1 ⁇ / b> B, and the cushion material according to Example 10 was produced.
  • Example 11 On the surface of the woven fabric (the surface on the one heating platen 40 side), a mixture of 50% by weight of staple fibers of polyparaphenylene terephthalamide and 50% by weight of carbon fibers was laminated as a web. On the back of the woven fabric (the surface opposite to one of the heating plates 40), 50% by weight of Conex staple fibers and 50% by weight of carbon fibers were mixed and laminated as a web. Then, needle punching was performed to form a first felt material layer 1A and a second felt material layer 1B, respectively, and a cushion material according to Example 11 was produced.
  • Example 12 An ETFE film was further bonded to the surface of the cushion material produced in Example 10 via a glass epoxy prepreg sheet to produce a cushion material according to Example 12.
  • Comparative Example 1 Polyparaphenylene terephthalamide staple fibers were laminated as carding webs on the front and back surfaces of the woven fabric, respectively. Then, the first felt material layer 1A and the second felt material layer 1B were formed by needle punching, and the cushion material according to Comparative Example 1 was produced.
  • Comparative Example 2 Conex staple fibers were laminated as carding webs on the front and back surfaces of the woven fabric, respectively. Then, the first felt material layer 1A and the second felt material layer 1B were formed by needle punching, and the cushion material according to Comparative Example 2 was produced.
  • cushion displacement ( ⁇ m) The thickness of the cushion material sample was measured when the cushion material sample was molded and pressed at 0.2 kg and at 50 kg when heated to 180 ° C. Then, the difference between the thickness at the time of molding press at 50 kg and the thickness at the time of molding press at 0.2 kg was determined, and this difference was defined as the cushion displacement ( ⁇ m).
  • the cushion displacement amount of the sample was set to “ ⁇ ” when the cushion displacement amount was 500 ⁇ m or more, “ ⁇ ” when 400 ⁇ m or more and less than 500 ⁇ m, and “X” when less than 400 ⁇ m (FIG. 5).
  • FIG. 5 is a table showing various physical properties of the cushion material samples prepared in Examples and Comparative Examples, and the performance of the cushion material samples measured by the above test apparatus.
  • the sample according to the example of the present invention is better in both the evaluation of the temperature rising rate and the evaluation of the cushion displacement amount than the sample according to the comparative example. Therefore, it was confirmed that the cushioning material according to the present invention is easy to adjust the temperature rising rate and is excellent in maintaining the cushioning property.
  • the density of the cushioning material in various examples of the present invention the minimum value (0.30 g / cm 3 ) is obtained in Example 11, and the maximum value (0.49 g / cm 3 ) is obtained in Example 9. . Therefore, it can be seen that the density of the cushioning material of the present invention is preferably 0.3 g / cm 3 to 0.5 g / cm 3 .
  • the heat-resistant cushioning material for molding press of the present invention can be applied to manufacturing processes for printed wiring board substrates, printed wiring boards, flat panel displays, semiconductor packages, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

 成形プレス用耐熱クッション材(10,20)は、基体(10B)とフェルト材層(1A,1B,1C,1D)とを積層して構成される。クッション材(10,20)は、耐熱性のステープルファイバーを含むフェルト材層(1A,1B,1C,1D)を、基体(10B)の表面と裏面に対してそれぞれ少なくとも1層ずつ有している。クッション材(10,20)の内部には、細繊度のステープルファイバーからなる複数の立毛繊維体(30)が、基体(10B)を貫通してクッション材(10,20)の厚み方向に形成されている。これにより、クッション材(10,20)は、昇温速度の調整とクッション性が良好になる。

