WO2010004813A1 - ガスタンク及びガスタンクの製造方法 - Google Patents

ガスタンク及びガスタンクの製造方法 Download PDF

Info

Publication number
WO2010004813A1
WO2010004813A1 PCT/JP2009/060067 JP2009060067W WO2010004813A1 WO 2010004813 A1 WO2010004813 A1 WO 2010004813A1 JP 2009060067 W JP2009060067 W JP 2009060067W WO 2010004813 A1 WO2010004813 A1 WO 2010004813A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin liner
resin
gas tank
oxide layer
gas
Prior art date
Application number
PCT/JP2009/060067
Other languages
English (en)
French (fr)
Inventor
作馬 江森
大希 四戸
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN2009801236818A priority Critical patent/CN102066827B/zh
Priority to EP09794260A priority patent/EP2325543B8/en
Priority to US13/003,064 priority patent/US8172108B2/en
Publication of WO2010004813A1 publication Critical patent/WO2010004813A1/ja
Priority to US13/103,452 priority patent/US9140408B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/24Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using threads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/60Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels
    • B29C53/62Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels rotatable about the winding axis
    • B29C53/66Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels rotatable about the winding axis with axially movable winding feed member, e.g. lathe type winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7154Barrels, drums, tuns, vats
    • B29L2031/7156Pressure vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7172Fuel tanks, jerry cans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0621Single wall with three layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0673Polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • F17C2205/0394Arrangement of valves, regulators, filters in direct contact with the pressure vessel
    • F17C2205/0397Arrangement of valves, regulators, filters in direct contact with the pressure vessel on both sides of the pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2118Moulding by injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/036Avoiding leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • F17C2270/0189Planes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/07Applications for household use
    • F17C2270/0763Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a gas tank and a method for manufacturing the gas tank.
  • a high-pressure gas tank is used as a fuel gas supply source.
  • a high-pressure gas tank for example, one having a reinforcing layer formed on the outer surface of a resin liner (inner container) is used (see Patent Document 1).
  • the reinforcing layer is generally formed by winding resin-containing fibers around the outer surface of a resin liner by FW (filament wiping) and then thermosetting.
  • Patent Document 2 discloses that a fluororesin film is formed on the inner surface of the inner shell of a gas cylinder to prevent permeation of natural gas as a fuel gas.
  • the above method can ensure a gas barrier property against a natural gas having a relatively large molecule, but a sufficient gas barrier property cannot be obtained for a gas having a relatively small molecule such as hydrogen gas.
  • the present invention has been made in view of such a point, and an object thereof is to provide a gas tank capable of ensuring a high gas barrier property even for a gas having a small molecule such as hydrogen gas, and a method for manufacturing the gas tank. .
  • the present invention for achieving the above object is a gas tank having a resin liner inside a reinforcing layer, wherein the resin liner is formed with an oxide layer.
  • the oxide layer can secure a high gas barrier property even for a gas having a small molecule such as hydrogen gas.
  • the oxide layer may be formed on the inner surface of the resin liner. In such a case, since the gas inside the tank is suppressed from permeating the resin liner itself, deterioration of the resin liner due to the gas can be prevented.
  • the oxide layer may be formed to a thickness of 50 to 100 ⁇ m. By forming the oxide layer to such a thickness, it is possible to maintain the elongation characteristics of the entire resin liner while ensuring sufficient gas barrier properties. By maintaining the elongation characteristics of the entire resin liner, it is possible to flexibly cope with thermal deformation and deformation due to load, and to secure the strength of the gas tank.
  • the oxide layer may be an oxide layer of the same resin as the resin liner.
  • the oxide layer is the same base material as the resin liner, for example, thermal deformation and deformation due to load are performed to the same extent. For this reason, for example, the adhesiveness between the resin liner and the oxide layer is increased.
  • the oxide layer may be formed by oxidizing the resin liner. In such a case, the oxide layer does not peel from the resin liner.
  • the resin liner may be formed of a polyamide resin. In such a case, the gas barrier property of the oxide layer is further improved.
  • the gas tank may be for storing hydrogen gas. Since hydrogen gas has relatively small molecules, it easily permeates, and the effect of using the gas tank according to the present invention for storing hydrogen gas is great.
  • a gas tank manufacturing method wherein a gas containing oxygen is enclosed in a resin liner, and a reinforcing fiber is wound around an outer surface of the resin liner by a filament wiping method. And heat-curing the reinforcing fibers on the outer surface of the resin liner to form a reinforcing layer, and thermally oxidizing the inner surface of the resin liner to form an oxide layer.
  • an oxide layer can be formed on the inner surface of the resin liner while forming a reinforcing layer on the outer surface of the resin liner, so that a gas tank having an oxide layer can be easily manufactured using an existing process.
  • the method for manufacturing the gas tank further includes a step of injection-molding the resin liner before the step of winding the reinforcing fiber, and then heat-treating the resin liner, and in the step of heat-treating, the resin A gas containing oxygen may be supplied into the liner to thermally oxidize the inner surface of the resin liner.
  • the thermal oxidation of the inner surface of the resin liner may be performed in an air atmosphere at a temperature of 130 ° C. for 10 to 20 hours.
  • a resin liner excellent in both gas barrier properties and extensibility can be realized.
  • the total time of the combination of thermal oxidation at the time of forming the reinforcing layer and thermal oxidation at the time of heat-treatment of the resin liner is 10 to 20 hours.
  • a high gas barrier property can be secured even for a gas having a small molecule such as hydrogen gas.
  • FIG. 1 is a schematic diagram of a fuel cell vehicle 1 equipped with a gas tank according to the present embodiment.
  • the high-pressure gas tank 2 constitutes a part of the fuel cell system 3, and fuel gas can be supplied from each high-pressure gas tank 2 to the fuel cell 5 through the gas supply line 4.
  • the fuel gas stored in the high-pressure gas tank 2 is a combustible high-pressure gas, for example, hydrogen gas.
  • the high-pressure gas tank 2 is applicable not only to the fuel cell vehicle 1 but also to vehicles such as electric vehicles and hybrid vehicles, as well as various moving bodies (for example, ships, airplanes, robots, etc.) and stationary equipment (housing, buildings). it can.
  • FIG. 2 is a longitudinal sectional view showing an outline of the configuration of the high-pressure gas tank 2.
  • the high-pressure gas tank 2 includes, for example, a substantially ellipsoidal tank main body 10 and cap parts 11 and 12 attached to both ends of the tank main body 10 in the longitudinal direction.
  • the tank body 10 has, for example, a two-layer structure, and has an inner resin liner 20 and an FRP (Fiber Reinforced Plastics) layer 21 as a reinforcing layer covering the outer surface of the resin liner 20.
  • FRP Fiber Reinforced Plastics
  • the resin liner 20 has substantially the same ellipsoidal shape as the tank body 10.
  • the resin liner 20 is made of, for example, a polyamide resin such as nylon 6 or nylon 6,6.
  • the resin liner 20 has a thickness of about 3 mm, for example.
