KR101188313B1 - Recycling Method for Waste Sludge Formed by Solar Cell Wafer Manufacturing and Recycling System Thereof - Google Patents

Recycling Method for Waste Sludge Formed by Solar Cell Wafer Manufacturing and Recycling System Thereof Download PDF

Info

Publication number
KR101188313B1
KR101188313B1 KR20100031280A KR20100031280A KR101188313B1 KR 101188313 B1 KR101188313 B1 KR 101188313B1 KR 20100031280 A KR20100031280 A KR 20100031280A KR 20100031280 A KR20100031280 A KR 20100031280A KR 101188313 B1 KR101188313 B1 KR 101188313B1
Authority
KR
South Korea
Prior art keywords
waste
coolant
tank
sludge
waste sludge
Prior art date
Application number
KR20100031280A
Other languages
Korean (ko)
Other versions
KR20110111946A (en
Inventor
임동원
신종은
박상덕
양세인
Original Assignee
오씨아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오씨아이 주식회사 filed Critical 오씨아이 주식회사
Priority to KR20100031280A priority Critical patent/KR101188313B1/en
Publication of KR20110111946A publication Critical patent/KR20110111946A/en
Application granted granted Critical
Publication of KR101188313B1 publication Critical patent/KR101188313B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/127Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering by centrifugation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Treatment Of Sludge (AREA)

Abstract

본 발명은 태양전지용 웨이퍼 제조시 발생되는 폐슬러지 재생방법 및 재생시스템에 관한 것으로, 보다 상세하게는, 태양전지용 웨이퍼 공정 폐슬러리의 재생처리에 있어서 단계적 원심분리공정 중간에 응집반응공정을 추가함에 의해 절삭유인 쿨란트(Coolant) 내 금속 불순물(metal impurities) 및 미세입자를 효과적으로 분리시켜 재생효율을 증가시킴으로써 폐기물 발생을 최소화할 수 있는 폐슬러지 재생방법 및 재생시스템에 관한 것이다.
본 발명에 따르면, 절삭유(Coolant) 회수시 발생하는 투자 및 유지 보수 비용을 최소화하고, 절삭유(Coolant) 내 금속 불순물 및 미세입자를 보다 효과적으로 분리시켜 절삭유(Coolant) 재생 단가 및 효율 높임으로써 폐슬러리 발생량 및 처리비용을 감소시켜 태양전지용 웨이퍼 제조원가를 낮출 수 있다.
The present invention relates to a waste sludge recycling method and a recycling system generated during the manufacture of a wafer for a solar cell. The present invention relates to a waste sludge recycling method and a recycling system capable of minimizing waste generation by effectively separating metal impurities and fine particles in a coolant, which is cutting oil, to increase recycling efficiency.
According to the present invention, the amount of waste slurry generated by minimizing the investment and maintenance costs incurred during the recovery of coolant, and separating the metal impurities and fine particles in the coolant more effectively, thereby increasing the coolant recycling cost and efficiency. And the processing cost can be reduced to lower the manufacturing cost of the wafer for solar cells.

Description

태양전지용 웨이퍼 제조시 발생되는 폐슬러지 재생방법 및 재생시스템{Recycling Method for Waste Sludge Formed by Solar Cell Wafer Manufacturing and Recycling System Thereof}Recycling Method for Waste Sludge Formed by Solar Cell Wafer Manufacturing and Recycling System Thereof}

본 발명은 태양전지용 웨이퍼 제조시 발생되는 폐슬러지 재생방법 및 재생시스템에 관한 것으로, 보다 상세하게는, 태양전지용 웨이퍼 공정시, 폐슬러리의 재생처리에 있어서 단계적 원심분리공정 중간에 응집반응공정을 추가함에 의해 절삭유인 쿨란트(Coolant) 내 미세입자를 효과적으로 분리시켜 재생효율을 증가시킴으로써 폐기물 발생을 최소화 할 수 있는 폐슬러지 재생방법 및 재생시스템에 관한 것이다.
The present invention relates to a waste sludge recycling method and a recycling system generated during the manufacture of a wafer for a solar cell, and more particularly, to an agglomeration reaction step in the middle of a stepwise centrifugation step in a waste sludge recycling process during a solar cell wafer process. The present invention relates to a waste sludge recycling method and a recycling system that can minimize waste generation by effectively separating fine particles in coolant, which is cutting oil, thereby increasing regeneration efficiency.

슬러리란 반도체 제조공정 중 실리콘 웨이퍼 절단 과정에서 발생하는 연마재, 절삭유 등과 같은 폐기물을 의미한다.The slurry refers to waste materials such as abrasives and cutting oils generated during silicon wafer cutting in the semiconductor manufacturing process.

슬러지 재생반도체 및 태양전지의 웨이퍼 제조시 잉곳의 박막화는 대부분 와이어 소잉(Wire Sawing) 방식에 의하여 진행되고 있으며, 절단부에 절삭유와 절삭제를 혼합한 슬러리를 공급함으로써 절단효율을 향상시키고, 절단시 발생하는 열을 제어하고 있다. 이 과정에서 실리콘 잉곳의 20 ~ 30wt%에 해당하는 실리콘의 절삭분(Saw Dust)으로 발생한다. 이러한 절삭유, 절삭제 및 절삭분들은 세정과정을 통해 웨이퍼로부터 제거되며, 이때 발생한 폐슬러지에는 절삭제, 절삭분 및 기타 이물질(절삭유인 쿨란트(Coolant)의 첨가제 및 철분 등의 금속 성분들)들이 절삭유에 분산된 형태로 되어 있다. Ingot manufacturing of sludge regenerated semiconductor and solar cell wafers is mostly made by wire sawing, and it improves cutting efficiency by supplying slurry mixed with cutting oil and cutting agent to the cutting part. To control the heat. In this process, it is generated as saw dust of silicon corresponding to 20 to 30wt% of the silicon ingot. These coolants, cutting agents and cutting powders are removed from the wafer through the cleaning process, and the waste sludge generated is a cutting agent, cutting powders and other foreign substances (metallic components such as coolant additives and iron powders). It is dispersed in cutting oil.

이 때 발생된 폐슬러리는 단순소각 처리할 수 없으며, 특수산업폐기물로 분류되어 있기 때문에 단순 매립의 경우 심각한 토양오염이 발생되며, 이러한 처리방법은 고가의 절삭제와 절삭유를 수입해야 할 뿐만 아니라, 특수산업폐기물 추가 비용까지 필요하기 때문에 웨이퍼의 제조원가를 상승시키고 심각한 환경오염을 유발시키는 문제가 있다.The waste sludge produced at this time cannot be simply incinerated, and because it is classified as special industrial waste, a simple landfill causes severe soil contamination. This method of treatment requires the import of expensive cutting agents and cutting oil, The additional cost of special industrial waste is required, which increases the manufacturing cost of the wafer and causes serious environmental pollution.