Description

成形プレス用耐熱クッション材
 本発明は、成形プレス用耐熱クッション材(以下、クッション材と記載する場合がある。)にかかり、特に、優れた昇温速度と高いクッション性を有する耐熱性のクッション材に関する。
 積層構造を有する製品(積層製品)は、たとえば、複数の熱盤の間に挟持され、これら熱盤による熱プレスで製造される。この方法で製造される積層製品の一例は、次の通りである。なお、積層製品には、下記に示す例のほかに多種多様な製品がある。
(1)プリント配線板の基板となる積層板:
 この積層板としては、クラフト紙とフェノール樹脂とからなる紙フェノール積層板や、ガラス繊維の織布とエポキシ樹脂とからなるガラスエポキシ積層板などがある。
(2)プリント配線板:
 このプリント配線板としては、基板の片面に導体パターンを形成した片面プリント配線板や、基板の両面に導体パターンを形成した両面プリント配線板や、基板の外面だけでなく内部にも導体パターンを形成した多層プリント配線板などがある。
(3)フラットパネルディスプレイ:液晶ディスプレイ、エレクトロルミネセンスなどがある。
(4)半導体パッケージ:チップとほぼ同サイズのチップサイズパッケージ(Chip Size Package(CSP))などがある。
 これらの各種積層製品(被成形体)を成形プレス装置で製造する工程では、熱盤と積層製品との間にクッション材が介在される。このクッション材は、熱盤と積層製品とが直接接触しないようにクッション性を有するとともに、熱盤で発生する熱を積層製品の全面に均一に伝える機能を発揮する。
 このクッション材の具体的使用例を、図1に基づいて説明する。図1は、両面プリント配線板の製造装置における、積層板の成形プレスの一例を示す断面図である。
 図1に示す成形プレス装置1では、対向配置される一対の熱盤40と、一対の熱盤40より内方側に配置される一対のクッション材Cと、クッション材Cより内方側に配置される一対の鏡面板50と、銅箔60と、プリプレグ70とが使用される。
 最終的には、プリプレグ70と銅箔60とにより、両面プリント配線板が形成される。プリプレグ70は、ガラスクロスにエポキシ樹脂が含浸され半キュアー状態とされている板材を、複数枚重ねることにより構成される。
 熱盤40,40で熱と圧力を加えて、積層板を成形するのであるが、この時の成形条件は、エポキシ樹脂原料の配合などにより異なる。したがって、成形プレスの工程で使用されるクッション材Cの熱移動量(昇温速度:℃/min)を、前記成形条件に合致させる必要がある。
 もし仮に、クッション材Cの熱移動量が、エポキシ樹脂の成形条件に合致していないと、積層製品に物性差が生ずる恐れがあった。たとえば、熱盤40,40のすぐ近くに位置する積層製品と、熱盤40,40間の中央に位置して熱盤40から離れた位置にある積層製品との間で、物性差が生ずる。さらに、一つの積層製品中においても、中央部と周辺部とで物性差が発生する恐れもあった。
 その理由は、熱プレスにより、プリプレグ70中の樹脂の粘度が一旦下がって、樹脂が液状に戻った後、徐々に樹脂の硬化が進むという製造工程において、この工程中に、熱盤40のプレス圧を昇圧するタイミングがずれるためである。
 すなわち、樹脂を移動させプリプレグ70同士の接着、プリプレグ70と銅箔60との接着、および樹脂中に含まれている空気の除去・細分吸収をさせるための、温度と圧力による成形プレスのタイミングが許容範囲を越えるからである。
 たとえば、樹脂の粘度が低くなり過ぎた時にプリプレグ70に圧力が掛かると、樹脂が必要以上に流れて、積層板の中央部の板厚が厚くなり、周辺部厚が薄くなる。その結果、最終的に製造された積層製品の厚みが不均一になってしまうという不都合が発生する。
 他方、樹脂の粘度が高くなり過ぎた時にプリプレグ70に圧力が掛かると、樹脂が十分に流れず、樹脂中に含まれている空気が消えないため、積層製品の絶縁性に課題を生ずる。したがって、クッション材Cは、優れた昇温速度を有することが要求される。
 従来より、成形プレスでは、クッション材としてはクラフト紙等が多く使用されていた。しかし、近年においては、製造すべき積層製品の大型化や精密化が進んでいるため、さらに優れた特性を有するクッション材が要望されている。
 このようなクッション材としては、無機繊維と耐熱性芳香族系重合体のパルプ状物を含むもの(特開昭59-192795号公報)、および、芳香族系ポリアミド繊維を含むもの(特開昭62-156100号公報)がある。しかし、いずれのクッション材も、クッション性を持続させるのが困難なので寿命が短かった。
 たとえば、このようなクッション材として、図6に示すような成形プレス用耐熱クッション材C4がある。図6は、従来の成形プレス用耐熱クッション材C4の断面図である。
 図6に示すクッション材C4は、基体11Bと、基体11Bの表面に積層されてニードルパンチされたステープルファイバーのフェルト材層11Aと、基体11Bの裏面に積層されてニードルパンチされたステープルファイバーのフェルト材層11Aとにより、構成されている。
 このように、クッション材C4では、2層のフェルト材層11A,11Aが積層されている。フェルト材層11Aのステープルファイバーは、メタ系芳香族ポリアミドにより構成されている。基体11Bには、耐熱性繊維からなる経糸11B1と緯糸11B2とによる織布が使用されている。
 このクッション材C4のフェルト材層11Aは、そのステープルファイバーがメタ系芳香族ポリアミドで構成されているため、昇温速度を容易に調整することができる。しかしその反面、メタ系芳香族ポリアミドのステープルファイバーは、クッション性を維持することが困難なので、クッション材C4の寿命が短かった。
 そのため、クッション材C4のクッション性の維持を図るために、ステープルファイバーの目付けを大きくすることが考えられる。しかし、ステープルファイバーの目付けを大きくすれば、熱伝導速度が遅くなるため昇温速度の調整が困難になるとともに、クッション材C4が重くなって使用中の使い勝手が悪化する。
 クッション材C4のこのような欠点を解消するために、図7に示す成形プレス用耐熱クッション材C5が開発された。図7は、他の従来の成形プレス用耐熱クッション材C5の断面図である。
 図7に示すクッション材C5は、基体21Bと、基体21Bの表面に積層されてニードルパンチされたステープルファイバーのフェルト材層21Aと、基体21Bの裏面に積層されてニードルパンチされたステープルファイバーのフェルト材層21Aとにより、構成されている。すなわち、クッション材C5では、2層のフェルト材層21A,21Aが積層されている。
 フェルト材層21Aのステープルファイバーは、ポリパラフェニレンテレフタラミドなどを主体とするパラ系芳香族ポリアミドにより構成されている。基体21Bには、耐熱性繊維からなる経糸21B1と緯糸21B2とを有する織布が使用されている。
 このクッション材C5のフェルト材層21Aは、ステープルファイバーがパラ系芳香族ポリアミドで構成されているため、クッション性の維持は良好である。しかし、クッション材C5は、熱伝導率が高すぎるため、クッション材C5の昇温速度を調整することが困難であった。昇温速度を調整するには、ステープルファイバーの目付けを増加させる必要があるが、クッション材C5が重くなるので使用中の使い勝手が悪かった。
 米国特許US5,945,358号公報には、良好なボイドボリューム(空隙、多孔性)と走行安定性と耐摩耗性を得るために、スパンボンド不織布を配置した抄紙用フェルトが開示されている。この抄紙用フェルトでは、スパンボンド不織布を抄紙用フェルトに固定するために、バット繊維がフェルトの厚み方向に配置された構成になっている。
 しかしながら、この抄紙用フェルトは、走行して湿紙を加圧するのに使用されるが、熱盤などで加熱して使用するのではない。
 したがって、この抄紙用フェルトには、耐熱性,昇温速度の調整およびクッション性の維持などの特性は要求されない。そのため、米国特許US5,945,358号公報には、本発明の作用効果であるこれらの特性に関する記載はない。
特開昭59-192795号公報 特開昭62-156100号公報 米国特許US5,945,358号公報
 本発明は、このような課題を解決するためになされたもので、昇温速度の調整が容易で、クッション性の維持に優れた成形プレス用耐熱クッション材を提供することを目的とする。
 上述の目的を達成するため、本発明は、積層製品(被成形体)を成形プレス装置で製造するのに使用され、基体とフェルト材層とが積層された成形プレス用耐熱クッション材である。このクッション材は、耐熱性のステープルファイバーを含むフェルト材層を、前記基体の一方の面と他方の面に対してそれぞれ少なくとも1層(すなわち、1層または2層以上)ずつ有している。前記クッション材の内部には、細繊度のステープルファイバーからなる複数の立毛繊維体が、前記基体を貫通して前記クッション材の厚み方向に形成されている。
 これにより、クッション性を有し、且つ、昇温速度の調整が容易で、熱を積層製品の全面に均等に伝えることのできる、優れた特性を有する成形プレス用耐熱クッション材を得ることができる。
 「耐熱性のステープルファイバーを含むフェルト材層」は、耐熱性のステープルファイバーと他のステープルファイバーとを混綿して構成され、耐熱性のステープルファイバーを、少なくとも50重量%以上含んでいる。
