WO2010006540A1 - 一种资源调度的方法、装置及系统 - Google Patents

一种资源调度的方法、装置及系统 Download PDF

Info

Publication number
WO2010006540A1
WO2010006540A1 PCT/CN2009/072719 CN2009072719W WO2010006540A1 WO 2010006540 A1 WO2010006540 A1 WO 2010006540A1 CN 2009072719 W CN2009072719 W CN 2009072719W WO 2010006540 A1 WO2010006540 A1 WO 2010006540A1
Authority
WO
WIPO (PCT)
Prior art keywords
subchannel
user system
terminal
transmission power
unit
Prior art date
Application number
PCT/CN2009/072719
Other languages
English (en)
French (fr)
Inventor
刘坚能
王锐
吕林军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010006540A1 publication Critical patent/WO2010006540A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, device, and system for resource scheduling. Background technique
  • CR technology refers to a wireless communication technology that includes a smart transceiver that intelligently senses which frequency bands are unoccupied and/or which frequency bands are being used in a wireless network. When an unused frequency band is sensed, Nodes with CR technology can communicate using the perceived unused frequency bands.
  • a system composed of nodes having CR technology is referred to as a CR system.
  • a system composed of users who use licensed bands is referred to as a first user system
  • a centralized CR system is referred to as a second user system
  • a second user system is a system composed of users using unlicensed bands.
  • the terminal or base station of the centralized CR system senses the idle frequency band of the first user system, and the base station makes a centralized decision on the perceived result, that is, the base station performs a comprehensive judgment on the perceived result reported by all users, or the result perceived by itself.
  • the scheduling module schedules the frequency band of the terminal.
  • the prior art of the centralized CR system for sensing and scheduling is that the sensing module and the scheduling module are separately designed.
  • the sensing module can be located at the terminal and the base station, and the scheduling module It can be located on the base station.
  • only the sensing module is located on the terminal as an example.
  • the sensing module of the centralized CR system terminal generates sensing information (RSI, Raw Sensing Information) by sensing the first user system, and the sensing module passes Whether the frequency band units (such as subchannels, subcarriers, etc.) that are aware of the idle frequency band are available, thereby obtaining a series of available frequency band units.
  • RSI Sensing Information
  • the scheduling module then performs resource allocation scheduling on the available frequency band units according to channel state (CSI).
  • CSI channel state
  • the disadvantages of the prior art are: The prior art performs resource scheduling, and the RSI is considered to be ideal, that is, the perception module is completely aware, but the RSI may be non-ideal in practice, that is, the perception module is incomplete. Specifically, if the sensing accuracy of the sensing module is high, the sensing and scheduling scheme of the existing centralized CR system has better performance.
  • the sensing accuracy is high: the sensing module senses that a certain frequency band unit of the first user system is unavailable, and, in fact, the frequency band unit is indeed unavailable; or, the sensing module senses that a certain frequency band unit of the first user system is available, Moreover, in fact, this band unit is indeed available. However, if the sensing accuracy of the sensing unit is not high, it may cause some problems. Specifically, if the sensing module senses that a certain frequency band unit of the first user system is unavailable, the scheduling unit obtains a result of the binary decision according to the binary decision.
  • the frequency band unit of the terminal is not scheduled to the frequency band unit, but in fact, the frequency band unit is available, then this causes waste of system resources and reduces spectrum utilization, which is called missed detection. .
  • the scheduling unit obtains a yes result according to the binary decision, that is, it is possible to schedule the frequency band unit of the centralized CR system terminal to the frequency band unit, but actually, the frequency band unit It is not available, which will affect the first user system, and the centralized CR system will also be interfered with. This situation is called false alarm.
  • the prior art only uses the channel state to perform resource scheduling, which not only wastes system resources, reduces spectrum utilization, but also makes the first user system and concentration.
  • the CR systems interfere with each other. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a method, a device and a system for resource scheduling, which are used to solve the problem that the sensing module does not have high sensitivity.
  • a method for resource scheduling comprising:
  • a device for resource scheduling comprising: a receiving unit, configured to receive a sensing information report RSI of the first user system and a channel state CSI of the second user system;
  • a resource scheduling unit configured to perform resource scheduling for the subchannel according to the RSI and the CSI.
  • the embodiment provided by the present invention performs resource scheduling according to the sensing information report RSI of the first user system and the channel state CSI of the second user system, which saves system resources, improves spectrum utilization, and avoids the first user system and the centralized CR.
  • the system interferes with each other.
  • FIG. 1 is a flowchart of a method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a frame structure according to an embodiment of the present invention
  • FIG. 3 is a simulation result of a tolerable level of an average interference of 0 dB in a separate design and an embodiment of the present invention
  • Figure 4 is a simulation result of the tolerable level of the separation design and the embodiment of the present invention with an average interference of -10 dB;
  • FIG. 5 is a structural diagram of a device according to an embodiment of the present invention
  • FIG. 7 is a structural diagram of a device according to an embodiment of the present invention
  • Device structure diagram
  • the embodiment provided by the present invention is to report, according to the collected sensing information of the first user system, a representation sensing result reliability parameter of the RSI acquiring subchannel, according to the representation sensing result reliability parameter and the channel state CSI of the second user system.
  • Resource scheduling for the subchannel, wherein performing resource scheduling on the subchannel may include: selecting a terminal for the subchannel, and determining information such as transmission power or determining a data rate for the selected terminal.
  • Step 101 Receive a sensing information report RSI of the first user system from the terminal and a channel state CSI of the second user system;
  • Step 102 Perform resource scheduling for the subchannel according to the RSI and the CSI.
  • embodiments of the present invention may consider the total throughput of the system, and may also consider user fairness.