  • the FRP layer 21 is formed of fibers containing a resin.
  • a resin for example, an epoxy resin, a modified epoxy resin, or an unsaturated polyester resin is used as the resin of the FRP layer 21.
  • carbon fiber, metal fiber, etc. are used as a fiber.
  • FIG. 3 is an explanatory diagram in which the wall portion of the high-pressure gas tank 2 is enlarged.
  • the oxide layer 22 is formed by oxidizing the resin on the inner surface of the resin liner 20 as will be described later.
  • the oxide layer 22 is formed to a thickness of, for example, about 50 to 100 ⁇ m with respect to the resin liner 20 having a thickness of, for example, about 3 mm.
  • FIG. 4 is a flowchart showing an example of main steps of the manufacturing method.
  • the resin liner 20 is injection molded (step S1 in FIG. 4).
  • a polyamide resin is poured into a mold, two substantially semi-ellipsoids are formed, and these are welded to form the resin liner 20.
  • a resin liner 20 having a uniform thickness is formed.
  • the resin liner 20 is heat-treated (annealed) in a heating chamber 30 under a predetermined condition, for example, as shown in FIG.
  • a predetermined condition for example, as shown in FIG.
  • air 40 as a gas containing oxygen is supplied into the resin liner 20.
  • the annealing process is performed, for example, for about 5 hours under conditions where the internal pressure is atmospheric pressure and the temperature is about 130 ° C.
  • the residual stress of the resin liner 20 is removed, and a part of the inner surface of the resin liner 20 is thermally oxidized (step S2 in FIG. 4).
  • the resin liner 20 is installed on the rotation support portion 51 of the fiber winding device 50 as shown in FIG.
  • a gas supply pipe 53 communicating with a gas cylinder 52 of air as a gas containing oxygen is connected to the rotation support portion 51, and the air in the gas cylinder 52 passes through the gas supply pipe 53 and the rotation support portion 51 to enter the resin liner 20.
  • Can supply is a gas supply pipe 53 communicating with a gas cylinder 52 of air as a gas containing oxygen.
  • the resin liner 20 When the resin liner 20 is supported by the rotation support part 51, the resin liner 20 is rotated by the rotation of the rotation support part 51, and the polyamide resin fiber F is wound around the outer surface of the resin liner 20.
  • the resin fiber F is impregnated with a thermoplastic resin in the upstream portion, and then the angle is adjusted by the fiber guide portion 54 and wound around the resin liner 20. At this time, air is supplied into the resin liner 20 through the gas supply pipe 53 and sealed. Thereby, it can prevent that the resin liner 20 is dented by winding of the resin fiber F.
  • FIG. Thus, the resin fiber F is wound around the entire outer surface of the resin liner 20 with a predetermined thickness (step S3 in FIG. 4).
  • the high-pressure gas tank 2 is heat-treated in the heating furnace 60 as shown in FIG.
  • the high-pressure gas tank 2 is preheated at about 90 ° C., and then is heated at about 130 ° C. for about 5 to 15 hours.
  • the resin fiber F is thermally cured, and the FRP layer 21 is formed.
  • the resin on the inner surface of the resin liner 20 is thermally oxidized by the air 70 inside the resin liner 20, and an oxide layer 22 having a thickness of about 50 to 100 ⁇ m is formed on the inner surface of the resin liner 20. It is formed (step S4 in FIG. 4).
  • the high pressure gas tank 2 is cooled.
  • the high-pressure gas tank 2 having the oxide layer 22 on the inner surface of the resin liner 20 is manufactured.
  • FIG. 9 shows the results of an experiment for verifying the hydrogen gas permeation amount of the resin liner under various conditions, and an experiment for verifying the tensile strength and elongation at break of the oxide layer under each condition.
  • an oxide layer improves the gas barrier property against a gas having a small molecule such as hydrogen gas. It can also be confirmed that by performing thermal oxidation at 130 ° C., which is close to the condition (B) with an oxide layer, for about 10 to 20 hours, an oxide layer having a high gas barrier property and a low elongation property can be obtained.
  • the oxide layer 22 is formed on the resin liner 20
  • a high gas barrier property can be secured even for a gas having a small molecule such as hydrogen gas.
  • the oxide layer 22 is formed on the inner surface of the resin liner 20
  • the gas inside the tank is prevented from passing through the resin liner 20 itself, and therefore the deterioration of the resin liner 20 due to the gas. Can be prevented.
  • the oxide layer 22 is formed to a thickness of 50 to 100 ⁇ m, it is possible to sufficiently ensure the elongation characteristics of the entire resin liner 20 while ensuring high gas barrier properties. By ensuring the elongation characteristics of the entire resin liner 20, sufficient strength of the high-pressure gas tank 2 can be ensured.
  • the oxide layer 22 is an oxide layer made of the resin of the resin liner 20
  • the oxide layer 22 is the same base material as the resin liner 20, and for example, thermal deformation and deformation due to load are performed to the same extent. For this reason, for example, the adhesiveness between the resin liner 20 and the oxide layer 22 is increased.
  • JP-A-2006-316934 discloses providing a metal layer on the inner surface of a resin liner.
  • the adhesion and peelability between the metal layer and the resin liner become a problem.
  • the oxide layer 22 is formed by oxidizing the resin liner 20, so The adhesiveness of the resin liner 20 is high, and the oxide layer 22 does not peel from the resin liner 20.
  • the resin liner 20 is formed of a polyamide-based resin
  • the gas barrier property of the oxide layer 22 is further enhanced. This is probably because when the polyamide-based resin is oxidized, the molecular structure of the resin becomes three-dimensional and the denseness is improved.
  • the polyamide-based resin is oxidized to become a ketone, which changes to a compound having an enol group, and this compound reacts with the amino group terminal of another polyamide to form a cyclized tertiary molecule. It becomes the original structure.
  • the air 70 is sealed inside the resin liner 20 and the resin fiber F is thermoset. Since the oxide layer 22 can be formed by thermally oxidizing the inner surface of the resin liner 20 in the process, the high-pressure gas tank 2 having the oxide layer 22 can be easily manufactured using the existing process.
  • the air 40 is supplied into the resin liner 20 to thermally oxidize the inner surface of the resin liner 20. I made it.
  • a part of the oxide layer 22 can be formed by using the heat treatment of the resin liner 20 after injection molding, so that the oxide layer 22 can be formed more efficiently.
  • the thermal oxidation of the resin liner 20 (step S2 in FIG. 4) and the thermal oxidation of the resin fiber F during the thermal curing (step S4 in FIG. 4) are combined to increase the heat of the resin liner 20.
  • Oxidation is performed in an air atmosphere at 130 ° C. for 10 to 20 hours.
  • the gas supplied into the resin liner 20 to form the oxide layer 22 is air.
  • gases such as oxygen gas may be used as long as they contain oxygen.
  • the material of the resin liner 20 is not limited to a polyamide-based resin, and may be another resin such as a polyethylene resin, an ethylene-vinyl alcohol copolymer resin (EVOH), or other thermoplastic resin.
  • the inner surface of the resin liner 20 is thermally oxidized also during the annealing process after the injection molding of the resin liner 20, but at this stage, it is not always necessary to thermally oxidize, and the heat of the resin fibers F You may make it carry out only at the time of hardening.
  • the oxide layer 22 is formed on the inner surface of the resin liner 20.
  • the oxide layer 22 may be formed on the outer surface or intermediate layer of the resin liner 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Moulding By Coating Moulds (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】水素ガスなどの分子の小さいガスに対しても高いガスバリア性を確保できるガスタンクを提供する。 【解決手段】FRP層の内側に樹脂ライナを有する高圧ガスタンクにおいて、樹脂ライナの内面に酸化層を形成する。フィラメントワイディング法により樹脂ライナの外面に補強繊維を巻回する際に、空気を樹脂ライナの内部に封入しておき、次の補強繊維を熱硬化しFRP層を形成する際に、樹脂ライナの内面を熱酸化して酸化層を形成する。