 好ましくは、フェルト材層を構成する耐熱性のステープルファイバーは、メタ系芳香族ポリアミド、パラ系芳香族ポリアミドおよび耐炎火繊維からなる群から選択される1種又は複数種を含んでいる。
 立毛繊維体は、ニードルパンチングによる繊維間の絡み合いで形成されている。立毛繊維体は、その繊度が1.0~10.0dtex(デシテックス)で、耐熱性のステープルファイバーからなっている。この場合、立毛繊維体の繊度は、好ましくは1.0~6.0dtex(さらに好ましくは、1.0~3.0dtex)である。
 クッション材の密度は、0.3g/cmないし0.5g/cmであるのが好ましい。また、好ましくは、クッション材の表面には表層材が積層されている。この表層材は、接合手段(たとえば、樹脂、プリプレグ、接合ステープルファイバーなど)によって、クッション材に接合されている。
 「立毛繊維」は、この立毛繊維のステープルファイバーの軸線が、クッション材の厚み方向に配向している繊維を言う。「立毛繊維体」とは、少なくとも3本の前記立毛繊維が集合して束状になっているものを言う。
 この束状の立毛繊維体は、クッション材の平面視での単位面積(1cm)当たり少なくとも5束(すなわち、5束/cm)配置されているのが好ましい。なお、クッション材における立毛繊維体の束数の上限としては、クッション材の平面視での単位面積のほとんど全部または全部が束状の立毛繊維体で占められている場合である。上述のような立毛繊維体の態様は、顕微鏡によって確認することができる(図4参照)。
 「クッション材の厚み方向に形成されている」とは、立毛繊維のステープルファイバーの軸線がクッション材の基体に対してほぼ垂直方向を向いて形成されていることである。本発明では、立毛繊維のステープルファイバーの軸線が、基体がなす二次元の面に対して、45度ないし135度の範囲内、および225度ないし315度の範囲内に、それぞれ配向しているクッション材も、「立毛繊維体が、クッション材の厚み方向に形成されている」構成に包含される。なお、「基体がなす二次元の面」は、たとえば、後述する図2,図3に示すように、経糸の延びるZ方向と、緯糸の延びるX方向とがなす、X,Z平面のことである。
 本発明の成形プレス用耐熱クッション材は、昇温速度の調整が容易であるとともに、クッション性の維持に優れている。
両面プリント配線板の製造装置における、積層板の成形プレスの一例を示す断面図である。 本発明の一実施態様にかかる成形プレス用耐熱クッション材の断面図である。 本発明の他の実施態様にかかる成形プレス用耐熱クッション材の断面図である。 図2に示す成形プレス用耐熱クッション材の拡大断面図である。 クッション材のサンプルの諸物性と性能を示す表である。 従来の成形プレス用耐熱クッション材の断面図である。 従来の成形プレス用耐熱クッション材の断面図である。
 本発明にかかる成形プレス用耐熱クッション材の基本構成は、積層製品を成形プレス装置で製造するのに使用されるクッション材であり、基体とフェルト材層とが積層されている。このクッション材は、耐熱性のステープルファイバーを含むフェルト材層を、基体の一方の面(表面)と他方の面(裏面)に対してそれぞれ少なくとも1層(すなわち、1層または2層以上)ずつ有している。クッション材の内部には、細繊度のステープルファイバーからなる複数の立毛繊維体が、基体を貫通してクッション材の厚み方向に形成されている。
 特に、このクッション材において、フェルト材層を構成する耐熱性のステープルファイバーは、メタ系芳香族ポリアミド(コーネックス;商品名/帝人株式会社製、ノーメックス;商品名/デュポン社製)、パラ系芳香族ポリアミド(ケブラー;商品名/デュポン社製、トアロン;商品名/帝人株式会社製)および耐炎火繊維からなる群から選択される1種または複数種を含んでいるのが好ましい。
 たとえば、フェルト材層は、メタ系芳香族ポリアミドのステープルファイバーと、パラ系芳香族ポリアミドのステープルファイバーとが混合された、複合ステープルファイバーにより構成された場合であってもよい。
 より具体的には、クッション材は、積層製品を成形プレス装置で製造するのに使用され、基体とフェルト材層とが積層された成形プレス用耐熱クッション材である。このクッション材は、メタ系芳香族ポリアミドのステープルファイバーを含む一のフェルト材層と、パラ系芳香族ポリアミドのステープルファイバーを含む他のフェルト材層とを、前記基体の一方の面(表面)と他方の面(裏面)に対してそれぞれ少なくとも1層(すなわち、1層または2層以上)ずつ有している。
 前記クッション材の内部には、細繊度のステープルファイバーからなる複数の立毛繊維体が、前記基体を貫通して前記クッション材の厚み方向に形成されている。
 これらのクッション材において、好ましくは、立毛繊維体は、繊度1.0~6.0dtex(デシテックス)の耐熱性のステープルファイバーで、ニードルパンチングによる繊維間の絡み合いで形成されたものである。さらに好ましくは、クッション材の密度は0.3g/cmないし0.5g/cmである。
 太繊度のステープルファイバーでは繊維間の絡み合いが弱いから、密度の高い立毛繊維体が形成され難い。そこで、本発明では、立毛繊維体は、細繊度の耐熱性のステープルファイバーを有している。つまり、細繊度の耐熱性のステープルファイバーを用いて、ニードルパンチングによる繊維間の絡み合いで、密度の高い立毛繊維体が形成される。
 そして、このような細繊度のステープルファイバーからなる多数の立毛繊維体が、クッション材の内部に、前記基体を貫通してクッション材の厚み方向に形成されている。こうすれば、密度の高い多数の立毛繊維体が、クッション材の厚み方向に対してスプリングの作用を発揮する。したがって、クッション材は、昇温速度の調整が容易であるとともに、クッション性の持続性に優れている。
 ところで、立毛繊維体が、前記クッション材の基体を貫通せずに前記クッション材の厚み方向に形成されている場合には、立毛繊維体がスプリングの作用を発揮するものの、クッション材の昇温速度の調整が悪くなる。その理由は、細繊度のステープルファイバーからなる立毛繊維体が、クッション材の基体を貫通していないので、クッション材の厚み方向の熱伝導性が悪くなるからである。
 また、クッション材は、その密度が0.3g/cmないし0.5g/cmであれば、高密度化に伴うクッション材の弾性向上と、立毛繊維体のクッション性とが相乗効果として作用するため、クッション性がさらに向上する。
 クッション材の表面には、表層材が積層されているのが好ましい。こうすれば、積層製品(被成形体)を加熱プレス成形する際に、表層材の表面が積層製品の凹凸面の形状に従って従属的に変形する。その結果、表層材が積層製品と密着するので、該積層製品の凹凸面に対してクッション材が容易に密着できる。したがって、熱盤は、クッション材を介して積層製品に対して均等に押圧力を伝えることができる。
 表層材としては、カバーレイフィルムや金属箔、または、熱盤に対して離形性を有する耐熱性樹脂が好ましい。
 カバーレイフィルムとしては、プレス成形用フィルムであるポリアミド樹脂やポリスチレン樹脂の他に、ポリオレフィン樹脂を使用することができる。また、カバーレイフィルムとしては、ポリメタフェニレンイソフタルアミドを主体とした繊維からなる、ノーメックス(商品名/デュポン社製)ペーパー等を採用することもできる。
 金属箔としては、アルミ合金箔やステンレス箔などを使用できる。耐熱性樹脂は、テトラフルオロエチレン・エチレン共重合体(ETFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、およびポリテトラフルオロエチレン(PTFE)からなる群から選択される。
 そして、クッション材の表面に表層材を積層(配置)するためには、樹脂、プリプレグまたは接合繊維を使用する。
 樹脂としては、エポキシ樹脂やポリイミド樹脂を使用でき、また、フッ素フィルム等の熱溶着性樹脂なども使用できる。プリプレグとしては、ガラスエポキシのプリプレグシート等を使用できる。接合繊維としては、未延伸コーネックス繊維や全芳香族ポリエステル繊維(ベクトラン;商品名)を使用できる。
 次に、本発明の実施態様を、図1ないし図5に基づいて説明する。
 図2は、本発明の一実施態様にかかる成形プレス用耐熱クッション材の断面図、図3は、他の実施態様にかかる成形プレス用耐熱クッション材の断面図、図4は、図2に示す成形プレス用耐熱クッション材の拡大断面図である。
 図2,図4において、第1のクッション材10は、基体10Bと、基体10Bの一方側(一方の熱盤40側)の面(表面)に積層される第1のフェルト材層1Aと、基体10Bの他方側の面(裏面)に積層される第2のフェルト材層1Bと、第1のフェルト材層1Aの表面に積層される第3のフェルト材層1Cと、第2のフェルト材層1Bの表面に積層される第4のフェルト材層1Dとにより、構成されている。
 第1のフェルト材層1Aと第2のフェルト材層1Bは、基体10Bの表面と裏面に、ニードルパンチングによりそれぞれ取付けられている。第3のフェルト材層1Cは、第1のフェルト材層1Aに、ニードルパンチングにより取付けられている。第4のフェルト材層1Dは、第2のフェルト材層1Bに、ニードルパンチングにより取付けられている。
 細繊度のステープルファイバーからなる複数の立毛繊維体30が、基体10Bを貫通してクッション材10の厚み方向に形成されている。
