WO2010007264A1 - Utilisation pour la filtration d'éléments creux formés d'un enroulement de type hélicoïdal - Google Patents

Utilisation pour la filtration d'éléments creux formés d'un enroulement de type hélicoïdal Download PDF

Info

Publication number
WO2010007264A1
WO2010007264A1 PCT/FR2009/050966 FR2009050966W WO2010007264A1 WO 2010007264 A1 WO2010007264 A1 WO 2010007264A1 FR 2009050966 W FR2009050966 W FR 2009050966W WO 2010007264 A1 WO2010007264 A1 WO 2010007264A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration
hollow element
hollow
element according
elements
Prior art date
Application number
PCT/FR2009/050966
Other languages
English (en)
Inventor
Bernard Cottard
Matthew Allen
Original Assignee
Total Raffinage Marketing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Raffinage Marketing filed Critical Total Raffinage Marketing
Priority to US13/000,995 priority Critical patent/US20110147319A1/en
Priority to EP09797566A priority patent/EP2307128A1/fr
Publication of WO2010007264A1 publication Critical patent/WO2010007264A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/30Loose or shaped packing elements, e.g. Raschig rings or Berl saddles, for pouring into the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/006Separating solid material from the gas/liquid stream by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/0085Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction promoting uninterrupted fluid flow, e.g. by filtering out particles in front of the catalyst layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0292Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds with stationary packing material in the bed, e.g. bricks, wire rings, baffles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/09Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30257Wire
    • B01J2219/30265Spiral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30296Other shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30408Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30416Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30416Ceramic
    • B01J2219/30425Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30433Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30466Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30475Composition or microstructure of the elements comprising catalytically active material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Definitions