Description

ガスタンク及びガスタンクの製造方法
 本発明は、ガスタンク及びガスタンクの製造方法に関する。
 例えば自動車等の車両に搭載される燃料電池システムには、燃料ガスの供給源として高圧ガスタンクが用いられている。この種のガスタンクには、例えば樹脂ライナ(内容器)の外面に補強層が形成されたものが用いられている(特許文献1参照)。補強層は、一般的にFW(フィラメントワイディング)法により樹脂含有繊維を樹脂ライナの外面に巻き付け、その後熱硬化することによって形成されている。
 上記ガスタンクは、透過による燃料ガスの漏れを防止するため、高いガスバリア性が要求されている。ガスバリア性を確保する方法として、特許文献2には、ガスボンベの内殻の内表面にフッ素樹脂の被膜を形成し、燃料ガスである天然ガスの透過を防止することが開示されている。
特開2006-242247号公報 特開平8-1813号公報
 しかしながら、上記方法では、比較的分子の大きい天然ガスに対するガスバリア性は確保できるが、水素ガスなどの比較的分子の小さいガスに対しては十分なガスバリア性が得られない。
 本発明は、かかる点に鑑みてなされたものであり、水素ガスなどの分子の小さいガスに対しても高いガスバリア性を確保できるガスタンク及び、当該ガスタンクの製造方法を提供することをその目的とする。
 上記目的を達成するための本発明は、補強層の内側に樹脂ライナを有するガスタンクであって、前記樹脂ライナには、酸化層が形成されていることを特徴とする。
 本発明によれば、酸化層により、水素ガスなどの分子の小さいガスに対しても高いガスバリア性を確保できる。
 前記樹脂ライナの内面に前記酸化層が形成されていてもよい。かかる場合、タンク内部のガスが樹脂ライナ自体を透過することが抑制されるので、ガスによる樹脂ライナの劣化を防止できる。
 前記酸化層は、50~100μmの厚みに形成されていてもよい。酸化層をかかる厚みに形成することにより、ガスバリア性を十分に確保しつつ、樹脂ライナ全体の伸びの特性も維持できる。樹脂ライナ全体の伸びの特性を維持することにより、熱変形や荷重による変形に柔軟に対応でき、ガスタンクの強度を確保できる。
 前記酸化層は、前記樹脂ライナと同じ樹脂の酸化層であってもよい。かかる場合、酸化層が樹脂ライナと同じ母材であるので、例えば熱変形や荷重による変形が同程度に行われる。このため、例えば樹脂ライナと酸化層の接着性が高くなる。
 前記酸化層は、前記樹脂ライナを酸化することにより形成されていてもよい。かかる場合、酸化層が樹脂ライナから剥離することがなくなる。
 前記樹脂ライナは、ポリアミド系樹脂により形成されていてもよい。かかる場合、酸化層のガスバリア性がさらに向上する。
 上記ガスタンクは、水素ガスを貯留するためのものであってもよい。水素ガスは、比較的分子が小さいため透過しやすく、本発明に係るガスタンクを水素ガスの貯留用に用いる効果は大きい。
 別の観点による本発明は、ガスタンクの製造方法であって、酸素を含むガスを樹脂ライナの内部に封入し、フィラメントワイディング法により前記樹脂ライナの外面に補強繊維を巻回する工程と、前記樹脂ライナの外面の補強繊維を熱硬化し補強層を形成すると共に、前記樹脂ライナの内面を熱酸化して酸化層を形成する工程と、を有することを特徴とする。
 かかる場合、樹脂ライナの外面に補強層を形成しながら、樹脂ライナの内面に酸化層を形成できるので、既存の工程を利用して簡単に酸化層のあるガスタンクを製造できる。
 前記ガスタンクの製造方法は、前記補強繊維を巻回する工程の前に、前記樹脂ライナを射出成形し、その後前記樹脂ライナを加熱処理する工程をさらに有し、前記加熱処理する工程において、前記樹脂ライナの内部に酸素を含むガスを供給して、前記樹脂ライナの内面を熱酸化するようにしてもよい。
 前記樹脂ライナの内面の熱酸化は、空気雰囲気内で温度が130℃で10~20時間行われるようにしてもよい。かかる場合、ガスバリア性と伸び性の両方に優れた樹脂ライナを実現できる。なお、前記樹脂ライナを加熱処理する工程において熱酸化が行われる場合は、前記補強層を形成する際の熱酸化と、樹脂ライナを加熱処理する際の熱酸化とを合わせた合計時間が10~20時間となる。
 本発明によれば、水素ガスなどの分子の小さいガスに対しても高いガスバリア性を確保できる。
高圧ガスタンクを搭載した燃料電池自動車の模式図である。 高圧ガスタンクの構成の概略を示す縦断面図である。 高圧ガスタンクの壁部の拡大縦断面図である。 高圧ガスタンクの製造方法の主な工程を示すフローチャートである。 樹脂ライナを加熱処理する工程の様子を示す説明図である。 樹脂ライナに樹脂繊維を巻き付ける工程の様子を示す説明図である。 樹脂繊維を熱硬化する工程の様子を示す説明図である。 樹脂繊維を熱硬化する工程の加熱温度の変動を示す説明図である。 各種条件で形成された酸化層のガスバリア性と伸び性を検証する実験結果である。
 以下、図面を参照して、本発明の好ましい実施の形態について説明する。図1は、本実施の形態に係るガスタンクを搭載した燃料電池自動車1の模式図である。