 図2に示す第1のクッション材10では、第1のフェルト材層1Aと第2のフェルト材層1Bと第3のフェルト材層1Cと第4のフェルト材層1Dが、それぞれ、メタ系芳香族ポリアミドとパラ系芳香族ポリアミドのうち一方または両方を含んでいる。
 たとえば、第3のフェルト材層1Cと第4のフェルト材層1Dは、熱伝導率の低いステープルファイバー(ここでは、メタ系芳香族ポリアミド)のフェルト材からなっている。こうすれば、熱盤40における熱ムラが緩和される。
 そして、第1のフェルト材層1Aと第2のフェルト材層1Bは、熱伝導率の高いステープルファイバー(ここでは、パラ系芳香族ポリアミド)のフェルト材からなっている。こうすれば、クッション性が高まるので、クッション材10の全体として、昇温速度の調整とクッション性とをバランスよく設定することができる。
 図3に示す第2のクッション材20は、第1のクッション材10(図2)の表面(ここでは、一方の面と他方の面の両方)に、表層材1Eが積層された構成になっている。すなわち、第3のフェルト材層1Cの表面に、表層材1Eが接合手段Pにより接着されている。第4のフェルト材層1Dの表面にも、表層材1Eが接合手段Pにより接着されている。
 第2のクッション材20においても、第1のフェルト材層1Aと第2のフェルト材層1Bと第3のフェルト材層1Cと第4のフェルト材層1Dは、それぞれ、メタ系芳香族ポリアミドとパラ系芳香族ポリアミドのうち一方または両方を含んでいる。
 第1のクッション材10と第2のクッション材20において、基体10Bは、耐熱性繊維からなる経糸10B1と緯糸10B2とを織製してなる、織布により構成されている。この耐熱性繊維は、メタ系芳香族ポリアミド、パラ系芳香族ポリアミド、全芳香族ポリエステル繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維およびステンレス繊維からなる群から選択される。
 基体10Bは、上述のような経糸10B1と緯糸10B2とを織製した織布が強度上望ましいが、この織布の代わりに、経糸と緯糸を単に重ね合わせた構成であってもよい。
 このように、基体10Bは、経糸10B1と緯糸10B2とを有し、多数の立毛繊維体30が、基体10Bを貫通してクッション材10,20の厚み方向に形成されている。したがって、Z方向に延びる経糸10B1と、X方向に延びる緯糸10B2と、Y方向(クッション材10,20の厚み方向)に延びる立毛繊維体30は、互いにほぼ直交して三次元的に配置される(すなわち、X,Y,Z直交座標系)。しかも、立毛繊維体30が基体10Bを貫通しているので、立毛繊維体30の途中部分が、基体10Bにしっかりと保持される(図2~図4)。
 その結果、多数の立毛繊維体30が、クッション材10,20の厚み方向にスプリング効果を発揮するので、クッション材10,20のクッション性が向上する。
 基体10Bの一方の面(表面)と他方の面(裏面)には、第1のフェルト材層1Aと第2のフェルト材層1Bとが、ニードルパンチングによりそれぞれ取付けられる。第1のフェルト材層1Aの表面には、第3のフェルト材層1Cがニードルパンチングにより取付けられる。第2のフェルト材層1Bの表面には、第4のフェルト材層1Dがニードルパンチングにより取付けられる。
 こうして形成された第3のフェルト材層1Cの表面と、第4のフェルト材層1Dの表面に、接合手段Pをそれぞれ配置する。接合手段Pは、たとえば、未延伸コーネックスのステープルファイバーで坪量の少ないフェルト材である。
 そして、この接合手段Pの表面に表層材1Eを配置して積層した状態で、全体を熱プレスすると、接合手段Pは溶融する。その結果、溶融した接合手段Pを介して、第3のフェルト材層1Cと表層材1Eとが、強固に接合(接着)される。また、溶融した接合手段Pを介して、第4のフェルト材層1Dと表層材1Eとが強固に接合(接着)される。
 ここで、立毛繊維体30が基体10Bを貫通するように、クッション材10,20の厚み方向に複数の立毛繊維体30を形成するための方法について説明する。
(手順1)
 まず最初に、基体10Bとして織布を用意する。この織布の表面と裏面に、カーディングしたステープルファイバーのウエッブをそれぞれ積層する。そして、ニードルパンチングを行なって、織布(基体10B)にステープルファイバーを絡合処理する。これにより、織布(基体10B)の一方の面(表面)と他方の面(裏面)に、第1のフェルト材層1Aと第2のフェルト材層1Bをそれぞれ積層する。
 このニードルパンチングでは、1稜当たり6バーブ(刺)以下のニードルパンチ用針(以下、ニードル針と言う)を使用する。ニードルパンチング回数は50回/cm以下である。さらに、ニードル針の第1バーブ(ポイントからみて一番近い位置にあるバーブ)が織布表面に接する位置に設定されて、ニードルパンチングが行なわれる。
 このような絡合処理によって、ステープルファイバーの軸線方向は織布に対して平行になる。
(手順2)
 第1のフェルト材1Aと第2のフェルト材1Bがそれぞれ所定の坪量に達するまで、前記積層作業を繰り返す。やがて、第1のフェルト材1Aと第2のフェルト材1Bが所定の坪量に達したら、立毛繊維体30を形成するための手順に移行する。
(手順3)
 この手順では、前記絡合処理で使用したニードル針よりも多数のバーブ(刺)を有するニードル針(たとえば、1稜当たり8バーブ以上の針)を使用する。そして、このニードル針により、複数の立毛繊維体30がクッション材10,20の厚み方向に形成されるようにする。
 たとえば、2稜18バーブの針を使用し、ニードルパンチング回数を80回/cm以上とする。ニードル針の最終バーブ(ポイントから見て一番遠い位置にあるバーブ)が織布を貫通する位置になるように、ニードル針を設定する。
 この状態で、ニードルパンチングを行えば、複数の立毛繊維体30が、織布(基体10B)を貫通してクッション材10,20の厚み方向に形成される。こうして、複数の立毛繊維体30を有するクッション材10,20が完成する。
 ステープルファイバーの細繊度が1.0dtex未満の場合には、ニードルパンチングによってステープルファイバーが毛玉になり易く、立毛繊維体30を形成し難くなる。他方、ステープルファイバーの細繊度が6.0dtexを越える場合には、ステープルファイバー間の絡み合いが弱いから、密度の高い立毛繊維体30が形成され難くなり、クッション材のクッション性が弱くなる。
 したがって、本発明のクッション材10,20では、立毛繊維体30のステープルファイバーの繊度は1.0~6.0dtexの範囲が好ましい。こうすれば、ニードルパンチングによってステープルファイバーが毛玉になり難いので、立毛繊維体30を形成し易くなる。また、ステープルファイバー間の絡み合いが強くなるので、密度の高い立毛繊維体30が形成されやすくなり、クッション材10,20のクッション性が強くなる。
 なお、本発明では、細繊度が1.0~3.0dtexの耐熱性ステープルファイバーの使用が最も好ましい。
 上述の構成を有するクッション材10,20は、たとえば、図1に示す両面プリント配線板の製造装置における積層板の成形プレス装置1に適用される。この図1では、両面プリント配線板の基板となる積層板が、積層製品である場合を示している。
 以下、本発明の成形プレス用耐熱クッション材について、実施例を用いてさらに詳しく説明する。なお、下記の実施例は本発明を何ら限定するものではない。
 実施例および比較例において、次の構成は全て共通のものを使用した。
(1)クッション材の基体:
 クッション材の基体には、メタ系芳香族ポリアミドのスパン糸を織製した織布を使用した。この織布の繊維は、コーネックス(商品名/帝人株式会社製)である。
(2)ニードルパンチングの条件:
(a)絡合処理の条件;
 1稜当たり6バーブの針を使用し、ニードルパンチング回数を50回/cmとし、ニードル針の第1バーブを、織布表面に接触する位置に設定した。
(b)立毛繊維体の形成条件;
 実施例では、絡合処理の後に、2稜当たり18バーブの針を使用し、ニードルパンチング回数を80回/cmとし、ニードル針の最終バーブを、織布を貫通する位置に設定した。
 比較例では、立毛繊維体が形成されないように、絡合処理の後に、2稜当たり18バーブの針を使用し、ニードルパンチング回数を80回/cmとし、ニードル針の第1バーブを、織布表面に接触する位置に設定した。
(1)フェルト材を構成するステープルファイバーについては、実施例1~9、比較例1~5では、以下のものを使用した。
(a)メタ系芳香族ポリアミドのステープルファイバーには、コーネックス(商品名/帝人株式会社製)2dtexの50mmカット長の短繊維を使用した。
(b)パラ系芳香族ポリアミドのステープルファイバーには、ポリパラフェニレンテレフタルアミド(ケブラー;商品名/デュポン社製)2dtexの50mmカット長の短繊維を使用した。
(2)フェルト材を構成するステープルファイバーについては、実施例10~12、比較例6,7では、以下のものを使用した。
(a)メタ系芳香族ポリアミドのステープルファイバーには、コーネックス(商品名/帝人株式会社製)6dtexの50mmカット長の短繊維を使用した。
(b)パラ系芳香族ポリアミドのステープルファイバーには、ポリパラフェニレンテレフタルアミド(ケブラー;商品名/デュポン社製)5dtexの50mmカット長の短繊維を使用した。
(実施例1)
 織布の表面と裏面に、ポリパラフェニレンテレフタルアミドのステープルファイバーを、カーディングウエッブとしてそれぞれ積層した。そして、ニードルパンチングして、第1のフェルト材層1Aと第2のフェルト材層1Bをそれぞれ形成して、実施例1にかかるクッション材を作製した。