  • the central CR system is a second user system
  • the system using the licensed frequency band is a first user system
  • the first user system may be any wireless communication. system.
  • the first user system may be any wireless communication system, for example, a TV user system, a 74 device system. Or other wireless communication system, therefore, the service of the first user system may be a television signal, or may be a burst application service (for example, Internet Protocol voice technology VoIP, Internet browsing or video streaming, etc.), for these bursty services, Not every frame has a data transfer. Therefore, one frequency band unit can be divided into several subchannels, and the first user system can occupy some of the subchannels in a burst manner at a certain time, and the second user system can schedule the idle subchannels to transmit data.
  • a burst application service for example, Internet Protocol voice technology VoIP, Internet browsing or video streaming, etc.
  • the base station of the second user system may schedule the subchannel of the first user system idle to the terminal of the second user system, and second The terminal of the user system can continue to transmit data by using these idle channels, but in practice, the perception of the second user system is often incomplete, and in the process of terminal movement, the probability of missed detection and false alarm is greater. Therefore, it will cause interference to the terminal of the first user system.
  • the method provided by the embodiments of the present invention allows the second user system to try to utilize various opportunities for transmission while maintaining a sufficiently low probability of interference with the first user system.
  • the second user system can support transmission on multiple subcarriers, such as Orthogonal Frequency Division Multiple Access (OFDMA), in the present invention.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the base station performs sensing and scheduling in units of subchannels, and the subchannel is a basic unit formed by binding of several subcarriers.
  • FIG. 2 shows a frame structure for an embodiment of the present invention.
  • a downlink data channel (Downlink Data Channel) is a licensed frequency band of a first user system, and a control channel is specifically designed for a second user system. Designed.
  • the frame structure of the embodiment of the present invention is divided into three time slots, which are:
  • Perceptual time slot The second user system terminal perceives the data channel. Since the perceptual information may be incomplete, the perceptual information capability can be measured by the missed detection probability and the false alarm probability.
  • Control time slot The second user system terminal feeds back the RSI to the base station on the control channel, and the base station broadcasts parameters on the control channel.
  • Transmission time slot Downstream data transmission, where a subchannel can only be assigned to one user at a time, such as Time Division Multiple Access (TDMA) or OFDMA.
  • TDMA Time Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the reliability parameter for characterizing the perceptual result may be a confidence factor, but is not limited to this parameter.
  • a confidence factor is taken as an example for description.
  • the terminal of the second user system senses the RSI of the first user system and the CSI of the second user system, and feeds back the RSI and the CSI to the base station in the control slot, and the base station performs resource scheduling according to the RSI and the CSI.
  • the method includes: the base station calculates a confidence factor of the subchannel according to the RSI, and selects a terminal according to the CSI, and determines a transmission power and a data rate according to the trusted factor for the selected terminal.
  • the method for scheduling the resource is specifically:
  • A1 The terminal of the second user system perceives the subchannel of the first user system. Assuming a centralized CR system, the second user system has K (K is a natural number) terminals, and the first user system has M (M is a natural number) subchannels. In the sensing time slot, K terminals respectively perceive M subchannels.
  • A2 The second user system performs a binary decision on each subchannel for each terminal to determine whether each subchannel is available.
  • each terminal of the second user system feeds back the RSI (including the binary decision result) and the CSI to the base station of the second user system.
  • A4 The base station of the second user system performs resource scheduling for the mth subchannel (abbreviation: subchannel m; where m is any one of 1 to M) according to the received RSI and CSI, including subchannel m selection terminal, and determines the transmission power pA m, m and the data rate rA m, m for the terminal a m choice, specifically:
  • the confidence factor of the subchannel m is obtained according to the RSI fed back by each terminal, and the confidence factor of the subchannel m indicates the degree of confidence that the base station is available for the subchannel m.
  • the confidence factor for the subchannel m can be calculated as follows:
  • m is the complex channel gain of the kth (k is any one of 1 to K) terminals on the subchannel m, H k , m belongs to CSI, and its absolute value is the channel gain.
  • a m indicates that one of the K terminals is selected on the subchannel m, and the selected terminal is denoted as the A m terminal.
  • each subchannel is assigned to a terminal having the largest channel gain.
  • the power distribution uses the principle of total throughput, and the expression is as follows:
  • PAm, m A m are allocated to the terminal on the subchannel power ⁇ 1.
  • V are two constant parameters related to the average power constraint of the second user system, V is related to the average interference constraint of the first user system by the second user system, and V can be calculated offline.
  • the value of the value can change the average transmission power of the second user system, and the value of V can change the average interference of the second user system to the first user system. Is the path loss of the base station of the second user system to the nearest first user system terminal.
  • r ⁇ is the data rate determined for the A m terminal at subchannel m.
  • the subchannel m of the first user system may be allocated. Give the selected terminal A m .
  • the subchannel m is not allocated.
  • A5 The base station of the second user system broadcasts the parameters calculated in step A4 to the terminal of the second user system.
  • the base station of the second user system performs scheduling of downlink transmission.
  • the average power and average interference can be limited to a given level. Moreover, you can also calculate / ⁇ and V offline and form a table. When the second user system is running online, you can search for the appropriate / ⁇ and only a simple lookup table.
  • the first embodiment is proposed considering the total throughput.
  • the present invention is applied from the perspective of scheduling fairness.
  • the second embodiment will be described.
  • the second embodiment is based on the principle of considering the fairness of the centralized CR system.
