WO2010004721A1 - 導電性高分子を用いた流体搬送装置 - Google Patents

導電性高分子を用いた流体搬送装置 Download PDF

Info

Publication number
WO2010004721A1
WO2010004721A1 PCT/JP2009/003128 JP2009003128W WO2010004721A1 WO 2010004721 A1 WO2010004721 A1 WO 2010004721A1 JP 2009003128 W JP2009003128 W JP 2009003128W WO 2010004721 A1 WO2010004721 A1 WO 2010004721A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
diaphragm
fluid
pump
chamber
Prior art date
Application number
PCT/JP2009/003128
Other languages
English (en)
French (fr)
Inventor
生嶋君弥
横山和夫
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2009801069497A priority Critical patent/CN101960144A/zh
Priority to US12/675,843 priority patent/US8062007B2/en
Priority to JP2009543296A priority patent/JP4482617B2/ja
Publication of WO2010004721A1 publication Critical patent/WO2010004721A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/08Shape memory

Definitions

  • the present invention uses a conductive polymer that sucks and discharges fluids, particularly used in a fuel supply device such as methanol in a fuel cell or a water-cooled circulation device for cooling an electronic device including a CPU.
  • a fuel supply device such as methanol in a fuel cell or a water-cooled circulation device for cooling an electronic device including a CPU.
  • the present invention relates to a fluid transfer device.
  • Pumps which are devices that transport fluids such as water, reduce the transport of cooling fluid for heating elements such as CPUs, transport of blood to blood testing chips, small doses of pharmaceuticals to the human body, chemical experiments or chemical operations Development is progressing in order to supply fuel such as Lab on a chip (lab on chip) for sizing and integration, or methanol in a fuel cell. In these applications, miniaturization, weight reduction, voltage reduction, and noise reduction are required.
  • a pump using a conductive polymer film has been proposed (for example, Patent Document 1).
  • an actuator using a conductive polymer film is characterized by being lightweight and capable of silent operation at a low voltage.
  • FIG. 22A to 22C show the structure of the diaphragm pump proposed in Patent Document 1.
  • FIG. 22A to 22C show the structure of the diaphragm pump proposed in Patent Document 1.
  • the pump in FIG. 22A includes diaphragms 403 and 404 made of a conductive polymer film, respectively, inside the housing 402.
  • Diaphragm 403 is defined as a first diaphragm
  • diaphragm 404 is defined as a second diaphragm.
  • the housing 402 has a cylindrical shape and has an internal space.
  • the first and second diaphragms 403 and 404 are disc-shaped conductive polymer films, respectively, and their peripheral portions are fixed to the housing 402 by fixing portions 430 and 431, respectively.
  • the first and second diaphragms 403 and 404 are connected to each other by a connecting member 406 at each central portion.
  • the first and second diaphragms 403 and 404 are installed in a state where tension is applied in the film surface direction, and each has a conical shape.
  • a ring-shaped space 409 surrounded by the first and second diaphragms 403 and 404 and the housing 402 is defined as an electrolyte chamber.
  • the electrolytic solution chamber 409 is filled with an electrolytic solution.
  • the first and second diaphragms 403 and 404 are connected to a power source 410c via lead wires 410a and 410b, respectively.
  • the conductive polymer films of the first and second diaphragms 403 and 404 perform expansion and contraction.
  • first pump chamber the first space portion 407 surrounded by the housing 402 and the first diaphragm 403
  • second space portion 408 surrounded by the housing 402 and the second diaphragm 404 is called a second pump chamber.
  • the liquid outside the first pump chamber 407 is sucked into the first pump chamber 407 from the first suction port 411 a provided with the first suction valve 412, and the second discharge valve 424 is provided.
  • the liquid inside the second pump chamber 408 is discharged from the discharge port 413b to the outside of the second pump chamber 408.
  • the liquid outside the second pump chamber 408 is discharged from the second suction port 411b provided with the second suction valve 423 to the second pump.
  • the liquid inside the first pump chamber 407 is discharged to the outside of the first pump chamber 407 from the first discharge port 413 a provided with the first discharge valve 422 by sucking into the chamber 408.
  • the volume of the first pump chamber 407 and the second pump chamber 408 is repeatedly increased and decreased, and the suction and discharge of the liquid to the respective pump chambers are repeated accordingly.
  • the first and second diaphragms 403 and 404 are slack, the electrolytic expansion / contraction force of the conductive polymer film escapes without being transferred to the fluid inside the pump chamber, so that the operation efficiency of the pump is lowered. Therefore, the first diaphragm 403 and the second diaphragm 404 need to be in a state in which the first diaphragm 403 and the second diaphragm 404 are not loosened. In the pump of FIG. By making it smaller than the pressure of the fluid inside the pump chamber and the fluid inside the second pump chamber, the first diaphragm 403 and the second diaphragm 404 can be in a state of being stretched loosely.
  • the pump of FIG. 22B has substantially the same configuration as the pump of FIG. 22A, except that the connecting member 406 is not provided.
  • the first and second diaphragms 403 and 404 exert a force through the electrolyte filled in the space 409.
  • the same operation as in FIG. 22A is performed.
  • the pump of FIG. 22B by making the pressure of the electrolyte inside the electrolyte chamber 409 larger or smaller than the pressure of the fluid inside the first pump chamber and the fluid inside the second pump chamber, The first diaphragm 403 and the second diaphragm 404 can be in a state of being stretched without slack.
  • the pump of FIG. 22C includes only one diaphragm 403 made of a conductive polymer film inside the housing 402.
  • the housing 402 has a cylindrical shape and has an internal space.
  • the diaphragm 403 is a disk-shaped conductive polymer film, and the periphery thereof is fixed to the housing 402 at a fixing portion 430. Further, the diaphragm 403 and the housing 402 are connected by a spring member 451.
  • the diaphragm 403 is installed in a state where tension is applied in the film surface direction, and has a conical shape. In FIG.
  • a space 409 located below the diaphragm 403 and surrounded by the diaphragm 403 and the housing 402 is defined as an electrolyte chamber.
  • the electrolytic solution chamber 409 is filled with an electrolytic solution.
  • An electrode 450 is disposed on the bottom surface of the housing 402 facing the diaphragm 403. Diaphragm 403 and electrode 450 are connected to power supply 410c via lead wires 410a and 410b, respectively.
  • a space portion 407 surrounded by the diaphragm 403 and the housing 402 is defined as a pump chamber.
  • the diaphragm 403 In the state shown in FIG. 22C, the diaphragm 403 is expanded. In this state, liquid outside the pump chamber 407 is sucked into the pump chamber 407 from the suction port 411 provided with the suction valve 412. Conversely, when the diaphragm 403 contracts, the liquid inside the pump chamber 407 is discharged from the discharge port 413 provided with the discharge valve 422 to the outside of the pump chamber 407. By continuously switching these states, the volume of the pump chamber 407 is repeatedly increased and decreased, and the suction and discharge of the liquid are repeated accordingly. This fulfills the function of a pump.
  • the pump using the conductive polymer film represented by the pump of Patent Document 1 has a problem that the operating efficiency of the pump is lowered due to a large change in the tension of the diaphragm during the operation of the pump.
  • the change in the tension of the diaphragm has the following two changes.
  • the first change is a change in diaphragm tension caused by periodic electrolytic expansion and contraction of the conductive polymer film during the pump operation.
  • the second change is a change in tension that occurs when the conductive polymer film expands and contracts for reasons other than periodic electrolytic expansion and contraction.
  • this will be described in order.
  • the amount of expansion and contraction of the conductive polymer film is approximately proportional to the amount of electric charge entering and exiting the conductive polymer film.
  • the first diaphragm 403 expands and the second diaphragm 404 contracts, but the expansion amount of the first diaphragm 403 and the contraction amount of the second diaphragm 404 are approximately equal to each other from the above contents. That is, the amount of change in the area of the first diaphragm 403 and the amount of change in the area of the second diaphragm 404 have the opposite signs and the absolute values are substantially equal.
  • the total area of the first diaphragm 403 and the second diaphragm 404 is kept substantially constant. Conversely, the same relationship holds when a certain amount of charge flows out of the first diaphragm 403 and flows into the second diaphragm 404. From the above, when the pump of FIG. 22B operates, the total area of the first diaphragm 403 and the second diaphragm 404 is kept substantially constant.
  • the relationship between the area of the first diaphragm 403 and the volume of the first pump chamber is generally non-linear under the assumption that the first diaphragm 403 is in a relaxed state during the operation of the pump of FIG. 22B. It becomes the relationship. That is, a graph representing the relationship between the area of the first diaphragm 403 and the volume of the first pump chamber 407 generally has an upward convex shape or a downward convex shape.
  • FIG. 25A shows an example in which the shape of the graph representing the relationship between the area of the first diaphragm 403 and the volume of the first pump chamber 407 is convex upward. Conversely, FIG.
  • 25B shows an example in which the shape of the graph representing the relationship between the area of the first diaphragm 403 and the volume of the first pump chamber 407 is convex downward.
  • the area of the first diaphragm 403 is S 1
  • the volume of the first pump chamber 407 at that time is W 1
  • the area of the second diaphragm 404 is S 2
  • the second pump chamber 408 at that time is the volume and W 2
  • FIG. 25C When the relationship of FIG. 25C is established, assuming that the first diaphragm 403 and the second diaphragm 404 are not loosely stretched during the operation of the pump, the area of the first diaphragm 403 and the first pump chamber 407 and The relationship between the second pump chamber 408 and the volume (W 1 + W 2 ) of the total portion thereof is shown in FIG. 25C. 25B, assuming that the first diaphragm 403 and the second diaphragm 404 are not loosened during the operation of the pump, the area of the first diaphragm 403 and the first pump chamber The relationship between 407 and the second pump chamber 408 and the volume (W 1 + W 2 ) of their total portion is shown in FIG. 25D.
  • the maximum value is obtained when the area of the first diaphragm 403 is S 0
  • the minimum value is obtained when the area of the first diaphragm 403 is S 0 .
  • the total value of the volume of the first pump chamber 407 and the volume of the second pump chamber 408 does not become a constant value but changes as the area of the first diaphragm 403 and the second diaphragm 404 changes. .
  • the total value (W 1 + W 2 ) of the volume of the first pump chamber 407 and the volume of the second pump chamber 408 decreases or increases.
  • the total volume (W 1 + W 2) by subtracting the value ⁇ W t of the volume of the electrolyte chamber 409 from W t first pump chamber 407 and the second pump chamber 408 ⁇ (W 1 + W 2 ) ⁇ .
  • the volume of the electrolyte chamber 409 increases or decreases.
  • the electrolytic solution filled in the electrolytic solution chamber 409 is an incompressible fluid, and thus the pressure of the electrolytic solution decreases rapidly. Due to this pressure change, the balance between the fluid pressure in the first pump chamber and the electrolyte pressure changes abruptly, and the first diaphragm 403 has a strong force in the direction from the first pump chamber 407 toward the electrolyte chamber 409. Pressed.
  • the second diaphragm 404 is pushed with a strong force in the direction from the second pump chamber 408 toward the electrolyte chamber 409. For this reason, the tension of the first diaphragm 403 and the second diaphragm 404 becomes very large, and the operation of the first diaphragm 403 and the second diaphragm 404 is hindered. As a result, the discharge amount and the suction amount of the pump become very small values, and the operation efficiency of the pump is reduced.
  • FIG. 24B shows a state where the conductive polymer membrane diaphragms 403 and 404 are loosened (loose) in the pump shown in FIG. 22B.
  • the tension in the state in which the diaphragms 403 and 404 are loose is smaller than the tension in the state in which the diaphragms 403 and 404 are not loosened. That is, in the pump of FIG. 22B, the pressure of the electrolytic solution changes rapidly according to the volume change of the electrolytic solution chamber 409. As a result, the diaphragms 403 and 404 are loosened, or the tension is so great that the operation is hindered. The same applies to the pump of FIG. 22A. In the operation, a volume change of the electrolyte chamber 409 occurs, and the pressure of the electrolyte solution abruptly changes accordingly.
  • the volume of the electrolyte chamber 409 decreases.
  • the electrolytic solution filled in the electrolytic solution chamber 409 is an incompressible fluid, the pressure of the electrolytic solution increases rapidly.
  • the diaphragm 403 is pushed with a strong force in the direction from the electrolyte chamber 409 to the pump chamber 407, and the tension of the diaphragm 403 becomes a very large value. This hinders the operation of the diaphragm 403.
  • the volume of the electrolyte chamber 409 increases.
  • the electrolyte filled in the electrolyte chamber 409 is an incompressible fluid, the pressure of the electrolyte rapidly decreases.
  • the diaphragm 403 is pushed with a strong force in the direction from the pump chamber 407 to the electrolyte chamber 409, and the tension of the diaphragm 403 becomes a very large value. This hinders the operation of the diaphragm 403.
  • 24A to 24C show a state in which the diaphragm of the conductive polymer film is loosened (loose) in the pump shown in FIGS. 22A to 22C.
  • the diaphragm of the conductive polymer film expands and contracts, the force escapes and the force is not efficiently transmitted to the liquid in the pump chamber, so the suction and discharge efficiency of the liquid is significantly reduced.
  • the fluid discharge amount and the suction amount become very small values, and the efficiency of the pump is remarkably lowered.
  • FIG. 23 shows a state in which a conductive polymer film having a rectangular shape is set in an electrolytic solution, and a certain tension in the long side direction is applied and an AC voltage is applied to perform electrostretching. It is the figure which showed typically the change of the distortion of a conductive polymer film.
  • L 0 indicates the length of the long side of the conductive polymer film before voltage application
  • ⁇ L indicates the value obtained by subtracting L 0 from the length of the long side of the conductive polymer film at each time.
  • the vertical axis of FIG. 23 indicates a value representing the [Delta] L / L 0 as a percentage (%).
  • the conductive polymer film may stretch with changes in temperature. For example, when the temperature rises, the conductive polymer film may be stretched due to thermal expansion. Further, when the conductive polymer film has the property of heat shrinkage, the conductive polymer film extends when the temperature is lowered. Considering the case where the conductive polymer film stretches due to these causes, the elastic modulus of the conductive polymer film is large, and the stretch of the conductive polymer film due to these causes cannot be absorbed by elasticity. A state where the molecular film is loose occurs.
  • the conductive polymer film may shrink as the temperature changes.
  • the conductive polymer film may thermally shrink when the temperature rises.
  • the conductive polymer film has a thermal expansion property
  • the conductive polymer film shrinks when the temperature decreases.
  • the conductive polymer film absorbs the electrolytic solution, the thickness increases and a force extending in the thickness direction is generated, and the conductive polymer film may shrink in the surface direction of the diaphragm surface due to deformation caused by this force.
  • the elastic modulus of the conductive polymer film is large, and the shrinkage of the conductive polymer film due to these causes cannot be absorbed by elasticity.
  • the tension of the molecular film becomes so great that the pump operation is hindered.
  • the object of the present invention is to have a function of a pump that sucks and discharges fluid using a conductive polymer film, so that the pressure applied to the diaphragm composed of the conductive polymer film is within an appropriate range.
  • An object of the present invention is to provide a fluid transfer device using a conductive polymer that can improve the efficiency of suction and discharge of fluid by maintaining the fluid.
  • a fluid conveyance device using a conductive polymer that sucks and discharges fluid A pump chamber filled with the fluid; A housing part in which the pump chamber is formed and constituting a part of the wall surface of the pump chamber; A diaphragm that is supported in the housing part and is formed of a conductive polymer film that is partly or wholly subjected to electrolytic expansion and contraction, and that forms a wall surface of the pump chamber together with the housing part; An opening disposed in the housing and for discharging and sucking the fluid in the pump chamber; An electrolytic solution chamber surrounded by the casing and the diaphragm and containing an electrolytic solution therein, and a part of the electrolytic solution is in contact with the diaphragm; A power source for applying a voltage to the conductive polymer film; A wiring portion for electrically connecting the conductive polymer film and the power source; Provided is a fluid conveyance
  • the pressure acting on the diaphragm is maintained within an appropriate range by maintaining the pressure of the electrolytic solution within a predetermined range. (Pressure maintenance function). Since this state is always maintained during operation of the fluid conveyance device, the work when the conductive polymer film expands and contracts is efficiently used for the discharge and suction of the fluid in the pump chamber. That is, assuming that the ratio of electrical energy applied from the power source used for the discharge and suction work of the fluid in the pump chamber is called work efficiency, the work efficiency of the fluid transfer device is improved by the pressure maintaining function. Improved compared to the pump.
  • 1 is a perspective view of a fluid conveyance device using a conductive polymer according to a first embodiment of the present invention
  • It is a block diagram of the fluid conveyance apparatus concerning 1st Embodiment of this invention
  • It is a block diagram of the fluid conveyance apparatus concerning 1st Embodiment of this invention
  • It is sectional drawing of the fluid conveyance apparatus concerning 1st Embodiment of this invention, It is the figure which showed the example of the magnitude
  • In the fluid conveyance device concerning a 1st embodiment of the present invention it is an operation figure showing operation of a pump when applying a periodic sine wave voltage with a power supply
  • In the fluid conveyance device concerning a 1st embodiment of the present invention it is an operation figure showing operation of a pump when applying a periodic sine wave voltage with a
  • the pressure of the electrolyte is set to the same value as the pressure of the fluid in the pump chamber.
  • FIG. 10 is a fluid conveyance device according to still another embodiment of the present invention
  • the pump of FIG. 10 in the fluid conveyance device according to the first modification of the first embodiment of the present invention is used to pump the electrolyte pressure.
  • FIG. 13 is a fluid conveyance device according to still another embodiment of the present invention, and in the pump of FIG.
  • the electrolyte pressure is the same value as the fluid pressure in the pump chamber.
  • FIG. 18 is a fluid conveyance device according to still another embodiment of the present invention, and in the pump of FIG. 18 in the fluid conveyance device according to the fourth embodiment of the present invention, the electrolyte pressure is the same value as the fluid pressure in the pump chamber.
  • a fluid conveyance device using a conductive polymer that sucks and discharges fluid A pump chamber filled with the fluid; A housing part in which the pump chamber is formed and constituting a part of the wall surface of the pump chamber; A diaphragm that is supported in the housing part and is formed of a conductive polymer film that is partly or wholly subjected to electrolytic expansion and contraction, and that forms a wall surface of the pump chamber together with the housing part; An opening disposed in the housing and for discharging and sucking the fluid in the pump chamber; An electrolytic solution chamber surrounded by the casing and the diaphragm and containing an electrolytic solution therein, and a part of the electrolytic solution is in contact with the diaphragm; A power source for applying a voltage to the conductive polymer film; A wiring portion for electrically connecting the conductive polymer film and the power source; Provided is a fluid conveyance device using a conductive polymer, comprising a pressure maintaining unit
  • the pressure maintaining part includes an elastic part, and acts on the diaphragm by deforming an interface between the electrolytic solution and a part other than the electrolytic solution by an elastic force of the elastic part.
  • a fluid conveyance device using a conductive polymer that maintains a pressure within a predetermined range.
  • the elastic part of the pressure maintaining part is a stretchable elastic body formed on a part of the wall surface of the electrolyte chamber, and between the elastic body and the housing part. And the elastic body acts from the inside of the electrolyte chamber to the outside by causing the elastic force of the elastic body or the elastic force of the spring portion to act as the elastic force of the elastic portion.
  • the pressure of the electrolytic solution is kept at a value smaller than the pressure of the fluid in the pump chamber, and the diaphragm generated by the difference between the pressure of the electrolytic solution and the pressure of the fluid in the pump chamber.
  • the elastic part of the pressure maintaining part is constituted by an elastic body that can be expanded and contracted formed on a part of the wall surface of the electrolyte chamber, and the elastic force of the elastic body is obtained.
  • the elastic part By causing the elastic part to act as the elastic force, the elastic body generates a force to deform from the inside of the electrolyte chamber to the outside, Due to the generated force, the pressure of the electrolytic solution is kept at a value smaller than the pressure of the fluid in the pump chamber, and the diaphragm generated by the difference between the pressure of the electrolytic solution and the pressure of the fluid in the pump chamber.
  • the elastic part of the pressure maintaining part is constituted by a spring part, and the elastic force of the spring part is caused to act as the elastic force of the elastic part. Generates a force to deform the interface with parts other than the electrolyte, Due to the generated force, the pressure of the electrolytic solution is kept at a value smaller than the pressure of the fluid in the pump chamber, and the diaphragm generated by the difference between the pressure of the electrolytic solution and the pressure of the fluid in the pump chamber.
  • the fluid conveyance device using the conductive polymer according to the second aspect, wherein the diaphragm is maintained in a shape that is convex from the pump chamber toward the electrolyte chamber by tension. provide.
  • the elastic part of the pressure maintaining part is a stretchable elastic body formed on a part of the wall surface of the electrolyte chamber, and between the elastic body and the housing part. And the elastic body is made to act as the elastic force of the elastic part by the elastic force of the elastic body or the elastic force of the spring part.
  • the pressure of the electrolytic solution is maintained at a value larger than the pressure of the fluid in the pump chamber, and the diaphragm generated by the difference between the pressure of the electrolytic solution and the pressure of the fluid in the pump chamber.
  • the elastic part of the pressure maintaining part is constituted by an elastic body that can be expanded and contracted formed on a part of the wall surface of the electrolyte chamber, and the elastic force of the elastic body is obtained.
  • the elastic portion By causing the elastic portion to act as the elastic force, the elastic body generates a force that tends to deform inward from the outside of the electrolyte chamber, Due to the generated force, the pressure of the electrolytic solution is maintained at a value larger than the pressure of the fluid in the pump chamber, and the diaphragm generated by the difference between the pressure of the electrolytic solution and the pressure of the fluid in the pump chamber.
  • the elastic part of the pressure maintaining part is configured by a spring part, and the elastic force of the spring part acts as the elastic force of the elastic part. Generates a force to deform the interface with parts other than the electrolyte, Due to the generated force, the pressure of the electrolytic solution is maintained at a value larger than the pressure of the fluid in the pump chamber, and the diaphragm generated by the difference between the pressure of the electrolytic solution and the pressure of the fluid in the pump chamber.
  • the elastic part of the pressure maintaining part is located in the electrolyte solution of the electrolyte chamber, and is constituted by a bubble part containing gas inside,
  • the volume of the bubble part is 10% or more of the discharge amount of the fluid conveyance device when the diaphragm expands and contracts once.
  • the conductive polymer according to the second aspect is used.
  • a fluid transfer device is provided.
  • the volume of the bubble portion is 20% or less of the volume of the electrolyte chamber.
  • FIG. 1 is a perspective view of a fluid conveyance device using a conductive polymer according to the first embodiment of the present invention.
  • the fluid conveyance device of FIG. 1 includes a housing part 102, an elastic film part 130 as an example of an elastic part, and fluid pipe parts 200, 201, 202, and 203.
  • the housing unit 102 has a substantially cylindrical shape. Two fluid pipe parts 200 and 201 and two fluid pipe parts 202 and 203 are connected to the upper and lower circular planes 210 of the casing part 102, respectively. A circular elastic membrane portion 130 is provided at the opening edge of the side wall 102 s of the housing portion 102 outside the through hole 102 h.
  • the upper circular plane of the casing 102 is defined as an upper circular plane 210.
  • the straight lines 100A-100B are straight lines including one diameter of the upper circular plane 210.
  • the straight line 100C-100D is a straight line including one diameter of the upper circular plane 210, and is orthogonal to the straight lines 100A-100B.
  • a plane including the straight lines 100A to 100B and perpendicular to the upper circular plane 210 is defined as a plane 220 (see FIG. 2).
  • a plane including the straight line 100C-100D and perpendicular to the upper circular plane 210 is defined as a plane 221 (see FIG. 2).
  • FIG. 3 is a cross-sectional view of the fluid conveyance device according to the first embodiment cut along a plane 220.
  • 3 includes a housing 102, a first diaphragm 103, a second diaphragm 104, a first pump chamber 107, a second pump chamber 108, an electrolyte chamber 109, and wiring portions 110a and 110b.
  • Power supply 110c first and second suction ports 111a and 111b, first and second discharge ports 113a and 113b, first and second suction valves 121 and 123, and first and second discharge valves 122.
  • 124 a spring part 131 as an example of an elastic part, an elastic film part 130, and fluid pipe parts 200, 201, 202, 203.
  • the spring part 131 and the elastic film part 130 function as a pressure maintaining part (in particular, an example of an elastic part of the pressure maintaining part) as described below.
  • the first diaphragm 103 is a disc-shaped conductive polymer film, and its peripheral part is fixed to the peripheral part of the upper wall of the housing part 102.
  • the second diaphragm 104 is a disk-shaped conductive polymer film, and its peripheral part is fixed to the peripheral part of the lower wall part of the casing part 102.
  • the housing portion 102 itself is made of an insulator, or the first diaphragm 103 and / or the second diaphragm 104 is both.
  • the casing 102 are fixed via an insulator.
  • the first diaphragm 103 and the second diaphragm 104 are simply referred to as diaphragms for the sake of simplicity.
  • the shape or operation of each part will be described in detail.
  • FIG. 4 is a cross-sectional view of the fluid conveyance device according to the first embodiment cut along a plane 221.
  • FIG. 4 the shape of the spring portion 131 is shown in a simplified manner.
  • a helical coil spring structure having a straight line parallel to the straight lines 100A-100B as an axis will be described later. Can be considered.
  • the first pump chamber 107 is configured by being surrounded by the upper wall of the housing 102 and the first diaphragm 103, and is filled with a fluid to be transported.
  • a fluid pipe part 200 is connected to the upper wall of the housing part 102 constituting a part of the first pump chamber 107, and a fluid pipe part 201 is connected to a first suction port 111a having a first suction valve 121.
  • Two openings with the first discharge port 113a having the first discharge valve 122 are formed.
  • the second pump chamber 108 is configured by being surrounded by the lower wall of the housing 102 and the second diaphragm 104, and is filled with a fluid to be transported.
  • the fluid in the first pump chamber 107 and the fluid in the second pump chamber 108 may be the same or different.
  • a fluid pipe part 203 is connected to the lower wall of the casing part 102 constituting a part of the second pump chamber 108, and a second suction port 111 b having a second suction valve 123 and a fluid pipe part 202 are connected. Two openings with the second discharge port 113b having the second discharge valve 124 are formed.
  • a ring-shaped space 109 surrounded by the first and second diaphragms 103 and 104 and the casing 102 is defined as an electrolyte chamber.
  • the spring portion 131 is disposed in the electrolyte chamber 109.
  • the fluid is sucked and discharged through these openings formed in the first and second pump chambers 107 and 108, so that the pump operates as a fluid conveyance device.
  • the first diaphragm 103 is expanded and the second diaphragm 104 is contracted.
  • a fluid for example, a liquid outside the first pump chamber 107 is sucked into the first pump chamber 107 from the first suction port 111a having the opened first suction valve 121, and the second pump chamber 107 is opened.
  • the fluid inside the second pump chamber 108 is discharged from the second discharge port 113 b provided with the discharge valve 124 to the outside of the second pump chamber 108.
  • the first discharge port 113 a provided with the first discharge valve 122 is closed by the first discharge valve 122, and the second suction port 111 b provided with the second suction valve 123 is also closed by the second suction valve 123.
  • the first diaphragm 103 contracts and the second diaphragm 104 expands, the fluid outside the second pump chamber 108 from the second suction port 111b provided with the opened second suction valve 123, for example, The liquid is sucked into the second pump chamber 108 and the fluid in the first pump chamber 107 is discharged to the outside of the first pump chamber 107 from the first discharge port 113a provided with the opened first discharge valve 122.
  • the second discharge port 113 b provided with the second discharge valve 124 is closed by the second discharge valve 124, and the first suction port 111 a provided with the first suction valve 121 is also closed by the first suction valve 121. ing.
  • the volume of the first pump chamber 107 and the second pump chamber 108 is repeatedly increased and decreased, and the suction of fluid into the respective pump chambers 107 and 108 is accordingly performed. The discharge is repeated. As a result, the function of a pump as a fluid conveyance device can be achieved.
  • the housing portion 102 has a space inside, and has a shape in which a through hole is formed at a specific location such as an opening portion with respect to a cylindrical shape having a diameter of 1 cm to 4 cm and a height of 1 cm to 4 cm, for example.
  • the housing 102 has a cylindrical inner space having a diameter of 0.8 to 3.8 cm and a height of 0.8 to 3.8 cm. In this case, it is preferable that the thickness of the housing part 102 be about 0.2 cm. From the viewpoint that the tensions of the first and second diaphragms 103 and 104 are uniform, the shapes of the upper surface and the bottom surface of the casing 102 are smaller than the circular shapes of the disks of the first and second diaphragms 103 and 104, respectively.
  • the height of the housing unit 102 be designed so that the distance between the two diaphragms 103 and 104 falls within the range described below. If the two diaphragms 103 and 104 are in contact with each other when the two diaphragms 103 and 104 are operating, it is conceivable that the two diaphragms 103 and 104 are electrically short-circuited and thus do not operate normally. Further, the operations of the first and second diaphragms 103 and 104 are limited, and the suction and discharge efficiency of the pump is lowered.
  • the distance between the closest portions of the two diaphragms 103 and 104 is set so that the two diaphragms 103 and 104 do not contact each other. It is desirable that it is a certain value or more.
  • the distance between the closest portions of the two diaphragms 103 and 104 is too large, the influence of the voltage drop in the electrolyte existing in the electrolyte chamber 109 between the two diaphragms 103 and 104 is affected. Increases power consumption.
  • the distance between the closest portions of the two diaphragms 103 and 104 is too large, it is difficult to reduce the size of the fluid conveyance device.
  • the distance between the two diaphragms 103 and 104 that are closest to each other is a certain value or less. Considering the above points, it is desirable to design the distance between the closest portions of the two diaphragms 103 and 104 and the height of the casing 102.
  • FIG. 5 is a diagram showing a specific example of the size of each part of the fluid conveyance device of the first embodiment.
  • the internal space of the housing portion 102 is divided into three spaces by two diaphragms 103 and 104, and forms a first pump chamber 107, an electrolyte chamber 109, and a second pump chamber 108, respectively.
  • Part or all of the diaphragms 103 and 104 are formed of a polymer actuator material, and are, for example, a disk shape having a thickness of 5 ⁇ m to 30 ⁇ m and a diameter of about 1 cm to 4.5 cm.
  • the diaphragms 103 and 104 are used in a bent state as shown in FIGS.
  • the size of the diaphragms 103 and 104 is the housing part. It is larger than the bottom surface of the internal space 102.
  • the diameters of the first suction port 111a, the second suction port 111b, the first discharge port 113a, and the second discharge port 113b are 3 mm
  • the height of the housing portion 102 is 10 mm
  • the distance from the outer surface of the side wall 102s of the portion 102 to the inner surface of the side wall 102 facing the side wall 102 of the housing portion 102 (in other words, the distance of the inner space of the housing portion 102 along the diameter direction of the bottom surface of the inner space of the housing portion 102)
  • the total distance with the thickness of the side wall 102s of the casing 102 is 30 mm.
  • the polymer actuator material constituting the first and second diaphragms 103 and 104 is a material of a conductive polymer film that performs electrolytic expansion and contraction.
  • Specific examples include polypyrrole and polypyrrole derivatives, polyaniline and polyaniline derivatives, polythiophene. And polythiophene derivatives, and (co) polymers composed of one or more types selected from these.
  • polymer actuator materials include polypyrrole, polythiophene, poly N-methylpyrrole, poly-3-methylthiophene, poly-3-methoxythiophene, poly (3,4-ethylenedioxythiophene), and one kind selected from these Or the (co) polymer which consists of two types is preferable.
  • the conductive polymer film made of these materials is, for example, hexafluorophosphate ion (PF 6- ), p-phenol sulfonate ion (PPS), dodecylbenzene sulfonate ion (DBS), or It is preferable to use it in a state doped with negative ions (anions) such as polystyrene sulfonate ions (PSS). In such a doped state, the conductive polymer film has conductivity and generates a function as a polymer actuator.
  • These conductive polymer films can be produced by synthesizing by chemical polymerization or electrolytic polymerization and, if necessary, by performing a molding process.
  • the thickness of the diaphragms 103 and 104 made of a polymer actuator material will be described.
  • the diaphragm made of a polymer actuator material is thick, it is possible to obtain a large force in work due to electrolytic expansion and contraction of the polymer actuator.
  • the diaphragm made of the polymer actuator material is thin, ions enter and exit the polymer actuator material quickly, so that the pump can be operated at high speed. Considering these points, it is desirable to design the thickness of the diaphragm composed of the polymer actuator material.
  • the thickness of each of the diaphragms 103 and 104 is preferably in the range of 0.1 to 1000 ⁇ m, and more preferably 1 ⁇ m to 100 ⁇ m. Further, when the area of the diaphragm composed of the polymer actuator material is increased, the work amount due to the electrolytic expansion and contraction of the polymer actuator can be increased. In addition, when the area of the diaphragm made of the polymer actuator material is reduced, the volume of the required casing can be reduced, so that the fluid conveyance device can be reduced in size. Considering these points, it is desirable to design the area of the diaphragm made of the polymer actuator material. From the above viewpoint, as an example, the area of each of the diaphragms 103 and 104 is preferably 0.01 cm 2 to 1000 cm 2 , and particularly preferably 0.1 cm 2 to 100 cm 2 .
  • the electrolytic solution chamber 109 is filled with an electrolytic solution.
  • the electrolytic solution refers to a liquid electrolyte.
  • an electroconductive solution prepared by dissolving an ionic substance in a polar solvent such as water, or a liquid made of ions (ionic liquid). ) Etc. are considered.
  • an electrolyte such as NaPF 6 , TBAPF 6 , HCl, or NaCl dissolved in water or an organic solvent such as propylene carbonate, or an ionic liquid such as BMIPF 6 can be used. It is.
  • the diaphragms 103 and 104 are connected to one ends of the wiring portions 110a and 110b, respectively.
  • the other ends of the wiring portions 110a and 110b are connected to the power source 110c.
  • the first pump chamber 107 and the second pump chamber 108 contain fluid that is sucked and discharged by a pump as a fluid transfer device.
  • water is considered as the fluid that the pump performs suction and discharge.
  • the casing 102 is made of a material that is resistant to the electrolytic solution, and is made of, for example, a material containing a polycarbonate resin or an acrylic resin, or a material obtained by subjecting these materials to a surface hardening treatment.
  • the first suction port 111a and the second suction port 111b have a first suction valve 121 and a second suction valve 123, and fluid is sucked from the outside of the pump chambers 107 and 108 toward the pump chambers 107 and 108, respectively. It has a structure that flows only in The first discharge port 113a and the second discharge port 113b have a first discharge valve 122 and a second discharge valve 124, and fluid is discharged from the pump chambers 107 and 108 to the outside of the pump chambers 107 and 108, respectively. It has a structure that flows only in The shape of each suction port and each discharge port is designed in consideration of the pressure or flow rate required for sucking and discharging the fluid, the viscosity of the fluid, and the like.
  • the voltage of the power supply 110c changes, for example, with a sine wave or a square wave of ⁇ 1.5V.
  • a periodically changing voltage is applied between the diaphragms 103 and 104.
  • the conductive polymer film constituting the diaphragm 103 or 104 is oxidized.
  • positive ions (cations) escape from the conductive polymer film of the one diaphragm 103 or 104, or negative ions (anions) flow into the conductive polymer film of the one diaphragm 103 or 104.
  • An intrusive change occurs.
  • 6A, 6B, 6C, and 6D are diagrams illustrating the operation of the pump when a periodic sine wave voltage is applied by the power source 110c. Now, let V be the amplitude of the sine wave voltage. 6A to 6D show an example in which deformation of the conductive polymer films of the diaphragms 103 and 104 is mainly caused by the entry and exit of negative ions. 6A to 6D, the size of the negative ions 99 is enlarged with respect to the diaphragms 103 and 104 for easy understanding.
  • the voltages of the first diaphragm 103 and the second diaphragm 104 are both zero. That is, the first diaphragm 103 and the second diaphragm 104 are equipotential.
  • a positive voltage (+ V) is applied from the power source 110c to the first diaphragm 103, and a negative voltage ( ⁇ V) is applied from the power source 110c to the second diaphragm 104.
  • the voltages of the first diaphragm 103 and the second diaphragm 104 are both zero. That is, the first diaphragm 103 and the second diaphragm 104 are equipotential.
  • a negative voltage ( ⁇ V) is applied from the power source 110c to the first diaphragm 103, and a positive voltage (+ V) is applied from the power source 110c to the second diaphragm 104.
  • the first diaphragm 103 and the second diaphragm 104 are equipotential, and the negative ions 99 contained in the electrolytic solution in the electrolytic solution chamber 109 are distributed almost uniformly in the electrolytic solution.
  • the potential of the first diaphragm 103 is increasing, the conductive polymer film constituting the first diaphragm 103 is oxidized. That is, for example, when the potential V (t) of the first diaphragm 103 at time t is expressed as V ⁇ sin ( ⁇ t) and the state of FIG. 6A is reached at time 0, the first diaphragm 103 in the state of FIG.