(実施例2)
 織布の表面と裏面に、コーネックスのステープルファイバーを、カーディングウエッブとしてそれぞれ積層した。そして、ニードルパンチングして、第1のフェルト材層1Aと第2のフェルト材層1Bをそれぞれ形成して、実施例2にかかるクッション材を作製した。
(実施例3)
 織布の表面(一方の熱盤40側の面)にポリパラフェニレンテレフタルアミドのステープルファイバーを、織布の裏面(一方の熱盤40とは反対側の面)にコーネックスのステープルファイバーを、それぞれウエッブとして積層した。そして、ニードルパンチングして、第1のフェルト材層1Aと第2のフェルト材層1Bをそれぞれ形成して、実施例3にかかるクッション材を作製した。
(実施例4)
 織布の表面(一方の熱盤40側の面)に、ポリパラフェニレンテレフタルアミドのステープルファイバー50重量%とカーボン繊維50重量%とを混綿処理したものを、ウエッブとして積層する。織布の裏面(一方の熱盤40とは反対側の面)に、コーネックスのステープルファイバー50重量%とカーボン繊維50重量%を混綿処理したものを、ウエッブとして積層する。
 そして、ニードルパンチングして、第1のフェルト材層1Aと第2のフェルト材層1Bをそれぞれ形成して、実施例4にかかるクッション材を作製した。
(実施例5)
 織布の表面(一方の熱盤40側の面)にコーネックスのステープルファイバーを、織布の裏面(一方の熱盤40とは反対側の面)にポリパラフェニレンテレフタルアミドのステープルファイバーを、それぞれウエッブとして積層した。そして、ニードルパンチングして、第1のフェルト材層1Aと第2のフェルト材層1Bをそれぞれ形成して、実施例5にかかるクッション材を作製した
(実施例6)
 織布の表面と裏面に、ポリパラフェニレンテレフタルアミドのステープルファイバーを、カーディングウエッブとしてそれぞれ積層した。そして、ニードルパンチングして、第1のフェルト材層1Aと第2のフェルト材層1Bをそれぞれ形成して、実施例6にかかるクッション材を作製した。この実施例6では、実施例1と比較して、ステープルファイバーの目付けを増加させた。
(実施例7)
 実施例1で作製したクッション材の表面に、さらに、コーネックスのステープルファイバーをウエッブとして積層した。そして、ニードルパンチングし、第3のフェルト材層1Cと第4のフェルト材層1Dをそれぞれ形成して、実施例7にかかるクッション材を作製した。
(実施例8)
 実施例2で作製したクッション材の表面に、さらに、ポリパラフェニレンテレフタルアミドのステープルファイバーを、ウエッブとして積層した。そして、ニードルパンチングし、第3のフェルト材層1Cと第4のフェルト材層1Dをそれぞれ形成して、実施例8にかかるクッション材を作製した。
(実施例9)
 実施例7で作製したクッション材の表面に、さらに、ガラスエポキシのプリプレグシートを介してETFEフィルムを接合して、実施例9にかかるクッション材を作製した。
(実施例10)
 織布の表面(一方の熱盤40側の面)にポリパラフェニレンテレフタルアミドのステープルファイバーを、織布の裏面(一方の熱盤40とは反対側の面)にコーネックスのステープルファイバーを、それぞれウエッブとして積層した。そして、ニードルパンチングし、第1のフェルト材層1Aと第2のフェルト材層1Bをそれぞれ形成して、実施例10にかかるクッション材を作製した。
(実施例11)
 織布の表面(一方の熱盤40側の面)に、ポリパラフェニレンテレフタルアミドのステープルファイバー50重量%とカーボン繊維50重量%を混綿処理したものを、ウエッブとして積層した。織布の裏面(一方の熱盤40とは反対側の面)に、コーネックスのステープルファイバー50重量%とカーボン繊維50重量%を混綿処理したものを、ウエッブとして積層した。
 そして、ニードルパンチングして、第1のフェルト材層1Aと第2のフェルト材層1Bをそれぞれ形成して、実施例11にかかるクッション材を作製した。
(実施例12)
 実施例10で製作したクッション材の表面に、さらに、ガラスエポキシのプリプレグシートを介してETFEフィルムを接合して、実施例12にかかるクッション材を作製した。
(比較例1)
 織布の表面と裏面に、ポリパラフェニレンテレフタルアミドのステープルファイバーを、カーディングウエッブとしてそれぞれ積層した。そして、ニードルパンチングして、第1のフェルト材層1Aと第2のフェルト材層1Bをそれぞれ形成して、比較例1にかかるクッション材を作製した。
(比較例2)
 織布の表面と裏面に、コーネックスのステープルファイバーを、カーディングウエッブとしてそれぞれ積層した。そして、ニードルパンチングして、第1のフェルト材層1Aと第2のフェルト材層1Bをそれぞれ形成して、比較例2にかかるクッション材を作製した。
(比較例3)
 織布の表面(一方の熱盤40側の面)にポリパラフェニレンテレフタルアミドのステープルファイバーを、織布の裏面(一方の熱盤40とは反対側の面)にコーネックスのステープルファイバーを、それぞれウエッブとして積層した。そして、ニードルパンチングして、第1のフェルト材層1Aと第2のフェルト材層1Bをそれぞれ形成して、比較例3にかかるクッション材を作製した。
(比較例4)
 織布の表面(一方の熱盤40側の面)に、ポリパラフェニレンテレフタルアミドのステープルファイバー50重量%とカーボン繊維50重量%を混綿処理したものを、ウエッブとして積層した。織布の裏面(一方の熱盤40とは反対側の面)に、コーネックスのステープルファイバー50重量%とカーボン繊維50重量%を混綿処理したものを、ウエッブとして積層した。
 そして、ニードルパンチングして、第1のフェルト材層1Aと第2のフェルト材層1Bをそれぞれ形成して、比較例4にかかるクッション材を作製した。
(比較例5)
 比較例3で作製したクッション材の表面に、さらに、ガラスエポキシのプリプレグシートを介してETFEフィルムを接合して、比較例5にかかるクッション材を作製した。
(比較例6)
 織布の表面(一方の熱盤40側の面)にポリパラフェニレンテレフタルアミドのステープルファイバーを、織布の裏面(一方の熱盤40とは反対側の面)にコーネックスのステープルファイバーを、それぞれウエッブとして積層した。そして、ニードルパンチングして、第1のフェルト材層1Aと第2のフェルト材層1Bをそれぞれ形成して、比較例6にかかるクッション材を作製した。
(比較例7)
 比較例6で作製したクッション材の表面に、さらに、ガラスエポキシのプリプレグシートを介してETFEフィルムを接合して、比較例7にかかるクッション材を作製した。
 これらの実施例と比較例でそれぞれ作製したクッション材のサンプルについて、図1に示す成形プレス装置1と同様の構造を有する試験装置を用いて試験を行なった。これにより、各クッション材の性能を測定した。
 クッション材のサンプルに関しては、「温度190℃、加圧40kg/cmを60分維持し、その後、水冷15分、加圧開放15分」という一連の手順を1サイクルとする。そして、サンプルに関して、この一連の手順を300サイクル繰り返すことにより、サンプルを300回繰り返して加圧した後に、下記に示す項目の測定を実施した。
(1)昇温速度(℃/min)の測定:
 クッション材のサンプルが90℃から140℃になるまでの時間を測定し、昇温速度(℃/min)を得た。
 昇温速度の評価としては、サンプルの昇温速度が1.8℃/minを超えて、2.2℃/min以下を「◎」、1.5℃/minを超えて、1.8℃/min以下、および2.2℃/minを超えて、2.5℃/min以下を「○」、それ以外を「×」とした(図5)。
(2)クッション変位量(μm)の測定:
 クッション材のサンプルを、180℃に加熱した状態において、0.2kgで成形プレスした場合と、50kgで成形プレスした場合の、クッション材サンプルの厚みを測定した。そして、50kgで成形プレス時の厚みと、0.2kgで成形プレス時の厚みとの差を求め、この差をクッション変位量(μm)とした。
 クッション変位量の評価としては、サンプルのクッション変位量が500μm以上を「◎」、400μm以上、500μm未満を「○」、400μm未満を「×」とした(図5)。
 図5は、実施例および比較例で作製したクッション材のサンプルの諸物性と、上記試験装置で測定したクッション材のサンプルの性能とを示す表である。
 図5から分かるように、本発明の実施例にかかるサンプルは、比較例にかかるサンプルと比べて、昇温速度の評価とクッション変位量の評価がともに良好である。したがって、本発明にかかるクッション材は、昇温速度の調整が容易であるとともに、クッション性の維持に優れていることが確認された。
 また、本発明の各種実施例におけるクッション材の密度に関しては、実施例11では最小値(0.30g/cm)で、実施例9では最大値(0.49g/cm)となっている。したがって、本発明のクッション材の密度は、0.3g/cmないし0.5g/cmが好ましいことが分かる。
 以上、本発明の実施の形態を説明したが、本発明は、上述の実施の形態に限定されるものではなく、本発明の要旨の範囲で種々の変形,付加などが可能である。
 なお、各図中同一符号は同一または相当部分を示す。
 本発明の成形プレス用耐熱クッション材は、プリント配線板の基板、プリント配線板、フラットパネルディスプレイおよび半導体パッケージなどの製造工程に適用可能である。