  • the base station of the second user system performs resource scheduling according to the RSI and the CSI, and may include the following steps:
  • B1 The terminal of the second user system perceives the subchannel of the first user system.
  • the second user system has K (K is a natural number) terminals, and the first user system has M (M is a natural number) subchannels.
  • K terminals perceive M sub-channels.
  • B2 The second user system performs a binary decision on each subchannel for each terminal to determine whether each subchannel is available.
  • each terminal of the second user system feeds back the RSI (including the binary decision result) and the CSI to the base station of the second user system.
  • the base station of the second user system allocates resources for the subchannel m according to the received RSI and CSI, including selecting a terminal for the subchannel m, and determining the transmission power PAm , m and the data rate r Am for the selected terminal A m , m , specifically:
  • the confidence factor of the subchannel m is obtained according to the RSI fed back by each terminal, and the confidence factor of the subchannel m indicates the degree of confidence of the base station for the availability of the subchannel m.
  • the confidence factor for the subchannel m can be calculated as follows:
  • q p is the probability that the subchannel m is occupied by the first user system
  • q m is the missed detection probability of the second user system
  • q f is the false alarm probability of the second user system
  • RSI which is the reporting subchannel Whether m is a collection of terminals available
  • is the potential of the collection.
  • Subchannel allocation terminal 4 k ⁇ ⁇ +v cf Ya In2
  • m is the complex channel gain of the kth (k is any one of 1 to K) terminals on the subchannel m, and H k , m may be CSI, and the absolute value thereof is the channel gain. It is the weight of the kth terminal, which can be dynamically adjusted to ensure the fairness of the scheduling. The larger the value, the higher the priority of the kth terminal, and the smaller the value, the lower the priority of the kth terminal.
  • a m indicates which of the K terminals is selected on the subchannel m, and the selected terminal is denoted as the Am terminal.
  • V are two constant parameters related to the average power constraint of the second user system, V is related to the average interference constraint of the first user system by the second user system, and V can be calculated offline.
  • the adaptation can change the average transmission power of the second user system, and the adaptation of V can change the average interference of the second user system to the first user system. Is the path loss of the base station of the second user system to the nearest first user system terminal.
  • the power distribution is expressed as follows:
  • r Am m is the data rate determined for the A m terminal at subchannel m.
  • step B4 if the transmission power calculated according to the MM terminal and the data rate are greater than or equal to a preset threshold, the selected terminal may be scheduled to the subchannel m of the first user system, and then the process proceeds to step B5. Otherwise, the process ends.
  • B5 The base station of the second user system broadcasts the parameters calculated in step A4 to the terminal of the second user system.
  • B6 The base station of the second user system performs scheduling of downlink transmission.
  • the average power and average interference can be limited to a given level by selecting and V.
  • V can be calculated offline and form into a table.
  • a simple lookup table can be used to search for the appropriate sum.
  • the tolerable interference caused by the system is less than or equal to OdB or -10dB.
  • the simulation results of the tolerance level and respectively show the comparison between the separation design and the method provided by the embodiment of the present invention when the first user system occupancy probability is 0.3 and 0.5.
  • FIG. 4 shows the simulation results of the tolerable level of the separation design and the method provided by the embodiment of the present invention with an average interference of _10 dB, and respectively shows the separation design and the original when the first user system occupancy probability is 0.3 and 0.5. Comparison of the invention. As shown in FIG. 3 and FIG. 4, the performance of the method provided by the embodiment of the present invention is better than that of the separation design. For the resource scheduling, the confidence factor can be used for accurate scheduling and resource allocation, and a larger gain is obtained.
  • FIG. 5 shows the instantaneous interference tracking situation of the separation design and the method provided by the embodiment of the present invention to compare the instantaneous interference caused by the second user system to the first user system.
  • the separation design and the embodiments provided by the present invention all have the same transmission power, and the average transmission power is fixed at 4 dB.
  • the tolerated interference is below OdB, and the first user system occupancy probability is 0.3.
  • the second user system uses the method provided by the embodiment of the present invention, causes 15 accidental interferences to the first user system, and the second user system has 572 accidental interferences to the first user system. .
  • the method provided by the embodiments of the present invention is superior to the method used in the separation design.
  • the simulation examples of the two method embodiments and the first embodiment of the present invention are described above. It can be seen that the embodiment of the present invention takes into account the factor of incomplete perception, and first calculates a pair according to the result of the binary decision.
  • the CSI selects a terminal for the subchannel, and calculates a transmission power and a data rate of the selected terminal according to a confidence factor.
  • a transmission power and a data rate When the calculated transmission power and the data rate are greater than or equal to a preset threshold, it indicates that the selected terminal can be scheduled.
  • the calculated transmission power and the data rate are less than a preset threshold, it indicates that the selected terminal cannot be scheduled. Therefore, in the case of incomplete sensing, the interference to the first user system is reduced, the spectrum utilization rate is improved, and system resources are saved.
  • FIG. 6 it is a schematic diagram of a device for resource scheduling according to an embodiment of the present invention, which may include: a receiving unit 601, configured to receive a sensing information report RSI of a first user system from a terminal, and a channel state of a second user system. CSI ;
  • the resource scheduling unit 602 is configured to perform resource scheduling for the subchannel according to the RSI and the CSI.
  • the resource scheduling unit 602 can include:
  • the calculating unit 602-1 is configured to calculate, according to the RSI, a representation sensing result reliability parameter of the subchannel;
