WO2010003722A1 - Verfahren und vorrichtung zur ortsbestimmung - Google Patents

Verfahren und vorrichtung zur ortsbestimmung Download PDF

Info

Publication number
WO2010003722A1
WO2010003722A1 PCT/EP2009/055889 EP2009055889W WO2010003722A1 WO 2010003722 A1 WO2010003722 A1 WO 2010003722A1 EP 2009055889 W EP2009055889 W EP 2009055889W WO 2010003722 A1 WO2010003722 A1 WO 2010003722A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
signal
ack
time
station
Prior art date
Application number
PCT/EP2009/055889
Other languages
English (en)
French (fr)
Inventor
Alejandro Ramirez
Bilal Khaddaj
Christian SCHWINGENSCHLÖGL
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2010003722A1 publication Critical patent/WO2010003722A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements

Definitions

  • the present invention relates to a method, a device and a use for determining the location of a mobile station by means of a multiplicity of base stations.
  • ToF time-of-flight
  • a transmitting station sends a signal to a fully synchronized receiving station.
  • the propagation time is proportional to the distance and the speed of light.
  • the process has to be repeated several three or sen ⁇ Denden stations, the exact time depending ⁇ the transfer must be fed well to the receiving station.
  • Figure 1 shows a representation of the principle arrival time (ToA).
  • TDoA Time Difference of Arrival
  • FIG. 2 shows a representation of the principle of the time difference of arrival (TDoA) method.
  • RoF Round Trip Time of Flight
  • a signal is transmitted by a radio station A to a radio station B. After Station B receives the message, it replies back to Station A. Station A measures this time difference, which is again correlated to the distance and the speed of light, in addition to an internal processing delay in station B. Since no synchronization is required, the complexity of the system is effectively reduced, but disadvantageously, the same procedure must be performed by at least three radio stations to find the position of a radio station B to be repeated. Another advantage of the RToF method is that no explicit measurement or collaboration is required from and with station B.
  • FIG. 3 shows a representation of the principle of the RToF method.
  • a method for the in-space position determination of radio devices based on measurements of a round trip time (RTT) between the base station (BS) and the mobile station (MS) is provided.
  • the round-trip time (RTT) is the time required to send a packet and are received, ⁇ gen its confirmation. As shown in Figure 4, these measurements represent the respective distances between the base stations (BS) and the mobile
  • FIG. 4 illustrates the principle of RTT location determination.
  • Each RTT measurement determines a distance.
  • the medium which may be, for example, a cellular network, a radio frequency identification (RFID) network, or generally a radio system.
  • RFID radio frequency identification
  • the object is achieved by a method according to the main claim, a device according to the independent claim and a use according to the independent claim.
  • a detailed step-by-step description of the proposed measuring method is given in connection with FIGS. 13 to 29.
  • the present invention has the advantage that the ge ⁇ entire amount can be reduced to the required measurements over conventional methods to less than 33% of the original amount. Energy consumption is effectively reduced.
  • Channel allocation can also be effectively reduced to provide more space for real-time transmissions, such as voice over IP (Internet telephony, VoIP) or industrial time-critical transmissions.
  • the time recording devices detect the time periods in each case between the reception of the emission signal and the confirmation signal taking place at all other base stations.
  • a calculation of the location of the mobile station can take place.
  • a detection of the time duration between transmission of the emission signal and reception of the confirmation signal by means of one of the mth
  • the mobile station transmits the acknowledgment signal after an internal processing time.
  • the computer device determines a time period recorded for each base station by equation (1):
  • the computer devices arrange a plurality of equations (1) in a matrix form (2). That is, for n available Basisstatio ⁇ NEN, with the m-th base station communicating directly with the mobile station, a matrix in the form of equation (2) can be arranged:
  • the computer device can calculate the distances between base stations and mobile station by means of an equation (3), where A is a matrix of complete order.
  • the distance between the mobile station and the base station can be calculated using equation (3), assuming that the time detectors have unlimited resolution:
  • the computer device calculates the distances between base stations and mobile station by means of equation (4).
  • Equation (4) indicates the relationship between the distances between the base stations and the mobile station.
  • ⁇ xi, X2, • • .x m, • • •, x n ⁇ & ⁇ i 'Y2> • • • i Ym> Yn) are the entspre ⁇ sponding ordinates and abscissas of the n base stations in an orthogonal frame of reference is.
  • ( XMS ' ⁇ Ms) are the coordinates of the mobile station to be determined:
  • the computer device calculates the coordinates of the mobile station by means of the distances, trilaterations and equation (5). That is, are once the distances to the mobile station be ⁇ true Trilaterationen are or in general, depending on the number of base stations, multilateration rations for determining the coordinates of the mobile station used with the above equations (1) to (4) can be represented in a matrix form according to equation (5):
  • the time recording units are respectively integrated in the base stations.
  • Figure 1 shows a first conventional embodiment of a location determination method
  • FIG. 2 shows a second conventional exemplary embodiment of a location determination method
  • FIG. 3 shows a third conventional exemplary embodiment of a location determination method
  • FIG. 4 is an illustration of the conventional RTT location method
  • Figures 5 to 9 show a conventional embodiment of a location determination
  • FIGS. 10 to 12 show a first exemplary embodiment of a location determination method according to the invention
  • FIGS. 13 to 29 show a more detailed sequence of the first embodiment of a location determination method according to the invention.
  • Figure 30 shows schematically a base station
  • FIG. 31 schematically shows the method for determining the location of a mobile station.
  • Figure 1 shows a first conventional embodiment of a location determination method.
  • the illustrated Arrival ⁇ time (Time of Arrival - TOA) process is performed as follows: A transmitter sends a signal to a receiver perfectly synchronized station. The propagation time is proportional to the distance and the speed of light. This process must be done by three or more sending stations must be repeated and the exact time of each broadcast must also be forwarded to the receiving station.
  • Reference numeral 1 denotes a transmitter
  • reference numeral 2 denotes a receiver.
  • Figure 2 shows a second conventional embodiment of a location determination method.
  • a method is determined by the time difference of arrival (Time Difference of Arrival - TDoA).
  • This method is an extension of the arrival time (ToA) method described in connection with FIG.
  • a transmitting station and a plurality of receiving stations are used. All statio ⁇ nen are perfectly synchronized, so that the propagation time can be measured using the same procedure as in the ToA.
  • the light emitted by the transmitting station Ra ⁇ diosignal is used to measure all distances.
  • Figure 3 shows a third conventional embodiment of an RToF location method.
  • Reference numeral 1 denotes a transmitter
  • reference numeral 2 denotes a receiver.
  • RTT Round Trip Time of Flight
  • a signal is transmitted by a radio station A to a radio station B.
  • station B receives the message, ant ⁇ wortet them back to the station A.
  • Station A measures this time difference, which is again correlated to the distance and the speed of light, in addition to an internal processing delay in station B. Since no synchronization is required, the complexity of the system is effectively reduced, but disadvantageously the same procedure must be performed by at least three radio stations for finding the position of a radio station B are repeated.
  • Another advantage of the RToF method is that no explicit measurement or collaboration is required from and with station B.
  • FIG. 3 shows a representation of the principle of the RToF method.
  • Figure 4 shows a conventional embodiment of an RTT location method.
  • a method for the in-space positioning of radio devices based on measurements of a round trip time (RTT) between the base station (BS) and the mobile station (MS) is provided.
  • the Round Trip Time (RTT) is the time required to send a packet and receive its acknowledgment.
  • these measurements represent the jeweili ⁇ gen distances between the base stations (BS) and the mobile station (MS).
  • MS With the given coordinates of the base stations (BS) are (MS) for determining the location of the mobile station connected or separate machine learning algorithms, probabilistic models, and trilateration.
  • Figure 4 illustrates the principle of RTT location determination. Each RTT measurement determines a distance.
  • FIGS. 5 to 9 show a detailed illustration of a conventional RToA location determination method.
  • sen ⁇ det the station AP] _ a signal to the mobile station MS.
  • the mobile station MS answers back.
  • the station AP] _ measures the
  • FIG. 6 shows the measurement by the station AP2 of the distance between station AP2 and the mobile station MS.
  • Figure 7 shows that the station AP3 also measures the corresponding distance.
  • Figure 8 shows how the station AP4 measures the distance.
  • FIG. 9 shows how finally the station AP5 carries out its own measurement.
  • Figures 5-9 show ten transmissions required for the RToF algorithm.
  • Figures 10 to 12 show a first embodiment of a location determination method according to the invention. Such a method is referred to herein as a round trip time difference of arrival (RTDOA) method.
  • RTDA round trip time difference of arrival
  • Figure 10 shows that a base station BS sends a packet PACK to the mobile station MS.
  • the packet PACK corresponds to an emission signal AS.
  • the remaining base stations BS each start local internal time detectors upon detecting that a packet PACK has been sent out.
  • the mobile station MS responds to the base station BS with an acknowledgment signal ACK after receiving the packet. This is shown in FIG. 11.
  • the acknowledgment signal ACK is also detected by the other base stations BS in the area, the local time detectors being stopped upon receipt of the acknowledgment signal ACK.
  • Figure 10 shows that a base station BS transmits to the mobile station MS, the other base stations receiving BS.
  • Figure 11 shows that the mobile station MS responds with egg ⁇ nem acknowledgment signal ACK, the receiving all the base stations BS.
  • the Basissta ⁇ tions BS which are currently not included in the point-to-point transmission, listen to the channel and measure the time between the first packet AS and the corresponding acknowledgment signal ACK, which as from the mobile station MS Answer was sent out. Since these times can not be easily converted into true distances, since the ge ⁇ ometric positions of the stations are complicated, a mathematical solution is proposed.
  • the elapsed time, which was a base station BS bemes ⁇ sen is indirectly related to the distance to the mobile station MS.
  • a timing diagram of the proposed method is shown in conjunction with FIG.
  • the base station BS m represents the base station which communicates directly with the mobile station MS.
  • the dashed Li ⁇ never is the package that is sent from the base station BS m to the mobi ⁇ len station MS.
  • the solid line represents the radio packet sent from the mobile station MS to the base station BS m .
  • the further base stations BS listen to the radio channel.
  • the base station BS-j_ is physika ⁇ lisch located closer to the base station BS m, wherein the base station BSj is spaced further.
  • Figure 12 represents the elapsed time at the base stations BS.
  • the Basissta ⁇ tion BS sends the packet m Aussendesignal respectively to the mobile station MS.
  • the packet triggers the time detectors of the base stations BS-j_ and BSj. These two Base stations are triggered at different absolute times. It is a processing time by the mobile statuses ⁇ on MS before responses to the base station BS with an acknowledgment signal ACK m required. This processing delay is several orders of magnitude greater than the propagation times of the radio signals. If the mobile station MS ant ⁇ wortet, packages arrive via different paths to the base stations BS-j_ and BS; The solid line between the mobile station, the base station BS-j_ and BSj have gradients different from the broken line.
  • the elapsed time that is gemes ⁇ sen by a base station BS is determined by the equation (1):
  • the inventive method reduces the total size of measurements required to less than 33% of the original size.
  • battery life is six times longer than realizing a conventional RToF method.
  • the channel allocation is also reduced tenfold, providing more space for real-time transmissions, such as This example, Voice over IP or industrial zeitkri ⁇ tables are communications.
  • FIGS. 13 to 22 show detailed illustrations of the location determination method according to the invention, which is referred to as RTDoA
  • FIG. 13 shows how a base station AP1 sends a data packet PACK or emission signal AS to the mobile station MS.
  • a counter at the base station AP] _ is activated to begin the counting process. The counter is stopped when the entspre ⁇ -reaching response was received. Due to the broadcast own ⁇ properties of the radio medium and the local arrangement of the modes in this embodiment, the base station AP3 is the first that receives the transmitted packet. This is shown in FIG. 13. At this time, the base station AP3 starts its internal counter. The transmission of the emission signal AS is shown in FIGS. 13 to 17 with PACK.
  • the same data packet PACK which has been transmitted by the base station AP] _ arrives at the mobile station MS. This is shown in FIG. 14. Thereafter, the mobile station MS prepares a response, namely the transmission of the acknowledgment signal ACK in response to the packet PACK or transmission signal AS.
  • FIG. 15 shows how the data packet PACK or emission signal AS transmitted by the base station AP] _ arrives at the base station AP2.
  • the local counting device or time recording device is started.
  • Figure 16 shows how the same data packet arrives at the PACK Ba ⁇ sisstation AP5.
  • the local counter of the base station AP5 starts counting.
  • Figure 17 illustrates how the base station AP4 as the last base station receives the data packet PACK, since the base station AP4 is farthest from the base station AP] _.
  • the corresponding local counter starts the counting process.
  • Processing time has expired in the mobile station MS and an acknowledgment signal ACK or an ACK packet to the address of the base station AP] _ sent out.
  • Figure 18 illustrates how the acknowledgment signal ACK sent by the mobile station MS first arrives at the base station AP4 as it is closest to the mobile station MS locally.
  • the counting device started with FIG. 17 is now stopped.
  • Figure 19 illustrates how the acknowledgment signal packet ACK arrives at the base station AP2. Now the counter is stopped there.
  • Figure 20 illustrates how the acknowledgment signal ACK arrives at the base station AP] _, wherein the local local Zeiterfas ⁇ sungs cream is stopped.
  • Figure 21 illustrates that the acknowledgment signal ACK arrives at the base station AP5.
  • the local local time recording ⁇ device is stopped.
  • Figure 22 shows the arrival of the acknowledgment signal ACK at the base station AP3, in this case from the mobile station
  • the time detecting means of the base station AP3 is stopped.
  • Figures 23 to 29 are timing diagrams for a better understanding of the mathematical equations (1) to (6) used.
  • FIG. 23 shows that the base station BS m starts the transmission to the mobile station MS. Since the base station BS L has a smaller distance from the base station BS than the mobile station MS m, the packet is PACK relationship ⁇ as the AS Aussendesignal first at the base station BS-j_ arrive.
  • Figure 24 illustrates how the packet PACK has arrived at the mobile station MS.
  • Figure 25 illustrates how the packet PACK arrives at the base station BSj, representing a base station positioned further than the mobile station MS away from the base station BS m .
  • the base station BSj is closer to the mobile station MS than any other base station BS.
  • FIG. 27 it is shown how the acknowledgment signal ACK arrives at the base station BS m as the next step in the time representation.
  • the distance between the mobile station MS and the base station BS m is smaller than the distance between the mobile station MS and the base station BS-j_.
  • Figure 28 illustrates how the acknowledgment signal ACK finally arrives at the base station BS-j_. Attention is drawn to the different gradients of the solid line caused by the spatial geometry of the participating stations.
  • Figure 29 illustrates in vertical directions the time differences measured by the local internal time detectors. This information is used for the inventive mathematical approach according to the claims.
  • FIG. 30 schematically shows a base station BS m which can be used in the described method.
  • the base station BS m has the aforementioned time recording device 110 as well as the computer device 120.
  • the inventive method for position determination ⁇ a mobile station is shown schematically.
  • a first step 210 two signals AS, ACK are exchanged between an mth base station BS m and the mobile station MS.
  • the time intervals between the reception of the two signals AS, ACK are respectively detected at all other base stations by means of the time recording devices 110.
  • the location of the mobile station MS is calculated by the computer 120 by means of the detected time periods.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur Ortsbestimmung einer mobilen Station (MS) mittels einer Vielzahl von Basisstationen (BS). Es soll die erforderliche Anzahl von Messungen, der Energieverbrauch, eine durch einen erforderlichen Bedarf an Bandbreite bewirkte Kanalbelegung und eine Anzahl von Kollisionen von Datenpaketen gegenüber dem Stand der Technik wirksam verkleinert werden. Die Erfindung zeichnet sich dadurch aus, dass zwei Signale (AS, ACK) zwischen einer m-ten Basisstation (BSm) und der mobilen Station (MS) ausgetauscht werden, die Zeitdauern jeweils zwischen dem an allen weiteren Basisstationen (BS) erfolgenden Empfang der beiden Signale (AS, ACK) mittels Zeiterfassungseinrichtungen erfasst werden und mittels einer Rechnereinrichtung und mittels der erfassten Zeitdauern der Ort der mobilen Station (MS) berechnet wird. Das Verfahren und die Vorrichtung eignen sich insbesondere für die Ortsbestimmung in geschlossenen Räumen.

Description

Beschreibung
Verfahren und Vorrichtung zur Ortsbestimmung
Die vorliegende Erfindung betrifft ein Verfahren, eine Vor¬ richtung und eine Verwendung zur Ortsbestimmung einer mobilen Station mittels einer Vielzahl von Basisstationen.
Es werden zahlreiche herkömmliche Verfahren zur drahtlosen Ortsbestimmung bereitgestellt. Die meisten der herkömmlichen Systeme verwenden zur Ortsbestimmung die empfangene Signal¬ stärke (Received Signal Strength - RSS) , wobei die Energie des empfangenen Signals mit dem durch das Signal zurückgeleg¬ ten Weg korreliert wird. Derartige Systeme sind zwar leicht zu verwirklichen, aber diese weisen eine geringe Genauigkeit auf .
Des Weiteren existieren Systeme, die die Durchlaufzeit (Time- of-Flight - ToF) eines Funksignales verwenden. Es existieren beispielsweise drei herkömmliche Verfahren zur Ortsbestimmung mittels der Durchlaufzeit (ToF) .
1. Gemäß einem Ankunftszeit- (Time of Arrival - ToA) Verfahren sendet eine Sendestation ein Signal zu einer vollständig syn- chronisierten Empfangsstation. Die Ausbreitungszeit ist zu der Entfernung und der Lichtgeschwindigkeit proportional. Nachteiligerweise muss der Ablauf durch drei oder mehr sen¬ denden Stationen wiederholt werden, wobei die genaue Zeit je¬ der Übertragung ebenso zu der empfangenen Station zugeleitet werden muss. Figur 1 zeigt eine Darstellung zum Prinzip Ankunftszeit (ToA) .
2. Das Verfahren des Zeitunterschiedes der Ankunft (Time Dif- ference of Arrival - TDoA) . Dieses Verfahren ist eine Erwei- terung des vorstehend beschriebenen Ankunftszeit- (ToA) -
Verfahrens. Gemäß diesem Verfahren werden eine Sendestation und mehrere Empfangsstationen verwendet. Alle Stationen sind derart vollständig synchronisiert, dass die Ausbreitungszeit unter Verwendung des gleichen Ablaufs wie beim ToA-Verfahren gemessen werden kann. Das durch die Sendestation ausgesendete Radiosignal ist das gleiche, das zur Messung aller Entfernun¬ gen verwendet wird. Figur 2 zeigt eine Darstellung zum Prin- zip des Verfahrens der Zeitdifferenz der Ankunft (TDoA) .
3. Round-Trip-Time of Flight (RToF) . Gemäß diesem Verfahren wird ein Signal durch eine Funkstation A zu einer Funkstation B gesendet. Nachdem die Station B die Nachricht empfängt, antwortet diese der Station A zurück. Station A misst diese Zeitdifferenz, die erneut der Entfernung und der Lichtgeschwindigkeit korreliert wird, zusätzlich zu einer internen Verarbeitungsverzögerung in der Station B. Da keine Synchronisation erforderlich ist, ist die Komplexität des Systems wirksam verringert, aber nachteiligerweise muss das gleiche Verfahren durch mindestens drei Funkstationen zum Finden der Position einer Funkstation B wiederholt werden. Ein weiterer Vorteil des RToF-Verfahrens ist dass keine explizite Messung oder Zusammenarbeit von und mit der Station B erforderlich ist. Figur 3 zeigt eine Darstellung des Prinzips des RToF- Verfahrens .
Des Weiteren ist ein Verfahren zur In-Raum-Positionsbestim- mung von Funkvorrichtungen beruhend auf Messungen einer Round-Trip-Time (RTT) zwischen der Basisstation (BS) und der mobilen Station (MS) bereitgestellt. Die Round-Trip-Time (RTT) ist die Zeit, die zum Senden eines Paketes und Empfan¬ gen dessen Bestätigung erforderlich ist. Wie es in Figur 4 dargestellt ist, stellen diese Messungen die jeweiligen Ent- fernungen zwischen den Basisstationen (BS) und der mobilen
Station (MS) dar. Mit den gegebenen Koordinaten der Basisstationen (BS) werden zur Ortsbestimmung der mobilen Station (MS) verbundene oder getrennte Maschinenlernalgorithmen, Wahrscheinlichkeitsmodelle und Trilateration verwendet. Figur 4 stellt das Prinzip der RTT-Ortsbestimmung dar. Jede RTT- Messung bestimmt einen Abstand. Gemäß einem herkömmlichen RToF-Ortsbestimmungssystem müssen alle Basisstationen mit der mobilen Station zur Bestimmung der Position kommunizieren. Dies bewirkt nachteiligerweise einen signifikanten Verbrauch an Bandbreite, zusätzlich zu Datenpaketkollisionen, die in dem Medium, das bspw. ein Handynetzwerk, ein RFID-Net zwerk (radio frequency identificati- on) oder allgemein ein Radiosystem sein kann, stattfinden. Des Weiteren sind bei Verwendung von tragbaren Vorrichtungen, wie dies meistens bei der Verwendung von mobilen Stationen der Fall ist, Energieverbrauch und Batterieversorgung zu verbessern .
Es ist Aufgabe der vorliegenden Erfindung den Ort einer mobilen Station mittels einer Vielzahl von Basisstationen derart zu bestimmen, dass die erforderliche Anzahl von Messungen, der Energieverbrauch, eine durch einen erforderlichen Bedarf an Bandbreite bewirkte Kanalbelegung und eine Anzahl von Kol¬ lisionen von Datenpaketen gegenüber dem Stand der Technik wirksam verkleinert werden. Es sollen keine expliziten Mes- sungen durch die mobile Station erforderlich sein.
Die Aufgabe wird durch ein Verfahren gemäß dem Hauptanspruch, eine Vorrichtung gemäß dem Nebenanspruch und eine Verwendung gemäß dem Nebenanspruch gelöst.
Es wird ein neuartiges hybrides Verfahren vorgeschlagen, mit dem die Vorteile von TDoA genutzt und die Nachteile der Ver¬ wendung von RToF vermieden werden können.
Die vorgeschlagene Lösung nutzt den Vorteil der Natur von
Funkkanälen, indem lediglich eine Basisstation direkt mit der mobilen Station kommuniziert, wobei die weiteren Basisstatio¬ nen dieser Unterhaltung zuhören, sobald sie in Reichweite sind. Eine ausführliche Schritt-für-Schritt-Beschreibung des vorgeschlagenen Messverfahrens ist in Verbindung mit Figuren 13 bis 29 gegeben. Die vorliegende Erfindung weist den Vorteil auf, dass die ge¬ samte Menge an erforderlichen Messungen gegenüber den herkömmlichen Verfahren auf weniger als 33% der ursprünglichen Menge reduziert werden kann. Der Energieverbrauch wird wirk- sam verringert. Eine Kanalbelegung kann ebenso wirksam verringert werden, so dass mehr Raum für Echtzeitübertragungen bereitgestellt werden, wie es beispielsweise Voice over IP (Internet-Telefonie, VoIP) oder industrielle zeitkritische Übertragungen sind.
Weitere vorteilhafte Ausgestaltungen werden in Verbindung mit den Unteransprüchen beansprucht .
Gemäß einer vorteilhaften Ausgestaltung erfolgt ein Aussenden eines Aussendesignals an die mobile Station und an alle wei¬ teren Basisstationen mittels der m-ten Basisstation, wobei m= 1, 2... n, erfolgt ein Senden eines Bestätigungssignals an alle Basisstationen nach dem Empfang des Aussendesignals mittels der mobilen Station, erfolgt ein Erfassen der jeweiligen Zeitdauern zwischen Empfang des Aussendsignals und Empfang des Bestätigungssignals mittels den zu allen weiteren Basis¬ stationen jeweils zugeordneten Zeiterfassungseinrichtungen.
Auf diese Weise werden die zwei Signale, und zwar das Aus- sendesignal und das Bestätigungssignal, zwischen der m-ten
Basisstation und der mobilen Station ausgetauscht. Die Zeiterfassungseinrichtungen erfassen die Zeitdauern jeweils zwischen dem an allen weiteren Basisstationen erfolgenden Empfang des Aussendesignals und des Bestätigungssignals. Mittels der Rechnereinrichtung und aller erfassten Zeitdauern kann ein Berechnen des Orts der mobilen Station erfolgen.
Gemäß einer weiteren vorteilhaften Ausgestaltung erfolgt ein Erfassen der Zeitdauer zwischen Aussenden des Aussendesignals und Empfang des Bestätigungssignals mittels einer der m-ten
Basisstation zugeordneten Zeiterfassungseinrichtung. Auf diese Weise kann eine genauere Ortsbestimmung ausgeführt werden. Gemäß einer weiteren vorteilhaften Ausgestaltung sendet die mobile Station das Bestätigungssignal nach einer internen Verarbeitungszeit aus.
Gemäß einer weiteren vorteilhaften Ausgestaltung bestimmt die Rechnereinrichtung eine für jeweils eine Basisstation erfass- te Zeitdauer durch die Gleichung (1) :
d(BSm, MS) + d(MS, BS1) - d(BSm, BS1)
^1) 1BS1 - τprocess + c
mit
φrocess = Verarbeitungszeit bei der mobilen Station (MS)
= interne Verzögerung bei der mobilen Station (MS) zwischen Empfangen des Aussendesignals (AS) und Antworten durch das Bestätigungssignal (ACK) d(a, b) = der Abstand zwischen zwei Stationen a und b. c = Lichtgeschwindigkeit im Medium.
Gemäß einer weiteren vorteilhaften Ausgestaltung ordnen die Rechnereinrichtungen eine Vielzahl von Gleichungen (1) in einer Matrixform (2) . Das heißt, für n verfügbare Basisstatio¬ nen, mit der m-ten Basisstation, die direkt mit der mobilen Station kommuniziert, kann eine Matrix in der Form der Gleichung (2) angeordnet werden:
J
Figure imgf000007_0001
Gemäß einer weiteren vorteilhaften Ausgestaltung kann die Rechnereinrichtung die Abstände zwischen Basisstationen und mobiler Station mittels einer Gleichung (3) berechnen, wobei A eine Matrix vollständiger Ordnung ist. Der Abstand zwischen der mobilen Station und der Basisstation kann mittels der Gleichung (3) berechnet werden, und zwar unter der Annahme, dass die Zeiterfassungseinrichtungen unbegrenzte Auflösung besitzen :
1 0 - 0.5 0
0 1
0 - 0 . 5 .
[3) D(BSi, MS) = A -I1(T + C) = 1 0 (cT + e)
- 0 . 5 ' - . 0 :
1 :
0 0 - 0 . 5 • • • 0 1
Gemäß einer weiteren vorteilhaften Ausgestaltung berechnet die Rechnereinrichtung die Abstände zwischen Basisstationen und mobiler Station mittels Gleichung (4) . Gleichung (4) gibt die Beziehung zwischen den Abständen zwischen den Basisstationen und der mobilen Station an.
{xi, X2, • • .xm, • • • , xn}&{γi' Y2> • • • i Ym> Yn) stellen die entspre¬ chenden Ordinaten und Abszissen der n Basisstationen in einem orthogonalen Bezugsrahmen dar. (XMS' γMs) sind die Koordinaten der zu bestimmenden mobilen Station:
(X1 - xMS)2 + (Yl - YMS)2 d(BS]_, MS)2
(X2 - XMS )2 + (yi - YMS )2 d(BS2, MS)2
(xm " xMsf + (Ym ~ γMsf d(BSm, MS)2 (xn - xMS f + (yn - YMS)2 d(BSn, MS)2 Gemäß einer weiteren vorteilhaften Ausgestaltung berechnet die Rechnereinrichtung die Koordinaten der mobilen Station mittels den Abständen, Trilaterationen und Gleichung (5) . Das heißt, sind einmal die Abstände zu der mobilen Station be¬ stimmt, werden Trilaterationen bzw. im Allgemeinen, abhängig von der Anzahl der Basisstationen, Multilaterationen zur Bestimmung der Koordinaten der mobilen Station verwendet, wobei die vorstehenden Gleichungen (1) bis (4) in einer Matrixform gemäß Gleichung (5) dargestellt werden können:
( 5 ;
(X1 - X2) (yi - y2) Ci(BS2, MS)2 - Ci(BS1 , MS)2 + x2 - x2 + y2 - y2
(X1 - X3) (Y1 - Y3) 2 Ci(BS3, MS)2 - Ci(BS1 , MS)2 + x2 - x2 ^3
XMS
Ix1 - x m ) (Y1 " Ym) YMS d(BSm, MS)2 - Ci(BS1 , MS)2 ' "2 — x V1 2 vi
[X1 ~ xn ) (YI " Yn , d BSn, MS)2 - d(BSi , MS)2 + X2 - X2 + y2 - y2
K L
Gemäß einer weiteren vorteilhaften Ausgestaltung berechnet die Rechnereinrichtung die Koordinaten der mobilen Station mittels eines Verfahrens des kleinsten quadratischen Fehlers und der Gleichung (6) . Da gemäß Gleichung (5) K=(m-1)- 2 ist, und zwei Unbekannte zu bestimmen sind, ist das Ergebnis des Systems von Gleichung (5) überbestimmt. Gleichung (6) verwen- det das Verfahren des kleinsten quadratischen Fehlers zur Bestimmung der Ortskoordinaten der mobilen Station (XMS' YMS) :
Figure imgf000009_0001
Gemäß einer weiteren vorteilhaften Ausgestaltung sind die Zeiterfassungseinheiten jeweils in den Basisstationen integriert . Die vorliegende Erfindung wird anhand von Ausführungsbeispie¬ len in Verbindung mit den Figuren näher beschrieben. Es zeigen :
Figur 1 ein erstes herkömmliches Ausführungsbeispiel eines OrtsbestimmungsVerfahrens;
Figur 2 ein zweites herkömmliches Ausführungsbeispiel ei¬ nes Ortsbestimmungsverfahrens;
Figur 3 ein drittes herkömmliches Ausführungsbeispiel ei¬ nes Ortsbestimmungsverfahrens;
Figur 4 eine Darstellung zum herkömmlichen RTT- Ortsbestimmungsverfahren;
Figuren 5 bis 9 zeigen ein herkömmliches Ausführungsbeispiel einer Ortsbestimmung;
Figuren 10 bis 12 ein erstes erfindungsgemäßes Ausführungs¬ beispiel eines Ortsbestimmungsverfahrens;
Figuren 13 bis 29 zeigen einen genaueren Ablauf des ersten erfindungsgemäßen Ausführungsbeispiels eines Orts- bestimmungsverfahrens;
Figur 30 zeigt schematisch eine Basisstation;
Figur 31 zeigt schematisch das Verfahren zur Ortsbestimmung einer mobilen Station.
Figur 1 zeigt ein erstes herkömmliches Ausführungsbeispiel eines Ortsbestimmungsverfahrens. Das dargestellte Ankunfts¬ zeit- (Time of Arrival - ToA) -Verfahren wird folgendermaßen ausgeführt: Ein Sender sendet ein Signal zu einer perfekt synchronisierten Empfängerstation. Die Ausbreitungszeit ist zu der Entfernung und der Lichtgeschwindigkeit proportional. Dieser Ablauf muss durch drei oder mehr sendende Stationen wiederholt werden und die genaue Zeit jeder Sendung muss ebenso zu der empfangenden Station zugeleitet werden. Bezugszeichen 1 bezeichnet einen Sender, Bezugszeichen 2 bezeichnet einen Empfänger.
Figur 2 zeigt ein zweites herkömmliches Ausführungsbeispiel eines Ortsbestimmungsverfahrens. Ein derartiges Verfahren ist durch die Zeitdifferenz der Ankunft bestimmt (Time Difference of Arrival - TDoA) . Dieses Verfahren ist eine Erweiterung des in Verbindung mit Figur 1 beschriebenen Verfahrens der Ankunftszeit (ToA) . Gemäß diesem Verfahren werden eine Sendestation und mehrere Empfangsstationen verwendet. Alle Statio¬ nen sind perfekt synchronisiert, so dass die Ausbreitungszeit unter Verwendung desselben Ablaufs wie bei der ToA gemessen werden kann. Das durch die sendende Station ausgesendete Ra¬ diosignal wird zur Messung aller Abstände verwendet.
Figur 3 zeigt ein drittes herkömmliches Ausführungsbeispiel eines RToF-Ortsbestimmungsverfahrens . Bezugszeichen 1 kenn- zeichnet einen Sender, Bezugszeichen 2 kennzeichnet einen Empfänger .
Round-Trip-Time of Flight (RToF) . Gemäß diesem Verfahren wird ein Signal durch eine Funkstation A zu einer Funkstation B gesendet. Nachdem die Station B die Nachricht empfängt, ant¬ wortet diese der Station A zurück. Station A misst diese Zeitdifferenz, die erneut der Entfernung und der Lichtgeschwindigkeit korreliert wird, zusätzlich zu einer internen Verarbeitungsverzögerung in der Station B. Da keine Synchro- nisation erforderlich ist, ist die Komplexität des Systems wirksam verringert, aber nachteiligerweise muss das gleiche Verfahren durch mindestens drei Funkstationen zum Finden der Position einer Funkstation B wiederholt werden. Ein weiterer Vorteil des RToF-Verfahrens ist dass keine explizite Messung oder Zusammenarbeit von und mit der Station B erforderlich ist. Figur 3 zeigt eine Darstellung des Prinzips des RToF- Verfahrens . Figur 4 zeigt ein herkömmliches Ausführungsbeispiel eines RTT-Ortsbestimmungsverfahrens .
Des Weiteren ist ein Verfahren zur In-Raum- Positionsbestimmung von Funkvorrichtungen beruhend auf Messungen einer Round-Trip-Time (RTT) zwischen der Basisstation (BS) und der mobilen Station (MS) bereitgestellt. Die Round- Trip-Time (RTT) ist die Zeit, die zum Senden eines Paketes und Empfangen dessen Bestätigung erforderlich ist. Wie es in Figur 4 dargestellt ist, stellen diese Messungen die jeweili¬ gen Entfernungen zwischen den Basisstationen (BS) und der mobilen Station (MS) dar. Mit den gegebenen Koordinaten der Basisstationen (BS) werden zur Ortsbestimmung der mobilen Station (MS) verbundene oder getrennte Maschinenlernalgorithmen, Wahrscheinlichkeitsmodelle und Trilateration verwendet. Figur 4 stellt das Prinzip der RTT-Ortsbestimmung dar. Jede RTT- Messung bestimmt einen Abstand.
Figur 5 bis 9 zeigen eine ausführliche Darstellung eines her- kömmlichen RToA-Ortsbestimmungsverfahrens . Gemäß Figur 5 sen¬ det die Station AP]_ ein Signal zu der mobilen Station MS. Die mobile Station MS antwortet zurück. Die Station AP]_ misst die
Zeit, um die Entfernung zu bestimmen. Figur 6 zeigt das durch die Station AP2 erfolgende Messen der Entfernung zwischen Station AP2 und der mobilen Station MS. Figur 7 zeigt, dass die Station AP3 ebenso den entsprechenden Abstand misst. Figur 8 zeigt wie die Station AP4 den Abstand misst. Figur 9 zeigt wie abschließend die Station AP5 eine eigene Messung ausführt. Figuren 5 bis 9 zeigen zehn Sendungen, die für den RToF-Algorithmus erforderlich sind.
Figuren 10 bis 12 zeigen ein erstes Ausführungsbeispiel eines erfindungsgemäßen Ortsbestimmungsverfahrens. Ein derartiges Verfahren wird hier als ein Round-trip-time-difference-of- arrival- (RTDOA-) Verfahren bezeichnet. Figur 10 zeigt, dass eine Basisstation BS ein Paket PACK zu der mobilen Station MS sendet. Das Paket PACK entspricht einem Aussendesignal AS. Die verbleibenden Basisstationen BS starten jeweils lokale interne Zeiterfassungseinrichtungen beim Erfassen, dass ein Paket PACK ausgesendet wurde. Die mobile Station MS antwortet der Basisstation BS mit einem Bestätigungssignal ACK nach dem Empfangen des Pakets. Dies stellt Figur 11 dar. Das Bestäti- gungssignal ACK wird ebenso durch die anderen Basisstationen BS im Bereich erfasst, wobei die lokalen Zeiterfassungseinrichtungen bei Empfang des Bestätigungssignals ACK gestoppt werden. Figur 10 zeigt, dass eine Basisstation BS zu der mobilen Station MS sendet, wobei die weiteren Basisstationen BS empfangen. Figur 11 zeigt, dass die mobile Station MS mit ei¬ nem Bestätigungssignal ACK antwortet, das alle Basisstationen BS empfangen. Es wird also vorgeschlagen, dass die Basissta¬ tionen BS, die derzeit nicht in die Punkt zu Punkt- Übertragung einbezogen sind, dem Kanal zuhören und die Zeit zwischen dem ersten Paket AS und dem entsprechenden Bestätigungssignal ACK messen, das von der mobilen Station MS als Antwort ausgesendet wurde. Da diese Zeiten nicht auf einfache Weise in echte Abstände umgewandelt werden können, da die ge¬ ometrischen Lagen der Stationen kompliziert sind, wird eine mathematische Lösung vorgeschlagen.
Die verstrichene Zeit, die durch eine Basisstation BS bemes¬ sen wurde, wird indirekt auf die Entfernung zu der mobilen Station MS bezogen. Ein Zeitablaufdiagramm des vorgeschlage- nen Verfahrens wird in Verbindung mit Figur 12 dargestellt. Die Basisstation BSm stellt die Basisstation dar, die direkt mit der mobilen Station MS kommuniziert. Die gestrichelte Li¬ nie ist das Paket, das von der Basisstation BSm zu der mobi¬ len Station MS gesendet wird. Die durchgezogene Linie stellt das Radiopaket dar, das von der mobilen Station MS zu der Basisstation BSm gesendet wurde. Die weiteren Basisstationen BS hören den Radiokanal ab. Die Basisstation BS-j_ ist physika¬ lisch näher an der Basisstation BSm angeordnet, wobei die Basisstation BSj weiter beabstandet ist. Figur 12 stellt die verstrichene Zeit an den Basisstationen BS dar. Die Basissta¬ tion BSm sendet deren Paket beziehungsweise Aussendesignal zu der mobilen Station MS. Das Paket löst die Zeiterfassungseinrichtungen der Basisstationen BS-j_ und BSj aus. Diese beiden Basisstationen werden zu verschiedenen absoluten Zeiten ausgelöst. Es ist eine Verarbeitungszeit durch die mobile Stati¬ on MS vor Antworten an die Basisstation BSm mit einem Bestätigungssignal ACK erforderlich. Diese Verarbeitungsverzöge- rung ist um mehrere Größenordnungen größer als die Ausbreitungszeiten der Radiosignale. Wenn die mobile Station MS ant¬ wortet, gelangen die Pakete über verschiedene Pfade zu den Basisstationen BS-j_ und BS-; Die durchgezogenen Linie zwischen der mobilen Station, der Basisstation BS-j_ und BSj weisen eine zu der gestrichelten Linie unterschiedliche Steigungen auf. Die verstrichene Zeit, die durch eine Basisstation BS gemes¬ sen wird, ist durch die Gleichung (1) bestimmt:
_ d(BSm, MS) + d(MS, BS1) - d(BSm, BS1) (1) TBSi - Tprocess +
mit
τprocess : = Verarbeitungszeit bei der mobilen Station (MS) = interne Verzögerung bei der mobilen Station
(MS) zwischen Empfangen des Aussendesignals (AS) und Antworten durch das Bestätigungssignal (ACK) . d(a, b) : = der Abstand zwischen zwei Stationen a und b. c : = Lichtgeschwindigkeit im Medium.
Diese Zeiten sind in Figur 12 vertikal dargestellt.
Das erfindungsgemäße Verfahren verringert die Gesamtgröße von Messungen, die erforderlich sind, auf weniger als 33% der ursprünglichen Größe. Bei einer Realisierung des vorgeschlagenen Systems, wenn fünf messende Stationen verwendet werden, ist die Batterielebensdauer sechs Mal länger als bei einer Realisierung eines herkömmlichen RToF-Verfahrens . Die Kanal- belegung wird ebenso um das Zehnfache verringert, so dass mehr Raum für Echtzeitübertragungen bereitgestellt wird, wie dies beispielsweise Voice over IP oder industrielle zeitkri¬ tische Kommunikation sind.
Figuren 13 bis 22 zeigen ausführliche Darstellungen zum er- findungsgemäßen Ortsbestimmungsverfahren, das als RTDoA-
Verfahren abgekürzt wird. Figur 13 zeigt wie eine Basisstati¬ on AP]_ ein Datenpaket PACK beziehungsweise Aussendesignal AS zu der mobilen Station MS sendet. Eine Zähleinrichtung bei der Basisstation AP]_ wird zum Beginnen des Zählvorgangs akti- viert. Die Zähleinrichtung wird gestoppt, wenn die entspre¬ chende Antwort empfangen wurde. Aufgrund der Rundfunkeigen¬ schaften des Funkmediums und der örtlichen Anordnung der Moden in diesem Ausführungsbeispiel, ist die Basisstation AP3 die erste, die das gesendete Paket empfängt. Dies zeigt Fig. 13. Zu diesem Zeitpunkt startet die Basisstation AP3 deren interne Zähleinrichtung. Das Aussenden des Aussendesignals AS ist in den Figuren 13 bis 17 mit PACK dargestellt.
Dasselbe Datenpaket PACK, das durch die Basisstation AP]_ aus- gesendet worden ist, kommt an der mobilen Station MS an. Dies zeigt Fig. 14. Daraufhin bereitet die mobile Station MS eine Antwort, und zwar das Aussenden des Bestätigungssignals ACK als Antwort auf das Paket PACK beziehungsweise Aussendesignal AS vor.
Figur 15 stellt dar, wie das durch die Basisstation AP]_ ausgesendete Datenpaket PACK beziehungsweise Aussendesignal AS an der Basisstation AP2 ankommt. An der Basisstation AP2 wird die lokale Zähleinrichtung beziehungsweise Zeiterfassungsein- richtung gestartet.
Figur 16 stellt dar, wie dasselbe Datenpaket PACK an der Ba¬ sisstation AP5 ankommt. Die lokale Zähleinrichtung der Basisstation AP5 beginnt mit dem Zählen.
Figur 17 stellt dar, wie die Basisstation AP4 als letzte Basisstation das Datenpaket PACK empfängt, da die Basisstation AP4 am weitesten von der Basisstation AP]_ entfernt ist. Die entsprechende lokale Zähleinrichtung startet den Zählvorgang.
Zu diesem Zeitpunkt wird ein neuer Ablauf gestartet. Alle Ba- sisstationen AP2 bis AP5 haben dasselbe Paket PACK bezie¬ hungsweise Aussendesignal AS empfangen, das durch die Basis¬ station AP]_ ausgesendet worden ist. Jetzt ist die interne
Verarbeitungszeit in der mobilen Station MS abgelaufen und es wird ein Bestätigungssignal ACK beziehungsweise ein ACK-Paket an die Adresse der Basisstation AP]_ ausgesendet.
Figur 18 stellt dar, wie das Bestätigungssignal ACK, das durch die mobile Station MS ausgesendet worden ist, zuerst an der Basisstation AP4 ankommt, da diese der mobilen Station MS örtlich am nächsten ist. Die mit Figur 17 gestartete Zähleinrichtung wird nun gestoppt.
Figur 19 stellt dar, wie das Bestätigungssignalpaket ACK bei der Basisstation AP2 ankommt. Nun wird der dortige Zähler ge- stoppt.
Figur 20 stellt dar, wie das Bestätigungssignal ACK bei der Basisstation AP]_ ankommt, wobei die dortige lokale Zeiterfas¬ sungseinrichtung gestoppt wird.
Figur 21 stellt dar, dass das Bestätigungssignal ACK bei der Basisstation AP5 anlangt. Die dortige lokale Zeiterfassungs¬ einrichtung wird gestoppt.
Figur 22 zeigt die Ankunft des Bestätigungssignals ACK an der Basisstation AP3, die in diesem Fall von der mobilen Station
MS am weitesten entfernt ist. Die Zeiterfassungseinrichtung der Basisstation AP3 wird gestoppt.
Zu diesem Zeitpunkt haben alle Basisstationen AP ihre Messungen beendet. Diese Messungen entsprechen nicht direkt den Entfernungen, aufgrund der komplizierten Geometrie, die der gemessenen Zeit zugeordnet ist. Um auf der Grundlage dieser Messungen zu der Position der mobilen Station MS zu gelangen, müssen mathematische Verfahren angewendet werden. Derartige Verfahren sind in Verbindung mit den Ansprüchen beansprucht.
Figuren 23 bis 29 sind zeitliche Darstellungen zum besseren Verständnis der verwendeten mathematischen Gleichungen (1) bis (6) .
Figur 23 stellt dar, dass die Basisstation BSm die Übertra- gung zu der mobilen Station MS beginnt. Da die Basisstation BS-L einen kleineren Abstand von der Basisstation BSm als die mobile Station MS aufweist, wird das Paket PACK beziehungs¬ weise das Aussendesignal AS zuerst an der Basisstation BS-j_ ankommen. Figur 24 stellt dar, wie das Packet PACK bei der mobilen Station MS angelangt ist.
Figur 25 stellt dar, wie das Paket PACK bei der Basisstation BSj ankommt, wobei diese eine Basisstation darstellt, die weiter als die mobile Station MS von der Basisstation BSm entfernt positioniert ist. Gemäß Figur 26 wird dargestellt, dass die mobile Station MS nun genug Zeit gehabt hat, ein Bestätigungssignal ACK vorzubereiten und dieses zu senden. In diesem besonderen Ausführungsbeispiel ist die Basisstation BSj näher an der mobilen Station MS als jede andere Basissta- tion BS.
Gemäß Figur 27 wird dargestellt, wie das Bestätigungssignal ACK an der Basisstation BSm als nächsten Schritt in der Zeitdarstellung ankommt. Gemäß diesem Ausführungsbeispiel ist die Entfernung zwischen der mobilen Station MS und der Basisstation BSm kleiner als die Entfernung zwischen der mobilen Station MS und der Basisstation BS-j_. Figur 28 stellt dar, wie das Bestätigungssignal ACK abschließend an der Basisstation BS-j_ ankommt. Es wird auf die unterschiedlichen Gradienten der durchgezogenen Linie hingewiesen, die durch die räumliche Geometrie der teilnehmenden Stationen verursacht ist. Figur 29 stellt in vertikalen Richtungen die Zeitunterschiede dar, die durch die örtlichen internen Zeiterfassungseinrichtungen gemessen worden sind. Diese Informationen werden für den erfindungsgemäßen mathematischen Ansatz gemäß den Ansprü- chen verwendet .
Die Figur 30 zeigt schematisch eine Basisstation BSm, die bei dem beschriebenen Verfahren zum Einsatz kommen kann. Die Basisstation BSm weist hierzu die bereits erwähnte Zeiterfas- sungseinrichtung 110 sowie die Rechnereinrichtung 120 auf.
In der Figur 31 ist das erfindungsgemäße Verfahren zur Orts¬ bestimmung einer mobilen Station schematisch dargestellt. In einem ersten Schritt 210 werden zwei Signale AS, ACK zwischen einer m-ten Basisstation BSm und der mobilen Station MS ausgetauscht. Mittels der Zeiterfassungseinrichtungen 110 werden in einem zweiten Schritt 220 die Zeitdauern zwischen dem Empfang der beiden Signale AS, ACK jeweils an allen weiteren Basisstationen erfasst. Im dritten Schritt 230 wird schließlich mittel der Rechnereinrichtung 120 der Ort der mobilen Station MS mittels der erfassten Zeitdauern errechnet.
Das erfindungsgemäße Verfahren und die erfindungsgemäße Vor¬ richtung eignen sich insbesondere für die Ortsbestimmung au- ßerhalb geschlossener (outdoors) Räume, da in diesem Fall in der Regel gewährleistet ist, dass sich keine Hindernisse zwi¬ schen den Stationen befinden, die die Übertragung zwischen den Stationen stören könnte.

Claims

Patentansprüche
1. Verfahren zur Ortsbestimmung einer mobilen Station (MS) mittels einer Vielzahl (n) von Basisstationen (BSi, ...BSm, ...BSn) , gekennzeichnet durch
Austauschen von zwei Signalen (AS, ACK) zwischen einer m-ten Basisstation (BSm) und der mobilen Station (MS) ; mittels Zeiterfassungseinrichtungen erfolgendes Erfassen der Zeitdauern zwischen dem Empfang der beiden Signale (AS, ACK) jeweils an allen weiteren Basisstationen; mittels einer Rechnereinrichtung erfolgendes Berechnen des Orts der mobilen Station (MS) mittels der erfassten Zeitdauern .
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das erste Signal ein mittels der m-ten Basisstation (BSm) an die mobile Station (MS) und an alle weiteren Basisstationen ausgesendetes Aussendesignal (AS) ist; das zweite Signal ein mittels der mobilen Station (MS) nach dessen Empfang des Aussendesignals (AS) an alle Basisstatio¬ nen gesendetes Bestätigungssignal (ACK) ist; allen weiteren Basisstationen jeweils eine Zeiterfassungseinrichtung zugeordnet ist, die jeweils eine Zeitdauer zwischen Empfang des Aussendesignals (AS) und Empfang des Bestäti¬ gungssignals (ACK) erfasst.
3. Verfahren nach Anspruch 2, gekennzeichnet durch mittels einer der m-ten Basisstation (BSm) zugeordneten Zeiterfassungseinrichtung erfolgendes Erfassen der Zeitdauer (TBsm) zwischen Aussenden des Aussendesignals (AS) und Empfan¬ gen des Bestätigungssignals (ACK) .
4. Verfahren nach einem der vorangehenden Ansprüche 2 oder 3, dadurch gekennzeichnet, dass die mobile Station (MS) das Bestätigungssignal (ACK) nach ei¬ ner internen Verarbeitungszeit (TprOcess) aussendet.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine für jeweils eine Basisstation (BS1) erfasste Zeitdauer durch die Gleichung
d(BSm, MS) + d(MS, BS1) - d(BSm, BS1)
^1) 1BS1 - τprocess + c
mit
Tp1 rocess • = Verarbeitungszeit bei der mobilen Station (MS)
= interne Verzögerung bei der mobilen Station (MS) zwischen Empfangen des Aussendesignals (AS) und Antworten durch das Bestätigungssignal (ACK) d(a, b) = der Abstand zwischen zwei Stationen a und b. c : = Lichtgeschwindigkeit im Medium.
bestimmt ist.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Rechnereinrichtung die Gleichungen (1) in einer Matrixform anordnet
J
Figure imgf000020_0001
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Rechnereinrichtung die Abstände zwischen Basisstationen (BS) und mobiler Station (MS) mittels folgender Gleichung
(3) D(BS1, MS) = + e)
Figure imgf000021_0001
berechnet, wobei A eine Matrix vollständiger Ordnung ist.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Rechnereinrichtung die Abstände zwischen Basisstationen (BS) und mobiler Station (MS) mittels folgender Gleichung
(X1 - xMS )2 + (Yl - YMS )2 d(BS1, MS)2 d(BS2, MS)2
( 4 ; (X2 - XMS )2 + (yi - YMS )2
(xm " xMsf + tm " γMsf d(BSm, MS)2 (xn - xMS f + (yn - YMS)2 d(BSn, MS)2
berechnet, wobei x und y die entsprechenden Abszissen- und Ordinatenwerte der Stationen darstellen.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Rechnereinrichtung die Koordinaten der mobilen Station (MS) mittels den Abständen, Trilateration und folgender Gleichung ( 5 :
>1 - X2J (Y1 " Y2J Ci(BS2, MS)2 - Ci(BS1 , MS)2 + x2 - x2 + y2 - y2
- X3) (yi - y3) Ci(BS3, MS)2 - Ci(BSi , MS)2 + x2 - x2 + y2 - y2
XMS 1
(χi " xm ) (γi " Ym ) _YMS_ 2 d(BSm, MS)2 - Ci(BS1 , MS)2 + x2 - x^ V1 2 vi
_ (χi " xn ) (Y! " Yn )_ Cl(BSn , MS)2 - Cl(BS1 , MS)2 + x2 - x2 + y2 - y2
K L
berechnet .
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Rechnereinrichtung die Koordinaten der mobilen Station (MS) mittels eines Verfahrens des kleinsten quadratischen Fehlers und folgender Gleichung
Figure imgf000022_0001
berechnet .
11. Vorrichtung zur Ortsbestimmung einer mobilen Station (MS) mittels einer Vielzahl (n) von Basisstationen (BSi, ...BSm, ...BSn) , gekennzeichnet durch eine m-te Basisstation (BSm) und die mobile Station (MS) zum Austauschen von zwei Signalen (AS, ACK);
Zeiterfassungseinrichtungen zum Erfassen der Zeitdauern zwischen dem Empfang der beiden Signale (AS, ACK) jeweils an allen weiteren Basisstationen; eine Rechnereinrichtung zum Berechnen des Orts der mobilen Station (MS) mittels der erfassten Zeitdauern.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass das erste Signal ein mittels der m-ten Basisstation (BSm) an die mobile Station (MS) und an alle weiteren Basisstationen ausgesendetes Aussendesignal (AS) ist; das zweite Signal ein mittels der mobilen Station (MS) nach dessen Empfang des Aussendesignals (AS) an alle Basisstatio¬ nen gesendetes Bestätigungssignal (ACK) ist; allen weiteren Basisstationen jeweils eine Zeiterfassungsein- richtung zugeordnet ist, die jeweils eine Zeitdauer zwischen Empfang des Aussendesignals (AS) und Empfang des Bestäti¬ gungssignals (ACK) erfasst.
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass der m-ten Basisstation (BSm) eine Zeiterfassungseinrichtung zur Erfassung der Zeitdauer (TBsm) zwischen Aussenden des Aus¬ sendesignals (AS) und Empfangen des Bestätigungssignals (ACK) zugeordnet ist.
14. Vorrichtung nach Anspruch 11, 12 oder 13, dadurch gekennzeichnet, dass die Zeiterfassungseinrichtungen jeweils in den Basisstationen integriert sind.
15. Vorrichtung nach einem der vorangehenden Ansprüche 12 bis 14, gekennzeichnet durch die mobile Station (MS) zum Aussenden des Bestätigungssignals (ACK) nach einer internen Verarbeitungszeit (TprOcess) •
16. Verwendung einer Vorrichtung nach einem der vorangehenden Ansprüche 11 bis 15, gekennzeichnet durch die Rechnereinrichtung zum Ausführen eines Verfahrens nach einem der Ansprüche 5 bis 10.
PCT/EP2009/055889 2008-07-11 2009-05-15 Verfahren und vorrichtung zur ortsbestimmung WO2010003722A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008032749.2 2008-07-11
DE200810032749 DE102008032749A1 (de) 2008-07-11 2008-07-11 Verfahren und Vorrichtung zur Ortsbestimmung

Publications (1)

Publication Number Publication Date
WO2010003722A1 true WO2010003722A1 (de) 2010-01-14

Family

ID=41056703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/055889 WO2010003722A1 (de) 2008-07-11 2009-05-15 Verfahren und vorrichtung zur ortsbestimmung

Country Status (2)

Country Link
DE (1) DE102008032749A1 (de)
WO (1) WO2010003722A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011157605A1 (de) * 2010-06-16 2011-12-22 Siemens Aktiengesellschaft Verfahren und vorrichtung zur ortsbestimmung
JP2020531823A (ja) * 2017-08-23 2020-11-05 ロシックス・インコーポレイテッド 到達時間差を使用した正確な無線周波数位置特定のためのシステムおよび方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010023340B4 (de) * 2010-06-10 2012-06-06 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Abstandsmessung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2215932A (en) * 1988-03-26 1989-09-27 Gec Traffic Automation Radio position finding system
US20070087760A1 (en) * 2002-09-06 2007-04-19 Hitachi, Ltd. Method, system, and apparatus for detecting a position of a terminal in a network

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646580A (en) * 1969-07-18 1972-02-29 Raytheon Co Surface vehicle fleet command and control system
US6515623B2 (en) * 2001-06-29 2003-02-04 Motorola, Inc. Enhanced location methodology for a location system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2215932A (en) * 1988-03-26 1989-09-27 Gec Traffic Automation Radio position finding system
US20070087760A1 (en) * 2002-09-06 2007-04-19 Hitachi, Ltd. Method, system, and apparatus for detecting a position of a terminal in a network

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011157605A1 (de) * 2010-06-16 2011-12-22 Siemens Aktiengesellschaft Verfahren und vorrichtung zur ortsbestimmung
CN102947723A (zh) * 2010-06-16 2013-02-27 西门子公司 用于定位的方法和装置
JP2020531823A (ja) * 2017-08-23 2020-11-05 ロシックス・インコーポレイテッド 到達時間差を使用した正確な無線周波数位置特定のためのシステムおよび方法
JP7315533B2 (ja) 2017-08-23 2023-07-26 ザイナー, インコーポレイテッド 到達時間差を使用した正確な無線周波数位置特定のためのシステムおよび方法

Also Published As

Publication number Publication date
DE102008032749A1 (de) 2010-05-06

Similar Documents

Publication Publication Date Title
DE102014119709B4 (de) Verfahren zur Bestimmung des Standorts drahtloser Vorrichtungen
DE69927256T2 (de) Verfahren und funksystem zur berechnung der zeitdifferenz zwischen sendern
DE60212580T2 (de) Ortungssystem und Verfahren
DE60126485T2 (de) Verfahren zum berechnen der echten schleifenlaufzeit und des aufenthaltsortes einer teilnehmereinrichtung in wcdma/utran
DE60217939T2 (de) Verfahren und System zur Erfassung der Position eines Mobilfunkendgerätes in einem Zellularen Funksystem
DE602004002310T2 (de) Ortungssystem
DE60309457T2 (de) Ortsbestimmung von mobilstationen, verfahren und systeme
DE102005041453B4 (de) Verfahren und Anordnung zur Ortung eines mobilen Endgerätes in einer Mehrzellen-Funkanordnung
DE69821213T2 (de) Verfahren und Einrichtung zur Standorterfassung einer mobilen Station
EP3525528B1 (de) Positionierungsverfahren und positionierungsvorrichtung
CN108370551A (zh) 基于到达时间差定位方法、用户设备及网络设备
CN112040394B (zh) 一种基于ai深度学习算法的蓝牙定位方法及系统
DE10196811T5 (de) Algorithmus zum Lokalisieren eines fernen Terminals
WO2005098465A2 (de) Verfahren zur synchronisation von takteinrichtungen
DE102019202009A1 (de) Apparatur, Verfahren und Computerprogramm zum Lokalisieren eines Transponders
CN104684014B (zh) 移动通信网络传输测试方法
DE102013220828A1 (de) Verfahren zum Durchführen einer Zeitmessung zur Positionsberechnung eines elektronischen Geräts mit Hilfe einer einzelnen Anfrage, die an mehrere Partnergeräte geschickt wird, und eine dazugehörige Vorrichtung
WO2010003722A1 (de) Verfahren und vorrichtung zur ortsbestimmung
EP1906692B1 (de) Verfahren zur Abstandsermittlung zwischen Netzknoten in einem Nachrichtennetzwerk
EP2454604B1 (de) Verfahren zur kalibrierung eines laufzeitbasierten lokalisationssystems
WO2011157605A1 (de) Verfahren und vorrichtung zur ortsbestimmung
CN108535690A (zh) 一种多点定位场面监视系统的信号配对方法
DE19836778A1 (de) Verfahren zur Positionsbestimmung einer TDMA-Mobilfunk-Mobilstation
EP0581137B1 (de) Verfahren zur Korrektur von durch Zeitabweichungen von Taktgebern hervorgerufenen Messfehlern in einem Sekundär-Radarsystem
DE10053959A1 (de) Positionsbestimmungsverfahren und -vorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09779484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09779484

Country of ref document: EP

Kind code of ref document: A1