Claims (9)

  1.  積層製品を成形プレス装置(1)で製造するのに使用され、基体(10B)とフェルト材層(1A,1B,1C,1D)とが積層された成形プレス用耐熱クッション材(10,20)であって、
     このクッション材(10,20)は、耐熱性のステープルファイバーを含む前記フェルト材層(1A,1B,1C,1D)を、前記基体(10B)の一方の面と他方の面に対してそれぞれ少なくとも1層ずつ有し、
     前記クッション材(10,20)の内部には、細繊度のステープルファイバーからなる複数の立毛繊維体(30)が、前記基体(10B)を貫通して前記クッション材(10,20)の厚み方向に形成されていることを特徴とする成形プレス用耐熱クッション材。
  2.  請求項1に記載の成形プレス用耐熱クッション材(10,20)であって、
     前記フェルト材層(1A,1B,1C,1D)を構成する前記耐熱性のステープルファイバーは、メタ系芳香族ポリアミド、パラ系芳香族ポリアミドおよび耐炎火繊維からなる群から選択される1種または複数種を含んでいる。
  3.  請求項2に記載の成形プレス用耐熱クッション材(10,20)であって、
     前記フェルト材層(1A,1B,1C,1D)は、前記メタ系芳香族ポリアミドのステープルファイバーと、前記パラ系芳香族ポリアミドのステープルファイバーとが混合された、複合ステープルファイバーにより構成されている。
  4.  積層製品を成形プレス装置(1)で製造するのに使用され、基体(10B)とフェルト材層(1A,1B,1C,1D)とが積層された成形プレス用耐熱クッション材(10,20)であって、
     このクッション材(10,20)は、メタ系芳香族ポリアミドのステープルファイバーを含む一のフェルト材層と、パラ系芳香族ポリアミドのステープルファイバーを含む他のフェルト材層とを、前記基体(10B)の一方の面と他方の面に対してそれぞれ少なくとも1層ずつ有し、
     前記クッション材(10,20)の内部には、細繊度のステープルファイバーからなる複数の立毛繊維体(30)が、前記基体(10B)を貫通して前記クッション材(10,20)の厚み方向に形成されていることを特徴とする成形プレス用耐熱クッション材。
  5.  請求項1ないし4のいずれかの項に記載の成形プレス用耐熱クッション材(10,20)であって、
     前記立毛繊維体(30)は、繊度1.0~6.0dtexの耐熱性のステープルファイバーで、ニードルパンチングによる繊維間の絡み合いで形成されている。
  6.  請求項1ないし4のいずれかの項に記載の成形プレス用耐熱クッション材(10,20)であって、このクッション材(10,20)の密度は0.3g/cmないし0.5g/cmである。
  7.  請求項1ないし4のいずれかの項に記載の成形プレス用耐熱クッション材(20)であって、このクッション材(20)の表面には表層材(1E)が積層されている。
  8.  請求項7に記載の成形プレス用耐熱クッション材(20)であって、前記表層材(1E)は、カバーレイフィルム、金属箔、または、離形性を有する耐熱性樹脂である。
  9.  請求項1ないし4のいずれかの項に記載の成形プレス用耐熱クッション材(10,20)であって、
     前記立毛繊維体(30)は、少なくとも3本の立毛繊維が集合して束状になっており、
     この束状の立毛繊維体(30)は、前記クッション材(10,20)の平面視での単位面積(1cm)当たり少なくとも5束配置されており、
     このクッション材(10,20)における前記立毛繊維体(30)の束数の上限としては、前記クッション材(10,20)の平面視での単位面積のほとんど全部または全部が前記束状の立毛繊維体(30)で占められている場合である。
PCT/JP2008/062732 2008-07-15 2008-07-15 成形プレス用耐熱クッション材 WO2010007662A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2008/062732 WO2010007662A1 (ja) 2008-07-15 2008-07-15 成形プレス用耐熱クッション材
JP2010520833A JP4820920B2 (ja) 2008-07-15 2009-07-07 成形プレス用耐熱クッション材
KR1020107029078A KR20110040781A (ko) 2008-07-15 2009-07-07 성형 프레스용 내열 쿠션재
PCT/JP2009/062397 WO2010007917A1 (ja) 2008-07-15 2009-07-07 成形プレス用耐熱クッション材
CN200980123985.4A CN102083606B (zh) 2008-07-15 2009-07-07 压力成形用耐热缓冲材料
TW098123601A TWI383893B (zh) 2008-07-15 2009-07-13 成形壓合用耐熱緩衝材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/062732 WO2010007662A1 (ja) 2008-07-15 2008-07-15 成形プレス用耐熱クッション材