  • the above-mentioned characterization of the perceived result reliability parameter may be a confidence factor, but is not limited to this parameter; the scheduling unit 602-2: the characterization sensing result reliability parameter calculated according to the calculating unit 602-1 and the CSI being a subchannel Perform resource scheduling.
  • the calculating unit 602-1 may include:
  • the parameter obtaining unit 602-1-1 is configured to acquire parameters according to the RSI, and the obtained parameters include: a probability that the subchannel is occupied by the first user system, a missed detection probability of the first user system, and a false alarm of the first user system. Probability, terminal information of whether the collected subchannels are available;
  • the confidence factor calculation unit 602-1-2 calculates the confidence factor based on the parameters acquired by the parameter acquisition unit 602-1-1.
  • the device embodiments of the present invention can be divided into two cases according to both the total throughput of the system and the fairness of the user.
  • the first embodiment is combined with the first embodiment of the method.
  • the total throughput of the system is considered.
  • the scheduling unit 602-2 Can To include:
  • a first subchannel allocation unit 602-2-11 configured to allocate a terminal to the subchannel according to the complex channel gain of the subchannel
  • a first transmission power allocation unit 602-2-12 configured to determine, according to the confidence factor, a complex channel gain of a terminal allocated for the subchannel, and a lower limit of a terminal path loss of a base station of the second user system to the first user system And determining, by the adaptive parameter of the average transmit power and the adaptive parameter of the average interference of the second user system to the first user system, determining the transmission power for the terminal allocated by the subchannel;
  • the first data rate allocating unit 602-2-13 determines the data rate based on the transmission power and the complex channel gain of the terminal allocated for the subchannel.
  • the device can also include:
  • the broadcasting unit 603 is configured to broadcast the terminal information, the transmission power, and the data rate allocated for the subchannel.
  • the offline computing unit 604 is configured to perform offline calculation on the adaptive parameter that changes the average system transmit power and the adaptive parameter of the second user system to the average interference of the first user.
  • the process of resource allocation by each unit is specifically:
  • the parameter obtaining unit of the second user system base station acquires the probability that the subchannel is occupied by the first user system, the missed detection probability of the first user system, the false alarm probability of the first user system, and whether the collected subchannel of the first user system is The set of available terminals and the number of terminals.
  • the confidence factor calculation unit calculates the confidence factor of the subchannel according to the parameter acquired by the parameter acquisition unit by using the following formula. For the subchannel m, the confidence factor is specifically:
  • the first transmission power allocation unit of the base station determines the transmission power for the terminal allocated by the first subchannel allocation unit according to the confidence factor calculated by the confidence factor calculation unit, which is specifically implemented according to the following formula:
  • the first data rate allocating unit of the base station calculates the data rate according to the transmission power obtained by the first transmission power allocating unit by the following formula:
  • the broadcast unit broadcasts the terminal information allocated by the subchannel allocation unit, the transmission power allocated by the first transmission power allocation unit, and the data rate determined by the first data rate unit.
  • the offline calculation unit can calculate the parameters and parameters V offline and form a table.
  • the offline calculation unit can calculate the parameters and parameters V offline and form a table.
  • only one simple lookup table can search for the appropriate 1 and v.
  • the scheduling unit 602-2 may include:
  • the second subchannel allocation unit 602-2-21 is configured to change the average transmission according to the complex channel gain of the terminal on the subchannel, the weight of the terminal, and the lower limit of the terminal path loss of the base station of the second user system to the first user system.
  • An adaptive parameter of the power and an adaptive parameter of the average interference of the second user system to the first user system is the subchannel allocation terminal;
  • a second transmission power allocating unit 602-2-22 configured to determine, according to the confidence factor, a complex channel gain of a terminal allocated for the subchannel, and a weight of a terminal allocated by the subchannel;
  • a second data rate allocating unit 602-2-23 is configured to determine a data rate based on the transmission power and a complex channel gain of a terminal allocated for the subchannel.
  • the device can also include:
  • the broadcasting unit 603 is configured to broadcast terminal information, transmission power, and data rate of the subchannel allocation.
  • the offline calculation unit 604 is configured to perform offline calculation on the adaptive parameter that changes the average system transmit power and the adaptive parameter of the second user system to the average interference of the first user system.
  • the process of resource scheduling by each unit includes:
  • the parameter obtaining unit of the second user system base station acquires the probability that the subchannel is occupied by the first user system, the missed detection probability of the first user system, the false alarm probability of the first user system, and whether the collected subchannel of the first user system is
  • the information of the available terminals and the number of terminals, the confidence factor calculation unit calculates the confidence factor of the subchannel according to the parameters acquired by the parameter acquisition unit, and the subchannel rt is specifically:
  • Base station The weight of the terminal, the complex channel gain of the subchannel m, the lower limit of the path loss of the base station of the second user system to the terminal of the first user system, and V, the subchannel allocation is performed according to the following formula:
  • the second transmission power allocation unit of the base station determines the transmission power for the terminal selected by the second subchannel allocation unit according to the following formula:
  • the second data rate allocating unit of the base station determines the data rate for the terminal selected by the second subchannel allocation unit according to the following formula:
  • the broadcast unit broadcasts the terminal allocated by the subchannel allocation unit, the transmission power allocated by the second transmission power allocation unit, and the data rate determined by the second data rate unit.
  • the offline calculation unit can calculate the parameters and parameters V offline and form a table.