 燃料電池自動車1には、例えば3つの高圧ガスタンク2が車体のリア部に搭載されている。高圧ガスタンク2は、燃料電池システム3の一部を構成し、ガス供給ライン4を通じて各高圧ガスタンク2から燃料電池5に燃料ガスが供給可能になっている。高圧ガスタンク2に貯留される燃料ガスは、可燃性の高圧ガスであり、例えば水素ガスである。なお、高圧ガスタンク2は、燃料電池自動車1のみならず、電気自動車、ハイブリッド自動車などの車両のほか、各種移動体(例えば、船舶や飛行機、ロボットなど)や定置設備(住宅、ビル)にも適用できる。
 図2は、高圧ガスタンク2の構成の概略を示す縦断面図である。高圧ガスタンク2は、例えば略楕円体のタンク本体10と、当該タンク本体10の長手方向の両端部に取り付けられた口金部11、12を有する。
 タンク本体10は、例えば二層構造を有し、内側の樹脂ライナ20とその樹脂ライナ20の外面を覆う補強層としてのFRP(Fiber Reinforced Plastics)層21を有している。
 樹脂ライナ20は、タンク本体10とほぼ同じ略楕円体形状を有している。樹脂ライナ20は、例えばナイロン6、ナイロン6,6などのポリアミド系樹脂により形成されている。樹脂ライナ20は、例えば3mm程度の厚みを有している。
 FRP層21は、樹脂を含有する繊維により形成されている。FRP層21の樹脂には、例えばエポキシ樹脂、変性エポキシ樹脂、又は不飽和ポリエステル樹脂等が用いられている。また、繊維としては、炭素繊維、金属繊維などが用いられている。
 樹脂ライナ20の内面の全面には、酸化層22が形成されている。図3は、高圧ガスタンク2の壁部を拡大した説明図である。酸化層22は、後述するように樹脂ライナ20の内面の樹脂を酸化させることにより形成されている。酸化層22は、例えば3mm程度の厚みの樹脂ライナ20に対し、例えば50~100μm程度の厚みに形成されている。
 次に、以上のように構成される高圧ガスタンク2の製造方法について説明する。図4は、かかる製造方法の主な工程の一例を示すフローチャートである。
 先ず、樹脂ライナ20が射出成形される(図4の工程S1)。例えば金型にポリアミド系樹脂を流し込んで、略半楕円体を2つ成型し、それらを溶着して樹脂ライナ20が成形される。この射出成形により、厚みの均一な樹脂ライナ20が成形される。
 次に、樹脂ライナ20は、例えば図5に示すように加熱室30において所定の条件で加熱処理(アニール処理)される。このアニール処理では、例えば樹脂ライナ20の内部に酸素を含むガスとしての空気40が供給される。アニール処理は、例えば内部圧力が大気圧、温度が130℃程度の条件で5時間程度行われる。これにより、樹脂ライナ20の残留応力が除去されると共に、樹脂ライナ20の内表面の一部が熱酸化される(図4の工程S2)。
 アニール処理の終了後、樹脂ライナ20は、図6に示すように繊維巻き付け装置50の回転支持部51に設置される。この回転支持部51には、例えば酸素を含むガスとしての空気のガスボンベ52に通じるガス供給管53が接続されており、ガスボンベ52の空気をガス供給管53及び回転支持部51を通じて樹脂ライナ20内に供給できる。
 樹脂ライナ20が回転支持部51に支持されると、当該回転支持部51の回転により、樹脂ライナ20が回転され、ポリアミド系の樹脂繊維Fが樹脂ライナ20の外面に巻き付けられる。樹脂繊維Fは、上流部で熱可塑性の樹脂が含浸され、その後繊維ガイド部54で角度調整されて、樹脂ライナ20に巻き付けられる。この際、ガス供給管53を通じて樹脂ライナ20内に空気が供給され、封入される。これにより、樹脂繊維Fの巻き付けにより樹脂ライナ20が凹むのを防止できる。こうして、樹脂ライナ20の外面の全体に樹脂繊維Fが所定の厚みで巻き付けられる(図4の工程S3)。
 樹脂繊維Fの巻き付け工程後、高圧ガスタンク2は、図7に示すように加熱炉60において熱処理される。高圧ガスタンク2は、例えば図8に示すように90℃程度で予備加熱され、その後130℃程度で、5~15時間程度本加熱される。この本加熱により、樹脂繊維Fが熱硬化され、FRP層21が形成される。また、図7に示すように本加熱により、樹脂ライナ20の内部の空気70により樹脂ライナ20の内面の樹脂が熱酸化され、樹脂ライナ20の内面に50~100μm程度の厚みの酸化層22が形成される(図4の工程S4)。その後、高圧ガスタンク2は冷却される。こうして、樹脂ライナ20の内面に酸化層22のある高圧ガスタンク2が製造される。
 ここで、樹脂ライナの内面に酸化層を有するガスタンクのガスバリア性及び伸び性について検証する。図9は、各種条件の下での樹脂ライナの水素ガス透過量を検証する実験と、各条件の酸化層の引張強度、破断伸びを検証する実験の結果を示す。
 実験は、酸化層無し(99.9%ヘリウムガス環境下、130℃、15時間の熱酸化)、酸化層有り(A)(大気環境下、130℃、5時間の熱酸化)、酸化層有り(B)(大気環境下、130℃、15時間の熱酸化)、酸化層有り(C)(大気環境下、130℃、50時間の熱酸化)の条件で行われている。
 図9から、酸化層有り(A)、(B)、(C)の場合は、酸化層無しの場合に比べて水素ガスの透過量が大幅に減少していることが確認できる。また、酸化層有り(A)、(B)、(C)の順、つまり熱酸化時間が長いほど水素ガスの透過量が少ないことが確認できる。また、一般的にガスバリア性と伸び性はトレードオフの関係にあり、ガスバリア性が向上すると伸び性は低下するが、酸化層有り(A)~(C)の引張強度及び破断伸びについては、全体的に大幅に悪化することはなく、酸化層有り(C)より酸化層有り(A)、(B)の方が優れていることが確認できる。なお、図9の引張強度と破断伸びの相対比較は、酸化層無しの場合を1として各酸化層有り(A)、(B)、(C)を相対比較したものである。