  • the second diaphragm 104 since the potential of the second diaphragm 104 is decreasing at the same time as the potential of the first diaphragm 103 is increasing, the reduction of the conductive polymer film constituting the second diaphragm 104 proceeds. In response to this, negative ions (anions) 99 escape from the conductive polymer film constituting the second diaphragm 104 to the electrolytic solution. As a result, the second diaphragm 104 contracts. As the volume of the second pump chamber 108 decreases as the second diaphragm 104 contracts, the second discharge valve 124 opens, and the fluid in the second pump chamber 108 flows through the second discharge port 113b to the second pump chamber 108. It flows out to the outside.
  • the structure of the fluid conveyance device works as a capacitance when viewed from the power source 110c.
  • a current flows in the direction of accumulating positive charges in the first diaphragm 103 from the outside in the capacitance.
  • a positive voltage (+ V) is applied from the power supply 110c to the first diaphragm 103
  • a negative voltage ( ⁇ V) is applied from the power supply 110c to the second diaphragm 104.
  • the conductive polymer film constituting the first diaphragm 103 is oxidized, and negative ions (anions) 99 contained in the electrolytic solution are attracted to the first diaphragm 103 accordingly.
  • a part of the negative ions (anions) 99 enters the inside of the conductive polymer film constituting the first diaphragm 103.
  • the first diaphragm 103 is extended.
  • V (t) of the first diaphragm 103 at time t is expressed as V ⁇ sin ( ⁇ t), and the state shown in FIG. 6A is reached at time 0, and at time ⁇ / (2 ⁇ ).
  • V ⁇ sin ( ⁇ t) the potential of the first diaphragm 103 at time t
  • V ⁇ sin ( ⁇ t) the potential of the first diaphragm 103 at time t
  • the potential of the first diaphragm 103 is the maximum value V, and accordingly, the first diaphragm 103 is in the most expanded state.
  • the derivative of V (t) is 0 at time ⁇ / (2 ⁇ ), there is no change in potential in the state of FIG.
  • the velocity of the first diaphragm 103 is 0, and the pump returns to the pump.
  • the flow rate of fluid discharge and suction is zero.
  • the viscosity of the ionic liquid or fluid is ignored, and the diaphragm 103 is expanded and contracted in synchronization with the voltage change, and the fluid flow is synchronized with the deformation speed of the diaphragm 103.
  • the conductive polymer film constituting the second diaphragm 104 has been reduced, and accordingly, negative ions (anions) 99 escape from the conductive polymer film constituting the second diaphragm 104 to the electrolytic solution. Yes. As a result, the second diaphragm 104 is contracted.
  • FIG. 6B the position of the second diaphragm 104 in FIG. 6A is indicated by a dotted line for comparison.
  • the change in potential is almost zero, so the change in the shape of the first and second diaphragms 103 and 104 or the distribution of the negative ions 99 is also almost zero.
  • the fluid in and out of the pump chamber 108 is almost zero.
  • the first diaphragm 103 is in the most expanded state
  • the second diaphragm 104 is in the most contracted state.
  • the expansion amount of the first diaphragm 103 takes a positive value in the state of FIG.
  • the expansion amount of the second diaphragm 104 takes a negative value, and the value is the minimum value in the cycle. Further, the current flowing from the power source 110c is almost zero. In this state, the fluid flow is almost zero.
  • the first diaphragm 103 and the second diaphragm 104 are equipotential, and the negative ions 99 contained in the electrolytic solution are distributed almost uniformly in the electrolytic solution.
  • the potential of the second diaphragm 104 is increasing, oxidation of the conductive polymer film constituting the second diaphragm 104 proceeds.
  • negative ions (anions) 99 contained in the electrolytic solution are attracted to the second diaphragm 104, and part of the ions enter the second diaphragm 104.
  • the second diaphragm 104 expands.
  • the volume of the second diaphragm 104 increases, so that the second suction valve 123 opens and fluid flows from the second suction port 111b into the second pump chamber 108 from the outside of the second pump chamber 108. Flow into. Further, since the potential of the first diaphragm 103 is decreasing, the conductive polymer film constituting the first diaphragm 103 is reduced. In response to this, negative ions (anions) 99 escape from the conductive polymer film constituting the first diaphragm 103 to the electrolytic solution. As a result, the first diaphragm 103 contracts.
  • the first discharge valve 122 opens, and fluid flows from the first pump chamber 107 through the first discharge port 113a to the outside of the first pump chamber 107.
  • the structure of the fluid transfer device works as a capacitance when viewed from the power source 110c.
  • a current flows in the direction of accumulating positive charges in the first diaphragm 104 from the outside in the capacitance.
  • the positions of the first and second diaphragms 103 and 104 in the state of FIG. 6C are substantially the same as the positions of the first and second diaphragms 103 and 104 in FIG. 6A.
  • a positive voltage (+ V) is applied from the power source 110c to the second diaphragm 104
  • a negative voltage ( ⁇ V) is applied from the power source 110c to the first diaphragm 103.
  • the conductive polymer film constituting the second diaphragm 104 is oxidized, and accordingly negative ions (anions) 99 contained in the electrolytic solution are attracted to the second diaphragm 104.
  • a part of the negative ions (anions) 99 enters the inside of the conductive polymer film constituting the second diaphragm 104.
  • the second diaphragm 104 is extended. 6D, the positions of the first and second diaphragms 103 and 104 in FIG.
  • the extension amount of the first diaphragm 103 takes a negative value, and the value is the minimum value in the cycle.
  • the expansion amount of the second diaphragm 104 takes a positive value, and the value is the maximum value in the cycle. Further, the current flowing from the power source 110c is almost zero. In this state, the fluid flow is almost zero.
  • the electric potential of the first and second diaphragms 103 and 104, the amount of charge accumulated in the structure of the fluid conveyance device, and the expansion amount of the first and second diaphragms 103 and 104 are in phase.
  • the viscosity of the fluid, the resistance of the wiring part and the power source, the resistance of the contact part between the conductive polymer film and the wiring part, or the high conductivity The potentials of the first and second diaphragms 103 and 104 are affected by the internal resistance of the molecular film, the charge transfer resistance, the impedance indicating ion diffusion into the conductive polymer film, or the solution resistance.
  • a phase difference may occur between the amount of charge accumulated in the structure of the fluid conveyance device and the amount of expansion of the first and second diaphragms 103 and 104.
  • the electrolytic solution chamber 109 is filled with the electrolytic solution, and the electrolytic solution is generally an incompressible fluid. Therefore, the volume of the electrolytic solution chamber 109 is kept substantially constant during the pump operation. Be drunk. Therefore, when one diaphragm 103 or 104 contracts and the convex bulge becomes small, the other diaphragm 104 or 103 has a large convex bulge in order to keep the volume of the electrolyte chamber 109 substantially constant. Receive power to become. That is, the two first and second diaphragms 103 and 104 exchange energy in the form of work between each other via the electrolytic solution.
  • the elastic film part 130 is fixed in a form that closes a circular through hole 102h formed in the side wall 102s of the housing part 102, and is made of a material having elasticity (elastic material) such as rubber or synthetic resin (plastic). Configured.
  • elastic material such as rubber or synthetic resin (plastic).
  • silicone rubber can be considered as an elastic material constituting the elastic film part 130.
  • the spring portion 131 has, for example, a shape in which an elastic metal or synthetic resin material is spirally wound, and has a function as a coil spring. Further, the spring-shaped axis of the spring portion 131 is arranged so as to be placed on a straight line parallel to the straight lines 100A-100B shown in FIG.
  • the spring part 131 is fixed in such a manner that both ends thereof are in contact with the elastic film part 130 and the side wall 102s of the casing part 102 facing the elastic film part 130 in a state of being contracted from the steady state.
  • the elastic film part 130 receives a force from the spring part 131 to the outside of the housing part 102 and is deformed into a convex shape outward. That is, in FIG.
  • the elastic film portion 130 receives a rightward force from the spring portion 131 and is deformed into a convex shape to the right.
  • the shape of the elastic film part 130 shows a shape close to a part of a spherical surface.
  • other shapes such as a shape close to a cone are shown. Sometimes it becomes.
  • the fluid transfer device In the initial state of the fluid transfer device, the fluid transfer device is configured so that the pressure of the electrolyte filled in the electrolyte chamber 109 is in the following range. That is, assuming the pressure applied to the first pump chamber 107 and the second pump chamber 108 during the pump operation, the fluid conveyance device is configured so that the pressure of the electrolyte in the initial state is smaller than that pressure.
  • the first and second diaphragms 103 and 104 protrude in the direction of the electrolyte chamber 109 as shown in FIG. It is kept in shape.
  • the housing A small through hole 102g is formed in the side wall 102s of the portion 102, and a part of the electrolytic solution is extracted from the small through hole 102g using an instrument such as a syringe, and then the small through hole 102g is sealed with a rubber plug or the like.
  • the pressure of the electrolytic solution is set to a predetermined pressure (that is, the initial pressure of the electrolytic solution is higher than the pressure applied to the first pump chamber 107 and the second pump chamber 108 during the pump operation).
  • a method of reducing the size when assembling each part of the fluid conveyance device and filling the inside with an electrolyte solution, a gap is left in a part between the housing part 102 and the elastic film part 130, and this state The elastic film part 130 is pushed in to extract a part of the electrolyte solution, and then the gap part is sealed, and the elastic film part 130 and the spring part 131 are removed by removing the pushing force of the elastic film part 130.
  • the pressure of the electrolytic solution is reduced by the force of returning to the original shape by the elastic force, and the pressure of the electrolytic solution is set to a predetermined pressure (that is, applied to the first pump chamber 107 and the second pump chamber 108 during the pump operation).
  • a predetermined pressure that is, applied to the first pump chamber 107 and the second pump chamber 108 during the pump operation.
  • a method is conceivable in which the pressure of the electrolyte in the initial state is smaller than the pressure.
  • the pressure of the electrolyte can be kept smaller than the pressure of the fluid inside the first and second pump chambers 107 and 108 even when the pump is operated.
  • a force is applied from the first and second pump chambers 107 and 108 to the electrolyte chamber 109 in the first and second diaphragms 103 and 104 during the operation of the pump. It is possible to maintain the state in which the diaphragms 103 and 104 are not slackened.
  • the electrolytic expansion / contraction force of the conductive polymer film is efficiently transmitted to the fluid inside the first and second pump chambers 107 and 108, so that the efficiency of fluid discharge and suction can be kept high. .
  • the elastic membrane portion 130 and the spring portion 131 have a function of properly maintaining the tension of the first and second diaphragms 103 and 104. This can improve the operational efficiency of the pump.
  • the pump of the prior art has a problem that the diaphragm tension is largely changed by the following two mechanisms, and this causes a reduction in the operation efficiency of the pump.
  • the first mechanism for changing the diaphragm tension is due to the periodic electrolytic expansion and contraction of the conductive polymer film performed during the pump operation.
  • the second mechanism for changing the diaphragm tension is due to reasons other than the periodic electrolytic expansion and contraction of the conductive polymer film.
  • the tension of the first and second diaphragms 103 and 104 when the tension of the first and second diaphragms 103 and 104 changes due to the periodic electrolytic expansion and contraction of the conductive polymer film performed during the pump operation, or for other reasons When the tension of the first and second diaphragms 103 and 104 changes, the tension of the diaphragms 103 and 104 can be kept appropriate.
  • the internal space of the housing part 102 is a cylindrical space formed inside the housing part 102.
  • a portion of the internal space of the housing portion 102 excluding the portion of the first pump chamber 107 and the portion of the second pump chamber 108 is defined as an electrolyte chamber housing inner portion 190. That is, the electrolyte chamber housing inner portion 190 is a space portion sandwiched between the first and second diaphragms 103 and 104 in the internal space of the housing portion 102. Further, the space portion indicated by reference numeral 191 in FIG.
  • the volume of the electrolyte chamber 109 is defined as the sum of the volume of the electrolyte chamber housing inner portion 190, the volume of the opening space portion 191, and the volume of the elastic membrane inner space portion 192.
  • the force is applied even if the conductive polymer films of the first and second diaphragms 103 and 104 expand and contract. Since the force is not efficiently transferred to the fluid such as the liquid in the pump chambers 107 and 108, the suction and discharge efficiency of the fluid is significantly reduced. That is, in order to increase the operation efficiency of the pump, it is necessary that the first and second diaphragms 103 and 104 are always kept in a relaxed state during operation.
  • the first embodiment is similar to that already described with reference to FIGS. 25C and 25D.
  • the volume of the electrolyte chamber casing inner portion 190 is a value obtained by subtracting the total volume of the first pump chamber and the second pump chamber from W t . Accordingly, the volume of the electrolyte chamber housing inner portion 190 also changes in accordance with the change in the total volume of the first pump chamber 107 and the second pump chamber 108. In accordance with this, the shape of the elastic membrane part 130 changes so that the volume of the electrolyte chamber 109 is kept substantially constant.
  • the volume of the inner part 190 of the electrolytic solution chamber increases, the pressure of the electrolytic solution decreases accordingly. Therefore, the elastic force of the elastic film part 130 in the elastic film part 130, the elastic force of the spring part 131, and the electrolytic solution And the pressure in the external atmosphere of the housing portion 102 change. As a result, the convex bulge of the elastic film portion 130 is reduced, and the volume of the elastic film inner space portion 192 is reduced. As a result, the volume of the electrolyte chamber 109 is kept substantially constant.
  • the volume of the electrolyte chamber housing inner portion 190 decreases, the pressure of the electrolyte increases accordingly, so that the elastic force of the elastic film part 130 and the elastic force of the spring part 131 in the elastic film part 130. And the balance between the electrolyte pressure and the external atmosphere pressure changes. As a result, the convex bulge of the elastic film part 130 is increased, and the volume of the elastic film inner space portion 192 is increased. As a result, the volume of the electrolyte chamber 109 is kept substantially constant. As a result, the volume of the electrolytic solution chamber 109 filled in the electrolytic solution chamber 109 is also substantially constant, and the pressure of the electrolytic solution is kept substantially constant.
  • the pressure of the electrolytic solution when the pressure of the electrolytic solution is set to an appropriate value smaller than the pressure of the fluid inside the first and second pump chambers 107 and 108 in the initial state, By the operation of the elastic film part 130 and the spring part 131, the pressure of the electrolytic solution can be kept within a certain range.
  • the pressure of the electrolytic solution when “the pressure of the electrolytic solution is set to an appropriate value smaller than the pressure of the fluid inside the first and second pump chambers 107 and 108 in the initial state”, the pressure of the fluid in the initial state is 0.
  • the pressure of the electrolytic solution in the initial state may be set within a range of about 0.091 MPa to 0.101 MPa (0.9 atm to 0.999 atm). desirable. Among these, it is particularly desirable to set the pressure within the range of about 0.100 MPa to 0.101 MPa (0.99 atm to 0.999 atm). This is because when the initial pressure of the electrolytic solution is smaller than the above range, the pressure difference between the fluid and the electrolytic solution is so large that the movement of the diaphragm is inhibited.
  • the appropriate pressure of the electrolytic solution during the operation of the pump is, for example, about 0.051 MPa to 0.101 MPa (0.5 atm to 0.005). 999 atm). This is because when the pressure of the electrolytic solution during operation of the pump is smaller than the above range, the pressure difference between the fluid and the electrolytic solution is too large, which causes a problem that the movement of the diaphragm is hindered.
  • the pressure of the electrolytic solution is larger than the above range, the pressure difference between the fluid and the electrolytic solution becomes too small, which may cause a problem that the diaphragm is loosened and the efficiency of the pump operation is lowered.
  • the pressure of the electrolytic solution is always kept within a certain range by the operation of the elastic film portion 130 and the spring portion 131, so that the pressure of the electrolytic solution is always kept at the first and second pump chambers 107 and 108. It is possible to keep the pressure lower than the fluid pressure inside.
  • a certain range of force in the direction from the first and second pump chambers 107 and 108 to the electrolyte chamber 109 is applied to the first and second diaphragms 103 and 104, so that the first and second diaphragms are applied by this force.
  • 103 and 104 are kept in a relaxed state, and the tensions of the first and second diaphragms 103 and 104 are kept at appropriate values.
  • an appropriate value of the tension of the diaphragms 103 and 104 is, for example, in the range of 0.101 MPa to 10.1 MPa (about 1 atm to about 100 atm).
  • the first and second diaphragms 103 and 104 are kept in a state where a tensile stress (tension) is applied within a certain range.
  • the pressure acting on the first and second diaphragms 103 and 104 is maintained within a predetermined range (a constant range) by the electrolyte solution and the fluid in the first and second pump chambers 107 and 108.
  • the first and second diaphragms 103 and 104 are affected by the difference between the pressure of the electrolyte in the electrolyte chamber 109 and the pressure of the fluid in the first and second pump chambers 107 and 108.
  • the pressure range is preferably, for example, 0.0101 MPa to 0.000101 MPa (0.1 atm to 0.001 atm). This is because when the pressure applied to the diaphragms 103 and 104 is larger than the above range due to the difference between the electrolyte pressure and the fluid pressure, the movement of the diaphragms 103 and 104 is hindered. Further, if the pressure applied to the diaphragms 103 and 104 is smaller than the above range due to the difference between the electrolyte pressure and the fluid pressure, there is a possibility that the diaphragms 103 and 104 are loosened and the efficiency of the pump operation is lowered. Because there is.
  • the state in which the pressure acting on the diaphragms 103 and 104 is maintained within a predetermined range (a constant range) is always maintained during the pump operation, so that each of the first and second diaphragms 103 and 104 is electrically conductive.
  • the work when the conductive polymer film expands and contracts is efficiently used for the discharge and suction of fluid in the first and second pump chambers 107 and 108. That is, it is possible to increase the work efficiency in the operation of the pump.
  • the work efficiency of the pump is defined as the ratio of the work that the pump performs for sucking and discharging the fluid in the electric energy applied to the pump.
  • a diaphragm type pump using a conductive polymer film when a periodic voltage is applied to the conductive polymer film, (I) distortion is accumulated in a certain direction, or (Ii) the conductive polymer film causes deformation such as expansion by sucking the electrolyte, or (Iii) An irreversible or reversible shape change represented by creep occurs in the conductive polymer film, or (Iv) Deformation or displacement of the fixing portion of the conductive polymer film occurs. For this reason, the area, shape or arrangement of the diaphragm may change.
  • the tension applied to the diaphragm is absorbed in order to absorb the change in tension such that the desired tension is not applied to the diaphragm by the deformation of the elastic film portion 130 and the spring portion 131. It can be kept within a certain range.
  • FIG. 8 and 9 show that the pressure applied to the first and second diaphragms 103 and 104 is maintained within a predetermined range when the tension applied to the first and second diaphragms 103 and 104 is changed in the first embodiment. Indicates the state to be performed.
  • FIG. 8 shows how the pressure on the first and second diaphragms 103 and 104 is maintained within a predetermined range when the first and second diaphragms 103 and 104 are stretched due to a change in tension due to the above-described reason. Show.
  • dotted lines indicate the positions of the first and second diaphragms 103 and 104 in the state of FIG. In FIG.
  • the first and second diaphragms 103 and 104 are deformed in a direction extending compared to FIG. 3, but this temporarily reduces the volume of the electrolyte chamber 109 and the pressure of the electrolyte solution. Will increase. For this reason, the balance between the elastic force of the elastic film portion 130, the elastic force of the spring portion 131, the pressure of the electrolytic solution, and the pressure of the external atmosphere in the elastic film portion 130 is lost. As a result, due to the elasticity of the elastic film part 130 and the spring part 131, the spring part 131 is extended, and the convex bulge of the elastic film part 130 is deformed so as to increase outward of the housing part 102.
  • FIG. 9 shows that the pressure applied to the first and second diaphragms 103 and 104 is within a predetermined range when the first and second diaphragms 103 and 104 contract for reasons other than periodic electrolytic expansion and contraction. It shows how to maintain.
  • dotted lines indicate the positions of the first and second diaphragms 103 and 104 in the state of FIG. In this case, due to the elasticity of the elastic film part 130 and the spring part 131, the spring part 131 contracts and deforms so that the convex bulge of the elastic film part 130 becomes small. For this reason, the pressure of the electrolytic solution is kept almost at the initial value.
  • the pressure of the electrolyte when the pressure of the electrolyte is set to an appropriate value smaller than the pressure of the fluid in the pump chamber in the initial state, the first and first Even when the first and second diaphragms 103 and 104 expand and contract for reasons other than the periodic electrolytic expansion and contraction of the two diaphragms 103 and 104, the pressure of the electrolytic solution is also caused by the operation of the elastic film part 130 and the spring part 131. It can be kept within a certain range. As a result, it is possible to always keep the pressure of the electrolyte at an appropriate value smaller than the pressure of the fluid inside the first and second pump chambers 107 and 108.
  • first and second diaphragms 103 and 104 are kept in a relaxed state, and the tensions of the first and second diaphragms 103 and 104 are kept at appropriate values.
  • the first and second diaphragms 103 and 104 are always deformed into a convex shape when viewed in the direction of the electrolyte chamber 109, and the first and second diaphragms 103 and 104 are A state in which a stress in the tensile direction (tension) is applied with a magnitude within a certain range is maintained, and the first and second fluids in the first and second pump chambers 107 and 108 are kept in a first state by the electrolyte in the electrolyte chamber 109.
  • the pressure acting on the second diaphragms 103 and 104 is maintained within a predetermined range.
  • the work when the first and second diaphragms 103 and 104 are expanded and contracted is the discharge and suction of the fluid in the first and second pump chambers 107 and 108. It is used efficiently. That is, it is possible to increase the work efficiency in the operation of the pump.
  • the work efficiency of the pump is defined as the ratio of the work that the pump performs for sucking and discharging the fluid in the electric energy applied to the pump.
  • the stress (tension) in the pulling direction of the first and second diaphragms 103 and 104 is always kept within an appropriate range during the pump operation.
  • the pressure acting on the first and second diaphragms 103 and 104 by the electrolyte in the electrolyte chamber 109 and the fluid in the first and second pump chambers 107 and 108 is maintained within a predetermined range.
  • the work performed when the first and second diaphragms 103 and 104 are expanded and contracted is efficiently used for discharging and sucking the fluid in the first and second pump chambers 107 and 108.
  • the first and second pump chambers 107 and 108 are each provided with It is also possible to provide one opening portion without each of them and to repeat the suction and discharge from each opening portion. In this case, in each pump chamber, one opening serves as a discharge port and a suction port.
  • each diaphragm 103, 104 an example in which the diaphragm is made of a polymer actuator material has been shown.
  • a highly conductive material can be formed on all or a portion of the surface of the polymer actuator material to reduce the effects of voltage drops in the polymer actuator material.
  • the other material is formed of a material having low rigidity or processed into a shape that is easily deformed so as not to hinder the operation of the polymer actuator material.
  • each diaphragm 103, 104 can be formed of a material other than the polymer actuator material.
  • a part of each of the diaphragms 103 and 104 is formed of an elastic film, there is an effect that the tension applied to the polymer actuator material is made more uniform and the pump can be operated smoothly.
  • the flow rate is in the range of about 10 to 100 ml / min and the maximum pressure for discharging the fluid is in the range of about 1 to 10 kPa.
  • the shape or size of the fluid conveyance device can be generally designed according to the required flow rate and pressure, not limited to the above-described form.
  • the first and second diaphragms 103 and 104 have a structure having no fixed point, and the first and second pump chambers 107 and 108, the electrolyte chamber 109, The first and second diaphragms 103 and 104 are held in a convex shape with an appropriate tension without the first and second diaphragms 103 and 104 slackening due to the pressure difference between the first and second diaphragms 103 and 104.
  • the tension is concentrated on a plurality of line segments connecting the fixed point of the diaphragm and the peripheral portion and the surrounding portions.
  • the tension of the first and second diaphragms 103 and 104 is maintained at an appropriate value in the fluid conveyance device of the first embodiment as compared with the structure shown in FIG. 22B of the conventional example. Therefore, the efficiency of fluid discharge and suction can be improved.
  • the elastic membrane portion 130 and the spring portion 131 function to maintain the pressure on the first and second diaphragms 103 and 104 within an appropriate range (pressure maintenance). Function).
  • a portion having a function of maintaining the pressure applied to the first and second diaphragms 103 and 104 within a predetermined range is referred to as a pressure maintaining unit. That is, in the first embodiment, the elastic film portion 130 and the spring portion 131 constitute a pressure maintaining portion.
  • first and second diaphragms 103 and 104 When the first and second diaphragms 103 and 104 are extended to reduce the stress (tension) in the pulling direction of the first and second diaphragms 103 and 104 and the first and second diaphragms 103 and 104 are loosened (slack) (In other words, when the pressure of the fluid in the first and second pump chambers 107 and 108 decreases outside the predetermined range), the elastic film portion 130 and the spring portion 131 suck out the electrolyte in the housing portion 102.
  • the stress (tension) of the first and second diaphragms 103 and 104 is maintained in a certain range (in other words, the pressure of the fluid in the first and second pump chambers 107 and 108 is a predetermined value). Maintained in range). Further, when the first and second diaphragms 103 and 104 contract and the stress in the pulling direction of the first and second diaphragms 103 and 104 increases (in other words, the first and second pump chambers 107 and 108). In the direction in which the elastic membrane portion 130 and the spring portion 131 push the electrolyte in the electrolyte chamber 109 of the casing portion 102 outwardly of the casing portion 102.
  • the stress (tension) of the first and second diaphragms 103 and 104 is kept within a certain range (in other words, the pressure of the fluid in the first and second pump chambers 107 and 108 is kept within a predetermined range. Maintained). That is, in response to a change in stress (tension) due to deformation of the first and second diaphragms 103 and 104, the elastic film portion 130 which is a part of the wall surface of the electrolyte chamber 109 is deformed, whereby the first and first diaphragms are deformed. The stress (tension) of the two diaphragms 103 and 104 is maintained within a certain range (in other words, the pressure of the fluid in the first and second pump chambers 107 and 108 is maintained within a predetermined range).
  • the fluid conveyance device of the first embodiment has a structure in which there is no fixed point in the central portion of the first and second diaphragms 103, 104, and the first and second pump chambers 107, 108, the electrolyte chamber 109,
  • the first and second diaphragms 103 and 104 are held in a convex shape with an appropriate tension without loosening due to the pressure difference between the first and second diaphragms 103 and 104, and the stress (tension) of the first and second diaphragms 103 and 104 is maintained.
  • a substantially uniform value is maintained over the entire surface (in other words, the pressure of the fluid in the first and second pump chambers 107 and 108 is maintained within a predetermined range). Since this state is always maintained during the pump operation, the work when the conductive polymer film expands and contracts is efficiently used for the discharge and suction of the fluid in the pump chambers 107 and 108.
  • the ratio of the electrical energy applied from the power supply 110c used for the work of fluid discharge and suction in the pump chambers 107 and 108 is called work efficiency Then, the work efficiency of the pump is improved as compared with the conventional pump by the pressure maintaining function.
  • the pressure maintaining unit which is a part having a function of maintaining the pressure on the first and second diaphragms 103 and 104 within a predetermined range, has an appropriate value for the volume of the electrolyte chamber 109 in the electrolyte chamber. And maintain the electrolyte pressure at an appropriate value.
  • the stress (tension) of the first and second diaphragms 103 and 104 can be maintained at an appropriate value (in other words, the pressure of the fluid in the first and second pump chambers 107 and 108 is predetermined).
  • At least a part of the wall surface of the electrolyte chamber 109 is formed by an elastic body (for example, an elastic film portion) 130, and the elastic body 130 is formed according to the pressure in the electrolyte chamber. If the structure is deformed, the pressure inside the electrolyte chamber 109 and the stress (tension) of the first and second diaphragms 103 and 104 can be automatically adjusted (in other words, the pressure inside the electrolyte chamber 109). And the pressure of the fluid in the first and second pump chambers 107 and 108 can be maintained within a predetermined range).
  • the two first and second diaphragms 103 and 104 perform. Since work can be used for discharging and sucking fluid, it is possible to increase the amount of work for discharging and sucking.
  • FIG. 10 shows a first modification of the first embodiment of the present invention.
  • the circular elastic membrane portion 130 is fixed to the opening edge portion outside the through hole 102h of the side wall 102s of the housing portion 102.
  • the circular elastic membrane portion 130 is circular.
  • the elastic membrane portion 130A is fixed to the opening edge inside the through hole 102h of the side wall 102s of the housing portion 102, and the elastic membrane portion 130A is convex toward the inside of the electrolyte chamber 109 ( In other words, it has a concave shape with respect to the outside of the housing portion 102), and the elastic membrane portion 130A functions as a pressure maintaining portion.
  • the pressure inside the electrolyte chamber 109 is kept lower than the external pressure of the housing portion 102 and the fluid pressure of the first and second pump chambers 107 and 108. Since the convex bulge of the elastic membrane portion 130A changes due to elasticity in accordance with the pressure change in the electrolyte chamber 109, the volume and pressure of the electrolyte chamber 109 can be maintained in an appropriate range, and as a result The stress (tension) of the first and second diaphragms 103 and 104 can be maintained at an appropriate value (in other words, the pressure of the fluid in the first and second pump chambers 107 and 108 is kept within a predetermined range. Can be maintained).
  • the volume of the electrolytic solution chamber 109 is reduced and the pressure of the electrolytic solution is increased, so that the convex bulge of the elastic film portion 130A is reduced.
  • the volume and pressure of the electrolyte chamber 109 are maintained within a substantially constant range.
  • the stress of the first and second diaphragms 103 and 104 is maintained within an appropriate range (in other words, the pressure of the fluid in the first and second pump chambers 107 and 108 can be maintained within a predetermined range. is there).
  • FIGS. 1 to 10 Although omitted in FIGS. 1 to 10 for the sake of simplicity, for example, it is possible to provide an appropriate mechanism component so that the spring portion 131 does not buckle. That is, in FIG. 1 to FIG. 10, in order to explain an essential part of the invention, such mechanical parts are not shown, but in other embodiments, each part has a smooth mechanical operation. For example, it is possible to install an appropriate mechanical component such as a guide. Below, the example which has a guide is demonstrated as a 2nd modification of 1st Embodiment.
  • FIG. 11A, FIG. 11B, and FIG. 12 show a second modification of the first embodiment.
  • a connecting portion 133 of a rod-shaped member is inserted between the spring portion 131 and the elastic membrane portion 130.
  • the connection part 133 connects the spring part 131 and the elastic film part 130, and transmits force between them.
  • a cylindrical guide portion 132 is formed around the spring portion 131 and has a function of preventing buckling of the coil spring constituting the spring portion 131.
  • the distal end portion 133 a of the connecting portion 133 is configured in a piston shape, and the distal end portion 133 a is fixed to one end of the spring portion 131 and can move smoothly in the guide portion 132.
  • the space surrounded by the guide part 132 and the tip part 133a of the connecting part 133 may be sealed, or the electrolyte may enter without being sealed.
  • FIG. 11A shows a state where the spring portion 131 is extended
  • FIG. 11B shows a state where the spring portion 131 is contracted.
  • the inside of the sealed space It is also possible to perform the function of the spring portion 131 by the elasticity of the gas 131G.
  • the gas 131G sealed in the cylindrical guide part 132 functions as another example of the elastic part. An example in the case of using this gas 131G is shown in FIG.
  • the elasticity of the gas 131G is used as the spring part 131 instead of the coil spring.
  • FIG. 19 shows an example in which another spring is used as the spring part 131 instead of the coil spring as a third modification of the first embodiment.
  • a leaf spring in which one end (for example, the lower end) is fixed to, for example, the lower side of the inner peripheral surface of the through hole 102h of the side wall 102s of the housing portion 102.
  • a contact portion 134 a is fixed to the other end (for example, the upper end) of the leaf spring 134 so that the contact portion 134 a is always in contact with the elastic film portion 130 by the elastic force of the leaf spring 134.
  • the pressure maintaining unit can be made compact.
  • the spring part 131 or the guide part 132, the connecting part 133, and the leaf spring 134 are insulated. It is desirable to be made of a plastic material.
  • the spring part 131, the guide part 132, the connecting part 133, and the leaf spring 134 are made of a material having resistance to the electrolytic solution used.
  • FIG. 13 is a cross-sectional view of a fluid conveyance device using a conductive polymer according to a second embodiment of the present invention.
  • 13 includes a housing 102, a first diaphragm 103, a second diaphragm 104, a first pump chamber 107, a second pump chamber 108, an electrolyte chamber 109, and wiring portions 110a and 110b.
  • the spring part 131 and the elastic film part 130 are provided.
  • the spring part 131 and the elastic film part 130 function as a pressure maintaining part as described below.
  • the first diaphragm 103 and the second diaphragm 104 are simply referred to as diaphragms for the sake of simplicity.
  • the first pump chamber 107 has two openings, a first suction port 111a and a first discharge port 113a.
  • the second pump chamber 108 has two openings, a second suction port 111b and a second discharge port 113b.
  • the pump is operated by sucking and discharging the fluid through the openings 111a, 113a, 111b, and 113b formed in the first and second pump chambers 107 and 108, respectively.
  • the configuration and operation of each part are substantially the same as those in the first embodiment.
  • the first and second diaphragms 103 and 104 are kept concave when viewed from the electrolyte chamber 109 toward the first and second pump chambers 107 and 108, respectively.
  • the first and second diaphragms 103 and 104 are kept in a state of swelling in a convex direction when viewed from the electrolyte chamber 109 toward the first and second pump chambers 107 and 108, respectively. Be drunk.
  • the spring portion 131 is fixed in a contracted state from the steady state, but in the second embodiment, the spring portion 131 is fixed in a state extended from the steady state.
  • the elastic film portion 130 receives a rightward force from the spring portion 131 and is deformed into a convex shape to the right.
  • the elastic film portion 130 receives a leftward force from the spring portion 131 and is deformed into a convex shape to the left.
  • the fluid transfer device is configured such that the pressure of the electrolyte is smaller than the pressure applied to the first pump chamber 107 and the second pump chamber 108 during the pump operation.
  • the fluid conveyance device is configured such that the pressure of the electrolytic solution is larger than the pressure applied to the first pump chamber 107 and the second pump chamber 108 during the pump operation.
  • the pressure of the electrolyte filled in the electrolyte chamber 109 is larger than the pressure applied to the first pump chamber 107 and the second pump chamber 108 during the pump operation.
  • a small through hole 102g is formed in the side wall 102s of the housing portion 102, and the through hole 102g is formed.
  • a method of setting the pressure of the electrolyte to a predetermined pressure by injecting the electrolyte into the electrolyte chamber 109 using an instrument such as a syringe and then sealing the through hole 102g with the sealing member 102f is considered. It is done.
  • a force is applied to the elastic membrane portion 130 in the direction of drawing outward, and in this state, the electrolyte chamber The inside of 109 is filled with an electrolytic solution, then the electrolytic solution chamber 109 is sealed, and the elastic membrane portion 130 and the spring portion 131 are restored to their original shape by their elasticity except for the force to pull out the elastic membrane portion 130 to the outside.
  • the pressure of the electrolytic solution is increased by the force to try and the pressure of the electrolytic solution is set inside the electrolytic solution chamber 109 more than a predetermined pressure, that is, the pressure applied to the first pump chamber 107 and the second pump chamber 108 during the pump operation.
  • a predetermined pressure that is, the pressure applied to the first pump chamber 107 and the second pump chamber 108 during the pump operation.
  • the conductive polymer films constituting the first and second diaphragms 103 and 104 are respectively In order to perform electrolytic expansion and contraction, fluid is sucked from the first and second suction ports 111a and 111b, respectively, and fluid is discharged from the first and second discharge ports 113a and 113b, respectively, so that the pump operates.
  • the volume of the electrolyte chamber 109 is kept substantially constant during the pump operation. For this reason, one diaphragm 103 or 104 contracts, and the convex bulge of one diaphragm 103 or 104 when viewed from the electrolyte chamber 109 toward the first and second pump chambers 107 and 108 is reduced.
  • the other diaphragm 104 or 103 has a convex bulge. Receive power to grow. That is, the two first and second diaphragms 103 and 104 exchange energy in the form of work between each other via the electrolytic solution.
  • the elastic membrane portion 130 and the spring portion 131 are formed by the first and second diaphragms 103 and 104 when the first and second diaphragms 103 and 104 expand and contract. There is a function to keep the tension of the proper.