또한, 그동안 반도체 제조회사에서는 배출된 슬러리를 모아 폐기물 수거업체를 통해 전량 매립 또는 소각해 왔다. 100% 일본 수입에 의존하고 있는 이 소재는 매년 막대한 금액을 지불하며 국내에 들어오지만 한번 사용 후 그대로 폐기되 환경오염의 원인이 되어왔다.In addition, semiconductor manufacturers have been collecting and discharging the discharged slurry through a waste collector. Relying on 100% imports from Japan, the material pays enormous amounts annually and enters the country, but has been discarded after being used once, causing environmental pollution.

따라서, 폐슬러리 내에 함유되어 있는 절삭유, 절삭제 및 절삭분 등을 회수하는 방법은 필요로 하며, 종래부터 본 기술 관련 개발은 지속되고 있다. Therefore, there is a need for a method for recovering cutting oil, cutting agent, cutting powder and the like contained in the waste slurry, and the related art development has been continued.

하지만 이러한 폐슬러리의 재생방법에 있어서 선행기술은 그 회수율이 그다지 높지 않으며, 비교적 점도가 높은 웨이퍼 제조용 폐슬러리의 재생 방법으로는 적당하지 않다. However, the prior art in such a waste slurry recycling method is not very high recovery rate, and is not suitable as a recycling method of waste slurry for wafer manufacture with a relatively high viscosity.

그리고 폐슬러리의 점도를 낮추기 위하여 절삭유나 용매를 사용하여 희석시킬 경우, 회수해야 할 절삭유의 양이 증가하거나, 사용한 용매를 회수하기 위한 별도의 증류 장치가 필요하다는 문제점이 있다. And when the dilution using cutting oil or solvent to reduce the viscosity of the waste slurry, there is a problem that the amount of cutting oil to be recovered is increased, or a separate distillation apparatus for recovering the used solvent is required.

가열하여 점도를 낮추는 방법은 전술된 문제점은 없으나, 역시 원심분리만을 이용한 절삭분의 분리는 용이하지 않다는 문제점을 가지고 있다.The method of lowering the viscosity by heating has no problem as described above, but also has a problem that separation of the cutting powder using only centrifugation is not easy.

유럽특허 제0767035호에는 기존 폐슬러리(waste slurry) 분리에서 사용되던 원심분리 및 디켄트(decanter)를 사용하지 않고, 마이크로 시브와 초음파를 사용함으로서 사용된 슬러리를 작은입자가 포함된 절삭유와 절삭재로 분리할 수 있는 여러가지 마이크로 시브 공정모델이 개시되어 있다. 그러나 마이크로 시브가 막힐 경우 교체비용 및 유지비용이 지속적으로 들어갈 수 있고, 일정 마이크로 이하일 경우 제작비용이 기존 보다 배 이상 소요되며, 효율성 면에서 처리량을 늘릴 경우 단면적을 늘려야 하므로, 설치공간이 많이 차지하게 되는 문제점이 있다.European Patent No. 0767035 Instead of centrifugation and decanter used in waste slurry separation, it is possible to separate the used slurry into cutting oil and cutting material containing small particles by using microsieve and ultrasonic wave. A microsieve process model is disclosed. However, if the micro sieve is blocked, the replacement cost and maintenance cost can be continuously maintained. If the micro sieve is blocked, the manufacturing cost is more than twice that of the existing one, and if the throughput is increased in terms of efficiency, the cross-sectional area must be increased. There is a problem.

미국특허 제7,223,344호에는 고형분 중 미분인 Si와 Fe을 선택적으로 제거시, 철을 제거하기 위해 산성용액(1~10wt% HCl)을 사용하고, Si미분을 제거하기 위해 염기성용액(2~30wt%, NaOH)를 사용하는 방법이 개시되어 있다. 그러나 화학적 처리방법의 경우 반응열 및 반응 후 기체가 발생하고, 세정 및 중화 단계가 필요하며, 상기 방법의 경우 공정 단계 증가로 인한 생산성 저하로 이어질 수 있으므로 화학세척방법이 필요한 단계의 공정 볼륨은 최소한으로 줄여서 진행해야 하는 문제점이 있다.US Patent No. 7,223,344 In the case of selectively removing the fine powder Si and Fe from solids, acid solution (1 ~ 10wt% HCl) is used to remove iron, and basic solution (2 ~ 30wt%, NaOH) is used to remove Si fine powder. A method is disclosed. However, in the case of the chemical treatment method, the heat of reaction and post-reaction gas are generated, and the cleaning and neutralization step are required, and in the case of the method, the process volume of the step requiring the chemical cleaning method can be reduced to a minimum due to the increase of the process step. There is a problem that needs to be reduced.

한국등록특허 제626,252호에는 폐 와이어 소(wire saw) 슬러리를 고형성분과 액상성분으로 분리하는 단계; 상기 분리된 와이어 소잉(wire sawing)용 슬러리에 수용성 성분 및 유기물 제거용 용매를 도입하여 세정하는 단계; 상기 세정된 와이어 소잉(wire sawing)용 슬러리를 침강시켜 층 분리하고 연마제를 회수하는 단계; 상기 회수된 연마제를 여과하는 단계; 상기 여과된 연마제를 건조하는 단계; 상기 건조된 연마제를 분급하는 단계 및 분급된 연마제로부터 철 성분을 제거하는 단계로 구성되는 와이어 소잉(wire sawing) 연마제의 재생방법이 개시되어 있다. 그러나 세정단계 중 교반후 2~3시간 방치하여야 하므로 공정 시간이 길어지며, 작업의 반복성에 의한 처리액 증가가 공정비용을 증가시키고, 유기용제를 사용하기도 하며 이런 요인들은 회수공정 설비단가를 증가시키는 문제점이 있다.Korea registered patent No. 626,252 Separating the waste wire saw slurry into a solid component and a liquid component; Introducing and washing a water-soluble component and a solvent for removing organic matters in the separated wire sawing slurry; Settling the cleaned slurry for wire sawing to separate the layers and recovering the abrasive; Filtering the recovered abrasive; Drying the filtered abrasive; Disclosed is a method of reclaiming a wire sawing abrasive comprising the steps of classifying the dried abrasive and removing the iron component from the classified abrasive. However, the process time is long because the process must be left for 2 ~ 3 hours after stirring during the washing step, and the increase of the processing liquid due to the repeatability of the work increases the process cost, and the use of organic solvents. There is a problem.