Publications (1)

Publication Number Publication Date
WO2010007662A1 true WO2010007662A1 (ja) 2010-01-21

Family

ID=41550081

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2008/062732 WO2010007662A1 (ja) 2008-07-15 2008-07-15 成形プレス用耐熱クッション材
PCT/JP2009/062397 WO2010007917A1 (ja) 2008-07-15 2009-07-07 成形プレス用耐熱クッション材

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062397 WO2010007917A1 (ja) 2008-07-15 2009-07-07 成形プレス用耐熱クッション材

Country Status (4)

Country Link
KR (1) KR20110040781A (ja)
CN (1) CN102083606B (ja)
TW (1) TWI383893B (ja)
WO (2) WO2010007662A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9285893B2 (en) 2012-11-08 2016-03-15 Leap Motion, Inc. Object detection and tracking with variable-field illumination devices
US9436998B2 (en) 2012-01-17 2016-09-06 Leap Motion, Inc. Systems and methods of constructing three-dimensional (3D) model of an object using image cross-sections
US9465461B2 (en) 2013-01-08 2016-10-11 Leap Motion, Inc. Object detection and tracking with audio and optical signals
US9495613B2 (en) 2012-01-17 2016-11-15 Leap Motion, Inc. Enhanced contrast for object detection and characterization by optical imaging using formed difference images
US9613262B2 (en) 2014-01-15 2017-04-04 Leap Motion, Inc. Object detection and tracking for providing a virtual device experience
JP2017095840A (ja) * 2015-11-27 2017-06-01 アンビック株式会社 耐熱クッション材
US9679215B2 (en) 2012-01-17 2017-06-13 Leap Motion, Inc. Systems and methods for machine control
US10585193B2 (en) 2013-03-15 2020-03-10 Ultrahaptics IP Two Limited Determining positional information of an object in space
US10609285B2 (en) 2013-01-07 2020-03-31 Ultrahaptics IP Two Limited Power consumption in motion-capture systems
US10691219B2 (en) 2012-01-17 2020-06-23 Ultrahaptics IP Two Limited Systems and methods for machine control
US10846942B1 (en) 2013-08-29 2020-11-24 Ultrahaptics IP Two Limited Predictive information for free space gesture control and communication
US11077642B2 (en) 2012-08-17 2021-08-03 Yamauchi Corporation Hot press cushioning material
US11099653B2 (en) 2013-04-26 2021-08-24 Ultrahaptics IP Two Limited Machine responsiveness to dynamic user movements and gestures
US11353962B2 (en) 2013-01-15 2022-06-07 Ultrahaptics IP Two Limited Free-space user interface and control using virtual constructs
US11493998B2 (en) 2012-01-17 2022-11-08 Ultrahaptics IP Two Limited Systems and methods for machine control
US11740705B2 (en) 2013-01-15 2023-08-29 Ultrahaptics IP Two Limited Method and system for controlling a machine according to a characteristic of a control object
US11775033B2 (en) 2013-10-03 2023-10-03 Ultrahaptics IP Two Limited Enhanced field of view to augment three-dimensional (3D) sensory space for free-space gesture interpretation
US11868687B2 (en) 2013-10-31 2024-01-09 Ultrahaptics IP Two Limited Predictive information for free space gesture control and communication
US11994377B2 (en) 2012-01-17 2024-05-28 Ultrahaptics IP Two Limited Systems and methods of locating a control object appendage in three dimensional (3D) space

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5502673B2 (ja) * 2010-09-17 2014-05-28 帝人株式会社 難燃積層繊維構造体
JP2013001110A (ja) * 2011-06-17 2013-01-07 Ichikawa Co Ltd 成形プレス用クッション材
FR2977262B1 (fr) * 2011-06-28 2013-07-05 Gilbert Chomarat Nappe thermoformable a fibres de renfort
TWI477386B (zh) * 2011-09-22 2015-03-21 Tech Advance Ind Co Ltd 熱壓機用之緩衝材及其應用
CN103187542B (zh) * 2011-12-29 2016-09-07 丽佳达普株式会社 有机发光元件封装装置以及有机发光元件封装方法
US9259879B2 (en) * 2012-12-21 2016-02-16 Cytec Industries Inc. Curable prepregs with surface openings
CN103660431A (zh) * 2013-12-10 2014-03-26 吴江发源纺织有限公司 导热织物
KR101542736B1 (ko) * 2015-04-02 2015-08-10 (주)웰크론 워터펀칭을 이용한 방검원단의 제조방법
JP6742941B2 (ja) * 2017-03-31 2020-08-19 イチカワ株式会社 熱プレス用クッション材および熱プレス用クッション材の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156100A (ja) * 1985-12-27 1987-07-11 Hiroshima Kasei Kk プレス用クツシヨン材
JP2002061057A (ja) * 2000-08-18 2002-02-28 Toyobo Co Ltd 表面耐摩耗性良好な高熱伝導性耐熱フェルト材料
JP2003145567A (ja) * 2001-11-09 2003-05-20 Yamauchi Corp 熱プレス用クッション材および積層板の製造方法
JP2004243728A (ja) * 2003-02-17 2004-09-02 Ichikawa Woolen Textile Co Ltd 成形プレス用耐熱クッション材

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767265B1 (en) * 1995-10-04 2000-12-20 The B.F. Goodrich Company Laminar fibrous structure having Z-fibers that penetrate a constant number of layers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156100A (ja) * 1985-12-27 1987-07-11 Hiroshima Kasei Kk プレス用クツシヨン材
JP2002061057A (ja) * 2000-08-18 2002-02-28 Toyobo Co Ltd 表面耐摩耗性良好な高熱伝導性耐熱フェルト材料
JP2003145567A (ja) * 2001-11-09 2003-05-20 Yamauchi Corp 熱プレス用クッション材および積層板の製造方法
JP2004243728A (ja) * 2003-02-17 2004-09-02 Ichikawa Woolen Textile Co Ltd 成形プレス用耐熱クッション材