  • a simple lookup table can be used to search for the appropriate V.
  • the terminal selection unit can be based on the collected first user.
  • the CSI of the system calculates the selected terminal, and the transmission parameter unit can determine the transmission power and the data rate for the terminal selected by the terminal selection unit according to the confidence factor calculated by the confidence factor calculation unit, when the calculated transmission power and the data rate are greater than or equal to the advance
  • the threshold is set, it indicates that the selected terminal can be scheduled.
  • the calculated transmission power and the data rate are less than a preset threshold, it indicates that the selected terminal cannot be scheduled.
  • the second user system base station can perform accurate scheduling and greatly reduce interference with the first user system.
  • the present invention also provides a system for resource scheduling, the system comprising a base station, the base station is configured to receive a sensing information report RSI of a first user system from a terminal and a channel state CSI of a second user system, according to the RSI And the CSI performs resource scheduling for the subchannel.
  • the system provided by the present invention can be started from two perspectives of considering the total throughput of the system and the fairness of the user.
  • the first embodiment is the same as the method embodiment of the method, and the method is the same as the method embodiment. For details, refer to the description of the method embodiment 1.
  • the second embodiment is similar to the method embodiment in the second embodiment.
  • the second embodiment is similar to the method embodiment.
  • Resource scheduling is performed for the subchannel according to the above RSI and CSI.
  • the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the system provided by the invention can also implement the precise scheduling of the second user system base station to the terminal by calculating the confidence factor, and greatly reduce the interference to the first user system.
  • the terms “including”, “comprising” or “comprising” or “comprising” are intended to encompass a non-exclusive inclusion, such that a process, method, article, or device that includes a plurality of elements includes not only those elements but also Other elements, or elements that are inherent to such a process, method, item, or device.
  • the phrase “comprising a singular element” does not exclude the presence of the same element in the process, method, item, or device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种资源调度的方法、 装置及系统
本申请要求于 2008 年 7 月 14 日提交中国专利局、 申请号为 200810137949.0、 发明名称为"一种资源调度的方法、 装置及系统"的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域, 尤其涉及一种资源调度的方法、 装置及系统。 背景技术
无线通信技术的发展越来越难满足人们在无线接入领域的需求,为了緩解 这一矛盾, 人们利用新的频段不断开发出新的无线接入技术, 但是, 由于无线 接入技术所使用的天线的尺寸和功率的限制,可以用于无线接入技术的频段非 常有限。 认知无线电(CR, Cognitive Radio )技术的出现, 为解决可用于无线 接入技术的频段非常有限这一问题, 开创了崭新的局面。
CR技术是指包含智能收发器的无线通信技术, 该收发器能够智能感知出 在无线网络中, 哪些频段未被占用和 /或哪些频段正在被使用, 当感知到有未 被使用的频段时,具有 CR技术的节点就可以使用感知到的未被使用的频段进 行通信。
为了便于描述, 将具有 CR技术的节点组成的系统称为 CR系统。 将使用 授权频段的用户组成的系统称为第一用户系统,将集中式 CR系统称为第二用 户系统, 第二用户系统为使用非授权频段的用户组成的系统。 集中式 CR系统的终端或者基站感知第一用户系统的空闲频段,基站对感 知到的结果做出集中式判决, 即基站将所有用户上报的感知结果, 或者, 由自 身感知的结果进行一个综合判决, 并由调度模块对终端的频段进行调度。 集中式 CR系统进行感知和调度的现有技术为,将感知模块和调度模块分 开进行设计, 为描述方便, 将这种现有技术称为分离设计, 感知模块可以位于 终端和基站上, 调度模块可以位于基站上, 在本发明的实施例中, 仅以感知模 块位于终端上为例进行说明。 集中式 CR系统终端的感知模块通过感知第一用 户系统, 生成感知信息 4艮告(RSI, Raw Sensing Information ), 感知模块通过 感知空闲频段的频段单元(如子信道、 子载波等)是否可用, 从而得到一系列 可用的频段单元。 然后调度模块在可用的频段单元上根据信道状态 (CSI, Channel State information )进行资源分配调度。 现有技术的缺点是: 现有技术进行资源调度, 认为 RSI是理想的, 即感知 模块的感知是完全的, 但是, RSI在实际中可能是非理想的, 即感知模块的感 知是不完全的。 具体为: 如果感知模块的感知准确度较高, 那么, 现有集中式 CR系统的感知与调度方案具有较好的性能。 感知准确度较高的情况包括: 感 知模块感知到第一用户系统某频段单元不可用, 而且, 实际上, 该频段单元确 实不可用; 或者, 感知模块感知到第一用户系统某频段单元可用, 而且, 实际 上, 该频段单元确实可用。 但是, 如果感知单元的感知准确度不高, 就会带来 一些问题, 具体为: 感知模块感知到第一用户系统某频段单元不可用, 则调度 单元根据二元判决得到的结果为"否",即不将终端的频段单元调度至该频段单 元, 然而实际上, 该频段单元是可用的, 那么, 这就造成了系统资源的浪费, 降低了频谱利用率,把这种情况称为漏检。如果感知模块感知到某频段单元可 用, 则调度单元根据二元判决得到的结果为"是", 即有可能将集中式 CR系统 终端的频段单元调度至该频段单元, 然而实际上, 该频段单元是不可用的, 这 就会给第一用户系统带来影响, 集中式 CR系统也会受到干扰, 把这种情况称 为虚警。
综上,在感知模块的感知准确度不高的情况下,使用现有技术仅根据信道 状态进行资源调度, 不仅会对系统资源造成浪费, 降低频谱利用率, 还会使第 一用户系统与集中式 CR系统相互干扰。 发明内容
本发明所要解决的技术问题是提供一种资源调度的方法、装置及系统, 用以解决感知模块感知准确度不高的问题。
一种资源调度的方法, 所述方法包括:
接收第一用户系统的感知信息报告 RSI和第二用户系统的信道状态 CSI ; 根据所述 RSI和所述 CSI为子信道进行资源调度。
一种资源调度的装置, 所述装置包括: 接收单元,用于接收第一用户系统的感知信息报告 RSI和第二用户系统的 信道状态 CSI ;
资源调度单元, 用于根据所述 RSI和所述 CSI为子信道进行资源调度。 与现有技术相比, 本发明具有以下优点:
本发明提供的实施例根据第一用户系统的感知信息报告 RSI和第二用户 系统的信道状态 CSI来进行资源调度, 节约了系统资源, 提高了频谱利用率, 避免第一用户系统与集中式 CR系统相互干扰。
附图说明 图 1为本发明实施例方法流程图; 图 2为针对本发明实施例的帧结构示意图; 图 3为分离设计与本发明实施例在平均干扰为 OdB的可容忍水平的仿真 结果;
图 4为分离设计与本发明实施例在平均干扰为 - 10dB的可容忍水平的仿 真结果;
图 5为分离设计与本发明实施例的瞬时干扰跟踪情况; 图 6为本发明实施例的装置结构图; 图 7为本发明实施例一的装置结构图; 图 8为本发明实施例二的装置结构图。 具体实施方式
为使本发明的上述目的、 特征和优点能够更加明显易懂, 下面结合附 图和具体实施方式对本发明作进一步详细的说明。 本发明提供的实施例在于, 根据收集到的第一用户系统的感知信息报告 RSI获取子信道的表征感知结果可靠度参数,根据所述表征感知结果可靠度参 数和第二用户系统的信道状态 CSI为子信道进行资源调度,其中,对子信道进 行资源调度可以包括: 为子信道选择终端, 以及为选择的终端确定传输功率或 确定数据速率等信息。 参考图 1 , 示出了本发明的一种资源调度的方法实施例的流程图, 可以包 括以下步骤:
步骤 101 : 接收来自终端的第一用户系统的感知信息报告 RSI和第二用户 系统的信道状态 CSI ;
步骤 102: 根据所述 RSI和所述 CSI为子信道进行资源调度。
下面结合实施例对图 1各步进行详细说明。根据不同的设计原则, 本发明 实施例可以考虑系统的总吞吐量, 也可以考虑用户公平性。
实施例一, 以考虑集中式 CR系统的总吞吐量为原则, 集中式 CR系统 为第二用户系统, 使用授权频段的用户的系统为第一用户系统, 该第一用户 系统可以是任意无线通信系统。
在介绍本实施例各步骤之前, 为便于理解, 首先, 介绍一下本发明实 施例的第一用户系统的特征, 第一用户系统可以是任意无线通信系统, 例 如可以是 TV用户系统、 74设备系统或者其它无线通信系统, 因此, 第一 用户系统的业务可以为电视信号, 还可以是突发应用业务(例如: 互联网 协议语音技术 VoIP、 因特网浏览或视频流等业务), 对于这些突发业务, 不是每个帧都有数据传输。 因此, 可以把一个频段单元划分为若干子信道, 第一用户系统在某个时刻, 可以以突发的方式占用其中一些子信道, 第二 用户系统就可以调度空闲的子信道传输数据。 如果第二用户系统的终端上 报的感知是完全的, 即没有漏检或者虚警, 则第二用户系统的基站可以将 第一用户系统空闲的子信道调度给第二用户系统的终端, 第二用户系统的 终端利用这些空闲信道可以继续传输数据, 但是, 在实际中, 第二用户系 统的感知往往是不完全的, 并且, 在终端移动的过程中, 漏检和虚警的概 率会更大, 因此, 会对第一用户系统的终端造成干扰。 因此, 本发明实施 例提供的方法可以让第二用户系统尽力利用各种机会进行传输, 同时维持 足够低的对第一用户系统的干扰的概率。
本发明实施例提供的第二用户系统具有以下特征:
首先, 第二用户系统可以支持在多个子载波上的传输, 例如正交频分 多址 ( OFDMA, Orthogonal Frequency Division Multiple Access ), 在本发明 实施例中, 基站以子信道为单位进行感知和调度, 子信道是若干子载波绑 定形成的基本单位。
其次, 在本发明实施例中, 假定满足如下条件: (1 ) 一个子信道的子 载波具有相同的信道状态; (2 ) 第二用户系统有一个窄带控制信道用来传 输控制消息; (3 ) 以第二用户系统下行方向为例进行说明; (4 ) 利用一个 很强的信道编码技术, 釆用很强的信道编码技术, 可以使误包率很低, 进 而可以忽略误包率。
上述条件只是为了仿真方便所设置的, 本发明的实施例并不局限于上 述条件。
再者, 请参考图 2, 示出了针对本发明实施例的帧结构, 图 2中, 下行数 据信道(Downlink Data Channel )是第一用户系统的授权频段, 控制信道是专 为第二用户系统设计的。 本发明实施例的帧结构分为 3个时隙, 分别是:
感知时隙: 第二用户系统终端感知数据信道, 由于感知信息可能是不完全 的, 所以, 感知信息能力可以用漏检概率和虚警概率来衡量。
控制时隙: 第二用户系统终端在控制信道上反馈 RSI给基站,基站在控制 信道上广播参数。
传输时隙: 下行数据传输, 在此, 一个子信道在某个时刻只能分给一个用 户, 例如时分多址( TDMA, Time Division Multiple Access )或者 OFDMA。
基于以上说明, 下面对本发明方法实施例进行详细描述。
需要指出的是,表征感知结果可靠度参数可以为置信因子,但是不局限于 此参数, 在本发明实施例中, 以置信因子为例进行说明。 第二用户系统的终端感知第一用户系统的 RSI与第二用户系统的 CSI, 并在控制时隙将 RSI与 CSI—起反馈至基站, 基站根据 RSI和 CSI为子信 道进行资源调度, 具体可以包括: 基站根据 RSI计算出子信道的置信因子, 并根据 CSI选择终端, 根据置信因子为选择的终端确定传输功率以及数据 速率。 该资源调度的方法具体为:
A1 : 第二用户系统的终端感知第一用户系统的子信道。 假设集中式 CR系统中, 第二用户系统有 K (K为自然数) 个终端, 第一用户系统有 M (M为自然数) 个子信道。 在感知时隙, K个终端分别 对 M个子信道进行感知。
A2: 第二用户系统每个终端对每个子信道进行二元判决, 判断各子信道 是否可用。
A3: 在控制时隙, 第二用户系统各终端将 RSI (包括二元判决结果)及 CSI反馈给第二用户系统的基站。
A4: 第二用户系统的基站根据接收到的 RSI和 CSI,为第 m个子信道(简 称: 子信道 m; 其中, m为 1至 M中任意一个数)进行资源调度, 其中包括 为子信道 m选择终端, 和为选择的终端 Am确定传输功率 pAm, m以及数据速 率 rAm,m, 具体为:
(1)计算置信因子
对子信道 m, 根据各终端反馈的 RSI获取子信道 m的置信因子, 子信道 m的置信因子指示了基站对子信道 m是否可用的置信程度。 子信道 m的置信 因子 可以按照下面方式计算:
1
am =
Figure imgf000008_0001
其中, qp是子信道 m被第一用户系统占用的概率, qm是第一用户系统的 漏检概率, qf是第一用户系统的虚警概率, 并且, 属于 RSI, 是上报子 信道 m是否可用的终端的集合, |·|是集合的势。
(2)为子信道分配终端