한국등록특허 제652,822호에는 1차원심분리로 절삭유와 절삭재를 분리한 후 2차 원심분리로 절삭유의 큰 입자들을 한번 더 분리하고, 2차 원심분리된 2차오일을 재생필터로 여과/정제하여 재생오일로 환원하고, 3차 원심분리된 미량의 연마제를 사용하여 재생슬러리를 제조하는 폐슬러리의 재생방법이 개시되어 있다. 그러나 2차 오일의 여과/ 정제시 재생필터의 사용시 미세입자 제거가 불완전하여 공정효율을 감소시키고, 카트리지 필터 사용시에도 카트리지 필터 교환 및 유지 보수에 많은 비용이 소요되며, 슬러리속의 철성분 제거를 위한 마그네틱 필터의 사용은 점차적으로 철분이 마그네틱 필터를 막고 이를 제거 및 운용하기에 상당한 장치와 비용이 소요될 문제점이 있다.Korean Patent No. 652,822 After cutting the cutting oil and the cutting material by 1-dimensional core separation, the large particles of the cutting oil are separated once more by the secondary centrifugation, and the secondary centrifuged secondary oil is filtered / purified by the regeneration filter to reduce the regeneration oil. Disclosed is a method for regenerating waste slurries, which produces recycle slurries using a small amount of the third centrifuged abrasive. However, when the regeneration filter is used for the filtration / refining of the secondary oil, the removal of fine particles reduces the process efficiency, and the cartridge filter requires a lot of cost to replace and maintain the cartridge filter, and to remove the iron in the slurry. The use of filters gradually has the problem that iron will require significant equipment and cost to block, remove and operate magnetic filters.

한국등록특허 제385,177호에는 디켄터(decanter)에 폐 슬러지를 인입 시키기전에 이를 쿨란트(coolant)와 일정비율로 희석, 혼합시켜 디켄터에 의하여 분리 시킴으로서 톱밥 및 파쇄 절삭제의 보다 효율적인 제거를 기하고, 혼합공급시 온도 가열장치를 두어 가열함으로서 액상의 점도를 조정하는 수단을 확보하며 1 차 디켄터(decanter)로 부터의 여액은 2 차 디켄터(decanter)에 의하여 쿨란트(coolant)를 회수하여 회수된 쿨란트(coolant)는 상시 가압하여 세정 및 폐 슬러지와의 혼합시 압출공급토록 하는 와이어 소우 절단용 폐 절단액 재생방법이 개시되어 있다. 그러나, 희석하는 경우 처리량이 증가되어 처리비용 상승으로 이어지고, 희석의 경우 비중이 다소 큰 SiC입자의 경우에 유리하며, 입도가 작은 입자들의 회수는 불리하며, 비중이 작거나 부유된 입자들은 회수 도중 손실되어질 수 있으며, 깨끗하고 큰 SiC입자를 얻기위해 희석을 하면 할수록 처리량 증가와 SiC회수율이 적어질 수 있는 문제점이 있다. In Korean Patent No. 385,177, before introducing waste sludge into a decanter, it is diluted and mixed with a coolant at a ratio and separated by a decanter to separate the sawdust and shredding cutting materials. In order to adjust the viscosity of the liquid phase by heating by heating the temperature heating device at the time of mixing supply, the filtrate from the primary decanter is recovered by the coolant by the secondary decanter Disclosed is a method for regenerating waste cutting fluid for cutting wire saws, wherein the recovered coolant is always pressurized to allow the extrusion and supply of extrusion during cleaning and mixing with the waste sludge. But, Dilution increases throughput, leading to higher processing costs, and dilution favors SiC particles with a relatively high specific gravity, recovery of small particle size is disadvantageous, and small or suspended particles may be lost during recovery. If the dilution is performed to obtain clean and large SiC particles, there is a problem that the throughput and the SiC recovery rate may be reduced.

일본공개특허 제2009-61559호에는 고압 직류 전계를 인가하여 Si입자의 표면전하를 바꿔서 1,2차 필터를 통과하여 물을 처리하여, 순수한 물을 분사하면서 다이아몬드 커터로 절단하는 공정에서 나온 폐액처리에 관한 방법이 개시되어 있다. 그러나, 전하를 띤 입자의 이동이 물속에서는 자유롭게 일어날 수 있지만 우리가 사용하고자 하는 글리콜(glycol)계통의 베이스(base)에서는 점도로 인해 잘 이동되지 않는다. 그러므로, 이 방법을 사용하고자 할 경우에는 물처럼 묽혀서 사용하여야 한다. 이럴경우 처리량의 증대로 효율성이 떨어지며, 고압직류를 인가하기 위해 장치비용이 많이 들어가는 단점이 있다.Japanese Patent Laid-Open No. 2009-61559 Disclosed is a method for treating waste liquid from a step of applying a high-pressure DC electric field to change surface charges of Si particles, passing water through a first and second filters, and cutting water with a diamond cutter while spraying pure water. However, although the movement of charged particles can occur freely in water, they do not move well due to the viscosity at the base of the glycol system we intend to use. Therefore, if this method is to be used, it should be diluted with water. In this case, the efficiency decreases due to the increase in throughput, and there is a disadvantage in that a lot of equipment costs are required to apply high-pressure DC.

이에 본 발명자들이 상기 문제점을 해결하기 위하여 예의 노력한 결과, 태양전지 웨이퍼 제조시 발생되는 슬러리 폐액을 1차 원심분리하고, 응집제를 투입한 후, 2차 원심분리하고, 증류공정을 수행할 경우, 절삭유인 쿨란트(Coolant)내 금속 불순물(metal impurities) 및 미세입자를 보다 효과적으로 분리시켜 절삭유(Coolant) 재생효율을 향상시키는 것을 확인하고 본 발명을 완성하게 되었다.
Accordingly, the present inventors have made diligent efforts to solve the above problems. As a result, when the slurry waste liquid generated during solar cell wafer manufacturing is first centrifuged, a flocculant is added, the second centrifugal separation is performed, and the distillation process is performed. The present invention was completed by confirming that metal impurities and fine particles in the coolant are more effectively separated to improve the coolant regeneration efficiency.

본 발명의 목적은 태양전지 웨이퍼 제조시 발생되는 절삭유(Coolant) 내 금속 불순물(metal impurities) 및 미세입자를 효과적으로 분리시켜 절삭유(Coolant) 재생효율을 증가시킴으로써 폐기물 발생을 최소화할 수 있는, 태양전지용 웨이퍼 제조시 발생되는 폐슬러지 재생방법 및 재생시스템을 제공하는데 있다.
An object of the present invention is to effectively separate the metal impurities and fine particles in the coolant (Coolant) generated during the manufacturing of the solar cell wafer to increase the coolant recycling efficiency, thereby minimizing waste generation, wafers for solar cells It is to provide a waste sludge recycling method and a recycling system generated during manufacturing.

상기 목적을 달성하기 위하여, 본 발명은 (a) 슬러지 폐액을 절삭제와 폐 절삭유로 분리하는 1차 원심분리 단계; (b) 상기 1차 원심분리 단계에서 나온 폐 절삭유에 응집제를 투입하여 응집 및 반응을 통해 절삭유내 금속 불순물 및 미분등의 플록(Floc) 형성을 위한 응집반응단계; (c) 상기 응집반응단계에서 나온 폐 슬러리를 폐 슬러지와 절삭유(Coolant)로 분리하는 2차 원심분리단계; (d) 상기 2차 원심분리단계에서 나온 절삭유(Coolant) 내 수분제거를 위한 증류단계; 및 (e) 상기 증류단계 후 재생 절삭유(Coolant)를 재이용하는 단계, 태양전지용 웨이퍼 제조공정에서 발생하는 폐슬러지 재생방법 및 재생시스템을 제공한다. In order to achieve the above object, the present invention (a) the first centrifugation step of separating the sludge waste liquid into the cutting agent and the waste cutting oil; (b) an agglomeration reaction step for forming flocs such as metal impurities and fine powder in the cutting oil through agglomeration and reaction by injecting a flocculant into the waste cutting oil from the first centrifugation step; (c) a second centrifugal separation step of separating the waste slurry from the flocculation step into waste sludge and coolant; (d) a distillation step for removing water in coolant from the second centrifugation step; And (e) reusing recycled coolant after the distillation step, and a waste sludge regeneration method and a regeneration system generated in a solar cell wafer manufacturing process.

본 발명은 또한, (a) 연마입자와 절삭유(Coolant)를 혼합시키는 혼합조; (b) 슬러지 폐액을 절삭제와 폐 절삭유로 분리하는 1차 원심분리기; (c) 상기 1차 원심분리기에서 나온 폐 절삭유(Coolant)에 응집제를 투입하여 응집 및 반응을 통해 절삭유내 금속 불순물 및 미분등의 플록(Floc)형성을 위한 응집반응조; (d) 상기 응집반응조에서 나온 폐 슬러리를 폐 슬러지와 절삭유(Coolant)로 분리하는 2차 원심분리기; (e) 상기 2차 원심분리기에서 나온 절삭유(Coolant) 내 수분제거를 위한 증류조; 및 (f) 상기 증류조에서 나온 재생 절삭유(Coolant)를 저장하는 저장조를 포함하는 태양전지용 웨이퍼 제조공정에서 발생하는 폐슬러지 재생시스템을 제공한다.
The present invention also (a) a mixing tank for mixing the abrasive particles and the coolant (Coolant); (b) a primary centrifuge separating the sludge waste liquor into a cutting agent and waste cutting oil; (c) an agglomeration reaction tank for forming flocs such as metal impurities and fine powder in the cutting oil through agglomeration and reaction by injecting a flocculant into waste coolant from the first centrifuge; (d) a secondary centrifuge for separating the waste slurry from the flocculation tank into waste sludge and coolant; (e) a distillation tank for removing water in coolant from the secondary centrifuge; And (f) provides a waste sludge recycling system generated in the solar cell wafer manufacturing process comprising a storage tank for storing the regenerated coolant (Coolant) from the distillation tank.

본 발명에 따르면 종래 슬러지 재생방법과 비교하여 폐 절삭유내 금속 불순물과 미분의 플록(Floc)형성으로 제거시키는 응집반응단계의 추가로 기존 폐 절삭유내 금속 불순물을 제거하기위한 단계가 불필요하게 됨으로써 절삭유 재생 단가의 감소와 재생효율을 증가시켜, 재생슬러지의 사용기간을 연장시킴과 동시에, 안정적인 절삭유와 절삭제 혼합 슬러리를 공급할 수 있다. 또한, 태양전지용 웨이퍼 제조공정에서 초기 웨이퍼의 품질을 고도화시킬 수 있고, 이로 인해 태양전지용 웨이퍼 제조공정에서 사용되는 재생슬러지의 양을 줄일 수 있게 되며, 그 결과 특수산업폐기물인 폐 슬러리의 발생량 감소와 함께 처리비용도 감소시켜 태양전지용 웨이퍼 제조원가를 보다 낮출 수 있는 효과가 있다.
According to the present invention, compared to the conventional sludge regeneration method, the addition of the coagulation reaction step of removing the metal impurities and fine powder floc in the waste cutting oil eliminates the step of removing the metal impurities in the existing waste cutting oil, thereby eliminating the cutting oil. By reducing the unit cost and increasing the regeneration efficiency, the service life of the recycled sludge can be extended, and a stable cutting oil and cutting agent mixed slurry can be supplied. In addition, it is possible to improve the initial wafer quality in the solar cell wafer manufacturing process, thereby reducing the amount of recycled sludge used in the solar cell wafer manufacturing process, and as a result, reducing the amount of waste slurry, which is a special industrial waste, In addition, the processing cost is also reduced, thereby lowering the manufacturing cost of the solar cell wafer.

도 1은 본 발명의 일 실시예에 따른 슬러리 재생공정을 나타낸 공정 순서도이다.
도 2는 본 발명에 있어서, 응집제 최적투입량 결정을 위한 Jar Test 실험방법을 나타낸 것이다.
1 is a process flowchart showing a slurry regeneration process according to an embodiment of the present invention.
Figure 2 shows the Jar Test test method for determining the optimal dose of flocculant in the present invention.

본 발명은 일 관점에서, (a) 슬러지 폐액을 절삭제와 폐 절삭유로 분리하는 1차 원심분리 단계; (b) 상기 1차 원심분리 단계에서 나온 폐 절삭유에 응집제를 투입하여 응집 및 반응시켜 폐 절삭유내 금속 불순물(metal impurities) 및 미분등의 침전가능한 플록(Floc)을 형성시키는 응집반응단계; (c) 상기 응집반응단계에서 나온 폐 슬러리를 폐 슬러지와 절삭유(Coolant)로 분리하는 2차 원심분리단계; (d) 상기 2차 원심분리단계에서 나온 절삭유(Coolant) 내 수분제거를 위한 증류단계; 및 (e) 상기 증류단계 후 재생 절삭유(Coolant)를 재이용하는 단계, 태양전지용 웨이퍼 제조공정에서 발생하는 폐슬러지 재생방법에 관한 것이다.The present invention in one aspect, (a) the first centrifugation step of separating the sludge waste liquid into the cutting agent and the waste cutting oil; (b) an agglomeration reaction step of coagulating and reacting the coagulant with the waste cutting oil from the first centrifugation step to form a floctable floc such as metal impurities and fine powder in the waste cutting oil; (c) a second centrifugal separation step of separating the waste slurry from the flocculation step into waste sludge and coolant; (d) a distillation step for removing water in coolant from the second centrifugation step; And (e) reusing recycled coolant (Coolant) after the distillation step, relates to a waste sludge recycling method generated in the wafer manufacturing process for solar cells.

본 발명에 있어서, 상기 (a)단계는 와이어 소잉(wire sawing) 후, 점도감소를 위하여 슬러지 폐액을 열공급조에서 50~70℃에서 열처리한 뒤, 700~1500rpm 및 5~10min의 반응조건으로 원심분리하는 것을 특징으로 한다. 이때, 반응속도가 700rpm미만이거나 1500rpm을 초과 및 반응시간이 5min 미만이거나 10min 초과할 경우 원하는 재생입자 회수의 문제가 생긴다. In the present invention, the step (a) after the wire sawing (heat sawing), after the heat treatment of the sludge waste liquid at 50 ~ 70 ℃ in a heat supply tank for viscosity reduction, centrifugation at 700 ~ 1500rpm and 5 ~ 10min reaction conditions It is characterized by separating. At this time, if the reaction rate is less than 700rpm or more than 1500rpm and the reaction time is less than 5min or more than 10min occurs a problem of the desired recovery particle recovery.

본 발명에 있어서, 상기 (b) 단계에서 사용되는 응집제는 양이온(Cation)계 응집제인 것이 바람직하며, 이는 폐 절삭유 내 금속 불순물(metal impurities) 및 미분 등을 응집시킴으로써, 추후 수행될 2차 원심분리단계에서 불순물을 효과적으로 제거시킬 수 있는 효과를 가진다. In the present invention, the flocculant used in the step (b) is preferably a cation-based flocculant, which is a second centrifugal separation to be performed later by flocculating metal impurities and fine powder in the waste cutting oil. It has the effect of effectively removing impurities in the step.

본 발명에서 사용될 수 있는 양이온(Cation)계 응집제로는 폴리아크릴아미드계 응집제 등이 있다.Examples of cationic flocculants that can be used in the present invention include polyacrylamide flocculants.

또한, 상기 (b)단계는 300~30rpm 및 20~240sec의 반응조건에서 300rpm (20sec)에서 급속교반을 시작으로 단계적으로 속도를 감소시켜 마지막으로 30rpm(240sec)내에서 완속교반를 실시한다. 이는 응집제 투입 후 폐절삭유 내 금속 불순물(metal impurities) 및 미분 등을 침전가능한 플록(Floc)을 형성시키게 한다. 이때, 단계적으로 급속교반을 시작으로 완속교반을 실시하지 않거나 급속교반 및 완속교반을 동일 속도와 시간으로 실시할 경우 플록(Floc)이 형성되지 않거나 형성된 플록(Floc)이 깨지게 된다.In addition, the step (b) is to perform a slow stirring in 30rpm (240sec) to finally reduce the speed by starting a rapid stirring at 300rpm (20sec) in the reaction conditions of 300 ~ 30rpm and 20 ~ 240sec. This causes flocculation to form flocs that can precipitate metal impurities, fines, etc. in the waste cutting oil. At this time, if the slow stirring is not performed gradually starting with rapid stirring or if the rapid stirring and the slow stirring are performed at the same speed and time, the floc is not formed or the formed floc is broken.

보다 상세하게는, 응집제를 응집제 투입 탱크(Tank)에서 물과 혼합시키고, 교반기를 이용하여 균질화된 응집 피드스톡(Feedstock)을 제조하고, 상기 응집 피드스톡(edstock) 주입농도는 폐절삭유내 총 고형물 함량에 따라 최적온도인 50~70℃로 유지된 폐절삭유에 폐절삭유 대비 10~300ppm을 주입하는데, 이때, 최적응집투입량은 이하 실시예에서 보다 상세하게 서술될 Jar Test를 통해 결정되어 진다.More specifically, the flocculant is mixed with water in a flocculant input tank (tank), a homogenized flocculent feedstock is prepared using an agitator, and the flocculent feedstock injection concentration is the total solids in the waste cutting oil. Inject 10 ~ 300ppm compared to the waste cutting oil into the waste cutting oil maintained at the optimum temperature of 50 ~ 70 ℃, depending on the content, the optimum coagulation input is determined through the Jar Test to be described in more detail in the following examples.

본 발명에 있어서, 상기 (c) 단계는 하이드로 싸이클론(hydro-cyclone)을 이용하여 수행되며, 3000~4000rpm 및 5~10min의 반응조건으로 원심분리하는 것을 특징으로 하는데, 이는 절삭유(Coolant) 내 총 고형물 함량의 제거를 극대화시키는 효과가 있다. 이때, 반응속도가 3000rpm미만이면 (b) 단계에서 형성된 플록(Floc)의 침전 문제가 있고, 4000rpm을 초과하면 3000~4000rpm 반응속도와 비교하여 플록(Floc)제거 상승효과가 없으며, 반응시간이 5min 미만이면 충분히 플록(Floc)을 제거시킬 수 없으며, 10min 초과하면 5~10min 반응시간과 비교하여 플록(Floc)제거의 상승효과 없다. In the present invention, the step (c) is performed using a hydrocyclone (hydro-cyclone), characterized in that the centrifugation under the reaction conditions of 3000 ~ 4000rpm and 5 ~ 10min, which is in the coolant (Coolant) There is an effect of maximizing the removal of the total solids content. At this time, if the reaction rate is less than 3000rpm, there is a problem of precipitation of floc formed in step (b), and if it exceeds 4000rpm, there is no synergistic effect of floc removal compared to the reaction rate of 3000 ~ 4000rpm, and the reaction time is 5min. If it is less than the floc (Floc) can not be removed sufficiently, if it exceeds 10min compared to the 5 ~ 10min reaction time there is no synergistic effect of floc (Floc) removal.

본 발명에 있어서, 상기 (d) 단계는 감압증류를 이용하는데, 이는 상기 (c) 단계 후 분리된 Coolant 내의 약 6% 이하의 수분을 제거시킴으로써, 재생된 Coolant의 품질을 향상시키는 효과가 있다.In the present invention, step (d) uses reduced-pressure distillation, which removes about 6% or less of water in the coolant separated after step (c), thereby improving the quality of the regenerated coolant.

본 발명에 있어서, 상기 (e) 단계의 재생 절삭유(Coolant)는 상기 (d) 단계를 거친 후 최종적으로 수분이 제거된 총 고형물 함량 0.05% 이하로 재이용 가능한 것을 특징으로 할 수 있다. In the present invention, the regenerated coolant (Coolant) of the step (e) may be reusable to 0.05% or less of the total solid content of the water is finally removed after the step (d).

본 발명은 다른 관점에서, (a) 연마입자와 절삭유(Coolant)를 혼합시키는 혼합조; (b) 슬러지 폐액을 절삭제와 폐 절삭유로 분리하는 1차 원심분리기; (c) 상기 1차 원심분리기에서 나온 폐 절삭유에 응집제를 투입하여 응집 및 반응을 통해 금속 불순물 및 미분 등의 침전가능 플록(Floc) 형성을 위한 응집반응조; (d) 상기 응집반응조에서 나온 폐 슬러리를 폐 슬러지와 절삭유(Coolant)로 분리하는 2차 원심분리기; (e) 상기 2차 원심분리기에서 나온 절삭유(Coolant) 내 수분제거를 위한 증류조; 및 (f) 상기 증류조에서 나온 재생 절삭유(Coolant)를 저장하는 저장조를 포함하는 태양전지용 웨이퍼 제조공정에서 발생하는 폐슬러지 재생시스템에 관한 것이다.In another aspect, the present invention (a) a mixing tank for mixing the abrasive particles and the coolant (Coolant); (b) a primary centrifuge separating the sludge waste liquor into a cutting agent and waste cutting oil; (c) an agglomeration reaction tank for forming sedimentable flocs such as metal impurities and fine powder through agglomeration and reaction by inputting a coagulant into the waste cutting oil from the first centrifuge; (d) a secondary centrifuge for separating the waste slurry from the flocculation tank into waste sludge and coolant; (e) a distillation tank for removing water in coolant from the secondary centrifuge; And (f) relates to a waste sludge recycling system generated in the solar cell wafer manufacturing process comprising a storage tank for storing the regenerated coolant (Coolant) from the distillation tank.

본 발명에 있어서, 상기 폐슬러지 재생시스템은 1차 원심분리 전, 점도감소를 위하여 열공급조를 추가로 포함할 수 있고, 상기 재생 절삭유(Coolant)는 혼합조에서 재생되는 것을 특징으로 한다.In the present invention, the waste sludge regeneration system may further include a heat supply tank for viscosity reduction before the first centrifugal separation, and the regenerated coolant is regenerated in a mixing tank.

이하, 첨부도면의 바람직한 실시예를 통하여 본 발명에 따른 태양전지용 웨이퍼 제조공정에서 발생하는 폐슬러리 재생시스템을 보다 구체적으로 살펴본다.Hereinafter, the waste slurry recycling system generated in the solar cell wafer manufacturing process according to the present invention will be described in more detail with reference to the accompanying drawings.

도 1에 나타난 공정 순서도에 따라 본 발명에 따른 폐슬러지 재생시스템을 살펴보면, 연마입자(1)와 절삭유(Coolant)(2)을 혼합시키는 혼합조(3), 잉곳 절삭공정(5), 와이어 소잉(Wire Sawing)(5)공정에서 나온 슬러리 폐액조(7), 점도감소를 위한 열공급조(9), 이를 1차 원심분리(11)하여 혼합조(3)로 들어가는 재생입자 탱크(Tank)(10)와 폐 절삭유가 모인 폐액조(12), 본 폐액에 응집제 투입탱크(Tank)(14)를 통해 응집제가 투입되어 반응을 위한 응집 반응조(13), 2차 원심분리기(15)후 폐 슬러지(16)와 절삭유(Coolant)(17), 수분제거를 위한 증류조(18)와 재생 절삭유(Coolant)가 모인 최종 재생 절삭유(Coolant) 저장조(20)로 구성되어지며, 최종적으로 재생 절삭유(Coolant)는 혼합조(3)에서 재생(Recycle)됨을 포함하여 이루어지는 것을 특징으로 한다. Referring to the waste sludge recycling system according to the present invention according to the process flow chart shown in Figure 1, the mixing tank (3), ingot cutting process (5), wire sawing to mix the abrasive particles (1) and coolant (2) (Wire Sawing) (5) The slurry waste liquid tank (7) from the process, the heat supply tank (9) for viscosity reduction, the regenerated particle tank (Tank) entering the mixing tank (3) by primary centrifugation (11) ( 10) and the waste liquid tank 12 in which the waste cutting oil is collected, the flocculant is introduced into the waste liquid through a flocculant input tank (14), and then the coagulation reaction tank (13) for the reaction and the second centrifugal separator (15) It consists of a coolant (17), a coolant (17), a distillation tank (18) for removing water and a final coolant reservoir (20) in which the regenerated coolant (Coolant) is collected, and finally a coolant (Coolant) ) Is characterized in that it comprises a recycle (Recycle) in the mixing tank (3).

본 발명에 따르면, 종래 장치의 절삭유(Coolant) 재생효율과 비교하여 높은 재생효과를 나타내고, 응집반응공정을 통한 2차 원심분리 후에 절삭유(Coolant) 내 총고형물 함량 0.05% 이하의 우수한 재생 효율을 가지며, 최종적으로 2차 원심분리 후의 절삭유(Coolant)는 감압증류공정을 통해 응집시 포함된 약 6% 이하의 수분을 제거시킴으로써 재생 절삭유(Coolant)의 품질을 높이는 폐슬러지 재생방법을 제공한다.
According to the present invention, it exhibits a high regeneration effect compared to the coolant regeneration efficiency of the conventional apparatus, and has an excellent regeneration efficiency of 0.05% or less of the total solid content in the coolant after the second centrifugal separation through an agglomeration reaction process. Finally, the coolant after the second centrifugation removes about 6% or less of moisture contained in the flocculation through a reduced pressure distillation process, thereby providing a waste sludge regeneration method for improving the quality of the recycled coolant.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

최적응집조건 산출을 위한 Jar TestJar Test for Calculation of Optimum Aggregation Conditions

먼저, 본 실시예는 동일조건에서 실시하였으며, 본 실험에 앞서 응집제 주입 전 폐 절삭유의 총 고형물량을 분석하고, 최적 농도의 응집제 피드스톡(FeedStock(Water base))를 제조하여, 하기된 바와 같이 도 2에 나타난 방법에 따라 테스트를 수행하였다.First, the present embodiment was carried out under the same conditions. Prior to the present experiment, the total solids content of the waste cutting oil was analyzed before the coagulant injection, and an optimal concentration of coagulant feedstock (FeedStock (Water base)) was prepared, as described below. The test was performed according to the method shown in FIG.

시료의 균질성을 위해 충분히 교반하여 시료 일정량 취하고, 최적 응집제량을 결정을 위해, 폐 절삭유내 총고형물 대비 응집제 양(10 ~ 300ppm)에 따라 동시에 투입을 실시하였다. 또한, 플록(Floc)형성을 위해 교반속도 300 ~ 30rpm, 교반시간20 ~ 240sec에서 300rpm(20sec)에서 급속교반을 시작으로 단계적인 속도감소로 30rpm(240sec)내에서 완속교반를 마지막으로 실시하고, 고액분리를 위해 3000 ~ 4000rpm에서 5 ~ 10분 동안 원심분리를 실시하였다. 총 고형물질 측정방법은 충분히 혼합된 시료 또는 실험 후 원심분리된 상층부 일정량을 칭량된 용기에 덜고 무게를 잰후 절삭유(Coolant) 끓는점 이상에서 절삭유(Coolant)가 모두 제거될 때까지 가열한 후 무게를 측정하였다.In order to determine the homogeneity of the sample, a certain amount of the sample was taken by stirring, and in order to determine the optimum amount of flocculant, the amount of coagulant to the total solids in the waste cutting oil (10 to 300 ppm) was simultaneously added. In addition, in order to form flocs, slow stirring was performed within 30rpm (240sec) by gradually reducing the speed by gradually stirring at 300rpm (20sec) at agitation speed of 300 to 30rpm and agitation time of 20 to 240sec. Centrifugation was performed for 5 to 10 minutes at 3000 to 4000 rpm for separation. The total solids measurement method is to weigh a small amount of the mixed sample or the upper layer centrifuged after the experiment into a weighed container, weigh it, and heat it until the coolant is removed from the coolant boiling point. It was.

그 결과, [표 1]에 나타난 바와 같이, 원심분리 후 슬러리 폐액에 120ppm이 되도록 응집제(FeedStock(Water base))를 투입한 경우, 가장 최적값을 나타내었다.As a result, as shown in [Table 1], when the flocculant (FeedStock (Water base)) was added to 120ppm in the slurry waste liquid after centrifugation, the most optimal value was shown.

폐 절삭유 총 고형물 대비 Cation계 응집제 주입량Injection amount of Cation-based flocculant compared to total solid waste oil 실험 순서order of experiment 1One 22 33 44 55 Cation계
응집제
Cation system
Flocculant

미첨가

No addition
30ppm
(4.5g)
30 ppm
(4.5 g)
60ppm
(9g)
60 ppm
(9g)
120ppm
(18g)
120 ppm
(18 g)
180ppm
(27g)
180 ppm
(27 g)
상층액 TS(%)Supernatant TS (%) 3.81%3.81% 1.58%1.58% 0.07%0.07% 0.02%0.02% 0.04%0.04%

1: 연마입자 2: 절삭유(Coolant)
3: 혼합조 4: 실리콘 잉곳
5: 와이어소잉(Wiresawing) 6: 웨이퍼 세정
7: 슬러리 폐액 8: 웨이퍼 제품
9: 열공급조 10: 재생입자 탱크(Tank)
11: 1차 원심분리 12: 폐절삭유
13: 응집반응조 14: 응집제 투입 탱크(Tank)
15: 2차 원심분리 16: 폐슬러지
17: 절삭유(Coolant) 18: 증류조
19: 수분제거 20: 재생 절삭유(Coolant)
1: abrasive grain 2: coolant
3: mixing tank 4: silicon ingot
5: Wiresawing 6: Wafer Cleaning
7: slurry waste liquid 8: wafer product
9: heat supply tank 10: regenerated particle tank (Tank)
11: first centrifugation 12: waste cutting oil
13: flocculation tank 14: flocculant input tank (Tank)
15: Secondary Centrifugation 16: Waste Sludge
17: Coolant 18: Distillation tank
19: Water removal 20: Recycled coolant

Claims (13)

다음 단계를 포함하는, 태양전지용 웨이퍼 제조공정에서 발생하는 폐슬러지 재생방법:
(a) 슬러지 폐액을 절삭제와 폐 절삭유로 분리하는 1차 원심분리 단계;
(b) 상기 1차 원심분리 단계에서 나온 폐 절삭유에 응집제를 투입하여 응집 및 반응시키는 응집반응단계;
(c) 상기 응집반응단계에서 나온 폐 슬러리를 폐 슬러지와 절삭유(Coolant)로 분리하는 2차 원심분리단계;
(d) 상기 2차 원심분리단계에서 나온 절삭유(Coolant) 내 수분제거를 위한 증류단계; 및
(e) 상기 증류단계 후 재생 절삭유(Coolant)를 재이용하는 단계.
Waste sludge regeneration in a solar cell wafer manufacturing process comprising the following steps:
(a) a first centrifugation step of separating the sludge waste liquid into a cutting agent and waste cutting oil;
(b) an agglomeration reaction step of agglomeration and reaction by adding a flocculant to the waste cutting oil from the first centrifugation step;
(c) a second centrifugal separation step of separating the waste slurry from the flocculation step into waste sludge and coolant;
(d) a distillation step for removing water in coolant from the second centrifugation step; And
(e) reusing recycled coolant after the distillation step;
제1항에 있어서, 상기 (a)단계의 슬러지 폐액을 50~70℃에서 열처리한 후 원심분리하는 것을 특징으로 하는 폐슬러지 재생방법.
The method of claim 1, wherein the sludge waste liquid of step (a) is subjected to a heat treatment at 50 ~ 70 ℃ and then centrifuged.
제1항에 있어서, 상기 (a) 단계는 700~1500rpm 및 5~10min의 반응조건으로 수행되는 것을 특징으로 하는 폐슬러지 재생방법.
The method of claim 1, wherein the step (a) is waste sludge regeneration method, characterized in that carried out under the reaction conditions of 700 ~ 1500rpm and 5 ~ 10min.
제1항에 있어서, 상기 (b)단계의 응집제는 양이온(Cation)계 응집제를 이용하는 것을 특징으로 하는 폐슬러지 재생방법. The method of claim 1, wherein the coagulant of step (b) uses a cation-based coagulant. 제1항에 있어서, 상기 (b)단계는 300 ~ 30rpm 및 20 ~ 240sec의 반응조건에서 300rpm(20sec)에서 급속교반을 시작으로 단계적인 속도감소로 30rpm(240sec)내에서 완속교반를 마지막으로 응집반응이 수행되는 것을 특징으로 하는 폐슬러지 재생방법.
According to claim 1, wherein the step (b) is a rapid agitation at 300rpm (20sec) starting at 300rpm (20sec) under the reaction conditions of 300 ~ 30rpm and 20 ~ 240sec, the final agglomeration in slow slow stirring within 30rpm (240sec) Waste sludge regeneration method, characterized in that is carried out.
제 1항 또는 제5항에 있어서 상기(b)단계는 급속교반과 완속교반을 통한 폐 절삭유내 금속 불순물(metal impurities) 및 미분을 함께 응집시킴으로써 침전가능 플록(Floc)을 형성시키는 것을 특징으로 하는 폐 슬러지 재생방법
The method of claim 1 or 5, wherein the step (b) is characterized in that the flocculating floc by flocculating the metal impurities and fine powder in the waste cutting oil through rapid stirring and slow stirring. Waste Sludge Recycling Method
제1항에 있어서, 상기 (c) 단계는 하이드로 싸이클론(Hydro-cyclone)을 적용하는 것을 특징으로 하는 폐슬러지 재생방법.
The method of claim 1, wherein the step (c) is a waste sludge regeneration method, characterized in that for applying a hydro-cyclone (Hydro-cyclone).
제1항에 있어서, 상기 (c) 단계는 3000~4000rpm 및 5~10min의 반응조건으로 수행되는 것으로 상기(b)단계에서 응집반응단계완료 후 생성된 플록(Floc)을 침전분리시키는 것을 특징으로 하는 폐슬러지 재생방법.

According to claim 1, wherein the step (c) is carried out in the reaction conditions of 3000 ~ 4000rpm and 5 ~ 10min characterized in that the floc (Floc) generated after the completion of the flocculation reaction step in step (b) is characterized in that Waste sludge regeneration method.

제1항에 있어서, 상기 (d) 단계에서 증류는 감압증류인 것을 특징으로 하는 폐슬러지 재생방법.
The method of claim 1, wherein the distillation in step (d) is distillation under reduced pressure.
제1항에 있어서, 상기 (e) 단계의 재생 절삭유(Coolant)는 총 고형물 함량 0.05% 이하로 재이용가능한 것을 특징으로 하는 폐슬러지 재생방법.
The method of claim 1, wherein the regenerated coolant (Coolant) of step (e) is reusable to a total solid content of 0.05% or less.
다음을 포함하는, 태양전지용 웨이퍼 제조공정에서 발생하는 폐슬러지 재생시스템:
(a) 연마입자와 절삭유(Coolant)를 혼합시키는 혼합조;
(b) 슬러지 폐액을 절삭제와 폐 절삭유로 분리하는 1차 원심분리기;
(c) 상기 1차 원심분리기에서 나온 폐 절삭유에 응집제를 투입하여 응집 및 반응시키는 응집반응조;
(d) 상기 응집반응조에서 나온 폐 슬러리를 폐 슬러지와 절삭유(Coolant)로 분리하는 2차 원심분리기;
(e) 상기 2차 원심분리기에서 나온 절삭유(Coolant) 내 수분제거를 위한 증류조; 및
(f) 상기 증류조에서 나온 재생 절삭유(Coolant)를 저장하는 저장조.
Waste sludge regeneration system from solar cell wafer manufacturing process, including:
(a) a mixing tank for mixing abrasive particles and coolant;
(b) a primary centrifuge separating the sludge waste liquor into a cutting agent and waste cutting oil;
(c) an agglomeration reaction tank configured to agglomerate and react by adding a flocculant to the waste cutting oil from the first centrifuge;
(d) a secondary centrifuge for separating the waste slurry from the flocculation tank into waste sludge and coolant;
(e) a distillation tank for removing water in coolant from the secondary centrifuge; And
(f) A storage tank for storing regenerated coolant (Coolant) from the distillation tank.
제11항에 있어서, 1차 원심분리 전, 점도감소를 위하여 열공급조를 추가로 포함하는 것을 특징으로 하는 폐슬러지 재생시스템.
The waste sludge regeneration system according to claim 11, further comprising a heat supply tank for reducing the viscosity before the first centrifugation.
제11항에 있어서, 상기 재생 절삭유(Coolant)는 혼합조에서 재생되는 것을 특징으로 하는 폐슬러지 재생시스템.





12. The waste sludge regeneration system as set forth in claim 11, wherein the regenerated coolant is regenerated in a mixing tank.





KR20100031280A 2010-04-06 2010-04-06 Recycling Method for Waste Sludge Formed by Solar Cell Wafer Manufacturing and Recycling System Thereof KR101188313B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20100031280A KR101188313B1 (en) 2010-04-06 2010-04-06 Recycling Method for Waste Sludge Formed by Solar Cell Wafer Manufacturing and Recycling System Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20100031280A KR101188313B1 (en) 2010-04-06 2010-04-06 Recycling Method for Waste Sludge Formed by Solar Cell Wafer Manufacturing and Recycling System Thereof

Publications (2)

Publication Number Publication Date
KR20110111946A KR20110111946A (en) 2011-10-12
KR101188313B1 true KR101188313B1 (en) 2012-10-09

Family

ID=45027875

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20100031280A KR101188313B1 (en) 2010-04-06 2010-04-06 Recycling Method for Waste Sludge Formed by Solar Cell Wafer Manufacturing and Recycling System Thereof

Country Status (1)

Country Link
KR (1) KR101188313B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240045148A (en) * 2022-09-29 2024-04-05 주식회사 영풍 Apparatus for pre-treating used battery and method of pre-treating used battery using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101333966B1 (en) * 2011-11-30 2013-11-27 오씨아이 주식회사 High efficiency recycling method and system for sawing liquid in waste sludge formed by semiconductor and solar cell wafer using membrane process
CN110590008A (en) * 2019-08-28 2019-12-20 四川蓝魔方环境科技有限公司 Waste cutting fluid treatment process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441648B1 (en) 1996-02-21 2004-10-06 미마스 한도타이 고교 가부시키가이샤 Reuse system of water-soluble slurry waste liquid
JP2007246367A (en) 2006-03-17 2007-09-27 Sharp Corp Method for recovering silicon-containing material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441648B1 (en) 1996-02-21 2004-10-06 미마스 한도타이 고교 가부시키가이샤 Reuse system of water-soluble slurry waste liquid
JP2007246367A (en) 2006-03-17 2007-09-27 Sharp Corp Method for recovering silicon-containing material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240045148A (en) * 2022-09-29 2024-04-05 주식회사 영풍 Apparatus for pre-treating used battery and method of pre-treating used battery using the same
KR102658019B1 (en) * 2022-09-29 2024-04-17 주식회사 영풍 Apparatus for pre-treating used battery and method of pre-treating used battery using the same

Also Published As

Publication number Publication date
KR20110111946A (en) 2011-10-12

Similar Documents

Publication Publication Date Title
CN101218068B (en) Process and apparatus for treating exhausted abrasive slurries for the recovery of their reusable components
JP5722601B2 (en) Silicon cutting waste treatment method
KR20010071680A (en) Method for the separation, regeneration and reuse of an exhausted glycol-based slurry
KR100485738B1 (en) Slurry regeneration method
KR100823666B1 (en) Device and method for recycling silicon sludge
WO2011078219A1 (en) Method for recovering purified silicon-containing powder
JP5173945B2 (en) Coolant regeneration method and slurry regeneration method
KR101333966B1 (en) High efficiency recycling method and system for sawing liquid in waste sludge formed by semiconductor and solar cell wafer using membrane process
KR101188313B1 (en) Recycling Method for Waste Sludge Formed by Solar Cell Wafer Manufacturing and Recycling System Thereof
CN103183349B (en) Recovery method for silicon carbide and polyethyleneglycol cutting fluids in waste cutting mortar for silicon wafer
JP2011218503A (en) Method for disposing silicon-containing waste liquid
CN103288086A (en) Recovery method of silicon carbide, silicon powder and polyethylene glycol from cutting fluid of silicon chips
JP3816200B2 (en) Method and apparatus for processing liquid containing fine particles
CN1292992C (en) Coagulant, coagulation treatment apparatus, coagulation treatment method, and coagulation treatment apparatus for fluid
KR100393007B1 (en) Regenerating process and regenerating system to regenerate waste slurry from semiconductor wafer manufacturing process
CN110002692A (en) A kind of Zero-discharge treating process of industry cleaning link waste water
KR101250376B1 (en) High efficiency recycling method and system for waste sludge formed by solar cell wafer using centrifuge and membrane
JP2012532762A (en) Suspension adjustment method
JP5869371B2 (en) Treatment method of wastewater containing silicon
US20130272945A1 (en) Method for Producing Silicon Chloride from Silicon Sludge
KR20110050877A (en) Purification method of waste slurry from semiconductor and solar cell wafer manufacturing process and regenerating cutting fluid for semiconductor and solar cell wafer using them
JP5286095B2 (en) Silicon sludge recovery method and silicon processing apparatus
KR101190560B1 (en) Recovery apparatus and method from ingot wire sawed slurry
KR101331446B1 (en) Method For Purificating Abrasive Cutting Sludge
KR100626252B1 (en) Recycling Process of Abrasive for Wire Sawing

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150820

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160801

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180117

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180615

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190619

Year of fee payment: 8