 かかる実験によれば、酸化層を形成することにより、水素ガスのなどの分子の小さいガスに対するガスバリア性が向上することが確認できる。また、酸化層有り(B)の条件に近い130℃で10~20時間程度熱酸化することにより、ガスバリア性が高く、伸び性も低下しない酸化層が得られることが確認できる。
 上述の本実施の形態によれば、樹脂ライナ20に酸化層22を形成するので、水素ガスなどの分子の小さいガスに対しても高いガスバリア性を確保できる。
 ところで、上述の特許文献2(特開平8-1813号公報)に記載されたフッ素樹脂の被膜を用いる方法では、ガスボンベのブロー成形時に、吹込ガスとしてフッ素を含む窒素ガスを用いることによりフッ素樹脂の被膜を形成している。しかしながら、このやり方で実際にフッ素樹脂の被膜を形成するには、高温高圧などの厳しい条件が要求され、多数の工程が必要になり、製造が容易ではない。また当該方法では、何らかの理由によりフッ素樹脂が分解された場合に有害なフッ素化合物が発生することが懸念される。これに対し、本実施の形態によれば、酸化層22を簡単に形成できるので、高圧ガスタンク2を容易に製造できる。また、酸化層22であるので、万一分解されても有害な化合物が生じ難く、安全性を向上できる。
 また、上記実施の形態では、樹脂ライナ20の内面に酸化層22が形成されているので、タンク内部のガスが樹脂ライナ20自体を透過することが抑制されるので、ガスによる樹脂ライナ20の劣化を防止できる。
 酸化層22は、50~100μmの厚みに形成されているので、高いガスバリア性を確保しつつ、樹脂ライナ20全体の伸びの特性も十分に確保できる。樹脂ライナ20全体の伸びの特性を確保することにより、高圧ガスタンク2の十分な強度を確保できる。
 酸化層22は、樹脂ライナ20の樹脂からなる酸化層であるので、酸化層22は、樹脂ライナ20と同じ母材であり、例えば熱変形や荷重による変形が同程度に行われる。このため、例えば樹脂ライナ20と酸化層22の接着性が高くなる。
 特開2006-316934号公報には、樹脂ライナの内面に金属層を設けることが開示されている。この場合、金属層と樹脂ライナとの接着性、剥離性が問題となるが、本実施の形態によれば、酸化層22が樹脂ライナ20を酸化させて形成されているので、酸化層22と樹脂ライナ20の接着性が高く、酸化層22が樹脂ライナ20から剥離することがなくなる。
 上記実施の形態によれば、樹脂ライナ20がポリアミド系樹脂により形成されているので、酸化層22のガスバリア性がさらに高くなる。これは、ポリアミド系樹脂が酸化された際に、樹脂の分子構造が三次元化し、緻密性が向上するためと考えられる。例えばナイロン6,6の場合、カルボキシル基のα位のメチレン基が酸化されてケトンになりエノール基を有する化合物に変化し、この化合物が別のポリアミドのアミノ基末端と反応して、環化し三次元の構造となる。
 上記実施の形態で記載した高圧ガスタンク2の製造方法では、樹脂ライナ20の外面に樹脂繊維Fを巻回する工程で、樹脂ライナ20の内部に空気70を封入し、樹脂繊維Fを熱硬化する工程で、樹脂ライナ20の内面を熱酸化して酸化層22を形成できるので、既存の工程を利用して簡単に酸化層22のある高圧ガスタンク2を製造できる。
 また、上記実施の形態では、樹脂ライナ20を射出成形し、その後樹脂ライナ20をアニール処理する工程でも、樹脂ライナ20の内部に空気40を供給して、樹脂ライナ20の内面を熱酸化するようにした。こうすることにより、射出成形後の樹脂ライナ20の加熱処理を利用して酸化層22の一部を形成できるので、より効率的に酸化層22を形成できる。
 上記実施の形態では、樹脂ライナ20のアニール処理時の熱酸化(図4の工程S2)と樹脂繊維Fの熱硬化時の熱酸化(図4の工程S4)を合わせて、樹脂ライナ20の熱酸化を空気雰囲気内で130℃、10~20時間行っている。こうすることにより、上述の実験で検証したようにガスバリア性と伸び性の両方に優れた樹脂ライナ20を実現できる。
 以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 例えば以上の実施の形態では、酸化層22を形成するために樹脂ライナ20内に供給されるガスが空気であったが、酸素を含むものであれば、酸素ガスなどの他のガスであってもよい。また、樹脂ライナ20の材質は、ポリアミド系樹脂に限られず、ポリエチレン樹脂、エチレン-ビニルアルコール共重合樹脂(EVOH)、又はその他の熱可塑性樹脂などの他の樹脂であってもよい。
 さらに、以上の実施の形態では、樹脂ライナ20の射出成形後のアニール処理時にも樹脂ライナ20の内面を熱酸化していたが、この段階では必ずしも熱酸化する必要はなく、樹脂繊維Fの熱硬化時のみに行うようにしてもよい。また、以上の実施の形態では、樹脂ライナ20の内面に酸化層22を形成していたが、樹脂ライナ20の外面や中間層に酸化層22を形成してもよい。
  2 高圧ガスタンク
 20 樹脂ライナ
 21 FRP層
 22 酸化層
  F 樹脂繊維