Am =mgm^x\Hkm \2
k
其中, ¾, m是第 k (k为 1至 K中任意一个数)终端在子信道 m上的复信道增 益, Hk, m属于 CSI, 其绝对值为信道增益。 Am表示在子信道 m上选择 K个终端 中的一个终端, 选择的终端记为第 Am终端。 由上述可知, 每个子信道分配给 具有最大信道增益的终端。 ( 3 )根据置信因子为子信道 m选择的终端 Am进行功率分配, 确定传输功 率。
功率分配釆用总吞吐量原则, 表示式如下:
Figure imgf000009_0001
其中, PAm, m是第 Am终端在子信道 Π1上分配的功率。 和 V是两个恒定 的参数, 与第二用户系统的平均功率约束相关, V与第二用户系统对第一用 户系统的平均干扰约束相关, 与 V可以离线计算出来。 的取值可以改变第 二用户系统的平均发送功率, V的取值可以改变第二用户系统对第一用户系统 的平均干扰。 是第二用户系统的基站到最近的第一用户系统终端的路径损 耗。
( 4 )根据功率分配为子信道 m分配的终端 Am确定数据速率
Figure imgf000009_0002
其中, r ^是为第 Am终端在子信道 m确定的数据速率。
本发明实施例提供的资源调度的方法, 若在步骤 A4中, 为选择的终端确 定的传输功率以及数据速率大于等于预先设定的门限值,则可以将第一用户系 统的子信道 m分配给选择的终端 Am。 而且, 需要指出的是, 对于子信道分配, 如果计算出的子信道 m的功率和速率都 4艮低, 则不对子信道 m进行分配。
本实施例提供的方法还可以进一步包括:
A5:第二用户系统的基站向第二用户系统的终端广播在步骤 A4中计算出 来的各参数。
A6、 第二用户系统的基站进行下行传输的调度。
以上对于实施例一的描述, 通过选择 ί和 V, 可以使平均功率和平均干扰 限制到给定的水平。 而且, 还可以将/ ί和 V离线计算出来并制定成表格, 当第 二用户系统在线运行的时候, 仅进行一个简单的查表就可以搜索到合适的/ ί和
V。
实施例一是考虑了总吞吐量提出的, 下面,从调度公平性的角度对本发明 实施例二进行说明。
实施例二, 以考虑集中式 CR系统的公平性为原则。
根据本发明实施例提供的资源调度的方法, 第二用户系统的基站根据 RSI 和 CSI 进行资源调度, 可以包括以下步骤:
B1 : 第二用户系统的终端感知第一用户系统的子信道。
假设集中式 CR系统中, 第二用户系统有 K ( K为自然数)个终端, 第一 用户系统有 M ( M为自然数)个子信道。 在感知时隙, K个终端对 M个子信 道进行感知。
B2: 第二用户系统每个终端对每个子信道进行二元判决, 判断各子信道 是否可用。
B3: 在控制时隙, 第二用户系统各终端将 RSI (包括二元判决结果)及 CSI反馈给第二用户系统的基站。
B4: 第二用户系统的基站根据接收到的 RSI和 CSI, 为子信道 m分配资源, 其中包括为子信道 m选择终端, 和为选择的终端 Am确定传输功率 PAm, m以及数 据速率 rAm, m, 具体为:
( 1 )计算置信因子
对子信道 m, 根据各终端反馈的 RSI获取子信道 m的置信因子, 子信道 m的 置信因子指示了基站对子信道 m是否可用的置信程度。 子信道 m的置信因子 可以按照下面方式计算:
1
am =
Figure imgf000010_0001
其中, qp是子信道 m被第一用户系统占用的概率, qm是第二用户系统的漏 检概率, qf是第二用户系统的虚警概率, 并且, 属于 RSI, 是上报子信道 m是否可用的终端的集合, | · |是集合的势。
( 2 )子信道分配终端 4 = k { λ+v cf Y-a In2
Figure imgf000011_0001
其中, ¾, m是第 k ( k为 1至 K中任意一个数)个终端在子信道 m上的 复信道增益, 并且, Hk, m可以是 CSI, 其绝对值为信道增益。 是第 k个终端 的权重, 可以进行动态调整来确保调度的公平性, 值越大, 意味着第 k个 终端优先级越高, 越小, 意味着第 k个终端的优先级越低。 Am表示在子信 道 m上选择 K个终端中的哪一个终端, 选择的终端记为第 Am终端。 和 V是 两个恒定的参数, 与第二用户系统的平均功率约束相关, V与第二用户系统 对第一用户系统的平均干扰约束相关, 与 V可以离线计算出来。 的自适应 可以改变第二用户系统的平均发送功率, V的自适应可以改变第二用户系统对 第一用户系统的平均干扰。 是第二用户系统的基站到最近的第一用户系统 终端的路径损耗。
( 3 )根据置信因子及第 Am终端的权重为第 Am终端进行功率分配, 确定传 输功率。
功率分配表示式如下:
Figure imgf000011_0002
其中, PAm, m是为第 Am终端在子信道 Π1上分配的功率。
( 4 )根据分配的功率为第 Am终端确定数据速率
Figure imgf000011_0003
其中, rAm, m是为第 Am终端在子信道 m确定的数据速率。
在步骤 B4中, 若根据第 Am终端计算出的传输功率以及数据速率大于等 于预先设定的门限值, 则可以将选择的终端调度到第一用户系统的子信道 m, 则进入步骤 B5 , 否则, 结束流程。
本实施例提供的方法还可以进一步包括:
B5: 第二用户系统的基站广播在步骤 A4中计算出来的各参数给第二用户 系统的终端。 B6、 第二用户系统的基站进行下行传输的调度。
同样, 对于实施例二, 通过选择 和 V, 可以使平均功率和平均干扰限制 到给定的水平。 而且, 还可以将 和 V离线计算出来并制定成表格, 当第二用 户系统在线运行的时候, 仅进行一个简单的查表就可以搜索到合适的 和 。
下面结合一个具体仿真实例, 对本发明方法实施例进行说明。
本实施例对实施例一提供的方法进行了仿真实验,并且通过该仿真实验对 在本发明的实施例中,仿真条件具体为:快速傅立叶变换( FFT, fast Fourier transform )块大小为 IK, 有 10个独立子信道, M = 10; 每个子信道用户终端 为 5个; 漏检概率和虚警概率均为 0.1 ; —个子信道被第一用户系统占用的概 率为 0.3和 0.5, 对第一用户系统造成的可容忍干扰分别小于等于 OdB或者 - 10dB。 容忍水平的仿真结果, 并且分别示出了在第一用户系统占用概率为 0.3和 0.5 时, 分离设计与本发明实施例提供的方法的比较情况。 图 4显示了分离设计与 本发明实施例提供的方法在平均干扰为 _ 10dB 的可容忍水平的仿真结果, 并 且分别示出了在第一用户系统占用概率为 0.3和 0.5时, 分离设计与本发明的 比较情况。 图 3与图 4作为仿真结果,说明了本发明实施例提供的方法的性能 优于分离设计, 对于资源调度使用置信因子可以进行精确的调度和资源分配, 并且获得更大的增益。
请参考图 5, 图 5示出了分离设计与本发明实施例提供的方法的瞬时干扰 跟踪情况, 以比较第二用户系统对第一用户系统造成的瞬时干扰。 为了得到瞬 时干扰的情况, 进行了 2000次实验, 每次实验都釆用了不同的子信道, 分离 设计和本发明提供的实施例均具有相同的发送功率,并且平均发送功率固定为 4dB, 可以容忍的干扰在 OdB以下, 第一用户系统占用概率为 0.3。 图 5中, 釆用本发明实施例提供的方法, 第二用户系统对第一用户系统造成了 15次偶 然干扰, 而釆用分离设计, 第二用户系统对第一用户系统有 572次偶然干扰。 很明显, 本发明实施例提供的方法优于分离设计所釆用的方法。 以上对本发明两个方法实施例及利用方法实施例一的仿真实例进行了说 明, 可以看出, 本发明实施例将不完全感知这个因素考虑进来, 根据二元判决 的结果首先计算出对某子信道的置信因子,根据置信因子进行资源调度,根据
CSI为该子信道选择终端,根据置信因子计算选择的终端的传输功率以及数据 速率, 当计算的传输功率以及数据速率大于等于预先设定的门限值时,表示可 以对选择的终端进行调度,当计算的传输功率以及数据速率小于预先设定的门 限值时, 表示不可以对选择的终端进行调度。 从而, 在不完全感知情况下, 减 少了对第一用户系统的干扰, 提高了频谱利用率, 节约了系统资源。
请参考图 6,示出了本发明实施例一种资源调度的装置示意图,可以包括: 接收单元 601 , 用于接收来自终端的第一用户系统的感知信息报告 RSI和 第二用户系统的信道状态 CSI ;
资源调度单元 602,用于根据所述 RSI和所述 CSI为子信道进行资源调度。 图 6中, 资源调度单元 602可以包括:
计算单元 602-1, 用于根据所述 RSI计算所述子信道的表征感知结果可靠 度参数;
上述表征感知结果可靠度参数可以为置信因子, 但是不局限于此参数; 调度单元 602-2: 用于根据所述计算单元 602-1计算的表征感知结果可靠 度参数以及所述 CSI为子信道进行资源调度。
计算单元 602-1可以包括:
参数获取单元 602-1-1 , 用于根据所述 RSI获取参数, 获取的参数包括: 子信道被第一用户系统占用的概率, 第一用户系统的漏检概率, 第一用户系统 的虚警概率, 收集到的所述子信道是否可用的终端信息;
置信因子计算单元 602-1-2,根据所述参数获取单元 602-1-1获取的参数计 算置信因子。
根据系统总的吞吐量与用户公平性两个角度,本发明装置实施例可以分为 两种情况。
实施例一, 结合方法实施例一, 本实施例为考虑系统总的吞吐量的情况, 参考图 7所示, 在图 6所示各单元的基础上, 本实施例中, 调度单元 602-2可 以包括:
第一子信道分配单元 602-2-11 ,用于根据子信道的复信道增益为子信道分 配终端;
第一传输功率分配单元 602-2-12, 用于根据所述置信因子、 为所述子信道 分配的终端的复信道增益、第二用户系统的基站到第一用户系统的终端路径损 耗的下限、改变平均发送功率的自适应参数以及第二用户系统对第一用户系统 的平均干扰的自适应参数为所述子信道分配的终端确定传输功率;
第一数据速率分配单元 602-2-13 ,根据所述传输功率和为所述子信道分配 的终端的复信道增益确定数据速率。
该装置还可以包括:
广播单元 603 , 用于广播所述为子信道分配的终端信息、 传输功率以及数 据速率。
离线计算单元 604, 用于对所述改变平均系统发送功率的自适应参数以及 第二用户系统对第一用户的平均干扰的自适应参数进行离线计算。
本实施例中, 各单元进行资源分配的过程具体为:
第二用户系统基站的参数获取单元获取子信道被第一用户系统占用的概 率, 第一用户系统的漏检概率, 第一用户系统的虚警概率, 收集到的第一用户 系统的子信道是否可用的终端的集合以及终端个数。置信因子计算单元根据所 述参数获取单元获取的参数, 利用如下公式计算子信道的置信因子,对于子信 道 m, 其置信因子 具体为: 1
Figure imgf000014_0001
基站的第一子信道分配单元根据子信道的复信道增益,利用如下公式进行 子信道分配: = arg max | Hk m \2
k
基站的第一传输功率分配单元, 根据置信因子计算单元计算出的置信因 子,为第一子信道分配单元分配的终端确定传输功率,具体根据如下公式实现:
Figure imgf000015_0001
基站的第一数据速率分配单元根据第一传输功率分配单元得到的传输功 率, 通过如下公式计算数据速率:
rAm ,m = ^g2 (l + PA^m \ HAm m I2)
广播单元广播子信道分配单元分配的终端信息、第一传输功率分配单元分 配的传输功率以及第一数据速率单元确定的数据速率。
离线计算单元可以将参数 与参数 V离线计算出来, 并制成表格, 当第二 用户系统在线运行的时候,仅进行一个简单的查表就可以搜索到合适的 1和 v。
对于装置实施例一中的公式, 各元素的意义与方法实施例一相同, 具体请 参见方法实施例一。
实施例二, 结合方法实施例二, 本实施例从考虑用户公平性入手, 请参考 图 8, 在图 6的基础上, 本实施例中, 调度单元 602-2可以包括:
第二子信道分配单元 602-2-21 , 用于根据终端在子信道上的复信道增益、 终端的权重、第二用户系统的基站到第一用户系统的终端路径损耗的下限, 改 变平均发送功率的自适应参数以及第二用户系统对第一用户系统的平均干扰 的自适应参数为所述子信道分配终端;
第二传输功率分配单元 602-2-22, 用于根据所述置信因子、 为所述子信道 分配的终端的复信道增益和所述子信道分配的终端的权重确定传输功率;
第二数据速率分配单元 602-2-23 ,用于根据所述传输功率和为所述子信道 分配的终端的复信道增益确定数据速率。
该装置还可以包括:
广播单元 603 , 用于广播所述子信道分配的终端信息、 传输功率以及数据 速率。
离线计算单元 604, 用于对所述改变平均系统发送功率的自适应参数以及 第二用户系统对第一用户系统的平均干扰的自适应参数进行离线计算。 各单元进行资源调度的过程包括:
第二用户系统基站的参数获取单元获取子信道被第一用户系统占用的概 率, 第一用户系统的漏检概率, 第一用户系统的虚警概率, 收集到的第一用户 系统的子信道是否可用的终端的信息以及终端个数,置信因子计算单元根据所 述参数获取单元获取的参数, 利用如下公式计算子信道的置信因子,对于子信 道 rt 具体为:
基站的第
Figure imgf000016_0001
终端的权 重、 子信道 m的复信道增益、 第二用户系统的基站到第一用户系统的终端的 路径损耗的下限、 以及 V, 根据如下公式进行子信道分配:
Figure imgf000016_0002
基站的第二传输功率分配单元根据如下公式,为第二子信道分配单元选择 的终端确定传输功率:
Figure imgf000016_0003
基站的第二数据速率分配单元根据如下公式,为第二子信道分配单元选择 的终端确定数据速率:
Figure imgf000016_0004
广播单元广播子信道分配单元分配的终端、第二传输功率分配单元分配的 传输功率以及第二数据速率单元确定的数据速率。
离线计算单元可以将参数 与参数 V离线计算出来, 并制成表格, 当第二 用户系统在线运行的时候 ,仅进行一个简单的查表就可以搜索到合适的 和 V。
对于装置实施例二中的公式, 各元素的意义与方法实施例二相同, 具体请 参见方法实施例二。
从对装置实施例的描述可以看出, 釆用本发明提供的装置, 由于置信因子 计算单元可以根据收集到的第一用户系统的 RSI计算置信因子,终端选择单元 可以根据收集到的第一用户系统的 CSI计算出选择的终端 , 传输参数单元可 以根据置信因子计算单元计算出的置信因子,为终端选择单元选择的终端确定 出传输功率以及数据速率,当计算的传输功率以及数据速率大于等于预先设定 的门限值时,表示可以对选择的终端进行调度, 当计算的传输功率以及数据速 率小于预先设定的门限值时, 表示不可以对选择的终端进行调度。 从而, 第二 用户系统基站可以进行精确的调度, 并且大大减少了对第一用户系统的干扰。
本发明还提供了一种资源调度的系统, 所述系统包括基站, 所述基站用于 接收来自终端的第一用户系统的感知信息报告 RSI 和第二用户系统的信道状 态 CSI , 根据所述 RSI和所述 CSI为子信道进行资源调度。
本发明提供的系统可以从考虑系统总的吞吐量及用户公平性两个角度入 手。
实施例一, 结合方法实施例一, 终端与基站所执行的各步骤与方法实施例 一大体相似, 具体可以参见方法实施例一的描述。
实施例二, 结合方法实施例二, 终端与基站所执行的各步骤与方法实施例 二大体相似, 具体可以参见方法实施例二的描述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可 读存储介质中, 该程序在执行时, 包括如下步骤:
接收来自终端的第一用户系统的感知信息报告 RSI和第二用户系统的信 道状态 CSI ;
根据上述 RSI和 CSI为子信道进行资源调度。
上述提到的存储介质可以是只读存储器, 磁盘或光盘等。 本发明提供的系统同样可以通过计算置信因子,实现第二用户系统基站对 终端的精确调度, 并大大减少了对第一用户系统的干扰。 最后, 还需要说明的是, 在本文中, 诸如第一和第二等之类的关系术语 仅仅用来将一个实体或者操作与另一个实体或操作区分开来, 而不一定要 求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。 而且, 术语"包括"、 "包含"或者其任何其他变体意在涵盖非排他性的包含, 从而 使得包括一系列要素的过程、 方法、 物品或者设备不仅包括那些要素, 而 且还包括没有明确列出的其他要素, 或者是还包括为这种过程、 方法、 物 品或者设备所固有的要素。 在没有更多限制的情况下, 由语句"包括一 个 ... ...,,限定的要素, 并不排除在包括所述要素的过程、 方法、 物品或者设 备中还存在另外的相同要素。
以上对本发明所提供的一种资源调度的方法、 装置及系统进行了详细 上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时, 对 于本领域的一般技术人员, 依据本发明的思想, 在具体实施方式及应用范 围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限 制。