  • the present invention relates to the field of filtration of particulate charged fluids.
  • the invention applies to all industrial processes such as chemical, petrochemical, agri-food or biological processes.
  • solid inert balls placed above the catalytic bed or on a distribution plate, can be used for the purpose of redistributing the charge flow in order to avoid the creation of preferential circuits, sources of hot spots and coking in the catalytic bed.
  • These inert balls are capable of withstanding the extreme temperature and pressure conditions of industrial processes and usually consist of silica and alumina.
  • the solid particles contained therein can accumulate in the free interstitial zones situated between the balls, these being able to be arranged in several layers according to a gradient of sizes.
  • impurities contained in the load can accumulate in the free interstices or be retained by the surface roughness of the elements.
  • These elements can also be used in applications other than fixed-bed catalytic reactors, such as in high-temperature filtration installations aimed at separating solid and / or liquid particles from hot gases. Even if they are sometimes called "filtering", these different elements are not in the sense of the invention because their retention capacity depends on the arrangement of elements between them and not their own geometries. The retention of particles by these elements therefore remains weak and uncertain.
  • GB patent 2 1 16 445 proposes to use Rashig ring-type packing pieces, PaIl rings or tile-shaped pieces having a total vacuum exceeding 50% and a minimum dimension of 5mm.
  • This filtration medium is used in combination with a conventional granular medium of sand bed type, gravel or anthracite calibrated.
  • the elements can not ensure a systematic retention of the particles. Again, the accumulation of particles can be achieved only in the interstices free inter elements and / or in the asperities.
  • the Applicant has found that a hollow element, arranged in the manner of a spring, has a real ability to retain the particles contained in a fluid while maintaining the circulation of said fluid in the entire chamber or within the device that contains it.
  • the present invention intends to overcome the disadvantages of the prior art by proposing the use of hollow elements having contiguous and / or non-contiguous turns for the filtration of particles-laden fluids.
  • US Patent 3,584,685 discloses a tubular filter element supported by a support plate. This filter element is formed of a helical thread attached to the rods attached to the plate perpendicular to the latter, it is secured to the plate, its axis being perpendicular to the surface of the plate.
  • the filter element is integral with the tray, and it is not at any time considered another use of this element, including a "bulk” use in a filter bed.
  • the invention relates to the use in a fixed catalytic bed reactor, for the filtration of one or more particles-laden fluids, of at least one hollow element obtained by the winding in contiguous and / or non-contiguous turns of at least one wire of section (s), said hollow element having at least one closed end and a ratio of free surface (Siibre) on surface occupied by the wire (Sm) of between 2 and 50%, preferably between 5 and 30 %, more preferably between 15 and 25%, wherein said at least one hollow element is placed upstream of the fixed catalyst bed of the reactor.
  • surface occupied by the wire is meant the area occupied by the wire when the hollow element is developed, over its entire periphery, on a plane disposed perpendicularly to the winding axis of its turns, the free surface (Subre) then corresponding to the surface not occupied by the wire on this projection.
  • the area occupied by the wire [Sm) is the surface of the yarn projected on a surface surrounding the outside of the hollow element in question, this surface being then opened and "flattened” on a plane to allow the measurement, the free surface (Subre) then corresponding to the surface not occupied by the projection of the wire.
  • the hollow element is obtained by the winding in contiguous and / or non-contiguous turns of a single wire.
  • the winding of a hollow element according to the invention can be similar to that of a spring, it is possible to give it any geometry, for example cylindrical, spherical, barrel, amphora, conical, oblong, square, polygonal and any section for example round, square, rectangular, triangular, oval ...
  • the filter element is a cylinder or a sphere, this sphere can be perfect or slightly deformed depending on the pitch of the turns of the winding.
  • the filter element has two ends, which can be closed and / or open.
  • the filter element has an open end and a closed end.
  • It may also comprise two closed ends, the wire then being wound in non-contiguous turns.
  • the closed end of the element can be obtained by a winding contiguous turns of the wire section (s) in a flat winding or in a narrowing, preferably conical type.
  • the element can also be obstructed at one of its ends at least by any other styling element, flat or volume, of any geometry and suitable material.
  • the filter element is made of any material able to withstand the extreme conditions of pressure, temperature and corrosion of industrial processes, such as metallic materials (steel, stainless steel, bronze, beryllium bronze ...), alloys (" Monel “,” Inconel “%), ceramic, plastic (polypropylene, PVDF, C-PVC, PFA, ETFE, ECTFE, PTFE %), composites, graphite, glass.
  • the hollow element is made of stainless steel or steel.
  • the filter element can be constituted, over its entire height, non-contiguous turns constant or variable pitch, or contiguous turns or a combination of contiguous and non-contiguous turns.
  • the filtering element comprises an open end followed by an inlet zone Z1 of the fluid consisting of non-contiguous turns of pitch P1, followed by a filtration zone Z2 of the fluid, consisting of non-contiguous turns of pitch P2. ⁇ P1, which zone is extended by a closed end of the element.
  • the open end, the inlet zone and the filtration zone may follow one another directly or be spaced from each other by at least one contiguous turn.
  • the ratio P 1 / P2 of the pitch of the non-contiguous turns is such that P l / P2 ⁇ 50, more preferably P1 / P2 ⁇ 15.
  • the filtering element is preferably designed to filter particles whose size is between 1 .mu.m and 20mm. It should be noted that, by the expression “included (e) between a value X and a Y value ", in the sense of the present invention, unless otherwise indicated, an interval in which the terminals X and Y are included.
  • the invention relates to the use for filtration of at least one hollow element obtained by a helical winding of a wire section (s).
  • the filtration is carried out by means of a filtration bed comprising at least one layer of said elements.
  • the hollow filter elements are preferably identical to each other in shape and dimensions.
  • Said hollow filter elements may be used alone or in combination with other elements of different shapes and / or dimensions and / or functions.
  • Said elements associated with the filter elements may be packing elements and / or inert elements, such as inert balls and / or porous ceramic elements and / or catalyst particles.
  • the filtration bed comprises several layers, these are preferably organized along a gradient of size of the filter elements and more particularly from the upstream of the reactor downstream, according to a decreasing gradient.
  • the use for filtration of the hollow elements can be applied to any industrial process in which it is necessary to purify a fluid charge.
  • these hollow elements can be used in a fixed catalytic bed reactor, in particular for hydrotrairy reactions, preferably in the field of refining (for example in diiydrodesulfurization reactors). They can also be used for the treatment of wastewater or agri-food liquids.