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9778752B2 (en) 2012-01-17 2017-10-03 Leap Motion, Inc. Systems and methods for machine control
US10691219B2 (en) 2012-01-17 2020-06-23 Ultrahaptics IP Two Limited Systems and methods for machine control
US11308711B2 (en) 2012-01-17 2022-04-19 Ultrahaptics IP Two Limited Enhanced contrast for object detection and characterization by optical imaging based on differences between images
US9495613B2 (en) 2012-01-17 2016-11-15 Leap Motion, Inc. Enhanced contrast for object detection and characterization by optical imaging using formed difference images
US9934580B2 (en) 2012-01-17 2018-04-03 Leap Motion, Inc. Enhanced contrast for object detection and characterization by optical imaging based on differences between images
US9626591B2 (en) 2012-01-17 2017-04-18 Leap Motion, Inc. Enhanced contrast for object detection and characterization by optical imaging
US11493998B2 (en) 2012-01-17 2022-11-08 Ultrahaptics IP Two Limited Systems and methods for machine control
US9652668B2 (en) 2012-01-17 2017-05-16 Leap Motion, Inc. Enhanced contrast for object detection and characterization by optical imaging based on differences between images
US11720180B2 (en) 2012-01-17 2023-08-08 Ultrahaptics IP Two Limited Systems and methods for machine control
US9672441B2 (en) 2012-01-17 2017-06-06 Leap Motion, Inc. Enhanced contrast for object detection and characterization by optical imaging based on differences between images
US9679215B2 (en) 2012-01-17 2017-06-13 Leap Motion, Inc. Systems and methods for machine control
US10699155B2 (en) 2012-01-17 2020-06-30 Ultrahaptics IP Two Limited Enhanced contrast for object detection and characterization by optical imaging based on differences between images
US9741136B2 (en) 2012-01-17 2017-08-22 Leap Motion, Inc. Systems and methods of object shape and position determination in three-dimensional (3D) space
US9767345B2 (en) 2012-01-17 2017-09-19 Leap Motion, Inc. Systems and methods of constructing three-dimensional (3D) model of an object using image cross-sections
US9436998B2 (en) 2012-01-17 2016-09-06 Leap Motion, Inc. Systems and methods of constructing three-dimensional (3D) model of an object using image cross-sections
US11994377B2 (en) 2012-01-17 2024-05-28 Ultrahaptics IP Two Limited Systems and methods of locating a control object appendage in three dimensional (3D) space
US9697643B2 (en) 2012-01-17 2017-07-04 Leap Motion, Inc. Systems and methods of object shape and position determination in three-dimensional (3D) space
US10366308B2 (en) 2012-01-17 2019-07-30 Leap Motion, Inc. Enhanced contrast for object detection and characterization by optical imaging based on differences between images
US10410411B2 (en) 2012-01-17 2019-09-10 Leap Motion, Inc. Systems and methods of object shape and position determination in three-dimensional (3D) space
US10565784B2 (en) 2012-01-17 2020-02-18 Ultrahaptics IP Two Limited Systems and methods for authenticating a user according to a hand of the user moving in a three-dimensional (3D) space
US11077642B2 (en) 2012-08-17 2021-08-03 Yamauchi Corporation Hot press cushioning material
US9285893B2 (en) 2012-11-08 2016-03-15 Leap Motion, Inc. Object detection and tracking with variable-field illumination devices
US10609285B2 (en) 2013-01-07 2020-03-31 Ultrahaptics IP Two Limited Power consumption in motion-capture systems
US9465461B2 (en) 2013-01-08 2016-10-11 Leap Motion, Inc. Object detection and tracking with audio and optical signals
US10097754B2 (en) 2013-01-08 2018-10-09 Leap Motion, Inc. Power consumption in motion-capture systems with audio and optical signals
US9626015B2 (en) 2013-01-08 2017-04-18 Leap Motion, Inc. Power consumption in motion-capture systems with audio and optical signals
US11740705B2 (en) 2013-01-15 2023-08-29 Ultrahaptics IP Two Limited Method and system for controlling a machine according to a characteristic of a control object
US11874970B2 (en) 2013-01-15 2024-01-16 Ultrahaptics IP Two Limited Free-space user interface and control using virtual constructs
US11353962B2 (en) 2013-01-15 2022-06-07 Ultrahaptics IP Two Limited Free-space user interface and control using virtual constructs
US10585193B2 (en) 2013-03-15 2020-03-10 Ultrahaptics IP Two Limited Determining positional information of an object in space
US11693115B2 (en) 2013-03-15 2023-07-04 Ultrahaptics IP Two Limited Determining positional information of an object in space
US11099653B2 (en) 2013-04-26 2021-08-24 Ultrahaptics IP Two Limited Machine responsiveness to dynamic user movements and gestures
US11461966B1 (en) 2013-08-29 2022-10-04 Ultrahaptics IP Two Limited Determining spans and span lengths of a control object in a free space gesture control environment
US11282273B2 (en) 2013-08-29 2022-03-22 Ultrahaptics IP Two Limited Predictive information for free space gesture control and communication
US10846942B1 (en) 2013-08-29 2020-11-24 Ultrahaptics IP Two Limited Predictive information for free space gesture control and communication
US11776208B2 (en) 2013-08-29 2023-10-03 Ultrahaptics IP Two Limited Predictive information for free space gesture control and communication
US11775033B2 (en) 2013-10-03 2023-10-03 Ultrahaptics IP Two Limited Enhanced field of view to augment three-dimensional (3D) sensory space for free-space gesture interpretation
US11868687B2 (en) 2013-10-31 2024-01-09 Ultrahaptics IP Two Limited Predictive information for free space gesture control and communication
US9613262B2 (en) 2014-01-15 2017-04-04 Leap Motion, Inc. Object detection and tracking for providing a virtual device experience
JP2017095840A (ja) * 2015-11-27 2017-06-01 アンビック株式会社 耐熱クッション材

Also Published As

Publication number Publication date
TW201008774A (en) 2010-03-01
CN102083606A (zh) 2011-06-01
TWI383893B (zh) 2013-02-01
WO2010007917A1 (ja) 2010-01-21
CN102083606B (zh) 2014-06-18
KR20110040781A (ko) 2011-04-20

Similar Documents

Publication Publication Date Title
WO2010007662A1 (ja) 成形プレス用耐熱クッション材
US20050014437A1 (en) Cushioning material for hot pressing and process for producing layered board
JP4597685B2 (ja) 熱プレス用クッション材およびその製造方法ならびに積層板の製造方法
KR101798351B1 (ko) 열 프레스용 쿠션재 및 그 제조 방법
KR20120139582A (ko) 성형 프레스용 쿠션재
KR101056898B1 (ko) 다층 인쇄회로기판 및 그 제조방법
CN104284765B (zh) 热压用缓冲材料
JP4102679B2 (ja) 成形プレス用耐熱クッション材
JP2012186241A (ja) 熱伝導性シート
JP4820920B2 (ja) 成形プレス用耐熱クッション材
JP2004100047A (ja) ポリエステル熱圧着不織布の製造法
JP2004216784A (ja) プリプレグの製造方法、プリプレグ、内層回路入り積層板及び金属箔張り積層板
JP5959697B2 (ja) 熱伝導性シート
KR20050004091A (ko) 플렉서블 프린트 배선판의 보강재용 에폭시 수지 적층판
JP2010137384A (ja) 成形プレス用耐熱クッション材
CN108688267B (zh) 热压用缓冲材料和热压用缓冲材料的制造方法
US20130075035A1 (en) Cushion material for hot-press and use of the same
TWI473717B (zh) 熱壓機用之緩衝材及其應用
JP2024047319A (ja) フェルト材、熱プレス成形用クッション材、及び、フェルト材の製造方法
JP2009101659A (ja) プレス成形用クッション材、その製造方法およびそれを用いたプレス成形方法
JP2001088156A (ja) 成型プレス用耐熱クッション材
JP2007001230A (ja) 積層板の製造方法
JP2004186434A (ja) プリント基板用基材及びその製造方法
JPH1158610A (ja) 金属箔張り積層板の製造方法
JPH0775269B2 (ja) 電気用積層板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08791157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08791157

Country of ref document: EP

Kind code of ref document: A1