Claims

权 利 要 求
1、 一种资源调度的方法, 其特征在于, 所述方法包括:
接收第一用户系统的感知信息报告 RSI和第二用户系统的信道状态 CSI ; 根据所述 RSI和所述 CSI为子信道进行资源调度。
2、 根据权利要求 1所述的方法, 其特征在于, 所述 RSI至少包括所述子 信道被第一用户系统占用的概率,第一用户系统的漏检概率以及第一用户系统 的虚警概率;
所述 CSI至少包括所述子信道的复信道增益。
3、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述 RSI和所述 CSI为子信道进行资源调度具体为:
根据所述 RSI获取所述子信道的表征感知结果可靠度参数,根据所述表征 感知结果可靠度参数以及所述 CSI为子信道进行资源调度。
4、 根据权利要求 3所述方法, 其特征在于, 所述表征感知结果可靠度参 数为置信因子。
5、 根据权利要求 4所述的方法, 其特征在于, 所述置信因子为根据子信 道被第一用户系统占用的概率、 第一用户系统的漏检概率、第一用户系统的虚 警概率以及收集到的所述子信道是否可用的终端信息获取。
6、 根据权利要求 4所述的方法, 其特征在于, 根据所述表征感知结果可 靠度参数以及所述 CSI为子信道进行资源调度具体为:
才艮据所述 CSI为子信道分配终端;
才艮据所述置信因子为所述子信道分配的终端确定传输功率;
根据所述传输功率为所述子信道分配的终端确定数据速率。
7、 根据权利要求 6所述的方法, 其特征在于, 根据所述 CSI为子信道分 配终端,根据所述置信因子为所述子信道分配的终端确定传输功率,根据所述 传输功率为所述子信道分配的终端确定数据速率具体为:
才艮据所述 CSI为所述子信道分配复信道增益最大的终端; 才艮据所述置信因子、 所述子信道分配的终端的复信道增益、 第二用户系统 的基站到第一用户系统的终端路径损耗的下限、改变平均发送功率的自适应参 数以及第二用户系统对第一用户系统的平均干扰的自适应参数为所述子信道 分配的终端确定传输功率;
根据所述传输功率和所述子信道分配的终端的复信道增益确定数据速率。
8、 根据权利要求 6所述的方法, 其特征在于, 根据所述 CSI为子信道分 配终端,根据所述置信因子为所述子信道分配的终端确定传输功率,根据所述 传输功率为所述子信道分配的终端确定数据速率具体为:
根据终端在子信道上的复信道增益、终端的权重、第二用户系统的基站到 第一用户系统的终端路径损耗的下限、改变平均发送功率的自适应参数以及第 二用户系统对第一用户系统的平均干扰的自适应参数为所述子信道分配终端; 才艮据所述置信因子、所述子信道分配的终端的复信道增益和所述子信道分 配的终端的权重确定传输功率;
根据所述传输功率和所述子信道分配的终端的复信道增益确定数据速率。
9、 根据权利要求 7或 8所述的方法, 其特征在于, 所述方法还包括: 预先对所述改变平均发送功率的自适应参数以及第二用户系统对第一用 户系统的平均干扰的自适应参数进行离线计算。
10、 根据权利要求 7或 8所述的方法, 其特征在于, 所述方法还包括: 广播所述子信道分配的终端信息、 传输功率以及数据速率。
11、 一种资源调度的装置, 其特征在于, 所述装置包括:
接收单元,用于接收第一用户系统的感知信息报告 RSI和第二用户系统的 信道状态 CSI ;
资源调度单元, 用于根据所述 RSI和所述 CSI为子信道进行资源调度。
12、 根据权利要求 11所述的装置, 其特征在于, 所述资源调度单元包括: 计算单元, 用于根据所述 RSI计算所述子信道的表征感知结果可靠度参 数; 调度单元:用于根据所述计算单元计算的表征感知结果可靠度参数以及所 述 CSI为子信道进行资源调度。
13、 根据权利要求 12所述的装置, 其特征在于, 所述计算单元包括: 参数获取单元, 用于根据所述 RSI获取参数, 获取的参数包括: 子信道被 第一用户系统占用的概率、第一用户系统的漏检概率和第一用户系统的虚警概 率, 收集到的所述子信道是否可用的终端信息;
置信因子计算单元 , 根据所述参数获取单元获取的参数计算置信因子。
14、 根据权利要求 13所述的装置, 其特征在于, 所述调度单元包括: 第一子信道分配单元, 用于根据子信道的复信道增益为子信道分配终端; 第一传输功率分配单元, 用于根据所述置信因子、所述子信道分配的终端 的复信道增益、 第二用户系统的基站到第一用户系统的终端路径损耗的下限、 改变平均发送功率的自适应参数以及第二用户系统对第一用户系统的平均干 扰的自适应参数为所述子信道分配的终端确定传输功率;
第一数据速率分配单元,根据所述传输功率和所述子信道分配的终端的复 信道增益确定数据速率。
15、 根据权利要求 13所述的装置, 其特征在于, 所述调度单元包括: 第二子信道分配单元, 用于根据终端在子信道上的复信道增益、终端的权 重和第二用户系统的基站到第一用户系统的终端路径损耗的下限,改变平均发 送功率的自适应参数以及第二用户系统对第一用户系统的平均干扰的自适应 参数为所述子信道分配终端;
第二传输功率分配单元, 用于根据所述置信因子、所述子信道分配的终端 的复信道增益和所述子信道分配的终端的权重确定传输功率;
第二数据速率分配单元,用于根据所述传输功率和所述子信道分配的终端 的复信道增益确定数据速率。
16、 根据权利要求 14或 15所述的装置, 其特征在于, 所述装置还包括: 离线计算单元,用于对所述改变平均系统发送功率的自适应参数以及第二 用户系统对第一用户系统的平均干扰的自适应参数进行离线计算。
17、 根据权利要求 14或 15所述的装置, 其特征在于, 所述装置还包括: 广播单元,用于广播所述子信道分配的终端信息、传输功率以及数据速率。
PCT/CN2009/072719 2008-07-14 2009-07-10 一种资源调度的方法、装置及系统 WO2010006540A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810137949.0 2008-07-14
CN200810137949.0A CN101630981B (zh) 2008-07-14 2008-07-14 一种资源调度的方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2010006540A1 true WO2010006540A1 (zh) 2010-01-21