  • Figures 1 to 4 show embodiments of filter elements according to the invention. Each element is shown seen from the side and seen from above. The element shown in FIG. 4 is furthermore shown in cross section. Figures 5 to 15 show inert elements seen from above and in longitudinal section. The dimensions of these elements in millimeters are shown in the figures.
  • FIGS. 1 to 4 the side view makes it possible to see each element as a whole and more particularly the cylindrical or spherical geometry.
  • the view from above gives access to the open and closed ends of the elements as well as non-limiting variants.
  • FIG. 1 represents an element A: this element is cylindrical, with non-contiguous turns of pitch PA and has an open end F1 and a closed end F2 obtained by conical shrinkage of contiguous turns of the main geometry.
  • FIG. 2 represents an element B: this element is spherical, with contiguous turns of pitch PB and has two closed ends F1 and F2.
  • FIG. 3a represents an element C: this element is spherical, with contiguous turns of pitch PC and has an open end F1 and a closed end F2.
  • FIG. 3b represents an element C: this element is also spherical, but with non-contiguous turns of pitch PC. It also has an open end Fl and a closed end F2.
  • FIG. 4 represents an element D: this element is cylindrical, with non-contiguous turns of pitch PD 1 on the zone Z 1 of fluid inlet and PD 2 on zone Z 2 of filtration of the fluid.
  • the element comprises an open end Fl linked to Z1 and a closed end F2 linked to Z2 and obtained by conical narrowing with contiguous turns of the main geometry.
  • the open end Fl contains a return Ra of the section wire (s) in a concentric circle (FIG. 4a) or performs a radial return Rb (FIG. 4b) whose length is, preferably between 1/3 and 2/3 of the diameter of the cylinder.
  • Version D corresponds to the optimal version chosen to carry out the filtration tests whose results are presented in the examples.
  • filter elements may differ from each other (from one version to another or in the same category) by variation of one or more parameters:
  • FIGS. 5 to 15 show the different geometries of the inerts tested in the example in comparison with the filter element of optimal geometry according to version D. These inerts are spherical or cylindrical, solid or crossed by circular, oval or triangular, with or without surface roughness.
  • the filter elements can be used in any industrial process requiring the purification of a fluid charge containing particles.
  • the hollow elements are obtained by winding in turns of a single wire F of section (s). Each element has two ends F 1, F 2 located opposite each other along the winding axis of the turns.
  • FIG. 3b is a variant with non-contiguous turns of the spherical geometry represented in FIG. 3a, in fact the geometry of the element is no longer a perfect sphere but an elongated sphere in the direction of the winding axis. turns.
  • the filter elements can be inserted, as a single filtration bed, into a physical treatment reactor whose function is to purify, by filtration, a fluid loaded with particles.
  • the filter elements may be used alone or in combination with other elements of shapes and / or dimensions and / or different functions.
  • the purified fluid can then be loaded into a reactor at mono or poly-phasic operation in which will take place the desired chemical transformation.
  • the filtering elements may be inserted, alone or as a mixture, instead of inert balls, and / or on a distribution plate located upstream of the catalytic bed and on which chimneys may rest.
  • the filter elements may, depending on the applications, differ from one another by variation of one or more parameters.
  • Table 1 groups together the preferred parameters of the cylindrical and spherical geometries of these filter elements for application in a fixed catalytic bed reactor employed, for example, in the field of refining for hydrotreatment reactions.
  • the bulk loading tests of the filter elements by the top of the reactor show that the cylindrical geometry is best suited to obtain an efficient filtration bed.
  • the cylindrical filter elements always have openings, thus promoting the good circulation of the fluid and therefore its filtration.
  • the filter elements Once clogged by the accumulated particles, the filter elements continue to be active by ensuring the homogeneous dispersion of the purified fluid, a role usually played by the inert balls.
  • the interstices between the filter elements are themselves clogged, it is easy to remove, clean or replace the elements whose manufacturing cost is low.
  • the filter elements according to the invention presented in Table 1 each have a closed end and an open end.
  • the Applicant has endeavored to evaluate and compare the filtering power of the elements formed by a helical winding according to the invention.
  • References 1 and 2 are solid spheres having a diameter of 12.7 mm (1/2 ") and 3.175 mm (1/8") respectively.
  • References 3 to 13 correspond to the elements shown in Figures 5 to 15 respectively.
  • the filter element according to the invention (element D) used in these tests is defined by the following parameters: Total height of the element: 23 mm - 22% ⁇ Siibre / Sm ⁇ 23% - Pl / P2 ⁇ 5
  • Cylinder 20 mm high consisting of an open end followed by 3 contiguous turns, themselves followed by a Zl zone consisting of 2 non-contiguous turns at a constant pitch of 3 mm, said zone Z1 being followed by a zone Z2 consisting of non-contiguous turns at constant pitch PD2 of 1 mm over a height of 8 mm, said zone Z2 being followed by a conical closed end with contiguous turns over a height of 3 mm.
  • Stainless steel wire 321 with a circular section of 0.8 mm in diameter.
  • the tests consisted in evaluating the retention capacity of a filtration bed consisting of a certain reference of filtering elements.
  • the elements of the same reference were thus loaded in bulk to form a filter bed column 60cm in height and 10cm in diameter.
  • each of the beds made up of one of the 14 references was weighed empty and subjected, for 2 hours, to a flow of liquid (120L / h of water) loaded with clogging particles (2kg solid particles with a particle size ranging from 10 ⁇ m to 400 ⁇ m) and a gas flow rate (2.5 m 3 / h of air).
  • the elements charged with particles constituting the filter beds were dried in an oven at 120 ° C. for 24 hours and then weighed.
  • Table 2 summarizes the results of this first series and reveals the overall filtration capacity of a filtration bed consisting of the same category of elements. These tests highlight the very low filtration capacity of the majority of the elements tested: 86% of the filter beds retain less than 3% of particles. The two best-performing filtration beds retain respectively a little more than 7% of particles for the filter bed consisting of the elements bearing the reference No. 12 and a little more than 5% for the filter bed constituted by elements bearing the reference No. 14 (filter element D according to the invention).
  • the observation with the naked eye of the elements D according to the invention shows that the particles accumulate inside the elements until saturation thereof.
  • the two filtration beds constituted by the most efficient filtration elements (references N ° 12 and N ° 14) revealed by the series 1 of tests were subjected, continuously, to 3 successive passages. , each of 2 hours, of the liquid loaded with clogging particles under a flow of gas (ie 3 times 120L / h of water charged with 2 kg of solid particles having a particle size ranging from 10 to 400 ⁇ m under an air flow rate of 2.5 m 3 / h). Between each pass, the elements tested were neither cleaned nor replaced.
  • the asperities on the surface of elements N ° 12 make it possible to capture particles, but are quickly saturated and do not allow the capture of a large volume of particles. Unlike the hollow elements formed of a helical winding, the other elements are inefficient, so they can not be qualified as filters within the meaning of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Fluid Mechanics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