Claims (10)

  1.  補強層の内側に樹脂ライナを有するガスタンクであって、
     前記樹脂ライナには、酸化層が形成されていることを特徴とする、ガスタンク。
  2.  前記樹脂ライナの内面に前記酸化層が形成されていることを特徴とする、請求項1に記載のガスタンク。
  3.  前記酸化層は、50~100μmの厚みに形成されていることを特徴とする、請求項1又は2に記載のガスタンク。
  4.  前記酸化層は、前記樹脂ライナと同じ樹脂の酸化層であることを特徴とする、請求項1~3のいずれかに記載のガスタンク。
  5.  前記酸化層は、前記樹脂ライナを酸化することにより形成されていることを特徴とする、請求項4に記載のガスタンク。
  6.  前記樹脂ライナは、ポリアミド系樹脂により形成されていることを特徴とする、請求項5に記載のガスタンク。
  7.  請求項1~6のいずれかに記載のガスタンクは、水素ガスを貯留するためのものである。
  8.  ガスタンクの製造方法であって、
     酸素を含むガスを樹脂ライナの内部に封入し、フィラメントワイディング法により前記樹脂ライナの外面に補強繊維を巻回する工程と、
     前記樹脂ライナの外面の補強繊維を熱硬化し補強層を形成すると共に、前記樹脂ライナの内面を熱酸化して酸化層を形成する工程と、を有することを特徴とする、ガスタンクの製造方法。
  9.  前記補強繊維を巻回する工程の前に、前記樹脂ライナを射出成形し、その後前記樹脂ライナを加熱処理する工程をさらに有し、
     前記加熱処理する工程においても、前記樹脂ライナの内部に酸素を含むガスを供給して、前記樹脂ライナの内面を熱酸化することを特徴とする、請求項8に記載のガスタンクの製造方法。
  10.  前記樹脂ライナの内面の熱酸化は、空気雰囲気内で温度が130℃で10~20時間行われることを特徴とする、請求項8又は9に記載のガスタンクの製造方法。
PCT/JP2009/060067 2008-07-09 2009-06-02 ガスタンク及びガスタンクの製造方法 WO2010004813A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801236818A CN102066827B (zh) 2008-07-09 2009-06-02 贮气罐和贮气罐的制造方法
EP09794260A EP2325543B8 (en) 2008-07-09 2009-06-02 Gas tank and manufacturing method of gas tank
US13/003,064 US8172108B2 (en) 2008-07-09 2009-06-02 Gas tank and manufacturing method of gas tank
US13/103,452 US9140408B2 (en) 2008-07-09 2011-05-09 Gas tank and manufacturing method of gas tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-179210 2008-07-09
JP2008179210A JP4552159B2 (ja) 2008-07-09 2008-07-09 ガスタンク及びガスタンクの製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/003,064 A-371-Of-International US8172108B2 (en) 2008-07-09 2009-06-02 Gas tank and manufacturing method of gas tank
US13/103,452 Division US9140408B2 (en) 2008-07-09 2011-05-09 Gas tank and manufacturing method of gas tank