  • the internal space of the housing part 102 is a cylindrical space formed inside the housing part 102.
  • the volume of the space portion slightly changes during the process.
  • the shape of the elastic membrane part 130 changes so that the volume of the electrolyte chamber 109 is kept substantially constant.
  • the volume of the space portion sandwiched between the first and second diaphragms 103 and 104 in the internal space of the housing portion 102 decreases, the convex bulge of the elastic membrane portion 130 becomes smaller, and the electrolyte chamber The volume of 109 is kept almost constant.
  • the volume of the electrolyte chamber 109 filled with the electrolyte is also substantially constant, and the pressure of the electrolyte is kept substantially constant. From this, during the operation of the pump, the first and second diaphragms 103 and 104 are always deformed into a convex shape when viewed in the direction of the first pump chamber 107 and the second pump chamber 108, respectively.
  • the stress in the pulling direction (tension) is applied to the two diaphragms 103 and 104 with a magnitude within a certain range. Since this state is always maintained during the pump operation, the work when the conductive polymer film expands and contracts is efficiently used for the discharge and suction of the fluid in the first and second pump chambers 107 and 108. .
  • the electrolyte chamber 109 is a space portion surrounded by the first and second diaphragms 130 and 104, the wall surface of the casing portion 102, and the elastic membrane portion 130.
  • the electrolytic solution can be regarded as an almost incompressible fluid, the pressure of the electrolytic solution changes greatly when the volume of the electrolytic solution chamber 109 changes, and the tensions of the first and second diaphragms 103 and 104 are maintained at appropriate values. I can't.
  • the elastic membrane part 130 and the spring part 131 are deformed by their elasticity so that the volume inside the electrolyte chamber 109 is kept constant. As a result, the volume of the electrolyte chamber 109 existing inside the electrolyte chamber 109 is kept substantially constant, and the pressure of the electrolyte is also kept within a certain range.
  • the tension of the first and second diaphragms 103 and 104 can be maintained at an appropriate value, and the work efficiency in the operation of the pump can be increased.
  • the work efficiency of the pump is defined as the ratio of the work that the pump performs for sucking and discharging the fluid in the electric energy applied to the pump.
  • strain is accumulated in a certain direction when a periodic voltage is applied to the conductive polymer film.
  • a deformation such as expansion is caused by the conductive polymer film sucking the electrolyte, or an irreversible or reversible shape change represented by creep occurs in the conductive polymer film.
  • the area, shape, or arrangement of the first and second diaphragms 103 and 104 may change due to deformation or displacement of the fixing portion of the conductive polymer film.
  • the tension applied to the conductive polymer film is kept within a certain range.
  • FIG. 14 is a diagram showing an example of how pressure is maintained on the first and second diaphragms 103 and 104 when a change in tension applied to the first and second diaphragms 103 and 104 occurs in the second embodiment. It is. Specifically, FIG. 14 shows the shape change of the first and second diaphragms 103 and 104, the elastic film part 130, and the spring part 131 when the first and second diaphragms 103 and 104 are extended for the above reasons. The state of maintaining the pressure on the first and second diaphragms 103 and 104 is shown. In FIG. 14, the first and second diaphragms 103 and 104 are deformed in the extending direction as compared with FIG.
  • the spring part 131 is extended by the elasticity of the elastic film part 130 and the spring part 131, and is viewed from the outside of the housing part 102.
  • the elastic membrane portion 130 is deformed so that the convex bulge of the elastic membrane portion 130 with respect to the electrolyte chamber 109 becomes small.
  • the pressure of the electrolytic solution is maintained at a substantially initial value, and the first and second diaphragms 103 and 104 are deformed into a convex shape when viewed in the direction of the first pump chamber 107 and the second pump chamber 108.
  • the stress in the pulling direction (tension) is kept in a state where the magnitude is within an appropriate range.
  • the work when the conductive polymer film expands and contracts is the first and second pumps. It is efficiently used for discharging and sucking fluid in the chambers 107 and 108.
  • the elastic membrane portion 130 and the spring portion 131 function to maintain the pressure on the first and second diaphragms 103 and 104 within an appropriate range.
  • Pressure maintenance function a portion having a function of maintaining the pressure applied to the first and second diaphragms 103 and 104 within a predetermined range. That is, in the second embodiment, the elastic film part 130 and the spring part 131 constitute a pressure maintaining part.
  • the direction of the first and second diaphragms 103 and 104 is deformed in a direction in which the spring portion 131 contracts. Therefore, the stress (tension) of the first and second diaphragms 103 and 104 is maintained within a certain range (in other words, the pressure of the fluid in the first and second pump chambers 107 and 108 is reduced). Maintained within a predetermined range).
  • the elastic film portion 130 which is a part of the wall surface of the electrolyte chamber 109 is deformed, whereby the first and first diaphragms are deformed.
  • the stress (tension) of the two diaphragms 103 and 104 is maintained within a certain range (in other words, the pressure inside the electrolyte chamber 109 and the pressure of the fluid inside the first and second pump chambers 107 and 108 are within a predetermined range, respectively. Maintained).
  • first and second diaphragms 103 and 104 have no fixed point in the central portion, and the first and second diaphragms 103 and 108 and the electrolyte chamber 109 are caused by the pressure difference between the first and second pump chambers 107 and 108.
  • the diaphragms 103 and 104 are kept in a convex shape with an appropriate tension without being loosened, and the stress (tension) of the first and second diaphragms 103 and 104 is maintained at a substantially uniform value over the entire surface. (In other words, the pressure of the fluid in the first and second pump chambers 107 and 108 can be maintained within a predetermined range).
  • the work when the first and second diaphragms 103 and 104 of the conductive polymer film expand and contract is caused by the work of the first and second pump chambers 107 and 108.
  • the work efficiency of the pump is improved compared to the conventional pump.
  • FIG. 15 is a cross-sectional view of a fluid conveyance device using a conductive polymer according to a third embodiment of the present invention.
  • the housing portion 102, the first diaphragm 103, the pump chamber 107, the electrolyte chamber 109, the wiring portions 110a and 110b, the suction port 111a, the discharge port 113a, and the suction valve 121 are provided.
  • the discharge valve 122, a spring part 131 as an example of an elastic part, an elastic film part 130, a second elastic film part 170, and a counter electrode part 180 are provided.
  • the spring part 131 and the second elastic film part 170 function as a pressure maintaining part as described below.
  • the second elastic film part 170 is fixed to an opening edge part on the outer side of the through hole 102i formed on the bottom surface on the lower side of the housing part 102 so as to seal the inside of the housing part 102.
  • Both ends of the coil spring constituting the spring part 131 are connected to the central part of the upper wall 102u of the casing part 102 and the first diaphragm 103, respectively, and the spring part 131 is installed in a contracted state from the steady state.
  • Part or all of the first diaphragm 103 is made of a conductive polymer film, and the electrolyte chamber 109 is filled with the electrolyte.
  • the conductive polymer film constituting the first diaphragm 103 performs electrolytic expansion and contraction.
  • the counter electrode portion 180 is formed of, for example, platinum mesh or the like, and has a structure in which the electrolytic solution can move to both sides thereof.
  • the surface area of platinum is increased by forming platinum in a mesh shape, and the capacity of the electric double layer capacitor formed at the interface between platinum and the electrolyte is increased.
  • the potential difference between the platinum and the electrolytic solution is reduced, and the diaphragm can be efficiently expanded and contracted with a small power supply voltage.
  • the first diaphragm 103 is expanded by electrolytic expansion and contraction, and in the state of FIG. 16, the first diaphragm 103 is contracted by electrolytic expansion and contraction.
  • the volume of the pump chamber 107 is increased or decreased, so that fluid is sucked and discharged.
  • fluid is sucked from the suction port 111a, and in the state of FIG. 16, fluid is discharged from the discharge port 113a. Since the electrolytic solution filled in the electrolytic solution chamber 107 can be regarded as an almost incompressible fluid, the volume thereof is kept substantially constant. From this, according to the vertical movement of the first diaphragm 103 in FIG.
  • the second elastic film portion 170 also moves up and down, and the volume of the electrolyte chamber 109 is kept substantially constant.
  • the convex bulge of the second elastic film portion 170 is large when viewed from the electrolyte chamber 109 toward the outside of the casing portion 102.
  • the convex bulge of the second elastic film portion 170 is reduced.
  • the configuration, operation, or effect of the pressure maintaining unit configured by the second elastic film unit 170 and the spring unit 131 is substantially the same as the elastic film unit 130 and the spring unit 131 of the second embodiment. That is, as the volume of the pump chamber 107 changes, the volume of the electrolyte chamber 109 also changes. In response to this, the shape of the second elastic membrane portion 170 changes so that the volume of the electrolyte chamber 109 is kept substantially constant. Now, as shown in FIG. 17, when the volume of the electrolytic solution chamber 109 increases, the pressure of the electrolytic solution decreases accordingly.
  • the elastic force of the second elastic film part 170 and the spring part in the second elastic film part 170 changes.
  • the convex bulge of the second elastic film portion 170 increases as viewed from the electrolyte chamber 109 toward the outside of the housing portion 102.
  • the volume of the electrolyte chamber 109 is kept substantially constant.
  • the pressure of the electrolytic solution increases accordingly, so that the elastic force of the second elastic film unit 170 in the second elastic film unit 170 is increased.
  • the convex bulge of the second elastic film portion 170 is reduced as viewed from the electrolyte chamber 109 toward the outside of the housing portion 102.
  • the volume of the electrolyte chamber 109 is kept substantially constant.
  • the volume of the electrolyte chamber 109 filled in the electrolyte chamber 109 is also substantially constant, and the pressure of the electrolyte is kept substantially constant.
  • FIGS. 15 and 16 The fluid suction and discharge operations are shown in FIGS. 15 and 16.
  • the elastic film portion 170 performs the pressure maintaining function as described above.
  • FIG. 17 shows a state in which the diaphragm 103 is extended for the above reason.
  • the volume of the electrolytic solution chamber 109 is kept substantially constant, and the pressure of the electrolytic solution is also kept in an appropriate range. Since the first diaphragm 103 always receives the downward force of FIG. 17 from the spring portion 131, it always maintains an appropriate stress (tension) without slackening.
  • the first diaphragm 103 is moved only slightly, and the pressure of the electrolyte solution changes greatly, so that the movement of the first diaphragm 103 is hindered, The first diaphragm 103 can hardly move.
  • the stress (tension) of the first diaphragm 103 is maintained at an appropriate value (in other words, the pressure of the fluid in the pump chamber 107 is maintained within a predetermined range). ), Efficient operation is possible.
  • the structure with one pump chamber 107 is characterized in that the structure is simple and the manufacture or maintenance is easy.
  • FIG. 18 shows a configuration of a fluid conveyance device using a conductive polymer according to the fourth embodiment of the present invention.
  • the electrolytic solution chamber 109 is mainly filled with only the electrolytic solution.
  • a part of the electrolytic solution chamber 109 may be filled with gas.
  • electrolyte solution and bubbles are mixed in the electrolyte solution chamber 109.
  • the bubbles constitute a bubble portion 212 made of a gas such as air that does not chemically react with the electrolytic solution.
  • the pressure on the first and second diaphragms 103 and 104 can be maintained within a predetermined range. This will be described below.
  • the pressure of the electrolyte inside the electrolyte chamber 109 is set to be smaller than the pressure of the fluid in the first and second pump chambers 107 and 108. Due to this pressure difference, the first and second diaphragms 103 and 104 are kept in a state in which stress (tension) is applied to the first and second diaphragms 103 and 104.
  • the pressure of the electrolyte solution and the bubble portion 212 is smaller than that when the pressure is set at the atmospheric pressure. 212 is inflated. However, since the electrolytic solution is almost an incompressible fluid, the degree of expansion of the bubble portion 212 is extremely small. From this state, for example, when the first and second diaphragms 103 and 104 are extended, the volume of the electrolyte chamber 109 is decreased, so that the pressure of the electrolyte and the bubble portion 212 are increased.
  • the electrolytic solution When only the electrolytic solution is contained in the electrolytic solution chamber 109, the electrolytic solution is an almost incompressible fluid, and therefore the pressure of the electrolytic solution increases rapidly, so that the first and second pump chambers 107 and 108 The pressure difference between the internal fluid and the electrolytic solution inside the electrolytic chamber 109 becomes very small, the stress (tension) of the first and second diaphragms 103 and 104 is reduced, and the first and second diaphragms 103, 104 becomes slack, and the operation of the pump is hindered.
  • the elastic modulus of the bubble part 212 of the electrolyte chamber 109 since the elastic modulus of the bubble part 212 of the electrolyte chamber 109 is small, the change in pressure is small even if the volume changes.
  • the bubble part 212 has a function of absorbing the pressure change in the electrolyte chamber 109 due to the volume change of the electrolyte chamber 109, and the pressure inside the electrolyte chamber 109 and the bubble part 212 is appropriate. Kept at the value. For this reason, the pressure difference between the fluid inside the first and second pump chambers 107 and 108 and the electrolyte inside the electrolyte chamber 109 is also kept within a certain range, so that the first and second diaphragms are maintained.
  • the stress (tension) of 103, 104 is maintained at an appropriate value (in other words, the pressure of the fluid in the first and second pump chambers 107, 108 is maintained within a predetermined range).
  • the bubble part 212 has a pressure maintaining function of the first and second diaphragms 103 and 104. Therefore, compared to the case where the pressure maintaining function of the first and second diaphragms 103 and 104 is not provided, even when the first and second diaphragms 103 and 104 are deformed, the pressure on the diaphragm is within an appropriate range. It is maintained and the operational efficiency of the pump is improved.
  • the pressure with respect to the 1st and 2nd diaphragms 103 and 104 can be automatically maintained within a predetermined appropriate range with a simple structure.
  • the volume of gas to be mixed into the electrolyte chamber 109 is desirably at least 10% of the discharge amount or the intake amount V 0 which pump. This can be understood, for example, in the following example.
  • FIG. 19 shows an example in which the second diaphragm 404 is a part of a spherical surface having a radius R0 .
  • the above assumption is obtained by approximating the shape of the second diaphragm 404 with the shape of a spherical crown when the second diaphragm 404 is in a relaxed state.
  • V p of the second pump chamber 408 is given by the following (relational expression 1).
  • V p ⁇ ⁇ h / 6 ⁇ (3 ⁇ r 2 + h 2 ) (Relational Expression 1)
  • the area S d of the second diaphragm 404 is given by the following (Relational Expression 2).
  • S d ⁇ ⁇ (r 2 + h 2 ) (Relational Expression 2)
  • V i 2/3 ⁇ ⁇ ⁇ r 3 .
  • Si ⁇ ⁇ r 2 is set.
  • is the circumference ratio.
  • the size of the periodic electrolytic expansion / contraction of the area of the second diaphragm 404 of the conductive polymer film in the pump is 10% or less of the area of the second diaphragm 404 in the initial state.
  • S i the area of the second diaphragm 404 in the initial state so is given by S i, in general, the area of the second diaphragm 404 during pump operation varies within the following ranges.
  • S i ⁇ area of the second diaphragm 404) ⁇ S i ⁇ 1.1
  • the area of the second diaphragm 404 is (S i ⁇ 1.1)
  • the volume of the second pump chamber 408 is given by V p ⁇ 0.2 ⁇ V i from (Relational Expression 1). From the above consideration, in the pump as shown in FIG. 22B, when the conductive polymer film constituting the second diaphragm 404 performs periodic electrolytic expansion / contraction, the second pump is used when performing one electrolytic expansion / contraction. It can be seen that the volume of the fluid discharged from the chamber 408 and the volume V 0 of the fluid sucked into the second pump chamber 408 are values of (0.2 ⁇ V i ) or less.
  • the second diaphragm 404 is extended and the center of the periodic change gradually changes. There is. For this reason, for example, deformation due to viscoelasticity of the conductive polymer film can be considered.
  • the volume of the second pump chamber 408 is given by V p ⁇ 0.02 ⁇ V i from (Relational Expression 1). Therefore, for reasons such as deformation due to the viscoelasticity of the conductive polymer film, considering the case where the area of the second diaphragm 404 is changed from the initial state S i to 0.001 ⁇ S i, of the second pump chamber 408
  • the volume V p varies from approximately 0 to 0.02 ⁇ V i . That is, the volume V p of the second pump chamber 408 increases by 0.02 ⁇ V i .
  • the volume of the electrolyte chamber 409 decreases by 0.02 ⁇ V i . . From the above consideration, when the area of the second diaphragm 404 increases due to deformation due to viscoelasticity of the conductive polymer film, the volume of the electrolyte chamber 409 decreases. It becomes a value of 02 ⁇ V i or more. Since the electrolytic solution is an incompressible fluid, when only the electrolytic solution is contained in the electrolytic solution chamber 409, the volume of the electrolytic solution chamber 409 is kept constant.
  • the gas in the bubble part 212 can change in volume.
  • the volume change of the electrolyte chamber 109 can be absorbed by the volume change of the gas in the bubble portion 212, and for example, the second diaphragm 104 can be prevented from being loosened.
  • the volume of the electrolyte chamber decreases, but when the pump is operated for a long time, The amount of decrease in the volume of the electrolyte chamber is a value of (0.02 ⁇ V i ) or more. Therefore, in order to absorb this volume change by the volume change of the gas mixed in the electrolyte chamber, the volume of the gas in the initial state needs to be (0.02 ⁇ V i ) or more.
  • the pump chamber is used for one electrolytic expansion / contraction.
  • the volume of fluid discharged from the pump and the volume of fluid sucked into the pump chamber are values of (0.2 ⁇ V i ) or less.
  • the volume change of the electrolyte chamber 109 is mixed into the electrolyte chamber 109.
  • V 0 be the discharge amount and suction amount of the pump when the first or second diaphragm 103 or 104 expands and contracts once.
  • the volume of the gas mixed in the electrolyte chamber 109 is desirably 10% or more of V 0 .
  • the volume change of the electrolyte chamber 109 is mixed into the electrolyte chamber 109.
  • the pump in the case where the first or second diaphragm 103 or 104 expands and contracts once is prevented.
  • the volume of the gas mixed into the electrolytic solution chamber 109 is larger than 20% of the volume of the electrolytic solution chamber 109, the gas is brought into contact with the first and second diaphragms 103 and 104, and the first and second diaphragms are generated. There arises a problem that ions are prevented from entering and exiting 103,104. Therefore, the volume of the gas mixed into the electrolytic solution chamber 109 is desirably 20% or less of the volume of the electrolytic solution chamber 109.
  • the volume of gas mixed into the electrolyte chamber 109 refers to the volume of gas in a state where the fluid conveyance device is used.
  • FIG. 20 is a cross-sectional view of a fluid conveyance device using a conductive polymer according to a fifth embodiment of the present invention, and a part of the first and second diaphragms 103 and 104 is constituted by an elastic film 204, respectively.
  • An example is shown below. That is, in FIG. 20, the peripheral portions of the diaphragms 103 and 104 are formed by the diaphragm elastic film 204.
  • a part of the first and second diaphragms 103 and 104 is constituted by the elastic film 204, respectively, and a part of the first and second diaphragms 103 and 104 is the first and second diaphragms 103, 104, respectively.
  • the elastic films 204 that constitute parts of the first and second diaphragms 103 and 104 are added to the conductive polymer films that constitute the first and second diaphragms 103 and 104, respectively.
  • the stress (tension) can be made more uniform in the plane of the first and second diaphragms 103 and 104.
  • the elastic film 204 has a convex shape that swells in the direction of the first or second pump chamber 107 or 108 or the electrolyte solution chamber 109.
  • the volume of the electrolytic solution chamber 109 can be kept substantially constant, and the pressure of the electrolytic solution is maintained in an appropriate range.
  • the pressure on the two diaphragms 103 and 104 can be maintained within an appropriate range (in other words, the pressure of the fluid in the first and second pump chambers 107 and 108 can be maintained within a predetermined range).
  • the two diaphragms 103 and 104 are arranged as close as possible without contacting each other. For this reason, it is desirable to reduce the area of the through hole 102h. Accordingly, it is desirable that the area of the elastic film 204 is smaller than the areas of the diaphragms 103 and 104.
  • the area change of the diaphragms 103 and 104 occurs due to the expansion and contraction of the conductive polymer film, it is desirable that the area change of the elastic film is larger than the area change of the diaphragms 103 and 104. . Therefore, it is desirable that the Young's modulus of the diaphragms 103 and 104 is smaller than the Young's modulus of the conductive polymer film. In general, since the value of Young's modulus of the conductive polymer film is about 1 GPa or more, the Young's modulus of the elastic film is preferably less than 1 GPa.
  • FIG. 21 is a cross-sectional view of a fluid transfer device using a conductive polymer according to a sixth embodiment of the present invention.
  • the fluid transfer device according to the third embodiment of FIG. Similar to the first diaphragm 103 and the spring portion 131, the diaphragm 103 and the spring portion 131 are disposed, and an electrolyte reservoir 206 is formed on the side of the electrolyte chamber 109. That is, the side wall 102 s of the casing portion 102 constituting the electrolytic solution chamber 109 is provided with a conduit portion 207 that penetrates a part of the side wall 102 s, and the electrolytic solution chamber 109 inside the housing portion 102 is provided by the conduit portion 207.
  • the upper part of the electrolytic solution reservoir 206 is released to atmospheric pressure, and thus the volume and pressure of the electrolytic solution chamber 109 are kept substantially constant.
  • the pressure that the diaphragm 103 receives from the electrolyte is also substantially constant, and the pressure on the diaphragm 103 can be kept substantially constant.
  • the upper surface of the electrolytic solution reservoir 206 can be configured with a deaeration membrane or the like that allows gas to permeate but does not allow liquid to permeate, thereby preventing the electrolytic solution from leaking to the outside. In the configuration of FIG.
  • the electrolyte level moves up and down inside the electrolyte reservoir 206, and the weight of the electrolyte is transmitted.
  • the pressure applied to the diaphragm changes slightly. Is often smaller than the pressure change caused by the change in volume of the electrolyte chamber 109 when the electrolyte chamber 109 is sealed.
  • a plurality of small fluid transfer devices are prepared and arranged in parallel with the same structure as described above, and the inflow side and the outflow side are arranged. It is also possible to obtain a large conveyance flow rate by connecting the two to each other. In this case, the first and second diaphragms 103 and 104 or the convex bulges of the diaphragm 103 in each fluid conveyance device are reduced, and thus the overall size can be reduced.
  • the first partition wall portion 193 and the second partition wall portion 194 are formed of a metal such as platinum and have a flat plate shape having a plurality of openings 193a. And the 1st partition part 193 and the 2nd partition part 194 are arrange
  • the first diaphragm 103d is disposed in each of the plurality of openings 193a of the first partition wall 193, and the second diaphragm 104d is disposed in each of the plurality of openings 194a of the second partition 194.
  • the first pump chamber 107 and the electrolyte chamber 109 are separated by the first partition wall 193 and the plurality of first diaphragms 103.
  • the second pump chamber 107 and the electrolyte chamber 109 are separated by the second partition wall 194 and the plurality of second diaphragms 104. Since the plurality of first diaphragms 103d are connected to each other by the first metal partition walls 193, they are kept at the same potential.
  • the plurality of second diaphragms 104d are connected by the second metal partition walls 194, they are kept at the same potential. Further, the first diaphragm 103d and the second diaphragm 104d are not electrically connected. In this structure, by changing the potential between the first diaphragm 103d and the second diaphragm 104d, the plurality of first diaphragms 103d and the plurality of second diaphragms 104d each expand and contract in the same manner as in the above embodiment. It is possible to perform the operation.
  • the structure of the fluid conveyance device in the direction of overlapping the diaphragm. That is, it is possible to arrange the structures of the fluid conveyance devices in an arbitrary positional relationship.
  • a part of the wall surface of the electrolyte chamber 109 is formed of an elastic body (for example, the elastic film portion 130 in FIG. 3), and the elastic force of the elastic body or Due to the elastic force of a spring connected to the elastic body (for example, the spring portion 131 in FIG.
  • the elastic body forming a part of the wall surface of the electrolytic solution chamber 109 tends to deform from the inside of the electrolytic solution chamber 109 to the outside. Generate power. By this force, the pressure of the electrolytic solution is kept smaller than the fluid pressure inside the pump chamber.
  • FIG. 28 shows the elastic membrane part 130 and the spring part 131 when the pressure of the electrolytic solution is the same as the pressure of the fluid in the pump chambers 107 and 108 in the pump of FIG. 3 in the fluid conveyance device according to the first embodiment. Show the state. However, the positions of the elastic film part 130 and the spring part 131 in FIG. 3 are indicated by dotted lines.
  • the elastic film portion 130 is in the position shown in FIG. A force (restoring force) is generated to cause the elastic film portion 130 to return to the state shown in FIG.
  • the pressure of the electrolytic solution is kept at a value smaller than the pressure of the fluid in the pump chambers 107 and 108, and the pressure of the electrolytic solution and the fluid in the pump chambers 107 and 108 are maintained. It is possible to keep the diaphragms 103 and 104 in such a shape that the diaphragms 103 and 104 are convex in the direction from the pump chambers 107 and 108 to the electrolyte chamber 109 with appropriate tension depending on the difference from the pressure. When the diaphragms 103 and 104 expand and contract and the volume of the electrolytic solution chamber 109 increases or decreases, the pressure of the electrolytic solution decreases or increases accordingly.
  • the volume and pressure of the electrolyte chamber 109 are always maintained at substantially the same values as in the initial state.
  • the electrolyte pressure is always kept smaller than the fluid pressure in the pump chambers 107 and 108, and the difference between the electrolyte pressure and the fluid pressure in the pump chambers 107 and 108 is caused. It is possible to keep the diaphragms 103 and 104 in a shape such that the diaphragms 103 and 104 are convex in the direction from the pump chambers 107 and 108 to the electrolyte chamber 109 with appropriate tension.
  • FIG. 29 shows the pressure of the electrolyte in the pump chambers 107 and 108 in the pump of FIG. 10 in the first modification of the first embodiment of the present invention.
  • the state of the elastic film part 130A when it is made the same value as this pressure is shown.
  • the position of the elastic film portion 130A in FIG. 10 is indicated by a dotted line.
  • a force (restoring force) that causes the elastic film portion 130 ⁇ / b> A to return to the state of FIG. 29 is generated by the elastic force of the elastic film portion 130 ⁇ / b> A.
  • the pressure of the electrolytic solution is kept smaller than the pressure of the fluid in the pump chambers 107 and 108, and the pressure of the electrolytic solution and the pressure of the fluid in the pump chambers 107 and 108 are kept. Therefore, the diaphragms 103 and 104 can be kept in a shape that is convex in the direction from the pump chambers 107 and 108 to the electrolyte chamber 109 with appropriate tension. When the diaphragms 103 and 104 expand and contract and the volume of the electrolytic solution chamber 109 increases or decreases, the pressure of the electrolytic solution decreases or increases accordingly. In response to this, the elastic membrane portion 130A moves to the electrolytic solution chamber.
  • the volume and pressure of the electrolyte chamber 109 are always maintained at substantially the same values as in the initial state.
  • the pressure of the electrolytic solution is always kept smaller than the pressure of the fluid in the pump chambers 107 and 108, and the difference between the pressure of the electrolytic solution and the pressure of the fluid in the pump chambers 107 and 108 is caused. It is possible to keep the diaphragms 103 and 104 in such a shape that the diaphragms 103 and 104 are convex in the direction from the pump chambers 107 and 108 to the electrolyte chamber 109 with appropriate tension.
  • the position of the elastic membrane portion is set to the same value as the pressure of the fluid in the pump chambers 107 and 108. Compared to the position of the elastic film portion, it is sufficient that the position is shifted in the direction from the outside to the inside of the electrolyte chamber 109.
  • the elastic membrane portion is convex in the direction from the outside to the inside of the electrolyte chamber 109, the elastic membrane portion is convex in the direction from the inside to the outside of the electrolyte chamber 109. It may be either. Moreover, it does not matter whether the spring part is connected to the elastic film part or not.
  • a part of the wall surface of the electrolyte chamber 109 is formed of an elastic body (for example, the elastic film part 130), and the elastic force or elastic body of the elastic body is used.
  • an elastic body forming a part of the wall surface of the electrolytic solution chamber 109 Due to the elastic force of the spring to be connected (for example, the spring portion 131), an elastic body forming a part of the wall surface of the electrolytic solution chamber 109 generates a force to deform from the outside of the electrolytic solution chamber 109 to the inside.
  • FIG. 30 shows a state of the elastic membrane portion 130 when the pressure of the electrolytic solution is set to the same value as the pressure of the fluid in the pump chambers 107 and 108 in the pump of FIG. However, the position of the elastic film part 130 in FIG. 13 is indicated by a dotted line.
  • a force (restoring force) that causes the elastic film portion 130 to return to the state of FIG. 30 is generated by the elastic force of the elastic film portion 130. Since this force is always generated during the operation of the pump, the pressure of the electrolytic solution is maintained at a value larger than the pressure of the fluid in the pump chambers 107 and 108, and the pressure of the electrolytic solution and the fluid in the pump chambers 107 and 108 are maintained.
  • the diaphragms 103 and 104 Due to the difference from the pressure, it is possible to keep the diaphragms 103 and 104 in a shape such that the diaphragms 103 and 104 are convex in the direction from the electrolyte chamber to the pump chambers 107 and 108 with appropriate tension.
  • the pressure of the electrolytic solution decreases or increases accordingly. It is deformed inward or outward as viewed from the chamber 109. As a result, the volume and pressure of the electrolyte chamber 109 are always maintained at substantially the same values as in the initial state.
  • the pressure of the electrolytic solution is always maintained at a value larger than the pressure of the fluid in the pump chambers 107 and 108, and the pressure of the electrolytic solution and the pressure of the fluid in the pump chambers 107 and 108 are Due to the difference, it is possible to keep the diaphragms 103 and 104 in a shape in which the diaphragms 103 and 104 are convex in the direction from the electrolyte chamber 109 to the pump chambers 107 and 108 with appropriate tension.
  • the initial stage In the state, the position of the elastic membrane part 130 when the pressure of the electrolytic solution is set larger than the pressure of the fluid in the pump chambers 107 and 108 is set to the same value as the pressure of the fluid in the pump chambers 107 and 108. Compared with the position of the elastic film portion 130 at the time, it is sufficient that the position is shifted in the direction from the inner side to the outer side of the electrolyte chamber 109.
  • the elastic membrane portion 130 is convex in the direction from the outside to the inside of the electrolyte chamber 109, the elastic membrane portion 130 is convex in the direction from the inside to the outside of the electrolyte chamber 109.
  • It may be any shape.
  • the spring portion 131 may or may not be connected to the elastic membrane portion 130.
  • FIG. 31 shows the size of the bubble 212 when the pressure of the electrolytic solution is the same as the pressure of the fluid in the pump chambers 107 and 108 in the pump of FIG. However, the size of the bubble 212 in FIG. 18 is indicated by a dotted line.
  • the bubble portion 212 has the size shown in FIG. A force (restoring force) that causes the size of the portion 212 to return to the state of FIG. 31 is generated.
  • the pressure of the electrolytic solution is kept at a value smaller than the pressure of the fluid in the pump chambers 107 and 108, and the pressure of the electrolytic solution and the fluid in the pump chambers 107 and 108 are maintained. Due to the difference from the pressure, it is possible to keep the diaphragms 103 and 104 in a shape such that the diaphragms 103 and 104 are convex in the direction from the pump chambers 107 and 108 to the electrolyte chamber 109 with appropriate tension. When the diaphragms 103 and 104 expand and contract and the volume of the electrolyte chamber 109 increases or decreases, the pressure of the electrolyte decreases or increases accordingly. Increase or decrease.
  • the volume and pressure of the electrolytic solution are always maintained at substantially the same values as in the initial state.
  • the pressure of the electrolytic solution is always kept smaller than the pressure of the fluid in the pump chambers 107 and 108, and the difference between the pressure of the electrolytic solution and the pressure of the fluid in the pump chambers 107 and 108 is caused. It is possible to keep the diaphragms 103 and 104 in such a shape that the diaphragms 103 and 104 are convex in the direction from the pump chambers 107 and 108 to the electrolyte chamber 109 with appropriate tension.
  • FIG. 28 to FIG. 31 for easy understanding, the position change of the elastic film 130 or the size change of the bubble part 212 due to the pressure change of the electrolytic solution is greatly shown. Actually, since the electrolytic solution is an incompressible fluid, a change in the position of the elastic film 130 or a change in the size of the bubble portion 212 due to a change in the pressure of the electrolytic solution is very small.
  • the elastic part examples include an elastic body, a spring part, and a bubble part.
  • the elastic body is a member whose surface is moved or deformed by the elastic force of the elastic body itself, and examples thereof include an elastic film or a bulk elastic member.
  • FIG. 32 is a configuration diagram showing an example of using a bulky elastic member, which is a fluid conveyance device according to still another embodiment of the present invention.
  • a recess 102v is formed in one side wall 102s of the housing 102, and a bulk elastic member 160 is fitted in the recess 102v.
  • the bulk elastic member 160 is a member whose surface 160a is moved or deformed by its own elastic force, and the surface 160a of the bulk elastic member 160 is moved forward and backward by the elastic force of the bulk elastic member 160 itself in the recess 102v.
  • the pressure acting on the diaphragms 103 and 104 can be maintained within a predetermined range by deforming the interface between the electrolytic solution and a portion other than the electrolytic solution. That is, a force for deforming the electrolyte chamber 109 from the inside to the outside is generated by causing the elastic force of the bulk elastic member 160 to act as the elastic force of the elastic portion, and the electrolyte solution is generated by the generated force. Is maintained at a value smaller than the pressure of the fluid in the pump chambers 107 and 108, and the diaphragms 103 and 104 generated by the difference between the pressure of the electrolyte and the pressure of the fluid in the pump chambers 107 and 108 are maintained.
  • the diaphragms 103 and 104 are maintained in a shape that is convex in the direction from the pump chambers 107 and 108 to the electrolyte chamber 109 due to the tension.
  • an elastic force of the bulk elastic member 160 is applied as the elastic force of the elastic portion to generate a force to deform from the outside of the electrolyte chamber 109 to the inside, and the generated force causes the electrolysis.
  • the pressure of the liquid is maintained at a value larger than the pressure of the fluid in the pump chambers 107 and 108, and the diaphragm 103, which is generated by the difference between the pressure of the electrolyte and the pressure of the fluid in the pump chambers 107 and 108,
  • the diaphragms 103 and 104 are maintained in a shape that is convex in the direction from the electrolyte chamber 109 to the pump chambers 107 and 108 due to the tension of 104.
  • reference numeral 102x denotes a recess formed at the bottom of the recess 102v, and the bulk elastic member 160 itself is inserted into the recess 102v so that the surface of the bulk elastic member 160 moves or deforms.
  • the elastic deformation is performed as indicated by the dotted line, a space into which a part of the bulk elastic member 160 enters is secured by the recess 102x.
  • FIG. 33 is a configuration diagram showing an example in which only the spring portion is used as the elastic portion in the fluid conveyance device according to still another embodiment of the present invention.
  • a concave portion 102w is formed in one side wall 102s of the housing portion 102, and a movable wall member 161 that can move and a spring portion 162 that applies elastic force to the movable wall member 161 are disposed in the concave portion 102w.
  • a concave portion 102w is formed in one side wall 102s of the housing portion 102, and a movable wall member 161 that can move and a spring portion 162 that applies elastic force to the movable wall member 161 are disposed in the concave portion 102w.
  • the movable wall member 161 moves forward and backward by the elastic force of the spring portion 162 in the recess 102w, and the pressure acting on the diaphragms 103 and 104 is within a predetermined range by deforming the interface between the electrolytic solution and a portion other than the electrolytic solution. Can be maintained. That is, the elastic force of the spring portion 162 is applied as the elastic force of the elastic portion to generate a force for deforming from the inner side to the outer side of the electrolytic solution chamber 109, and the pressure of the electrolytic solution is generated by the generated force.
  • the diaphragms 103 and 104 are maintained in a shape that is convex in the direction from the pump chambers 107 and 108 to the electrolyte chamber 109.
  • the elastic force of the spring portion 162 is caused to act as the elastic force of the elastic portion, thereby generating a force to deform from the outside of the electrolyte chamber 109 to the inside, and by the generated force, the electrolyte solution
  • the pressure is maintained at a value larger than the pressure of the fluid in the pump chambers 107 and 108, and the diaphragms 103 and 104 of the diaphragms 103 and 104 caused by the difference between the pressure of the electrolyte and the pressure of the fluid in the pump chambers 107 and 108 are maintained.
  • the diaphragms 103 and 104 are maintained in a shape that is convex in the direction from the electrolyte chamber 109 to the pump chambers 107 and 108 by tension. As a result, even in the example of FIG. 33, the same operational effects as those of the other embodiments can be obtained.
  • the fluid conveyance device of the present invention can be used for a fuel supply device such as methanol in a fuel cell, or a water-cooled circulation device for cooling an electronic device including a CPU. It can be suitably used as a fluid transfer device that performs with high efficiency.

Abstract

 流体吸入吐出するポンプの機能を有し流体が内部に満たされるポンプ室(107,108)と、ポンプ室壁面の一部を構成する筺体部(102)と、電解伸縮を行う導電性高分子膜で形成されポンプ室壁面の一部を構成するダイヤフラム(103,104)と、内部に含まれた電解液の一部がダイヤフラムに接する電解液室(109)と、ダイヤフラムに電圧を印加する電源と、ダイヤフラムに対する圧力を維持する圧力維持部(130,131)とを備える。

Description

導電性高分子を用いた流体搬送装置
 本発明は、特に燃料電池におけるメタノールなどの燃料の供給装置、又は、CPUを含む電子機器を冷却するための水冷循環装置などに用いられて、流体の吸入と吐出を行う導電性高分子を用いた流体搬送装置に関する。
 水などの流体を搬送する装置であるポンプは、CPUなどの発熱素子の冷却用液体の搬送、血液検査用チップへの血液の搬送、人体への医薬品の微量投与、化学実験又は化学操作をダウンサイジングして集積化して行うためのLab on a chip(ラボオンチップ)、又は、燃料電池におけるメタノールなどの燃料の供給を行うためなどに開発が進められている。これらの用途においては、小型化、軽量化、低電圧化、及び、静音化などが要求される。この要求に応えるために例えば、導電性高分子膜を用いたポンプが提案されている(例えば、特許文献1)。一般的に、導電性高分子膜を用いたアクチュエータは、軽量であり、低電圧で静音動作が可能であるという特徴を有する。
 図22A~図22Cは、特許文献1で提案されているダイヤフラム式ポンプの構造を示す。
 図22Aのポンプは、筺体402の内側に、それぞれ、導電性高分子膜からなるダイヤフラム403、404を備えている。ダイヤフラム403を第1ダイヤフラムと定義するとともに、ダイヤフラム404を第2ダイヤフラムと定義する。筺体402は、円筒形状であり、かつ内部空間を有する。第1及び第2ダイヤフラム403と404は、それぞれ、円板状の導電高分子膜であり、それぞれの周辺部が固定部分430と431において筐体402にそれぞれ固定されている。また、第1及び第2ダイヤフラム403、404は、それぞれの中央部分において接続部材406によって互いに接続されている。このようにして、第1及び第2ダイヤフラム403,404は、それぞれ膜面方向に張力がかかる状態で設置されて、それぞれ、円錐状の形状となる。今、第1及び第2ダイヤフラム403、404及び筐体402で囲まれたリング状の空間部409を電解液室と定義する。電解液室409には電解液が満たされている。第1及び第2ダイヤフラム403,404はそれぞれリード線410a,410bを介して電源410cに接続される。第1及び第2ダイヤフラム403,404に互いに逆位相の電圧をそれぞれ印加することにより、第1及び第2ダイヤフラム403,404のそれぞれの導電性高分子膜が伸縮運動を行う。今、筐体402と第1ダイヤフラム403で囲まれた第1空間部分407を第1ポンプ室と呼び、筐体402と第2ダイヤフラム404で囲まれた第2空間部分408を第2ポンプ室と呼ぶ。図22Aで示した状態では、第1ダイヤフラム403が伸張して、第2ダイヤフラム404が収縮した状態である。この状態では、第1吸入弁412を備えた第1吸入口411aから第1ポンプ室407の外部の液体を第1ポンプ室407の内部に吸入して、第2吐出弁424を備えた第2吐出口413bから第2ポンプ室408の内部の液体を第2ポンプ室408の外部に吐出する。また、逆に、第1ダイヤフラム403が収縮して第2ダイヤフラム404が伸張した状態では、第2吸入弁423を備えた第2吸入口411bから第2ポンプ室408の外部の液体を第2ポンプ室408の内部に吸入して、第1吐出弁422を備えた第1吐出口413aから第1ポンプ室407の内部の液体を第1ポンプ室407の外部に吐出する。これらの状態の切り替えを連続して行うことによって、第1ポンプ室407及び第2ポンプ室408の体積の増減が繰り返されて、それに応じてそれぞれのポンプ室に対する液体の吸入と吐出が繰り返される。このことによって、ポンプの機能を果たす。第1及び第2ダイヤフラム403,404が弛んだ状態では、導電性高分子膜の電解伸縮の力がポンプ室内部の流体に伝わらず逃げてしまうので、ポンプの動作効率が低下する。そこで、第1ダイヤフラム403及び第2ダイヤフラム404がそれぞれ弛まずに張った状態にすることが必要であるが、図22Aのポンプにおいては、電解液室409の内部の電解液の圧力を、第1ポンプ室内部の流体及び第2ポンプ室内部の流体の圧力よりも小さくすることによって、第1ダイヤフラム403及び第2ダイヤフラム404がそれぞれ弛まずに張った状態とすることができる。
 また、図22Bのポンプは、図22Aのポンプとほぼ同様の構成であるが、接続部材406が無い点が異なる。本構成においては、空間部409に満たされた電解液を介して第1及び第2ダイヤフラム403と404が力を及ぼし合う。このことによって、図22Aと同様の動作を行う。図22Bのポンプにおいては、電解液室409の内部の電解液の圧力を、第1ポンプ室内部の流体及び第2ポンプ室内部の流体の圧力よりも大きくするか、若しくは、小さくすることによって、第1ダイヤフラム403及び第2ダイヤフラム404が弛まずに張った状態とすることができる。
 また、図22Cのポンプは、筺体402の内側に、導電性高分子膜からなるダイヤフラム403を1個のみ備えている。筺体402は、円筒形状であり、かつ内部空間を有する。ダイヤフラム403は、円板状の導電性高分子膜であり、その周辺部が固定部分430において筐体402に固定されている。また、ダイヤフラム403と筐体402は、バネ部材451で接続されている。ダイヤフラム403は、膜面方向に張力がかかる状態で設置されて、円錐状の形状となる。図22Cにおいて、ダイヤフラム403の下方に位置しかつダイヤフラム403と筐体402で囲まれる空間部409を電解液室と定義する。電解液室409には電解液が満たされている。ダイヤフラム403に対向する筐体402の底面には、電極450が配置されている。ダイヤフラム403と電極450はそれぞれリード線410a,410bを介して電源410cに接続される。ダイヤフラム403と筐体402で囲まれた空間部分407をポンプ室と定義する。ダイヤフラム403と電極450に互いに逆位相の電圧を印加することにより、ダイヤフラム403の導電性高分子膜が伸縮運動を行う。図22Cで示した状態では、ダイヤフラム403が伸張した状態である。この状態では、吸入弁412を備えた吸入口411からポンプ室407の外部の液体をポンプ室407の内部に吸入する。また、逆に、ダイヤフラム403が収縮した状態では、吐出弁422を備えた吐出口413からポンプ室407の内部の液体をポンプ室407の外部に吐出する。これらの状態の切り替えを連続して行うことによって、ポンプ室407の体積の増減が繰り返されて、それに応じて液体の吸入と吐出が繰り返される。このことによって、ポンプの機能を果たす。
特開2005-207406号公報
 前記特許文献1のポンプに代表される導電性高分子膜を用いたポンプは,ポンプの動作時にダイヤフラムの張力が大きく変化することで、ポンプの動作効率が低下するという問題がある。ここで、ダイヤフラムの張力の変化には、以下の2つの変化がある。まず、1つ目の変化は、ポンプ動作時に導電性高分子膜の周期的な電解伸縮によって生じるダイヤフラムの張力変化である。2つ目の変化は、周期的な電解伸縮以外の理由で導電性高分子膜が伸縮した場合に生じる張力変化である。以下、これについて、順に説明する。
 まず、ポンプ動作時に導電性高分子膜の周期的な電解伸縮によって生じるダイヤフラムの張力変化と、その変化によるポンプ動作効率の低下について説明する。
 一般的に、導電性高分子膜の伸縮量は、導電性高分子膜に出入りする電荷の量におよそ比例する。今、第1ダイヤフラム403にある量の電荷が流れ込む場合、同じ量の電荷が第2ダイヤフラム404から流れ出る関係にある。このとき、第1ダイヤフラム403は伸張して第2ダイヤフラム404は収縮するが、前記の内容から第1ダイヤフラム403の伸張量と第2ダイヤフラム404の収縮量がおよそ等しい関係となる。すなわち、第1ダイヤフラム403の面積の変化量と第2ダイヤフラム404の面積の変化量は符号が逆で、かつ、絶対値がほぼ等しい関係となる。よって、第1ダイヤフラム403と第2ダイヤフラム404の合計面積はほぼ一定に保たれる。逆に、第1ダイヤフラム403からある量の電荷が流れ出て、第2ダイヤフラム404に電荷が流れ込む場合も、同様の関係が成り立つ。以上から、図22Bのポンプが動作するときには、第1ダイヤフラム403と第2ダイヤフラム404の合計面積はほぼ一定に保たれる。
 図22Bのポンプの動作時において、第1ダイヤフラム403が弛まずに張った状態であるという仮定のもとで、第1ダイヤフラム403の面積と第1ポンプ室の体積との関係は一般的に非線形の関係となる。すなわち、第1ダイヤフラム403の面積と第1ポンプ室407の体積との関係を表すグラフは、一般的に、上に凸の形状もしくは下に凸の形状となる。図25Aは、第1ダイヤフラム403の面積と第1ポンプ室407の体積との関係を表すグラフについて、その形状が上に凸である場合の例を示す。また、逆に、図25Bは、第1ダイヤフラム403の面積と第1ポンプ室407の体積との関係を表すグラフについて、その形状が下に凸である場合の例を示す。ここでは、第1ダイヤフラム403の面積がSであり、そのときの第1ポンプ室407の体積をWとし、第2ダイヤフラム404の面積はSであり、そのときの第2ポンプ室408の体積をWとし、第1ダイヤフラム403の面積と第2ダイヤフラム404の面積が等しくなるときのそれぞれの面積をSとし、そのときの第1ポンプ室407の体積と第2ポンプ室408のそれぞれの体積をWとしている。
 図25Cの関係が成り立つときに、ポンプの動作時に第1ダイヤフラム403及び第2ダイヤフラム404が弛まずに張った状態であるという仮定を行うと、第1ダイヤフラム403の面積と第1ポンプ室407及び第2ポンプ室408及びそれらの合計部分の体積(W+W)との関係は図25Cに示される。また、図25Bの関係が成り立つときに、ポンプの動作時に第1ダイヤフラム403及び第2ダイヤフラム404が弛まずに張った状態であるという仮定を行うと、第1ダイヤフラム403の面積と第1ポンプ室407及び第2ポンプ室408及びそれらの合計部分の体積(W+W)との関係は図25Dに示される。ただし、第1ダイヤフラム403の面積と第2ダイヤフラム404の面積が等しくなるときのそれらの値をSとしている。また、前記のようにポンプ動作時において、第1ダイヤフラム403の面積の変化量と第2ダイヤフラム404の面積の変化量は符号が逆で、かつ、ほぼ絶対値が等しい関係にあるので、第1ダイヤフラム403の面積と第2ダイヤフラム404の面積の合計量が一定に保たれるものとした。このとき、S-S=S-Sの関係がある場合に、第1ダイヤフラム403の面積がSであるときに第2ダイヤフラム404の面積はSとなり、逆に、第2ダイヤフラム404の面積がSであるときに第1ダイヤフラム403の面積はSとなる。図25Dに示したように、第1ダイヤフラム403の面積と、第1ポンプ室407及び第2ポンプ室408の合計体積との関係のグラフは、「(第1ダイヤフラムの面積)=Sの関係を示す直線」を対称軸とした左右対称の形状となる。また、第1ポンプ室407及び第2ポンプ室408の合計体積(W+W)は、第1ダイヤフラム403の面積=Sにおいて、極大値若しくは極小値をとる。図25Cにおいては、第1ダイヤフラム403の面積=Sにおいて極大値をとり、図25Dにおいては、第1ダイヤフラム403の面積=Sにおいて極小値をとる。いずれの場合においても、第1ダイヤフラム403及び第2ダイヤフラム404の面積変化に伴って、第1ポンプ室407の体積及び第2ポンプ室408の体積の合計値は一定値とはならず、変化する。
 今、ある状態において第1ダイヤフラム403及び第2ダイヤフラム404が弛まずに張っているものとして、そこから第1ダイヤフラム403及び第2ダイヤフラム404が弛まずに張った状態で変形した場合を考えると、第1ポンプ室407の体積と第2ポンプ室408の体積の合計値(W+W)は減少もしくは増加する。筐体402の内部の体積をWとすると、電解液室409の体積はWから第1ポンプ室407及び第2ポンプ室408の合計体積(W+W)を引いた値{W-(W+W)}となる。よって、第1ポンプ室407及び第2ポンプ室408の合計体積(W+W)の減少又は増加に応じて、電解液室409の体積は増加又は減少する。電解液室409の体積が増加する場合、電解液室409に満たされている電解液は非圧縮性流体であるから、電解液の圧力が急激に減少する。この圧力変化によって、第1ポンプ室内部の流体の圧力と電解液の圧力のバランスが急激に変化し、第1ダイヤフラム403は、第1ポンプ室407から電解液室409に向かう方向に強い力で押される。また、第2ダイヤフラム404は、第2ポンプ室408から電解液室409に向かう方向に強い力で押される。このことから、第1ダイヤフラム403及び第2ダイヤフラム404の張力が非常に大きくなり、第1ダイヤフラム403及び第2ダイヤフラム404の動作が妨げられる。結果として、ポンプの吐出量及び吸入量は非常に小さな値となり、ポンプの動作効率が低減する。
 逆に、電解液室409の体積が減少する場合、電解液の圧力が急激に増加する。前記のように、図22Bのポンプにおいて、ダイヤフラムが弛まずに張った状態に保つためには、電解液の圧力がポンプ室内部の流体の圧力よりも小さいという関係を保つ必要がある。しかしながら、電解液室409の体積の減少に伴い電解液の圧力が急激に増加した場合、この関係を保つことができなくなり、ダイヤフラムは弛む。図24Bは、図22Bに示したポンプにおいて導電性高分子膜のダイヤフラム403,404が弛んだ(緩んだ)状態を示す。ダイヤフラム403,404の張力に注目すると、ダイヤフラム403,404が弛んだ状態の張力は、ダイヤフラム403,404が弛まずに張った状態の張力よりも小さくなっている。すなわち、図22Bのポンプにおいては、電解液室409の体積変化に応じて電解液の圧力が急激に変化する。この結果、ダイヤフラム403,404が弛んだ状態、もしくは、張力が非常に大きくなり動作が妨げられる状態が発生する。図22Aのポンプでも同様で、その動作において、電解液室409の体積変化が発生し、それに応じて電解液の圧力が急激に変化する。この結果、ダイヤフラム403,404が弛んだ状態、若しくは、張力が非常に大きくなり動作が妨げられる状態が発生する。なお、図25C及び図25Dにおいては、第1ダイヤフラム403の面積がSであるときに第1ポンプ室407と第2ポンプ室408の合計体積の変化は小さく、この範囲に限れば、常にダイヤフラムが弛まずに張った状態で動作させることは可能であるが、このような範囲は小さく、ポンプの吐出量及び吸入量は小さな値に制限される。この結果、ポンプの動作効率は低くなる。
 また、図22Cに示したポンプにおいては、空間407の体積の増加及び減少を生じるためには、空間部409の体積が減少・増加する必要がある。今、空間部409には電解液が満たされているが、電解液は非圧縮性流体であるために、空間部409の体積はほぼ一定に保たれる。このために、空間407の体積の変化も、非常に小さい範囲に制限されるので、このポンプにおける液体の吐出と吸入の量は非常に小さい値となる。今、図22Cに示したポンプが動作するときにダイヤフラム403が弛まない状態が保たれると仮定する。このとき、ダイヤフラム403が伸張して、ポンプ室407の体積が増加してポンプ室407に液体が吸入される動作状態においては、電解液室409の体積が減少する。しかしながら、電解液室409の内部に満たされている電解液は非圧縮性流体であるので、電解液の圧力は急激に増加する。この結果、ダイヤフラム403は電解液室409からポンプ室407の方向に強い力で押されることになり、ダイヤフラム403の張力が非常に大きな値となる。このことからダイヤフラム403の動作が妨げられる。また、逆に、ダイヤフラム403が収縮して、ポンプ室407の体積が減少してポンプ室407から液体が吐出される動作状態においては、電解液室409の体積が増加する。しかしながら、電解液室409の内部に満たされている電解液は非圧縮性流体であるので、電解液の圧力は急激に減少する。この結果、ダイヤフラム403はポンプ室407から電解液室409の方向に強い力で押されることになり、ダイヤフラム403の張力が非常に大きな値となる。このことからダイヤフラム403の動作が妨げられる。
 以上をまとめると、従来のポンプでは、ポンプ動作時に、ダイヤフラムの張力が小さくなってダイヤフラムが弛んだ状態、若しくは、ダイヤフラムの張力が非常に大きくなってダイヤフラムの動作が妨げられる状態が発生する。図24A~図24Cは、図22A~図22Cに示したポンプにおいて導電性高分子膜のダイヤフラムが弛んだ(緩んだ)状態を示す。この状態においては、導電性高分子膜のダイヤフラムが伸縮しても、力が逃げてしまい、ポンプ室の液体に力が効率良く伝わらないので、液体の吸入と吐出の効率が著しく低下する。また、ダイヤフラムの張力が非常に大きくなってダイヤフラムの動作が妨げられる状態においても、流体の吐出量と吸入量が非常に小さな値となり、ポンプの効率が著しく低下する。
 次に、周期的な電解伸縮以外の理由で導電性高分子膜のダイヤフラムが伸縮した場合に生じる張力変化と、その変化によるポンプ動作効率の低下について説明する。
 図23は、長方形の形状の導電性高分子膜を電解液中に設定して、長辺方向にある一定の張力を加えた状態で、交流電圧を印加して電解伸縮させたときの、導電性高分子膜の歪みの変化を模式的に示した図である。ただし、Lは電圧印加を行う前の導電性高分子膜の長辺の長さを示し、ΔLは各時刻における導電性高分子膜の長辺の長さからLを引いた値を示す。図23の縦軸はΔL/Lを百分率(%)で表した値を示す。このような実験については、例えば、書籍「ソフトアクチュエータ開発の最前線 ~人工筋肉の実現をめざして~(株式会社エヌ・ティー・エス 2004年10月発行)」の第2章などに詳しく記載されている。図23に示されるように、導電性高分子膜に周期的な電圧を印加して動作を行うときには、電圧が元の電圧に戻ったときに導電性高分子膜の歪みは完全には元に戻らず、一定方向に歪みが蓄積する。また、電圧を印加しない場合においても、導電性高分子膜が電解液を吸うことによって膨張などの変形を生じることがある。また、導電性高分子膜においてクリープに代表される非可逆的もしくは可逆的な形状変化が生じることがある。また、ダイヤフラムの固定部分において、変形又はズレなどが発生することがある。なお、ダイヤフラムの固定部分は図22Aにおいて430と431で示されている。また、温度の変化に伴って導電性高分子膜が伸びることがある。例えば、温度が上昇したときに熱膨張によって導電性高分子膜が伸びることがある。また、導電性高分子膜が熱収縮の性質を有する場合には、温度が低下したときに導電性高分子膜が伸びる。これらの原因によって導電性高分子膜が伸びた場合を考えると、導電性高分子膜の弾性率は大きく、これらの原因による導電性高分子膜の伸びが弾性によって吸収できないために、導電性高分子膜が緩んだ状態が発生する。以上の理由から、製造時に導電性高分子膜に対して適当な張力がかかる状態でポンプを構成した場合でも、その後、導電性高分子膜が緩み、導電性高分子膜に所望の張力が加えられない状況が生じる。図24A~図24Cは、図22A~図22Cに示したポンプにおいて導電性高分子膜が弛んだ(緩んだ)状態を示す。この状態においては、導電性高分子膜が伸縮しても力が逃げてしまい、ポンプ室の流体(例えば液体)に力が効率良く伝わらないので、流体の吸入と吐出の効率が著しく低下する。
 また、逆に、温度の変化などに伴って導電性高分子膜が縮むことがある。例えば、温度が上昇したときに導電性高分子膜が熱収縮することがある。また、導電性高分子膜が熱膨張の性質を有する場合には、温度が低下したときに導電性高分子膜が縮む。また、導電性高分子膜が電解液を吸うことによって厚さが増し、厚み方向に伸びる力が発生し、この力による変形によってダイヤフラム面の面方向において導電性高分子膜が縮むことがある。これらの原因で導電性高分子膜が縮んだ場合を考えると、導電性高分子膜の弾性率は大きく、これらの原因による導電性高分子膜の縮みが弾性によって吸収できないために、導電性高分子膜の張力が非常に大きくなり、ポンプの動作が妨げられる。
 以上をまとめると、従来のポンプでは、周期的な電解伸縮以外の理由で導電性高分子膜が伸縮した場合に張力変化が発生して、ポンプ動作の効率が低下する。特に、張力が所定の値よりも小さくなった場合には、ダイヤフラムが弛んだ状態が発生する。図24A~図24Cは、図22A~図22Cに示したポンプにおいて導電性高分子膜が弛んだ(緩んだ)状態を示す。この状態においては、導電性高分子膜が伸縮しても力が逃げてしまい、ポンプ室の流体に力が効率良く伝わらないので、流体の吸入と吐出の効率が著しく低下する。
 これに対して、本発明の目的は、導電性高分子膜を用いて流体の吸入と吐出を行うポンプの機能を有し、導電性高分子膜で構成されるダイヤフラムに対する圧力を適正な範囲に保つことによって、流体の吸入と吐出の効率の向上を行うことができる導電性高分子を用いた流体搬送装置を提供することにある。
 前記目的を達成するために、本発明は以下のように構成する。
 本発明の第1態様によれば、流体を吸入及び吐出する、導電性高分子を用いた流体搬送装置であって、
 前記流体が内部に満たされるポンプ室と、
 前記ポンプ室が内部に形成されかつ前記ポンプ室の壁面の一部を構成する筺体部と、
 前記筺体部内に支持されて一部分もしくは全部分が電解伸縮を行う導電性高分子膜で形成されて、前記筺体部と共に前記ポンプ室の壁面を構成するダイヤフラムと、
 前記筺体部に配置されかつ前記ポンプ室において前記流体の吐出及び吸入を行うための開口部と、
 前記筺体部と前記ダイヤフラムとで囲まれかつ内部に電解液を含み、その電解液の一部が前記ダイヤフラムと接する電解液室と、
 前記導電性高分子膜に電圧を印加するための電源と、
 前記導電性高分子膜と前記電源とを電気的に接続する配線部と、
 前記電解液室内の電解液と前記ポンプ室内の前記流体とにより前記ダイヤフラムに作用する圧力を所定範囲内に維持する圧力維持部とを備える、導電性高分子を用いた流体搬送装置を提供する。
 本発明の導電性高分子を用いた流体搬送装置においては、ダイヤフラムが変形したときに、電解液の圧力を所定範囲内に維持することによってダイヤフラムに作用する圧力を適切な範囲内に維持する機能(圧力維持機能)を有する。この状態が流体搬送装置動作時に常に保たれるために、導電性高分子膜が伸張と収縮を行うときの仕事が、ポンプ室の流体の吐出と吸入に効率良く使わる。すなわち、電源から加えられる電気的エネルギーの中でポンプ室の流体の吐出と吸入の仕事に使われる割合を仕事効率と呼ぶものとすると、前記の圧力維持機能によって流体搬送装置の仕事効率が従来のポンプに比べて向上する。
 本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施形態に関連した次の記述から明らかになる。この図面においては、
本発明の第1実施形態にかかる、導電性高分子を用いた流体搬送装置の斜視図であり、 本発明の第1実施形態にかかる流体搬送装置の構成図であり、 本発明の第1実施形態にかかる流体搬送装置の構成図であり、 本発明の第1実施形態にかかる流体搬送装置の断面図であり、 本発明の第1実施形態にかかる流体搬送装置において各部分の大きさの例を示した図であり、 本発明の第1実施形態にかかる流体搬送装置において、電源によって周期的な正弦波電圧を印加したときのポンプの動作を示す動作図であり、 本発明の第1実施形態にかかる流体搬送装置において、電源によって周期的な正弦波電圧を印加したときのポンプの動作を示す動作図であり、 本発明の第1実施形態にかかる流体搬送装置において、電源によって周期的な正弦波電圧を印加したときのポンプの動作を示す動作図であり、 本発明の第1実施形態にかかる流体搬送装置において、電源によって周期的な正弦波電圧を印加したときのポンプの動作を示す動作図であり、 本発明の第1実施形態にかかる流体搬送装置の構成図であり、 本発明の第1実施形態にかかる流体搬送装置においてダイヤフラムに加わる張力の変化が生じたときのダイヤフラムに対する圧力の維持の様子の例を示した図であり、 本発明の第1実施形態にかかる流体搬送装置においてダイヤフラムに加わる張力の変化が生じたときのダイヤフラムに対する圧力の維持の様子の例を示した図であり、 本発明の第1実施形態の第1の変形例にかかる流体搬送装置を示す断面図であり、 本発明の第1実施形態の第2の変形例において、バネ部が伸びた状態での流体搬送装置を示す断面図であり、 本発明の第1実施形態の第2の変形例において、バネ部が縮んだ状態での流流体搬送装置を示す断面図であり、 本発明の第1実施形態の第2の変形例において、バネ部がコイルバネの代わりに気体で構成される場合の流体搬送装置を示す断面図であり、 本発明の第2実施形態にかかる、導電性高分子を用いた流体搬送装置の構成図であり、 本発明の第2実施形態にかかる流体搬送装置におけるダイヤフラムに対する圧力の維持の様子を示す図であり、 本発明の第3実施形態にかかる、導電性高分子を用いた流体搬送装置の構成図であり、 本発明の第3実施形態にかかる流体搬送装置の動作の様子を示す図であり、 本発明の第3実施形態にかかる流体搬送装置におけるダイヤフラムに対する圧力の維持の様子を示す図であり、 本発明の第4実施形態にかかる、導電性高分子を用いた流体搬送装置を示す構成図であり、 本発明の第4実施形態にかかる流体搬送装置のダイヤフラムの形状を説明する図であり、 本発明の第5実施形態にかかる、導電性高分子を用いた流体搬送装置を示す構成図であり、 本発明の第6実施形態にかかる、導電性高分子を用いた流体搬送装置を示す構成図であり、 従来例のポンプの構造を示す図であり、 従来例のポンプの構造を示す図であり、 従来例のポンプの構造を示す図であり、 導電性高分子膜の電解伸縮における膜の歪みの変化を示す図であり、 図22Aのポンプにおいて導電性高分子膜が緩んだ状態を示す図であり、 図22Bのポンプにおいて導電性高分子膜が緩んだ状態を示す図であり、 図22Cのポンプにおいて導電性高分子膜が緩んだ状態を示す図であり、 ポンプの各部の面積と体積の関係を表す図であり、 ポンプの各部の面積と体積の関係を表す図であり、 ポンプの各部の面積と体積の関係を表す図であり、 ポンプの各部の面積と体積の関係を表す図であり、 ポンプの各部の面積と体積の関係を説明するための図であり、 本発明の他の実施形態にかかる流体搬送装置を示す構成図であり、 本発明のさらに他の実施形態にかかる流体搬送装置であって、前記第1実施形態にかかる流体搬送装置における図3のポンプにおいて、電解液の圧力をポンプ室の流体の圧力と同じ値にしたときの弾性膜部及びバネ部の様子を示す構成図であり、 本発明のさらに他の実施形態にかかる流体搬送装置であって、本発明の前記第1実施形態の前記第1の変形例にかかる流体搬送装置における図10のポンプにおいて、電解液の圧力をポンプ室の流体の圧力と同じ値にしたときの弾性膜部の様子を示す構成図であり、 本発明のさらに他の実施形態にかかる流体搬送装置であって、本発明の第2実施形態にかかる流体搬送装置における図13のポンプにおいて、電解液の圧力をポンプ室の流体の圧力と同じ値にしたときの弾性膜部の様子を示す構成図であり、 本発明のさらに他の実施形態にかかる流体搬送装置であって、本発明の第4実施形態にかかる流体搬送装置における図18のポンプにおいて、電解液の圧力をポンプ室の流体の圧力と同じ値にしたときの気泡部の大きさを示す構成図であり、 本発明のさらに他の実施形態にかかる流体搬送装置であって、バルク状弾性部材を使用する例を示す構成図であり、 本発明のさらに他の実施形態にかかる流体搬送装置であって、弾性部としてバネ部のみを使用する例を示す構成図である。
 以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する。
 以下、図面を参照して本発明における実施形態を詳細に説明する前に、本発明の種々の態様について説明する。
 本発明の第1態様によれば、流体を吸入及び吐出する、導電性高分子を用いた流体搬送装置であって、
 前記流体が内部に満たされるポンプ室と、
 前記ポンプ室が内部に形成されかつ前記ポンプ室の壁面の一部を構成する筺体部と、
 前記筺体部内に支持されて一部分もしくは全部分が電解伸縮を行う導電性高分子膜で形成されて、前記筺体部と共に前記ポンプ室の壁面を構成するダイヤフラムと、
 前記筺体部に配置されかつ前記ポンプ室において前記流体の吐出及び吸入を行うための開口部と、
 前記筺体部と前記ダイヤフラムとで囲まれかつ内部に電解液を含み、その電解液の一部が前記ダイヤフラムと接する電解液室と、
 前記導電性高分子膜に電圧を印加するための電源と、
 前記導電性高分子膜と前記電源とを電気的に接続する配線部と、
 前記電解液室内の電解液と前記ポンプ室内の前記流体とにより前記ダイヤフラムに作用する圧力を所定範囲内に維持する圧力維持部とを備える、導電性高分子を用いた流体搬送装置を提供する。
 本発明の第2態様によれば、前記圧力維持部は、弾性部を備え、前記弾性部の弾性力によって前記電解液と前記電解液以外の部分との界面を変形することによって前記ダイヤフラムに作用する圧力を前記所定範囲内に維持する第1態様に記載の、導電性高分子を用いた流体搬送装置を提供する。
 本発明の第3態様によれば、前記圧力維持部の前記弾性部は、前記電解液室の壁面の一部に形成された伸縮可能な弾性体と、前記弾性体と前記筺体部との間を接続するバネ部とで構成して、前記弾性体の弾性力若しくは前記バネ部の弾性力を前記弾性部の前記弾性力として作用させることによって、前記弾性体が前記電解液室の内側から外側方向に変形しようとする力を発生して、
 前記発生した力によって前記電解液の圧力が前記ポンプ室の前記流体の圧力よりも小さな値に保たれ、前記電解液の圧力と前記ポンプ室の前記流体の圧力との差によって生じた前記ダイヤフラムの張力により前記ポンプ室から前記電解液室の方向に凸であるような形状に前記ダイヤフラムが保たれることを特徴とする第2態様に記載の、導電性高分子を用いた流体搬送装置を提供する。
 本発明の第4態様によれば、前記圧力維持部の前記弾性部は、前記電解液室の壁面の一部に形成された伸縮可能な弾性体で構成して、前記弾性体の弾性力を前記弾性部の前記弾性力として作用させることによって、前記弾性体が前記電解液室の内側から外側方向に変形しようとする力を発生し、
 前記発生した力によって前記電解液の圧力が前記ポンプ室の前記流体の圧力よりも小さな値に保たれ、前記電解液の圧力と前記ポンプ室の前記流体の圧力との差によって生じた前記ダイヤフラムの張力により前記ポンプ室から前記電解液室の方向に凸であるような形状に前記ダイヤフラムが保たれることを特徴とする第2の態様に記載の、導電性高分子を用いた流体搬送装置を提供する。
 本発明の第5態様によれば、前記圧力維持部の前記弾性部はバネ部で構成して、前記バネ部の弾性力を前記弾性部の前記弾性力として作用させることによって前記電解液と前記電解液以外の部分との界面を変形しようとする力を発生し、
 前記発生した力によって前記電解液の圧力が前記ポンプ室の前記流体の圧力よりも小さな値に保たれ、前記電解液の圧力と前記ポンプ室の前記流体の圧力との差によって生じた前記ダイヤフラムの張力により前記ポンプ室から前記電解液室の方向に凸であるような形状に前記ダイヤフラムが保たれることを特徴とする第2の態様に記載の、導電性高分子を用いた流体搬送装置を提供する。
 本発明の第6態様によれば、前記圧力維持部の前記弾性部は、前記電解液室の壁面の一部に形成された伸縮可能な弾性体と、前記弾性体と前記筺体部との間を接続するバネ部とで構成して、前記弾性体の弾性力若しくは前記バネ部の弾性力を前記弾性部の前記弾性力として作用させることによって、前記弾性体が前記電解液室の外側から内側方向に変形しようとする力を発生し、
 前記発生した力によって前記電解液の圧力が前記ポンプ室の前記流体の圧力よりも大きな値に保たれ、前記電解液の圧力と前記ポンプ室の前記流体の圧力との差によって生じた前記ダイヤフラムの張力により前記電解液室から前記ポンプ室の方向に凸であるような形状に前記ダイヤフラムが保たれることを特徴とする第2態様に記載の、導電性高分子を用いた流体搬送装置を提供する。
 本発明の第7態様によれば、前記圧力維持部の前記弾性部は、前記電解液室の壁面の一部に形成された伸縮可能な弾性体で構成して、前記弾性体の弾性力を前記弾性部の前記弾性力として作用させることによって、前記弾性体が前記電解液室の外側から内側方向に変形しようとする力を発生し、
 前記発生した力によって前記電解液の圧力が前記ポンプ室の前記流体の圧力よりも大きな値に保たれ、前記電解液の圧力と前記ポンプ室の前記流体の圧力との差によって生じた前記ダイヤフラムの張力により前記電解液室から前記ポンプ室の方向に凸であるような形状に前記ダイヤフラムが保たれることを特徴とする第2の態様に記載の、導電性高分子を用いた流体搬送装置を提供する。
 本発明の第8態様によれば、前記圧力維持部の前記弾性部はバネ部で構成して、前記バネ部の弾性力を前記弾性部の前記弾性力として作用させることによって前記電解液と前記電解液以外の部分との界面を変形しようとする力を発生し、
 前記発生した力によって前記電解液の圧力が前記ポンプ室の前記流体の圧力よりも大きな値に保たれ、前記電解液の圧力と前記ポンプ室の前記流体の圧力との差によって生じた前記ダイヤフラムの張力により前記電解液室から前記ポンプ室の方向に凸であるような形状に前記ダイヤフラムが保たれることを特徴とする第2の態様に記載の、導電性高分子を用いた流体搬送装置を提供する。
 本発明の第9態様によれば、前記圧力維持部の前記弾性部は、前記電解液室の前記電解液内に位置し、かつ、内部に気体を含む気泡部で構成し、
 この気泡部の体積は、前記ダイヤフラムが1回伸縮する場合の流体搬送装置の吐出量の10%以上の大きさであることを特徴とする第2態様に記載の、導電性高分子を用いた流体搬送装置を提供する。
 本発明の第10態様によれば、前記気泡部の体積は、前記電解液室の体積の20%以下であることを特徴とする第9態様に記載の、導電性高分子を用いた流体搬送装置を提供する。
 以下、図を用いて説明するが、本発明はこれらの実施形態に限定されるものではない。
 (第1実施形態)
 図1は、本発明の第1実施形態にかかる、導電性高分子を用いた流体搬送装置の斜視図である。
 図1の流体搬送装置は、筺体部102と、弾性部の一例としての弾性膜部130と、流体管部200、201、202,203との各部分を備えている。
 筐体部102は、およそ円柱の形状である。筐体部102の上下の円形の平面210には、それぞれ2本ずつ、流体管部200、201と流体管部202,203が接続している。筐体部102の側壁102sの貫通穴102hの外側の開口縁部には、円形の弾性膜部130が備えられている。今、後の説明のために、筐体部102の上部の円形の平面を、上部円形平面210と定義する。図1に示すように、直線100A-100Bは、上部円形平面210の1つの直径を含む直線である。また、直線100C-100Dは、上部円形平面210の1つの直径を含む直線であり、直線100A-100Bと直交する。直線100A-100Bを含み、上部円形平面210と垂直な平面を、平面220と定義する(図2参照)。また、直線100C-100Dを含み、上部円形平面210と垂直な平面を、平面221と定義する(図2参照)。
 図3は、この第1実施形態の前記流体搬送装置を、平面220で切断したときの断面図である。
 図3の流体搬送装置は、筺体部102と、第1ダイヤフラム103と、第2ダイヤフラム104と、第1ポンプ室107と、第2ポンプ室108と、電解液室109と、配線部110aと110bと、電源110cと、第1及び第2吸入口111aと111bと、第1及び第2吐出口113aと113bと、第1及び第2吸入弁121と123と、第1及び第2吐出弁122と124と、弾性部の一例としてのバネ部131と、弾性膜部130と、流体管部200、201、202、203とを備えるように構成されている。バネ部131と弾性膜部130とは、以下で説明するように圧力維持部(特に、圧力維持部の弾性部の一例)として働く。
 第1ダイヤフラム103は、円板状の導電高分子膜であり、その周辺部が筺体部102の上壁の周辺部に固定されている。第2ダイヤフラム104は、円板状の導電高分子膜であり、その周辺部が筺体部102の下壁部の周辺部に固定されている。第1ダイヤフラム103と第2ダイヤフラム104とが筺体部102を介して導通しないようにするため、筺体部102自体を絶縁体より構成するか、又は、第1ダイヤフラム103又は第2ダイヤフラム104又はその両方と筺体部102とが絶縁体を介して固定されるようにしている。また、第1ダイヤフラム103と第2ダイヤフラム104について、以下では簡単のため、単にダイヤフラムと呼ぶ。以下、各部分の形状又は動作について詳しく説明する。
 図4は、この第1実施形態の流体搬送装置を、平面221で切断したときの断面図である。図4において、バネ部131の形状は簡易に示しているが、バネ部131の構造の例としては、後で説明するように直線100A-100Bと平行な直線を軸とする螺旋形状のコイルバネ構造が考えられる。
 この第1実施形態においては、第1ポンプ室107は、筺体部102の上壁と第1ダイヤフラム103とで囲まれて構成されており、搬送対象である流体で満たされている。第1ポンプ室107の一部を構成する筺体部102の上壁には、流体管部200が接続されて第1吸入弁121を有する第1吸入口111aと、流体管部201が接続されて第1吐出弁122を有する第1吐出口113aとの2個の開口部が形成されている。また、第2ポンプ室108は、筺体部102の下壁と第2ダイヤフラム104とで囲まれて構成されており、搬送対象である流体で満たされている。第1ポンプ室107の流体と第2ポンプ室108の流体とは同じでもよいし、異なっていてもよい。第2ポンプ室108の一部を構成する筺体部102の下壁には、流体管部203が接続されて第2吸入弁123を有する第2吸入口111bと、流体管部202が接続されて第2吐出弁124を有する第2吐出口113bとの2個の開口部が形成されている。第1及び第2ダイヤフラム103,104及び筐体部102で囲まれたリング状の空間部109を電解液室と定義する。この電解液室109内に前記バネ部131が配置されている。
 以下で説明するように、第1及び第2ポンプ室107,108に形成されたこれらの開口部を通じて流体の吸入及び吐出が行われることによって、流体搬送装置としてポンプの動作が行われる。図3で示した状態では、第1ダイヤフラム103が伸張して、第2ダイヤフラム104が収縮した状態である。この状態では、開かれた第1吸入弁121を備えた第1吸入口111aから第1ポンプ室107の外部の流体例えば液体を第1ポンプ室107の内部に吸入して、開かれた第2吐出弁124を備えた第2吐出口113bから第2ポンプ室108の内部の流体を第2ポンプ室108の外部に吐出する。このとき、第1吐出弁122を備えた第1吐出口113aは第1吐出弁122により閉じられており、第2吸入弁123を備えた第2吸入口111bも第2吸入弁123により閉じられている。また、逆に、第1ダイヤフラム103が収縮して第2ダイヤフラム104が伸張した状態では、開かれた第2吸入弁123を備えた第2吸入口111bから第2ポンプ室108の外部の流体例えば液体を第2ポンプ室108の内部に吸入して、開かれた第1吐出弁122を備えた第1吐出口113aから第1ポンプ室107の内部の流体を第1ポンプ室107の外部に吐出する。このとき、第2吐出弁124を備えた第2吐出口113bは第2吐出弁124により閉じられており、第1吸入弁121を備えた第1吸入口111aも第1吸入弁121により閉じられている。これらの2つの状態の切り替えを連続して行うことによって、第1ポンプ室107及び第2ポンプ室108の体積の増減が繰り返されて、それに応じてそれぞれのポンプ室107,108に対する流体の吸入と吐出が繰り返される。このことによって、流体搬送装置としてのポンプの機能を果たすことができる。
 筺体部102は、内部に空間を有し、例えば直径1cm~4cm、高さ1cm~4cmの範囲である円筒状の形状に対して、開口部などの特定箇所に貫通穴が開けられた形状を有し、筺体部102の内部には、直径0.8~3.8cm、高さ0.8~3.8cmの範囲の円筒状の内部空間を有する。この場合、筺体部102の厚みは0.2cm程度とするのが好ましい。筺体部102の上面及び底面の形状は、第1及び第2ダイヤフラム103,104の張力が均一になるという観点からは、それぞれ、第1及び第2ダイヤフラム103,104の円板の円形より小さい円形であることが望ましいが、他の形状であってもよい。筐体部102の高さは、2枚のダイヤフラム103と104との距離が、以下に説明する範囲となるように、設計されることが望ましい。2枚のダイヤフラム103と104が動作するときに2枚のダイヤフラム103と104がお互いに接触した場合、お互いが電気的に短絡して正常に動作しないことが考えられる。また、第1及び第2ダイヤフラム103と104の動作が制限されて、ポンプの吸入及び吐出の効率が低下する。以上の観点から、2枚のダイヤフラム103と104が動作するときに2枚のダイヤフラム103と104がお互いに接触しないように、2枚のダイヤフラム103と104の最も接近している部分の距離が、ある一定値以上であることが望ましい。また、2枚のダイヤフラム103と104の最も接近している部分の距離が大きすぎる場合、2枚のダイヤフラム103と104との間の電解液室109内に存在する電解液における電圧降下の影響が大きくなり、消費電力が大きくなる。また、2枚のダイヤフラム103と104の最も接近している部分の距離が大きすぎる場合、流体搬送装置を小型にすることが難しい。以上の理由から、2枚のダイヤフラム103と104の最も接近している部分の距離は、ある一定値以下であることが望ましい。以上の点を考慮して、2枚のダイヤフラム103と104の最も接近している部分の距離、及び、筺体部102の高さは設計されることが望ましい。
 図5は、この第1実施形態の流体搬送装置の各部分の大きさの具体的な例を示した図である。筺体部102の内部空間は、2枚のダイヤフラム103と104で3個の空間に分割されており、それぞれ、第1ポンプ室107、電解液室109、第2ポンプ室108を形成する。ダイヤフラム103及び104の一部分もしくは全部分はポリマーアクチュエータ材料で形成されており、例えば、厚さ5μm~30μm、直径約1cm~4.5cmの円板形状である。この第1実施形態においては、ダイヤフラム103及び104は、図3及び図5に示すように凸形状にたわんだ状態で使用されるので、この状態においてはダイヤフラム103及び104の大きさは、筺体部102の内部空間の底面よりも大きい。図5では、第1吸入口111aと第2吸入口111bと第1吐出口113aと第2吐出口113bの直径は3mm、筺体部102の高さは10mm、弾性膜部130が形成された筺体部102の側壁102sの外面から筺体部102の側壁102に対向する側壁102の内面までの距離(言い換えれば、筺体部102の内部空間の底面の直径方向沿いの筺体部102の内部空間の距離と筺体部102の側壁102sの厚みとの合計の距離)を30mmとする。
 前記第1及び第2ダイヤフラム103及び104を構成するポリマーアクチュエータ材料は、電解伸縮を行う導電性高分子膜の材料であり、具体的な例としては、ポリピロール及びポリピロール誘導体、ポリアニリン及びポリアニリン誘導体、ポリチオフェン及びポリチオフェン誘導体、及び、これらから選ばれる1種類又は複数種類からなる(共)重合体が挙げられる。特に、ポリマーアクチュエータ材料としては、ポリピロール、ポリチオフェン、ポリN-メチルピロール、ポリ3-メチルチオフェン、ポリ3-メトキシチオフェン、ポリ(3,4-エチレンジオキシチオフェン)、及び、これらから選ばれる1種類又は2種類からなる(共)重合体が好ましい。また、これらの材料で構成される導電性高分子膜は、例えば六フッ化リン酸イオン(PF-)、p-フェノールスルホン酸イオン(PPS)、ドデシルベンゼンスルホン酸イオン(DBS)、又は、ポリスチレンスルホン酸イオン(PSS)などの負イオン(アニオン)をドーピングした状態で使用するのが好ましい。このようにドーピングした状態において、前記の導電性高分子膜は、導電性を有してポリマーアクチュエータとしての機能を発生する。これらの導電性高分子膜は、化学重合又は電解重合で合成した後、必要な場合、成型の処理を行うことによって作製可能である。
 次に、ポリマーアクチュエータ材料で構成される前記ダイヤフラム103及び104の厚さについて説明する。ポリマーアクチュエータ材料で構成される前記ダイヤフラムが厚い場合、ポリマーアクチュエータの電解伸縮による仕事において大きな力を得ることが可能である。また、ポリマーアクチュエータ材料で構成される前記ダイヤフラムが薄い場合、ポリマーアクチュエータ材料へのイオンの出入りがすばやく行われるために、ポンプの動作を高速にすることが可能である。これらの点を考慮してポリマーアクチュエータ材料で構成される前記ダイヤフラムの厚さを設計することが望ましい。前記観点から、一例として、前記ダイヤフラム103及び104のそれぞれの厚さは0.1~1000μmの範囲であることが望ましく、その中でも特に1μm~100μmが望ましい。
 また、ポリマーアクチュエータ材料で構成される前記ダイヤフラムの面積を大きくした場合、ポリマーアクチュエータの電解伸縮による仕事量を大きくすることが可能である。また、ポリマーアクチュエータ材料で構成される前記ダイヤフラムの面積を小さくした場合、必要な筺体の体積を小さくすることができるため、流体搬送装置を小型にすることが可能である。これらの点を考慮して、ポリマーアクチュエータ材料で構成される前記ダイヤフラムの面積を設計することが望ましい。前記観点から、一例として、前記ダイヤフラム103及び104のそれぞれの面積は0.01cm~1000cmであることが望ましく、その中でも特に0.1cm~100cmであることが望ましい。
 電解液室109には、電解液が満たされている。ここで、電解液とは、液体状の電解質を示すものとし、例えば、イオン性物質を水などの極性溶媒に溶解させて作った電気伝導性を有する溶液、又は、イオンからなる液体(イオン液体)などが考えられる。電解液の例としては、NaPF、TBAPF、HCl、若しくは、NaClなどの電解質を、水、もしくは、プロピレンカーボネートなどの有機溶媒に溶解させたもの、又は、BMIPFなどのイオン液体が利用可能である。
 ダイヤフラム103と104には、それぞれ、配線部110aと110bの一端が接続されている。また、配線部110aと110bの他端は電源110cに接続されている。第1ポンプ室107と第2ポンプ室108には、流体搬送装置としてのポンプが吸入と吐出を行う流体が入れられている。ポンプが吸入と吐出を行う流体は、例えば水が考えられる。筺体部102は、電解液に対して耐性がある材料で形成されており、例えばポリカーボネイト樹脂又はアクリル樹脂を含む材料、又は、これらの材料に対して表面硬化処理を行った材料で構成される。
 第1吸入口111aと第2吸入口111bは第1吸入弁121と第2吸入弁123を有し、ポンプ室107,108の外部からポンプ室107,108に向かって流体がそれぞれ吸入される方向にのみ流れる構造となっている。第1吐出口113aと第2吐出口113bは第1吐出弁122と第2吐出弁124を有し、ポンプ室107,108からポンプ室107,108の外部に向かって流体がそれぞれ吐出される方向にのみ流れる構造となっている。各吸入口と各吐出口の形状は、流体を吸入及び吐出する際に必要な圧力又は流量、及び、流体の粘性などを考慮して設計される。
 電源110cの電圧は、例えば±1.5Vのサイン波もしくは矩形波で変化する。このことにより、ダイヤフラム103と104の間に周期的に変化する電圧が印加される。一方のダイヤフラム103又は104に正の電圧が印加されたときには、そのダイヤフラム103又は104を構成する導電性高分子膜は酸化される。そして、これに応じて、前記一方のダイヤフラム103又は104の導電性高分子膜から正イオン(カチオン)が抜け出したり、前記一方のダイヤフラム103又は104の導電性高分子膜に負イオン(アニオン)が入り込んだりする変化が生じる。このことによって、前記一方のダイヤフラム103又は104の導電性高分子膜において、収縮もしくは伸張(膨張)などの変形が生じる。逆に、前記一方のダイヤフラム103又は104に負の電圧が印加されたときには、そのダイヤフラム103又は104を構成する導電性高分子膜は還元される。そして、これに応じて、前記一方のダイヤフラム103又は104の導電性高分子膜に正イオン(カチオン)が入り込んだり、前記一方のダイヤフラム103又は104の導電性高分子膜から負イオン(アニオン)が抜け出したりする変化が生じる。このことによって、前記一方のダイヤフラム103又は104の導電性高分子膜において、伸張(膨張)もしくは収縮などの変形が生じる。
 図6A、図6B、図6C、図6Dは、電源110cによって周期的な正弦波電圧を印加したときのポンプの動作を示す図である。今、正弦波電圧の振幅をVとする。これらの図6A~図6Dにおいては、主に負イオンの出入りによってダイヤフラム103,104のそれぞれの導電性高分子膜の伸張と収縮の変形が生じる場合の例を示している。なお、図6A~図6Dにおいて、理解しやすくするため、ダイヤフラム103,104に対して負イオン99の大きさを拡大して図示している。
 図6Aにおいては、第1ダイヤフラム103と第2ダイヤフラム104の電圧はともに0である。すなわち、第1ダイヤフラム103と第2ダイヤフラム104は等電位である。
 図6Bにおいては、電源110cから第1ダイヤフラム103に正の電圧(+V)が加えられるとともに、電源110cから第2ダイヤフラム104に負の電圧(-V)が加えられている。
 図6Cにおいては、第1ダイヤフラム103と第2ダイヤフラム104の電圧はともに0である。すなわち、第1ダイヤフラム103と第2ダイヤフラム104は等電位である。
 図6Dにおいては、電源110cから第1ダイヤフラム103に負の電圧(-V)が加えられるとともに、電源110cから第2ダイヤフラム104に正の電圧(+V)が加えられている。
 今、図6A→図6B→図6C→図6D→図6A→図6B→図6C→図6D→・・・に示されるように、周期的に状態が変化する場合を考える。
 図6Aにおいては、第1ダイヤフラム103と第2ダイヤフラム104は等電位であり、電解液室109内の電解液に含まれる負イオン99は電解液内でほぼ一様に分布している。ただし、第1ダイヤフラム103の電位が増加しつつあるので、第1ダイヤフラム103を構成する導電性高分子膜の酸化が進む。すなわち、例えば、時刻tにおける第1ダイヤフラム103の電位V(t)がV×sin(ωt)と表され、時刻0において図6Aの状態になる場合を考えると、図6Aの状態において第1ダイヤフラム103の電位は0であり、V(t)の導関数は時刻0においてVωであるので、図6Aの状態において電位が増加しつつあることがわかる。これに応じて、電解液に含まれる負イオン(アニオン)99が第1ダイヤフラム103に引き寄せられ、また、その負イオン(アニオン)99の一部が第1ダイヤフラム103の内部に入り込む。この結果、第1ダイヤフラム103が伸張する。第1ダイヤフラム103の伸張に伴い第1ポンプ室107の体積が増加するので、第1吸入弁121が開き、第1吸入口111aから流体が第1ポンプ室107の外部から第1ポンプ室107内に流入する。また、前記第1ダイヤフラム103の電位が増加しつつあるのと同時に、第2ダイヤフラム104の電位が減少しつつあるので、第2ダイヤフラム104を構成する導電性高分子膜の還元が進む。これに応じて、第2ダイヤフラム104を構成する導電性高分子膜から、負イオン(アニオン)99が電解液に抜け出す。この結果、第2ダイヤフラム104が収縮する。第2ダイヤフラム104の収縮に伴い第2ポンプ室108の体積が減少するので、第2吐出弁124が開き、第2吐出口113bを通して第2ポンプ室108の内部の流体が第2ポンプ室108の外部に流出する。なお、流体搬送装置の構造は、電源110cから見てキャパシタンスとして働く。図6Aの状態においては、第2ダイヤフラム104に対する第1ダイヤフラム103の電位が増加しつつあるので、前記キャパシタンスにおいて外部から第1ダイヤフラム103に正電荷を蓄積する方向の電流が流れる。
 なお、弾性膜部130と、バネ部131の動きについては、後で詳しく説明する。
 次に、図6Bにおいては、電源110cから第1ダイヤフラム103に正の電圧(+V)が加えられるとともに、電源110cから第2ダイヤフラム104に負の電圧(-V)が加えられている。この状態においては、第1ダイヤフラム103を構成する導電性高分子膜は酸化されていて、これに応じて、電解液に含まれる負イオン(アニオン)99が第1ダイヤフラム103に引き寄せられている。そして、負イオン(アニオン)99の一部が、第1ダイヤフラム103を構成する導電性高分子膜の内部に入り込んでいる。この結果、第1ダイヤフラム103は伸張している。図6Bにおいて、比較のために図6Aにおける第1ダイヤフラム103の位置を点線で示している。 今、説明のための例として、時刻tにおける第1ダイヤフラム103の電位V(t)がV×sin(ωt)と表され、時刻0において図6Aの状態になり、時刻π/(2ω)において図6Bの状態になる場合を考える。この場合、図6Bの状態において第1ダイヤフラム103の電位は最大値Vであり、これに伴い、第1ダイヤフラム103は最も伸張した状態である。また、V(t)の導関数は時刻π/(2ω)において0であるので、図6Bの状態において電位の変化はなく、これに伴い、第1ダイヤフラム103の速度は0であり、ポンプへの流体の吐出及び吸入の流量は0となる。ただし、ここでは簡単のために、イオン液体又は流体の粘性などを無視して、電圧の変化と同期してダイヤフラム103の伸張と収縮が行われて、ダイヤフラム103の変形速度に同期して流体の吐出及び吸入が行われる場合を考えている。
 また、第2ダイヤフラム104を構成する導電性高分子膜は還元されていて、これに応じて、第2ダイヤフラム104を構成する導電性高分子膜から負イオン(アニオン)99が電解液に抜け出している。この結果、第2ダイヤフラム104が収縮している。図6Bにおいて、比較のために図6Aにおける第2ダイヤフラム104の位置を点線で示している。ただし、この状態においては、電位の変化はほぼ0であるため、第1及び第2ダイヤフラム103及び104の形状又は負イオン99の分布の変化もほぼ0であり、第1ポンプ室107及び第2ポンプ室108における流体の出入りもほぼ0である。そして、第1ダイヤフラム103は最も伸張した状態であり、第2ダイヤフラム104は最も収縮した状態である。
 図6Aの状態からの第1及び第2ダイヤフラム103及び104のそれぞれの伸張量を考えた場合、図6Bの状態においては、第1ダイヤフラム103の伸張量は正の値をとり、その値は周期内での最大値となっており、第2ダイヤフラム104の伸張量は負の値をとり、その値は周期内での最小値となっている。また、電源110cから流れる電流はほぼ0となる。この状態においては、流体の流れもほぼ0になっている。
 図6Cにおいては、第1ダイヤフラム103と第2ダイヤフラム104は等電位であり、電解液に含まれる負イオン99は、電解液内でほぼ一様に分布している。ただし、第2ダイヤフラム104の電位が増加しつつあるので、第2ダイヤフラム104を構成する導電性高分子膜の酸化が進む。これに応じて、電解液に含まれる負イオン(アニオン)99が第2ダイヤフラム104に引き寄せられ、また、その一部が第2ダイヤフラム104の内部に入り込む。この結果、第2ダイヤフラム104が伸張する。第2ダイヤフラム104の伸張に伴い第2ポンプ室108の体積は増加するので、第2吸入弁123が開き、第2吸入口111bから流体が第2ポンプ室108の外部から第2ポンプ室108内に流入する。また、第1ダイヤフラム103の電位が減少しつつあるので、第1ダイヤフラム103を構成する導電性高分子膜の還元が進む。これに応じて、第1ダイヤフラム103を構成する導電性高分子膜から負イオン(アニオン)99が電解液に抜け出す。この結果、第1ダイヤフラム103が収縮する。第1ダイヤフラム103の収縮に伴い第1ポンプ室107の体積は減少するので、第1吐出弁122が開き、第1吐出口113aを通して第1ポンプ室107内から流体が第1ポンプ室107の外部に流出する。なお、流体搬送装置の構造は電源110cから見てキャパシタンスとして働く。図6Cの状態においては、第1ダイヤフラム103に対する第2ダイヤフラム104の電位が増加しつつあるので、前記キャパシタンスにおいて外部から第1ダイヤフラム104に正電荷を蓄積する方向の電流が流れる。また、図6Cの状態における第1及び第2ダイヤフラム103,104の位置は、図6Aにおける第1及び第2ダイヤフラム103,104の位置とほぼ同じである。
 図6Dにおいては、電源110cから第2ダイヤフラム104に正の電圧(+V)が加えられるとともに、電源110cから第1ダイヤフラム103に負の電圧(-V)が加えられている。この状態においては、第2ダイヤフラム104を構成する導電性高分子膜は酸化されていて、これに応じて、電解液に含まれる負イオン(アニオン)99が第2ダイヤフラム104に引き寄せられている。そして、負イオン(アニオン)99の一部が、第2ダイヤフラム104を構成する導電性高分子膜の内部に入り込んでいる。この結果、第2ダイヤフラム104は伸張している。図6Dにおいて、比較のために図6Aにおける第1及び第2ダイヤフラム103,104の位置を点線で示している。また、第1ダイヤフラム103を構成する導電性高分子膜は還元されていて、これに応じて、第1ダイヤフラム103を構成する導電性高分子膜から負イオン(アニオン)99が電解液に抜け出している。この結果、第1ダイヤフラム103が収縮している。ただし、この状態においては、電位の変化はほぼ0であるため、第1及び第2ダイヤフラム103,104の形状又は負イオン99の分布の変化もほぼ0であり、第1ポンプ室107及び第2ポンプ室108における流体の出入りもほぼ0である。そして、第1ダイヤフラム103は最も収縮した状態であり、第2ダイヤフラム104は最も伸張した状態である。
 図6Aの状態からの第1及び第2ダイヤフラムの伸張量を考えた場合、図6Dの状態においては、第1ダイヤフラム103の伸張量は負の値をとり、その値は周期内での最小値となっており、第2ダイヤフラム104の伸張量は正の値をとり、その値は周期内での最大値となっている。また、電源110cから流れる電流はほぼ0となる。この状態においては、流体の流れもほぼ0になっている。
 以上の動作を繰り返すことにより、流体の吸入と吐出が行われる。なお、導電性高分子膜の変形のメカニズムは、イオンの挿入による体積増加、同種イオンの静電反発、π電子の非局在化による分子の形状変化などの理由が想定されるが、詳細は完全に解明されていない。
 前記の説明では、簡単のために、第1及び第2ダイヤフラム103,104の電位と、流体搬送装置の構造に蓄積される電荷量及び第1及び第2ダイヤフラム103,104の伸張量が同位相で変化する場合を考えたが、実際の動作においては、流体の粘性、又は、配線部及び電源の抵抗、又は、導電性高分子膜と配線部との接触部分の抵抗、又は、導電性高分子膜の内部抵抗、又は、電荷移動抵抗、又は、導電性高分子膜内へのイオン拡散を示すインピーダンス、又は、溶液抵抗、などの影響により、第1及び第2ダイヤフラム103,104の電位と、流体搬送装置の構造に蓄積される電荷量及び第1及び第2ダイヤフラム103,104の伸張量との間で位相差が発生する場合がある。
 なお、この第1実施形態において、電解液室109は電解液で満たされており、一般的に電解液は非圧縮性流体であるので、ポンプ動作時に電解液室109の体積はほぼ一定に保たれる。このため、一方のダイヤフラム103又は104が収縮して凸形状の膨らみが小さくなった場合、電解液室109の体積をほぼ一定に保つために、他方のダイヤフラム104又は103は凸形状の膨らみが大きくなるように力を受ける。すなわち、2枚の第1及び第2ダイヤフラム103,104は電解液を介してお互いの間で仕事という形でエネルギーのやり取りを行う。
 次に、弾性膜部130と、バネ部131の構成について説明する。
 弾性膜部130は、筺体部102の側壁102sに形成された円形の貫通穴102hを塞ぐ形態で固定されており、ゴム又は合成樹脂(プラスチック)などの弾性を有する材料(弾性材料)で円形膜状に構成されている。弾性膜部130を構成する弾性材料としては、例えばシリコーンゴムなどが考えられる。
 バネ部131は、例えば、弾性のある金属又は合成樹脂材料を螺旋状に巻いた形状を有しており、コイルバネとしての機能を有する。また、バネ部131の螺旋形状の軸が、図1に示した直線100A-100Bと平行な直線上に載るように配置されている。バネ部131は、定常状態から縮んだ状態で、両端が弾性膜部130と弾性膜部130に対向する筺体部102の側壁102sとに接する形で固定されている。弾性膜部130は、バネ部131から、筺体部102の外向きに力を受けて、外側に凸状の形状に変形している。すなわち、図3などにおいて、弾性膜部130は、バネ部131から右向きの力を受けて、右向きに凸状の形状に変形している。弾性膜部130の形状は、図1などにおいては、球面の一部に近い形状を示しているが、弾性膜部130の膜厚が小さい場合などには、円錐に近い形状などの他の形状になる場合もある。
 流体搬送装置の初期状態においては、電解液室109の内部に満たされた電解液の圧力が、以下の範囲になるように流体搬送装置は構成される。すなわち、ポンプ動作時に第1ポンプ室107及び第2ポンプ室108に加わる圧力を想定して、その圧力よりも初期状態の電解液の圧力が小さくなるように、流体搬送装置は構成される。このことにより、第1ポンプ室107及び第2ポンプ室108に想定圧力が加わった場合、第1及び第2ダイヤフラム103及び104は、図3に示すように電解液室109の方向に見て凸形状になった状態に保たれる。初期状態において、電解液室109の内部に満たされた電解液の圧力を前記範囲にするための方法としては、例えば、流体搬送装置の各部分を組み立てて内部に電解液を満たすときに、筺体部102の側壁102sに小さな貫通穴102gを開けておいて、その小さな貫通穴102gからシリンジなどの器具を用いて電解液を一部抜き出し、その後、前記小さな貫通穴102gをゴム栓などの封止部材102fで封止することによって、電解液の圧力を所定の圧力とする(すなわち、ポンプ動作時の第1ポンプ室107及び第2ポンプ室108に加わる圧力よりも初期状態の電解液の圧力が小さくなるようにする)方法が考えられる。また、別の方法としては、流体搬送装置の各部分を組み立てて内部に電解液を満たすときに、筺体部102と弾性膜部130との間の一部に隙間を空けておいて、この状態で弾性膜部130を押し込むことにより、電解液の一部を抜き出し、その後、隙間の部分を封止し、弾性膜部130の押し込む力を除いて弾性膜部130及びバネ部131が、それらの弾性力によって元の形状に戻ろうとする力によって電解液の圧力を減少し、電解液の圧力を所定の圧力とする(すなわち、ポンプ動作時の第1ポンプ室107及び第2ポンプ室108に加わる圧力よりも初期状態の電解液の圧力が小さくなるようにする)方法が考えられる。なお、電解液を電解液室109内に注入する際には、内部の空気を追い出すための空気穴を設けておいて、注入が終った後に空気穴を封止ことも可能である。
 このようなダイヤフラム103,104を用いた流体搬送装置においては、ダイヤフラム103,104が弛んだ状態となると、導電性高分子膜が伸縮した場合の力がポンプ室の流体に効率良く伝わらず力が逃げてしまう。このことから、ポンプの動作時にダイヤフラム103,104が弛まずに張った状態に保つことが重要である。本発明の前記第1実施形態にかかる流体搬送装置においては、初期状態において電解液の圧力を第1及び第2ポンプ室107,108の内部の流体の圧力よりも小さくした場合、後で説明する弾性膜部130とバネ部131の働きによって、ポンプの動作時にも電解液の圧力を第1及び第2ポンプ室107,108の内部の流体の圧力よりも小さく保つことが可能である。このことによって、ポンプの動作時に第1及び第2ダイヤフラム103,104において第1及び第2ポンプ室107,108から電解液室109の方向に力が加わるので、この力によって、第1及び第2ダイヤフラム103,104が弛まずに張った状態を保つことが可能である。このことによって、導電性高分子膜の電解伸縮の力が第1及び第2ポンプ室107,108の内部の流体に効率良く伝わるので、流体の吐出と吸入の効率を高く保つことが可能である。
 次に、弾性膜部130とバネ部131との動作について説明する。以下で詳しく説明するように、弾性膜部130とバネ部131は、第1及び第2ダイヤフラム103及び104の張力を適正に保つ働きがある。このことにより、ポンプの動作効率を向上することができる。
 先に説明したように、従来技術のポンプにおいては、以下の2つのメカニズムによってダイヤフラムの張力が大きく変化して、このことによって、ポンプの動作効率が低下するという問題点がある。従来技術のポンプにおいて、ダイヤフラムの張力が変化する一つ目のメカニズムは、ポンプ動作時に行われる導電性高分子膜の周期的な電解伸縮によるものである。従来技術のポンプにおいて、ダイヤフラムの張力が変化する二つ目のメカニズムは、導電性高分子膜の周期的な電解伸縮以外の理由によるものである。本発明の第1実施形態においては、ポンプ動作時に行われる導電性高分子膜の周期的な電解伸縮によって第1及び第2ダイヤフラム103,104の張力が変化する場合、又は、それ以外の理由によって第1及び第2ダイヤフラム103,104の張力が変化する場合において、ダイヤフラム103,104の張力を適正に保つことが可能である。
 まず、ポンプ動作時に導電性高分子膜が周期的に電解伸縮を行うときに弾性膜部130とバネ部131によって第1及び第2ダイヤフラム103及び104の張力が適正に保たれる働きについて説明する。
 今、筺体部102の内部空間に注目する。ここで、筺体部102の内部空間とは、筺体部102の内部に形成された円筒状の空間である。図7に示すように、筺体部102の内部空間において、第1ポンプ室107の部分と、第2ポンプ室108の部分を除いた部分を、電解液室筐体内部分190と定義する。すなわち、電解液室筐体内部分190は、筺体部102の内部空間において、第1及び第2ダイヤフラム103及び104によって挟まれた空間部分である。また、筺体部102の側壁102sの貫通穴102hの部分に位置して、図7において参照符号191で示される空間部分を、開口空間部分191と定義する。また、貫通穴102hの部分の筐体部102の外側に位置して、弾性膜部130に囲まれる空間部分を、弾性膜内側空間部分192と定義する。このとき、電解液室109の体積は、電解液室筐体内部分190の体積と、開口空間部分191の体積と、弾性膜内側空間部分192の体積との和で定義される。
 上で説明したように、ポンプの動作中に第1及び第2ダイヤフラム103,104が弛んだ状態になると、第1及び第2ダイヤフラム103,104の導電性高分子膜が伸縮しても力が逃げてポンプ室107,108の流体例えば液体に力が効率良く伝わらないので、流体の吸入と吐出の効率が著しく低下する。すなわち、ポンプの動作効率を高くするためには、動作中に常に第1及び第2ダイヤフラム103,104が弛まずに張られた状態に保たれることが必要である。
 ポンプの動作中に常に第1及び第2ダイヤフラム103,104が弛まずに張られた状態に保たれる場合、既に図25C及び図25Dを用いて説明したのと同様に、第1実施形態でも、第1ポンプ室107の体積と第2ポンプ室108の体積の合計値は、「(第1ダイヤフラム103の面積)=Sの関係を示す直線」を対称軸とした左右対称の形状となり、第1ダイヤフラム103の面積=Sにおいて、極大値もしくは極小値をとる。ただし、第1ダイヤフラム103の面積と第2ダイヤフラム104の面積が等しくなるときのそれらの値をSとしている。これらのグラフからわかるように、第1ダイヤフラム103の面積が変化すれば、第1ポンプ室107の体積と第2ポンプ室108の体積の合計値は変化する。今、筐体部102の内部の体積をWとした場合、電解液室筐体内部分190の体積はWから第1ポンプ室及び第2ポンプ室の合計体積を引いた値となる。よって、第1ポンプ室107及び第2ポンプ室108の合計体積の変化に応じて、電解液室筐体内部分190の体積も変化する。これに応じて、弾性膜部130の形状は、電解液室109の体積がほぼ一定に保たれるように変化する。今、電解液室筐体内部分190の体積が増加した場合、それに応じて電解液の圧力が減少するので、弾性膜部130における弾性膜部130の弾性力とバネ部131の弾性力と電解液の圧力と筐体部102の外部雰囲気の圧力との間のバランスが変化する。この結果、弾性膜部130の凸形状の膨らみが小さくなり、弾性膜内側空間部分192の体積が減少する。この結果、電解液室109の体積がほぼ一定に保たれる。また、逆に、電解液室筐体内部分190の体積が減少した場合、それに応じて電解液の圧力が増加するので、弾性膜部130における弾性膜部130の弾性力とバネ部131の弾性力と電解液の圧力と外部雰囲気の圧力との間のバランスが変化する。この結果、弾性膜部130の凸形状の膨らみが大きくなり、弾性膜内側空間部分192の体積が増加する。この結果、電解液室109の体積がほぼ一定に保たれる。以上の結果として、電解液室109の内部に満たされた電解液室109の体積もほぼ一定となり、電解液の圧力もほぼ一定に保たれる。
 本発明の前記第1実施形態にかかる流体搬送装置においては、初期状態において電解液の圧力を第1及び第2ポンプ室107,108の内部の流体の圧力よりも小さい適切な値に設定すると、弾性膜部130及びバネ部131の動作によって、電解液の圧力も、ある一定の範囲内に保つことが可能である。ここで、前記「初期状態において電解液の圧力を第1及び第2ポンプ室107,108の内部の流体の圧力よりも小さい適切な値に設定する」とき、初期状態における流体の圧力が0.101MPa(1atm)である場合には、初期状態における電解液の圧力(電解液の初期圧力)は約0.091MPa~0.101MPa(0.9atm~0.999atm)の範囲内に設定することが望ましい。その中でも特に約0.100MPa~0.101MPa(0.99atm~0.999atm)の範囲内に設定することが望ましい。電解液の初期圧力が前記範囲より小さい場合には、流体と電解液の圧力差が大きすぎてダイヤフラムの動きが阻害されるという問題が生じるためである。また、電解液の初期圧力が前記範囲より大きい場合には、ポンプの動作中にダイヤフラムが緩んでポンプ動作の効率が低下するという問題が生じる可能性があるためである。また、前記「電解液の圧力も、ある一定の範囲内に保つ」とは、ポンプの動作中における電解液の適切な圧力を、例えば約0.051MPa~0.101MPa(0.5atm~0.999atm)の範囲内に保つことを意味している。ポンプの動作中における電解液の圧力が前記範囲より小さい場合には、流体と電解液の圧力差が大きすぎて、ダイヤフラムの動きが阻害されるという問題が生じるためである。また、電解液の圧力が前記範囲より大きい場合には、流体と電解液の圧力差が小さくなりすぎて、ダイヤフラムが緩んでポンプ動作の効率が低下するという問題が生じる可能性があるためである。前記したように、弾性膜部130及びバネ部131の動作によって、電解液の圧力も、ある一定の範囲内に保つため、常に、電解液の圧力を、第1及び第2ポンプ室107,108の内部の流体の圧力よりも小さく保つことが可能である。この結果、第1及び第2ダイヤフラム103,104には第1及び第2ポンプ室107,108から電解液室109の方向にある一定範囲の力が加わるので、この力によって第1及び第2ダイヤフラム103,104は弛まずに張った状態に保たれて、第1及び第2ダイヤフラム103,104の張力は適切な値に保たれる。ここで、ダイヤフラム103,104の張力の適切な値は、例えば0.101MPa~10.1MPa(約1atm~約100atm)の範囲である。ダイヤフラム103,104の張力が前記範囲より大きい場合には、ダイヤフラム103,104の動きが阻害されるという問題が生じる。また、ダイヤフラム103,104の張力が前記範囲より小さい場合には、ダイヤフラム103,104が緩んでポンプ動作の効率が低下するという問題が生じる可能性がある。このように第1及び第2ダイヤフラム103,104の張力は適切な値に保たれることから、ポンプの動作中、常に、第1及び第2ダイヤフラム103と104が電解液室109の方向に見て凸形状に変形した状態となり、第1及び第2ダイヤフラム103と104に対して引っ張り方向の応力(テンション)が一定の範囲内の大きさで加わった状態に保たれて、電解液室109内の電解液と第1及び第2ポンプ室107,108内の流体とにより第1及び第2ダイヤフラム103と104に作用する圧力が所定の範囲(一定の範囲)内に維持される。ここで、ポンプの動作中における、電解液室109内の電解液の圧力と第1及び第2ポンプ室107,108内の流体の圧力との差によって第1及び第2ダイヤフラム103と104に作用する圧力の範囲としては、例えば0.0101MPa~0.000101MPa(0.1atm~0.001atm)の範囲が望ましい。電解液の圧力と流体の圧力との差によってダイヤフラム103と104に加わる圧力が前記範囲より大きい場合には、ダイヤフラム103と104の動きが阻害されるという問題が生じるためである。また、電解液の圧力と流体の圧力との差によってダイヤフラム103と104に加わる圧力が前記範囲より小さい場合には、ダイヤフラム103と104が緩んでポンプ動作の効率が低下するという問題が生じる可能性があるためである。
 このようにダイヤフラム103と104に作用する圧力が所定の範囲(一定の範囲)内に維持される状態がポンプ動作時に常に保たれるために、第1及び第2ダイヤフラム103,104のそれぞれの導電性高分子膜が伸張と収縮を行うときの仕事が、第1及び第2ポンプ室107,108の流体の吐出と吸入に効率良く使われる。すなわち、ポンプの動作における仕事効率を大きくすることが可能である。ここで、ポンプの仕事効率とは、ポンプに加えられた電気エネルギーの中で、ポンプが流体の吸入と吐出のために行う仕事の割合であると定義する。
 次に、第1及び第2ダイヤフラム103及び104の導電性高分子膜の周期的な電解伸縮以外の理由で第1及び第2ダイヤフラム103及び104に加わる張力に変化が生じた場合に、弾性膜部130とバネ部131によって、第1及び第2ダイヤフラム103及び104の張力が適正に保たれる働きについて説明する。
 一般的に、導電性高分子膜を用いたダイヤフラム型ポンプにおいては、導電性高分子膜に周期的な電圧を印加して動作を行ったときに、
   (i)一定方向に歪みが蓄積されること、又は、
   (ii)導電性高分子膜が電解液を吸うことによって膨張などの変形を生じること、又は、
   (iii)導電性高分子膜においてクリープに代表される非可逆的もしくは可逆的な形状変化が生じること、又は、
   (iv)導電性高分子膜の固定部の変形又はズレなどが発生する。このために、ダイヤフラムの面積又は形状又は配置が変化することがある。この場合、従来例に示したポンプにおいては、前記のように、ポンプを製造するときに導電性高分子膜を張力がかかる状態で設置した場合でも、ダイヤフラムに所望の張力(引っ張り方向の応力)が加えられない状況が生じる。
 しかし、この第1実施形態においては、このようにダイヤフラムに所望の張力が加えられないといった張力の変化を、弾性膜部130とバネ部131の変形によって吸収させるために、ダイヤフラムに加えられる張力は一定範囲内に保つことができる。
 これについて、以下に、具体的に説明する。図8及び図9は、この第1実施形態において第1及び第2ダイヤフラム103,104に加わる張力の変化が生じたときの第1及び第2ダイヤフラム103,104に対する圧力を所定の範囲内に維持する状態を示す。図8は、第1及び第2ダイヤフラム103と104が前記の理由で張力の変化が生じて伸びた場合の、第1及び第2ダイヤフラム103,104に対する圧力を所定の範囲内に維持する様子を示す。図8において、点線は、図3の状態における第1及び第2ダイヤフラム103,104の位置を示す。この図8において、第1及び第2ダイヤフラム103と104は、図3に比べて伸びる方向に変形しているが、このことにより、一時、電解液室109の体積が減少し、電解液の圧力が増加する。このことから、弾性膜部130における、弾性膜部130の弾性力とバネ部131の弾性力と電解液の圧力と外部雰囲気の圧力とのバランスが崩れる。この結果、弾性膜部130とバネ部131の弾性によって、バネ部131が伸びて、弾性膜部130の凸形状の膨らみが筺体部102の外向きに大きくなるように変形する。これに伴って、筺体部102の内部の電解液室109内の電解液の一部は、弾性膜部130の方向に吸い出され(すなわち、開口空間部分191を介して弾性膜内側空間部分192内に吸い出され)、電解液室109の体積は、ほぼ初期状態の値に戻る。このことから、電解液の圧力が、ほぼ初期状態の値に戻る。
 また、逆に、図9は、第1及び第2ダイヤフラム103と104が周期的な電解伸縮以外の理由で縮んだ場合の、第1及び第2ダイヤフラム103と104に対する圧力を所定の範囲内に維持する様子を示す。図9において、点線は、図3の状態における第1及び第2ダイヤフラム103と104の位置を示す。この場合、弾性膜部130とバネ部131の弾性によって、バネ部131が縮んで、弾性膜部130の凸形状の膨らみが小さくなるように変形する。このことから、電解液の圧力がほぼ初期状態の値に保たれる。
 以上の働きから、本発明の前記第1実施形態にかかる流体搬送装置においては、初期状態において電解液の圧力をポンプ室内部の流体の圧力よりも小さい適切な値に設定すると、第1及び第2ダイヤフラム103,104の周期的な電解伸縮以外の理由で第1及び第2ダイヤフラム103,104が伸縮した場合においても、弾性膜部130及びバネ部131の動作によって、電解液の圧力も、ある一定の範囲内に保つことが可能である。この結果、常に、電解液の圧力を第1及び第2ポンプ室107,108の内部の流体の圧力よりも小さい適切な値に保つことが可能である。このことから、第1及び第2ダイヤフラム103,104には、第1及び第2ポンプ室107,108から電解液室109の方向に、ある一定範囲の力が加わるので、この力によって、第1及び第2ダイヤフラム103,104は弛まずに張った状態に保たれて、第1及び第2ダイヤフラム103,104の張力は適切な値に保たれる。このことから、ポンプの動作中、常に、第1及び第2ダイヤフラム103と104が電解液室109の方向に見て凸形状に変形した状態となり、第1及び第2ダイヤフラム103と104に対して引っ張り方向の応力(テンション)が一定の範囲内の大きさで加わった状態に保たれて、電解液室109内の電解液と第1及び第2ポンプ室107,108内の流体とにより第1及び第2ダイヤフラム103と104に作用する圧力が所定の範囲内に維持される。この状態がポンプ動作時に常に保たれるために、第1及び第2ダイヤフラム103,104が伸張と収縮を行うときの仕事が、第1及び第2ポンプ室107,108の流体の吐出と吸入に効率良く使われる。すなわち、ポンプの動作における仕事効率を大きくすることが可能である。ここで、ポンプの仕事効率とは、ポンプに加えられた電気エネルギーの中で、ポンプが流体の吸入と吐出のために行う仕事の割合であると定義する。
 このように、本発明の前記第1実施形態にかかるポンプにおいては、ポンプ動作時に常に、第1及び第2ダイヤフラム103及び104の引っ張り方向の応力(テンション)が適切な範囲内に保たれて、電解液室109内の電解液と第1及び第2ポンプ室107,108内の流体とにより第1及び第2ダイヤフラム103と104に作用する圧力が所定の範囲内に維持されるために、第1及び第2ダイヤフラム103及び104が伸張と収縮を行うときの仕事が、第1及び第2ポンプ室107,108の流体の吐出と吸入に効率良く使われる。
 なお、前記の説明では、流体搬送装置に弁を有する構成について説明したが、一定量の流体の吐出と吸入を連続して行う場合、それぞれの第1及び第2ポンプ室107,108に、弁を持たない開口部をそれぞれ1つずつ設けて、それらの開口部から吸入と吐出をそれぞれ繰り返す形態で使用することも可能である。この場合、各ポンプ室において、1つの開口部が、吐出口及び吸入口の働きを兼ねる。
 各ダイヤフラム103,104としては、ポリマーアクチュエータ材料によって構成する例を示したが、他の膜と重ね合わせた積層構造であってもよい。例えば、ポリマーアクチュエータ材料における電圧降下の影響を小さくするために、導電性が大きい材料を、ポリマーアクチュエータ材料の表面の全部分もしくは一部分に形成することも可能である。これらの場合、ポリマーアクチュエータ材料の動作を妨げないように、他の材料は剛性が小さい材料で形成すること、又は、変形しやすい形状に加工されていることが望ましい。
 また、各ダイヤフラム103,104の一部をポリマーアクチュエータ材料以外の材料で形成することも可能である。特に、各ダイヤフラム103,104の一部を弾性膜で形成した場合には、ポリマーアクチュエータ材料に加わる張力をより均質にして、ポンプの動作をスムーズに行えるなどの効果がある。
 前記の構成を採用することにより、流量は約10~100ml/分の範囲であり、流体を吐出する最大の圧力が約1~10kPaの範囲である流体搬送装置を構成することが可能である。ただし、前記形態に限らず、一般的に、必要な流量及び圧力に応じて、流体搬送装置の形状又は大きさを設計可能である。
 従来例の図22Aに示した構造では、2枚のダイヤフラムが中央の1点で互いに固定されているため、2枚のダイヤフラムにそれぞれシワが発生しやすい。すなわち、ダイヤフラムの膜の剛性又は形状に偏りがある場合に、ダイヤフラムの固定点と周辺部を結ぶ複数の線分及びその周りの部分に張力が集中する。このことから、ダイヤフラムにシワが発生し、ダイヤフラムの電解伸縮の仕事が、ポンプの吸入と吐出に効率良く利用されない。
 これに対して、この第1実施形態においては、第1及び第2ダイヤフラム103,104の中央部分に固定点が無い構造であり、第1及び第2ポンプ室107,108と電解液室109との間の圧力差によって、第1及び第2ダイヤフラム103,104が弛むことなく、第1及び第2ダイヤフラム103,104が適切な張力で凸形状に張った状態に保たれている。このことから、この第1実施形態の第1及び第2ダイヤフラム103,104では、従来例のように、ダイヤフラムの固定点と周辺部を結ぶ複数の線分及びその周りの部分に張力が集中することはない。この結果、第1及び第2ダイヤフラム103,104にシワが発生することが防止されて、第1及び第2ダイヤフラム103,104の電解伸縮の仕事が、ポンプの吸入と吐出に効率良く利用される。
 また、前記のように、従来例の図22Bに示した構造に比べて、この第1実施形態の流体搬送装置は、第1及び第2ダイヤフラム103,104の張力が適切な値に保たれるため、流体の吐出と吸入の効率を向上することができる。
 以上をまとめると、この第1実施形態の流体搬送装置においては、弾性膜部130とバネ部131が、第1及び第2ダイヤフラム103,104に対する圧力を適切な範囲内に維持する機能(圧力維持機能)を有する。本明細書においては第1及び第2ダイヤフラム103,104に対する圧力を所定の範囲内に維持する機能を有する部分を圧力維持部と呼ぶ。すなわち、この第1実施形態においては、弾性膜部130とバネ部131が、圧力維持部を構成する。第1及び第2ダイヤフラム103,104が伸びて第1及び第2ダイヤフラム103,104の引っ張り方向の応力(張力)が小さくなって第1及び第2ダイヤフラム103,104が緩んだ(弛んだ)とき(言い換えれば、第1及び第2ポンプ室107,108内の流体の圧力が所定範囲外に小さくなったとき)には、弾性膜部130とバネ部131が筺体部102内の電解液を吸い出す方向に変形するために、第1及び第2ダイヤフラム103,104の応力(張力)が一定範囲に保たれる(言い換えれば、第1及び第2ポンプ室107,108内の流体の圧力が所定の範囲に維持される)。また、第1及び第2ダイヤフラム103,104が縮んで第1及び第2ダイヤフラム103,104の引っ張り方向の応力(張力)が大きくなった場合(言い換えれば、第1及び第2ポンプ室107,108内の流体の圧力が所定範囲外に大きくなったとき)には、弾性膜部130とバネ部131が筺体部102の電解液室109内の電解液を筺体部102の外向きに押し出す方向に変形するために、第1及び第2ダイヤフラム103,104の応力(張力)が一定範囲に保たれる(言い換えれば、第1及び第2ポンプ室107,108内の流体の圧力が所定の範囲に維持される)。すなわち、第1及び第2ダイヤフラム103,104の変形による応力(張力)の変化に対応して、電解液室109の壁面の一部である弾性膜部130が変形することによって、第1及び第2ダイヤフラム103,104の応力(張力)が一定範囲に保たれる(言い換えれば、第1及び第2ポンプ室107,108内の流体の圧力が所定の範囲に維持される)。
 さらに、この第1実施形態の流体搬送装置は、第1及び第2ダイヤフラム103,104の中央部分に固定点が無い構造であり、第1及び第2ポンプ室107,108と電解液室109との間の圧力差によって第1及び第2ダイヤフラム103,104が弛むことなく適切な張力で凸形状に張った状態に保たれており、第1及び第2ダイヤフラム103,104の応力(張力)が面全体にわたってほぼ均質な値に保たれる(言い換えれば、第1及び第2ポンプ室107,108内の流体の圧力が所定の範囲に維持される)。この状態がポンプ動作時に常に保たれるために、導電性高分子膜が伸張と収縮を行うときの仕事が、ポンプ室107,108の流体の吐出と吸入に効率良く使われる。
 以上のことから、この第1実施形態の流体搬送装置は、電源110cから加えられる電気的エネルギーの中でポンプ室107,108の流体の吐出と吸入の仕事に使われる割合を仕事効率と呼ぶものとすると、前記の圧力維持機能によって、ポンプの仕事効率が従来のポンプに比べて向上する。
 第1及び第2ダイヤフラム103,104に対する圧力を所定の範囲内に維持する機能を有する部分である圧力維持部は、前記のように、電解液室内部の電解液室109の体積を適切な値に保ち、電解液の圧力を適切な値に保つ。このことによって、第1及び第2ダイヤフラム103,104の応力(張力)が適切な値に保つことが可能である(言い換えれば、第1及び第2ポンプ室107,108内の流体の圧力が所定の範囲に維持することが可能である)。特にこの第1実施形態に示すように、電解液室109の壁面の少なくとも一部を弾性体(例えば、弾性膜部)130で形成して、電解液室内部の圧力に応じて弾性体130が変形する構造であれば、電解液室109の内部の圧力と第1及び第2ダイヤフラム103,104の応力(張力)を自動的に調整可能である(言い換えれば、電解液室109の内部の圧力と第1及び第2ポンプ室107,108内の流体の圧力がそれぞれ所定の範囲に維持可能である)。
 また、この第1実施形態のように2枚の第1及び第2ダイヤフラム103,104が互いに逆位相で伸長と収縮を行う構造においては、2枚の第1及び第2ダイヤフラム103,104が行う仕事を流体の吐出と吸入に使えるので、吐出と吸入の仕事量を大きくすることが可能である。
 次に、図10は、本発明の第1実施形態の第1の変形例を示している。前記第1実施形態の図3では、筐体部102の側壁102sの貫通穴102hの外側の開口縁部に円形の弾性膜部130が固定されていたが、この第1の変形例では、円形の弾性膜部130Aが、筐体部102の側壁102sの貫通穴102hの内側の開口縁部に固定され、かつ、弾性膜部130Aが電解液室109内に向けて凸形状となっており(言い換えれば、筺体部102の外部に対しては凹形状となっており)、弾性膜部130Aが圧力維持部として働く。この第1の変形例において、電解液室109の内部の圧力は、筺体部102の外部圧力及び第1及び第2ポンプ室107,108の流体の圧力よりも低く保たれている。電解液室109の内部の圧力変化に応じて、弾性によって弾性膜部130Aの凸形状の膨らみが変化するので、電解液室109の体積と圧力を適切な範囲に保つことができて、結果として、第1及び第2ダイヤフラム103,104の応力(張力)を適切な値に保つことが可能である(言い換えれば、第1及び第2ポンプ室107,108内の流体の圧力が所定の範囲に維持可能である)。例えば、第1及び第2ダイヤフラム103,104が伸びた場合、電解液室109の体積が小さくなり、電解液の圧力が大きくなるので、弾性膜部130Aの凸形状の膨らみが小さくなる。このことによって、電解液室109の体積と圧力が、ほぼ一定の範囲内に保たれる。結果として、第1及び第2ダイヤフラム103,104の応力が適切な範囲内に保たれる(言い換えれば、第1及び第2ポンプ室107,108内の流体の圧力が所定の範囲に維持可能である)。
 図1~図10においては、簡易に表現するために省略したが、例えばバネ部131が座屈しないように適切な機構部品を設けることも可能である。すなわち、図1~図10においては、発明の本質的な部分を説明するために、そのような機構部品の図示は省略するが、他の実施形態においても、各部分がスムーズな機械的な動作を行うように、例えばガイドなどの適切な機構部品を設置することが可能である。以下に、ガイドを有する例について、第1実施形態の第2の変形例として説明する。
 図11A、図11B、図12は、第1実施形態の第2の変形例を示す。この第1実施形態の第2の変形例においては、バネ部131と弾性膜部130との間に、棒状部材の連結部133が挿入されている。連結部133は、バネ部131と弾性膜部130とを連結して、両者の間で力の伝達を行う。また、バネ部131の周囲には、円筒状のガイド部132が形成されており、バネ部131を構成するコイルバネの座屈を防止する働きを持つ。連結部133の先端部133aは、ピストン状に構成されており、先端部133aはバネ部131の一端に固定され、かつ、ガイド部132内を円滑に移動可能となっている。ガイド部132と連結部133の先端部133aとで囲まれた空間は、密閉されて居ても良いし、密閉されずに電解液が入り込んでいてもよい。
 なお、図11Aは、バネ部131が伸びた状態を示しており、図11Bはバネ部131が縮んだ状態を示す。
 また、この第2の変形例において、ガイド部132と連結部133の先端部133aで囲まれた空間がOリングなどのシール部材133bにより摺動可能に密閉されている場合、その密閉空間の内部の気体131Gの弾性によって、バネ部131の働きを行うことも可能である。円筒状のガイド部132内に密閉された気体131Gは、弾性部の別の例として機能する。この気体131Gを使用する場合の例を図12に示す。ここでは、バネ部131として、コイルスプリングの代わりに、気体131Gの弾性を利用している。また、ガイド部132と連結部133との間に摩擦部分がある場合、電解液として潤滑性の高いイオン液体を使用することにより、この摩擦を低減する効果がある。
 図19は第1実施形態の第3の変形例として、バネ部131として、コイルスプリングの代わりに、他のバネを使用する例を示す。この第3の変形例においては、バネ部131のコイルスプリングの代わりに、筐体部102の側壁102sの貫通穴102hの内周面の例えば下側に一端(例えば下端)が固定された板バネ134を使用する。板バネ134の他端(例えば上端)には接触部134aを固定して、板バネ134の弾性力により接触部134aが弾性膜部130に常時接触するようにしている。このように、板バネ134を使用することにより、圧力維持部を小型に構成することができる。
 また、第1及び第2ダイヤフラム103と104との間が電気的に短絡するのを防止するために、バネ部131、又は、ガイド部132と連結部133と板バネ134とは、それぞれ、絶縁性のプラスチック材料で構成することが望ましい。また、これらのバネ部131と、ガイド部132と連結部133と板バネ134は、それぞれ、使用する電解液に対して耐性を有する材料を使用する。
 (第2実施形態)
 図13は、本発明の第2実施形態にかかる、導電性高分子を用いた流体搬送装置の断面図である。
 図13の流体搬送装置は、筺体部102と、第1ダイヤフラム103と、第2ダイヤフラム104と、第1ポンプ室107と、第2ポンプ室108と、電解液室109と、配線部110aと110bと、第1及び第2吸入口111aと111bと、第1及び第2吐出口113aと113bと、第1及び第2吸入弁121と123と、第1及び第2吐出弁122と124と、バネ部131と、弾性膜部130とを備えるように構成されている。バネ部131と弾性膜部130とは、以下で説明するように圧力維持部として働く。また、第1ダイヤフラム103と第2ダイヤフラム104については、以下では簡単のため、単にダイヤフラムと呼ぶ。
 この第2実施形態においては、第1ポンプ室107には第1吸入口111aと第1吐出口113aとの2個の開口部が形成されている。また、第2ポンプ室108には第2吸入口111bと第2吐出口113bとの2個の開口部が形成されている。第1及び第2ポンプ室107,108に形成されたこれらの開口部111a,113a,111b,113bを通じて流体の吸入及び吐出がそれぞれ行われることによって、ポンプの動作が行われる。各部分の構成と働きは、第1実施形態とほぼ同じである。
 ただし、第1実施形態においては、第1及び第2ダイヤフラム103と104が、電解液室109から第1及び第2ポンプ室107,108に向けて見たとき凹形状にそれぞれ保たれていたが、この第2実施形態においては、第1及び第2ダイヤフラム103と104は、電解液室109から第1及び第2ポンプ室107,108に向けて見たとき凸方向に膨らんだ状態にそれぞれ保たれる。
 また、第1実施形態においては、バネ部131は定常状態から縮んだ状態で固定されていたが、この第2実施形態では、バネ部131は定常状態から伸びた状態で固定される。
 また、第1実施形態においては、例えば図3に示すように、弾性膜部130は、バネ部131から右向きの力を受けて右向きに凸状の形状に変形していたが、この第2実施形態においては、例えば図13に示すように、弾性膜部130は、バネ部131から左向きの力を受けて左向きに凸状の形状に変形している。
 また、第1実施形態においては、ポンプ動作時に第1ポンプ室107及び第2ポンプ室108に加わる圧力よりも電解液の圧力が小さくなるように流体搬送装置が構成されていたが、この第2実施形態においては、ポンプ動作時に第1ポンプ室107及び第2ポンプ室108に加わる圧力よりも電解液の圧力が大きくなるように流体搬送装置が構成されている。
 第2実施形態の流体搬送装置の初期状態において、ポンプ動作時に第1ポンプ室107及び第2ポンプ室108に加わる圧力よりも、電解液室109の内部に満たされた電解液の圧力が大きくなるようにするための方法としては、例えば、流体搬送装置の各部分を組み立てて内部に電解液を満たすときに、筺体部102の側壁102sに小さな貫通穴102gを開けておいて、その貫通穴102gからシリンジなどの器具を用いて電解液を電解液室109内に注入し、その後、貫通穴102gを封止部材102fで封止することによって、電解液の圧力を所定の圧力とする方法が考えられる。また、別の方法としては、流体搬送装置の各部分を組み立てた後でかつ電解液を満たす前に、弾性膜部130に対して外側に引き出す方向に力を加えて、この状態で電解液室109の内部に電解液を満たし、その後、電解液室109を封止し、弾性膜部130を外側に引き出す力を除いて弾性膜部130及びバネ部131がそれらの弾性によって元の形状に戻ろうとする力によって電解液の圧力を増加し、電解液の圧力を所定の圧力、すなわち、ポンプ動作時に第1ポンプ室107及び第2ポンプ室108に加わる圧力よりも、電解液室109の内部に満たされた電解液の圧力が大きくなるようにする方法が考えられる。なお、電解液を電解液室109内に注入する際には、内部の空気を追い出すための空気穴を設けておいて、注入が終った後に空気穴を封止ことも可能である。
 第1実施形態と同様に、電源110cの電圧を例えば±1.5Vのサイン波もしくは矩形波で変化させたときに、第1及び第2ダイヤフラム103及び104をそれぞれ構成する導電性高分子膜が電解伸縮を行うために、第1及び第2吸入口111aと111bから流体がそれぞれ吸入されて、第1及び第2吐出口113aと113bから流体がそれぞれ吐出されて、ポンプの動作を行う。
 なお、この第2実施形態において、電解液室109は非圧縮性流体の電解液で満たされているので、ポンプ動作時に電解液室109の体積はほぼ一定に保たれる。このため、一方のダイヤフラム103又は104が収縮して、電解液室109から第1及び第2ポンプ室107,108に向けて見たときの一方のダイヤフラム103又は104の凸形状の膨らみが小さくなった場合、電解液室109の体積をほぼ一定に保つために、電解液室109から第1及び第2ポンプ室107,108に向けて見たとき、他方のダイヤフラム104又は103は凸形状の膨らみが大きくなるように力を受ける。すなわち、2枚の第1及び第2ダイヤフラム103,104は電解液を介してお互いの間で仕事という形でエネルギーのやり取りを行う。
 次に、弾性膜部130とバネ部131との動作について説明する。以下で詳しく説明するように、第1実施形態と同様に、弾性膜部130とバネ部131は、第1及び第2ダイヤフラム103及び104が伸縮するときに、第1及び第2ダイヤフラム103及び104の張力を適正に保つ働きがある。
 まず、ポンプ作動時に導電性高分子膜の電解伸縮によって第1及び第2ダイヤフラム103及び104が伸縮するときに、弾性膜部130とバネ部131によって第1及び第2ダイヤフラム103及び104の張力が適正に保たれる働きについて説明する。
 今、筺体部102の内部空間に注目する。ここで、筺体部102の内部空間とは、筺体部102の内部に形成された円筒状の空間である。筺体部102の内部空間において第1及び第2ダイヤフラム103及び104によって挟まれた空間部分を考えた場合、ポンプが動作するときには、その過程において前記空間部分の体積は微妙に変化する。このとき、弾性膜部130の形状は、電解液室109の体積がほぼ一定に保たれるように変化する。今、筺体部102の内部空間において第1及び第2ダイヤフラム103及び104によって挟まれた空間部分の体積が増加した場合、弾性膜部130の凸形状の膨らみが大きくなり、電解液室109の体積がほぼ一定に保たれる。また、逆に、筺体部102の内部空間において第1及び第2ダイヤフラム103及び104によって挟まれた空間部分の体積が減少した場合、弾性膜部130の凸形状の膨らみが小さくなり、電解液室109の体積がほぼ一定に保たれる。以上の結果として、電解液が内部に満たされた電解液室109の体積もほぼ一定となり、電解液の圧力もほぼ一定に保たれる。このことから、ポンプの動作中、常に、第1及び第2ダイヤフラム103及び104がそれぞれ第1ポンプ室107及び第2ポンプ室108の方向に見て凸形状に変形した状態となり、第1及び第2ダイヤフラム103と104に対して引っ張り方向の応力(テンション)が一定の範囲内の大きさで加わった状態に保たれる。この状態がポンプ動作時に常に保たれるために、導電性高分子膜が伸張と収縮を行うときの仕事が、第1及び第2ポンプ室107,108の流体の吐出と吸入に効率良く使われる。ただし、電解液室109は、第1及び第2ダイヤフラム130及び104と筺体部102の壁面と弾性膜部130とで囲まれた空間部分とする。
 なお、電解液はほぼ非圧縮性流体とみなせるために、電解液室109の体積が変化すると電解液の圧力は大きく変化し、第1及び第2ダイヤフラム103及び104の張力を適切な値に保つことができない。この第2実施形態においては、電解液室109の内部の体積が一定に保たれるように弾性膜部130とバネ部131は、それらが持つ弾性によって変形する。このことにより、電解液室109の内部に存在する電解液室109の体積がほぼ一定に保たれて、電解液の圧力もある一定の範囲内に保たれる。この結果、第1及び第2ダイヤフラム103及び104の張力を適切な値に保ち、ポンプの動作における仕事効率を大きくすることが可能である。ここで、ポンプの仕事効率とは、ポンプに加えられた電気エネルギーの中で、ポンプが流体の吸入と吐出のために行う仕事の割合であると定義する。
 次に、導電性高分子膜の周期的な電解伸縮以外の理由で第1及び第2ダイヤフラム103及び104に加わる張力の変化が生じた場合に、弾性膜部130とバネ部131によって第1及び第2ダイヤフラム103及び104の張力が適正に保たれる働きについて説明する。
 既に説明したように、一般的に、導電性高分子膜を用いたダイヤフラム型ポンプにおいては、導電性高分子膜に周期的な電圧を印加して動作を行ったときに一定方向に歪みが蓄積されること、又は、導電性高分子膜が電解液を吸うことによって膨張などの変形を生じること、又は、導電性高分子膜においてクリープに代表される非可逆的もしくは可逆的な形状変化が生じること、又は、導電性高分子膜の固定部の変形又はズレなどが発生することなどの理由から、第1及び第2ダイヤフラム103及び104の面積又は形状又は配置が変化することがある。この場合、従来例に示したポンプにおいては、前記のように、流体搬送装置を製造するときに導電性高分子膜を張力がかかる状態で設置した場合でも、ダイヤフラムに所望の張力(引っ張り方向の応力)が加えられない状況が生じる。
 この第2実施形態においては、この張力の変化を、弾性膜部130とバネ部131の変形によって吸収されるために、導電性高分子膜に加えられる張力は一定範囲内に保たれる。
 図14は、この第2実施形態において第1及び第2ダイヤフラム103,104に加わる張力の変化が生じたときの第1及び第2ダイヤフラム103,104に対する圧力の維持の様子の例を示した図である。具体的には、図14は、第1及び第2ダイヤフラム103と104が前記の理由で伸びた場合の、第1及び第2ダイヤフラム103及び104と弾性膜部130とバネ部131の形状変化による第1及び第2ダイヤフラム103,104に対する圧力の維持の様子を示す。この図14において、第1及び第2ダイヤフラム103と104はそれぞれ図13に比べて伸びる方向に変形しているが、このことにより、一時、電解液室109の体積が増加し、電解液の圧力が減少するので、弾性膜部130とバネ部131の弾性によって、バネ部131が縮んで、筐体部102の外部から見て電解液室109内に対する弾性膜部130の凸形状の膨らみが大きくなるように変形する。この結果、電解液室109の体積はほぼ初期状態の値に戻る。このことから、電解液の圧力がほぼ初期状態の値に戻り、第1及び第2ダイヤフラム103及び104は、電解液室109から第1ポンプ室107及び第2ポンプ室108の方向に見て凸形状に変形して引っ張り方向の応力(テンション)が適切な範囲内の大きさで加わった状態に保たれる。
 また、逆に、第1及び第2ダイヤフラム103と104が前記の理由で縮んだ場合、弾性膜部130とバネ部131の弾性によって、バネ部131が伸びて、筐体部102の外部から見て電解液室109内に対する弾性膜部130の凸形状の膨らみが小さくなるように変形する。このことから、電解液の圧力がほぼ初期状態の値に保たれて、第1及び第2ダイヤフラム103及び104は、第1ポンプ室107及び第2ポンプ室108の方向に見て凸形状に変形して引っ張り方向の応力(テンション)が適切な範囲内の大きさで加わった状態に保たれる。
 このように、ポンプ動作時に常に、第1及び第2ダイヤフラム103及び104の引っ張り方向の応力(テンション)が適切な範囲内に保たれるために(言い換えれば、電解液室109の内部の圧力と第1及び第2ポンプ室107,108内の流体の圧力がそれぞれ所定の範囲に維持されるために)、導電性高分子膜が伸張と収縮を行うときの仕事が、第1及び第2ポンプ室107,108の流体の吐出と吸入に効率良く使われる。
 以上をまとめると、第1実施形態と同様に、この第2実施形態においては弾性膜部130とバネ部131が、第1及び第2ダイヤフラム103,104に対する圧力を適切な範囲内に維持する機能(圧力維持機能)を有する。本明細書においては第1及び第2ダイヤフラム103,104に対する圧力を所定の範囲内に維持する機能を有する部分を圧力維持部と呼ぶ。すなわち、この第2実施形態においては、弾性膜部130とバネ部131が、圧力維持部を構成する。例えば一方のダイヤフラム103又は104が伸びて他方のダイヤフラム104又は103の引っ張り方向の応力(張力)が緩んだときには、バネ部131が縮む方向に変形して第1及び第2ダイヤフラム103,104の方向に電解液が押し出されるために、第1及び第2ダイヤフラム103,104の応力(張力)が一定範囲に保たれる(言い換えれば、第1及び第2ポンプ室107,108内の流体の圧力が所定の範囲に維持される)。すなわち、第1及び第2ダイヤフラム103,104の変形による応力(張力)の変化に対応して、電解液室109の壁面の一部である弾性膜部130が変形することによって、第1及び第2ダイヤフラム103,104の応力(張力)が一定範囲に保たれる(言い換えれば、電解液室109の内部の圧力と第1及び第2ポンプ室107,108内の流体の圧力がそれぞれ所定の範囲に維持される)。また、第1及び第2ダイヤフラム103,104の中央部分に固定点が無い構造であり、第1及び第2ポンプ室107,108と電解液室109との間の圧力差によって第1及び第2ダイヤフラム103,104が弛むことなく適切な張力で凸形状に張った状態に保たれており、第1及び第2ダイヤフラム103,104の応力(張力)が面全体にわたってほぼ均質な値に保たれる(言い換えれば、第1及び第2ポンプ室107,108内の流体の圧力が所定の範囲に維持可能である)。この状態がポンプ動作時に常に保たれるために、導電性高分子膜の第1及び第2ダイヤフラム103,104が伸張と収縮を行うときの仕事が、第1及び第2ポンプ室107,108の流体の吐出と吸入に効率良く使わる。すなわち、電源110cから加えられる電気的エネルギーの中で第1及び第2ポンプ室107,108の流体の吐出と吸入の仕事に使われる割合を仕事効率と呼ぶものとすると、前記の圧力維持機能によって、ポンプの仕事効率が従来のポンプに比べて向上する。
 (第3実施形態)
 図15は、本発明の第3実施形態にかかる、導電性高分子を用いた流体搬送装置の断面図である。
 この第3実施形態は、筺体部102と、第1ダイヤフラム103と、ポンプ室107と、電解液室109と、配線部110aと110bと、吸入口111aと、吐出口113aと、吸入弁121と、吐出弁122と、弾性部の一例としてのバネ部131と、弾性膜部130と、第2弾性膜部170と、対向電極部180とを備えて構成されている。バネ部131と第2弾性膜部170とは以下で説明するように圧力維持部として働く。
 第2弾性膜部170は、筺体部102の下側の底面に形成された貫通穴102iの外側の開口縁部に固定されて、筺体部102内部を密閉するようにしている。
 バネ部131を構成するコイルスプリングの両端は、筺体部102の上壁102uの中央部と第1ダイヤフラム103にそれぞれ接続されており、バネ部131は、定常状態よりも縮んだ状態で設置されている。第1ダイヤフラム103の一部分もしくは全部分が導電性高分子膜で構成されており、電解液室109には電解液が満たされている。第1ダイヤフラム103を構成する導電性高分子膜と対向電極部180との間に電源110cから電圧を印加することによって、第1ダイヤフラム103を構成する導電性高分子膜が電解伸縮を行い、このことにより、図15において第1ダイヤフラム103が上下に移動し、流体の吸入と吐出を行う。対向電極部180は、例えば白金のメッシュなどで形成されて、電解液はその両側に移動できる構造になっている。
 なお、白金をメッシュ形状に形成することで白金の表面積が大きくなり、白金と電解液との界面に形成される電気2重層コンデンサの容量が大きくなる。この結果、白金と電解液との間の電位差が小さくなり、小さな電源電圧で、効率良く、ダイヤフラムの電解伸縮を行うことが可能となる。
 図15の状態においては、第1ダイヤフラム103が電解伸縮により伸長しており、図16の状態においては、第1ダイヤフラム103が電解伸縮により収縮している。このことにより、ポンプ室107の体積が増減するために、流体の吸入と吐出が行われる。図15の状態では吸入口111aから流体が吸入されて、図16の状態では吐出口113aから流体が吐出される。電解液室107に満たされた電解液はほぼ非圧縮性流体とみなせるので、その体積はほぼ一定に保たれる。このことから、図15における第1ダイヤフラム103の上下運動に従って、第2弾性膜部170も上下運動を行い、電解液室109の体積はほぼ一定に保たれる。図15においては、電解液室109から筺体部102の外部に向けて見たときに第2弾性膜部170の凸形状の膨らみが大きくなっており、図16においては、電解液室109から筺体部102の外部に向けて見たときに第2弾性膜部170の凸形状の膨らみが小さくなっている。
 第2弾性膜部170とバネ部131で構成される圧力維持部の構成又は動作又は効果は、第2実施形態の弾性膜部130とバネ部131とほぼ同じである。すなわち、ポンプ室107の体積の変化に応じて、電解液室109の体積も変化する。これに応じて、第2弾性膜部170の形状は、電解液室109の体積がほぼ一定に保たれるように変化する。今、図17のように、電解液室109の体積が増加した場合、それに応じて電解液の圧力が減少するので、第2弾性膜部170における第2弾性膜部170の弾性力とバネ部131の弾性力と電解液の圧力と筐体部102の外部雰囲気の圧力との間のバランスが変化する。この結果、電解液室109から筐体部102の外部の方向に見て第2弾性膜部170の凸形状の膨らみが大きくなる。この結果、電解液室109の体積がほぼ一定に保たれる。また、逆に、図16のように、電解液室109の体積が減少した場合、それに応じて電解液の圧力が増加するので、第2弾性膜部170における第2弾性膜部170の弾性力とバネ部131の弾性力と電解液の圧力と外部雰囲気の圧力との間のバランスが変化する。この結果、電解液室109から筐体部102の外部の方向に見て第2弾性膜部170の凸形状の膨らみが小さくなる。この結果、電解液室109の体積がほぼ一定に保たれる。以上の結果として、電解液室109の内部に満たされた電解液室109の体積もほぼ一定となり、電解液の圧力もほぼ一定に保たれる。
 流体の吸入と吐出の動作は、図15及び図16で示されている。この第3実施形態では、弾性膜部170が前記したように圧力維持機能の働きを行う。図17は、前記の理由でダイヤフラム103が伸びた状態を示している。このとき、弾性膜部170の凸形状の膨らみが大きくなるために、電解液室109の体積はほぼ一定に保たれて、電解液の圧力も適切な範囲に保たれる。第1ダイヤフラム103はバネ部131から図17の下向きの力を常に受けているので、常に弛むことなく適切な応力(張力)を保つ。これに対して、弾性膜部170が無い場合には、第1ダイヤフラム103がわずかに動いただけで、電解液の圧力が非常に大きく変化するために、第1ダイヤフラム103の移動が妨げられて、第1ダイヤフラム103がほとんど移動できない。この第3実施形態においては、第1ダイヤフラム103の応力(張力)が適切な値に保たれているために(言い換えれば、ポンプ室107内の流体の圧力が所定の範囲に維持されているために)、効率的な動作が可能である。
 なお、この第3実施形態のように、ポンプ室107を1つにした構造では、構造が簡単であるので製造又はメンテナンスが容易であるという特徴がある。
 (第4実施形態)
 図18は、本発明の第4実施形態にかかる、導電性高分子を用いた流体搬送装置の構成を示す。
 前記の説明では、主に、電解液室109は電解液のみで満たされている場合について説明したが、電解液室109の一部に気体を満たしてもよい。この場合、気体の弾性を用いて第1及び第2ダイヤフラム103,104に対する圧力を所定の範囲内に維持することも可能である。図18においては、電解液室109の内部には、電解液と気泡が混入されている。気泡は、電解液とは化学的に反応しない空気などの気体からなる気泡部212を構成する。図18における気泡の弾性は、図3における弾性膜部130及びバネ部131と同様の機能を果たし、第1及び第2ダイヤフラム103,104に対する圧力を所定の範囲内に維持可能である。このことを以下で説明する。図18においては、電解液室109の内部の電解液の圧力は、第1及び第2ポンプ室107,108の流体の圧力よりも小さく設定されている。この圧力差によって、第1及び第2ダイヤフラム103及び104は、応力(張力)が第1及び第2ダイヤフラム103及び104に加わった状態に保たれる。例えば、第1及び第2ポンプ室107,108の流体の圧力が大気圧に等しい場合には、電解液及び気泡部212は大気圧に置かれた場合に比べて圧力が小さいために、気泡部212は膨張している。ただし、電解液はほぼ非圧縮性流体であるために、気泡部212の膨張の度合いは極めて小さい。この状態から、例えば、第1及び第2ダイヤフラム103,104が伸びた場合には、電解液室109の体積が減少するために、電解液及び気泡部212の圧力がそれぞれ増加する。電解液室109に電解液のみが入っている場合には、電解液はほぼ非圧縮性流体であるので電解液の圧力が急激に増加するために、第1及び第2ポンプ室107,108の内部の流体と電解液室109の内部の電解液の圧力差が非常に小さくなって、第1及び第2ダイヤフラム103,104の応力(張力)が減少して、第1及び第2ダイヤフラム103,104が弛んだ状態になり、ポンプの動作が妨げられる。これに対して、図18の構成においては、電解液室109の気泡部212の弾性率が小さいためにその体積が変化しても圧力の変化が小さい。すなわち、気泡部212が、電解液室109の体積変化による電解液室109の内部の圧力変化を吸収する働きを有し、電解液室109の内部の電解液及び気泡部212の圧力が適切な値に保たれる。このために、第1及び第2ポンプ室107,108の内部の流体と電解液室109の内部の電解液の圧力差も、また、一定範囲内で保たれるので、第1及び第2ダイヤフラム103,104の応力(張力)が適切な値に保たれる(言い換えれば、第1及び第2ポンプ室107,108内の流体の圧力が所定範囲内に保たれる)。すなわち、気泡部212が、第1及び第2ダイヤフラム103,104の圧力維持機能を有する。このことから、第1及び第2ダイヤフラム103,104の圧力維持機能が無い場合に比べて、第1及び第2ダイヤフラム103,104の変形などが生じた場合でも、ダイヤフラムに対する圧力が適切な範囲に維持されて、ポンプの動作効率が向上する。気泡部212を用いた場合、簡易な構造で第1及び第2ダイヤフラム103,104に対する圧力を所定の適切な範囲内に自動的に維持可能である。
 今、第1及び第2ダイヤフラム103,104が1回伸縮する場合のポンプの吐出量及び吸入量をそれぞれVとする。このとき、電解液室109に混入する気体の体積は、ポンプの吐出量又は吸入量Vの10%以上であることが望ましい。このことは、例えば以下の例で理解できる。
 図22Bのポンプを例にとって説明する。図26に示すように、今、第2ダイヤフラム404に注目する。また、筐体402の底面490が円形であるとする。第2ダイヤフラム404の面積をSとする。また、第2ポンプ室408の体積をVとする。第2ダイヤフラム404の中心部と筐体402の底面の距離をhとする。底面490の半径をrとする。ここで、簡単のために、以下の仮定をおく。第2ダイヤフラム404が電解伸縮するときに最も収縮したときのhの大きさを0とする。また、図19に示すように、第2ダイヤフラム404の形状は、常に、底面490の周辺部を含み、球面の一部(球冠)であると仮定する。図19においては、第2ダイヤフラム404が半径Rの球面の一部である場合の例を示した。前記仮定は、第2ダイヤフラム404が弛まずに張った状態にあるときの第2ダイヤフラム404の形状を球冠の形状で近似したものである。
 このとき、第2ポンプ室408の体積Vは以下の(関係式1)で与えられる。
  V=π×h/6×(3×r+h)・・・(関係式1)
 また、第2ダイヤフラム404の面積Sは以下の(関係式2)で与えられる。
  S=π×(r+h)・・・(関係式2)
 今、V=2/3×π×rとおく。また、Si=π×rとおく。ここで、πは円周率である。一般的に、ポンプにおける導電性高分子膜の第2ダイヤフラム404の面積の周期的な電解伸縮の大きさは、初期状態の第2ダイヤフラム404の面積の10%以下である。前記仮定の下では、初期状態の第2ダイヤフラム404の面積はSで与えられるので、一般的に、ポンプ動作時に第2ダイヤフラム404の面積は以下の範囲内で変化する。
  S≦(第2ダイヤフラム404の面積)≦S×1.1
 第2ダイヤフラム404の面積が(S×1.1)である場合に、前記(関係式2)からh≒0.32×rの関係がある。このとき、第2ポンプ室408の体積は、前記(関係式1)から、V≒0.2×Vで与えられる。以上の考察から、図22Bに示すようなポンプにおいて、第2ダイヤフラム404を構成する導電性高分子膜が周期的な電解伸縮を行う場合には、1回の電解伸縮を行うときに第2ポンプ室408から吐出される流体の体積及び第2ポンプ室408に吸入される流体の体積Vは(0.2×V)以下の値であることがわかる。
 一方、導電性高分子膜が周期的な電解伸縮を行う場合には、先に図23を用いて説明したように、第2ダイヤフラム404が伸びて周期的な変化の中心が徐々に変化することがある。この理由は、例えば導電性高分子膜の粘弾性による変形が考えられる。一般的に、ポンプを長時間動作させた場合の第2ダイヤフラム404の面積の変化の大きさは、初期状態の第2ダイヤフラム404の面積の約0.1%以上の値となる。今、第2ダイヤフラム404の面積SがS=0.001×Sである場合には、前記の仮定の下では(関係式2)からh≒0.032×rである。このとき、第2ポンプ室408の体積は、前記(関係式1)から、V≒0.02×Vで与えられる。そこで、導電性高分子膜の粘弾性による変形などの理由で、第2ダイヤフラム404の面積が初期状態のSから0.001×Sまで変化した場合を考えると、第2ポンプ室408の体積Vはおよそ0から0.02×Vまで変化する。すなわち、第2ポンプ室408の体積Vは0.02×Vだけ増加する。図22Bのポンプにおいては、筐体内部の体積は一定であるので、このとき、第1ポンプ室407の体積が変化しないとすると、電解液室409の体積は0.02×Vだけ減少する。前記考察から、導電性高分子膜の粘弾性による変形などの理由で第2ダイヤフラム404の面積が増加する場合、電解液室409の体積が減少するが、一般的に、この減少量は0.02×V以上の値となる。電解液は非圧縮性流体であるので、電解液室409の内部に電解液のみが入っている場合には、電解液室409の体積は一定に保たれる。そこで、この場合に導電性高分子膜の粘弾性による変形などの理由で第2ダイヤフラム404の面積が増加した場合、前記仮定は満たされず、図24Bに示すように第2ダイヤフラム404が弛んだ状態になる。第2ダイヤフラム404が弛んだ状態になると、導電性高分子膜の電解伸縮の力が流体の吐出と吸入に伝わらず逃げてしまうので、ポンプの効率が低下して望ましくない。
 これに対して、この第4実施形態によれば、電解液に気体を混入して気泡部212を形成するように構成しているので、気泡部212の気体は体積変化を行うことができるから、電解液室109の体積変化を気泡部212の気体の体積変化で吸収することができて例えば第2ダイヤフラム104が弛むことを防止することが可能である。
 前記のように、一般的に、導電性高分子膜の粘弾性による変形などの理由でダイヤフラムの面積が増加した場合、電解液室の体積は減少するが、ポンプを長時間動作させたときの電解液室の体積の減少量は(0.02×V)以上の値となる。そこで、この体積変化を電解液室に混入した気体の体積変化で吸収するためには、初期状態における気体の体積が(0.02×V)以上であることが必要である。
 一方、上で説明したように、図22Bに示すようなポンプにおいて、ダイヤフラムを構成する導電性高分子膜が周期的な電解伸縮を行う場合には、1回の電解伸縮を行うときにポンプ室から吐出される流体の体積及びポンプ室に吸入される流体の体積は(0.2×V)以下の値である。
 これらのことから、導電性高分子膜の粘弾性による変形などの理由で第1又は第2ダイヤフラム103又は104の面積が増加した場合に、電解液室109の体積変化を電解液室109に混入する気体の体積変化で吸収して第1又は第2ダイヤフラム103又は104が弛むことを防止するためには、気体の体積が、第1又は第2ダイヤフラム103又は104が1回伸縮する場合の流体搬送装置の吐出量及び吸入量Vの10%以上である必要がある。今、第1又は第2ダイヤフラム103又は104が1回伸縮する場合のポンプの吐出量及び吸入量をVとする。上に述べた理由から、ポンプの動作効率を向上するためには、電解液室109に混入する気体の体積はVの10%以上であることが望ましい。
 なお、前記の例では第2ダイヤフラム104が電解伸縮するときに最も収縮したときのhの大きさを0と仮定したが、実際のポンプでh=0とすると第2ダイヤフラム104が筐体部102に張り付いて流体の表面張力のために第2ダイヤフラム104の動作が妨げられるなどの問題が生じる。しかしながら、第2ダイヤフラム104と筐体部102との固定箇所189を図18の上部側にずらせば、前記問題は発生せず、この場合には、前記の議論が適用できる。
 前記の説明で、導電性高分子膜の粘弾性による変形などの理由で第1又は第2ダイヤフラム103又は104の面積が増加した場合に、電解液室109の体積変化を電解液室109に混入する気体の体積変化で吸収して第1又は第2ダイヤフラム103又は104が弛むことを防止するためには、気体の体積が、第1又は第2ダイヤフラム103又は104が1回伸縮する場合のポンプの吐出量及び吸入量Vの10%以上である必要があることを述べたが、これは必要条件であり、例えば、Vが0.2×Vよりも小さい場合、又は、導電性高分子膜の粘弾性変形などの理由で第1又は第2ダイヤフラム103又は104の面積が増加するときの電解液室109の体積の減少量が0.02×Vより大きい場合は、第1又は第2ダイヤフラム103又は104の弛みを防止するためには、気体の体積がVの10%より大きい値である必要がある。また、2枚の第1及び第2ダイヤフラム103及び104が共に変形してそれらの面積が増加した場合にも、第1及び第2ダイヤフラム103及び104の弛みを防止するためには、気体の体積がVの10%より大きい値である必要がある。
 なお、前記した弾性膜部130とバネ部131などより構成される圧力維持機能などと、前記の気体の弾性による圧力維持機能を併用することも可能である。
 電解液室109に混入する気体の体積が電解液室109の体積の20%より大きい場合、気体が第1及び第2ダイヤフラム103,104に接触する状態が発生して、第1及び第2ダイヤフラム103,104へのイオンの出入りが阻害されるという不具合が生じる。そこで、電解液室109に混入する気体の体積は、電解液室109の体積の20%以下の大きさであることが望ましい。
 なお、前記の説明で電解液室109に混入する気体の体積は、流体搬送装置を使用する状態での気体の体積を指すものとする。
 (第5実施形態)
 図20は、本発明の第5実施形態にかかる、導電性高分子を用いた流体搬送装置の断面図であって、第1及び第2ダイヤフラム103,104の一部を弾性膜204でそれぞれ構成した場合の例を示す。すなわち、図20において、ダイヤフラム103及び104の周辺部分がダイヤフラム弾性膜204で形成されている。
 この第5実施形態では、第1及び第2ダイヤフラム103,104の一部を弾性膜204でそれぞれ構成して、第1及び第2ダイヤフラム103,104の一部が第1及び第2ダイヤフラム103,104の面方向沿いに弾性変形可能な構成にすることによって、第1及び第2ダイヤフラム103,104に対する圧力維持も可能である。
 この第5実施形態によれば、第1及び第2ダイヤフラム103,104の一部をそれぞれ構成する弾性膜204の働きで第1及び第2ダイヤフラム103,104を構成する導電性高分子膜に加わる応力(張力)を第1及び第2ダイヤフラム103,104の面内でより均質にすることができる。また、第1及び第2ダイヤフラム103,104の一部を弾性膜204で構成した場合、弾性膜204は第1もしくは第2ポンプ室107もしくは108又は電解液室109の方向に膨らんだ凸形状に変形することができて、この凸形状が変化することによって、電解液室109の体積がほぼ一定に保つことができて、電解液の圧力が適切な範囲に保たれるので、第1及び第2ダイヤフラム103,104に対する圧力を適切な範囲に保つことが可能である(言い換えれば、第1及び第2ポンプ室107及び108内の流体の圧力を所定の範囲に維持することが可能である)。
 ポンプをできるだけ小型にするためには、2枚のダイヤフラム103,104が接触しない範囲で、できるだけ近接して配置することが望ましい。このことから、貫通穴102hの面積を小さくすることが望ましい。これにより、弾性膜204の面積はダイヤフラム103,104の面積よりも小さくすることが望ましい。
 ところで、上で説明したように、導電性高分子膜の伸縮によってダイヤフラム103,104の面積変化が生じたときに、弾性膜204の変形によってダイヤフラム103,104の張力を適切な値に維持するためには、導電性高分子膜の伸縮による電解液室筐体内部分190の体積変化を、弾性膜内側空間部分192の体積変化によって吸収する必要がある。
 以上のことを考えると、導電性高分子膜の伸縮によってダイヤフラム103,104の面積変化が生じたときに、これに伴う弾性膜の面積変化がダイヤフラム103,104の面積変化よりも大きいことが望ましい。そこで、ダイヤフラム103,104のヤング率は導電性高分子膜のヤング率よりも小さいことが望ましい。一般的に、導電性高分子膜のヤング率の値はおよそ1GPa以上の値であるので、弾性膜のヤング率は1GPa未満の値であることが望ましい。
 (第6実施形態)
 図21は、本発明の第6実施形態にかかる、導電性高分子を用いた流体搬送装置の断面図であって、図21の構成においては、図15の第3実施形態にかかる流体搬送装置の第1ダイヤフラム103とバネ部131と同様にダイヤフラム103とバネ部131が配置されるとともに、電解液室109の側部に電解液溜め部206が形成されている。すなわち、電解液室109を構成する筐体部102の側壁102sに、側壁102sの一部を貫通した導管部207が設けられており、その導管部207で筺体部102の内部の電解液室109と電解液溜め部206の内部が接続されて、電解液が行き来できる構造になっている。電解液溜め部206の上部は大気圧に解放されており、このことから、電解液室109の体積と圧力はほぼ一定に保たれる。結果として、ダイヤフラム103が電解液から受ける圧力もほぼ一定であり、ダイヤフラム103に対する圧力をほぼ一定に保つことが可能である。電解液溜め部206の上面を、気体は透過して液体は透過しない脱気膜などで構成することができて、このことにより、電解液が外部に漏れるのを防止することも可能である。なお、図21の構成において、電解液の液面が電解液溜め部206の内部で上下に移動することによって、電解液の重さが伝わる結果、ダイヤフラムに加わる圧力は少し変化するが、この変化の大きさは、電解液室109を密閉した場合に電解液室109の体積が変化することによる圧力変化に比べて小さいことが多い。
 (他の実施形態)
 前記第1~第6実施形態のいずれか1つ又は複数の実施形態の流体搬送装置を複数台用意して並列に並べて、流入側と流出側とをそれぞれ互いに接続することにより、大きな搬送流量を得ることも可能である。
 また、前記第1~第6実施形態のいずれか1つ又は複数の実施形態において、前記と同様の構造で、小型の前記流体搬送装置を複数台用意して並列に並べて、流入側と流出側とをそれぞれ互いに接続することにより、大きな搬送流量を得ることも可能である。この場合、それぞれの流体搬送装置における第1及び第2ダイヤフラム103,104又はダイヤフラム103の凸形状の膨らみが小さくなるので、全体として小型化することが可能である。
 前記したように複数の流体搬送装置を並列に並べる場合、各1枚のダイヤフラム103,104の代わりに、同じ面内に複数のダイヤフラム103d,104dをそれぞれ並べることも可能である(図27参照)。図27において、第1隔壁部193及び第2隔壁部194は、白金などの金属で形成されて、複数の開口部193aを持つ平板形状である。そして、第1隔壁部193と第2隔壁部194は互いに平行に位置するように筺体部102内に配置される。また、第1隔壁部193の複数の開口部193aには、第1ダイヤフラム103dがそれぞれ配置されるとともに、第2隔壁部194の複数の開口部194aには第2ダイヤフラム104dがそれぞれ配置される。そして、第1隔壁部193と複数の第1ダイヤフラム103によって、第1ポンプ室107と電解液室109とが分離される。また、第2隔壁部194と複数の第2ダイヤフラム104によって、第2ポンプ室107と電解液室部109が分離される。複数の第1ダイヤフラム103dは互いに金属の第1隔壁部193で接続されているので、互いに同じ電位に保たれる。また、複数の第2ダイヤフラム104dは金属の第2隔壁部194で接続されているので、互いに同じ電位に保たれる。また、第1ダイヤフラム103dと第2ダイヤフラム104dとは電気的に導通しないようにされている。この構造において、第1ダイヤフラム103dと第2ダイヤフラム104dの間の電位を変化させることによって、複数の第1ダイヤフラム103d及び複数の第2ダイヤフラム104dがそれぞれ前記実施形態と同様に伸縮を行うので、ポンプの動作を行うことが可能である。
 また、ダイヤフラムを重ねる方向に流体搬送装置の構造を並べることも可能である。すなわち、任意の位置関係で流体搬送装置の構造を並べることが可能である。
 本発明のさらにいくつかの他の実施形態を以下に説明する。
 前記のように、ダイヤフラム103,104が適切な張力を持ってポンプ室107,108から電解液室109の方向に凸であるような形状にダイヤフラム103,104を保つためには、電解液の圧力をポンプ室内部の流体圧力よりも小さく保つことが必要である。このために、本発明のさらに他の実施形態においては、電解液室109の壁面の一部を弾性体(例えば、図3の弾性膜部130)で形成して、その弾性体の弾性力若しくは弾性体に接続するバネ(例えば、図3のバネ部131)の弾性力によって、電解液室109の壁面の一部を形成する弾性体が電解液室109の内側から外側方向に変形しようとする力を発生させる。この力によって電解液の圧力は、ポンプ室内部の流体圧力よりも小さく保たれる。
 図28は、第1実施形態にかかる流体搬送装置における図3のポンプにおいて、電解液の圧力をポンプ室107,108の流体の圧力と同じ値にしたときの弾性膜部130及びバネ部131の様子を示す。ただし、図3における弾性膜部130及びバネ部131の位置を点線で示している。初期状態において電解液の圧力をポンプ室107,108の流体の圧力よりも小さく設定した場合には、弾性膜部130は図3に示す位置にあるが、弾性膜部130及びバネ部131の弾性力によって弾性膜部130が図28の状態に戻ろうとする力(復元力)が発生する。この力がポンプの動作中に常に発生するために、電解液の圧力はポンプ室107,108の流体の圧力よりも小さな値に保たれて、電解液の圧力とポンプ室107,108の流体の圧力との差によってダイヤフラム103,104が適切な張力を持ってポンプ室107,108から電解液室109の方向に凸であるような形状にダイヤフラム103,104を保つことが可能である。ダイヤフラム103,104が伸縮して電解液室109の体積が増加若しくは減少した場合には、これに伴い電解液の圧力が減少若しくは増加するが、これに応じて、弾性膜部130が電解液室109から見て内側若しくは外側に変形する。このことによって、常に、電解液室109の体積及び圧力は、ほぼ初期状態と同じ値に保たれる。この結果、ポンプの動作中に常に電解液の圧力はポンプ室107,108の流体の圧力よりも小さな値に保たれて、電解液の圧力とポンプ室107,108の流体の圧力との差によってダイヤフラム103,104が適切な張力を持ってポンプ室107,108から電解液室109の方向に凸であるような形状にダイヤフラム103,104を保つことが可能である。
 また、本発明のさらに別の実施形態として、図29は、本発明の前記第1実施形態の前記第1の変形例における図10のポンプにおいて、電解液の圧力をポンプ室107,108の流体の圧力と同じ値にしたときの弾性膜部130Aの様子を示す。ただし、図10における弾性膜部130Aの位置を点線で示している。図10の場合でも、図3の場合と同様に、弾性膜部130Aの弾性力によって弾性膜部130Aが図29の状態に戻ろうとする力(復元力)が発生する。この力がポンプの動作中に常に発生するために電解液の圧力はポンプ室107,108の流体の圧力よりも小さな値に保たれて、電解液の圧力とポンプ室107,108の流体の圧力との差によってダイヤフラム103,104が適切な張力を持ってポンプ室107,108から電解液室109の方向に凸であるような形状にダイヤフラム103,104を保つことが可能である。ダイヤフラム103,104が伸縮して電解液室109の体積が増加若しくは減少した場合には、これに伴い電解液の圧力が減少若しくは増加するが、これに応じて、弾性膜部130Aが電解液室109から見て内側若しくは外側に変形する。このことによって、常に、電解液室109の体積及び圧力は、ほぼ初期状態と同じ値に保たれる。この結果、ポンプの動作中に電解液の圧力はポンプ室107,108の流体の圧力よりも常に小さな値に保たれて、電解液の圧力とポンプ室107,108の流体の圧力との差によってダイヤフラム103,104が適切な張力を持ってポンプ室107,108から電解液室109の方向に凸であるような形状にダイヤフラム103,104を保つことが可能である。
 前記の説明からわかるように、ダイヤフラム103,104が適切な張力を持ってポンプ室107,108から電解液室109の方向に凸であるような形状にダイヤフラム103,104を保つためには、初期状態において電解液の圧力をポンプ室107,108の流体の圧力よりも小さく設定した場合の弾性膜部の位置が、電解液の圧力をポンプ室107,108の流体の圧力と同じ値にしたときの弾性膜部の位置と比べて、電解液室109の外側から内側に向かう方向にずれていればよい。この条件を満たす場合には、弾性膜部が電解液室109の外側から内側に向かう方向に凸形状であっても、弾性膜部が電解液室109の内側から外側に向かう方向に凸形状であっても、いずれでもよい。また、弾性膜部にバネ部が接続していても接続していなくても、いずれでもよい。
 また、前記の説明とは逆に、ダイヤフラム103,104が適切な張力を持って電解液室109からポンプ室107,108の方向に凸であるような形状にダイヤフラム103,104を保つためには、電解液の圧力をポンプ室内部の流体圧力よりも大きく保つことが必要である。このために、本発明のさらに別の実施形態においては、電解液室109の壁面の一部を弾性体(例えば、弾性膜部130)で形成して、その弾性体の弾性力若しくは弾性体に接続するバネ(例えば、バネ部131)の弾性力によって、電解液室109の壁面の一部を形成する弾性体が電解液室109の外側から内側方向に変形しようとする力を発生させる。
 図30は、図13のポンプにおいて、電解液の圧力をポンプ室107,108の流体の圧力と同じ値にしたときの弾性膜部130の様子を示す。ただし、図13における弾性膜部130の位置を点線で示している。図13の場合、弾性膜部130の弾性力によって、弾性膜部130が図30の状態に戻ろうとする力(復元力)が発生する。この力がポンプの動作中に常に発生するために、電解液の圧力はポンプ室107,108の流体の圧力よりも大きな値に保たれて、電解液の圧力とポンプ室107,108の流体の圧力との差によって、ダイヤフラム103,104が適切な張力を持って電解液室からポンプ室107,108の方向に凸であるような形状にダイヤフラム103,104を保つことが可能である。ダイヤフラム103,104が伸縮して電解液室109の体積が増加若しくは減少した場合には、これに伴い、電解液の圧力が減少若しくは増加するが、これに応じて、弾性膜部130が電解液室109から見て内側若しくは外側に変形する。このことによって、常に、電解液室109の体積及び圧力はほぼ初期状態と同じ値に保たれる。この結果、ポンプの動作中に、常に、電解液の圧力はポンプ室107,108の流体の圧力よりも大きな値に保たれて、電解液の圧力とポンプ室107,108の流体の圧力との差によってダイヤフラム103,104が適切な張力を持って電解液室109からポンプ室107,108の方向に凸であるような形状にダイヤフラム103,104を保つことが可能である。
 前記の説明からわかるように、ダイヤフラム103,104が適切な張力を持って電解液室109からポンプ室107,108の方向に凸であるような形状にダイヤフラム103,104を保つためには、初期状態において電解液の圧力をポンプ室107,108の流体の圧力よりも大きく設定した場合の弾性膜部130の位置が、電解液の圧力をポンプ室107,108の流体の圧力と同じ値にしたときの弾性膜部130の位置と比べて、電解液室109の内側から外側に向かう方向にずれていればよい。この条件を満たす場合には、弾性膜部130が電解液室109の外側から内側に向かう方向に凸形状であっても、弾性膜部130が電解液室109の内側から外側に向かう方向に凸形状であっても、いずれでもよい。また、弾性膜部130にバネ部131が接続していても接続していなくても、いずれでもよい。
 また、電解液に気体を混入して気体の弾性力によって、前記と同様の働きを行うことも可能である。
 図31は、図18のポンプにおいて、電解液の圧力をポンプ室107,108の流体の圧力と同じ値にしたときの気泡部212の大きさを示す。ただし、図18における気泡部212の大きさを点線で示している。初期状態において電解液の圧力をポンプ室107,108の流体の圧力よりも小さく設定した場合には、気泡部212は図18に示す大きさとなるが、気泡部212の気体の弾性力によって、気泡部212の大きさが図31の状態に戻ろうとする力(復元力)が発生する。この力がポンプの動作中に常に発生するために、電解液の圧力はポンプ室107,108の流体の圧力よりも小さな値に保たれて、電解液の圧力とポンプ室107,108の流体の圧力との差によって、ダイヤフラム103,104が適切な張力を持ってポンプ室107,108から電解液室109の方向に凸であるような形状にダイヤフラム103,104を保つことが可能である。ダイヤフラム103,104が伸縮して電解液室109の体積が増加若しくは減少した場合には、これに伴い、電解液の圧力が減少若しくは増加するが、これに応じて、気泡部212の大きさが増加若しくは減少する。このことによって、常に、電解液の体積及び圧力はほぼ初期状態と同じ値に保たれる。この結果、ポンプの動作中に電解液の圧力はポンプ室107,108の流体の圧力よりも常に小さな値に保たれて、電解液の圧力とポンプ室107,108の流体の圧力との差によってダイヤフラム103,104が適切な張力を持ってポンプ室107,108から電解液室109の方向に凸であるような形状にダイヤフラム103,104を保つことが可能である。
 なお、図28~図31においては、説明をわかりやすくするために、電解液の圧力変化による弾性膜130の位置変化若しくは気泡部212の大きさの変化を大きく示している。実際には、電解液は非圧縮流体であるので、電解液の圧力変化による弾性膜130の位置変化若しくは気泡部212の大きさの変化は非常に小さい。
 なお、前記弾性部の一例としては、弾性体、バネ部、又は、気泡部が例示できる。そのうちの弾性体は、弾性体の表面が、弾性体自体の弾性力により移動又は変形する部材であり、一例としては、弾性膜、又は、バルク状弾性部材が挙げられる。
 図32は、本発明のさらに他の実施形態にかかる流体搬送装置であって、バルク状弾性部材を使用する例を示す構成図である。図32において、筺体部102の1つの側壁102sに凹部102vが形成され、その凹部102v内にバルク状弾性部材160が嵌合されている。バルク状弾性部材160は、表面160aがそれ自体の弾性力により移動又は変形する部材であり、バルク状弾性部材160の表面160aは、凹部102v内でバルク状弾性部材160自体の弾性力により進退移動し、電解液と電解液以外の部分との界面を変形させることによってダイヤフラム103,104に作用する圧力を所定範囲内に維持することができる。すなわち、バルク状弾性部材160の弾性力を前記弾性部の前記弾性力として作用させることによって電解液室109の内側から外側方向に変形しようとする力を発生し、前記発生した力によって前記電解液の圧力が前記ポンプ室107,108の前記流体の圧力よりも小さな値に保たれ、前記電解液の圧力と前記ポンプ室107,108の前記流体の圧力との差によって生じた前記ダイヤフラム103,104の張力により前記ポンプ室107,108から前記電解液室109の方向に凸であるような形状に前記ダイヤフラム103,104が保たれる。又は、バルク状弾性部材160の弾性力を前記弾性部の前記弾性力として作用させることによって前記電解液室109の外側から内側方向に変形しようとする力を発生し、前記発生した力によって前記電解液の圧力が前記ポンプ室107,108の前記流体の圧力よりも大きな値に保たれ、前記電解液の圧力と前記ポンプ室107,108の前記流体の圧力との差によって生じた前記ダイヤフラム103,104の張力により前記電解液室109から前記ポンプ室107,108の方向に凸であるような形状に前記ダイヤフラム103,104が保たれる。この結果、この図32の例でも、他の実施形態と同様な作用効果を奏することができる。なお、図32において、102xは凹部102vの底部に形成された凹部であって、バルク状弾性部材160の表面が移動又は変形して凹部102v内に入り込むようにバルク状弾性部材160自体が図32の点線のように弾性変形するとき、この凹部102xにより、バルク状弾性部材160の一部が入り込む空間を確保している。
 また、図33は、本発明のさらに他の実施形態にかかる流体搬送装置であって、弾性部としてバネ部のみを使用する例を示す構成図である。図33において、筺体部102の1つの側壁102sに凹部102wが形成され、その凹部102w内に、移動可能な可動壁部材161と、可動壁部材161に弾性力を付与するバネ部162とが配置されている。可動壁部材161は、凹部102w内でバネ部162の弾性力により進退移動し、電解液と電解液以外の部分との界面を変形させることによってダイヤフラム103,104に作用する圧力を所定範囲内に維持することができる。すなわち、バネ部162の弾性力を前記弾性部の前記弾性力として作用させることによって電解液室109の内側から外側方向に変形しようとする力を発生し、前記発生した力によって前記電解液の圧力が前記ポンプ室107,108の前記流体の圧力よりも小さな値に保たれ、前記電解液の圧力と前記ポンプ室107,108の前記流体の圧力との差によって生じた前記ダイヤフラム103,104の張力により前記ポンプ室107,108から前記電解液室109の方向に凸であるような形状に前記ダイヤフラム103,104が保たれる。又は、バネ部162の弾性力を前記弾性部の前記弾性力として作用させることによって前記電解液室109の外側から内側方向に変形しようとする力を発生し、前記発生した力によって前記電解液の圧力が前記ポンプ室107,108の前記流体の圧力よりも大きな値に保たれ、前記電解液の圧力と前記ポンプ室107,108の前記流体の圧力との差によって生じた前記ダイヤフラム103,104の張力により前記電解液室109から前記ポンプ室107,108の方向に凸であるような形状に前記ダイヤフラム103,104が保たれる。この結果、この図33の例でも、他の実施形態と同様な作用効果を奏することができる。
 なお、前記様々な実施形態又は変形例のうちの任意の実施形態又は変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明の流体搬送装置は、特に燃料電池におけるメタノールなどの燃料の供給装置、又は、CPUを含む電子機器を冷却するための水冷循環装置などに用いられることができて、流体の吸入と吐出を高効率で行う流体搬送装置として好適に利用され得る。
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形又は修正は明白である。そのような変形又は修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。

Claims (10)

  1.  流体を吸入及び吐出する、導電性高分子を用いた流体搬送装置であって、
     前記流体が内部に満たされるポンプ室と、
     前記ポンプ室が内部に形成されかつ前記ポンプ室の壁面の一部を構成する筺体部と、
     前記筺体部内に支持されて一部分もしくは全部分が電解伸縮を行う導電性高分子膜で形成されて、前記筺体部と共に前記ポンプ室の壁面を構成するダイヤフラムと、
     前記筺体部に配置されかつ前記ポンプ室において前記流体の吐出及び吸入を行うための開口部と、
     前記筺体部と前記ダイヤフラムとで囲まれかつ内部に電解液を含み、その電解液の一部が前記ダイヤフラムと接する電解液室と、
     前記導電性高分子膜に電圧を印加するための電源と、
     前記導電性高分子膜と前記電源とを電気的に接続する配線部と、
     前記電解液室内の電解液と前記ポンプ室内の前記流体とにより前記ダイヤフラムに作用する圧力を所定範囲内に維持する圧力維持部とを備える、導電性高分子を用いた流体搬送装置。
  2.  前記圧力維持部は、弾性部を備え、前記弾性部の弾性力によって前記電解液と前記電解液以外の部分との界面を変形することによって前記ダイヤフラムに作用する圧力を前記所定範囲内に維持する請求項1に記載の、導電性高分子を用いた流体搬送装置。
  3.  前記圧力維持部の前記弾性部は、前記電解液室の壁面の一部に形成された伸縮可能な弾性体と、前記弾性体と前記筺体部との間を接続するバネ部とで構成して、前記弾性体の弾性力若しくは前記バネ部の弾性力を前記弾性部の前記弾性力として作用させることによって、前記弾性体が前記電解液室の内側から外側方向に変形しようとする力を発生して、
     前記発生した力によって前記電解液の圧力が前記ポンプ室の前記流体の圧力よりも小さな値に保たれ、前記電解液の圧力と前記ポンプ室の前記流体の圧力との差によって生じた前記ダイヤフラムの張力により前記ポンプ室から前記電解液室の方向に凸であるような形状に前記ダイヤフラムが保たれる請求項2に記載の、導電性高分子を用いた流体搬送装置。
  4.  前記圧力維持部の前記弾性部は、前記電解液室の壁面の一部に形成された伸縮可能な弾性体で構成して、前記弾性体の弾性力を前記弾性部の前記弾性力として作用させることによって、前記弾性体が前記電解液室の内側から外側方向に変形しようとする力を発生し、
     前記発生した力によって前記電解液の圧力が前記ポンプ室の前記流体の圧力よりも小さな値に保たれ、前記電解液の圧力と前記ポンプ室の前記流体の圧力との差によって生じた前記ダイヤフラムの張力により前記ポンプ室から前記電解液室の方向に凸であるような形状に前記ダイヤフラムが保たれる請求項2に記載の、導電性高分子を用いた流体搬送装置。
  5.  前記圧力維持部の前記弾性部はバネ部で構成して、前記バネ部の弾性力を前記弾性部の前記弾性力として作用させることによって前記電解液と前記電解液以外の部分との界面を変形しようとする力を発生し、
     前記発生した力によって前記電解液の圧力が前記ポンプ室の前記流体の圧力よりも小さな値に保たれ、前記電解液の圧力と前記ポンプ室の前記流体の圧力との差によって生じた前記ダイヤフラムの張力により前記ポンプ室から前記電解液室の方向に凸であるような形状に前記ダイヤフラムが保たれる請求項2に記載の、導電性高分子を用いた流体搬送装置。
  6.  前記圧力維持部の前記弾性部は、前記電解液室の壁面の一部に形成された伸縮可能な弾性体と、前記弾性体と前記筺体部との間を接続するバネ部とで構成して、前記弾性体の弾性力若しくは前記バネ部の弾性力を前記弾性部の前記弾性力として作用させることによって、前記弾性体が前記電解液室の外側から内側方向に変形しようとする力を発生し、
     前記発生した力によって前記電解液の圧力が前記ポンプ室の前記流体の圧力よりも大きな値に保たれ、前記電解液の圧力と前記ポンプ室の前記流体の圧力との差によって生じた前記ダイヤフラムの張力により前記電解液室から前記ポンプ室の方向に凸であるような形状に前記ダイヤフラムが保たれる請求項2に記載の、導電性高分子を用いた流体搬送装置。
  7.  前記圧力維持部の前記弾性部は、前記電解液室の壁面の一部に形成された伸縮可能な弾性体で構成して、前記弾性体の弾性力を前記弾性部の前記弾性力として作用させることによって、前記弾性体が前記電解液室の外側から内側方向に変形しようとする力を発生し、
     前記発生した力によって前記電解液の圧力が前記ポンプ室の前記流体の圧力よりも大きな値に保たれ、前記電解液の圧力と前記ポンプ室の前記流体の圧力との差によって生じた前記ダイヤフラムの張力により前記電解液室から前記ポンプ室の方向に凸であるような形状に前記ダイヤフラムが保たれる請求項2に記載の、導電性高分子を用いた流体搬送装置。
  8.  前記圧力維持部の前記弾性部はバネ部で構成して、前記バネ部の弾性力を前記弾性部の前記弾性力として作用させることによって前記電解液と前記電解液以外の部分との界面を変形しようとする力を発生し、
     前記発生した力によって前記電解液の圧力が前記ポンプ室の前記流体の圧力よりも大きな値に保たれ、前記電解液の圧力と前記ポンプ室の前記流体の圧力との差によって生じた前記ダイヤフラムの張力により前記電解液室から前記ポンプ室の方向に凸であるような形状に前記ダイヤフラムが保たれる請求項2に記載の、導電性高分子を用いた流体搬送装置。
  9.  前記圧力維持部の前記弾性部は、前記電解液室の前記電解液内に位置し、かつ、内部に気体を含む気泡部で構成し、
     この気泡部の体積は、前記ダイヤフラムが1回伸縮する場合の流体搬送装置の吐出量の10%以上の大きさである請求項2に記載の、導電性高分子を用いた流体搬送装置。
  10.  前記気泡部の体積は、前記電解液室の体積の20%以下である請求項9に記載の、導電性高分子を用いた流体搬送装置。
PCT/JP2009/003128 2008-07-08 2009-07-06 導電性高分子を用いた流体搬送装置 WO2010004721A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801069497A CN101960144A (zh) 2008-07-08 2009-07-06 使用了导电性高分子的流体运送装置
US12/675,843 US8062007B2 (en) 2008-07-08 2009-07-06 Fluid transporting device using conductive polymer
JP2009543296A JP4482617B2 (ja) 2008-07-08 2009-07-06 導電性高分子を用いた流体搬送装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-177992 2008-07-08
JP2008177992 2008-07-08

Publications (1)

Publication Number Publication Date
WO2010004721A1 true WO2010004721A1 (ja) 2010-01-14

Family

ID=41506849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003128 WO2010004721A1 (ja) 2008-07-08 2009-07-06 導電性高分子を用いた流体搬送装置

Country Status (4)

Country Link
US (1) US8062007B2 (ja)
JP (2) JP4482617B2 (ja)
CN (1) CN101960144A (ja)
WO (1) WO2010004721A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100907A1 (ja) * 2009-03-04 2010-09-10 パナソニック株式会社 ポリマーアクチュエータ
US10060424B2 (en) * 2011-06-20 2018-08-28 Mitsubishi Electric Corporation Fluid sending apparatus
AU2013286714B2 (en) * 2012-07-05 2017-05-25 Solventum Intellectual Properties Company Systems and methods for regulating the resonant frequency of a disc pump cavity
CN102817818A (zh) * 2012-08-30 2012-12-12 清华大学 一种用于双流体同步传输的电解微泵
WO2014148103A1 (ja) * 2013-03-22 2014-09-25 株式会社村田製作所 圧電ブロア
DE102013013545B4 (de) * 2013-08-13 2021-11-25 Festo Se & Co. Kg Vakuumerzeugervorrichtung
JP6586686B2 (ja) * 2014-07-30 2019-10-09 国立大学法人福井大学 高分子アクチュエーターの制御方法、高分子アクチュエーター及びこの高分子アクチュエーターを利用した微少流体送出装置
DE102016014832A1 (de) * 2016-12-14 2018-06-14 Drägerwerk AG & Co. KGaA Kammerpumpe und Verfahren zum Betrieb einer Kammerpumpe
KR101933062B1 (ko) 2017-09-19 2019-03-15 서강대학교산학협력단 이송대상유체의 압력을 측정하는 펌프, 이를 이용하는 유체운송 시스템과 그 시스템의 동작 방법
CN108708841B (zh) * 2018-05-07 2020-01-03 广东工业大学 一种充气泵及其充气方法
CN112664675B (zh) * 2020-12-04 2022-05-31 浙江大学 一种电共轭液驱动的流控低噪声软体阀
JP2024015457A (ja) * 2020-12-08 2024-02-02 ソニーグループ株式会社 流体制御装置、及び電子機器
CN117398550B (zh) * 2023-12-14 2024-03-22 清华大学 一种无针注射器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236266U (ja) * 1985-08-21 1987-03-03
JP2001193653A (ja) * 2000-01-14 2001-07-17 Fujikura Rubber Ltd 定量ポンプ
JP2005207406A (ja) * 2003-10-30 2005-08-04 Eamex Co 導電性高分子を含むポンプ及びその駆動方法
JP2005269842A (ja) * 2004-03-22 2005-09-29 Eamex Co 流体振動装置及びその駆動方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742025B2 (ja) 1985-08-07 1995-05-10 カシオ計算機株式会社 記録装置
US4981418A (en) 1989-07-25 1991-01-01 Osmonics, Inc. Internally pressurized bellows pump
US6056744A (en) * 1994-06-24 2000-05-02 Conway Stuart Medical, Inc. Sphincter treatment apparatus
JPH08261140A (ja) * 1995-03-23 1996-10-08 Olympus Optical Co Ltd マイクロディスペンサ装置
US5705018A (en) * 1995-12-13 1998-01-06 Hartley; Frank T. Micromachined peristaltic pump
JPH09291886A (ja) 1996-04-26 1997-11-11 Aisin Seiki Co Ltd 圧縮機
EP0943402B1 (en) * 1998-02-20 2007-09-19 National Institute of Advanced Industrial Science and Technology Polymeric actuators and process for producing the same
JP3844418B2 (ja) 1999-02-12 2006-11-15 株式会社荏原製作所 容積式送液装置
MXPA01012959A (es) * 1999-06-28 2002-07-30 California Inst Of Techn Sistemas elastomericos, microfabricados, de valvulas y bombas.
FR2817604B1 (fr) * 2000-12-01 2004-04-23 Biomerieux Sa Vannes activees par des polymeres electro-actifs ou par des materiaux a memoire de forme, dispositif contenant de telles vannes et procede de mise en oeuvre
US6729856B2 (en) * 2001-10-09 2004-05-04 Honeywell International Inc. Electrostatically actuated pump with elastic restoring forces
US7429258B2 (en) * 2001-10-26 2008-09-30 Massachusetts Institute Of Technology Microneedle transport device
US6685442B2 (en) * 2002-02-20 2004-02-03 Sandia National Laboratories Actuator device utilizing a conductive polymer gel
US20060076540A1 (en) * 2002-08-09 2006-04-13 Eamex Corporation Process for producing conductive polymer
US7494459B2 (en) * 2003-06-26 2009-02-24 Biophan Technologies, Inc. Sensor-equipped and algorithm-controlled direct mechanical ventricular assist device
DE102006003744B3 (de) * 2006-01-26 2007-09-13 Albert-Ludwigs-Universität Freiburg Vorrichtung zur Bewegung von Flüssigkeiten und/oder Gasen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236266U (ja) * 1985-08-21 1987-03-03
JP2001193653A (ja) * 2000-01-14 2001-07-17 Fujikura Rubber Ltd 定量ポンプ
JP2005207406A (ja) * 2003-10-30 2005-08-04 Eamex Co 導電性高分子を含むポンプ及びその駆動方法
JP2005269842A (ja) * 2004-03-22 2005-09-29 Eamex Co 流体振動装置及びその駆動方法

Also Published As

Publication number Publication date
JP2010138911A (ja) 2010-06-24
CN101960144A (zh) 2011-01-26
US20100260623A1 (en) 2010-10-14
JP4898928B2 (ja) 2012-03-21
JP4482617B2 (ja) 2010-06-16
US8062007B2 (en) 2011-11-22
JPWO2010004721A1 (ja) 2011-12-22

Similar Documents

Publication Publication Date Title
JP4482617B2 (ja) 導電性高分子を用いた流体搬送装置
JP4511630B2 (ja) 導電性高分子を用いた流体搬送装置
Loverich et al. Concepts for a new class of all-polymer micropumps
Park et al. Silicones for stretchable and durable soft devices: Beyond Sylgard-184
US6874999B2 (en) Micropumps with passive check valves
JP4812762B2 (ja) 液体投与装置
RU2009106259A (ru) Электрохимический преобразователь
Naka et al. A micropump driven by a polypyrrole‐based conducting polymer soft actuator
CN104763620B (zh) 柔性蠕动泵
Kotb et al. Shape memory alloy capsule micropump for drug delivery applications
JP5323692B2 (ja) 内蔵型ポンプ
McCoul et al. Dielectric elastomer actuators for active microfluidic control
US20150086397A1 (en) Micropump with separate chamber
Zhong et al. A versatile flexible polymer actuator system for pumps, valves, and injectors enabling fully disposable active microfluidics
JP2011144692A (ja) 導電性高分子を用いた流体搬送装置
JP2005207406A (ja) 導電性高分子を含むポンプ及びその駆動方法
WO2021081858A1 (zh) 温度补偿限流装置与弹性输液系统
US8979510B2 (en) Micropump and driving method thereof
CN101408164B (zh) 大流量流体输送装置
CN1424742A (zh) 药液供给装置
Slami et al. A SUPERIMPOSED VALVELESS MICROPUMP USING NEW CHANNELS FOR OPTIMAL DRUG DELIVERY
RU2782876C1 (ru) Бесклапанный мембранный микрофлюидный насос
CN110665089B (zh) 一种血液输送用静电蠕动泵
WO2023078293A1 (zh) 用于药剂递送的电化学泵及其药剂递送装置
Godaba et al. A dielectric elastomer actuator coupled with water: snap-through instability and giant deformation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106949.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009543296

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12675843

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09794169

Country of ref document: EP

Kind code of ref document: A1