Family

ID=41550018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072719 WO2010006540A1 (zh) 2008-07-14 2009-07-10 一种资源调度的方法、装置及系统

Country Status (2)

Country Link
CN (1) CN101630981B (zh)
WO (1) WO2010006540A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011140867A1 (zh) * 2010-04-06 2011-11-17 华为技术有限公司 一种信道状态信息的传输方法及用户设备及基站
US8661137B2 (en) 2009-06-25 2014-02-25 Huawei Technologies Co., Ltd. Network-based information processing method and system, and mobility management network element
CN103716893A (zh) * 2010-04-06 2014-04-09 华为技术有限公司 一种信道状态信息的传输方法及用户设备及基站

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207707B (zh) * 2010-04-01 2019-01-15 Lg电子株式会社 在无线接入系统中收发信道状态信息的方法和装置
CN102740304A (zh) * 2011-04-11 2012-10-17 中国移动通信集团公司 一种空闲电视信道的使用方法和一种基站
WO2015123857A1 (zh) * 2014-02-21 2015-08-27 富士通株式会社 非授权频谱的配置方法、装置以及通信系统
CN105308998B (zh) * 2014-04-02 2019-04-05 华为技术有限公司 一种非授权频谱的使用方法和基站及终端
WO2015165035A1 (zh) * 2014-04-29 2015-11-05 华为技术有限公司 一种网络节点及频谱资源的使用方法
EP3155751B1 (en) 2014-06-12 2019-03-20 Marvell World Trade Ltd. Sub-channel allocation in orthogonal frequency division multiplex wlan
WO2016037471A1 (zh) * 2014-09-12 2016-03-17 中兴通讯股份有限公司 非授权载波占用处理方法、装置及系统
CN110191515B (zh) * 2014-12-19 2022-06-17 上海朗帛通信技术有限公司 一种laa通信的方法和装置
EP3232703B1 (en) * 2014-12-31 2019-05-29 Huawei Technologies Co., Ltd. Method and device for transmitting reference signal in cell using unlicensed frequency band
TWI666957B (zh) * 2015-01-28 2019-07-21 財團法人資訊工業策進會 授權輔助存取網路系統
CN106559881B (zh) 2015-09-25 2020-07-21 华为技术有限公司 一种资源分配方法及装置
WO2019192007A1 (en) * 2018-04-05 2019-10-10 Qualcomm Incorporated Collision handling for csi reporting on pusch
WO2019213841A1 (zh) * 2018-05-08 2019-11-14 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2021253143A1 (en) * 2020-06-15 2021-12-23 Qualcomm Incorporated Coexistence between wireless sensing and wireless communication in cellular bands

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1878014A (zh) * 2006-06-30 2006-12-13 西安电子科技大学 认知无线电中频谱空洞的探测方法
CN1878027A (zh) * 2006-06-30 2006-12-13 西安电子科技大学 基于认知无线电系统的多用户资源分配方法
CN1956365A (zh) * 2005-10-21 2007-05-02 三星电机株式会社 用于频谱感测认知无线电的系统、方法及装置
CN101155423A (zh) * 2006-09-29 2008-04-02 三星电机株式会社 频谱感知算法和方法
CN101207554A (zh) * 2006-12-20 2008-06-25 中兴通讯股份有限公司 一种移动通信网络的无线资源的分组调度系统和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047995B (zh) * 2006-06-16 2012-04-04 华为技术有限公司 一种信道切换方法及干扰检测门限的自适应方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1956365A (zh) * 2005-10-21 2007-05-02 三星电机株式会社 用于频谱感测认知无线电的系统、方法及装置
CN1878014A (zh) * 2006-06-30 2006-12-13 西安电子科技大学 认知无线电中频谱空洞的探测方法
CN1878027A (zh) * 2006-06-30 2006-12-13 西安电子科技大学 基于认知无线电系统的多用户资源分配方法
CN101155423A (zh) * 2006-09-29 2008-04-02 三星电机株式会社 频谱感知算法和方法
CN101207554A (zh) * 2006-12-20 2008-06-25 中兴通讯股份有限公司 一种移动通信网络的无线资源的分组调度系统和方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8661137B2 (en) 2009-06-25 2014-02-25 Huawei Technologies Co., Ltd. Network-based information processing method and system, and mobility management network element
WO2011140867A1 (zh) * 2010-04-06 2011-11-17 华为技术有限公司 一种信道状态信息的传输方法及用户设备及基站
CN103716893A (zh) * 2010-04-06 2014-04-09 华为技术有限公司 一种信道状态信息的传输方法及用户设备及基站
CN103716893B (zh) * 2010-04-06 2015-03-11 华为技术有限公司 一种信道状态信息的传输方法及用户设备及基站
US10404440B2 (en) 2010-04-06 2019-09-03 Huawei Technologies Co., Ltd. Method, user equipment, and base station for transmitting channel state information
US11218276B2 (en) 2010-04-06 2022-01-04 Huawei Technologies Co., Ltd. Method, user equipment, and base station for transmitting channel state information

Also Published As

Publication number Publication date
CN101630981B (zh) 2013-04-24
CN101630981A (zh) 2010-01-20

Similar Documents

Publication Publication Date Title
WO2010006540A1 (zh) 一种资源调度的方法、装置及系统
US8526442B2 (en) Methods and apparatus for using multiple connection identifiers based on traffic requirements
US7986698B2 (en) Methods and apparatus for using connection identifiers having different priorities at different times
CN100534017C (zh) 用于在正交频分多址系统中自适应分配导频的方法和装置
JP4302988B2 (ja) 電力線ネットワーク上でのポイント・ツー・マルチポイントシステムにおける多重アクセス及び伝送のための方法
WO2009049535A1 (fr) Procédé et dispositif d'allocation de ressource sans fil dans un système de communication sans fil
Miao et al. Energy and spectrum efficient wireless network design
JP2007503139A (ja) マルチキャリア無線通信システムにおいて無線リソースを割り当てる方法およびマルチキャリア無線通信システムにおけるネットワーク装置
JP2014212568A (ja) ポイントツーポイント通信およびポイントツーマルチポイント通信
CN1972515A (zh) 无线通信系统中发送/接收信道质量信息的设备和方法
JP2010505293A (ja) Ieee802.22wran通信システムのための物理レイヤスーパーフレーム、フレーム、プリアンブル及び制御ヘッダ
WO2013096043A1 (en) Method and apparatus for admitting a request for allocation of wireless connection resources in a communication system
US9907083B2 (en) Multi-carrier aggregation method and apparatus, user equipment, and network side device
WO2013163905A1 (zh) 使用时分双工通信制式的系统中的上下行配置方法和设备
CN115134857A (zh) 保证无线通信系统中服务质量的方法和装置
CN109327412B (zh) 一种数据传输方法和基站
Zhang et al. Cross-layer resource allocation for real-time services in OFDM-based cognitive radio systems
CN101399582A (zh) 一种调整块重复扩展分集模式的方法及系统
EP3213577B1 (en) Frequency selective scheduling
Cui et al. A QoE-aware resource allocation strategy for multi-cell NOMA networks
WO2009155856A1 (zh) 一种协同感知的方法、系统和节点设备
WO2012068862A1 (zh) 一种时频资源处理方法和装置
WO2011014991A1 (zh) 帧结构配置方法及相应的基站、用户设备和通信系统
WO2018028554A1 (zh) 一种信号发送方法、接收方法、基站及终端
KR100649876B1 (ko) 스트리밍 서버 및 그 스트리밍 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09797387

Country of ref document: EP

Kind code of ref document: A1