Publications (1)

Publication Number Publication Date
WO2010004813A1 true WO2010004813A1 (ja) 2010-01-14

Family

ID=41506935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060067 WO2010004813A1 (ja) 2008-07-09 2009-06-02 ガスタンク及びガスタンクの製造方法

Country Status (5)

Country Link
US (2) US8172108B2 (ja)
EP (1) EP2325543B8 (ja)
JP (1) JP4552159B2 (ja)
CN (1) CN102066827B (ja)
WO (1) WO2010004813A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102168756A (zh) * 2010-02-26 2011-08-31 通用汽车环球科技运作有限责任公司 具有注模端盖的挤出管件焊接容器衬套
JP2011240667A (ja) * 2010-05-20 2011-12-01 Toyota Motor Corp 樹脂成形体の製造方法および製造システム、樹脂成形体、圧力容器

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602007005696D1 (de) * 2006-12-06 2010-05-12 Shell Int Research Er kryogenen bedingungen
JP6209758B2 (ja) * 2010-12-09 2017-10-11 ディーエスエム アイピー アセッツ ビー.ブイ. ガス貯蔵タンク用ライナー
DE112011105278B4 (de) * 2011-05-23 2016-03-17 Toyota Jidosha Kabushiki Kaisha Herstellungsverfahren für einen Gastank
DE102011116553A1 (de) * 2011-10-21 2013-04-25 Kautex Textron Gmbh & Co. Kg Verfahren zur Herstellung eines Verbund-Druckbehälters sowie Verbund-Druckbehälter
WO2013083151A1 (en) * 2011-12-05 2013-06-13 Blue Wave Co S.A. Optimised vessel
WO2013083178A1 (en) * 2011-12-05 2013-06-13 Blue Wave Co S.A. Single-layer composite pressure vessel
US20150044407A1 (en) * 2012-04-17 2015-02-12 Dow Global Technologies Llc Composite vessels
KR101374482B1 (ko) * 2012-09-17 2014-03-13 노스타콤포지트 주식회사 가스용기 제조 방법
US9534296B2 (en) 2013-03-15 2017-01-03 Mcalister Technologies, Llc Methods of manufacture of engineered materials and devices
US9079489B2 (en) * 2013-05-29 2015-07-14 Mcalister Technologies, Llc Methods for fuel tank recycling and net hydrogen fuel and carbon goods production along with associated apparatus and systems
US11353160B2 (en) 2014-02-27 2022-06-07 Hanwha Cimarron Llc Pressure vessel
JP6287872B2 (ja) * 2015-01-29 2018-03-07 トヨタ自動車株式会社 タンク
CN105128252B (zh) * 2015-08-25 2017-06-06 厦门建霖工业有限公司 一种注塑件内部加纤维加强塑件强度技术
DE102017205190A1 (de) * 2017-03-28 2018-10-04 Bayerische Motoren Werke Aktiengesellschaft Druckbehälter mit brennstoffundurchlässigen Liner
JP6783277B2 (ja) * 2018-09-14 2020-11-11 本田技研工業株式会社 ライナ構成部材、高圧タンク及びその製造方法
KR102598547B1 (ko) * 2018-11-30 2023-11-03 현대자동차주식회사 압력 용기 및 압력 용기의 제조 방법
RU2698824C1 (ru) * 2018-12-29 2019-08-30 Федеральное государственное бюджетное учреждение науки Институт проблем химико-энергетических технологий Сибирского отделения Российской академии наук (ИПХЭТ СО РАН) Способ изготовления композитного баллона высокого давления
JP7092058B2 (ja) * 2019-01-31 2022-06-28 トヨタ自動車株式会社 高圧タンクおよびその製造方法
JP7314665B2 (ja) * 2019-07-08 2023-07-26 株式会社レゾナック 高圧ガス容器の口金
CN111174083B (zh) * 2019-12-27 2021-12-28 东南大学 一种高压复合气瓶
CN112645164A (zh) * 2020-04-16 2021-04-13 中科富海(中山)低温装备制造有限公司 一种杜瓦缠绕方法
JP7447851B2 (ja) * 2021-03-16 2024-03-12 トヨタ自動車株式会社 高圧タンクの製造方法、高圧タンク製造装置、及びコンピュータプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081813A (ja) 1994-06-21 1996-01-09 Toray Ind Inc ガスボンベおよびその製造方法
JP2002370750A (ja) * 2001-06-13 2002-12-24 Dainippon Printing Co Ltd 自立性袋
JP2006242247A (ja) 2005-03-02 2006-09-14 Toyota Motor Corp ガス容器およびその製造方法
JP2006316934A (ja) 2005-05-13 2006-11-24 Nissan Motor Co Ltd 高圧ガス貯蔵容器