L'invention concerne l'utilisation pour la filtration d'un ou plusieurs fluides chargés en particules d'au moins un élément creux obtenu par l'enroulement en spires jointives et/ou non jointives d'un fil (F) de section (s), ledit élément creux comportant au moins une extrémité fermée et un rapport surface libre (Slibre) sur surface occupée par le fil (Sfil) compris entre 2 et 50%.

Description

UTILISATION POUR LA FILTRATION D'ELEMENTS CREUX FORMES D'UN ENROULEMENT DE TYPE HELICOÏDAL
DOMAINE TECHNIQUE
La présente invention concerne le domaine de la filtration de fluides chargés en particules. Au sens de la présente invention, on entend par le terme « fluide », les liquides et gaz et par le terme « particule », les particules solides et liquides. L'invention s'applique à tous les procédés industriels tels que les procédés chimiques , pétrochimiques , agroalimentaires ou biologiques.
ETAT DE LA TECHNIQUE ANTERIEURE
Dans le domaine des procédés industriels, il existe de nombreux éléments, poreux ou non, destinés à améliorer la diffusion de fluides.
Ainsi, dans les réacteurs catalytiques à lit fixe, des billes inertes pleines, placées au dessus du lit catalytique ou sur un plateau de distribution, peuvent être utilisées dans le but de redistribuer le flux de charge afin d'éviter la création de circuits préférentiels, sources de points chauds et de cokage dans le lit catalytique. Ces billes inertes sont capables de résister aux conditions extrêmes de température et de pression des procédés industriels et sont habituellement constituées de silice et d'alumine. Cependant, il apparaît, qu'au cours de la circulation du fluide liquide , les particules solides contenues dans celui-ci peuvent s'accumuler dans les zones interstitielles libres situées entre les billes, celles-ci pouvant être disposées en plusieurs couches selon un gradient de tailles. Cette rétention des particules sur les inertes ne peut être qualifiée de « filtration » au sens de l'invention, dans la mesure où elle résulte de l'agencement des billes dans le réacteur et non de leurs géométries propres. Parallèlement à ces billes inertes et en fonction des applications, d'autres éléments à base de céramique, carbonate de calcium, quartz ou encore verre peuvent être utilisés. Ces éléments, pleins ou creux, peuvent se présenter sous diverses géométries telles que, par exemple, des cylindres pleins, roues à quatre ou sept rayons, cylindres étoiles, sphères à 1 ou 5 canaux traversants, prismes... Leurs dimensions peuvent s'échelonner de quelques millimètres à près de 100 mm. De la même façon que pour les billes inertes, les impuretés contenues dans la charge peuvent s'accumuler dans les interstices libres ou être retenues par les aspérités de surface des éléments. Ces éléments peuvent également être utilisés dans des applications autres que les réacteurs catalytiques à lit fixe, comme par exemple dans les installations de filtration à haute température visant la séparation des particules solides et/ ou liquides des gaz chauds. Même s'ils sont parfois qualifiés de « filtrants », ces différents éléments ne le sont pas au sens de l'invention car leurs capacités de rétention dépendent de l'agencement des éléments entre eux et non de leurs géomé tries propres. La rétention des particules par ces éléments reste donc faible et incertaine.
De plus l'accumulation des particules dans les interstices inter éléments peut conduire au colmatage de ces derniers créant alors des circuits préférentiels sources de points chauds.
En vue d'extraire les solides de liquides, le brevet GB 2 1 16 445 propose d'utiliser des pièces de garniture de type anneaux de Rashig, anneaux de PaIl ou des pièces en forme de tuile ayant un vide total excédant 50% et une dimension minimale de 5mm. Ce milieu de filtration est utilisé en combinaison avec un milieu granuleux conventionnel de type lit de sable, de gravier ou d'anthracite calibrés. Cependant il ressort que, par leur géométrie ouverte, les éléments ne peuvent assurer une rétention systématique des particules. A nouveau, l'accumulation des particules ne peut se réaliser que dans les interstices libres inter éléments et/ou dans les aspérités.
Au regard des inconvénients de l'art antérieur, il apparaît comme essentiel de concevoir des éléments spécialement adaptés et dédiés à la filtration de fluides chargés en particules. De manière étonnante, la Demanderesse a constaté qu'un élément creux, agencé à la manière d'un ressort, présente une réelle capacité à retenir les particules contenues dans un fluide tout en maintenant la circulation dudit fluide dans la totalité de l'enceinte ou au sein du dispositif qui le contient. A ce titre, la présente invention entend remédier aux inconvénients de l'art antérieur en proposant d'utiliser des éléments creux comportant des spires jointives et/ou non jointives pour la filtration de fluides chargées en particules.
Le brevet US 3 584 685 décrit un élément de filtration tubulaire supporté par un plateau support. Cet élément de filtration est formé d'un fil hélicoïdal fixé à des tiges fixées au plateau perpendiculairement à ce dernier, il est donc solidaire du plateau, son axe étant perpendiculaire à la surface du plateau.
Toutefois, dans ce document, l'élément de filtration est solidaire du plateau, et il n'est à aucun moment envisagé une autre utilisation de cet élément, notamment une utilisation « en vrac » dans un lit de filtration.
DESCRIPTION DE L'INVENTION
L'invention concerne l'utilisation dans un réacteur à lit catalytique fixe, pour la filtration d'un ou plusieurs fluides chargés en particules, d'au moins un élément creux obtenu par l'enroulement en spires jointives et/ou non jointives d'au moins un fil de section (s), ledit élément creux comportant au moins une extrémité fermée et un rapport surface libre (Siibre) sur surface occupée par le fil (Sm) compris entre 2 et 50%, de préférence compris entre 5 et 30%, de préférence encore compris entre 15 et 25%, dans laquelle ledit au moins un élément creux est placé en amont du lit catalytique fixe du réacteur.
Par surface occupée par le fil (SRI) , on entend la surface occupée par le fil lorsque l'élément creux est développé, sur toute sa périphérie, sur un plan disposé perpendiculairement à l'axe d'enroulement de ses spires, la surface libre (Subre) correspondant alors à la surface non occupée par le fil sur cette projection. A savoir, la surface occupée par le fil [Sm) est la surface du fil projeté sur une surface enveloppant l'extérieur de l'élément creux concerné, cette surface étant ensuite ouverte et « aplatie » sur un plan pour permettre la mesure, la surface libre (Subre) correspondant alors à la surface non occupée par la projection du fil.
De préférence l'élément creux est obtenu par l'enroulement en spires jointives et/ou non jointives d'un fil unique. L'enroulement d'un élément creux selon l'invention pouvant s'apparenter à celui d'un ressort, il est possible de lui donner toute géométrie, par exemple cylindrique, sphérique, tonneau, amphore, conique, oblong, carré, polygonaux et toute section par exemple ronde, carrée, rectangulaire, triangulaire, ovale... De préférence, l'élément filtrant est un cylindre ou une sphère, cette sphère pouvant être parfaite ou légèrement déformée en fonction du pas des spires de l'enroulement. Quelque soit sa géométrie, l'élément filtrant comporte deux extrémités, lesquelles peuvent être fermées et/ou ouvertes. De préférence, l'élément filtrant comporte une extrémité ouverte et une extrémité fermée.
Il peut également comporter deux extrémités fermées, le fil étant alors enroulé en spires non jointives.
L'extrémité fermée de l'élément peut être obtenue par un enroulement à spires jointives du fil de section (s) selon un enroulement plat ou selon un rétrécissement, de préférence de type conique. L'élément peut également être obstrué à l'une de ses extrémités au moins par tout autre élément coiffant, plat ou en volume, de toute géométrie et matériau adéquat.
L'élément filtrant est réalisé en tout matériau capable de résister aux conditions extrêmes de pression, de température et de corrosion des procédés industriels, tels que les matériaux métalliques (acier, acier inoxydable, bronze, bronze béryllium ...), alliages (« Monel », « Inconel »...), céramique, plastique (polypropylène, PVDF, C-PVC, PFA, ETFE, ECTFE, PTFE...), composites, graphite, verre. De préférence, l'élément creux est en acier inoxydable ou acier.
Quelque soit sa géométrie, l'élément filtrant peut être constitué, sur toute sa hauteur, de spires non jointives à pas constant ou variable, ou de spires jointives ou encore d'une association de spires jointives et non jointives. De préférence, l'élément filtrant comporte une extrémité ouverte suivie d'une zone d'entrée Zl du fluide constituée de spires non jointives de pas Pl, suivie d'une zone de filtration Z2 du fluide, constituée de spires non jointives de pas P2<P1, laquelle zone se prolonge par une extrémité fermée de l'élément. L'extrémité ouverte, la zone d'entrée et la zone de filtration peuvent se succéder directement ou bien être distantes l'une de l'autre par au moins une spire jointive. De préférence, le rapport P 1 / P2 des pas des spires non jointives est tel que P l / P2<50, de préférence encore Pl /P2< 15.
Bien que pouvant être dimensionné à volonté, en fonction du domaine d'application, l'élément filtrant est de préférence conçu pour filtrer des particules dont la taille est comprise entre lμm et 20mm. Il est à noter que, par l'expression « compris(e) entre une valeur X et une valeur Y », on entend au sens de la présente invention, sauf indication contraire, un intervalle dans lequel les bornes X et Y sont incluses.
Comme explicité précédemment, l'invention se rapporte à l'utilisation pour la filtration d'au moins un élément creux obtenu par un enroulement hélicoïdal d'un fil de section (s). Avantageusement, la filtration est réalisée au moyen d'un lit de filtration comportant au moins une couche desdits éléments.
Dans une même couche du lit de filtration, les éléments creux filtrants sont, de préférence, identiques entre eux en forme et dimensions. Lesdits éléments creux filtrants peuvent être utilisés seuls ou en association avec d'autres éléments de formes et/ou dimensions et/ou fonctions différentes. Lesdits éléments associés aux éléments filtrants peuvent être des éléments de garnissage et/ ou des éléments inertes, telles que les billes inertes et/ ou des éléments céramiques poreux et/ ou des particules de catalyseur.
Lorsque le lit de filtration comporte plusieurs couches, celles-ci sont, de préférence, organisées suivant un gradient de taille des éléments filtrants et plus particulièrement de l'amont du réacteur vers l'aval, suivant un gradient décroissant. L'utilisation pour la filtration des éléments creux peut s'appliquer à tout procédé industriel dans lequel il est nécessaire d'épurer une charge fluide.
Ainsi, ces éléments creux peuvent être utilisés dans un réacteur à lit catalytique fixe, en particulier pour des réactions d 'hydrotraite ment, de préférence dans le domaine du raffinage (par exemple dans les réacteurs diiydrodésulfuration). Ils peuvent également être utilisés pour le traitement des eaux usées ou de liquides agroalimentaires.
FIGURES
Les figures ci-après ne présentent aucun caractère limitatif. Les figures 1 à 4 représentent des exemples de réalisation d'éléments filtrants selon l'invention. Chaque élément est représenté vu de côté et vu de dessus. L'élément représenté figure 4 est en outre représenté en coupe transversale. Les figures 5 à 15 représentent des éléments inertes vus de dessus et en coupe longitudinale. Les dimensions de ces éléments en millimètres sont reportées sur les figures.
Sur les figures 1 à 4, la vue de côté permet de voir chaque élément dans son ensemble et plus particulièrement la géométrie cylindrique ou sphérique. La vue de dessus donne accès aux extrémités ouvertes et fermées des éléments ainsi qu'aux variantes non limitatives.
La figure 1 représente un élément A : cet élément est cylindrique, à spires non jointives de pas PA et comporte une extrémité ouverte Fl et une extrémité fermée F2 obtenue par rétrécissement conique de type spires jointives de la géométrie principale.
La figure 2 représente un élément B : cet élément est sphérique, à spires jointives de pas PB et comporte deux extrémités fermées Fl et F2.
La figure 3a représente un élément C : cet élément est sphérique, à spires jointives de pas PC et comporte une extrémité ouverte Fl et une extrémité fermée F2.
La figure 3b représente un élément C : cet élément est également sphérique, mais à spires non jointives de pas PC. Il comporte aussi une extrémité ouverte Fl et une extrémité fermée F2. La figure 4 représente un élément D : cet élément est cylindrique, à spires non jointives de pas PD l sur la zone Zl d'entrée du fluide et PD2 sur la zone Z2 de fîltration du fluide. L'élément comporte une extrémité ouverte Fl liée à Zl et une extrémité fermée F2 liée à Z2 et obtenue par rétrécissement conique à spires jointives de la géométrie principale. Dans les variantes représentées sur les figures 4a et 4b, l'extrémité ouverte Fl contient un retour Ra du fil de section (s) en cercle concentrique (figure 4a) ou bien effectue un retour Rb radial (figure 4b) dont la longueur est, de préférence, comprise entre 1/3 et 2/3 du diamètre du cylindre. La version D correspond à la version optimale retenue pour effectuer les essais de filtration dont les résultats sont présentés dans les exemples.
Il est à noter que ces éléments filtrants peuvent différer les uns des autres (d'une version à l'autre ou dans une même catégorie) par variation d'un ou plusieurs paramètres :
Hauteur totale de l'élément ; Surface occupée (Sm) par le fil et Surface libre (Subre) de l'élément, dans le rapport Subre/Sm précédemment défini ;
Configuration ouverte ou fermée des extrémités et géométries associées ; - Diamètre intérieur Di de l'élément ;
Configurations jointives ou non jointives des spires (pas) et leurs répartitions sur toute la hauteur de l'élément ;
Matériau du fil et géométrie, dimensions de sa section (s); Densité de l'élément.
Les figures 5 à 15 présentent les différentes géométries des inertes testés dans l'exemple en comparaison avec l'élément filtrant de géométrie optimale selon la version D. Ces inertes sont sphériques ou cylindriques, pleins ou traversés par des canaux à section circulaire, ovale ou triangulaire, avec ou sans aspérités en surface.
DESCRIPTION DETAILLEE DE L'INVENTION
Conformément à l'invention, les éléments filtrants peuvent être utilisés dans tout procédé industriel, nécessitant d'épurer une charge fluide contenant des particules. Dans les exemples représentés sur les figures 1 à 4, les éléments creux sont obtenus par l'enroulement en spires d'un fil unique F de section (s) . Chaque élément présente deux extrémités Fl , F2 situées à l'opposé l'une de l'autre suivant l'axe d'enroulement des spires.
L'exemple représenté figure 3b est une variante à spires non jointives de la géométrie sphérique représentée figure 3a, de fait la géométrie de l'élément n'est plus une sphère parfaite mais une sphère allongée dans la direction de l'axe d'enroulement des spires.
Ainsi les éléments filtrants peuvent être insérés, comme lit de filtration simple, dans un réacteur de traitement physique ayant pour fonction d'épurer, par filtration, un fluide chargé en particules. Comme explicité précédemment, les éléments filtrants peuvent être utilisés seuls ou en mélange avec d'autres éléments de formes et/ou dimensions et/ou fonctions différentes. Dans une unité de fabrication chimique ou para- chimique, le fluide épuré peut ensuite être chargé dans un réacteur à fonctionnement mono ou poly phasique dans lequel s'opérera la transformation chimique souhaitée.
Dans un réacteur à lit catalytique fixe, les éléments filtrants peuvent être insérés, seuls ou en mélange, en lieu et place des billes inertes, et/ ou sur un plateau de distribution situé en amont du lit catalytique et sur lequel peuvent reposer des cheminées.
Comme décrit précédemment, les éléments filtrants peuvent, en fonction des applications, différer les uns des autres par variation d'un ou plusieurs paramètres. Le tableau 1 regroupe les paramètres préférés des géométries cylindriques et sphériques de ces éléments filtrants pour une application dans un réacteur à lit catalytique fixe employé, par exemple, dans le domaine du raffinage pour des réactions d'hydrotraitement. Dans cette application, les essais de chargement en vrac des éléments filtrants par le sommet du réacteur montrent que la géométrie cylindrique est la mieux adaptée pour obtenir un lit de filtration efficace. En effet, quelque soit leurs positionnements après chargement, les éléments filtrants cylindriques présentent toujours des ouvertures, favorisant ainsi la bonne circulation du fluide et donc sa filtration. Une fois colmatés par les particules accumulées, les éléments filtrants continuent à être actifs en assurant la dispersion homogène du fluide épuré, rôle habituellement assuré par les billes inertes. Enfin, lorsque les interstices entre les éléments filtrants sont eux-mêmes colmatés , il est facile d'enlever, nettoyer ou remplacer les éléments dont le coût de fabrication est faible.
Les éléments filtrants selon l'invention présentés dans le tableau 1 présentent chacun une extrémité fermée et une extrémité ouverte.
TABLEAU 1
Figure imgf000011_0001
EXEMPLES
Les exemples présentés ci-après ont pour objectif d'illustrer les avantages de l'invention.
La demanderesse s'est attachée à évaluer et comparer le pouvoir filtrant des éléments formés d'un enroulement hélicoïdal selon l'invention.
Les essais ont été réalisés sur 13 références d'éléments comparatifs habituellement utilisés pour la filtration (cf. figures 5 à 15) en comparaison avec un élément D selon l'invention formé d'un enroulement hélicoïdal cylindrique creux fermé à une extrémité et ouvert à l'autre (cf. figure 4 - version D à ouverture simple). A l'exception de la référence N°4, aucune autre référence n'a d'activité catalytique.
Les références 1 et 2 sont des sphères pleines présentant un diamètre de 12,7 mm (1/2") et 3, 175 mm (1 /8") respectivement.
Les références 3 à 13 correspondent aux éléments représentés sur les figures 5 à 15 respectivement.
L'élément filtrant selon l'invention (élément D) utilisé dans ces essais est défini par les paramètres suivants : Hauteur totale de l'élément : 23 mm - 22% < Siibre/Sm < 23 % - Pl/P2< 5
Diamètre intérieur Di de l'élément : 10 mm Configuration de l'élément :
Cylindre de 20 mm de hauteur constitué d'une extrémité ouverte suivie de 3 spires jointive s, elles mêmes suivies d'une zone Zl constituée de 2 spires non jointives à pas PD l constant de 3 mm, ladite zone Zl étant suivie d'une zone Z2 constituée de spires non jointives à pas PD2 constant de 1 mm sur une hauteur de 8 mm, ladite zone Z2 étant suivie par une extrémité fermée conique à spires jointives sur une hauteur de 3 mm. - Fil en Inox 321 de section circulaire de 0,8 mm de diamètre.
Les essais ont consisté à évaluer le pouvoir de rétention d'un lit de filtration constitué d'une certaine référence d'éléments filtrants. Les éléments d'une même référence ont ainsi été chargés en vrac afin de constituer un lit de filtration sur colonne de 60cm de hauteur et de 10cm de diamètre. Dans la première série d'essais, chacun des lits constitué par l'une des 14 références a été pesé à vide puis soumis, pendant 2 heures, à un débit de liquide (120L/h d'eau) chargé en particules colmatantes (2kg de particules solides de granulométrie variant de 10 μm à 400 μm) et à un débit de gaz (2,5 m3/h d'air). A la fin de chaque essai, les éléments chargés en particules constituant les lits de filtration ont été séchés à l'étuve à 1200C pendant 24 heures puis pesés. Le tableau 2 regroupe les résultats de cette première série et révèle la capacité de filtration globale d'un lit de filtration constitué d'une même catégorie d'éléments. Ces essais mettent en évidence la très faible capacité de filtration de la majorité des éléments testés : 86% des lits de filtration retiennent moins de 3 % de particules. Les deux lits de filtration les plus performants retiennent respectivement un peu plus de 7% de particules pour le lit de filtration constitué des éléments portant la référence N° 12 et un peu plus de 5% pour le lit de filtration constitué des éléments portant la référence N° 14 (élément D filtrant selon l'invention).
L'observation à l'œil nu des éléments D selon l'invention montre que les particules s'accumulent à l'intérieur des éléments jusqu'à saturation de ceux-ci. Dans la seconde série d'essais, les deux lits de filtration constitués des éléments de filtration les plus performants (références N° 12 et N° 14) révélées par la série 1 d'essais ont été soumis, en continu, à 3 passages successifs, de 2 heures chacun, du liquide chargé en particules colmatantes sous débit de gaz (soit 3 fois 120L/h d'eau chargée par 2kg de particules solides de granulométrie variant de 10 à 400 μm sous un débit d'air de 2,5 m3/h). Entre chaque passage, les éléments testés n'étaient ni nettoyés ni remplacés. Les pesées des éléments chargés en particules constituant les lits de filtration ont été effectuées après séchage en étuve (1200C pendant 24 heures). Ces essais cumulés montrent que les éléments creux formés d'un enroulement hélicoïdal selon l'invention ont une capacité de filtration presque double par rapport à celle des éléments N° 12. Les éléments selon l'invention exercent donc une filtration « active » résultant de leur géométrie propre, contrairement aux éléments N° 12 qui saturent plus rapidement. Les résultats de ces essais cumulés montrent que, grâce à leur géométrie adaptée, les éléments selon l'invention filtrent activement le liquide chargé en particules, ces dernières s'accumulant à l'intérieur des éléments jusqu'à les remplir entièrement. Les éléments N° 12 n'exercent qu'une « rétention passive » des particules qui s'accumulent dans les interstices laissés libres entre chaque élément. Les aspérités à la surface des éléments N° 12 permettent de capter des particules, mais sont rapidement saturées et ne permettent pas le captage d'un volume important de particules. Contrairement aux éléments creux formés d'un enroulement hélicoïdal, les autres éléments manquent d'efficacité, ils ne peuvent donc pas être qualifiés de filtrants au sens de l'invention.
TABLEAU 2
Figure imgf000015_0001

Claims

REVENDICATIONS
1. Utilisation dans un réacteur à lit catalytique fixe pour la filtration d'un ou plusieurs fluides chargés en particules d'au moins un élément creux obtenu par l'enroulement en spires jointives et/ou non jointives d'un fil de section (s), ledit élément creux comportant au moins une extrémité fermée et un rapport surface libre (Subre) sur surface occupée par le fil (Sm) compris entre 2 et 50%, dans laquelle ledit au moins un élément creux est placé en amont du lit catalytique fixe du réacteur.
2. Utilisation pour la filtration d'un ou plusieurs fluides chargés en particules d'au moins un élément creux selon la revendication 1, caractérisée en ce que le rapport Subre/Sm est compris entre 5 et 30%, de préférence entre 15 et 25%.
3. Utilisation pour la filtration d'un ou plusieurs fluides chargés en particules d'au moins un élément creux selon l'une des revendications 1 ou 2, caractérisée en ce que ledit élément creux comporte une extrémité ouverte et une extrémité fermée.
4. Utilisation pour la filtration d'un ou plusieurs fluides chargés en particules d'au moins un élément creux selon l'une des revendications 1 à 3, caractérisée en ce que l'élément creux est en forme de cylindre ou de sphère.
5. Utilisation pour la filtration d'un ou plusieurs fluides chargés en particules d'au moins un élément creux selon l'une des revendications 1 à 4, caractérisée en ce que l'extrémité fermée est obtenu par un rétrécissement conique à spires jointives du fil de section (s).
6. Utilisation pour la filtration d'un ou plusieurs fluides chargés en particules d'au moins un élément creux selon l'une des revendications 1 à 4, caractérisée en ce que l'extrémité fermée est plate.
7. Utilisation pour la filtration d'un ou plusieurs fluides chargés en particules d'au moins un élément creux selon l'une des revendications 1 à 6, caractérisée en ce que l'élément creux est constitué d'un matériau métallique, de préférence de l'acier ou de l'acier inoxydable.
8. Utilisation pour la filtration d'un ou plusieurs fluides chargés en particules d'au moins un élément creux selon l'une des revendications 1 à 7, caractérisée en ce que l'élément creux comporte une extrémité ouverte suivie d'une zone d'entrée Zl du fluide constituée de spires non jointives de pas Pl suivie d'une zone de filtration Z2, constituée de spires non jointives de pas P2<P1, qui se prolonge par une extrémité fermée.
9. Utilisation pour la filtration d'un ou plusieurs fluides chargés en particules d'au moins un élément creux selon la revendication 8, caractérisée en ce que les pas Pl et P2 des spires non jointives sont tels que Pl/P2<50, de préférence Pl/P2<15.
10. Utilisation pour la filtration d'un ou plusieurs fluides chargés en particules d'au moins un élément creux selon l'une quelconque des revendications 1 à 9, caractérisée en ce que la taille des particules est comprise entre lμm et 20mm.
1 1. Utilisation pour la filtration d'un ou plusieurs fluides chargés en particules d'au moins un élément creux selon l'une quelconque des revendications 1 à 10, caractérisée en ce que la filtration est réalisée au moyen d'un lit de filtration comportant au moins une couche d'éléments creux.
12. Utilisation pour la filtration d'un ou plusieurs fluides chargés en particules d'au moins un élément creux selon la revendication 1 1, caractérisée en ce que les éléments creux d'une même couche du lit de filtration sont identiques entre eux.
13. Utilisation pour la filtration d'un ou plusieurs fluides chargés en particules d'au moins un élément creux selon l'une quelconque des revendications 1 à 12, caractérisée en ce que la filtration est réalisée au moyen d'un lit de filtration comportant plusieurs couches d'éléments creux organisées selon un gradient de taille d'éléments creux.
14. Utilisation pour la filtration d'un ou plusieurs fluides chargés en particules d'au moins un élément creux selon l'une quelconque des revendications l i a 13, caractérisée en ce que les éléments creux d'une même couche du lit de filtration sont utilisés seuls ou en association avec d'autres éléments, de préférence des particules de catalyseur.
15. Utilisation pour la filtration d'un ou plusieurs fluides chargés en particules d'au moins un élément creux selon l'une des réactions précédentes pour des réactions d'hydrotraitement.
PCT/FR2009/050966 2008-06-23 2009-05-26 Utilisation pour la filtration d'éléments creux formés d'un enroulement de type hélicoïdal WO2010007264A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/000,995 US20110147319A1 (en) 2008-06-23 2009-05-26 Use, for filtration, of hollow elements formed from a helical winding
EP09797566A EP2307128A1 (fr) 2008-06-23 2009-05-26 Utilisation pour la filtration d'éléments creux formés d'un enroulement de type hélicoïdal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0803490 2008-06-23
FR0803490A FR2932700B1 (fr) 2008-06-23 2008-06-23 Utilisation pour la filtration d'elements creux formes d'un enroulement de type helicoidal.

Publications (1)

Publication Number Publication Date
WO2010007264A1 true WO2010007264A1 (fr) 2010-01-21

Family

ID=40278923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/050966 WO2010007264A1 (fr) 2008-06-23 2009-05-26 Utilisation pour la filtration d'éléments creux formés d'un enroulement de type hélicoïdal

Country Status (4)

Country Link
US (1) US20110147319A1 (fr)
EP (1) EP2307128A1 (fr)
FR (1) FR2932700B1 (fr)
WO (1) WO2010007264A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014209396A1 (de) * 2014-05-19 2015-11-19 Klaus-Jürgen Althoff Fluidisierungsvorrichtung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2969587B1 (fr) * 2010-12-27 2013-01-04 Total Raffinage Marketing Dispositif allege de chargement de particules solides
US9180389B2 (en) 2013-11-26 2015-11-10 Shenzhen China Star Optoelectronics Technology Co., Ltd Filter
CN103585811B (zh) * 2013-11-26 2015-05-20 深圳市华星光电技术有限公司 过滤器
CN113102857B (zh) * 2021-05-11 2021-11-26 无锡连枝横科技有限公司 一种真空钎焊设备及其工作方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR582972A (fr) * 1924-06-19 1925-01-03 Matériel de remplissage pour colonnes de réaction et de contact
FR919340A (fr) * 1945-09-07 1947-03-05 Filtres pour liquides
US2974150A (en) * 1959-02-20 1961-03-07 Allied Chem Ethylene oxidation
US3151187A (en) * 1959-04-23 1964-09-29 Alsacienne Constr Meca Fluid filtering system
US3584685A (en) * 1968-12-30 1971-06-15 Universal Oil Prod Co Tubular screen
DE2628237A1 (de) * 1976-06-24 1978-01-05 Gerhard Dipl Ing Dr Ing Kunz Durchflusskoerper in von fluessigkeiten oder gasen durchstroemten raeumen
EP0810019A1 (fr) * 1996-05-31 1997-12-03 Filtrox-Werk AG Bougie filtrante à arêtes pour la filtration à précouche, son procédé de fabrication et pièce d'extrémité pour la bougie filtrante à arêtes pour la filtration à précouche
US20020016494A1 (en) * 2000-07-31 2002-02-07 Yukihiro Yoneda Reaction method by using heterogeneous catalyst and reaction apparatus therefor
BE1015405A3 (nl) * 2003-02-28 2005-03-01 Unislot N V Filterelement.
WO2006127671A2 (fr) * 2005-05-24 2006-11-30 Crystaphase International, Inc. Procede de separation et ensemble pour flux de traitement dans des blocs de separation de composants

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR582972A (fr) * 1924-06-19 1925-01-03 Matériel de remplissage pour colonnes de réaction et de contact
FR919340A (fr) * 1945-09-07 1947-03-05 Filtres pour liquides
US2974150A (en) * 1959-02-20 1961-03-07 Allied Chem Ethylene oxidation
US3151187A (en) * 1959-04-23 1964-09-29 Alsacienne Constr Meca Fluid filtering system
US3584685A (en) * 1968-12-30 1971-06-15 Universal Oil Prod Co Tubular screen
DE2628237A1 (de) * 1976-06-24 1978-01-05 Gerhard Dipl Ing Dr Ing Kunz Durchflusskoerper in von fluessigkeiten oder gasen durchstroemten raeumen
EP0810019A1 (fr) * 1996-05-31 1997-12-03 Filtrox-Werk AG Bougie filtrante à arêtes pour la filtration à précouche, son procédé de fabrication et pièce d'extrémité pour la bougie filtrante à arêtes pour la filtration à précouche
US20020016494A1 (en) * 2000-07-31 2002-02-07 Yukihiro Yoneda Reaction method by using heterogeneous catalyst and reaction apparatus therefor
BE1015405A3 (nl) * 2003-02-28 2005-03-01 Unislot N V Filterelement.
WO2006127671A2 (fr) * 2005-05-24 2006-11-30 Crystaphase International, Inc. Procede de separation et ensemble pour flux de traitement dans des blocs de separation de composants

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014209396A1 (de) * 2014-05-19 2015-11-19 Klaus-Jürgen Althoff Fluidisierungsvorrichtung

Also Published As

Publication number Publication date
FR2932700A1 (fr) 2009-12-25
EP2307128A1 (fr) 2011-04-13
US20110147319A1 (en) 2011-06-23
FR2932700B1 (fr) 2010-08-13

Similar Documents

Publication Publication Date Title
WO2010007265A1 (fr) Dispositif de filtration et de predistribution pour reacteur a lit catalytique fixe et son utilisation
EP2307128A1 (fr) Utilisation pour la filtration d&#39;éléments creux formés d&#39;un enroulement de type hélicoïdal
JP2006501058A (ja) 多層プリーツ支持体を備えたろ材を有するフィルタ要素
US8313709B2 (en) Decontamination of process streams
EP2151277B1 (fr) Réacteur gaz-liquide à écoulement co-courant ascendant avec plateau distributeur
FR2820652A1 (fr) Modules de membranes en fibres creuses, et procede de realisation
WO2016024058A1 (fr) Element de separation par flux tangentiel integrant des obstacles a la circulation et procede de fabrication
EP3302767B1 (fr) Structure colonnaire monobloc de séparation d&#39;un milieu fluide
FR2884443A1 (fr) Reacteur de laboratoire pour l&#39;etude de reactions en phase gaz et liquide
FR2948580A1 (fr) Dispositif de distribution de la charge et de recuperation des effluents dans un reacteur catalytique a lit radial
FR2741822A1 (fr) Element tubulaire inorganique de filtration comportant des canaux de section non circulaire presentant des profils optimises
EP2384809B1 (fr) Réacteur avec paniers amobiles contenant des particules de filtration pour réacteur à lit fixe
FR2559680A1 (fr) Particule catalytique profilee utilisable dans le traitement hydrogenant des huiles de petrole
EP3826760A1 (fr) Dispositif de filtration pour un reacteur a co-courant descendant de fluide
CH641407A5 (fr) Segment de toile metallique, procede pour sa fabrication, et empilement forme de plusieurs segments.
FR2986440A1 (fr) Adsorbeur constitue de plusieurs contacteurs a passage paralleles
FR2656542A1 (fr) Filtre en verre de silice et dispositif de filtrage utilisant un tel filtre.
KR101547886B1 (ko) 교체가 용이한 다층구조의 필터
EP1742722B1 (fr) Membrane avec support a porosite modifiee pour la filtration tangentielle d&#39;un fluide
US20150041412A1 (en) Polyionic Molecular Diffuser and Filter Method
EP0946246A1 (fr) Poche filtrante a haute capacite de retention
EP2361143A1 (fr) Membrane de filtration, presentant une resistance a l&#39;abrasion amelioree
TWI391176B (zh) Water filter
EP2823871A1 (fr) Adsorbeur à lit axial horizontal avec système de compensation du tassement
FR2937261A1 (fr) Filtre au charbon actif preimpregne pour le filtrage de composes organiques volatils

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009797566

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13000995

Country of ref document: US