WO2010001961A1 - Method of regenerating coolant and method of regenerating slurry - Google Patents

Method of regenerating coolant and method of regenerating slurry Download PDF

Info

Publication number
WO2010001961A1
WO2010001961A1 PCT/JP2009/062126 JP2009062126W WO2010001961A1 WO 2010001961 A1 WO2010001961 A1 WO 2010001961A1 JP 2009062126 W JP2009062126 W JP 2009062126W WO 2010001961 A1 WO2010001961 A1 WO 2010001961A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
slurry
distillation
acid
abrasive grains
Prior art date
Application number
PCT/JP2009/062126
Other languages
French (fr)
Japanese (ja)
Inventor
公彦 梶本
義之 北條
哲啓 奥野
康博 山田
吉隆 勝川
Original Assignee
シャープ株式会社
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 三洋化成工業株式会社 filed Critical シャープ株式会社
Publication of WO2010001961A1 publication Critical patent/WO2010001961A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/007Use, recovery or regeneration of abrasive mediums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D7/00Accessories specially adapted for use with machines or devices of the preceding groups
    • B28D7/02Accessories specially adapted for use with machines or devices of the preceding groups for removing or laying dust, e.g. by spraying liquids; for cooling work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a coolant regeneration method and a slurry regeneration method. Specifically, a coolant regeneration method for regenerating coolant from used slurry discharged when cutting silicon ingots such as single crystal silicon for solar cells, polycrystalline silicon for solar cells, single crystal silicon for semiconductor integrated circuits, and the like.
  • the present invention relates to a slurry regeneration method used.
  • Wire saws are widely used as cutting devices in the manufacturing process of thin plates (hereinafter referred to as silicon wafers) made of silicon single crystal or polycrystal widely used for solar cells and semiconductor integrated circuits (IC chips).
  • silicon wafers thin plates
  • IC chips semiconductor integrated circuits
  • a wire saw configured to cut a large number (for example, 100 or more) at a time may be particularly referred to as a multi-wire saw (hereinafter referred to as MWS).
  • MWS multi-wire saw
  • MWS refers to pressing a workpiece (silicon ingot in the present invention) against a wire spirally wound between a plurality of rollers, and moving the wire while supplying slurry to the contact portion between the workpiece and the wire.
  • the slurry used here is a mixture of an oil-based coolant based on mineral oil or a water-soluble coolant using water and abrasive grains made of silicon carbide, aluminum oxide, zirconium oxide or the like.
  • the discharged slurry that has been discharged is generally discarded as industrial waste (for example, landfill disposal) through combustion treatment (in the case of oil-based coolant) and concentration treatment (in the case of aqueous coolant).
  • industrial waste for example, landfill disposal
  • combustion treatment in the case of oil-based coolant
  • concentration treatment in the case of aqueous coolant.
  • Such processing of industrial waste is a cause of an increase in costs for combustion and concentration and product costs due to energy consumption (in the present invention, the price of silicon wafers, solar cells and ICs produced therefrom), It contributes to environmental problems caused by combustion and landfill.
  • Patent Document 1 a used slurry used for a wire saw is guided to a first centrifuge and contains recovered abrasive grains, fine cutting scraps and crushed abrasive grains. After the fine particle mixture is separated into the fine particle mixed liquid and subsequently passed through the high density electric field, the fine particle solid in the fine particle mixed liquid is increased in particle size, and then led to the second centrifuge to increase the fine particle size.
  • a slurry regeneration method is disclosed in which the recovered abrasive separated by a first centrifuge and the recovered cutting liquid separated by a second centrifuge are mixed and reused after being separated into a solid and a recovered cutting liquid. .
  • Patent Document 2 discloses a slurry regeneration method including a crushing step of crushing the agglomerated particles of abrasive grains in the used slurry.
  • Patent Document 3 the present inventors perform one or more centrifugation and / or distillation steps without using a special apparatus or method such as a high-density electric field or a crushing step. It is disclosed that slurry regeneration is possible by performing.
  • the present inventors have found that when a slurry using a water-soluble coolant is regenerated using a conventional method, the viscosity of the regenerated slurry tends to increase.
  • the regenerated slurry does not gel when the current silicon wafer is manufactured, and there is no problem in the MWS itself using the regenerated slurry according to Patent Document 3.
  • this level of MWS typically has a slurry of about 200 L. This is because the tank is provided, so that at the end of one cutting step, 15% by weight of silicon is not contained in the slurry (note that one cutting time is about 6 to 12 hours). ).
  • This invention is made in view of the said problem, and makes it a subject to provide the coolant reproduction
  • the used slurry discharged at the time of cutting the silicon ingot using the slurry containing abrasive grains and water-soluble coolant is subjected to at least a distillation step, and the regenerated coolant is obtained from the obtained distilled coolant.
  • a coolant regeneration method to obtain There is provided a coolant regeneration method in which the distilled coolant contains 5% by weight or more of water and 80% by weight or more of propylene glycol.
  • a slurry regeneration method for obtaining a regenerated slurry from a used slurry discharged at the time of cutting a silicon ingot using a slurry containing abrasive grains and a water-soluble coolant,
  • a slurry regeneration method including a mixing step of mixing new abrasive grains and / or recovered abrasive grains recovered from the used slurry with the regenerated coolant obtained by using the above coolant regeneration method.
  • the present inventors conducted the following experiment in order to confirm the cause of the increase in viscosity of the regenerated slurry.
  • Recovered abrasive grains and recovered coolant obtained by washing and drying the abrasive-containing liquid disclosed in Example 1 of Patent Document 3 (same as “heavy specific gravity liquid” in Patent Document 3) (see “Patent Document 3”
  • the recovered abrasive and the new coolant were mixed at a weight ratio of 1: 1, and 15% by weight of silicon powder having a particle size of 1 to 5 ⁇ m and 1% by weight of Fe powder were added thereto.
  • new abrasive grains and recovered coolant are mixed at a weight ratio of 1: 1, and 15% by weight of silicon powder having a particle size of 1 to 5 ⁇ m and 1% by weight of Fe powder are added thereto.
  • experimental slurry B This is called experimental slurry B.
  • gelation After about 9 hours had passed (hereinafter referred to as “gelation”). Further, gas was continuously generated from the experimental slurry B.
  • pH of each of the experimental slurry A and the experimental slurry B before and after being left for 9 hours was measured, it was as shown in Table 1.
  • the recovered coolant used here is the one obtained by the distillation method of Patent Document 3, and only the organic solvent (here, using a glycol solvent) and water are detected in the recovered coolant. It was found that only a very small amount of a modified product (oxide) of glycol was present. In order to demonstrate this, water is removed from the recovered coolant, and the new abrasive grains and the recovered coolant (moisture-removed product) are mixed at a weight ratio of 1: 1, and 15 weight of silicon powder having a particle size of 1 to 5 ⁇ m is mixed here.
  • experimental slurry C Fe powder 1% by weight
  • gelation Fe powder 1% by weight
  • the present inventors have intensively studied and found that by mixing an appropriate amount of acid and alkali as a reaction inhibitor, an increase in the pH of the slurry can be suppressed and the viscosity of the slurry can be stabilized.
  • reaction suppression principle is not necessarily clear, it can be estimated as follows from the change in pH before and after being left for 9 hours.
  • the pH of the coolant in the slicing process should be 4 or more and 9 or less, but it is difficult to stabilize the pH at a value of 4 to 9 by adding only acid. That is, it is not practically preferable because the pH may be too low to oxidize silicon. That is, by coexisting an acid and an alkali, the amount of acid added to the coolant can be increased at the same pH, so in an environment where Fe (wire scrap) like slices is continuously supplied, It is effective as long as there is a limitation.
  • the above conditions can be satisfied by using an organic acid such as citric acid (pH 4 at the solid solubility limit with water) to increase the addition amount, It is also possible to obtain an effect.
  • the gelation of the regenerated slurry can be suppressed by using the regenerated coolant obtained by the coolant regenerating method of the present invention. That is, it is possible to obtain a regenerated coolant and a regenerated slurry that are easy to use in a wire saw such as MWS.
  • Coolant regeneration method A coolant regeneration method according to an embodiment of the present invention will be described with reference to the flowchart of FIG.
  • a used slurry discharged at the time of cutting a silicon ingot using a slurry containing abrasive grains and a water-soluble coolant is used as a raw material, and the used slurry is subjected to at least a distillation step.
  • distillation coolant used in the method of the present embodiment can be obtained by subjecting the used slurry to at least a distillation step.
  • the used slurry is discharged when a silicon ingot is cut using a slurry containing abrasive grains and a water-soluble coolant.
  • the cutting of the silicon ingot is, for example, slicing a silicon ingot using a wire saw such as MWS or corner processing of a silicon block using an OD saw.
  • the water-soluble coolant is a water-soluble coolant and contains propylene glycol and water as essential components. In the water-soluble coolant, the total content of propylene glycol and water is 85% by weight or more, and more preferably 95% by weight or more. The remaining breakdown is, for example, bentonite added for the purpose of viscosity adjustment and the like.
  • the abrasive grains are made of silicon carbide or the like.
  • the distillation coolant is obtained by subjecting the used slurry to at least a distillation step, and contains 5% by weight or more of water and 80% by weight or more of propylene glycol.
  • the distillation coolant contains at least 5% by weight water and at least 80% by weight propylene glycol, with the remaining 15% by weight comprising water, propylene glycol, other water soluble solvents (such as polyethylene glycol) 1 or 2 or more among water-soluble glycols).
  • a distillation process is performed on a recovered liquid obtained by performing a solid-liquid separation process on the used slurry will be described, but only a distillation process is performed on the used slurry. Also good.
  • the solid-liquid separation step includes a primary centrifugation step and a subsequent secondary centrifugation step.
  • the solid-liquid separation step may be performed by other methods (filtration, one-stage or three-stage or more centrifugation, or a combination of filtration and centrifugation).
  • the used slurry contains reusable abrasive grains. Therefore, in the primary centrifugation step, the used slurry is separated into the recovered abrasive grains and the primary recovered liquid by performing primary centrifugation (preferably centrifugal force of 100 to 1000 G).
  • the recovered abrasive grains are used as they are or after being subjected to one or more steps of concentration, washing, drying and classification, and then mixed with a pH adjusting coolant (described later) and used for slurry regeneration.
  • a secondary centrifugation step is performed on the primary recovery solution.
  • the primary recovery liquid is subjected to secondary centrifugation (preferably centrifugal force 2000 to 5000 G) to separate the primary recovery liquid into sludge and secondary recovery liquid.
  • the sludge is generally discarded (such as landfill disposal) as it is or after drying treatment or recovery of some materials.
  • centrifuge used for primary centrifugation and secondary centrifugation
  • a known apparatus for example, a decanter type centrifuge or a basket type centrifuge
  • a decanter type centrifuge or a basket type centrifuge may be used alone or in appropriate combination. it can.
  • the distillation step is a step of distilling the recovered slurry (primary recovery solution or secondary recovery solution) from the used slurry or solid-liquid separation step.
  • the used slurry or recovered liquid is separated into a distillation coolant and a residue.
  • the residue is discarded (such as landfill disposal) as it is or after drying or recovery of some materials.
  • a distillation apparatus used for the distillation step a known apparatus can be used as appropriate. For example, an evaporator for distilling a 1 L order secondary recovery liquid may be used, or a distillation column for distilling a 1 t order secondary recovery liquid.
  • distillation may be performed under an atmospheric pressure atmosphere or may be performed under reduced pressure.
  • Neutralizing treatment step when the pH of the distilled coolant is not 4 or more and 9 or less, it is desirable to carry out a neutralizing treatment in view of the burden on the apparatus.
  • This neutralization treatment is a treatment method that is generally performed, and its purpose is to reduce the load on the apparatus including the subsequent steps.
  • the neutralization treatment is not particularly necessary.
  • Pretreatment Step it is preferable to perform a pretreatment step consisting of at least one of a fine particle removal treatment and a reduction treatment on the distilled coolant.
  • a pretreatment step consisting of at least one of a fine particle removal treatment and a reduction treatment on the distilled coolant.
  • the amount of impurities in the distilled coolant can be reduced.
  • an increase in viscosity during standing can be suppressed by reducing the amount of impurities by performing a pretreatment step.
  • the amount of impurities can be evaluated by turbidity.
  • the impurities removed in the pretreatment step include silicon fine particles (for example, fine particles having a particle size of about 0.01 to 5 ⁇ m) and wire-derived iron fine particles (for example, a particle size of about 0.01 to 1 ⁇ m).
  • Fine particles iron ions or iron-based fine particles, water-soluble glycol denatured products (considered oxides generated by the heat generated during the production of the distillation coolant), and organic carbides added to glycol or acid addition + pH adjustment And so on.
  • fine particle removal process and the reduction process will be described in detail.
  • the fine particle removal treatment is a treatment for removing fine particles present in the distillation coolant, and includes, for example, at least one of activated carbon treatment, filtration, and re-distillation.
  • the fine particles include silicon fine particles (eg, fine particles having a particle size of about 0.01 to 5 ⁇ m), iron-derived iron fine particles (eg, fine particles having a particle size of about 0.01 to 1 ⁇ m), iron ions, and the like. Can be considered).
  • the activated carbon treatment is a treatment for adsorbing the particulate impurities in the distilled coolant to the activated carbon, and can be performed, for example, by mixing and stirring the activated carbon in the distilled coolant and then removing the activated carbon by filtration.
  • the activated carbon used for this treatment can be appropriately selected from granular and powdered activated carbon used in the liquid phase.
  • the filtering material used for filtration include filters made of organic materials such as polypropylene and polyester, and inorganic materials such as glass fiber and diatomaceous earth. As filter shapes, flat membrane filters and hollow fiber filters adopting a pleated shape. Etc. can be appropriately selected.
  • the re-distillation is a step of further distilling the distillation coolant, and may be a distillation step in which one or more distillations are repeated using a single distillation apparatus. Although distillation steps arranged in series may be performed, it is preferable to perform precision distillation with 1 to 100 theoretical plates.
  • the reduction treatment refers to a chemical treatment for reducing oxides such as glycol oxide produced during the production of the distillation coolant. By reducing such an oxide, the glycol oxide can be removed.
  • oxides such as glycol oxide produced during the production of the distillation coolant.
  • the reduction treatment for example, sodium borohydride, sodium thiosulfate, lithium aluminum hydrate, sodium boron hydride and the like are added to the pH adjusting coolant so that the weight ratio is 5 ppm or more and 30 ppm or less, and 50 ° C. or more and 60 ° C. This can be done by heating below.
  • This reduction treatment is characterized by a low temperature, low danger, and relatively low cost.
  • Acid addition step and alkali addition step Next, an acid addition step of adding an acid to the distillation coolant and an alkali addition step of adding an alkali are performed at least once to adjust the pH of the distillation coolant to 4 or more and 9 or less. Do. Thereby, a pH adjusting coolant is obtained.
  • the order of the acid addition step and the alkali addition step is not particularly limited, and either one may be performed first, or both may be performed simultaneously.
  • the acid addition step is a step of adding an acid to the distillation coolant.
  • an acid By adding an acid to the distillation coolant, hydroxide ions generated during wire scrap oxidation can be suppressed, and supply of hydroxide ions in the distillation coolant can be prevented during slicing, so that gelation can be suppressed.
  • the acid is preferably added in the form of an aqueous solution.
  • the acid used in the acid addition step may be an inorganic acid such as hydrochloric acid or sulfuric acid, or an organic acid such as acetic acid, lactic acid, citric acid, formic acid, butyric acid, propionic acid, or valeric acid.
  • Weak acids can be preferably used, and citric acid and lactic acid (which are food additives and safe for the human body) are particularly preferred.
  • citric acid and lactic acid which are food additives and safe for the human body are particularly preferred.
  • the advantages of using organic acids are listed below.
  • the amount of NaOH (molecular weight: 40) added after acid addition is about 2.1 wt% in the case of hydrochloric acid, but it may be 0.08 wt% to 0.008 wt% in the case of citric acid.
  • a strong acid means a sulfuric acid or an acid stronger than this
  • a weak acid means an acid weaker than a sulfuric acid.
  • pH of the distillation coolant after the acid addition and before the alkali addition may be 4 or more or less than 4.
  • the alkali addition step is a step of adding alkali to the distillation coolant.
  • alkali used in the alkali addition step sodium hydroxide, potassium hydroxide and the like are preferably used.
  • the alkali is preferably added in the form of an aqueous solution.
  • the acid addition step and the alkali addition step are performed so as to adjust the pH of the distillation coolant to 4 or more and 9 or less.
  • the reason for adjusting the pH is that, first, when the pH of the coolant is less than 4, it is disadvantageous in terms of cost because an acid-resistant treatment is required for the use device such as MWS, and second, the pH of the coolant is less than 4. In this case, it may be difficult to continue using the MWS because iron and acid derived from the wire react with each other during the use of the MWS to generate a large amount of hydrogen gas.
  • the slurry regeneration method of one embodiment of the present invention is a slurry regeneration method for obtaining a regeneration slurry from a used slurry discharged when a silicon ingot is cut using a slurry containing abrasive grains and a water-soluble coolant as a raw material.
  • a mixing step of mixing new abrasive grains and / or recovered abrasive grains recovered from the used slurry with the recycled coolant obtained by using the above-described coolant recycling method is included.
  • only new abrasive grains may be mixed with the regenerated coolant, only recovered abrasive grains may be mixed, or both new abrasive grains and recovered abrasive grains may be mixed. From the viewpoint of efficient use of abrasive grains, it is preferable to mix at least recovered abrasive grains (only recovered abrasive grains or both new abrasive grains and recovered abrasive grains).
  • new coolant may be mixed with the regenerated coolant.
  • the ratio of new abrasive grains in all abrasive grains contained in the regenerated slurry is preferably 20% by weight or less (preferably 15% by weight or less, particularly preferably 10% by weight or less). This is because the use efficiency of the abrasive grains is high. Further, the ratio of the new coolant in all the coolants contained in the regenerated slurry is preferably 50% by weight or less (preferably 45% by weight or less, particularly preferably 40% by weight or less). This is because the use efficiency of the coolant is high in this case.
  • the essential steps as the coolant regeneration method are an acid addition step and an alkali addition step for the distilled coolant, and the other steps are optional steps. Therefore, the steps shown in Examples 1 to 3 are merely examples, but are considered to be one of the most efficient methods for regenerating the coolant.
  • the MWS used in Examples 1 to 3 slices four silicon ingots (125W ⁇ 125D ⁇ 400L) in a single cutting process and produces about 3200 silicon wafers (125W ⁇ 125D ⁇ 0.3L). And an apparatus (E400SD manufactured by TOYO ATEC Co., Ltd.) having a slurry tank having a capacity of about 200 L to 400 L.
  • Example 1 An example of a coolant regeneration method for obtaining a regenerated slurry from a used slurry obtained by cutting a silicon wafer using MWS will be described as Example 1.
  • Example 1 A water-soluble coolant obtained by mixing commercially available purified water and propylene glycol at a weight ratio of 2: 8, and abrasive grains (made of silicon carbide, GC # 800, specific gravity: 3.21) with respect to the MWS is a weight ratio of 1: 1.
  • the silicon ingot was cut using 480 kg (specific gravity: 1.6) of the slurry mixed in the above.
  • the slurry having a silicon chip content of about 12% by weight or more is recovered as a used slurry, and 510 kg (specific gravity: about 1.65) of the used slurry is subjected to a primary centrifuge (IHI rotating machine). Using a centrifugal separator, a centrifugal force of 500 G was applied to separate the recovered abrasive grains and the primary recovered liquid.
  • the recovered abrasive grains obtained from the primary centrifugation step were 290 kg and contained about 30 to 40% by weight of the coolant component.
  • the primary recovery liquid obtained from the primary centrifugation step is about 220 kg, and this is applied to the sludge and 2 by applying a centrifugal force of 3000 G in a secondary centrifuge (using a centrifuge manufactured by IHI rotating machinery). Separated into the next recovered liquid.
  • the sludge was about 69 kg (containing about 20% by weight coolant component).
  • the secondary recovered liquid obtained from the secondary centrifugation step is about 181 kg, and this secondary recovered liquid is heated at 200 ° C. in a reduced pressure state of 0.5 Torr using a vacuum distillation apparatus (manufactured by IHI Rotating Machinery). ) To separate into distilled coolant and residue.
  • the residual amount is about 36 kg (including about 15% by weight of coolant component), and 105 kg of waste is generated together with sludge. Therefore, according to this example, the conventional coolant regeneration method (for example, 50% by volume (waste: 255 kg) to 70% by volume (waste: 357 kg) of the secondary recovered liquid (used slurry) is discarded The amount of waste is reduced by about 59% to 71% in weight ratio (255 kg-105 kg to 357 kg-105 kg) as compared with a method of replacing with a simple slurry).
  • the conventional coolant regeneration method for example, 50% by volume (waste: 255 kg) to 70% by volume (waste: 357 kg) of the secondary recovered liquid (used slurry) is discarded
  • the amount of waste is reduced by about 59% to 71% in weight ratio (255 kg-105 kg to 357 kg-105 kg) as compared with a method of replacing with a simple slurry).
  • the distillation coolant obtained from the distillation process was a mixture of 10 wt% water and 90 wt% propylene glycol, about 145 kg, and the initial pH was 3. This time, a sample was prepared when neutralization was necessary.
  • the frequency of occurrence of pH of the distilled coolant is as shown in Table 2 below, and most is in the range of pH 4 to 9.
  • distilled coolant An appropriate amount of distilled coolant was manufactured by repeating the cutting of the silicon ingot with MWS and the treatment of the used slurry. First, sodium hydroxide (concentration 5 wt%) was added to neutralize (pH 7), and then a fine particle removal process and a reduction process were performed. This time, filtration treatment and activated carbon treatment were selected. Details will be described later in Example 3.
  • a citric acid aqueous solution (concentration 20 wt%) was added to adjust the pH to 3, and then a sodium hydroxide aqueous solution (concentration 10 wt%) was added to prepare a coolant sample having a pH of 6 (numerical values are increments of 1).
  • the pH was measured at 25 ° C. using a glass electrode.
  • a product with a pH of less than 4 was prepared by adding citric acid to pH 5 and then using lactic acid to prepare a pH-adjusted product. .
  • the number of days after slicing until gelation of the same solution was investigated. It was left in an environment of 28 ° C., and the number of days until gelation or solidification was investigated. As shown in Table 4, it was confirmed that there was durability for 4 days or more at pH 4 or more and 9 or less, and that there was no problem in use time particularly in the slicing step.
  • Comparative Example 1 In Comparative Example 1, as in Example 1, the silicon ingot was cut with MWS and the used slurry was repeatedly processed to produce an appropriate amount of distilled coolant. For the distilled coolant having a pH of 3, sodium hydroxide was used as a pH adjuster. The pH was adjusted using only an aqueous solution and no acid.
  • Comparative Example 2 Similar to Example 1, the silicon ingot was cut with MWS and the used slurry was repeatedly processed to produce an appropriate amount of distilled coolant, only acid was used as a pH adjuster, and any alkaline solution was used. First, pH adjustment was performed. However, in Comparative Example 2, a distilled coolant having a pH of 10 before the pH adjustment step was used. In Comparative Example 2, the same acid as in Example 1 was used.
  • TTV Total Thichness Variation
  • Example 1 among the regenerated slurry samples in Example 1, one having a pH of 7 was used, and this was designated as regenerated slurry A.
  • the silicon ingot was cut using a new slurry consisting only of new abrasive grains and water-soluble coolant, and recycled slurries A, B, and C, and the TTVs were compared. The results are shown in Table 7.
  • TTV the yield of the regenerated slurry were comparable to those when using the new slurry.
  • TTV is 30 ⁇ m or less as a non-defective product, defective products are within 2%, the machine is operated normally, and the generation of bubbles and gelation of the used slurry are not determined. Standard.
  • water or glycol was appropriately added to the regenerated slurry to keep the ratio of water and glycol substantially constant.
  • TTV measurement in Example 2 Note that a Mitutoyo micrometer was used for TTV measurement in Example 2.
  • the TTVs listed in Table 3 are average values of about 3000 silicon wafers.
  • Example 3 In the third embodiment, the effects of the fine particle removal process and the reduction process in the present invention will be described.
  • a pH 7 distillation coolant having a turbidity of 5 cm to 100 cm was prepared to confirm the necessity. After the acid was added, the alkali was added and the viscosity was measured using a pH 7 solution. In order to measure the viscosity of the slurry, 15% by weight of silicon powder having a weight ratio of 1: 1 and a particle size of 1 to 5 ⁇ m was added. The results are shown in Table 8. Viscosity 1 shows the initial value, and viscosity 2 shows 2 hours later. Five samples with different distillation times were prepared. The turbidity was measured by a method based on JIS K0101. The viscosity was measured using a Viscotester VT-04K (manufactured by Rion).
  • FIG. 2 is a flowchart showing the third embodiment.
  • Example 2 The same distillation coolant as in Example 1 was subjected to simple filtration (using a membrane filter manufactured by Advantech Co., Ltd. (pore size: 5 ⁇ m)), followed by (1) activated carbon treatment, (2) filtration, (3) redistillation, (4 ) Reduction, respectively.
  • An aqueous citric acid solution (concentration 20 wt%) was added to adjust the pH to 2
  • an aqueous sodium hydroxide solution (concentration 10 wt%) was added to adjust the pH to 6.
  • the materials and conditions used in each process are as follows.
  • Adsorption treatment was performed for 3 hours, and this was filtered to separate the coolant and activated carbon.
  • Filtration A membrane filter (pore size: 1 ⁇ m) manufactured by Advantech Co., Ltd. was used, and processing was performed at a flow rate of about 100 ml per minute by vacuum filtration.
  • Redistillation Distillation was performed at 180 ° C. at a pressure of 50 mmHg using a three-necked stirrable glass container (300 ml).
  • Reduction Sodium thiosulfate was added to 10 ppm with respect to the pH adjusting coolant, and heated at 50 ° C. for 30 minutes.
  • the untreated coolant was coolant A, and the coolant obtained by simple filtration of the treated coolant again (1) to (5) was used as coolants B to F, and the respective impurities were analyzed.
  • the obtained solution is heated to 500 ° C., and the generated vapor (organic impurity analysis, in the following table, a modified product of glycol corresponds) is analyzed by GC mass spectrum (gas chromatograph / mass spectrometer manufactured by Shimadzu Corporation): GCMS-QP2010PLUS).
  • thermobalance BRUKER: TG-DTA
  • silicon, silicon oxide, and iron particle size analysis using Nikkiso Microtrac particle size distribution analyzer: MT3000II
  • ICP-AES ICP emission analyzer manufactured by Shimadzu Corp .: using ICPS-1000IV
  • the measurement limit of the fine particle diameter in Example 3 is 0.02 ⁇ m.
  • the total amount of impurities was 0.1 wt% or less. Table 9 shows the measurement results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

A method of regenerating a coolant is provided with which a regenerated slurry can be inhibited from having an increased viscosity. The method of coolant regeneration comprises subjecting a spent slurry discharged after the cutting of a silicon ingot with a slurry containing abrasive grains and a water-soluble coolant to at least a distillation step to obtain a distilled coolant and obtaining a regenerated coolant therefrom, wherein the distilled coolant comprises at least 5 wt.% water and at least 80 wt.% propylene glycol.

Description

クーラント再生方法およびスラリー再生方法Coolant regeneration method and slurry regeneration method
 本発明はクーラント再生方法およびスラリー再生方法に関する。詳しくは太陽電池用単結晶シリコン、太陽電池用多結晶シリコン、半導体集積回路用単結晶シリコンなどのシリコンインゴットの切断の際に排出される使用済みスラリーからクーラントを再生するクーラント再生方法と、それを用いたスラリー再生方法に関する。 The present invention relates to a coolant regeneration method and a slurry regeneration method. Specifically, a coolant regeneration method for regenerating coolant from used slurry discharged when cutting silicon ingots such as single crystal silicon for solar cells, polycrystalline silicon for solar cells, single crystal silicon for semiconductor integrated circuits, and the like. The present invention relates to a slurry regeneration method used.
 太陽電池や半導体集積回路(ICチップ)用として広く用いられるシリコン単結晶または多結晶からなる薄板(以下、シリコンウェハ)の製造工程において、切断装置としてワイヤソーが広く使用されている。ワイヤソーのうち、一度に多数枚(例えば、100枚以上)の切断を行うように構成されたワイヤソーを、特にマルチワイヤソー(以下、MWSと表記)と呼ぶ場合がある。 Wire saws are widely used as cutting devices in the manufacturing process of thin plates (hereinafter referred to as silicon wafers) made of silicon single crystal or polycrystal widely used for solar cells and semiconductor integrated circuits (IC chips). Of the wire saws, a wire saw configured to cut a large number (for example, 100 or more) at a time may be particularly referred to as a multi-wire saw (hereinafter referred to as MWS).
 すなわちMWSとは、複数のローラ間に螺旋状に巻回されたワイヤにワーク(本発明においてはシリコンインゴット)を押圧し、ワークとワイヤとの接触部にスラリーを供給しながらワイヤを移動させることによってワークを薄板状に切断する装置である。 In other words, MWS refers to pressing a workpiece (silicon ingot in the present invention) against a wire spirally wound between a plurality of rollers, and moving the wire while supplying slurry to the contact portion between the workpiece and the wire. Is a device that cuts a workpiece into a thin plate.
 また、ここで用いるスラリーとは、鉱油をベースとした油性クーラントまたは水を用いた水溶性クーラントに対し、炭化珪素、酸化アルミニウム、酸化ジルコニウムなどからなる砥粒を混合したものである。 Further, the slurry used here is a mixture of an oil-based coolant based on mineral oil or a water-soluble coolant using water and abrasive grains made of silicon carbide, aluminum oxide, zirconium oxide or the like.
 よって、ワイヤソーによる切断においては、切断が進むに従いワークの切屑がスラリー中に増加し、切断性能が低下する。一般に、スラリー中の切屑含有量が一定値に達すると、そのスラリーは使用済みスラリーとして排出される。 Therefore, in cutting with a wire saw, workpiece chips increase in the slurry as cutting proceeds, and cutting performance decreases. Generally, when the chip content in the slurry reaches a certain value, the slurry is discharged as a used slurry.
 排出された使用済みスラリーは、燃焼処理(油性クーラントの場合)や濃縮処理(水性クーラントの場合)を経て、産業廃棄物として廃棄(埋め立て処分など)されるのが一般的である。このような産業廃棄物の処理は、燃焼や濃縮のためのコストやエネルギー消費による製品コスト(本発明においてはシリコンウェハ、そこから生産される太陽電池やICの価格)の増加原因であると共に、燃焼や埋め立てによる環境問題の一因となっている。 The discharged slurry that has been discharged is generally discarded as industrial waste (for example, landfill disposal) through combustion treatment (in the case of oil-based coolant) and concentration treatment (in the case of aqueous coolant). Such processing of industrial waste is a cause of an increase in costs for combustion and concentration and product costs due to energy consumption (in the present invention, the price of silicon wafers, solar cells and ICs produced therefrom), It contributes to environmental problems caused by combustion and landfill.
 そこで従来、使用済みスラリーから砥粒やクーラントを再生する方法、さらにはそれらを用いたスラリー再生方法が提案されてきた。 Therefore, conventionally, a method of regenerating abrasive grains and coolant from used slurry and a method of regenerating slurry using them have been proposed.
 例えば、特開平11-156719号公報(特許文献1)には、ワイヤソーに用いた使用済みスラリーを第1の遠心分離機に導いて、回収砥粒と微細な切削屑及び破砕砥粒を含有する微粒混合液体とに分離し、続いて微粒混合液体を高密度電場内に通すことにより微粒混合液体中の微粒固体の粒径を増大させた後、第2の遠心分離機に導いて増径微粒固体と回収切削液体とに分離し、第1の遠心分離機により分離した回収砥粒と第2の遠心分離機により分離した回収切削液体を混合して再使用するスラリー再生方法が開示されている。 For example, in Japanese Patent Laid-Open No. 11-156719 (Patent Document 1), a used slurry used for a wire saw is guided to a first centrifuge and contains recovered abrasive grains, fine cutting scraps and crushed abrasive grains. After the fine particle mixture is separated into the fine particle mixed liquid and subsequently passed through the high density electric field, the fine particle solid in the fine particle mixed liquid is increased in particle size, and then led to the second centrifuge to increase the fine particle size. A slurry regeneration method is disclosed in which the recovered abrasive separated by a first centrifuge and the recovered cutting liquid separated by a second centrifuge are mixed and reused after being separated into a solid and a recovered cutting liquid. .
 また、特開2000-190223号公報(特許文献2)には、使用済みスラリー中の砥粒の凝集粒子を破砕する破砕工程を備えたスラリー再生方法が開示されている。 Further, Japanese Patent Laid-Open No. 2000-190223 (Patent Document 2) discloses a slurry regeneration method including a crushing step of crushing the agglomerated particles of abrasive grains in the used slurry.
 また、本発明者らは特開2003-340719号公報(特許文献3)において、高密度電場や破砕工程といった特別な装置や方法を用いずとも、1回以上の遠心分離および/または蒸留工程を行うことにより、スラリー再生が可能であることを開示している。 In addition, in the Japanese Patent Application Laid-Open No. 2003-340719 (Patent Document 3), the present inventors perform one or more centrifugation and / or distillation steps without using a special apparatus or method such as a high-density electric field or a crushing step. It is disclosed that slurry regeneration is possible by performing.
特開平11-156719号公報JP 11-156719 A 特開2000-190223号公報JP 2000-190223 A 特開2003-340719号公報Japanese Patent Laid-Open No. 2003-340719
 ところで、本発明者らは、水溶性クーラントを用いたスラリーを従来の方法を用いて再生すると、再生スラリーの粘度が増加する傾向があることを見出した。 By the way, the present inventors have found that when a slurry using a water-soluble coolant is regenerated using a conventional method, the viscosity of the regenerated slurry tends to increase.
 但し、現行のシリコンウェハ製造時において再生スラリーがゲル化に至ることはなく、特許文献3による再生スラリーを用いたMWS自体に問題が起きるわけではない。なぜなら、一例として125W×125D×400Lのシリコンウェハを1度に4本切断し、厚さ180μm~300μm程度のシリコンウェハを製造できるMWSを考えた場合、このレベルのMWSには通常200L程度のスラリータンクが備えられているので、1回の切断工程終了時点において、スラリー内に15重量%のシリコンが含まれることはないからである(なお、1回の切断時間は6~12時間程度である)。 However, the regenerated slurry does not gel when the current silicon wafer is manufactured, and there is no problem in the MWS itself using the regenerated slurry according to Patent Document 3. This is because, as an example, when considering an MWS that can cut a silicon wafer of 125W × 125D × 400L at a time and produce a silicon wafer with a thickness of about 180 μm to 300 μm, this level of MWS typically has a slurry of about 200 L. This is because the tank is provided, so that at the end of one cutting step, 15% by weight of silicon is not contained in the slurry (note that one cutting time is about 6 to 12 hours). ).
 さらに切断工程終了後および/または切断工程中にスラリータンク中のスラリーの少なくとも一部を取り出して再度再生を行うか、または新スラリーと交換することによって、スラリータンク内のスラリーの粘度増加およびシリコン濃度の増加を抑制することも可能である。 Further, after the cutting step is completed and / or during the cutting step, at least a part of the slurry in the slurry tank is taken out and regenerated again, or replaced with a new slurry, thereby increasing the viscosity of the slurry in the slurry tank and the silicon concentration. It is also possible to suppress the increase of.
 しかしながら、再生スラリーの粘度増加自体を抑制できたほうが好ましいことは言うまでもない(例えば、ワイヤ交換などのためにMWSを停止した場合、停止時間によってはスラリータンク中の再生スラリーを全量排出する必要が生じる)。 However, it goes without saying that it is preferable that the increase in viscosity of the regenerated slurry itself can be suppressed (for example, when the MWS is stopped for wire replacement or the like, it is necessary to discharge the entire amount of the regenerated slurry in the slurry tank depending on the stop time. ).
 本発明は上記問題点に鑑みて成されたものであり、再生スラリーの粘度増加を抑制できるクーラント再生方法を提供することを課題とする。 This invention is made in view of the said problem, and makes it a subject to provide the coolant reproduction | regeneration method which can suppress the viscosity increase of reproduction | regeneration slurry.
 かくして、本発明によれば、砥粒と水溶性クーラントを含むスラリーを用いたシリコンインゴットの切断の際に排出される使用済みスラリーを少なくとも蒸留工程に付し、得られた蒸留クーラントから再生クーラントを得るクーラント再生方法であって、
 前記蒸留クーラントが5重量%以上の水と80重量%以上のプロピレングリコールを含有するクーラント再生方法が提供される。
Thus, according to the present invention, the used slurry discharged at the time of cutting the silicon ingot using the slurry containing abrasive grains and water-soluble coolant is subjected to at least a distillation step, and the regenerated coolant is obtained from the obtained distilled coolant. A coolant regeneration method to obtain,
There is provided a coolant regeneration method in which the distilled coolant contains 5% by weight or more of water and 80% by weight or more of propylene glycol.
 また、本発明によれば、砥粒と水溶性クーラントを含むスラリーを用いたシリコンインゴットの切断の際に排出される使用済みスラリーから再生スラリーを得るスラリー再生方法であって、
 上記のクーラント再生方法を用いて得られた再生クーラントに対し、新たな砥粒および/または前記使用済みスラリーから回収した回収砥粒を混合する混合工程を含むスラリー再生方法が提供される。
Moreover, according to the present invention, there is provided a slurry regeneration method for obtaining a regenerated slurry from a used slurry discharged at the time of cutting a silicon ingot using a slurry containing abrasive grains and a water-soluble coolant,
Provided is a slurry regeneration method including a mixing step of mixing new abrasive grains and / or recovered abrasive grains recovered from the used slurry with the regenerated coolant obtained by using the above coolant regeneration method.
 本発明者らは、再生スラリーの粘度増加の原因を確認するために、以下の実験を行った。 The present inventors conducted the following experiment in order to confirm the cause of the increase in viscosity of the regenerated slurry.
 特許文献3の実施例1に開示した砥粒含有液(特許文献3における「重比重液」と同じ)を純水洗浄、乾燥して得られた回収砥粒と回収クーラント(特許文献3における「回収分散媒」と同じ)を準備し、回収砥粒と新クーラントを重量比1:1で混合し、ここに粒径1~5μmのシリコン粉末を15重量%及びFe粉重量1%を添加したもの(これを実験スラリーAとする)と、新砥粒と回収クーラントを重量比1:1で混合し、ここに粒径1~5μmのシリコン粉末を15重量%及びFe粉重量1%を添加したもの(これを実験スラリーBとする)を作製した。これらを室温で放置したところ、実験スラリーBが放置後約9時間経過時にゲル状になっていること(以下「ゲル化」と表記)が確認できた。また、実験スラリーBからは、継続してガスが発生していた。ここで、実験スラリーA及び実験スラリーBの、それぞれの9時間放置前後のpHを測定すると表1のようになった。 Recovered abrasive grains and recovered coolant obtained by washing and drying the abrasive-containing liquid disclosed in Example 1 of Patent Document 3 (same as “heavy specific gravity liquid” in Patent Document 3) (see “Patent Document 3” The same as the “recovered dispersion medium”), the recovered abrasive and the new coolant were mixed at a weight ratio of 1: 1, and 15% by weight of silicon powder having a particle size of 1 to 5 μm and 1% by weight of Fe powder were added thereto. (This is called experimental slurry A), new abrasive grains and recovered coolant are mixed at a weight ratio of 1: 1, and 15% by weight of silicon powder having a particle size of 1 to 5 μm and 1% by weight of Fe powder are added thereto. (This is called experimental slurry B). When these were allowed to stand at room temperature, it was confirmed that the experimental slurry B was gelled after about 9 hours had passed (hereinafter referred to as “gelation”). Further, gas was continuously generated from the experimental slurry B. Here, when the pH of each of the experimental slurry A and the experimental slurry B before and after being left for 9 hours was measured, it was as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、言うまでもないが、回収クーラント単独の放置実験において、ここに粒径1~5μmのシリコン粉末を15重量%添加したもの及びFe粉1重量%を添加した場合も、粘度増加が確認できた。以上の結果から、回収クーラントとFe+Si+水+反応因子の反応でゲル化が起こっているものと考えられる。 Needless to say, in a standing experiment of the recovered coolant alone, an increase in viscosity was also confirmed when 15 wt% of silicon powder having a particle size of 1 to 5 μm was added and when 1 wt% of Fe powder was added. From the above results, it is considered that gelation occurs due to the reaction between the recovered coolant and Fe + Si + water + reaction factor.
 ここで使用した回収クーラントは、特許文献3の蒸留法にて得られたものを使用しており、回収クーラント中には、有機溶媒(ここでは、グリコール系溶媒を使用)と水のみが検出され、ごく微量のグリコールの変性物(酸化物)等が存在するのみであることがわかった。これを実証するために、回収クーラントから、水分を除去し、新砥粒と回収クーラント(水分除去品)を重量比1:1で混合し、ここに粒径1~5μmのシリコン粉末を15重量%添加したもの及びFe粉1重量%(これを実験スラリーCとする)を作製し、それぞれ室温で放置したところ、実験スラリーCが放置後約9時間以上経過してもゲル状にならないこと(以下「ゲル化」と表記)が確認できた。ただし、この場合、消防法の危険物に該当するため、大規模のスライス工場での使用は、不可能になる。 The recovered coolant used here is the one obtained by the distillation method of Patent Document 3, and only the organic solvent (here, using a glycol solvent) and water are detected in the recovered coolant. It was found that only a very small amount of a modified product (oxide) of glycol was present. In order to demonstrate this, water is removed from the recovered coolant, and the new abrasive grains and the recovered coolant (moisture-removed product) are mixed at a weight ratio of 1: 1, and 15 weight of silicon powder having a particle size of 1 to 5 μm is mixed here. 1% by weight and Fe powder 1% by weight (referred to as experimental slurry C) were allowed to stand at room temperature, and the experimental slurry C did not become a gel even after about 9 hours had passed after standing ( (Hereinafter referred to as “gelation”) was confirmed. However, in this case, since it falls under the dangerous goods of the Fire Service Act, it cannot be used in large-scale slice factories.
 また、シリコンブロックを角加工する際に、水を使用し外周刃切断機(ODソー)でカットするケースがあるが、装置の防錆効果を得るために、アルカリ系の防錆剤を入れて、切断を繰り返しシリコン濃度が上昇して時にゲル化が発生することなどが確認されている。
 以上より、粘度上昇(ゲル化)を抑制する物質が蒸留時に回収クーラントから除去されていること、また、Si+Na+水+Feの4物質による反応によってゲル化が発生することが考察できた。
In addition, there are cases where water is used to cut the silicon block with an outer cutter (OD saw), but in order to obtain the rust prevention effect of the device, an alkaline rust inhibitor is added. It has been confirmed that gelation occurs when the silicon concentration is increased by repeated cutting.
From the above, it was considered that the substance that suppresses the increase in viscosity (gelation) was removed from the recovered coolant during distillation, and that gelation occurred due to the reaction with four substances of Si + Na + water + Fe.
 本発明者らは、鋭意検討により、反応抑制剤として酸とアルカリを適当量混合することによって、スラリーのpHの上昇を抑え、スラリーの粘度を安定させることができることを見出した。 The present inventors have intensively studied and found that by mixing an appropriate amount of acid and alkali as a reaction inhibitor, an increase in the pH of the slurry can be suppressed and the viscosity of the slurry can be stabilized.
 反応抑制原理については必ずしも明らかでないが、9時間放置前後のpHの推移から下記のように推測することができる。 Although the reaction suppression principle is not necessarily clear, it can be estimated as follows from the change in pH before and after being left for 9 hours.
1)回収クーラントのみ(添加剤なし)
 前述した実験スラリーBに何も添加しない場合は、時間の経過により、下記の反応が右に進行すると思われる。結果として、OH-イオンの増加によるpHの上昇、水酸化ケイ素の生成によるゲル化、及び水素発生が起こる。
   2Fe+4H2O→2Fe(OH)2+2H2
   Si+8Fe(OH)2→Si(OH)4↓+4Fe23↓+6H2
1) Recovery coolant only (no additive)
When nothing is added to the experimental slurry B described above, the following reaction seems to proceed to the right over time. As a result, pH increases due to an increase in OH ions, gelation due to the formation of silicon hydroxide, and hydrogen generation occur.
2Fe + 4H 2 O → 2Fe (OH) 2 + 2H 2
Si + 8Fe (OH) 2 → Si (OH) 4 ↓ + 4Fe 2 O 3 ↓ + 6H 2
2)回収クーラントに酸(例:CH3COOH)とアルカリ(例:NaOH)を添加
 実験スラリーBに適当な量の酸とアルカリを添加したとき、まず初期状態、すなわちpHが低い領域においては、例えば下記の反応が進行し、pHの上昇が起きると考えられる。
   2Fe+4H2O→2Fe(OH)2+2H2
2) Add acid (example: CH 3 COOH) and alkali (example: NaOH) to the recovered coolant When an appropriate amount of acid and alkali is added to the experimental slurry B, first, in the initial state, that is, in the region where the pH is low, For example, it is considered that the following reaction proceeds to raise the pH.
2Fe + 4H 2 O → 2Fe (OH) 2 + 2H 2
 このとき、水酸化ナトリウム水溶液が含まれることにより下記反応が進行し、鉄の反応による水中のOH-イオンの増加を抑制する効果が得られる。
  Si+8Fe(OH)2→Si(OH)4↓+4Fe23↓+6H2
At this time, the following reaction proceeds due to the inclusion of the aqueous sodium hydroxide solution, and the effect of suppressing the increase of OH - ions in water due to the reaction of iron is obtained.
Si + 8Fe (OH) 2 → Si (OH) 4 ↓ + 4Fe 2 O 3 ↓ + 6H 2
 ところがpHがある程度以上になると、酸により下記反応などが進み、pHの上昇を抑制する。すなわち、酸とアルカリの共存によりゲル化及び水素発生を抑制する効果が得られる。特に、酸として弱酸を用いた場合、pHを9程度に安定させることができ、生産上望ましい。
  NaOH+CH3COOH→CH3COONa+H2
  Fe(OH)3+3CH3COOH→(CH3COO)3Fe+3H2
However, when the pH exceeds a certain level, the following reaction proceeds by the acid, and the increase in pH is suppressed. That is, the coexistence of acid and alkali provides the effect of suppressing gelation and hydrogen generation. In particular, when a weak acid is used as the acid, the pH can be stabilized at about 9, which is desirable in production.
NaOH + CH 3 COOH → CH 3 COONa + H 2 O
Fe (OH) 3 + 3CH 3 COOH → (CH 3 COO) 3 Fe + 3H 2 O
3)回収クーラントにアルカリ(例:NaOH)のみを添加
 アルカリのみを添加した場合、前述したものと同様下記の反応が継続して進行すると考えられる。Feが存在する限りOH-イオンが供給され、pHの上昇が継続して起こる。
  2Fe+4H2O→2Fe(OH)2+2H2
  Si+8Fe(OH)2→Si(OH)4↓+4Fe2O3↓+6H2
3) Adding only alkali (eg, NaOH) to the recovered coolant When only alkali is added, the following reaction is considered to proceed as described above. As long as Fe is present, OH - ions are supplied and the pH rise continues.
2Fe + 4H 2 O → 2Fe (OH) 2 + 2H 2
Si + 8Fe (OH) 2 → Si (OH) 4 ↓ + 4Fe 2 O 3 ↓ + 6H 2
 ここで、pHが大きくなると、下記反応が急激に進行し、Si(ONa)4の生成によるゲル化及び水素発生が起こる。
  Si+4NaOH→Si(ONa)4+2H2
Here, when the pH increases, the following reaction proceeds rapidly, causing gelation and hydrogen generation due to the generation of Si (ONa) 4 .
Si + 4NaOH → Si (ONa) 4 + 2H 2
4)回収クーラントに酸(例: CH3COOH)のみを添加
 酸のみを添加した場合、下記反応により、Feの酸化によるpHの増加を抑制する効果がある。
  2Fe+4H2O→2Fe(OH)2+2H2
  Fe(OH)3+3CH3COOH→(CH3COO)3Fe+3H2
4) Add only acid (eg, CH 3 COOH) to recovered coolant When only acid is added, the following reaction has the effect of suppressing increase in pH due to oxidation of Fe.
2Fe + 4H 2 O → 2Fe (OH) 2 + 2H 2
Fe (OH) 3 + 3CH 3 COOH → (CH 3 COO) 3 Fe + 3H 2 O
 ところが、実施例1等で記載する通り、スライス工程のクーラントのpHは4以上9以下とすべきであるが、酸のみを添加してpHを4~9の数値で安定させることは難しい。すなわち、pHが小さくなりすぎてシリコンを酸化させる可能性があるため実用上好ましくない。すなわち、酸とアルカリを共存させることにより、同一のpHの場合、クーラントに添加する酸の量を多くできるため、スライスのようなFe(ワイヤ屑)を供給しつづけるような環境の場合は、pHの制限がある以上、有効である。また、酸のみの添加の場合で上記条件を満足できるものとしては、クエン酸(水との固溶限界でpH4)などの有機系の酸を使用することにより、添加量を多くし、同様の効果を得ることも可能である。 However, as described in Example 1 and the like, the pH of the coolant in the slicing process should be 4 or more and 9 or less, but it is difficult to stabilize the pH at a value of 4 to 9 by adding only acid. That is, it is not practically preferable because the pH may be too low to oxidize silicon. That is, by coexisting an acid and an alkali, the amount of acid added to the coolant can be increased at the same pH, so in an environment where Fe (wire scrap) like slices is continuously supplied, It is effective as long as there is a limitation. In addition, in the case where only the acid is added, the above conditions can be satisfied by using an organic acid such as citric acid (pH 4 at the solid solubility limit with water) to increase the addition amount, It is also possible to obtain an effect.
 本発明のクーラント再生方法によって得られた再生クーラントを用いることにより、再生スラリーのゲル化を抑制できる。すなわちMWSなどのワイヤソーにおいて使用しやすい再生クーラントおよび再生スラリーを得ることができる。 The gelation of the regenerated slurry can be suppressed by using the regenerated coolant obtained by the coolant regenerating method of the present invention. That is, it is possible to obtain a regenerated coolant and a regenerated slurry that are easy to use in a wire saw such as MWS.
本発明の一実施形態のクーラント再生方法の一例を示すフローチャートである。It is a flowchart which shows an example of the coolant reproduction | regeneration method of one Embodiment of this invention. 本発明の実施例3での処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process in Example 3 of this invention.
 以下,本発明の一実施形態を図面を用いて説明する。図面や以下の記述中で示す内容は,例示であって,本発明の範囲は,図面や以下の記述中で示すものに限定されない。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The contents shown in the drawings and the following description are merely examples, and the scope of the present invention is not limited to those shown in the drawings and the following description.
1.クーラント再生方法
 図1のフローチャートを用いて、本発明の一実施形態のクーラント再生方法について説明する。
1. Coolant regeneration method A coolant regeneration method according to an embodiment of the present invention will be described with reference to the flowchart of FIG.
 本実施形態のクーラント再生方法は、砥粒と水溶性クーラントを含むスラリーを用いたシリコンインゴットの切断の際に排出される使用済みスラリーを原料とし、この使用済みスラリーを少なくとも蒸留工程に付して得られた蒸留クーラントから再生クーラントを得るクーラント再生方法であって、前記蒸留クーラントに対して酸を加える酸添加工程とアルカリを加えるアルカリ添加工程を少なくとも1回ずつ行って前記蒸留クーラントのpHを4以上9以下に調整することを特徴とする。
 以下、各構成要素について説明する。
In the coolant regeneration method of the present embodiment, a used slurry discharged at the time of cutting a silicon ingot using a slurry containing abrasive grains and a water-soluble coolant is used as a raw material, and the used slurry is subjected to at least a distillation step. A coolant regeneration method for obtaining a regenerated coolant from the obtained distilled coolant, wherein an acid addition step for adding an acid to the distillation coolant and an alkali addition step for adding an alkali are performed at least once to adjust the pH of the distillation coolant to 4 It is characterized by adjusting to 9 or less.
Hereinafter, each component will be described.
1-1.蒸留クーラント
 本実施形態の方法で用いられる蒸留クーラントは、使用済みスラリーに対して少なくとも蒸留工程を経ることによって得ることができる。
1-1. Distillation coolant The distillation coolant used in the method of the present embodiment can be obtained by subjecting the used slurry to at least a distillation step.
 使用済みスラリーとは、砥粒と水溶性クーラントを含むスラリーを用いたシリコンインゴットの切断の際に排出されるものである。シリコンインゴットの切断とは、例えば、MWSなどのワイヤソーを用いたシリコンインゴットのスライスや、ODソーを用いたシリコンブロックの角加工である。
 水溶性クーラントとは、水に可溶なクーラントであり、プロピレングリコールおよび水を必須成分として含有するものである。また、この水溶性クーラントにおいては、プロピレングリコールおよび水の合計含有量が85重量%以上であり、さらに95重量%以上であるものが好ましい。残りの内訳としては、例えば、粘度調整などを目的として添加するベントナイト等である。砥粒は、炭化珪素などからなる。
The used slurry is discharged when a silicon ingot is cut using a slurry containing abrasive grains and a water-soluble coolant. The cutting of the silicon ingot is, for example, slicing a silicon ingot using a wire saw such as MWS or corner processing of a silicon block using an OD saw.
The water-soluble coolant is a water-soluble coolant and contains propylene glycol and water as essential components. In the water-soluble coolant, the total content of propylene glycol and water is 85% by weight or more, and more preferably 95% by weight or more. The remaining breakdown is, for example, bentonite added for the purpose of viscosity adjustment and the like. The abrasive grains are made of silicon carbide or the like.
 蒸留クーラントは、上記使用済みスラリーに対して少なくとも蒸留工程を経ることによって得られるものであり、5重量%以上の水と80重量%以上のプロピレングリコールを含有する。換言すれば、蒸留クーラントは少なくとも5重量%の水と少なくとも80重量%のプロピレングリコールを含有し、残りの15重量%の内訳としては、水、プロピレングリコール、他の水溶性溶媒(ポリエチレングリコールなどの水溶性グリコールなど)のうち、1つあるいは2つ以上を挙げることができる。なお、使用済みスラリー由来の不純物を微量に含んでいる場合もある。
 本実施形態では、上記使用済みスラリーに対して固液分離工程を行って得られた回収液に対して蒸留工程を行う場合について説明するが、上記使用済みスラリーに対して蒸留工程のみを行ってもよい。
The distillation coolant is obtained by subjecting the used slurry to at least a distillation step, and contains 5% by weight or more of water and 80% by weight or more of propylene glycol. In other words, the distillation coolant contains at least 5% by weight water and at least 80% by weight propylene glycol, with the remaining 15% by weight comprising water, propylene glycol, other water soluble solvents (such as polyethylene glycol) 1 or 2 or more among water-soluble glycols). In addition, there may be a small amount of impurities derived from the used slurry.
In this embodiment, a case where a distillation process is performed on a recovered liquid obtained by performing a solid-liquid separation process on the used slurry will be described, but only a distillation process is performed on the used slurry. Also good.
 本実施形態では、固液分離工程は、一次遠心分離工程及びその後の二次遠心分離工程で構成される。固液分離工程は、これ以外の方法(濾過や一段又は三段以上の遠心分離、又は濾過と遠心分離を組み合わせた方法)によって行ってもよい。 In the present embodiment, the solid-liquid separation step includes a primary centrifugation step and a subsequent secondary centrifugation step. The solid-liquid separation step may be performed by other methods (filtration, one-stage or three-stage or more centrifugation, or a combination of filtration and centrifugation).
 使用済みスラリーには再使用可能な砥粒が含まれている。そこで、1次遠心分離工程では、使用済みスラリーを1次遠心分離(好ましくは遠心力100~1000G)することによって使用済みスラリーを回収砥粒と1次回収液とに分離する。回収砥粒は、そのままで、又は濃縮、洗浄、乾燥及び分級のうちの1つ以上の工程を経た後に、pH調整クーラント(後述)と混合されてスラリーの再生に利用される。 The used slurry contains reusable abrasive grains. Therefore, in the primary centrifugation step, the used slurry is separated into the recovered abrasive grains and the primary recovered liquid by performing primary centrifugation (preferably centrifugal force of 100 to 1000 G). The recovered abrasive grains are used as they are or after being subjected to one or more steps of concentration, washing, drying and classification, and then mixed with a pH adjusting coolant (described later) and used for slurry regeneration.
 次に、1次回収液に対して二次遠心分離工程を行う。2次遠心分離工程では、1次回収液を2次遠心分離(好ましくは遠心力2000~5000G)することによって1次回収液をスラッジと2次回収液とに分離する。スラッジは、そのままで、又は乾燥処理や一部材料の回収の後、廃棄(埋め立て処分など)されるのが一般的である。 Next, a secondary centrifugation step is performed on the primary recovery solution. In the secondary centrifugation step, the primary recovery liquid is subjected to secondary centrifugation (preferably centrifugal force 2000 to 5000 G) to separate the primary recovery liquid into sludge and secondary recovery liquid. The sludge is generally discarded (such as landfill disposal) as it is or after drying treatment or recovery of some materials.
 なお、1次遠心分離、2次遠心分離に用いる装置(遠心分離機)としては公知の装置(例えばデカンタ型遠心分離機やバスケット型遠心分離機など)を単独で、または適宜組み合わせて用いることができる。 In addition, as an apparatus (centrifuge) used for primary centrifugation and secondary centrifugation, a known apparatus (for example, a decanter type centrifuge or a basket type centrifuge) may be used alone or in appropriate combination. it can.
 次に、蒸留工程について説明する。蒸留工程は、使用済みスラリー又は固液分離工程からの回収液(1次回収液又は2次回収液)を蒸留する工程である。この蒸留工程によって使用済みスラリー又は回収液は、蒸留クーラントと残留分に分離される。残留分は、そのままで、又は乾燥処理や一部材料の回収の後、廃棄(埋め立て処分など)されるのが一般的である。蒸留工程に使用する蒸留装置としては、公知の装置を適宜用いることができる。例えば、1Lオーダーの2次回収液を蒸留するエバポレータであってもよいし、1tオーダーの2次回収液を蒸留する蒸留塔であってもよい。また、大気圧雰囲気下で蒸留を行ってもよいし、減圧下で行ってもよい。 Next, the distillation process will be described. The distillation step is a step of distilling the recovered slurry (primary recovery solution or secondary recovery solution) from the used slurry or solid-liquid separation step. By this distillation step, the used slurry or recovered liquid is separated into a distillation coolant and a residue. In general, the residue is discarded (such as landfill disposal) as it is or after drying or recovery of some materials. As a distillation apparatus used for the distillation step, a known apparatus can be used as appropriate. For example, an evaporator for distilling a 1 L order secondary recovery liquid may be used, or a distillation column for distilling a 1 t order secondary recovery liquid. Moreover, distillation may be performed under an atmospheric pressure atmosphere or may be performed under reduced pressure.
1-2.中和処理工程
 次に、蒸留クーラントのpHが4以上9以下ではない場合は、装置への負担を考えると、中和処理を施すのが望ましい。この中和処理は、一般的に行われる処理方法であり、後工程を含めた装置への負荷を減らすことが目的である。なお、蒸留クーラントのpHが4以上9以下である場合は、中和処理は、特に必要ない。
1-2. Neutralizing treatment step Next, when the pH of the distilled coolant is not 4 or more and 9 or less, it is desirable to carry out a neutralizing treatment in view of the burden on the apparatus. This neutralization treatment is a treatment method that is generally performed, and its purpose is to reduce the load on the apparatus including the subsequent steps. In addition, when the pH of the distillation coolant is 4 or more and 9 or less, the neutralization treatment is not particularly necessary.
1-3.前処理工程
 次に、蒸留クーラントに対して微粒子除去処理と還元処理の少なくとも一方からなる前処理工程を行うことが好ましい。この工程を行うことによって、蒸留クーラント中の不純物量を減少させることができる。後述する実施例で示すように、前処理工程を行って不純物量を減少させることによって放置時の粘度上昇を抑制することができる。不純物量は、濁度によって評価することができる。
 なお、前処理工程において除去される不純物としては、シリコン微粒子(例えば、粒径0.01~5μm程度の微粒子が考えられる)、ワイヤ由来の鉄微粒子(例えば、粒径0.01~1μm程度の微粒子が考えられる)や鉄イオンまたは鉄系の微粒子、水溶性グリコールの変性物(蒸留クーラント作成時の熱により生成した酸化物などが考えられる)やグリコールや酸添加+pH調整に添加した有機物の炭化物などを挙げることができる。
 以下、微粒子除去処理と還元処理について詳細に説明する。
1-3. Pretreatment Step Next, it is preferable to perform a pretreatment step consisting of at least one of a fine particle removal treatment and a reduction treatment on the distilled coolant. By performing this step, the amount of impurities in the distilled coolant can be reduced. As shown in the examples described later, an increase in viscosity during standing can be suppressed by reducing the amount of impurities by performing a pretreatment step. The amount of impurities can be evaluated by turbidity.
The impurities removed in the pretreatment step include silicon fine particles (for example, fine particles having a particle size of about 0.01 to 5 μm) and wire-derived iron fine particles (for example, a particle size of about 0.01 to 1 μm). Fine particles), iron ions or iron-based fine particles, water-soluble glycol denatured products (considered oxides generated by the heat generated during the production of the distillation coolant), and organic carbides added to glycol or acid addition + pH adjustment And so on.
Hereinafter, the fine particle removal process and the reduction process will be described in detail.
(1)微粒子除去処理
 微粒子除去処理は、蒸留クーラント中に存在している微粒子を除去する処理であり、例えば、活性炭処理、濾過、再蒸留のうちの少なくとも1つからなる。微粒子としては、シリコン微粒子(例えば、粒径0.01~5μm程度の微粒子が考えられる)、ワイヤ由来の鉄微粒子(例えば、粒径0.01~1μm程度の微粒子が考えられる)や鉄イオンなどが考えられる)などを挙げることができる。
(1) Fine particle removal treatment The fine particle removal treatment is a treatment for removing fine particles present in the distillation coolant, and includes, for example, at least one of activated carbon treatment, filtration, and re-distillation. Examples of the fine particles include silicon fine particles (eg, fine particles having a particle size of about 0.01 to 5 μm), iron-derived iron fine particles (eg, fine particles having a particle size of about 0.01 to 1 μm), iron ions, and the like. Can be considered).
 活性炭処理は、蒸留クーラント中の不純物微粒子を活性炭に吸着させる処理であり、例えば、蒸留クーラント中に活性炭を混合及び攪拌し、その後、濾過によって活性炭を除去することによって行うことができる。この処理に用いられる活性炭としては、液相で用いられる粒状、粉末状の活性炭から適宜選択できる。
 濾過に用いられる濾過材料としてはポリプロピレン、ポリエステルなどの有機材料やグラスファイバー、ケイソウ土などの無機材料からなるフィルタを挙げることができ、フィルタ形状としては、プリーツ形状を採る平膜フィルタ、中空糸フィルタなどを適宜選択できる。
 また、再蒸留とは、蒸留クーラントをさらに蒸留する工程であって、単一の蒸留装置を用いてさらに1回または複数回の蒸留を繰り返し行う蒸留工程であってもよく、複数の蒸留装置を直列に並べて行う蒸留工程であってもよいが、好ましくは理論段数1~100段の精密蒸留を行うことである。
The activated carbon treatment is a treatment for adsorbing the particulate impurities in the distilled coolant to the activated carbon, and can be performed, for example, by mixing and stirring the activated carbon in the distilled coolant and then removing the activated carbon by filtration. The activated carbon used for this treatment can be appropriately selected from granular and powdered activated carbon used in the liquid phase.
Examples of the filtering material used for filtration include filters made of organic materials such as polypropylene and polyester, and inorganic materials such as glass fiber and diatomaceous earth. As filter shapes, flat membrane filters and hollow fiber filters adopting a pleated shape. Etc. can be appropriately selected.
The re-distillation is a step of further distilling the distillation coolant, and may be a distillation step in which one or more distillations are repeated using a single distillation apparatus. Although distillation steps arranged in series may be performed, it is preferable to perform precision distillation with 1 to 100 theoretical plates.
(2)還元処理
 還元処理とは、蒸留クーラント作成時に生成したグリコール酸化物などの酸化物を還元するための薬品処理をいう。このような酸化物を還元することによってグリコール酸化物を除去することができる。還元処理は、例えば、水素化ホウ素ナトリウム、チオ硫酸ナトリウムやリチウムアルミニウムハイドレート、ナトリウムボロンハイドライドなどをpH調整クーラントに対し、重量比で5ppm以上30ppm以下となるように添加し、50℃以上60℃以下で加熱することによって行うことができる。この還元処理は、温度も低温で、危険性も低く、比較的安価でできることが特徴である。
(2) Reduction treatment The reduction treatment refers to a chemical treatment for reducing oxides such as glycol oxide produced during the production of the distillation coolant. By reducing such an oxide, the glycol oxide can be removed. In the reduction treatment, for example, sodium borohydride, sodium thiosulfate, lithium aluminum hydrate, sodium boron hydride and the like are added to the pH adjusting coolant so that the weight ratio is 5 ppm or more and 30 ppm or less, and 50 ° C. or more and 60 ° C. This can be done by heating below. This reduction treatment is characterized by a low temperature, low danger, and relatively low cost.
1-4.酸添加工程及びアルカリ添加工程
 次に、蒸留クーラントに対して酸を加える酸添加工程とアルカリを加えるアルカリ添加工程を少なくとも1回ずつ行って前記蒸留クーラントのpHを4以上9以下に調整する工程を行う。これによってpH調整クーラントが得られる。酸添加工程とアルカリ添加工程の順序は、特に限定されず、どちらか一方を先に行ってもよく、これら両方を同時に行ってもよい。
1-4. Acid addition step and alkali addition step Next, an acid addition step of adding an acid to the distillation coolant and an alkali addition step of adding an alkali are performed at least once to adjust the pH of the distillation coolant to 4 or more and 9 or less. Do. Thereby, a pH adjusting coolant is obtained. The order of the acid addition step and the alkali addition step is not particularly limited, and either one may be performed first, or both may be performed simultaneously.
 酸添加工程とは蒸留クーラントに対して酸を加える工程である。蒸留クーラントに酸を加えることにより、ワイヤ屑酸化時に発生する水酸化イオンを抑制でき、スライス中に蒸留クーラント中の水酸化イオンの供給を阻止できるために、ゲル化を抑制できる。酸は、水溶液の状態で加えることが好ましい。 The acid addition step is a step of adding an acid to the distillation coolant. By adding an acid to the distillation coolant, hydroxide ions generated during wire scrap oxidation can be suppressed, and supply of hydroxide ions in the distillation coolant can be prevented during slicing, so that gelation can be suppressed. The acid is preferably added in the form of an aqueous solution.
 酸添加工程に使用する酸としては塩酸、硫酸などの無機酸であっても、酢酸、乳酸、クエン酸、蟻酸、酪酸、プロピオン酸、吉草酸などの有機酸であってもよいが、有機系弱酸が好ましく使用でき、クエン酸や乳酸(食品添加物であり、人体にも安全)が特に好ましい。有機酸を使用するメリットは、以下にあげる。 The acid used in the acid addition step may be an inorganic acid such as hydrochloric acid or sulfuric acid, or an organic acid such as acetic acid, lactic acid, citric acid, formic acid, butyric acid, propionic acid, or valeric acid. Weak acids can be preferably used, and citric acid and lactic acid (which are food additives and safe for the human body) are particularly preferred. The advantages of using organic acids are listed below.
 塩酸などの強酸の場合、前述した抑制反応は、液の性質がいかなる状況にもかかわらず、常に抑制反応が発生する。故に、Fe(ワイヤ屑)の発生する量に応じた分を添加する必要がある。上記の反応式に従うと、Fe(分子量:56)の混入量に対し、モル比で3倍の量の塩酸(分子量:37)が必要となる。例えば、1wt%のワイヤ屑(全量が酸化物になると仮定。)が入ってくるとすれば、約2wt%の濃度の塩酸を添加する必要がある。 In the case of strong acids such as hydrochloric acid, the suppression reaction described above always occurs regardless of the nature of the liquid. Therefore, it is necessary to add an amount corresponding to the amount of Fe (wire scrap) generated. According to the above reaction formula, 3 times the molar ratio of hydrochloric acid (molecular weight: 37) with respect to the amount of Fe (molecular weight: 56) mixed is required. For example, if 1 wt% of wire scraps (assuming the total amount becomes oxide), hydrochloric acid having a concentration of about 2 wt% needs to be added.
 クエン酸などの弱酸の場合、酸性領域では、反応しないが、pHで9程度になって初めて酸(H3(C657)・H2O、分子量:192.13)としての効果を示す。(一般的に緩衝作用と呼ぶ。)故に、Feの酸化反応により、液性が強アルカリにならないよう反応がおこるので、実態問題は、添加量としては、1wt%のワイヤ屑(全量が酸化物になると仮定。)が入ってくるとすれば、反応開始のpH8~9程度で安定するので、約0.38wt%~0.038wt%の添加量で済む。また、酸添加後のNaOH(分子量:40)の添加量も、塩酸の場合は、約2.1wt%が必要だが、クエン酸の場合なら、0.08wt%~0.008wt%で済む。
 なお、強酸とは、硫酸又はこれよりも強い酸を意味し、弱酸とは、硫酸よりも弱い酸を意味する。
In the case of a weak acid such as citric acid, it does not react in the acidic region, but the effect as an acid (H 3 (C 6 H 5 O 7 ) · H 2 O, molecular weight: 192.13) is not reached until the pH reaches about 9. Indicates. Therefore, since the reaction occurs so that the liquid property does not become a strong alkali due to the oxidation reaction of Fe, the actual problem is that the added amount is 1 wt% of wire scrap (total amount is oxide) Assuming that it is stable, it will be stable at about pH 8-9 at the start of the reaction, so an addition amount of about 0.38 wt% to 0.038 wt% is sufficient. Also, the amount of NaOH (molecular weight: 40) added after acid addition is about 2.1 wt% in the case of hydrochloric acid, but it may be 0.08 wt% to 0.008 wt% in the case of citric acid.
In addition, a strong acid means a sulfuric acid or an acid stronger than this, and a weak acid means an acid weaker than a sulfuric acid.
 また、酸添加後かつアルカリ添加前の蒸留クーラントのpHは、4以上であっても4未満であってもよい。 Further, the pH of the distillation coolant after the acid addition and before the alkali addition may be 4 or more or less than 4.
 アルカリ添加工程とは、蒸留クーラントに対してアルカリを加える工程である。アルカリ添加工程に使用するアルカリとしては水酸化ナトリウム、水酸化カリウムなどが好ましく用いられる。アルカリは、水溶液の状態で加えることが好ましい。 The alkali addition step is a step of adding alkali to the distillation coolant. As the alkali used in the alkali addition step, sodium hydroxide, potassium hydroxide and the like are preferably used. The alkali is preferably added in the form of an aqueous solution.
 酸添加工程とアルカリ添加工程は、前記蒸留クーラントのpHを4以上9以下に調整するように行う。
 pH調整を行う理由は、第1にクーラントのpHが4未満の場合にはMWSなどの使用装置に耐酸処理が必要となってコスト的に不利であること、第2にクーラントのpHが4未満の場合にはMWS使用中にワイヤ由来の鉄と酸が反応し、水素ガスを多量に発生するためにMWS使用継続が困難になる場合があることが考えられる。
The acid addition step and the alkali addition step are performed so as to adjust the pH of the distillation coolant to 4 or more and 9 or less.
The reason for adjusting the pH is that, first, when the pH of the coolant is less than 4, it is disadvantageous in terms of cost because an acid-resistant treatment is required for the use device such as MWS, and second, the pH of the coolant is less than 4. In this case, it may be difficult to continue using the MWS because iron and acid derived from the wire react with each other during the use of the MWS to generate a large amount of hydrogen gas.
2.スラリー再生方法
 本発明の一実施形態のスラリー再生方法は、砥粒と水溶性クーラントを含むスラリーを用いたシリコンインゴットの切断の際に排出される使用済みスラリーを原料として再生スラリーを得るスラリー再生方法であって、上記のクーラント再生方法を用いて得られた再生クーラントに対し、新たな砥粒および/または前記使用済みスラリーから回収した回収砥粒を混合する混合工程を含む。
2. Slurry regeneration method The slurry regeneration method of one embodiment of the present invention is a slurry regeneration method for obtaining a regeneration slurry from a used slurry discharged when a silicon ingot is cut using a slurry containing abrasive grains and a water-soluble coolant as a raw material. A mixing step of mixing new abrasive grains and / or recovered abrasive grains recovered from the used slurry with the recycled coolant obtained by using the above-described coolant recycling method is included.
 混合工程では、再生クーラントに対して新たな砥粒のみを混合してもよく、回収砥粒のみを混合してもよく、新たな砥粒と回収砥粒の両方を混合してもよい。砥粒の効率利用の観点からは、少なくとも回収砥粒(回収砥粒のみ又は新たな砥粒と回収砥粒の両方)を混合することが好ましい。また、混合工程では、再生クーラントに対して新たなクーラントを混合してもよい。 In the mixing step, only new abrasive grains may be mixed with the regenerated coolant, only recovered abrasive grains may be mixed, or both new abrasive grains and recovered abrasive grains may be mixed. From the viewpoint of efficient use of abrasive grains, it is preferable to mix at least recovered abrasive grains (only recovered abrasive grains or both new abrasive grains and recovered abrasive grains). In the mixing step, new coolant may be mixed with the regenerated coolant.
 再生スラリーに含まれる全砥粒中の新砥粒比率は20重量%以下(好ましくは15重量%以下、特に好ましくは10重量%以下)が好ましい。この場合、砥粒の利用効率が高いからである。また、再生スラリーに含まれる全クーラント中の新クーラント比率は50重量%以下(好ましくは45重量%以下、特に好ましくは40重量%以下)が好ましい。この場合、クーラントの利用効率が高いからである。 The ratio of new abrasive grains in all abrasive grains contained in the regenerated slurry is preferably 20% by weight or less (preferably 15% by weight or less, particularly preferably 10% by weight or less). This is because the use efficiency of the abrasive grains is high. Further, the ratio of the new coolant in all the coolants contained in the regenerated slurry is preferably 50% by weight or less (preferably 45% by weight or less, particularly preferably 40% by weight or less). This is because the use efficiency of the coolant is high in this case.
 以上の実施形態で示した種々の特徴は,互いに組み合わせることができる。1つの実施形態中に複数の特徴が含まれている場合,そのうちの1又は複数個の特徴を適宜抜き出して,単独で又は組み合わせて,本発明に採用することができる。 Various features shown in the above embodiments can be combined with each other. When a plurality of features are included in one embodiment, one or a plurality of features can be appropriately extracted and used in the present invention alone or in combination.
 以下、本発明を実施例を用いてより具体的に説明する。 Hereinafter, the present invention will be described in more detail using examples.
 まず、以下の実施例1~3に用いたMWSについて説明する。
 ここで、クーラント再生方法としての必須工程は、蒸留クーラントに対する酸添加工程とアルカリ添加工程であり、その他の工程は任意工程である。従って、実施例1~3に示す工程は一例にすぎないが、最も効率よくクーラントを再生する方法の一つであると考えられる。
First, the MWS used in Examples 1 to 3 below will be described.
Here, the essential steps as the coolant regeneration method are an acid addition step and an alkali addition step for the distilled coolant, and the other steps are optional steps. Therefore, the steps shown in Examples 1 to 3 are merely examples, but are considered to be one of the most efficient methods for regenerating the coolant.
 実施例1~3に用いたMWSは1回の切断工程で4本のシリコンインゴット(125W×125D×400L)をスライスし、シリコンウェハ(125W×125D×0.3L)を3200枚程度生産する装置であり、約200L~400Lの容量を持つスラリータンクを備える装置(TOYOエイテック社製 E400SD)である。 The MWS used in Examples 1 to 3 slices four silicon ingots (125W × 125D × 400L) in a single cutting process and produces about 3200 silicon wafers (125W × 125D × 0.3L). And an apparatus (E400SD manufactured by TOYO ATEC Co., Ltd.) having a slurry tank having a capacity of about 200 L to 400 L.
 次に、このようなMWSを用いたシリコンウェハ切断により得られた使用済みスラリーから、再生スラリーを得るクーラント再生方法の一例を実施例1として説明する。 Next, an example of a coolant regeneration method for obtaining a regenerated slurry from a used slurry obtained by cutting a silicon wafer using MWS will be described as Example 1.
 <実施例1>
 上記MWSに対し、市販の精製水とプロピレングリコールを重量比2:8で混合した水溶性クーラントと、砥粒(炭化珪素からなる、GC#800、比重:3.21)を重量比1:1で混合したスラリー480kg(比重:1.6)を使用してシリコンインゴットの切断を行った。
<Example 1>
A water-soluble coolant obtained by mixing commercially available purified water and propylene glycol at a weight ratio of 2: 8, and abrasive grains (made of silicon carbide, GC # 800, specific gravity: 3.21) with respect to the MWS is a weight ratio of 1: 1. The silicon ingot was cut using 480 kg (specific gravity: 1.6) of the slurry mixed in the above.
 この切断工程において、シリコン切屑含有率が約12重量%以上となったスラリーを使用済みスラリーとして回収し、510kg(比重:約1.65)の使用済みスラリーを1次遠心分離機(IHI回転機械製遠心分離機使用)にて500Gの遠心力をかけて回収砥粒と1次回収液とに分離した。 In this cutting step, the slurry having a silicon chip content of about 12% by weight or more is recovered as a used slurry, and 510 kg (specific gravity: about 1.65) of the used slurry is subjected to a primary centrifuge (IHI rotating machine). Using a centrifugal separator, a centrifugal force of 500 G was applied to separate the recovered abrasive grains and the primary recovered liquid.
 1次遠心分離工程から得られた回収砥粒は290kgで、約30~40重量%のクーラント成分を含んでいた。 The recovered abrasive grains obtained from the primary centrifugation step were 290 kg and contained about 30 to 40% by weight of the coolant component.
 また、1次遠心分離工程から得られた1次回収液は約220kgであり、これを2次遠心分離機(IHI回転機械製遠心分離機使用)にて3000Gの遠心力をかけてスラッジと2次回収液とに分離した。スラッジは約69kg(約20重量%のクーラント成分を含む)であった。 Further, the primary recovery liquid obtained from the primary centrifugation step is about 220 kg, and this is applied to the sludge and 2 by applying a centrifugal force of 3000 G in a secondary centrifuge (using a centrifuge manufactured by IHI rotating machinery). Separated into the next recovered liquid. The sludge was about 69 kg (containing about 20% by weight coolant component).
 2次遠心分離工程から得られた2次回収液は約181kgであり、この2次回収液を真空蒸留装置(IHI回転機械製)を用いた蒸留工程(0.5Torrの減圧状態で200℃加熱)により蒸留クーラントと残留分に分離した。 The secondary recovered liquid obtained from the secondary centrifugation step is about 181 kg, and this secondary recovered liquid is heated at 200 ° C. in a reduced pressure state of 0.5 Torr using a vacuum distillation apparatus (manufactured by IHI Rotating Machinery). ) To separate into distilled coolant and residue.
 残留分は約36kg(約15重量%のクーラント成分を含む)であり、スラッジと合わせて105kgの廃棄物が生じたことになる。よって本実施例によれば、従来のクーラント再生方法(例えば、2次回収液(使用済みスラリ)の50体積%(廃棄物:255kg)~70体積%(廃棄物:357kg)を廃棄し、新たなスラリーと入れ替える方法)に比べて、廃棄物量が重量比で約59%~71%削減されたことになる(255kg-105kg~357kg-105kg)。 The residual amount is about 36 kg (including about 15% by weight of coolant component), and 105 kg of waste is generated together with sludge. Therefore, according to this example, the conventional coolant regeneration method (for example, 50% by volume (waste: 255 kg) to 70% by volume (waste: 357 kg) of the secondary recovered liquid (used slurry) is discarded The amount of waste is reduced by about 59% to 71% in weight ratio (255 kg-105 kg to 357 kg-105 kg) as compared with a method of replacing with a simple slurry).
 また、蒸留工程から得られた蒸留クーラントは10重量%の水と90重量%のプロピレングリコールの混合物、約145kgであり、初期のpHは3であった。今回は、中和処理が必要な場合のサンプルを用意した。蒸留クーラントのpHの発生頻度は、以下の表2のようになり、大半はpH4以上9以下の範囲である。 Further, the distillation coolant obtained from the distillation process was a mixture of 10 wt% water and 90 wt% propylene glycol, about 145 kg, and the initial pH was 3. This time, a sample was prepared when neutralization was necessary. The frequency of occurrence of pH of the distilled coolant is as shown in Table 2 below, and most is in the range of pH 4 to 9.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 このようなMWSによるシリコンインゴットの切断と、使用済みスラリーの処理を繰り返して蒸留クーラントを適当量製造した。まず、水酸化ナトリウム(濃度5wt%)を加えて中和(pH7)を行い、その後に、微粒子除去処理および還元処理を行った。今回は、ろ過処理および活性炭処理を選択した。詳細は実施例3にて後述する。 An appropriate amount of distilled coolant was manufactured by repeating the cutting of the silicon ingot with MWS and the treatment of the used slurry. First, sodium hydroxide (concentration 5 wt%) was added to neutralize (pH 7), and then a fine particle removal process and a reduction process were performed. This time, filtration treatment and activated carbon treatment were selected. Details will be described later in Example 3.
 その後にクエン酸水溶液(濃度20wt%)を添加してpHを3にし、その後、水酸化ナトリウム水溶液(濃度10wt%)を添加してpHが6のクーラントサンプル(数値は1刻み)を作製した。pH測定にはガラス電極を用い、25℃において測定した。ただし、クエン酸で、pH4未満のものを作るのは非常に困難を要したため、pH4未満のものは、pH5まで、クエン酸を添加した後、乳酸を使用し、pH調整品を作成している。 Thereafter, a citric acid aqueous solution (concentration 20 wt%) was added to adjust the pH to 3, and then a sodium hydroxide aqueous solution (concentration 10 wt%) was added to prepare a coolant sample having a pH of 6 (numerical values are increments of 1). The pH was measured at 25 ° C. using a glass electrode. However, since it was very difficult to make a citric acid with a pH of less than 4, a product with a pH of less than 4 was prepared by adding citric acid to pH 5 and then using lactic acid to prepare a pH-adjusted product. .
 次に、それぞれのpH調整クーラントサンプルに回収砥粒と新しい砥粒を重量比85:15で混合したものを重量比1:1となるように加えて、再生スラリーとした。 Next, a mixture of recovered abrasive grains and new abrasive grains in a weight ratio of 85:15 was added to each pH-adjusted coolant sample so as to have a weight ratio of 1: 1 to obtain a regenerated slurry.
 これら再生スラリーサンプルを用い、MWSによるシリコンインゴットの切断を行った。1回の切断工程に要した時間は約9時間であり、この時間内のスラリー状況を確認したところ、表3に示す結果を得た。 These regenerated slurry samples were used to cut silicon ingots using MWS. The time required for one cutting step was about 9 hours. When the state of the slurry within this time was confirmed, the results shown in Table 3 were obtained.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 これにより、pHが4以上9以下に調整された再生スラリー(これは蒸留クーラントのpHを4以上9以下に調整することによる再生スラリーである)を用いることにより、MWSによる良好なシリコンインゴット切断が行えることが分かった。
 なお、pH1以上3以下の条件において「ガス発生によりスラリー供給ができず、切断継続不可」とあるのは、酸とワイヤ由来の鉄とが反応し、発生した水素ガスが、MWSにスラリーを供給するポンプに入り込むことにより、ポンプが空回りしてスラリーの搬送ができなくなったことを示す。
Thus, by using a regenerated slurry whose pH is adjusted to 4 or more and 9 or less (this is a regenerated slurry by adjusting the pH of the distillation coolant to 4 or more and 9 or less), good silicon ingot cutting by MWS can be achieved. I found that I can do it.
In addition, in the conditions of pH 1 or more and 3 or less, “Slurry cannot be supplied due to gas generation and cutting cannot be continued” means that the acid reacts with iron derived from the wire, and the generated hydrogen gas supplies the slurry to MWS. When the pump enters the pump, it indicates that the pump is idle and the slurry cannot be conveyed.
 また、同液のゲル化までのスライス後の日数を調査した。28℃の環境に放置し、ゲル状態もしくは、固形化するまでの日数を調査した。表4に示す通り、pH4以上9以下で4日以上の耐久性があり、特にスライス工程での使用時間には問題がないことを確認した。 Also, the number of days after slicing until gelation of the same solution was investigated. It was left in an environment of 28 ° C., and the number of days until gelation or solidification was investigated. As shown in Table 4, it was confirmed that there was durability for 4 days or more at pH 4 or more and 9 or less, and that there was no problem in use time particularly in the slicing step.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本実施例では、蒸留時に発生する水及びグリコールを全量用いたが、グリコールのみを回収(蒸留時に除去または再蒸留時やその為の水分除去膜等を使用し、除去後、再度精製水を使用することになるが)しても同様の効果を確認できた。 In this example, the entire amount of water and glycol generated during distillation was used, but only the glycol was recovered (removed during distillation or during re-distillation or using a water removal membrane for that purpose, and after removal, purified water was used again. I was able to confirm the same effect.
 また、酸及びアルカリを添加するpH調整工程前において、pHが6,8,及び9の蒸留クーラントについても同様の試作を行い、pHを4以上9以下に調整することで同様に切断継続可能時間を4日以上にする効果が得られることを確認できた。 In addition, before the pH adjustment step in which acid and alkali are added, the same trial manufacture is performed for distilled coolants having pHs 6, 8, and 9, and the time in which cutting can be continued is similarly adjusted by adjusting the pH to 4 or more and 9 or less. It was confirmed that the effect of making the time of 4 days or more was obtained.
 <比較例1>
 比較例1では、実施例1と同様にMWSによるシリコンインゴットの切断と使用済みスラリーの処理を繰り返して蒸留クーラントを適当量製造し、pHが3である蒸留クーラントについて、pH調整剤として水酸化ナトリウム水溶液のみを使用し、いかなる酸をも用いずpH調整を行った。
<Comparative Example 1>
In Comparative Example 1, as in Example 1, the silicon ingot was cut with MWS and the used slurry was repeatedly processed to produce an appropriate amount of distilled coolant. For the distilled coolant having a pH of 3, sodium hydroxide was used as a pH adjuster. The pH was adjusted using only an aqueous solution and no acid.
 次に、実施例1と同様に、それぞれのpH調整クーラントサンプルに回収砥粒と新しい砥粒を重量比85:15で混合したものを重量比1:1となるように加えて、再生スラリーとした。 Next, in the same manner as in Example 1, a mixture of recovered abrasive grains and new abrasive grains at a weight ratio of 85:15 was added to each pH-adjusted coolant sample so as to have a weight ratio of 1: 1. did.
 これら再生スラリーサンプルを用い、MWSによるシリコンインゴットの切断を行った。実施例1から1回の切断工程に要した時間は約9時間と分かっているので、この時間内のスラリー状況を確認したところ、表5に示す結果を得た。表5に示す通り、アルカリのみで調整して得られた再生クーラントはシリコンインゴットの切断が可能であることがわかった。 These regenerated slurry samples were used to cut silicon ingots using MWS. Since the time required for one cutting step from Example 1 was known to be about 9 hours, the slurry status within this time was confirmed, and the results shown in Table 5 were obtained. As shown in Table 5, it was found that the regenerated coolant obtained by adjusting only with alkali can cut the silicon ingot.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 <比較例2>
 比較例2では、実施例1と同様にMWSによるシリコンインゴットの切断と使用済みスラリーの処理を繰り返して蒸留クーラントを適当量製造し、pH調整剤として酸のみを使用し、いかなるアルカリ溶液をも用いずpH調整を行った。ただし、比較例2では、pH調整工程前においてpHが10である蒸留クーラントを用いた。比較例2では、実施例1と同じ酸を用いた。
<Comparative example 2>
In Comparative Example 2, similarly to Example 1, the silicon ingot was cut with MWS and the used slurry was repeatedly processed to produce an appropriate amount of distilled coolant, only acid was used as a pH adjuster, and any alkaline solution was used. First, pH adjustment was performed. However, in Comparative Example 2, a distilled coolant having a pH of 10 before the pH adjustment step was used. In Comparative Example 2, the same acid as in Example 1 was used.
 次に、実施例1と同様に、それぞれのpH調整クーラントサンプルに回収砥粒と新しい砥粒を重量比85:15で混合したものを重量比1:1となるように加えて、再生スラリーとした。 Next, in the same manner as in Example 1, a mixture of recovered abrasive grains and new abrasive grains at a weight ratio of 85:15 was added to each pH-adjusted coolant sample so as to have a weight ratio of 1: 1. did.
 これら再生スラリーサンプルを用い、MWSによるシリコンインゴットの切断を行った。実施例1から1回の切断工程に要した時間は約9時間と分かっているので、この時間内のスラリー状況を確認したところ、表6に示す結果を得た。表6に示す通り、酸のみで調整して得られた再生クーラントはシリコンインゴットの切断が可能であることが分かった。 These regenerated slurry samples were used to cut silicon ingots using MWS. Since the time required for one cutting step from Example 1 is known to be about 9 hours, the status of the slurry within this time was confirmed, and the results shown in Table 6 were obtained. As shown in Table 6, it was found that the regenerated coolant obtained by adjusting with only acid can cut the silicon ingot.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 <実施例2>
 次に、本発明による再生スラリーの切断性能について説明する。
<Example 2>
Next, the cutting performance of the regenerated slurry according to the present invention will be described.
 一般にMWSを用いた切断においては、切断性能を示す指標としてTTV(Total Thichness Variation:ウェハ内厚みムラ)を用いることが多い。よって、本実施例2においてもスラリー毎の切断性能の違いをTTVで評価した。 In general, in cutting using MWS, TTV (Total Thichness Variation) is often used as an index indicating cutting performance. Therefore, also in the present Example 2, the difference in cutting performance for each slurry was evaluated by TTV.
 本実施例では、実施例1における再生スラリーサンプルのうち、pH7のものを使用することとし、これを再生スラリーAとした。 In this example, among the regenerated slurry samples in Example 1, one having a pH of 7 was used, and this was designated as regenerated slurry A.
 さらに、MWSによる再生スラリーAの使用(シリコンインゴットの切断)とスラリー再生を10回繰り返した時点での再生スラリーを再生スラリーB、および100回繰り返した再生スラリーを再生スラリーCとした。 Further, use of the regenerated slurry A by MWS (cutting of the silicon ingot) and slurry regeneration were repeated 10 times, and the regenerated slurry B was regenerated slurry B, and the regenerated slurry C was repeated 100 times.
 新しい砥粒と水溶性クーラントだけからなる新スラリー、および再生スラリーA,B,Cを用いてシリコンインゴットの切断を行い、それぞれのTTVを比較した。その結果を表7に示す。 The silicon ingot was cut using a new slurry consisting only of new abrasive grains and water-soluble coolant, and recycled slurries A, B, and C, and the TTVs were compared. The results are shown in Table 7.
 表7から、再生スラリーにおけるTTVと歩留まりは新スラリーを使用した場合と遜色ないことがわかった。なお、本実施例2においては、TTVが30μm以下を良品とみなし、不良品が2%以内、機械が正常に運転され、前記の泡の発生や使用済みスラリーにゲル化が発生しないことを判断基準とした。
 なお、本実施例では、再生スラリーに対して水又はグリコールを適宜添加して水とグリコールの比率をほぼ一定に保った。
From Table 7, it was found that the TTV and the yield of the regenerated slurry were comparable to those when using the new slurry. In Example 2, it is determined that TTV is 30 μm or less as a non-defective product, defective products are within 2%, the machine is operated normally, and the generation of bubbles and gelation of the used slurry are not determined. Standard.
In this example, water or glycol was appropriately added to the regenerated slurry to keep the ratio of water and glycol substantially constant.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 なお、本実施例2におけるTTV測定には、ミツトヨ製のマイクロメーターを用いた。また、表3記載のTTVは、それぞれ約3000枚のシリコンウェハの平均値である。 Note that a Mitutoyo micrometer was used for TTV measurement in Example 2. The TTVs listed in Table 3 are average values of about 3000 silicon wafers.
 <実施例3>
 本実施例3においては、本発明における微粒子除去処理および還元処理の効果について説明する。濁度が5cm~100cmまでのpH7の蒸留クーラントを用意し必要性を確かめた。酸を添加し後に、アルカリを添加して、pH7の液を使用し粘度を測定した。スラリーとしての粘度を測定するため、砥粒を重量比で1:1、粒径1~5μmのシリコン粉末を15重量%添加して作製した。結果を表8に示す。粘度1は初期、粘度2は2時間後を示している。それぞれ、蒸留時期の違うサンプルを5サンプル準備した。なお、濁度は、JIS K0101に準拠する方法で測定した。粘度は、ビスコテスター VT-04K(リオン製)を用いて測定した。
<Example 3>
In the third embodiment, the effects of the fine particle removal process and the reduction process in the present invention will be described. A pH 7 distillation coolant having a turbidity of 5 cm to 100 cm was prepared to confirm the necessity. After the acid was added, the alkali was added and the viscosity was measured using a pH 7 solution. In order to measure the viscosity of the slurry, 15% by weight of silicon powder having a weight ratio of 1: 1 and a particle size of 1 to 5 μm was added. The results are shown in Table 8. Viscosity 1 shows the initial value, and viscosity 2 shows 2 hours later. Five samples with different distillation times were prepared. The turbidity was measured by a method based on JIS K0101. The viscosity was measured using a Viscotester VT-04K (manufactured by Rion).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8のように、濁度が50cm以上あるものは、初期及び放置後に粘度変化が少ないが、濁度の悪いものは、多少の変化が存在する。蒸留クーラント中の不純物の反応による影響を受けているものと考察した。 As shown in Table 8, when the turbidity is 50 cm or more, the change in viscosity is small at the initial stage and after standing, but when the turbidity is poor, there is some change. It was considered that it was influenced by the reaction of impurities in the distilled coolant.
 次に、微粒子除去処理および還元処理の効果について説明する。図2は本実施例3を示すフローチャートである。 Next, the effects of the fine particle removal process and the reduction process will be described. FIG. 2 is a flowchart showing the third embodiment.
 実施例1と同じ蒸留クーラントに対し簡易濾過(アドバンテック(株)製メンブランフィルタ(孔径5μm)を使用)をおこない、引き続き、(1)活性炭処理、(2)濾過、(3)再蒸留、(4)還元、の処理をそれぞれ行った。クエン酸水溶液(濃度20wt%)を添加してpHを2にし、その後、水酸化ナトリウム水溶液(濃度10wt%)を添加してpHを6とした。それぞれの工程に用いた材料、条件は以下の通り。
(1)活性炭処理:活性炭カラム(クラレケミカル(株)製活性炭PWを内径30mm、長さ1000mmのガラスカラムに充填したもの)を使用。吸着処理を3時間行い、これを濾過してクーラントと活性炭を分離した。
(2)濾過:アドバンテック(株)製メンブランフィルタ(孔径1μm)を使用し、減圧濾過にて1分あたり約100mlの流量で処理した。
(3)再蒸留:3口の攪拌可能なガラス容器(300ml)を使用し、圧力50mmHgにおいて180℃にて蒸留を行った。
(4)還元:チオ硫酸ナトリウムをpH調整クーラントに対し10ppmとなるように添加し、50℃で30分間加熱した。
The same distillation coolant as in Example 1 was subjected to simple filtration (using a membrane filter manufactured by Advantech Co., Ltd. (pore size: 5 μm)), followed by (1) activated carbon treatment, (2) filtration, (3) redistillation, (4 ) Reduction, respectively. An aqueous citric acid solution (concentration 20 wt%) was added to adjust the pH to 2, and then an aqueous sodium hydroxide solution (concentration 10 wt%) was added to adjust the pH to 6. The materials and conditions used in each process are as follows.
(1) Activated carbon treatment: An activated carbon column (a Kuraray Chemical Co., Ltd. activated carbon PW packed in a glass column having an inner diameter of 30 mm and a length of 1000 mm) is used. Adsorption treatment was performed for 3 hours, and this was filtered to separate the coolant and activated carbon.
(2) Filtration: A membrane filter (pore size: 1 μm) manufactured by Advantech Co., Ltd. was used, and processing was performed at a flow rate of about 100 ml per minute by vacuum filtration.
(3) Redistillation: Distillation was performed at 180 ° C. at a pressure of 50 mmHg using a three-necked stirrable glass container (300 ml).
(4) Reduction: Sodium thiosulfate was added to 10 ppm with respect to the pH adjusting coolant, and heated at 50 ° C. for 30 minutes.
 また、活性炭処理を行ったクーラントの一部に対し、さらに(5)活性炭処理後還元を行ったが、この条件は(4)と同じである。 In addition, a part of the coolant treated with activated carbon was further reduced after (5) activated carbon treatment, but this condition is the same as (4).
 処理なしのクーラントをクーラントA,(1)~(5)処理後のクーラントを再度簡易濾過して得られたクーラントをクーラントB~Fとし、それぞれの不純物分析を行った。まず、得た溶液を500℃に加熱し、発生する蒸気(有機系の不純物分析、下表では、グリコールの変性物が対応)の分析をGCマススペクトル(島津製作所製ガスクロマトグラフ/質量分析計:GCMS-QP2010PLUS)にて実施した。同時に熱天秤(BRUKER社製:TG-DTA)にて、窒素ガス雰囲気で600℃に加熱し、シリコン、シリコン酸化物および鉄の粒度分析(日機装製マイクロトラック粒度分布測定装置:MT3000II使用)を実施した。さらに微粒元素特定のために、ICP-AES(島津製作所製ICP発光分析装置:ICPS-1000IV使用)を測定した。なお、本実施例3における微粒子径の測定限界は0.02μmである。クーラントA~Fにおいて、不純物総量は、0.1wt%以下であった。
 測定結果を表9に示す。
The untreated coolant was coolant A, and the coolant obtained by simple filtration of the treated coolant again (1) to (5) was used as coolants B to F, and the respective impurities were analyzed. First, the obtained solution is heated to 500 ° C., and the generated vapor (organic impurity analysis, in the following table, a modified product of glycol corresponds) is analyzed by GC mass spectrum (gas chromatograph / mass spectrometer manufactured by Shimadzu Corporation): GCMS-QP2010PLUS). At the same time, using a thermobalance (BRUKER: TG-DTA), heated to 600 ° C in a nitrogen gas atmosphere, and performed silicon, silicon oxide, and iron particle size analysis (using Nikkiso Microtrac particle size distribution analyzer: MT3000II) did. Further, ICP-AES (ICP emission analyzer manufactured by Shimadzu Corp .: using ICPS-1000IV) was measured in order to identify fine elements. Note that the measurement limit of the fine particle diameter in Example 3 is 0.02 μm. In the coolants A to F, the total amount of impurities was 0.1 wt% or less.
Table 9 shows the measurement results.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 これはあくまで一例であり、活性炭や濾過用フィルタの選択、蒸留装置の選択(理論段数など)によって結果は変わりうるが、これら(1)~(5)の処理によって蒸留クーラント中の不純物が減少していることが分かった。 This is just an example, and the results may vary depending on the choice of activated carbon, filter for filtration, and the choice of distillation equipment (theoretical plate number, etc.), but these treatments (1) to (5) reduce the impurities in the distillation coolant. I found out.
 さらに、これらクーラントA~Fそれぞれに粒径1~5μmのシリコン粉末を15重量%添加して作製した再生スラリー(それぞれ実験スラリーA~Fとする)を室温放置したところ、2時間放置時で実験スラリーA、Eの粘度が増加した(100CP→130CP)。他の実験スラリーの粘度に変化は認められず、実験スラリーA、Eの粘度もそれ以降24時間経過時点まで変化は見られなかった(それ以降測定を行っていない)。 Furthermore, when the regenerated slurries prepared by adding 15% by weight of silicon powder having a particle size of 1 to 5 μm to each of the coolants A to F (respectively referred to as experimental slurries A to F) were allowed to stand at room temperature, the experiments were conducted when left for 2 hours. The viscosity of the slurry A and E increased (100 CP → 130 CP). No change was observed in the viscosity of the other experimental slurries, and the viscosity of the experimental slurries A and E was not changed until 24 hours later (no measurement was performed thereafter).
 この程度(100CP→130CP)の粘度変化はMWSに対して特に悪影響を及ぼすものではないが、活性炭処理、濾過処理、再蒸留処理を経た再生スラリーがより長期間の保存および/または使用に適したものであることが分かった。 This degree of change in viscosity (from 100 CP to 130 CP) does not have a particularly adverse effect on MWS, but a regenerated slurry that has undergone activated carbon treatment, filtration treatment, and redistillation treatment is suitable for longer-term storage and / or use. It turned out to be a thing.
 なお、本実施例3における粘度測定にはリオン社製ビスコテスター:VT-03E型を用いた値を記載した。 In addition, the value using the Viscotester VT-03E type made by Rion Co., Ltd. was described in the viscosity measurement in Example 3.

Claims (6)

  1.  砥粒と水溶性クーラントを含むスラリーを用いたシリコンインゴットの切断の際に排出される使用済みスラリーを少なくとも蒸留工程に付し、得られた蒸留クーラントから再生クーラントを得るクーラント再生方法であって、
     前記蒸留クーラントが5重量%以上の水と80重量%以上のプロピレングリコールを含有するクーラント再生方法。
    A coolant regeneration method in which a used slurry discharged at the time of cutting a silicon ingot using a slurry containing abrasive grains and a water-soluble coolant is subjected to at least a distillation step, and a regenerated coolant is obtained from the obtained distilled coolant,
    A coolant regeneration method, wherein the distilled coolant contains 5% by weight or more of water and 80% by weight or more of propylene glycol.
  2.  前記蒸留クーラントに対して酸を加える酸添加工程とアルカリを加えるアルカリ添加工程を少なくとも1回ずつ行って前記蒸留クーラントのpHを4以上9以下に調整する工程を含む請求項1に記載のクーラント再生方法。 The coolant regeneration according to claim 1, comprising a step of adjusting the pH of the distilled coolant to 4 or more and 9 or less by performing an acid addition step of adding an acid to the distillation coolant and an alkali addition step of adding an alkali at least once. Method.
  3.  前記蒸留クーラントに対して前記酸添加工程を行い、次いで前記アルカリ添加工程を行う場合において、前記酸添加工程後であって前記アルカリ添加工程前の蒸留クーラントのpHが4未満である請求項2に記載のクーラント再生方法。 The pH of the distillation coolant after the acid addition step and before the alkali addition step is less than 4 when the acid addition step is performed on the distillation coolant and then the alkali addition step is performed. The coolant regeneration method described.
  4.  前記蒸留クーラントに対して前記酸添加工程および前記アルカリ添加工程を行う前に微粒子除去処理および還元処理の少なくとも一方を施す前処理工程をさらに含む請求項2に記載のクーラント再生方法。 The coolant regeneration method according to claim 2, further comprising a pretreatment step of performing at least one of a fine particle removal treatment and a reduction treatment before the acid addition step and the alkali addition step are performed on the distillation coolant.
  5.  前記微粒子除去処理が、活性炭処理、濾過および再蒸留のうちの少なくとも1つである請求項4に記載のクーラント再生方法。 The coolant regeneration method according to claim 4, wherein the particulate removal treatment is at least one of activated carbon treatment, filtration and redistillation.
  6.  砥粒と水溶性クーラントを含むスラリーを用いたシリコンインゴットの切断の際に排出される使用済みスラリーから再生スラリーを得るスラリー再生方法であって、
     請求項1に記載のクーラント再生方法を用いて得られた再生クーラントに対し、新たな砥粒および/または前記使用済みスラリーから回収した回収砥粒を混合する混合工程を含むスラリー再生方法。
    A slurry regeneration method for obtaining a regenerated slurry from a used slurry discharged at the time of cutting a silicon ingot using a slurry containing abrasive grains and a water-soluble coolant,
    A slurry regeneration method including a mixing step of mixing new abrasive grains and / or recovered abrasive grains recovered from the used slurry with the recycled coolant obtained by using the coolant regeneration method according to claim 1.
PCT/JP2009/062126 2008-07-02 2009-07-02 Method of regenerating coolant and method of regenerating slurry WO2010001961A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-173355 2008-07-02
JP2008173355 2008-07-02
JP2009146448A JP5173945B2 (en) 2008-07-02 2009-06-19 Coolant regeneration method and slurry regeneration method
JP2009-146448 2009-06-19

Publications (1)

Publication Number Publication Date
WO2010001961A1 true WO2010001961A1 (en) 2010-01-07

Family

ID=41466052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062126 WO2010001961A1 (en) 2008-07-02 2009-07-02 Method of regenerating coolant and method of regenerating slurry

Country Status (2)

Country Link
JP (1) JP5173945B2 (en)
WO (1) WO2010001961A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143859A (en) * 2010-12-24 2012-08-02 Kao Corp Method for manufacturing polishing liquid composition
WO2013035541A1 (en) * 2011-09-07 2013-03-14 株式会社クラレ Separation and recovery device
WO2013054577A1 (en) * 2011-10-12 2013-04-18 株式会社村田製作所 Waste machining fluid circulation device and waste machining fluid circulation method
WO2013099595A1 (en) * 2011-12-27 2013-07-04 旭硝子株式会社 Additive for polishing agent, and polishing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332914B2 (en) * 2009-05-29 2013-11-06 信越半導体株式会社 Cutting method of silicon ingot
JP5640260B2 (en) * 2010-06-25 2014-12-17 日本碍子株式会社 Coolant recovery method
JP2013248706A (en) * 2012-05-31 2013-12-12 Panasonic Corp Method for regenerating waste coolant, method and system for treating waste coolant, and method for producing regenerated coolant
JP5860026B2 (en) * 2013-12-12 2016-02-16 アミタ株式会社 Silicon slurry waste liquid recycling system, coolant recovery liquid, recovered abrasive grains, and recovered cutting powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313030A (en) * 2004-04-27 2005-11-10 Sharp Corp Slurry regeneration method
WO2007119308A1 (en) * 2006-03-17 2007-10-25 Sharp Kabushiki Kaisha Method of recovering silicon-containing material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4497767B2 (en) * 2001-09-06 2010-07-07 ユシロ化学工業株式会社 Water-soluble machining fluid composition for fixed abrasive wire saw
JP4493454B2 (en) * 2004-09-22 2010-06-30 株式会社カサタニ Water-soluble cutting agent composition for silicon processing and processing method
ITRM20050329A1 (en) * 2005-06-24 2006-12-25 Guido Fragiacomo PROCEDURE FOR TREATING ABRASIVE SUSPENSIONS EXHAUSTED FOR THE RECOVERY OF THEIR RECYCLABLE COMPONENTS AND ITS PLANT.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313030A (en) * 2004-04-27 2005-11-10 Sharp Corp Slurry regeneration method
WO2007119308A1 (en) * 2006-03-17 2007-10-25 Sharp Kabushiki Kaisha Method of recovering silicon-containing material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143859A (en) * 2010-12-24 2012-08-02 Kao Corp Method for manufacturing polishing liquid composition
WO2013035541A1 (en) * 2011-09-07 2013-03-14 株式会社クラレ Separation and recovery device
WO2013054577A1 (en) * 2011-10-12 2013-04-18 株式会社村田製作所 Waste machining fluid circulation device and waste machining fluid circulation method
WO2013099595A1 (en) * 2011-12-27 2013-07-04 旭硝子株式会社 Additive for polishing agent, and polishing method

Also Published As

Publication number Publication date
JP5173945B2 (en) 2013-04-03
JP2010030033A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP5173945B2 (en) Coolant regeneration method and slurry regeneration method
JP5090191B2 (en) Method for recovering dispersion medium from waste slurry slurry
EP1561557B1 (en) Method for treating an exhausted glycol-based slurry
JP5474523B2 (en) Purified silicon-containing powder recovery method
JP5722601B2 (en) Silicon cutting waste treatment method
KR20010071680A (en) Method for the separation, regeneration and reuse of an exhausted glycol-based slurry
JP2006315099A (en) Recovery treatment method of waste liquid of silicon cutting slurry
JP2003340719A (en) Slurry regenerating method
JP4520331B2 (en) Method for producing hydrogen gas
JP2011502346A (en) Method and system for manufacturing wafer-like slices from substrate material
JP2011218503A (en) Method for disposing silicon-containing waste liquid
TW201808804A (en) Using method of waste silicon slurry and products obtained therefrom
TWI585038B (en) Hydrogen production method and hydrogen production apparatus
TWI579441B (en) Method for producing briquettes and briquettes produced using the same
WO2009081725A1 (en) Silicon reclamation method
CN104194910B (en) The solid-liquid separating method of crystal silicon chip cutting liquid
EP3060521B1 (en) Non-chemical method for recovering silicon carbide particles
KR101188313B1 (en) Recycling Method for Waste Sludge Formed by Solar Cell Wafer Manufacturing and Recycling System Thereof
JP5303585B2 (en) Hydrogen gas production system and hydrogen gas production method using silicon wastewater
JP2005349507A (en) Coolant recycling device and waste slurry recycling system, as well as waste coolant recycling method and waste slurry recycling method
JP7376215B2 (en) Processing method for recycling silicon ingot cutting waste
Shih et al. The study of rotational ultrafiltration system for recovery of spent cutting oil from solar photovoltaic cell manufacturing process
JP2010001181A (en) Processing method and regenerating method of silicon for electronic component
TW201522236A (en) Total silicon slurry wastes recycle system, recycled coolant, recycled abrasive and recycled cutting powder
CN106957126B (en) Treatment process of cutting wastewater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773539

Country of ref document: EP

Kind code of ref document: A1