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2345583A (en) * 1939-08-19 1944-04-04 United Gas Improvement Co Coated object and process for making the same
US2372800A (en) * 1942-08-21 1945-04-03 Products Dev Inc High-pressure vessel
US2435583A (en) * 1944-02-29 1948-02-10 Burton T Bush Inc Quaternary ammonium compounds
BE556020A (ja) * 1956-03-23 1900-01-01
US3282757A (en) * 1962-12-14 1966-11-01 Structural Fibers Method of making a filament reinforced pressure vessel
US3567536A (en) * 1968-02-07 1971-03-02 Goodyear Tire & Rubber Container and method of preparation
US3833430A (en) * 1972-12-26 1974-09-03 Varian Associates Treatment of stainless steel and similar alloys to reduce hydrogen outgassing
US3993811A (en) * 1974-08-15 1976-11-23 The Dow Chemical Company Thermal insulating panel for use in an insulative container and method of making said panel
US4581086A (en) * 1982-01-07 1986-04-08 Hercules Incorporated Fabricating large, thick wall, tubular structures
US4783232A (en) * 1983-09-02 1988-11-08 Allied-Signal Inc. Filament winding using a rotationally molded inner layer
SE463834B (sv) * 1988-03-15 1991-01-28 Asea Plast Ab Tryckkaerl
US5217140A (en) * 1988-04-11 1993-06-08 State Industries, Inc. Tank construction and method of manufacture
US4988011A (en) * 1989-08-09 1991-01-29 Safetytech Corporation Explosion resistant fuel container apparatus
US5150812A (en) * 1990-07-05 1992-09-29 Hoechst Celanese Corporation Pressurized and/or cryogenic gas containers and conduits made with a gas impermeable polymer
CN2219419Y (zh) * 1994-01-20 1996-02-07 深圳市创世纪实业股份有限公司 轻便耐压气罐
JPH0996399A (ja) * 1995-07-25 1997-04-08 Toyoda Gosei Co Ltd 圧力容器
WO1997020683A1 (fr) 1995-12-04 1997-06-12 Toray Industries, Inc. Recipient de pression et procede pour le fabriquer
WO2001066335A1 (fr) * 2000-03-10 2001-09-13 Toyo Seikan Kaisha, Ltd. Contenant en resine resistant a la chaleur et procede de fabrication
DE20015425U1 (de) * 2000-09-06 2001-02-15 Funck Ralph Druckbehälter zur Speicherung von flüssigen und/oder gasförmigen Medien unter Druck
EP1593904A4 (en) * 2003-02-03 2011-05-04 Univ Kyushu Nat Univ Corp PRESSURE CASE, HIGH PRESSURE VESSEL WITH THE PRESSURE CASE AND METHOD AND DEVICE FOR PRODUCING THE HIGH PRESSURE VESSEL
JP2006316834A (ja) 2005-05-11 2006-11-24 Honda Motor Co Ltd 圧力容器用ライナの製造方法
JP2006326394A (ja) 2005-05-23 2006-12-07 Toyota Motor Corp 容器の洗浄装置および洗浄方法
DE102005048714B4 (de) * 2005-10-12 2008-02-14 Gkss-Forschungszentrum Geesthacht Gmbh Gasdichter Behälter mit einer Diffusionssperrschicht aus Metallhydriden und Verfahren zur Herstellung desselben
WO2008033740A2 (en) * 2006-09-11 2008-03-20 Hydrogen Discoveries Inc. Mitigating hydrogen flux through solid and liquid barrier materials
JP4392804B2 (ja) * 2007-04-06 2010-01-06 豊田合成株式会社 圧力容器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081813A (ja) 1994-06-21 1996-01-09 Toray Ind Inc ガスボンベおよびその製造方法
JP2002370750A (ja) * 2001-06-13 2002-12-24 Dainippon Printing Co Ltd 自立性袋
JP2006242247A (ja) 2005-03-02 2006-09-14 Toyota Motor Corp ガス容器およびその製造方法
JP2006316934A (ja) 2005-05-13 2006-11-24 Nissan Motor Co Ltd 高圧ガス貯蔵容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2325543A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102168756A (zh) * 2010-02-26 2011-08-31 通用汽车环球科技运作有限责任公司 具有注模端盖的挤出管件焊接容器衬套
US9074685B2 (en) 2010-02-26 2015-07-07 GM Global Technology Operations LLC Extruded tube welded vessel liner with injection molded end caps
JP2011240667A (ja) * 2010-05-20 2011-12-01 Toyota Motor Corp 樹脂成形体の製造方法および製造システム、樹脂成形体、圧力容器

Also Published As

Publication number Publication date
EP2325543A1 (en) 2011-05-25
JP4552159B2 (ja) 2010-09-29
CN102066827A (zh) 2011-05-18
US8172108B2 (en) 2012-05-08
EP2325543B8 (en) 2012-10-31
US20110209817A1 (en) 2011-09-01
EP2325543A4 (en) 2011-08-10
CN102066827B (zh) 2013-06-19
US9140408B2 (en) 2015-09-22
US20110108441A1 (en) 2011-05-12
EP2325543B1 (en) 2012-05-23
JP2010019315A (ja) 2010-01-28

Similar Documents

Publication Publication Date Title
JP4552159B2 (ja) ガスタンク及びガスタンクの製造方法
CA2671831C (en) Part manufacturing method, part, and tank
US8833400B2 (en) Silicon hose integrated with sensor port and method for manufacturing the same
US20120214088A1 (en) Hydrogen storage tank
JP2008501546A (ja) Iv型タンクの漏れ防止ブラダの製造方法、及びiv型タンク
US11193630B2 (en) High pressure tank and method for manufacturing the same
WO2012160640A1 (ja) ガスタンクの製造方法
JP5170308B2 (ja) ガスタンクの製造方法
US20210237335A1 (en) Method for manufacturing high-pressure tank
JP6123933B2 (ja) 高圧タンクおよび高圧タンクの製造方法
JP2011245740A (ja) 高圧タンクの製造装置および高圧タンクの製造方法
WO2017149818A1 (ja) 構造体、および構造体の製造方法
JP2010090938A (ja) タンク及びタンクの製造方法
JP2018083391A (ja) 水素タンクの製造方法
US20220275908A1 (en) Method for producing a pressure container and pressure container
US11491744B2 (en) Method for manufacturing fiber reinforced resin molded article, and manufacturing device thereof
JP6153085B2 (ja) 高圧タンクの製造方法
JP2010084908A (ja) ガスタンク及びガスタンクの製造方法
JP2012066498A (ja) ガスタンクの製造方法
JP2020122514A (ja) 高圧タンクの製造方法
JP2023112249A (ja) 繊維層の加工方法および高圧タンクの製造方法
JP2011236972A (ja) 高圧タンクの製造方法、高圧タンクの製造装置および樹脂ライナ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123681.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794260

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009794260

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13003064

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE